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   Foreword 
   Vinton G.   Cerf   

 The   Internet has been around in concept since 1973 and in operation since 1983. Its usage exploded 
when the World Wide Web application became broadly available with the arrival of the commercial 
Netscape Navigator browser and server applications around 1994. Since that time, an avalanche of 
content and new applications have poured into the Internet, which has grown to include nearly 
2 billion people and possibly that many servers, laptops, desktops, and mobile units. But the system 
is about to experience yet another explosive period of growth as smart devices become a part of the 
Internet environment. The trend has already become visible as sensor networks connect to the Internet 
along with some fraction of the 4 billion mobiles thought to be in use around the world. To these 
devices appliances of all kinds (home, offi ce, portable, fi xed and mobile sensors, etc.) will be added. 

 What   will this  “ Internet of Things ”  be like? For one thing, many of these  “ Internet-enabled ”  
devices will be using the relatively new IPv6 protocol for access. IPv6 was standardized by the 
Internet Engineering Task Force around 1996, but implementation has been sparse. It is expected 
to accelerate, partly to accommodate the huge number of potential devices that will be connected to 
the Internet and also to cope with the anticipated exhaustion of the original IPv4 address space. The 
latter provided for approximately 4.3 billion unique terminations. A combination of relatively sparse 
assignment practices and reuse of  “ private address space ”  through Network Address Translation 
(NAT) boxes has allowed operation of the limited IPv4 address space through the present, but it is 
expected that the last of the IPv4 addresses will be allocated by the Internet Corporation for Assigned 
Names and Numbers by mid-2011, and the Regional Internet Registries that assign address space to 
Internet Service Providers will exhaust their supplies not long thereafter. There are 340 trillion trillion 
trillion IPv6 addresses, and it is hoped that this will suffi ce for the foreseeable future. 

 Many   of the  “ things ”  on the Internet will be appliances that can accept control inputs remotely 
or can report status information remotely. Sensor systems are good examples. I have a monitoring 
system in my home that tracks temperature, humidity, and light levels in every room in the house 
every 5 minutes. This information is captured and stored in a local database at home but is accessible 
remotely from anywhere on the Internet. One can easily envision security systems and a wide range 
of appliances that might be able to report their status and accept control information. The Smart Grid 
project in the United States is prototypical of the ideas behind the Internet of Things. For example, 
devices can not only report their energy usage but also be provided by users, or others on their behalf, 
with profi les to moderate energy usage during times of peak loads in exchange for reduced charges. 

 How   often have you gone off on a trip, only to wonder whether a particular appliance was on or 
off, a light switch was set on or off, or some other home or offi ce device was properly confi gured for 
your absence? The Smart Grid may provide a means to answer such questions remotely and securely 
and even allow remote interaction. 

 Standards   to permit the interoperation of smart, Internet-enabled devices will also be essential. 
Such standards will also promote competitive provision of devices and services associated with them. 
Such potentially large-scale systems will make demands on designers to cope with billions of devices 
interacting in various subsets with each other. Emergent properties may well appear unexpectedly. 
Security and strong authentication of identity and authority will play key roles in making such sys-
tems safe to use. 
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  Our   ability to model, understand, and successfully operate such large-scale infrastructure will be 
challenged, and within that challenge there may dwell many Ph.D. dissertations as well as new and 
unexpected businesses. The law and policy will not escape the impact of this gigantic network with its 
billions of components. The potential for mischief, interference, and even signifi cant infrastructure fail-
ures (deliberate or accidental) will be made even more complex by the global scope of the Internet and 
its connections. New frameworks for dealing with liability, risk, vulnerability, and criminal activity 
will be needed along with multilateral agreements to secure the benefi ts and protect users from harm. 

 The   authors of this book offer a rich and thoughtful exploration of this new Internet canvas on 
which the twenty-fi rst century will unfold. Predictions will be hard; we are all just going to have to 
live through it to fi nd out what happens! 

 Vinton   G. Cerf 
 Woodhurst   

 January   2010      
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   Preface 

  The   digital revolution of the 21st century will be much, much larger than previous digital revolutions. 
During the 20th century, the world underwent two major digital revolutions: computers were devel-
oped and found their way into offi ces and homes, and the Internet interconnected the computers and 
fundamentally changed the way we interact with the digital world. 

 We   now stand before the digital revolution of the 21st century  : smart objects  –  the Internet of 
Things  –  that interconnect the digital world with the physical world. Industry predicts the number 
of smart objects to be counted in billions within the next ten years. Over the course of the forthcom-
ing decade, we will see this fundamentally change the way we interact with both the digital and the 
physical world. 

 A   smart object is a small micro-electronic device that consists of a communication device, typically 
a low-power radio, a small microprocessor, and a sensor or actuator. The sensors give the smart objects 
the ability to sense the physical world, for example by measuring its temperature. Actuators make it pos-
sible for the smart objects to change the physical world, for example by controlling an engine  . 

 We   already see a number of emerging applications of smart objects. The power grid is about to be 
equipped with sophisticated smart objects networks to help better manage the grid, handle renewable 
sources of energy, and recharge electric cars. Offi ce buildings can become more energy-effi cient with 
temperature sensors that monitor the actual temperature in the building so that controllable radia-
tors and air conditioners can better control the temperature. Cities will support intelligent transport 
systems, environmental monitoring, energy management, and even social networking using smart 
objects. Freighter containers can measure the climate inside the containers to make sure that food-
stuffs are kept in a good environment. 

 But   we are only beginning to scratch the surface of what smart objects can do; the emerging appli-
cations we see today are just the start. The true innovative power of smart objects comes from their 
interconnection. When innovators can begin to easily and rapidly build applications and systems that 
connect the physical and the digital world, a new level of serendipity begins. 

 The   network architecture for the smart objects must be extremely open to future innovation. 
We cannot possibly know what the future holds for smart objects, as the fi eld is still in its infancy. 
Innovation must be allowed to occur both in how we use smart objects and in the way the smart object 
technology itself is designed. The overall architecture is the fundament and must be extremely fl ex-
ible to support new applications in the future, just like the Internet did over that past three decades. 

 So   far, however, smart objects have largely been isolated islands whose interconnection has been 
made diffi cult because of a number of proprietary solutions, usually optimized for one specifi c appli-
cation, that have not been possible to integrate. 

    OBJECTIVES 
 In   this book, we explain why the Internet Protocol, IP, is the protocol of choice for smart object net-
works, providing an open and standard based technology for the endless number of applications to 
come. IP has already successfully showed that it can interconnect billions of digital systems on the 
global Internet and in private IP networks. Once smart objects can be easily interconnected, a whole 
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 new class of smart object systems can begin to evolve. Developers can build systems that integrate 
information physical-world phenomena with digital information from on-line sources. Businesses can 
make use of physical information both to make their own business more effi cient but also to explore 
completely new business opportunities. 

 The   interconnection of smart objects is not without signifi cant technical challenges. First, the 
sheer number of potential devices that can be connected provides challenges for communication 
mechanisms, routing protocols, and communication architecture. Deployments of hundreds or thou-
sands of smart objects are not uncommon. Second, the requirement for low-power operation affects 
every layer of the system, from hardware through software and to the data management architectures. 
To meet lifetime requirements, smart objects must be able to operate with power consumptions of 
less than one milliwatt. Third, the requirements for a small physical size, low power consumption, 
and low cost mean that each device must make very effi cient use of their limited resources. Smart 
objects may have only a few kilobytes of memory. Still, IP-based smart object networks are being 
designed and deployed. This book tells you how this is achieved. But this is just the beginning of an 
exciting journey: the future of interconnected smart objects has just begun.  

    STRUCTURE OF THE BOOK 
 We   spent a good amount of time thinking of the most appropriate structure for this book, in order to 
make it a reference for engineers and researchers but also provide materials valuable for non-expert 
in the fi eld. We decided to organize the book around three main parts: the book starts with one part 
devoted to discussing the architectural foundation of the IP smart object networks, before the second 
part takes a deep dive into protocols and algorithms, and the third part concludes the book with a 
detailed review of seven important use cases and applications for IP-based smart objects. 

 Part   I demonstrates why the IP architecture is well suited to smart object networks by contrast 
with non-IP based sensor network or other proprietary systems interconnect to IP networks (e.g. the 
public Internet of private IP networks) by means of hard to manage and expensive multi-protocol 
translation gateways that scale poorly. We start Part I with a description of smart objects. After a 
review of the architectural principles of IP, we explain why IP and in particular IPv6, that uses the 
same architecture as IPv4, is particularly well suited for smart objet networks. Several key network-
ing features are reviewed from an architectural angle such as routing, transport, service discovery, 
security, and web services. Part I concludes with a discussion on potential connectivity models of IP 
smart objects to (private and public) IP networks. 

 The   second part is a deep technology dive into the technologies. Part II starts with a detailed dis-
cussion on smart objects (hardware architecture, lightweight operating systems) and several of the low 
power link layers technologies used in these networks. Then follows a chapter devoted to standard-
ization, a must for any technology to be widely adopted: this chapter discusses in details the standard-
ization process of the standardization body in charge of IP protocols: the IETF (Internet Engineering 
Task Force). Then follows two chapters explaining in details two key areas of IP smart object net-
works: the 6LoWPAN adaptation layer specifi ed to carry IPv6 packet over the IEEE 802.15.4 link 
layer and the newly defi ned routing protocol (called RPL) used in IP smart object network. This sec-
ond part concludes with an overview of the IPSO (IP for Smart Object alliance) followed by a discus-
sion on two non-IP technologies. 
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  IP   smart object networks will unavoidably change and improve our day to day quality of life, in 
a number of ways: these networks will radically increase the effi ciency of power grids allowing for 
new sources of energy generation and energy savings, they will help better manage buildings and 
homes, make our cities smarter and these are only a few examples. Thus, instead of providing a few 
examples here and there, we decided to devote en entire part of this book to the applications of IP 
smart object networks:  “  What will IP smart object network be used for ? ”  in a very near future. Each 
chapter in Part III of the book describes the use of smart object networks as opposed to the technol-
ogy itself and follows a similar structure: for each use case, we start with a detailed description of the 
various applications (for example, how to enable new services in a smart city such urban environ-
mental monitoring, social networking and intelligent transport systems) followed by a discussion on 
the technical challenges. Part III discusses in details seven major applications: smart grid, industrial 
automation, smart cities and urban networks, home automation, building automation, structural health 
monitoring, and container tracking.         
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               What Are Smart Objects?    1 
CHAPTER

  This   book is about smart objects, networks of smart objects, and how these networks can be intercon-
nected using the Internet Protocol (IP). In this chapter, we defi ne smart objects, give an overview of 
the history of smart object technology, and discuss the present challenges. 

 Smart   object technology has many names. In this book, we use the term smart objects, but the 
technology and its applications have names such as the Internet of Things, the web of objects, the 
web of things, and cooperating objects. Even though there are slight differences in the connotations 
and defi nitions of those names, they represent the same fundamental type of technology. 

 One   defi nition of smart objects is a purely technical defi nition  —  a smart object is an item 
equipped with a form of sensor or actuator, a tiny microprocessor, a communication device, and a 
power source. The sensor or actuator gives the smart object the ability to interact with the physi-
cal world. The microprocessor enables the smart object to transform the data captured from the sen-
sors, albeit at a limited speed and at limited complexity. The communication device enables the smart 
object to communicate its sensor readings to the outside world and receive input from other smart 
objects. The power source provides the electrical energy for the smart object to do its work. 

 For   smart objects, size matters. They are signifi cantly smaller than both laptops and cell phones. 
For smart objects to be embedded in everyday objects, their physical size cannot exceed a few cubic 
centimeters. 

 Although   this technical defi nition of a smart object is important  —  we review it at length in 
Part II  —  it does not help us understand the behavior, interaction, and other implications of smart 
objects. Thus we must defi ne smart objects based on their behavior. 

 We   already know that smart objects are able to interact with the physical world by performing 
limited forms of computation as well as communicate with the outside world and with other smart 
objects. But what do smart objects, given their technical abilities, actually do? 

 The   answer to this question is not as easy as it seems. First, the behavior of a smart object depends 
heavily on where and how it is used. A smart object deployed in a freighter container to monitor its 
temperature behaves differently than a smart object that monitors parking spaces. Second, and more 
important, we cannot know at this point how future smart objects will be used. Even though we can 
accurately predict future smart object uses based on how smart objects are used today, we cannot 
know exactly what the future usage patterns will be. This is an important point, because it tells design-
ers of smart object systems that they must future-proof their systems, protocols, and architectures. 

 Despite   not knowing the exact behavior of a smart object, there are two behavioral properties 
common to any smart object: interaction with the physical world and communication. 
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  Smart   objects interact with the physical world by obtaining information from the physical world 
with their sensors and by affecting the physical world with their actuators. Smart objects use their 
sensors to sense physical properties ranging from simple and easy-to-measure properties such as light, 
temperature, and air humidity, to more complex properties such as air pollution, the presence of a car, 
or when an industrial machine is about to break down. Smart objects affect the physical world using 
different forms of actuators. This may be as simple as switching on a small LED or as complex as 
switching on the heat in a particular part of a building. 

 Smart   objects communicate. Even though a single smart object can be very useful, by turning 
on the light in a doorway when the door opens, for example, the real power of smart objects comes 
from their ability to communicate. The smart object that would previously switch on the door light is 
now able to communicate that the door was opened to every other nearby smart object. These smart 
objects may turn on other lights in the house, turn up the heat, and so forth. Likewise, smart objects 
in an industrial plant that sense the vibration of machinery may communicate their vibration reading 
both to each other and to the plant’s operator. Communication is essential to the behavior of smart 
objects, thus we frequently use the term  smart object networks  throughout this book. 

 In   Part III of this book, we further explore the question of how smart objects behave through 
detailed case studies of deployed smart object networks. These case studies provide important insights 
into how smart objects are used now and how they are intended to be used in the near future to sup-
port the myriad of applications impacting our day-to-day lives, but they do not allow us to look into 
the future. We have to use the available tools  —  knowledge of history, understanding and experience, 
and sound engineering practices  —  to build this technology for the future. 

    1.1       WHERE DO SMART OBJECTS COME FROM? 
 Smart   objects come from a number of different technology areas and scientifi c disciplines with each 
area making its own imprint on the technology. 

 To   understand the origins of smart objects, we must look at the conceptual developments as well 
as the technological progress that makes smart objects possible. The concepts and the technology 
have coexisted for a long time and the developments in their respective areas are intertwined, but they 
have largely progressed and matured independently of each other. 

 Computing   and telephony are two disparate strands of development that have led to the develop-
ment of smart objects. Both computing and telephony play a large part in the formulation of smart 
objects, but the two technologies have different cultural and technical histories. 

 The   roots of computing can be traced back to the academic environments that spun out of the 
aftermath of World War II. Computer scientists such as John von Neumann, who were employed by 
the US military during WW II, continued their work in the US academic system, often funded by the 
US military. It was this environment that developed the fi rst computers, the fi rst operating systems, 
and subsequently the Internet. This culture was often characterized by witty engineering, the devel-
opment of evolvable systems, and the desire to make the most out of available tools. Frequently, the 
systems developed in this environment were never intended to have a world-wide distribution, but 
because they were built to evolve and built on solid engineering principles, they often succeeded in 
reaching monumental importance. Examples of this include the UNIX family of operating systems 
whose heirs support most of the Internet today, and indeed, the global Internet itself. 
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  The   roots of telephony are older than those of computing, and have taken a slightly different path. 
The fi rst patent on telephony was fi led by Alexander Graham Bell in 1876 (even though others had 
built telephones prior to Bell). In its humble beginnings, telephony was available only to a lucky few. 
Installation of a telephone in one’s house required a signifi cant investment in infrastructure. Not only 
were wires needed within the house, but they also had to be drawn all the way from a central switch-
board to the house. Furthermore, to connect these wires together across larger distances, the switch-
boards had to be connected using wires drawn across long distances and each switchboard could even 
be operated by a different company. All in all, large investments were needed up front, before the 
system would be able to work, and once the system was installed, it was of utmost importance that it 
worked. This led to a culture where systems were rigorously specifi ed before they were ever imple-
mented. Without rigorous specifi cation, it would be extremely diffi cult, if not impossible, to connect 
disparate operators and their various equipment. To make things even more diffi cult, the telephony 
companies have always been monitored by legislators and governments, requiring even more rigor-
ous attention to detail. 

 Smart   objects represent the middle ground between computing and telephony, borrowing from 
both. From its computing heritage, smart objects have assumed the culture of engineering evolvable 
systems. This is important because at this point, it is impossible to fully specify the expected behav-
ior of future smart object systems, even if we have a good idea of where smart objects are heading 
today. From its telephony heritage, smart objects have applied the principles from connecting dispa-
rate systems that may be managed by different companies and organizations. Smart objects are not 
manufactured by a single organization, but by multitudes of different people and parties. Smart object 
technology must be both evolvable and standardized. 

 In   the remainder of this chapter, we discuss areas leading up to today’s smart objects as shown 
in  Figure 1.1   : embedded systems, ubiquitous and pervasive computing, mobile telephony, telem-
etry, wireless sensor networks, mobile computing, and computer networking. Some of these areas 
come from the computing heritage and some from the telephony heritage. Some have sprung out of 
academic research communities, some from an industrial background. What they have in common, 
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 FIGURE 1.1  
       Smart objects are the intersection of embedded systems, ubiquitous computing, mobile telephony, telemetry, 
wireless sensor networks, mobile computing, and computer networking.    
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 however, is that they either deal with computationally assisted connectivity among physical items, 
wireless communication, or with interaction between the virtual and the physical world. 

    1.1.1       Embedded Systems 
 An   embedded system is a computer embedded in something other than a computer. Under this defi ni-
tion, any system that has a microprocessor is an embedded system with the exception of PCs, laptops, 
and other equipment readily identifi ed as a computer. Thus this defi nition of an embedded system 
would include smart objects.  Figure 1.2    illustrates different types of embedded systems. 

 Traditionally  , at least until the late 1990s, embedded systems were thought to be synonymous 
with real-time control systems. Real-time control systems are computer-based systems used to con-
trol physical processes such as the pressure of a nozzle, the rudder of a ship, or the temperature of a 
radiator. In these control systems, an embedded computer typically is used to control the signals to 
an actuator that controls the phenomenon to be controlled. For a control system to work, it is impera-
tive that the embedded computer produces signals to control the actuator with precise timing. Precise 
timing is required because the controller interacts with the physical world. A ship’s rudder without 
precise timing would not be able to reliably steer a ship. This type of precise timing requirement is 
embodied in the concept of  real-time . A real-time system is a system that always responds to external 
input, or a timer, in a pre-specifi ed amount of time. The software for these devices needs to be strict 

 FIGURE 1.2  
       Embedded systems are microprocessor-equipped systems and devices that interact with the physical world. 
Examples include traffi c lights, a ship’s rudder controllers, and washing machine controllers.    
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 about its timing, and operating systems that provide this strict timing are called Real-Time Operating 
Systems (RTOS). 

 Although   the traditional defi nition of an embedded system focuses on its real-time aspects, not all 
embedded systems have real-time requirements. With the widespread adoption of microcontrollers in 
everyday items such as TV remote controls, wireless car keys, and toys, a new class of embedded sys-
tems has emerged. These systems do not have the same strict real-time requirements as the traditional 
embedded control systems, but are built using the same type of hardware. Many of these systems use 
RTOS similar to the real-time systems because this is the kind of software technology widely avail-
able for the class of hardware used. 

 Embedded   and real-time systems share many properties with smart objects. The hardware used in 
embedded systems is typically similar to or the same as that used for smart objects. Embedded sys-
tems typically have similar constraints in terms of computational power and memory. Often the same 
types of microcontrollers used in embedded systems are used in smart objects. Thus much of the soft-
ware used for embedded systems can be used for smart objects and vice versa. 

 The   primary difference between a traditional embedded system and a smart object is that communi-
cation is typically not considered a central function for embedded systems, whereas communication is a 
defi ning characteristic for smart objects. Although there are many examples of communicating embed-
ded systems, such as car engines with embedded microprocessors that can communicate their status 
information to a computer connected to the engine at service time, these systems are not defi ned by 
their ability to communicate. A car engine that cannot communicate can still operate as a car engine. In 
contrast, a smart object such as a wireless temperature sensor deprived of its communication abilities 
would no longer be able to fulfi ll its purpose.  

    1.1.2       Ubiquitous and Pervasive Computing 
 Ubiquitous   computing, also called pervasive computing, is a fi eld of study based on the concept of 
what happens when computers move away from the desktop and become immersed in the surround-
ing environment as illustrated in  Figure 1.3   . Ubiquitous computing, as a research discipline, origi-
nated in the mid-1980s. The term was coined by Mark Weiser, a professor at MIT, in 1988. Weiser 
published two short notes titled  “ Ubiquitous computing #1 ”  and  “ Ubiquitous computing #2. ”  In these 
texts, he laid out a future where computing, as we know it, was no longer done by desktop computers. 
Instead, he believed computing would move into our daily environment, living in  “ the woodwork of 
everywhere ”  as exemplifi ed in  Figure 1.3 . 

 Mark   Weiser criticized the trend of making computers exciting objects in their own right. He took 
a different perspective: instead of making computers the central object, they would become invisible. 
Weiser further argued that as technology became successful, it became invisible. 

 One   example of how successful technology becomes invisible is the motor. At the start of the 
twentieth century, the US-based Sears mail-order catalog sold a  “ home motor. ”  The home motor, 
which was fairly substantial, was designed to be placed at a central location in people’s homes. The 
purpose of the home motor was to run various types of external equipment. Together with the motor, 
customers could purchase connectors that would let the motor run sewing machines, meat grinders, 
and hair dryers. 

 Today  , motors have become the type of successful technology that has become invisible. Motors 
are found in various types of equipment and machines such as toothbrushes, hair dryers, car windows, 
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 and automatic locks. Yet very few of us ever consider that a motor drives these everyday items. Of 
course, if we stop and think about it, we can imagine that there are small motors inside these systems, 
but we never see the motor as a defi ning feature. Motors have become invisible. 

 Ubiquitous   computing has become an established academic research fi eld with several major 
annual conferences and a number of scientifi c journals. Hundreds of doctoral theses have been writ-
ten about this topic over the last two decades. 

 As   an academic discipline, ubiquitous computing places a strong focus on building real systems 
that embody its ideas. There is a long string of important prototype systems that come from the ubiq-
uitous computing community. These prototypes have been instrumental in pursuing the fi eld of ubiq-
uitous computing as well as demonstrating the feasibility of an ever-connected world. 

 One   early example of a ubiquitous prototype system is the Active Badges system developed at 
the AT & T laboratory in Cambridge, UK, in the late 1980s and early 1990s [253]. The Active Badges 
system was composed of badges worn by people in an offi ce and a set of readers dispersed throughout 
the offi ce environment. The badges uniquely identifi ed each wearer and the readers enabled the sys-
tem to keep track of the location of all badge wearers. This location would be recorded and displayed 
on an application running on the participant’s desktop PC. With the system each participant knew 
where everyone was and where to contact them. 

 The   ubiquitous community has moved toward interacting with ubiquitous systems immersed in an 
ambient environment. In 1996 the ambientROOM project at MIT was developed [133]     as an example 
of enriching an environment with ubiquitous computing. The ambientROOM was fully equipped with 
interaction devices. The walls were used to display an abstract pattern of light that changed based on 
outside input. Ambient sound was played that indicated activity on the local network. 

 FIGURE 1.3  
       Ubiquitous computing is a vision for the future of computers where computing moves into everyday objects.    
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  Wearable   computing is a fi eld that has grown out of the ubiquitous computing community. With 
wearable computing, the computing infrastructure moves onto the body of its users [165] or into their 
clothing [89]. Wearable computers make ubiquitous computing truly person-centric. 

 Smart   objects owe much of their history to ubiquitous computing. Many of the early developments 
and vision in ubiquitous computing directly apply to smart objects. Whereas ubiquitous computing is 
interested in the interaction between ubiquitous computing systems and humans, the area of smart 
objects takes a more technical approach. Much of the technology developed for smart objects has a 
direct applicability to ubiquitous computing. Similarly, much of the designs that have been developed 
within the ubiquitous computing community can be applied to smart objects as well.  

    1.1.3       Mobile Telephony 
 Mobile   telephony grew out of the telephony industry with the promise of ubiquitous access to tele-
phony. Today, mobile telephony not only provides telephony everywhere, but also Internet access. 
Even though the fi rst steps toward mobile telephony were taken in the mid-twentieth century, it was 
not until the 1980s that the fi rst commercial mobile telephony operators started gaining momentum. 
In the late 1990s, nearly 20% of the population in the developed world had a mobile telephone. In 
2008, there were more than 4 billion mobile telephony subscribers. 

 Mobile   telephony is often called cellular telephony, and mobile phones are called cell phones, 
because of the structure of the wireless networks in which mobile phones operate. The network is 
divided into cells where each phone is connected to exactly one cell at any given time. A cell covers 
a physical area whose size is determined by the network operator. Since each cell typically handles a 
limited number of simultaneous phone calls, network operators plan their networks so that cells are 
smaller and more numerous in areas where operators expect more people to make phone calls. Each 
cell is operated by a cell tower on which a wireless transceiver base station is mounted. The base 
station maintains a wireless connection to all active phones in its cell. When the user and the phone 
move to another cell, the base stations perform an exchange called a handover. 

 Mobile   telephony has given rise to long-range wireless networking technology such as Global 
System for Mobile communications (GSM), General Packet Radio Service (GPRS), Enhanced Data 
Rates for GSM Evolution (EDGE), and Universal Mobile Telecommunications System (UMTS) as 
well as short-range wireless communication technology such as Bluetooth (IEEE 802.15.1). Long-
range communication is used to transmit voice and Internet data from the mobile phone to the nearest 
base station. Short-range wireless communication is used for communication between the phone and 
wireless accessories such as wireless headsets. 

 Mobile   telephony has revolutionized the way we think of personal connectivity. Telephony used to 
be restricted to a few physical locations: we had a phone at the desk in our offi ce and a few phones at 
strategic locations in our homes, such as the kitchen or next to the TV. As telephony became mobile, we 
stopped thinking about telephony as location-bound, but as a ubiquitous always-on service, available 
everywhere. 

 Mobile   telephony not only revolutionized person-to-person access, but changed the way we view 
network access. In the late 1990s, the Internet was confi ned to PCs. Establishing an Internet connec-
tion required an expressed action: switch on the modem, open the modem dialing program on the PC, 
and click the  “ Connect ”  button. After half a minute of noise from the modem, the Internet connection 
was established. The interaction was anything but seamless. 
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  With   modern smartphones, Internet access is no longer confi ned to PCs; it is truly ubiquitous. 
With a few quick button presses, e-mail, instant messaging, and the World Wide Web are immedi-
ately available. Instant Internet access is equally available in foreign countries, even if it sometimes 
costs a small fortune. 

 The   way mobile telephony changed the general view on connectivity is an important factor for the 
continued development of smart objects. As we are now accustomed to think of connectivity as ubiq-
uitous, we are equally accustomed to think of access to smart objects as ubiquitous. This view was 
not as widespread in the early 2000s.  

    1.1.4       Telemetry and Machine-to-machine Communication 
 The   word telemetry is a portmanteau of the Greek words  tele  (remote) and  metron  (to measure). 
Telemetry is, as the name implies, about performing remote measurements. Machine-to-machine 
communication is a generalization of telemetry that implies autonomic communication between non-
human operated machines and is central to the concept of telemetry. Telemetry is used to transmit 
information about current temperature, humidity, and wind from distant weather stations ( Figure 1.4   ). 
Telemetry is used to transmit fuel consumption data from trucks so that the owner can optimize the 
truck’s routes to save on fuel costs, and as a consequence reduce pollution. 

 The   concept of machine-to-machine communication and telemetry is also used in shorter dis-
tances. Today’s pacemakers (devices that are implanted in the hearts of people who have had a heart 
attack) frequently include a device called a  “ telemetry coil. ”  This allows a doctor to monitor the pace-
maker’s activity without surgery. Instead, the doctor uses a device that creates a low-power elec-
tromagnetic fi eld near the patient. The telemetry coil reacts to the electrical fi eld by modulating it 
creating a low-power communication mechanism with which information can be transferred from the 
patient’s heart to the doctor. 

 FIGURE 1.4  
       Telemetry allows reading measurements from remote systems such as weather stations. Data are typically 
transported using mobile telephony systems.    
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  Telemetry   and machine-to-machine communication are similar to smart objects because they are 
both used to perform large-scale measurements. With telemetry, these measurements can be performed 
from a remote site without direct physical access. Remote access using telemetry is most often per-
formed with existing mobile telephony networks such as GSM or 3G (UMTS), or via dedicated net-
works such as the Inmarsat satellite network. Smart objects are not only used for measurements and 
sensing, but also affect their environment by using actuators. Nevertheless, much of the remote access 
technology developed for telemetry systems can be used with and applied to smart object systems.  

    1.1.5       Wireless Sensor and Ubiquitous Sensor Networks 
 Wireless   sensor networks have evolved from the idea that small wireless sensors can be used to col-
lect information from the physical environment in a large number of situations ranging from wild fi re 
tracking and animal observation to agriculture management and industrial monitoring. Each sensor 
wirelessly transmits information toward a base station. Sensors help each other to relay the informa-
tion to the base station, as illustrated in  Figure 1.5   . The research fi eld of wireless sensor networks has 
been very active since the early 2000s with several annual conferences, many journals, and a large 
number of annual workshops. Wireless sensor networks are sometimes called ubiquitous sensor net-
works to highlight the ubiquity of the sensors. 

 Early   work in wireless sensor networks envisioned sensor networks to be composed of so-called 
smart dust [142]. Smart dust would be composed of large numbers of tiny electronic systems with 

 FIGURE 1.5  
       Wireless sensor networks provide large-scale measurements of physical properties using large amounts of 
sensors that transport their data wirelessly to a base station.    
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 sensing, computation, and communication abilities. It would be spread over an area where a phe-
nomenon, such as humidity or temperature, was to be measured. Because the dust specks would 
be so small, they could be dispersed using mechanisms such as air fl ow. The applications of smart 
dust would initially be used by the military to track the location of enemies, to signal an alarm when 
intruders were found, or to detect the presence of a vehicle. 

 The   concept of smart dust was, however, too restrictive for most uses. The limited physical size 
of the dust specks severely limited possible communication mechanisms and the computational capa-
bility of the nodes. Instead, many research groups started building hardware prototypes with a larger 
physical size that were easier to use for experimentation [200]. 

 The   research community around wireless sensor networks has developed many important mech-
anisms, algorithms, and abstractions. Wireless sensor networks are intended to have a long life-
time. Since wireless sensors typically use batteries, having a long lifetime translates into reducing 
the power consumption of the individual nodes. Thus, several power-saving mechanisms have been 
designed, deployed, studied, and evaluated both in simulators and in actual deployments. Many of 
these have a direct applicability to smart objects. 

 Wireless   sensor networks have further spurred work in standardization for industrial auto-
mation and monitoring. Many of the recent standards in wireless industrial networking, such as 
WirelessHART and ISA100a, have their roots in the wireless sensor networking community. 

 The   concept of wireless sensor networks is similar to that of smart objects, and much of the develop-
ment in smart objects has occurred in the community around wireless sensor networks. Wireless sensor 
networks are composed of small nodes, equipped with a wireless communication device, that autono-
mously confi gure themselves into networks through which sensor readings can be transported. Smart 
object networks are less focused on pure data gathering, but are intended for a large number of other 
tasks including actuation and control. Furthermore, wireless sensor networks are primarily intended to 
be operated over a wireless radio communications device. In contrast, the concept of smart objects is not 
tied to any particular communication mechanism, but can run over wired as well as wireless networks.  

    1.1.6       Mobile Computing 
 Mobile   computing is the fi eld of wireless communication and carry-around computers, such as laptop 
computers. In some ways the mobile computing fi eld spun out of work initialized within the ubiqui-
tous computing area. Likewise, the early focus on wireless networking led to wireless communication 
mechanism research. Work on these mechanisms began in the mid-1980s and led up to the standards 
around wireless local area networks (WiFi) that started forming in the late 1990s. 

 The   fi eld of mobile computing has benefi ted greatly from the technical advances in computing 
technology such as low-power PC processors, small-size digital memory technology, and inexpensive 
display systems. The combination of those technologies has created the fi eld of laptop computing, 
which has led to the creation of the new class of inexpensive laptops called netbooks. Netbooks are 
designed with wireless communication in mind. 

 Mobile   computing has further permeated wireless network access. Today, so-called WiFi hot 
spots at public places such as coffee houses, libraries, and airports are common. Users may connect to 
the Internet through this wireless network either gratis or for a fee. 

 In   academia, the fi eld of mobile computing also carried over into the research fi eld of Mobile 
Ad hoc NETworks (MANETs). MANET research focuses on networking mechanisms for wireless 
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 computers where no network infrastructure exists. In such situations, routing protocols and other net-
work mechanisms must quickly establish an ad hoc network. The network formation is made in a 
distributed manner where each node that participates in the network must take part in the network’s 
mechanisms such as routing and access control. The MANET community has developed several 
important routing protocols for these networks such as the standardized AODV and DSR protocols. 

 Just   as with mobile telephony, the use of mobile computing has permeated the understanding that 
network access is ubiquitous. As WiFi access has become widespread, we now take connectivity for 
granted anywhere, instantly.  

    1.1.7       Computer Networking 
 Computer   networking is about connecting computers to allow them to communicate with each other. 
Computers are connected using networks as shown in  Figure 1.6   . These networks were initially 
wired, but with the advent of mobile computing, wireless networks are available. 

 The   fi eld of computer networking is signifi cantly older than that of mobile computing. Computer 
networking began in the early 1960s when the breakthrough concepts of packet-switched network-
ing were fi rst described by Leonard Kleinrock at UCLA [151]. Earlier telephony networks were 
circuit-switched, and each connection (phone call) created a circuit through the network where all 
data were transported. With packet-switched networking, no circuits were constructed through the 
network. Instead, each message was transported as a packet through the network where each node 
would switch the packet depending on its destination address. 

 After   Kleinrock’s breakthrough, ARPANET was created as the fi rst large-scale computer net-
work built on the concepts of a packet-switched network. During the late 1970s and early 1980s, 

 FIGURE 1.6  
       Computer networking allows computers and systems to communicate with each other. It forms the basis of 
today’s Internet.    
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 ARPANET was gradually replaced with the early versions of the Internet. ARPANET started to use 
the IP protocol suite in 1983 before becoming the Internet. 

 The   ARPANET and the Internet were built on a powerful concept called the end-to-end principle 
of system design, named by an infl uential paper by Jerome H. Saltzer, David P. Reed, and David D. 
Clark [218]. The end-to-end principle states that functionality in a system should be placed as long 
as possible toward the end points. For the Internet, this meant that the end systems, the computers 
that connected to the Internet, should perform most of the work in the communication over the net-
work with the network acting relatively dumb. Thus the network would only provide a mechanism for 
sending packets to and from the end points. This principle has arguably been one of the most impor-
tant aspects of the design of the Internet system, because it allowed the system to gracefully support 
an ever-growing fl ora of applications from simple e-mail and fi le transport of the 1980s through the 
Web revolution of the 1990s transmission to high-speed, real-time video, and audio transmissions of 
the 2000s. The end-to-end principle allowed the network to evolve separately from these applications, 
thus making it possible to support an ever-growing number of users and uses, without requiring com-
plex re-engineering of the entire network and its protocols. 

 The   connection between computer networking and smart objects is evident: communication is one 
of the defi ning characteristics of smart objects. In this book, we argue that many of the concepts, pro-
tocols, and mechanisms that have been developed in the computer networking community are suit-
able for smart object networks.   

    1.2       CHALLENGES FOR SMART OBJECTS 
 As   with any novel technology, there are technical and non-technical challenges in the development 
of smart objects. Some of these challenges are novel to the area of smart objects, but many are shared 
with existing systems and other developments, such as those outlined in the previous section. 

 The   technical challenges for smart objects include the node-level internals of each smart object, 
such as power consumption and physical size, as well as the network-level mechanisms and structures 
formed by the smart objects. To make matters more complex, the two aspects often affect each other. 
For example, the power consumption of a smart object is affected by the communication patterns 
of the network in which the smart object participates. Likewise, the design of the network protocols 
for smart objects must take power consumption into account, when, for example, deciding when and 
where to send data. 

 There   are also a number of non-technical challenges that need to be tackled before the widespread 
adoption of smart objects occurs. These non-technical challenges may even prove to be more challeng-
ing than the technical ones. Whereas the technical challenges revolve around how to design protocols 
and mechanisms for smart objects, the non-technical challenges are about spreading both the technol-
ogy and the awareness the technology. Without general awareness of the technology, even the most 
beautifully engineered and technically perfect solutions will fail to achieve any large-scale impact. 

 The   Internet Protocol for Smart Objects (IPSO) Alliance was set up for the purpose of spread-
ing the awareness of the technology around smart objects. It was founded around the idea that smart 
objects need evolvable technology and that the technology around the IP, as well as the mechanisms 
and culture in which the technology is developed, would provide just that technology. We return to 
the IPSO Alliance in Chapter 18. 
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    1.2.1        Node-level Challenges 
 The   node-level challenges of smart objects primarily have to do with power consumption, physi-
cal size, and cost. Power consumption is a critical factor with smart objects because they are often 
either battery-powered or use an external low-power energy source such as physical vibrations or 
low-power electromagnetic fi elds. Physical size is important because the size and form factor deter-
mines the potential applications for a given smart object system  —  smart objects must be small. Cost 
is important with smart objects because of large-scale deployments. With deployments of many thou-
sands of smart objects, cost savings of a few dollars quickly add up to signifi cant amounts of money. 

 The   severe power consumption constraints have design implications for the hardware, software, 
the network protocols, and even the network architecture. For the hardware designer, it is imperative 
to choose low-power hardware components and arrange them to minimize current leakage and to pro-
vide a power-effi cient sleep mode. The software designer must be able to use the hardware to make 
the most out of the limited resources. The software must switch off unused components and put the 
hardware into sleep mode as often as possible. To aid the software developer, smart objects run oper-
ating systems that provide mechanisms for low-power operation. 

 Power   effi ciency signifi cantly affects network architectures and protocol designs as well. Because 
communication consumes power, it is important to steer the communication patterns so they effi ciently 
use available resources. To help the network protocols to do this, the hardware and software keep track 
of the spent energy and provide this information to the network layer. Additionally, to save power, the 
system designer must put the device into sleep mode as much as possible. Sleep modes affect the com-
munication latency of the system, often in ways that are diffi cult to predict beforehand. 

 Physical   size and cost have profound implications for both the hardware and software designer. For 
the hardware designer, the implications are that the hardware must be small, the number of components 
must be low, and each component must be small and inexpensive. The implications for the software 
designer are less obvious but equally profound. With low cost, low physical size, and low power con-
sumption, the microprocessors on which the software runs become smaller as their computational speed 
and memory size are reduced. 

 The   software designer for a smart object system often has only a few thousand bytes of memory to 
work with compared to the millions or billions of bytes of memory that software designers for general 
purpose computing systems have at their disposal. Thus the software for smart objects must not only 
be power-effi cient but must be able to run within a severely resource-scarce environment. 

 The   resource constraints that so deeply affect the node level also have implications at the network 
level. With the limitations on the amount of memory in each smart object, the network protocols must 
be designed so they limit the amount of information each node keeps about the network and about other 
nodes in the network. Like the power constraints, the memory constraints have a two-way effect: the net-
work architecture is affected by the node-level effects and the network-level effects affect the node level. 

 We   return to the node-level challenges of smart objects in detail in Part II.  

    1.2.2       Network-level Challenges 
 The   node-level challenges of smart objects deal with the  small  scale of available resources, whereas 
the network-level challenges deal with the  large  scale of the smart object networks. As we see in Part 
III of this book, even if there are numerous examples of small-scale smart object networks, many net-
works can potentially be very large — on the order of thousands of nodes. 
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  Smart   object networks are potentially very large scale both in terms of the number of nodes 
involved in a system and in the number of data items generated by each node. As we see in the case 
studies in Part III, many of the situations in which smart objects are used call for a large set of indi-
vidual data collection points. Individual networks consisting of thousands of nodes are common. 

 In   each of these smart object networks, each node will generate several millions of data items 
over its lifetime. Consider a smart object network that samples the temperature inside a building. 
Temperature is generally a slow-moving phenomenon, so the nodes do not need to sample very often. 
Still, people in the building may forget to close a window or leave the outer door halfway open, 
and the system should be prepared to detect this within a reasonable time frame. Considering these 
requirements, the building manager instructs the system to sample the temperature twice every min-
ute. With a sampling rate of two readings per minute, 2880 readings are taken each day, or 737,280 
readings per year. Because the system is designed to work for ten years, there will be over seven mil-
lion readings, from each node, during the lifetime of the system. This example is taken from a situa-
tion with a relatively slow sampling rate, but it makes it clear that smart object networks work at large 
scales in terms of both network and data size. 

 The   challenges of network and data size are in some ways disparate but in other ways entwined. 
 The   network size impacts the protocol design used for message routing in smart object networks. 

Routing is the process by which the network determines what paths messages should take through 
the network. Routing can be made either centrally, where a central server computes a route map for 
the entire network, or distributed, where each node makes individual decisions on where to send 
each message. 

 The   design of the routing protocols is important because it affects both network performance in 
terms of the amount of data the network can sustain, the speed of which these data can be success-
fully transported through the network, and, in most cases, the achievable lifetime of the network as 
a whole. For most smart object systems, the act of communication requires energy, and nodes that 
communicate often drain their energy faster than those that are silent. Thus the routing protocol must 
make well-informed choices when planning how messages are transported through the network. 

 For   a node to make a well-informed routing choice, it typically requires information about both 
the network as a whole and about the node’s nearest neighbors. This information requires memory, 
but as we have already discussed, each node has a limited amount of memory. So the routing protocol 
must carefully choose what information to keep about the network and the neighbors and what infor-
mation to disregard. 

 To   make matters worse, smart object networks often run over unreliable communication media. 
Such communication media include low-power wireless communication standards as well as Power-
line communication, where the communication takes place over the electrical grid. In these commu-
nication media, it is uncertain if a message sent by one node is received by the node for which it was 
intended. The message may be disrupted or may be entirely blocked on its way, perhaps because a 
large body of metal just happened to be placed between the wireless sender and the wireless receiver. 
Even if the message was not entirely blocked, its bits may have been altered in transit so that the 
receiver cannot make any sense of it. 

 The   unreliable nature of smart object networks is often referred to as being  “ lossy. ”  Lossyness is 
best thought of as an inherent property of smart object networks. Even if smart objects use communi-
cation technologies that are less lossy than others, by preparing for the worst a system can be created 
that is stable both for lossy and non-lossy networks. 



171.2 Challenges For Smart Objects

  The   lossy nature of smart object networks is an additional challenge for routing protocols. 
Protocols must take the lossyness into account when deciding where to route messages and if mes-
sages should be re-sent. Messages should be routed so that the risk of them getting lost is lessened. 
But if a message has been routed over a path that happens to become lossy, the message may need to 
be re-sent a few times, in case it did not make it through on the fi rst try. 

 Lossyness   is an illusive property, particularly in wireless networks. Lossyness is affected by envi-
ronmental factors such as temperature and humidity of the air as well as the physical surroundings 
of the smart object networks. For example, if a microwave oven is switched on, the electromagnetic 
fi eld it creates can interfere with wireless transmissions on the 2.4       GHz band. Likewise, a WiFi com-
puter network may interfere with a smart object network so that the smart object network sees more 
lossy behavior at daytime, when people are using the WiFi network, than during nighttime. Routing 
protocols for smart object networks must be prepared for this illusiveness. 

 The   large-scale nature of smart object networks complicates addressing the nodes. In a large-scale 
network, each individual node must be addressable so that messages can be sent to it. The address 
must be long enough for each node to have an individual address, even in a large network. And even 
if the network is small, it may interact with external smart object networks. In this case, the addresses 
of the nodes in the two networks must be unique. As the number of smart object networks that poten-
tially can interact with each other grows, we must be prepared for the scale to grow exponentially. 
Thus the addressing scheme chosen for smart object networks must uniquely identify several millions 
or even billions of individual nodes. 

 Given   the large scale of smart object networks, network management becomes a daunting chal-
lenge. With smart object networks comprised of potentially thousands of nodes, traditional net-
work management practices are not immediately applicable. Traditional management requires 
manual fi ne-tuning of the network infrastructure by a systems administrator. With smart objects 
forming ad hoc, the network must be prepared to manage itself, without any human network opera-
tor in the loop. Furthermore, in traditional computer-based networks, each computer connected to 
the network requires manual or semi-manual confi guration. The person at the computer may need 
to, for example, enter a password to access the network. For smart object networks, it is not fea-
sible for a person to manually enter a password into each smart object every time it needs to access 
its network. 

 The   scale of the smart object networks not only pertains to the number of devices and the amount 
of data, but also to the amount of different environments and types of systems in which smart objects 
are used. For smart objects, no single communication technology suffi ces for all potential needs. For 
example, a smart object network operating in a highly controlled industrial environment has different 
requirements and cost structures than a smart object network operating in an offi ce or home environ-
ment. Thus smart object networks must be prepared to run over a set of different underlying commu-
nication technologies, both wireless and wired. 

 Finally  , a smart object network must provide mechanisms for external access to itself. There are 
situations where a smart object network is useful in isolation, but more often data produced by the smart 
object network need to be extracted so they can be processed or stored elsewhere. Also, the smart object 
network may need to be reconfi gured or altered during operation. In either case, the smart object net-
work must be able to be accessed externally. 

 As   with the node-level challenges, we return to the network-level challenges later in this book, 
both in this part and, in more detail, in Part II.  
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    1.2.3        Standardization 
 Standardization   is a critical success factor for smart objects. Smart object systems are characterized 
not only by large numbers of devices and applications, but by a signifi cant amount of different par-
ties, manufacturers, and companies interested in contributing to the technology. Different technology 
manufacturers have different specializations. An equipment manufacturer that specializes in high-
 precision humidity sensors may not be interested in IT systems. Yet, these two must work together in 
a building automation system where the humidity sensors produce valuable input to the control of the 
environment in the building. The environment control system is controlled by an advanced IT system 
that receives its input from the humidity sensors. 

 Without   standardization, equipment manufacturers and system integrators would need to build 
new systems from the ground up on every installed system. Alternatively, manufacturers and integra-
tors would use a proprietary technology from a single vendor. Such proprietary technology might 
provide benefi ts in the short term, but it effectively creates vendor lock-in where both manufacturers 
and integrators have diffi culties evolving their systems beyond the proprietary technology provided 
by the vendor. Furthermore, since the technology is proprietary, the vendor controls the future of the 
technology and manufacturers and integrators cannot control where their systems are going. 

 With   standardized technology, the technology is independent of its vendors, producers, and users. 
Any vendor may choose to provide systems based on the technology, and equipment manufacturers 
and system integrators may choose to base their systems on technology from any vendor. 

 Standardized   technology has a major advantage in terms of acceptance. When the technology is 
standardized, vendors, manufacturers, and system integrators can easily adopt the technology without 
risks of vendor lock-in. This level of acceptance is critical to the success of smart objects as a tech-
nology because of the large number of different devices, the large number of applications, and the 
multitude of existing and potential vendors. 

 Before   continuing we must note that when we discuss standards, we are explicitly referring to 
the open standards produced through established practices of international standardization organiza-
tions. Even though it is possible to defi ne a specifi cation that has properties similar to a standard, such 
specifi cations typically have not been thoroughly vetted. Open standards reviewed by established 
organizations are also assessed in terms of intellectual property claims. Existing standardization orga-
nizations have policies stating that any intellectual property claims, such as patents, for technology 
that is standardized through them have to be openly published and sometimes freely licensed to any-
one who wishes to adopt the standard. This is intended to provide a form of protection against so-
called submarine patents, where a patent holder keeps a patent a secret, only to later come forth, as 
the technology has been widely adopted, to lay claim to the technology. 

 Standardization   of smart object technology is a challenge not only in terms of technology but 
also in terms of organizations. Smart objects comprise many different levels of technology from low-
power communication technologies, through networking and routing, and to application-level access 
and IT system integration. Each of these levels has their own technical challenges, but more impor-
tant, standardization in each level is managed by different bodies. 

 For   smart objects, as with any emerging technology, several standards and non-standard specifi -
cations have been produced. These range from specifi c specifi cations for particular low-power radio 
protocols to full protocol families. Although these specifi cations provide a technically viable solution 
to specifi c applications, their status as non-standard or proprietary is problematic for many vendors 
and manufacturers.  
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    1.2.4        Interoperability 
 Interoperability   is the ability of equipment and systems from different vendors to operate together. 
Interoperability is a must as smart objects emerge as a large-scale technology. Interoperability is 
essential both between smart objects from different manufacturers and between smart objects and 
existing infrastructures. 

 For   smart objects, interoperability is as multifaceted as standardization. Smart objects must inter-
operate from the physical layer up to the application or integration layer. Physical layer interoper-
ability occurs when equipment from different vendors physically communicates with each other. At 
the physical level, smart objects must agree on matters such as the physical frequencies at which 
communication takes place, what type of modulation the physical signals should carry, and the 
rate at which information is transferred. At the network level, nodes must agree on the format of 
the information that is sent and received over the physical channel and how nodes are addressed, 
as well as how messages should be transported through a network of smart objects. At the applica-
tion or integration level, smart objects must share a common view on how data should be entered 
or extracted from a smart object network, as well as how the smart objects should be reached from 
outside systems. 

 The   challenges of interoperability are in the technical defi nition of smart objects as well as the 
standardization and implementation and testing processes. To achieve interoperability, it is imperative 
that the technical architecture of smart objects is defi ned to ease interoperability. If the architecture 
either disallows interoperability or makes interoperability cumbersome, it is very diffi cult to achieve 
interoperability later. Likewise, the standardization process must make interoperability a primary con-
cern. To do this, smart object standards cannot be tied to any particular hardware or communication 
technology. After standardization is complete, a testing or certifi cation procedure helps to achieve and 
ensure interoperability between different devices and vendors. 

 As   with standardization, interoperability poses several challenges for smart objects. First, the tech-
nical architecture for smart objects is still an open issue. In this book, we choose one such architec-
ture for smart objects: the IP architecture. Second, although some of the standards for smart objects 
are still under development, those standards that already exist can be reused. We return to this ongo-
ing standardization process in Part II. Third, interoperability test suites and conformance tests are still 
an open issue. Ideally, such interoperability test suites should test many levels of interoperability such 
as physical, networking, and application levels. There is an ongoing effort to develop such test suites 
for smart objects by the IPSO Alliance. The IPSO Alliance is further discussed in Chapter 18.   

    1.3       CONCLUSIONS 
 Smart   objects can be defi ned in several dimensions: through the technology on which each smart 
object is based, on their operation, or though their intended use. Each smart object consists of a 
microprocessor, a communication device, a sensor or actuator, and a power source. The microproces-
sor provides the smart object with the necessary computational power to make it smart. The com-
munication device allows the smart object to communicate with other smart objects as well as other 
systems. The sensors or actuators connect the smart object with the physical world, allowing it to 
measure or affect the physical phenomena. A power source is needed to run the electronics in the 
smart object. These include batteries or renewable energy such as solar cells or piezoelectric devices 
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 that produce energy from vibrations or movement. In either case, the power source is severely limited 
in terms of the amount of energy it can produce. 

 Smart   objects are defi ned by their communication, their interaction with the physical world, their 
relatively small physical size, and their low cost. They communicate with other smart object as well 
as the surrounding systems through their communication device. Interaction with the physical world, 
such as sensing or actuation, is made through the sensors or actuators built into the smart objects. 
Physical size is important because smart objects are typically integrated in other items or deployed in 
places where a large physical size would be obtrusive. Low cost is important because smart objects 
are manufactured and deployed in large numbers. A cost reduction of a few dollars translates into a 
large saving of the system as a whole. 

 Smart   objects have emerged from many different directions, yet they have roots both in the com-
puting and telecommunications industries. The history of smart objects can be traced to ubiquitous 
and pervasive computing, mobile telephony and telemetry, mobile computing and computer network-
ing, and embedded systems and wireless sensor networks. 

 Although   smart objects, as a technology, are quickly emerging, it is not without challenges. These 
challenges are at both the node and the network levels. At the node level, the restrictions in terms of 
physical size, cost, and power consumption are challenges that have to be considered when under-
standing and designing smart object systems. At the network level, the scale of nodes in smart object 
networks and the power consumption and memory constraints of the nodes must be examined. 

 The   challenges in the base smart object technology are refl ected in the challenges of standardiza-
tion and interoperability. Standardization is essential to the success of future smart object systems, 
as the technology will be produced by many different parties. Likewise, interoperability is essential 
between smart object devices and between smart objects and the surrounding IT ecosystem. 

 It   is important that mechanisms and standards for smart objects evolve, as we have only seen a 
few glimpses of what this technology is able to do. 

 We   believe the future for smart objects in terms of technology, standardization, and interoperabil-
ity is the Internet Protocol, IP. When we fi rst introduced the idea of using IP for smart objects several 
years ago [64,67], we were met by a healthy skepticism. Today, after a signifi cant amount of work 
by many different groups of people [1,66  ,68,73,125,161,176,180,207,221,257,260], these ideas have 
become widespread in the industry as well as in the research community. The aim of this book is to 
present the architecture, the technology, and the applications of IP for smart objects. 

 In   Chapters 2 and 3, we present arguments for why IP is the right choice for smart objects, fol-
lowed by a discussion of the details of the protocols in the IP protocol suite, and how they map onto 
smart objects. In Part II, we review in detail both the smart object technology and how IP runs on top 
of this technology, showing the benefi ts of the IP architecture for smart objects. In Part III, we discuss 
case studies that show how IP has successfully been used in smart objects in the past and how IP is 
being used in the smart object systems of the future.           
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           IP Protocol Architecture    2 
CHAPTER

    2.1        INTRODUCTION 
 If   there was an award for technical design excellence, it should certainly be given to Vint Cerf and 
Robert Kahn, the original designers of TCP/IP. The TCP/IP architecture, designed about 30 years 
ago, is now used on billions of devices around the world ranging from portable devices and laptop 
to super computers. The IP protocol suite has been enhanced to support multicast, Quality of Service 
(QoS), traffi c engineering, and real-time services with the architecture fully preserved. This chapter 
discusses the original design goals and why this architecture must be preserved  .  

    2.2       FROM NCP TO TCP/IP 
 Who   has not heard of the ARPANET that gave birth to the Internet Protocol? ARPANET was a project 
funded by the Advanced Research Project Agency (ARPA). One of the fi rst protocols developed was the 
1822 protocol, which was quickly replaced by the Network Control Protocol (NCP). This protocol was 
developed in 1970 with the objective of interconnecting computers with Interface Message Processor 
(IMP) between various sites over a backbone network provided by BBN. During this time IMPs were 
interconnecting leased lines of a few K/bits per second (Kbps). Today, these IMPs are routers called 
smart objects and are deployed using a variety of link types on a much larger scale. 

 By   the end of 1971, 15 sites were interconnected using the NCP protocol, forming the fi rst nucleus 
of the Internet. Robert Kahn and Vint Cerf later designed TCP to replace NCP (at that time TCP/IP 
was called TCP since both protocols were not yet decoupled). ARPANET was the fi rst operational 
network using the concept of packet switching, which was at that time a revolutionary approach for 
inter-host communication. 

 The   next generation of protocol, IPv4 (Version 4 of TCP), was designed in 1981 and the Internet 
migrated to it. That protocol was only running on a few systems at that time. It is now running on 
hundreds of millions of hosts. This is the result of technical excellence. 

 The   National Science Foundation (NSF) played a major role in the development of the Internet 
and the National Science Foundation Network (NSFNET), which was operational in 1986 using the 
TCP/IP protocol suite compatible with the ARPANET protocol. NSFNET started with the intercon-
nection of regional and academic networks, the starting point of today’s worldwide Internet. Note that 
major protocols such as BGP [212] were designed during that period. The development of the Internet 
research was transferred in the late 1980s from DARPA to NSFNET. The NSFNET network was then 
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 expanded to interconnect all of the regional academic networks in the United States. It is only during 
the mid-1990s that the NSFNET regional networks further extended to commercial networks, which 
have driven the exponential growth of the Internet until now. 

 Then   followed the emergence of the new revision of IP (IPv6).   IPv6 has not changed the TCP/IP 
architecture originally specifi ed for IPv4, it is just a revision of IP that brings a series of new features 
and enhancements in addition to a signifi cantly larger address space.  

    2.3       FUNDAMENTAL TCP/IP ARCHITECTURAL DESIGN PRINCIPLES 
 These   were the original TCP/IP goals: 

      ●      Internet communication must continue despite loss of networks or gateways ( “ in presence of link 
or node failures ”  in today’s terms).  

      ●      The Internet must support multiple types of communication services.  
      ●      Internet architecture must: 

      ●      Accommodate a variety of networks ( “ networks ”  means link and physical layers)  
      ●      Permit distributed management of its resources  
      ●      Be cost-effective  
      ●      Permit host attachment with little effort     

      ●      Resources used in the Internet architecture must be accountable    .    

 The   original objective of the TCP/IP protocol was to design a  single  protocol, but it quickly became 
evident that such an objective was unrealistic. Indeed, the second goal of the Internet architecture was to 
support a variety of services, characterized by different requirements such as delay, bandwidth, and jit-
ter, just to name a few. Some services such as fi le transfers were very tolerant of delays but required high 
bandwidth in contrast to packetized voice traffi c requiring short delays and jitter but low bandwidth. 

 It   was evident very early that TCP could not easily accommodate such a wide scope of require-
ments. In particular, real-time applications such as digitized voice would typically not require high 
reliability but would be very intolerant of network delays and jitter. The most predominant compo-
nent of network jitter was the set of mechanisms used to provide high reliability due to the retrans-
mission of lost packets. It is preferable to drop a packet than to use a reliable transport protocol that 
would increase reliability using retransmission of lost packets. 

 This   gave birth to the fundamental concept of  “ layering. ”  The IP layer provides a best-effort service 
on top of which the transport layer would be chosen according to the applications requirements. So it 
was decided to decouple IP and TCP and design a new transport protocol (UDP) with IP supporting both 
UDP and TCP. It was not easy to support this architecture independently due to the nature of the media 
used. For example, by running UDP/IP over X25, service would still be reliable (thus potentially involv-
ing network delays due to retransmission because X25 was not designed to support a variety of services). 
This observation is still valid for existing link layer protocols, and is even more problematic when redun-
dant services are offered at multiple layers (see multilayer routing architecture discussed in Chapter 5). 

 Another   important goal was the ability to operate over a wide variety of links and physical layers 
(ARPANET, X25, satellite links, packet radio networks, serial links, etc.). This was achieved by mak-
ing a  very minimal assumption  about lower layers and the function they provide. 
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  Here   is a very interesting note from Dave Clark in 1988: 

 Since Internet does not insist that lost packets be recovered at the network level, it may be nec-
essary to retransmit a lost packet from one end of the Internet to the other. This means that the 
retransmitted packet may cross several intervening nets a second time, whereas recovery at the 
network level would not generate this repeat traffi c. This is an example of the trade-off resulting 
from the decision, discussed above, of providing services from the end-points. The network inter-
face code is much simpler, but the overall effi ciency is potentially less.   

 For   further discussion see [39]  . 
 Thus   the objectives of the Internet were to build a highly fl exible, reliable network capable of sup-

porting a variety of services while using a variety of links and physical layers. 
 Such   fl exibility was provided by the adoption of a layered architecture. The TCP/IP architecture 

exceeded these expectations: the current Internet and private IP networks use a plethora of physical 
and link layers (e.g., SONET/SDH, Optical, ATM, Ethernet, Wireless links such as IEEE 802.11, 
Powerline communication, Frame Relay, etc.). The number of applications requiring a wide set of 
services using either TCP or UDP is quite impressive including e-mail or fi le transfers to real-time 
applications such as voice, video, and other industrial time-critical applications. 

 The   reliability of IP networks has reached an extremely impressive level due to a number of pro-
tection/restoration techniques such as IP Fast Reroute, MPLS Traffi c Engineering Fast Reroute, Fast 
Convergence of BGP, In-service software upgrade, and so on. Today’s IP networks provide a level of 
reliability equivalent to highly redundant networks such as SONET/SDH with restoration times in the 
order of a few dozen milliseconds and no packet loss in various failure cases. 

 Furthermore  , the range of supported devices supporting the TCP/IP protocol suite is also 
extremely impressive from an 8-bit microcontroller to powerful servers hosted in data centers. 

 Last   but not least, TCP/IP has proven to be extremely scalable. The growth of the Internet regard-
ing traffi c and number of interconnected devices has been remarkably growing from 9 computers 
in the original ARPANET in 1970 (note that the ARPANET migrated to TCP/IP in 1983) to several 
billion computers today (see  Figure 2.1   ). 

 Note   that some of the lower ranked objectives were harder to reach. For example, resource man-
agement and accounting were initially diffi cult goals due to one of the most brilliant inventions  —  
the store-and-forward paradigm (in contrast to telephone circuit switching). But new mechanisms 
such as Simple Network Management Protocol (SNMP; [107]  ) and Netfl ow [38] dramatically help 
accounting. Network resources management was handled by the IP-based signaling mechanism sup-
porting call admission control (CAC) using RSVP [21] for IP and RSVP-TE [14]. RSVP was mostly 
deployed at the edge of the network for CAC due to the limited scalability of the protocol considering 
the millions of fl ows handled by core routers in the Internet. RSVP was also widely used to signal 
MPLS Traffi c Engineering Label Switch Paths (TE LSPs) carrying large chunks of traffi c between 
pairs of routers  . 

 One   of the drawbacks of such a fl exible architecture is that it requires network engineering to 
understand the set of supported services since an IP network can be deployed in many ways with dif-
ferent sets of services; a variety of protocols may be used at different layers. Thus the network design 
requires a good understanding of each layer’s respective capabilities to make the appropriate protocol 
choice. 
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  As   previously discussed, the concept of layers is one of the core design foundations that leads to 
an extremely fl exible architecture. The concept of layering was then extended to the current four lay-
ers of the TCP/IP protocol and the seven-layer OSI ([OSI]) model as shown in  Figure 2.2   . 

   [19]   is one of the Internet Engineering Task Force (IETF) specifi cations that introduced the notion 
of layers in TCP/IP protocol architecture based on a four-layer model: 

      ●      Link layer: Usually refers to the physical and data link layers (the use of the PHY/MAC acronym 
is fairly common). At a high level the link layer is responsible for forwarding the IP packet on a 
link between two devices. This involves several functions such as media access control (MAC  )  , 
error detection and (sometimes) retransmission, and fl ow control. Link layer protocol information 
is added in the form of a frame that carries the IP packet. Some links provide a very limited set 
of functions whereas others implement fairly sophisticated services that often include a link layer 
 “ routing ”  function (see Chapter 5 for more details). Note that the link layer may offer point-
to-point or point-to-multipoint service.  

      ●      Internet layer (IP): Responsible for providing an unreliable service for sending a packet between 
a source and a destination across the network, where host and routers are uniquely identifi ed by 
their IP (IPv4 or IPv6) address, using a hierarchical addressing scheme. The IPv6 addressing 
architecture is discussed in detail in Chapter 15. Routing is one of the main tasks accomplished by 
the IP layers and is extensively discussed in Chapter 5 and in Chapter 17 in the context of smart 
object networks. Protocols such as ICMP, see [203] and [42]) and IGMP [29]   for multicast traffi c 
are both considered part of the IP layer.  

      ●      Transport layer: Responsible for end-to-end communication between two devices where states 
are maintained (as opposed to within the network). A transport protocol such as TCP (detailed in 
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       Level of penetration of the Internet regarding user number.      
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 Chapter 6) provides a reliable transport mechanism with error detection and retransmission, fl ow 
control using dynamic windowing techniques, security mechanisms, and so forth. In contrast the 
UDP [202] transport protocol is stateless and mostly used for application addressing and optional 
error detection (done by an optional checksum in IPv4; note that the UDP checksum is mandatory in 
IPv6). Other transport protocols have been developed such as the message stream transport protocol 
SCTP (Stream Control Transmission Protocol, see [229]) offering additional capabilities such as the 
bundling of multiple user messages in a single SCTP packet, the support of multi-homing, and so 
forth. Real-time Transport Protocol (RTP, see [220]) is another transport protocol designed for real-
time applications such as streaming audio traffi c and video    .  

      ●      Application layer: Refers to higher level protocol(s) that supports the applications. The list of 
application layer protocols is fairly long, but few well known include File Transfer Protocol (FTP, 
see [205]), Trivial File Transfer Protocol (TFTP, see [224]), SNMP (see [108] to [206]), Hypertext 
Transport Protocol (HTTP, see [149]), and Telnet    . 

    One of the key reasons for the impressive success of TCP/IP is its open, non-proprietary nature:       

 Dr. Cerf said part of the reason their protocols took hold quickly and widely was that he and 
Dr. Kahn made no intellectual property claims to their invention. They made no money from it, 
though it did help their careers.  “ It was an open standard that we would allow anyone to have 
access to without any constraints, ”  he said. 

 Dr. Cerf said he was  “ pretty amazed ”  by what the Internet had become. He was quick to add, 
 “ I suppose anyone who worked on the railroad, or power generation and distribution, would have 
similar feelings about how amazing it is after you create infrastructure. ”  

 Dr. Cerf is also quite realistic about the recognition his contribution deserves. Creating a tool is 
one thing, he said, but credit for what people do with it is something no inventor can claim.    

    2.4       THE DELICATE SUBJECT OF CROSS-LAYER OPTIMIZATION 
 As   discussed in previous sections, strict layer isolation brings a myriad of advantages such as fl exibil-
ity because of the lack of interdependency between layers. 

Physical layer

Link layer

Internet layer IP
(Routing, Multicast, QoS, …)  

Transport layer
(TCP, UDP, SCTP, RTP, …)

Application layer
(HTTP, SMTP, FTP, SNMP,

IMAP, DNS, …) 

The TCP/IP layers

Physical layer

Data link layer

Network layer
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Session layer

Presentation layer

Application layer

The OSI layered model  FIGURE 2.2  
       The concept of layering in the TCP/IP and OSI 
architectures.    
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  On   the other hand, functions performed at a lower layer may be ignored by a higher layer 
and vice versa, thus leading to potential redundancy (error recovery or congestion management are 
typical examples). Cross-layering (also called horizontal separation) may be more cost-effective and 
reliable [28  ]  , a risky proposition when considering the trade-off between optimization and lack of 
fl exibility. Indeed, it is fairly well known that a lack of fl exibility usually leads to frequent network 
protocol architecture redesign, which is a very costly operation. 

 Increased   layering may lead to costly operation where each layer performs duplicate functions 
(network recovery, QoS, routing, etc.). A good example is the IP over ATM over SONET/SH archi-
tecture. Such a network design was extremely ineffi cient and quickly replaced by  “ IP over glass ”  (IP 
over optical link), but this was a network design choice, not a purposely designed protocol architec-
ture. These technologies were designed in parallel, and the objective was not to specify a link layer 
for IP networks. The same reasoning applies to SONET/SDH. When it clearly appeared that these 
technologies would not replace TCP/IP, network architects looked at how they could be used in con-
junction with each other, which led to costly, ineffi cient network architecture. 

 It   is sometimes mentioned that the  “ everything over IP ”  (EOIP) model is not the most OPEX and 
CAPEX effi cient [28]: 

 An example of where EOIP would not be the most OPEX and CAPEX effi cient transport would be 
in those cases where a service or protocol needed SONET  —  like restoration times (e.g., 50       ms). It 
is not hard to imagine that it would cost more to build and operate an IP network with this kind of 
restoration and convergence property (if that were even possible) than it would to build the SONET 
network in the fi rst place.   

 This   was proven to be an incorrect statement. IP networks do provide SONET/SDH restoration 
time for a very reasonable cost with OPEX and CAPEX (please refer to  [ 246  ]   for a reference on this 
subject matter). 

 Still  , it might be tempting to introduce some form of cross-layer optimizations. A notorious 
example of cross-layer optimization   in smart object networks is known as  “ content routing. ”  This 
consists of routing the traffi c in the network according to the content of the packet at an application 
layer as opposed to using the IP destination. For some traffi c it might be interesting to direct the 
traffi c to its destination, not according to the shortest (constrained) path calculated by the routing 
protocol but, for example, to a traffi c aggregator performing data aggregation and/or data fusion. In 
this case the objective is to limit the amount of traffi c in the network, which is always desirable in 
constrained networks. This is a typical example where similar results can be achieved while using 
a layered architecture. IP packets could be marked by the upper layer to refl ect the nature of their 
content and the routing protocol can be designed to route packets to their destinations along a path 
traversing traffi c aggregators: this is precisely what the routing protocol for smart object networks 
(Chapter 16) does. 

 There   are other circumstances where complete separation between layers is not always achiev-
able. One example is security requiring deep packet inspection techniques: upon receiving a packet, 
routers/fi rewalls in the network inspect the packet to detect various attacks. 

 Cross  -layer optimization always looked like an appealing approach to smart object network 
 designers  considering the high-constrained nature of these networks. A famous example of its appeal 
is the attempt to mingle the network and the link layer. Several attempts were made to add function-
alities to the link layer beyond medium access control, error recovery, and so forth by adding routing 
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 functionality. The argument was that maintaining two layers was too costly for constrained networks 
and a more optimal approach would be to  “ collapse these layers. ”  A second argument was to consider 
the specifi cs of the link layer when computing the routes, which would allow routing at the link layer. 
Such a strong inter-layer dependency led to the inevitable  —  a rigid architecture with no fl exibility. 
As new link layers emerged, there was a critical need for a  “ convergence ”  layer (IP). 

 The   solution? First, the a priori assumption that a layered protocol architecture such as TCP/IP 
would be too heavy for such constrained devices was proven wrong. As discussed in great detail 
in Chapter 12    , the current lightweight IPv6 stacks only require a few kilobytes of RAM and few 
dozen kilobytes of Flash with limited processing power and can run on low-end, 8-bit microcon-
trollers. Don’t forget that IPv4 was fi rst developed on computers (called IMP in the ARPANET) with 
similar processing power and memory interconnected by low speed links. Second, the solution for 
routing while considering the characteristics of link layers simply consists of specifying new metrics 
refl ecting these characteristics at a higher layer. Such metrics are discussed in Chapter 16. 

 Other   attempts at cross-layer optimizations were made where upper layers would use addresses 
used by lower layers thus introducing another type of inter-layer dependency. Once again, designers 
had to step away from this approach because the emergence of new applications and lower layers 
forced them to redesign other layers. 

 So   in conclusion, there is a trade-off. Layering provides a remarkable level of fl exibility but requires 
a better knowledge of the set of features supported by various layers during the network design phase. 
Cross-layer optimization may, in some cases, lead to more optimal networking stacks. What we learned 
from the past is that technologies always evolve faster than we think, requiring a high level of fl exibility. 
This is even more true for smart objects networks. Cross-layer optimization is achievable without violat-
ing the principles of layering due to a level of layer abstraction. For example, link layer properties may 
be refl ected at the network layer because of routing metrics (Chapter 16).  

    2.5        WHY IS IP LAYERING ALSO IMPORTANT FOR SMART OBJECT 
NETWORKS? 

 Discussing   the reasons that led to the current TCP/IP architecture shows why TCP/IP has been so 
successful. 

 It   also demonstrates why TCP/IP is well suited for smart object networks. The question Why IP 
for Smart Objects? is addressed in Chapter 3, but it is worth spending more time on the adequacy of 
the TCP/IP protocol suite for smart object networks from an architectural standpoint. 

 As   previously discussed, a plethora of proprietary or semi-closed protocol stacks have been 
designed over the past decade that advocated for a different model consisting of collapsing layers 
with no clear demarcation between the various functions handled by the network protocols. The main 
motivation for such an approach was to try to improve the effi ciency of the networks, considering the 
high degree of constraints placed on smart object networks regarding the devices as well as the links 
interconnecting these devices. 

 By   collapsing the layers, these architectures proved to be extremely rigid in the following ways: 

      ●      Link layer dependency: In most cases, architectures were tied to a specifi c link layer. Although 
there were a very limited number of low-power link layers designed for smart object networks 
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 a few years ago (e.g., IEEE 802.15.4), the emergence of a number of new low-power link layers 
could be easily predicted. As discussed in Chapter 12  , several low-power link layers are now used 
in smart object networks, both wired and wireless. These include link layers such as low-power 
WiFi or Powerline communication. These architectures could not support the new links without 
performing protocol translation, which is a very costly and ineffi cient approach.  

      ●      Dependency between the various networking functions of the networking stack: This was also a 
major showstopper for innovation. In contrast to the layered TCP/IP architecture, the addition of 
new functionalities had consequences for a number of networking functions. With TCP/IP new 
applications are developed on a daily basis without having to change the transport or IP layers. If 
functions are collapsed into a single core component, this creates a dependency that dramatically 
slows down the support of additional functionalities.     

    2.6       CONCLUSIONS 
 The   design of the TCP/IP architecture was a model of technical excellence with a degree of fl exibility 
that allowed the Internet to grow from a few hosts to more than a billion hosts, supporting a myriad 
of services over a variety of media. 

 Looking   back, the initial goals of TCP/IP include: 

      ●      Internet communication must continue despite loss of networks or gateways ( “ in the presence of 
link or node failures, ”  to use nowadays terms).  

      ●      The Internet must support multiple types of communication services.  
      ●      Internet architecture must: 

      ●      Accommodate a variety of networks ( “ networks ”  means link and physical layers)  
      ●      Permit distributed management of its resources  
      ●      Be cost-effective  
      ●      Permit host attachment with a little effort     

      ●      Resources used in the Internet architecture must be accountable.    

 The   main goals for smart object networks are the same list as outlined above. The additional 
requirement is the support of large-scale networks made of billions of unattended and constrained 
devices for which new IP technologies (detailed in Part II) have been developed. 

 The   fundamental architectural principles of TCP/IP further illustrate why the TCP/IP protocol 
architecture is extremely well suited for smart object networks. Whereas semi-closed or proprietary 
protocols that try to collapse layers unavoidably lead to non-viable and non-scalable approaches 
(leading to local optimum), TCP/IP seeks a global optimum and provides the required foundations for 
smart object networks.                                
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            Why IP for Smart Objects?    3 
CHAPTER

  In   this chapter we argue that IP is the future for smart object networks. There is already a signifi cant 
momentum for IP-based smart objects as demonstrated by the growing amount of products and sys-
tems built upon the principles laid out in this book. In this chapter, we review the challenges inherent 
to smart object networks, as presented in Chapter 1, and review them in light of the IP architecture 
discussed in Chapter 2. 

 Although   we advocate the use of the IP architecture and protocols for smart objects, we do not 
advocate that all smart object networks should be connected to the public Internet. There are some 
smart objects connected to the Internet, for example, to send data to a central database, but this is an 
exception, not the norm. 

 First  , a brief recap of the challenges of smart object networks: 

      ●      Evolvability: Although we have an idea of where the application space of smart objects is head-
ing, we cannot know what direction it will take in the future. Therefore, smart object technology 
must inherently support the notion of evolvability. The mechanisms developed for smart objects 
should not be constrained by today’s ideas, but must allow for the next generation of applications 
to take full advantage of the technology in pursuing its own application goals.  

      ●      Scale :  Smart object networks have a large number of nodes per system. Existing smart object sys-
tems have thousands of nodes, and they are likely to develop into systems composed of hundreds 
of thousands or even millions of nodes. Thus, smart object architecture must support an increasing 
number of nodes through its addressing, routing, and management mechanisms.  

      ●      Diversity of applications: The number of applications for smart objects is large, and so is the num-
ber of differences in each application (as seen in Part III)  . A home automation application does 
not share all of the properties of an industrial automation application. Smart object technology 
tailored to one specifi c application therefore may not work for other applications.  

      ●      Diversity of communication technologies: Depending on the application and the environment in 
which the system is deployed, smart objects can use a wide range of communication technologies. 
Wireless communication is appropriate in many situations because of its deployment convenience, 
whereas wired communication is more suitable in other places. Many smart object systems use 
combinations of disparate technologies in the same deployment.  

      ●      Interoperability: Smart object networks need interoperability between the smart object devices 
and between the smart objects and existing network infrastructures. With the large base of exist-
ing systems that smart objects enhance, a smart object architecture that makes interoperability and 
interconnection diffi cult or cumbersome will not prevail.  
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      ●       Standardization: Mechanisms and protocols that defi ne the operation of smart objects must be 
standardized using open standards through well-established standardization practices. Any patents 
covering the standardized technology must be disclosed and made available to be used by third 
parties. Open standards make the entry barrier low for manufacturers, and allow them to freely 
choose between different vendors. As seen in Chapter 2, open standards was a key to the success 
of IP.  

      ●      Potentially lossy communication technology: Many of the communication technologies used for 
smart objects are inherently lossy (data sent are not guaranteed to reach their destinations). Smart 
object protocols and mechanisms need to take this into account when determining where and how 
to send data as well as determining when and how often.  

      ●      Lifetime: Because of the large-scale installations and demanding applications for smart objects, 
smart object networks are meant to remain functional for many years. This lifetime has implications 
both for the performance requirements of smart object mechanisms, which must be power-effi cient, 
and for the mechanisms as such, which must remain operational over the lifetime of the system.  

      ●      Low-power consumption: Smart objects have severe power constraints. Many smart objects are 
powered by batteries that cannot easily be replaced or recharged. Other smart objects draw their 
energy from their surroundings, such as vibration or electromagnetic energy. In either case, power 
consumption must be low for the system to achieve its optimal lifetime. The power requirement 
affects both the network protocols and the construction of nodes. The memory size and computa-
tional complexity of the nodes are limited by the power consumption constraints.  

      ●      Low cost: Smart objects are deployed in large numbers; therefore a small reduction in per-device 
costs quickly translates into large savings in the cost of the entire system. Just as the power con-
sumption constraints affect the memory size and computational complexity of the nodes, so do 
cost constraints. Because of constrained resources such as memory, power, and computation, any 
smart object architecture must be lightweight.    

 Given   these challenges, we now investigate the IP architecture to fi nd out how well it meets them 
and their implications. 

    3.1       INTEROPERABILITY 
 Interoperability   is a predominant characteristic of the IP architecture. It is interoperable because it 
runs over link layers with very different characteristics, providing interoperability among them 
( Figure 3.1   ), and because IP provides interoperability with existing networks, applications, and proto-
cols. We examine these two aspects beginning with how IP provides interoperability between differ-
ent link layers. 

 IP   was originally designed to provide interoperability at the network layer because it works on top 
of different types of link layers. A single IP network operates across a variety of underlying media 
such as Ethernet or WiFi. Within the IP architecture, an IP network operates across both wired and 
wireless link layers without requiring any external mechanisms or add-ons. Operating over a variety 
of media has always been the prime objective of the IP architecture. 

 Interoperability   within and across different link layers is very important for smart objects. Smart 
object networks are composed of a wide variety of link layers and transmission mechanisms. 
Smart object networks extend from low-power wireless nodes to high-power data coordination 
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 servers. Because of the fundamentally different properties of these devices, it is unlikely they will 
share a single link layer. A low-power wireless node typically runs a low-power, low-data-rate radio 
link layer, whereas the high-power data coordination server runs over a wired, high-speed Ethernet 
network. Still, these systems need to communicate with each other. Because of its layered architec-
ture, IP provides interoperability between these devices without any special servers, gateways, or cus-
tom software that connects the systems. IP naturally connects these two. The interoperability of IP is 
not just an artifact of IP protocols, but occurs because of the architectural choices that support the IP 
architecture. 

 The   second characteristic of interoperability within the IP architecture is the widespread adoption 
of IP in today’s networked ecosystem. Consequently, an IP-enabled device can interoperate with a 
large number of devices, computers, and servers. IP is not only the standard protocol that defi nes the 
Internet, it is also the de facto standard protocol used for networking computers outside the Internet. 
IP-based smart objects are able to communicate with any given device without any additional hard-
ware or software. 

 IP   is available in most, if not all, operating systems for general purpose computers and servers, 
and there is an ever-growing body of software available for IP networking for the type of micro-
controllers used in smart objects. Both commercially licensed and open source implementations are 
generally available: general purpose operating systems such as Microsoft Windows and Linux or 
microcontroller operating systems such as Contiki, TinyOS, and FreeRTOS. Most software packages 
also provide the necessary device drivers for the underlying communication hardware. 

 The   ubiquity of IP is also evident in the ever-growing number of communication technolo-
gies, or link layers in IP terminology, that support IP. IP runs not only high-speed, high-throughput 

 FIGURE 3.1  
       IP is interoperable across 
different platforms, devices, 
and underlying communication 
mechanisms.    
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 communication technology such as the optical links that provide swift communication between serv-
ers in data centers, but also low-power, low-data-rate links such as those used for smart objects. This 
is important for smart object systems designers. With IP, any communication technology the designer 
chooses will interoperate with other parts of the network infrastructure. 

 IP  -enabled smart objects interoperate with other systems and devices that run IP, but the IP archi-
tecture contains other protocols as well. The IP suite contains a set of protocols running on top of IP 
that include the transport protocols UDP and TCP; application layer protocols such as the Hypertext 
Transfer Protocol (HTTP), for web-style interaction and web service infrastructure; and the Simple 
Network Management Protocol (SNMP) for network confi guration. Thus a smart object that runs IP 
is able to interoperate with a large number of external systems. 

 Interoperability   at the application layer is as important for system builders as it is for system inte-
grators. For the system builder, the ability to interoperate with existing application protocols not only 
makes the act of building the system easier, as existing applications can be used when developing the 
system, but also when deploying the system. When existing applications are able to interact without 
any additional mechanisms or heavily tailored software, deployment time is signifi cantly reduced. For 
the system integrator, system integration becomes much easier when the different parts of the system 
immediately interoperate with each other. 

 Standardization   plays a large part in the success of IP’s interoperability. IP is standardized by an 
established standardization organization that provides mechanisms through which new standards are 
reviewed and vetted. This process puts a large amount of effort into ensuring that the mechanisms and 
protocols proposed as standards can be effi ciently implemented. In Part II of this book we describe 
this process in detail. Furthermore, the standardization body has policies and practices that deal with 
how patents are to be handled.  

    3.2       AN EVOLVING AND VERSATILE ARCHITECTURE 
 The   IP architecture has proven to be evolvable due to the way applications, protocols, and mecha-
nisms running on top of the architecture have evolved, and the way that protocols within the architec-
ture have evolved. The ability to evolve and the versatility in applications are due to the end-to-end 
principle that provides the foundation of the IP architecture. 

 From   the outset the IP architecture was designed to allow application layer protocols and mecha-
nisms to evolve independently of the underlying network protocols and mechanisms. The end-to-end 
principle states that application layer functionality should be held in the end points of the network 
(computers, or hosts, connected at the fringes of the network). The network does not contain any 
application-level intelligence. This is maintained solely by the network end points. The network only 
transports data between the end points ( Figure 3.2   ). 

 The   network does not know if it is transporting a temperature reading from a temperature sensor, 
a piece of sound from a voice conversation, a control command, or a piece of a larger fi le. It only 
knows that it has been given a string of bits to transport from one end of the network to another. It is 
up to the applications running at the end points to make sense of the bits. 

 The   end-to-end principle is the primary reason today’s IP networks work with a diverse number 
of applications. If we take the public Internet as an example and look at its history, it shows that the 
applications running on top of the Internet have evolved since the inception of the Internet in the early 
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 1980s. In the 1980s, the Internet was mostly used for transporting text and fi les; the main applications 
were e-mail and fi le transfer between universities. In the 1990s, the World Wide Web was deployed, 
and by the late 1990s data traffi c caused by the Web dominated the traffi c on the Internet. In the early 
2000s, peer-to-peer fi le sharing and Internet video transport emerged as new applications, and in 2010 
these applications constitute the bulk of Internet traffi c. 

 Without   the end-to-end principle, designers might have been impelled to push application func-
tionality into the fabric of the network. For example, the World Wide Web could have been encoded 
in the routers that make up the interconnected network of the Internet. Placing application functional-
ity within the network may have yielded a slightly higher performance, because data may have needed 
to travel slightly shorter distances, but evolving the network to support new applications would have 
been extremely diffi cult. Inserting a new application into the network would have needed technical 
cooperation between a large number of parties, and globally agreeing what applications should be 
supported by the network would have been close to impossible. 

 In   addition to promoting evolvable applications, the end-to-end principle and the resulting archi-
tecture embodied in IP have had a profound impact on the interoperability of existing IP networks. If 
application functionality had been placed deeply in the network fabric, network operators would have 
needed to negotiate complex deals on how to connect the applications. And once these negotiated 
deals were in place, adding new applications or evolving new ones would have been diffi cult. 

 Thus   far we have discussed how the technical architecture that supports IP enables applications running 
on top of IP to evolve. But there are other elements in the mix that allow the system as a whole to evolve. 

 We   have already touched upon the standards process of IP as an important factor in its interoper-
ability, but the standardization process has implications for the evolution of the architecture too. The 
well-defi ned standardization process for IP provides mechanisms through which new features can be 
introduced to the architecture. The most common example of this is when a new link layer technol-
ogy is introduced. The standardization process provides a way for vendors to agree on how to use the 
new link layer to transport IP packets within the IP architecture.  

    3.3       STABILITY AND UNIVERSALITY OF THE ARCHITECTURE 
 We   have been discussing how the application layer protocols and the underlying link layer mecha-
nisms have allowed IP architecture to evolve. Although evolvability is important, because it shows that 
the protocols are not tied to one particular application use that may change in the future, stability of 
the foundations of the architecture is also important. For smart objects, such stability is very important 
because individual smart object systems are designed to have a long lifetime, often up to ten years. 

 FIGURE 3.2  
       Versatility is seen when the applications run on the 
end points and the network only transports data 
between them, which allows the system to evolve.    
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 Such investments require the base technology to be stable enough to remain available toward the end 
of the system life cycle. 

 The   IP architecture has existed for nearly 30 years. Although there is room in the IP architecture 
for evolving protocols both at the application layer and at the link layer, throughout the years the 
architecture as a whole has remained exceptionally stable. Standards have been updated several times 
over the 30 years, but its foundation as a packet-based communication technology has remained fi rm. 
The network layer, the core of the IP architecture, exists in two versions  —  version four (IPv4) and 
version six (IPv6). The major difference between the two is that IPv6 provides more addresses. There 
are, however, no major architectural differences between the two versions. 

 Because   IP forms the basis of the public Internet, the IP architecture and its surrounding stan-
dards will continue to exist well into the future. The prevalence of the Internet not only implies that 
IP has a large installed user base regarding hardware and software that supports it, but there is also a 
large installed network infrastructure. IP networking equipment and IP network access are both read-
ily available and will continue to be so as long as the Internet exists. 

 The   stability and prevalence of the IP architecture also have implications on the knowledge and 
education of users and network administrators. IP architecture and its protocols are part of the core 
curriculum in courses and training material at all levels of the educational system ranging from day-
long network training courses to multiyear university programs. Ever year, thousands of new engi-
neers graduate with knowledge of IP protocols and the architecture. 

 The   number of books and training material on IP architecture and its protocols is immense, con-
tinues to increase, and is available in many different languages. There is a vast amount of material 
freely available online both as text, recorded seminars, and animated videos. Again, material is avail-
able in many different languages and for different audiences.  

    3.4       SCALABILITY 
 The   IP architecture has been thoroughly fi eld-proven regarding scalability through the use of IP over 
the public Internet. Few communication architectures have ever seen such a large-scale deployment. 
Through the global deployment of the Internet, IP has both shown that it can be deployed over a 
large number of systems and that it can run across a vast variety of different implementations of its 
protocols. 

 But   we need not go as far as to the public Internet to witness the scalability of IP. Most larger 
companies run internal networks to support the activities within the company. These networks are 
often not connected to the public Internet, yet they can span many thousands of individual computers 
or servers.  

    3.5       CONFIGURATION AND MANAGEMENT 
 Through   its wide adoption and large-scale deployment, IP has evolved numerous mechanisms and 
protocols for network confi guration and management. These mechanisms are a necessity when net-
works grow to thousands of hosts. Network management tools allow for a single person to manage 
large networks, without manual confi guration of each host. 
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  The   IP architecture provides advanced confi guration and management mechanisms as well as 
automatic confi guration mechanisms. Confi guration mechanisms are provided at many layers of the 
system: from the network layer, where managed and automatic mechanisms for assigning network 
addresses are widely used, to the routing protocols, where routing mechanisms are both self-healing 
and automatically confi gurable. 

 IP   provides management mechanisms at all layers. Address assignment mechanisms such as the 
Dynamic Host Confi guration Protocol (DHCP) allow network administrators to assign addresses both 
individually to singular nodes and in bulk to others. Routing protocols allow management of both 
network confi guration and engineering. 

 Protocols   such as the widely used SNMP provide means by which a network administrator 
can inspect the network, its confi guration, and its performance. A plethora of tools for interacting 
with SNMP-enabled networks, and visualizing their performance, exist. The widespread adoption 
of SNMP also means there is a large body of knowledge and people experienced with these tools. 
Additional tools such as Cisco Netfl ow provide large amounts of data about the network health and 
traffi c statistics. 

 For   smart object networks, confi guration, management, installation, and commissioning are 
clearly an issue. Even though traditional management mechanisms cannot be directly applied to smart 
object networks, due to their large scale and number of nodes, the ability to leverage existing mecha-
nisms and tools is important. It provides not only technical advantages, but also non-technical advan-
tages such as the availability of skilled people.  

    3.6       SMALL FOOTPRINT 
 Low   energy consumption, small physical size, and low cost are three of the node-level challenges of 
smart objects. Taken together, these challenges translate into severe memory constraints and software 
complexity on the nodes. A network architecture for smart objects must be able to run within these 
tight bounds, and yet perform its task. 

 The   IP architecture was long thought to be a heavyweight due to its perceived need for processing 
power and memory. The protocols were seen as too large to fi t into the constrained environment of typi-
cal smart object systems. A typical smart object has only a few tens of kilobytes of memory, whereas 
existing implementations of the IP protocol family for general purpose computers would need hundreds 
of kilobytes. For this reason, several non-IP stacks were developed [120,222]. 

 In   the early 2000s, however, this view was challenged by lightweight implementations of the IP 
protocol family for smart objects such as the uIP stack [64]. uIP showed that the IP architecture would 
fi t nicely into the typical constraints of smart objects, without removing any of the essential mecha-
nisms from IP. Note that these resources, which we consider constrained today, are fairly close to the 
resources of general purpose computers that were available when IP was designed. Since its initial 
release, the uIP stack has become widely used in networked embedded and smart object systems. 

 In   addition to uIP, there are many small IP stacks available, both as open source and closed 
source. Many of the early embedded IP stacks were adaptations of the IP stack from the open source 
BSD UNIX operating system [172]. 

 Recently  , a number of implementations of IPv6 for memory-constrained systems have appeared. 
uIP has been extended to support the IPv6 protocol, which is the fi rst IPv6 stack for smart objects to 
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 be certifi ed under the IPv6 Ready program [73]  . Other independent implementations of the IPv6 stack 
have also appeared [1,125]. The footprints of the stacks are shown in Figure 3.3. The graph shows the 
memory requirements of the uIP and uIPv6 stacks [64,73], the stack by Hui and Culler [125], and the 
lwIP stack [64].  Figure 3.3    shows that there are many options for IP software that fi t into the resource 
constraints in smart object nodes. 

 In   Chapter 13 we take a detailed look at the uIP stack to see how it implements the IP architecture 
in a way that fi ts with the smart object resource challenges.  

    3.7       WHAT ARE THE ALTERNATIVES? 
 We   have now seen that the IP architecture is interoperable across devices and communication tech-
nologies, evolving and versatile while still stable, scalable, and manageable, and simple enough that 
a resource-constrained smart object can easily run it. We have painted a very bright picture of the IP 
architecture, but is it really as good as we say? What are the alternatives? 

 The   IP architecture was arguably not designed for smart objects. It was designed in the 1970s for 
connecting general purpose computers using wired networking technologies such as Ethernet. Could 
we do it better if we made a clean-slate redesign that specifi cally targets the challenges that smart 
object networks pose? To help answer our question, we turn to those who did this. 

 The   challenges of low-power operation and the large scale of smart object networks have spurred 
several years of research in the wireless sensor networks research community. Although wireless sen-
sor networks are a subset of smart object networks, they share many of the properties such as the low-
power operation, the large scale of the networks, and the resource constraints. 

 At   the outset, the wireless sensor network community rejected the IP architecture based on the 
assumption that it would not meet the challenges of wireless sensor network systems [110]. For an 
emerging research fi eld, this clearly was the right choice. Consequently, many novel network archi-
tectures have been investigated, where the layers in the networking stack have been turned upside 
down [111], where the layers have been intermingled [168], and where the network itself processes 
the data produced by the end points [162]. After several years, however, the community started to 
lean toward layered network architectures, because of the benefi ts of modularity and separation of 
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 concerns [35,46,71,93]. In fact, many have moved to IP because of the interoperability with existing 
systems and the well-engineered architecture based on the end-to-end architecture [67,73,125,207]. 

 The   industry around low-power wireless communication has made a similar transition. In the late 
1990s, there was a strong movement toward defi ning a new network architecture for the networking 
system under the brand name ZigBee. ZigBee was designed to perform control applications, such 
as controlling lights and appliances in homes, over a low-power wireless communication medium. 
ZigBee initially defi ned a networking stack that would work well over low-power wireless links, 
but that was incompatible with existing network standards such as IP. In 2009, however, ZigBee 
announced that they were moving toward adopting IP as its communication mechanism. In Part II of 
this book  , we return to ZigBee to discuss the choices made in the original ZigBee architecture. 

 Even   if we were designing our own network architecture for smart objects, at some point they 
would need to communicate with someone outside the network. Our electrical meter would need to 
report its data to a collection server. Our industrial vibration sensor would need to send its latest sen-
sor reading to a database. Our radiator controller would need to be given instructions on how much to 
turn up the heat in its room. To reach the smart objects, we need to insert a translation point between 
our smart object network and the outside network. This translation point is called a gateway, and it 
introduces a number of problems.  

    3.8       WHY ARE GATEWAYS BAD? 
 At   a fi rst sight, gateways offer an alternative to adopting the IP end-to-end principle, which allowed 
for interconnecting non-IP-based smart object networks to an IP network. 

 Such   gateways were designed and deployed in a number of networks about a decade ago, when 
IP was not yet the networking protocol of choice. At that time, several legacy networking protocols 
such as IBM’s Systems Network Architecture (SNA), and Novell’s Internetwork Packet Exchange 
protocol (IPX), and many other ones were deployed mostly in private networks. As IP networks were 
deployed, network administrators required gateways to interconnect these networks by means of mul-
tiprotocol translation gateways supporting these protocols, which led to several deployments models. 
Some protocols were tunneled over IP (encapsulated in IP packet to transport non-IP traffi c over an 
IP network), while others were translated. 

 Although   such gateways were deployed, most networks very quickly migrated to IP. But why? 
There are two main reasons for the move away from gateways: the inherent complexity of gateways 
and the lack of fl exibility and scalability. 

    3.8.1       Inherent Complexity 
 The   mode of operation of a multiprotocol translation gateway is a complex language translation 
mechanism with subtle nuances in semantics in addition to the actual translation. Network protocol 
translation is more complex than just a packet format conversion. Networking protocols use different 
mechanisms and logic for routing, Quality of Service (QoS), error recovery, transport, management, 
troubleshooting, and security models. Trying to translate the semantics of QoS between two network-
ing protocols, for example, is not limited to the setting of a new fi eld value in a packet and may 
sometimes not even be possible. Routing is similarly affected: when two routing domains are using 
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 different routing architectures, routing metrics, and paradigms the introduction of protocol transla-
tion gateways introduces several limitations. This is true for a number of network aspects where such 
gateways break the networking models on both sides. 

 Furthermore  , with gateways, management and troubleshooting become cumbersome. Imagine 
traffi c fl ows between three smart objects implementing different networking protocols. This requires 
as many as six protocol translations. Such a system is extremely diffi cult to manage and troubleshoot, 
especially when the gateway is not managed by a networking expert.  

    3.8.2       Lack of Flexibility and Scalability 
 The   lack of fl exibility and scalability is undoubtedly a real issue. As already pointed out, the evolv-
ability and scalability essential to all networks are required for smart object networks because of the 
myriad of future innovative applications. Protocol translation gateways inherently do not scale and 
become networking bottlenecks. Each protocol enhancement implies changes in the gateways, which 
become the least common denominator factor of the architecture. Furthermore, such gateways intro-
duce an undesirable state in the networks, which impacts not only the overall scalability but also the 
overall reliability with single points of failure. 

 The   use of multiprotocol gateways helped integrate disparate networks in the late 1990s when net-
work administrators had to deal with several legacy protocols and when networks were signifi cantly 
smaller. Now that IP has become the networking protocol of choice, the use of multiprotocol transla-
tion gateways would ineluctably lead to the wrong architectural choice.   

    3.9       CONCLUSIONS 
 Smart   object networks and their applications give rise to challenges both at the node and the network 
level. To meet these challenges we need a network architecture that is interoperable across a wide 
range of communication technologies, that evolves as the fi eld of smart objects evolves, and is scal-
able enough to meet the challenges imposed by large-scale smart object networks while lightweight 
enough for the node-level resource constraints. We argue that the IP architecture meets these goals 
while providing unprecedented interoperability with existing networks, applications, and services.            
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                   IPv6 for Smart Object Networks 
and the Internet of Things    4 

CHAPTER

    4.1        INTRODUCTION 
 IPv4   has been widely and very successfully deployed on hundreds of millions of hosts and routers 
in a number of private and public networks around the world. Considering that IPv4 was initially 
designed in 1982 [48  ]  , such a growth and adoption rate is remarkable. Very early on, considering the 
impressive growth of IP networks, the Internet Engineering Task Force (IETF) in charge of standard-
izing the IP protocol suite had identifi ed the need to specify a new version of IP: several task force 
groups were formed and these initiatives led to the specifi cation of IPv6 in 1998 [53].   

 IPv6   is an  evolution  of IPv4 and builds on IPv4 with no change in the fundamental and architec-
tural principles of the IP protocol suite discussed in Chapter 2. Some protocols added to IPv4 to sort 
out specifi c issues have been natively embedded into IPv6, the header has been modifi ed in particular 
to allow for a large address space. A few new features have been added but IPv6 fundamentally pre-
serves the architectural principles of IP. This was imperative considering the power of the IP protocol 
suite architecture. Many of the existing protocols such as the transport protocols (UDP and TCP) 
have not been modifi ed. Drastically simplifying layer 3 and the overall architecture as well as going 
back to the most fundamental architectural principle of IP were done in IPv6. More details on these 
aspects are discussed in Chapter 5 in the section Layer 2 versus Layer 3 Routing. 

 Why   is IPv4 still so prevalent? The answer is somewhat fairly simple: cost and complexity of 
migration. With more than one billion devices using IPv4, the migration to a new version of the proto-
col is not entirely straightforward and usually requires a business driver. IPv6 undoubtedly enhances 
many of the IPv4 functionalities, offers a much larger address pool, and provides better support for 
security and mobility while preserving the fundamental protocol architecture of IPv4, but the  “ cost ”  
of migration has slowed down the adoption rate of IPv6. 

 The   question Why IPv6? is now obsolete, and the IP community fully agrees that IPv6 will 
replace IPv4 with a smooth transition (to that end a number of technologies and migration strategies 
have been designed by the IETF). 

 Over   the past decade, several technologies have been developed to postpone the migration of IPv4 
to IPv6 such as Network Address Translation (NAT), which has been used extensively (see Chapter 
5 for more details). Multiprotocol Label Switching Virtual Private Network (MPLS VPN) also uses 
private addresses (non-routable over the global Internet) over a common (usually service provider) 
infrastructure. Basically, private networks are interconnected at the edge of the network and, upon 
receiving an IP packet using a private IP address, the router connected to this network pushes a (VPN) 
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 label that uniquely identifi es the private address (using to a new address family called VPNv4). A 
second label is then added to forward the packet to the router connected to the destination private net-
work where the VPN label is removed. See [217  ]   for more details on MPLS VPN or [247] for more 
information on MPLS technology. Note that MPLS not only allows the interconnection of networks 
using private addressing over a common infrastructure but also enhances IP networks with sophisti-
cated traffi c engineering techniques. 

 But   the situation is radically changing. First, the exhaustion rate of public IPv4 addresses is 
extremely concerning. 

          Figures 4.1 and 4.2      show the evolution of the Internet in the past 30 years from about a dozen 
devices to more than a billion. Imagine the number of devices (not yet) connected to both the public 
Internet and a myriad of IP private networks: this shows why IPv6 is the only viable option for smart 
object networks. 

 In   many cases the use of NAT is not an option as detailed later in this chapter  , in Section 4.3. Even 
in private networks composed of a large number of devices the use of IPv6 is the preferred option. 

 Smart   Grid networks are good examples. Most of the devices connected to the grid will not be 
connected to the public Internet for security reasons. Still, these networks will likely contain hundreds 
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       The Internet in 1972.      
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 of millions of devices (please refer to Chapter 20 
 for more details). More than likely in less than 
10 years such networks will connect millions of 
monitoring and control devices in the produc-
tion and distribution part of the Smart Grid net-
work. Smart meters will also be connected to 
the network, again with millions of devices. To 
support end-to-end applications such as demand-
response, the Smart Grid will require communi-
cation with end devices in the home via a home 
energy controller. Simple math shows that the 
number of IP-enabled home devices running IP in 
the home area network (HAN) and smart objects 
in the grid networks including smart meters will 
quickly exceed billions of devices. The Smart 
Grid is only one example among many including 
Smart Cities, Industrial Automation, and so forth. 

 It   is worth noting that the motivation for IPv6 
in large-scale networks applies to both private IP 
networks and the public Internet. 

 Although   the address space in undoubtedly 
one of the main motivations for using IPv6 (and the reason why a large proportion of this chapter is 
devoted to IPv4 address space exhaustion), it is not the only one. IPv6 provides a number of power-
ful features such as stateless autoconfi guration (discussed in detail in Chapter 15), which allows the 
network to support dynamic address assignment without requiring heavy state management in the 
network. This is only one of the value-added services provided by IPv6. 

 IPv6   is undoubtedly the only viable option for IP networks deployed today and in the future with 
many more IP devices connected to both private and public networks. This is why several IETF 
Working Groups   in charge of standardizing IP protocols for smart objects decided to specify these 
new protocols for IPv6 only.  

    4.2       THE DEPLETION OF THE IPv4 ADDRESS SPACE 
 Who   could have expected that the 32-bit address space of IPv4 would at some point be too restricted 
and 4,294,967,296 IPv4 would not be suffi cient? First, the address space is not totally available 
and is fragmented: in reality, the number of available IPv4 addresses is far below the theoretical 
4,294,967,296 number. The address space is divided into blocks of addresses that are partially used. 
Several indicators have been specifi ed to evaluate the address space fragmentation ratio (see [72] and 
[126  ]  ). Such indicators were also used to determine the number of bits that would be required for 
IPv6 addresses. 

 As   previously stated, considering the exponential growth of the Internet and the address allocation 
rate, the IETF demonstrated admirable foresight by starting several initiatives in the early 1990s to 
design the next version of IP, which led to the current IPv6 version. 

 FIGURE 4.2  
       The same Internet in 2007.  

 (Source: Wikipedia.)   
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  Early   predictions (made at the time IPv6 was in its early phase of design) were that IPv4 address 
depletion would take place as early as 2002. This triggered active work from the IETF community to 
fi nd solutions to slow down the pace at which IP addresses were allocated while waiting for IPv6 (the 
ultimate solution to address exhaustion) to be widely adopted on the Internet. 

 Several   mitigation strategies were developed: 

      ●      The fi rst cure consisted of not allocating class B addresses to companies without a strong justifi ca-
tion but allocate class C address blocks instead.  

      ●      Classless inter-domain routing (CIDR) is a variable length subnet mask technique that specifi es 
a prefi x length of arbitrary size. Furthermore address aggregation was used to reduce the routing 
table sizes (see also [88  ]  ).  

      ●      NAT was (and is still) a solution to temporary mitigate the issues of address exhaustion.    

 Although   these mitigation strategies helped postpone IPv4 address depletion, the IPv4 address 
pool exhaustion is inexorable. 

    4.2.1       Current IPv4 Address Pool Exhaustion Rate 
 It   is fairly diffi cult to predict exactly when IPv4 address exhaustion will occur, so we can only try to 
predict it based on statistical analysis according to the current IPv4 address allocation policy used by 
the Regional Internet Registries (RIR).              Figures 4.3 to 4.7            are based on the IPv4 address report ( http://
www.potaroo.net/tools/ipv4/index.html ) and provide a good indication of the IPv4 consumption 
rate and  “ prediction ”  of the IPv4 address depletion date. According to this model, which takes into 
account a number of positive factors such as the use of CIDR and reclaiming of addresses that have 
been allocated but are not advertised in the Internet, the date at which the unallocated address poll 
distribution occurs will be  March 2012 . But bear in mind that this date is an estimated prediction. 

 Let  ’s take a closer look at a few interesting data points to understand the address allocation 
process. 

 First  , it is worth reminding how IP addresses are being allocated. IANA, the Internet Assigned 
Numbers Authority (IANA;  http://www.iana.org/ ) managed the allocation of the address pool. Then 
it was decided to decentralize the address space allocation to regional entities (RIR) and that Internet 
Service Providers (ISPs) would own the address and perform route aggregation in the core and limit 
the size of the routing tables. Examples of RIRs include AFRINIC (Africa), APNIC (Asia/Pacifi c), 
ARIN (North America), LACNIC (Latin America), and RIPE NCC (Europe). IANA allocates /8 
address blocks to an RIR as soon as the RIR available space falls below the equivalent of a /9 address 
block or the equivalent of 9 months of allocation. An /8 address block corresponds to addresses 
where the fi rst 8 bits are allocated (e.g., 15.X.X.X). The new /8 block allocation then provides enough 
addresses for the equivalent of 18 more months of allocation. Then the RIR allocates address blocks 
to the Local Internet Registries (LISPs) and ISPs. The RIRs have their own address allocation policy 
according to the regional policy forum in line with the RIR policy. 

 Not   all of the 256 /8 address blocks are available to the public Internet. As noted in [128]  , 
a number of /8 address blocks have been reserved for special purposes such as loopback,  “ reserved 
for some unspecifi ed future use, ”  private addressing (e.g., 10.0.0.0), local identifi cation (0.0.0.0), and 
 “ public data networks ”  along with other special uses (e.g., multicast). This is illustrated in  Figure 4.3 , 
where the allocated number pool is managed by the RIRs. IANA has a pool of unallocated addresses, 
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 while the remainder have already been allocated by IANA for further downstream assignment by RIRs. 
The pool size labeled VARIOUS refers to the IANA IPv4 address registry where a number of blocks 
were assigned prior to the existence of RIRs ( http://www.iana.org/assignments/ipv4-address-space/ ). 

    Figure 4.4  illustrates the allocation distribution of the 256 /8 block address as of May 2009. 
 It   is interesting to note that any address can be in either of the following states: 

      ●      Reserved for special use (e.g., loopback address, private address, etc.)  
      ●      Available and not yet allocated by IANA (IANA_Pool_Pool)  
      ●      Part of the pool assigned to an RIR  
      ●      Assigned to an end user but not advertised in the Internet (thus it could be reclaimed at some point)  
      ●      Assigned to an end user and advertised in the Internet    

 What   does the rate at which IPv4 address blocks are allocated mean? 
 As   shown in  Figure 4.5 , with the exception of more recently allocated address space, about 90% 

of allocated address space is visible in the routing tables of the Internet. 
    Figure 4.6  illustrates a predictive model that shows when the address space will effectively be 

exhausted. It also shows the total amount of address space allocated by IANA to the various RIRs, 
the total amount of address space that has been allocated to end users by the RIRs, the total amount 
of address space effectively advertised in the Internet, the total amount of address space that has been 
allocated but not advertised in the Internet, and the total amount of address space still available in the 
RIR pool. 
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      Figure 4.6  was used to construct a predictive model to extend the series and estimate the date 
at which IPv4 address space will be exhausted. A number of statistical models have been used to 
perform extrapolations: a linear best fi t, exponential best fi t, and a second order polynomial best fi t 
(derived from the application of a linear best fi t to the fi rst order differential of the data). 

 The   model that was selected to predict address poll exhaustion consisted of projecting the number 
of advertised addresses in the Internet forward (observing according to  Figure 4.6  that an average 
of 95% of the allocated address were advertised). Detailed models have been derived for the RIR 
address allocation models. All of the studies managed to build an overall model of address consump-
tion as shown in  Figure 4.7 . 

 In   this model the point of exhaustion occurs when the RIR pools are exhausted but no address 
pool from IANA is available to replenish them. The best-fi t predictive model suggests this may occur 
in March 2012. 

 A   word of caution: this date is only  “ predictive. ”  New allocation models could be put in place to 
reduce the allocation rate. On the other hand, some companies may request addresses at a higher rate 
than expected to get a public IPv4 address before they are exhausted.   

    4.3       NAT: A (TEMPORARY) SOLUTION TO IPv4 ADDRESS EXHAUSTION 
 NAT   has been  the  solution to the IPv4 address space exhaustion, allowing the use of one pub-
lic address to connect private IP networks [213  ]  . In a nutshell, NAT enables millions of devices to 
hide behind one public address with less than 65,000 possible addresses since ports are coded over 
16 bits. 
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  NAT   has been a useful technology and widely deployed over the Internet. It is worth understand-
ing the issues outlined in this section, in light of the ongoing deployments of large-scale IP net-
works, to understand why NAT is not a long-term solution. This is specially true for smart object 
networks. 

 Most   of these issues occur because NATs introduce states in the network between end points, 
since address conversion NATs also need to maintain various protocol states. 

 One   of the key aspects of the end-to-end principle is that  “ state should be maintained only by end 
points, in such a way that the state can only be destroyed when the end point itself breaks.” This leads 
to the notion of  “ fate-sharing ”  [32  ]  . 

 The   introduction of NATs in the network breaks this model since NAT failures have a major 
impact on the communication between end devices without fast network recovery in the network. This 
is in contrast to router failures. Not only can paths be quickly recomputed around the failed router 
because of fast recovery techniques, but when the router recovers, fl ows can be routed again through 
the router. This is not the case with a NAT (because the address translation maps may have changed). 
The use of alternate NATs in which states would be replicated turns out to be fairly diffi cult. 

 Furthermore  , beyond the issue of impacting the end-to-end reliability, the introduction of states in 
the network has an impact on the overall network scalability that always benefi ts from pushing states 
at the edge of the networks whenever possible. 

 NAT   also has a strong impact on the security models and is problematic for several authentication 
techniques (e.g., for SNMPv3). 
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  Some   applications using IP addresses in their data stream may not work through NATs, thus 
requiring the deployment of an application layer gateway (ALG) coupled with NAT, which may 
be cumbersome to manage. By intervening along the forwarding path, ALGs combined with NATs 
require software updates as new applications are deployed on hosts. Workarounds have been found 
for some updates, but this shows how the introduction of NATs in the network impacts the develop-
ment of new applications. 

 Without   entering into detailed explanation, NATs introduce TCP state violations. 
 The   objective of listing the drawbacks of NATs is to highlight that NATs are not a  “ free ”  solu-

tion. They were successfully used as a temporary solution until a massive deployment of IPv6 and are 
still useful.  

    4.4       ARCHITECTURAL DISCUSSION 
 The    “ hourglass ”  model proposed by Steve Deering in 2001 [52] illustrates the ability of IPv6 to move 
back to the initial IP protocol architectural principles that made IP successful. 

 The   IP architecture started with a set of principles discussed in detail in Chapter 2 that are illus-
trated in  Figure 4.8   . 

 As   new IP technologies such as multicast and Quality of Service (QoS) mechanisms were added 
to the IP layer, the model got fatter ( Figure 4.9   ), but was still in line with the architecture principles 
of IP. 

 The   next  “ step ”  was more problematic. As discussed previously, the introduction of NATs and 
ALGs in the network temporarily solved the IPv4 address exhaustion problem but also  “ broke ”  the 
architecture, as illustrated in  Figure 4.10   . The term  “ break ”  is probably a bit too strong and other 
technologies involving security mechanisms introduced by fi rewalls had similar effects. Still, the 
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 introduction of states in the network had a negative effect on the architecture with a serious loss of 
network transparency. 

 IPv6   offers the possibility of returning to the root foundation of IP. This is done with a thin IP 
layer (see Figure 4.11) in charge of routing the traffi c across the network with full support of IP mul-
ticast and QoS over a variety of link layers on top of which multiple transport protocols and applica-
tions can be used with total transparency, unique addresses, and application independence, which are 
required features for IP smart object networks. 

 IPv6   allows the return to main architectural principles of the IP architecture in line with the main 
goals of the Internet (as a reminder from Chapter 2): 

      ●      Internet communication must continue despite loss of networks or gateways ( “ in the presence of 
link or node failures ” ).  

      ●      The Internet must support multiple types of communication services.  
      ●      Internet architecture must: 

      ●      Accommodate a variety of networks ( “ networks ”  means link and physical layers)  
      ●      Permit distributed management of its resources  
      ●      Be cost-effective  
      ●      Permit host attachment with a little effort     

      ●      Resources used in the Internet architecture must be accountable.      

    4.5       CONCLUSIONS 
 IPv4   has been deployed at a scale unimaginable by its original designers and is currently used by 
more than a billion devices. Early on, it was well understood that a new revision of IP would be 
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 needed because of the exponential growth of IP connected devices. Although the adoption of IPv6 has 
been delayed because of migration cost, the migration to IPv6 is inevitable and has already started. 
The most accurate models predict an exhaustion of the IPv4 address pool by March 2012. 

 The   need to connect billions of IP smart objects makes IPv6 the IP protocol version of choice for 
smart object networks. From an architectural standpoint, IPv6 is built on the fundamental architec-
tural principles of IP: it is not a new protocol but an evolution of IPv4 offering address space an order 
of magnitude larger than with IPv4 along with very useful features for smart object networks such as 
stateless confi guration, which is explored in detail in Chapter 15.                           



This page intentionally left blank



51Interconnecting Smart Objects with IP. DOI: 10.1016/B978-0-12-375165-2.00005-3
Copyright © 2010 by Morgan Kaufmann. All rights of reproduction in any form reserved.

               Routing    5 
CHAPTER

    5.1        ROUTING IN IP NETWORKS 
 Routing   in IP networks has been a topic of great interest for the past two decades and has led to the 
emergence of several routing protocols. The main function of the routing protocol is to determine the 
 “ best ”  path to reach a destination according to various metrics and objective functions. For example, 
RIP [163] considers the best path as the path with a minimum number of hops, whereas the best path 
computed by OSPF [179] is the path with minimal cost where the path cost is the sum of all link costs 
along that path. 

 Routing   tables are populated in routers and indicate the best next hop(s) for each reachable des-
tination potentially along with other parameters. Upon receiving an IP packet, the router performs a 
routing lookup and forwards the packet to the best next hop according to the routing table until the 
destination is reached. 

 What   seems fairly straightforward is not only quite sophisticated but has direct consequences 
on both the Quality of Service (QoS) provided by the network and the overall network reliability. 
Several routing protocols have been developed for intra-domain (e.g., RIP [163], IS-IS [131], OSPF 
[179], OLSR [41], AODV [194]) and inter-domain routing (e.g., BGP [212]). It is common for sev-
eral routing protocols to coexist in the same network. For example, RIP can be used at the edge of 
the network to interconnect nodes organized in a (dual) star topology, OSPF, or IS-IS in the core of 
the network to provide a higher degree of connectivity (with route redistribution between the intra-
domain routing protocols. Such routing protocols are also called Interior Gateway Protocols (IGPs) 
operating within an Autonomous System (AS) itself connected to the external world (either private or 
the public Internet) using routing protocols such as BGP.  

    5.1.1       IP Routing and QoS 
 QoS   is the network’s ability to meet certain criteria for the traffi c such as network delays and jitter 
or packet drop probability. To provide differentiated QoS, according to traffi c requirements, traffi c 
must be marked at the edge of the network or at the source of the traffi c and perform a number of 
tasks in the network as packets are forwarded from the source to the destination. Once the packet has 
been classifi ed (colored) in a specifi c Class of Service (CoS), it will be processed according to its 
CoS along the forwarding path. The traffi c may be  “ shaped ”  at the edge of the network, reservation 
could dynamically take place for a specifi c traffi c for resource reservation, and should network con-
gestion take place, resource allocation will be performed according to the traffi c CoS using several 
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 sophisticated techniques such as congestion management and scheduling techniques. More details on 
QoS can be found in Chapter 15. 

 The   role of the routing protocol is crucial to providing appropriate QoS to a traffi c class, since 
most of time there are several paths between a source and a destination that may have very different 
characteristics such as delay, jitter, number of hops, and so forth. Thus it is the combination of the 
routing protocol and the QoS mechanisms along the forwarding path that determines the level of QoS 
provided to the traffi c according to its CoS. 

 Path   computation can either be performed using a centralized path computation element (also referred 
to as off-line) or a distributed routing protocol. In the former case, the path computation element (also called 
PCE) tries to optimize the traffi c placement taking into account the network resources and topology and the 
(estimated) traffi c matrix along with other parameters and objectives. Although the problem of fi nding an 
optimal solution is usually known as NP-complete, sophisticated heuristics have been developed to get rel-
atively close to the optimal solution. In contrast, distributed routing protocols rely on a distributed control 
plane where routers exchange routing information (routes, topological data, etc.) to compute their routing 
tables. Off-line path computation is undoubtedly more expensive because of overhead (requires communi-
cation between all nodes and the PCE) and potentially in-band signaling protocols, and is less responsive to 
failures and more diffi cult to manage. The Internet Engineering Task Force (IETF) has formed a Working 
Group dedicated to this work ( http://www.ietf.org/dyn/wg/charter/pce-charter.html ). An alternative is 
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       FIGURE 5.1  
     An example of the coexistence of intra- and inter-domain routing protocols.      
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 to involve several PCEs in the computation of a path (referred to as distributed PCE path computation); 
for example, to fi nd the best constrained shortest path in an inter-domain MPLS network. But the use of 
off-line path computation technique has been limited to specifi c situations requiring a high level of opti-
mization that does not occur frequently in relatively small-to-medium scale networks (e.g., optical or mul-
tilayer networks). The vast majority of IP networks use distributed routing protocols where each router 
computes its own paths based on the routing information exchanged with the other routers in the net-
work. The combination of off-line and distributed routing protocols could be an attractive option in some 
cases. 

 Routing   in large-scale networks made of highly constrained smart objects brings several interest-
ing technical challenges introduced in Section 5.2 and discussed in detail in Chapter 17.  

    5.1.2       IP Routing and Network Reliability 
 Most   networks have some level of redundancy with more than one path between a source and a des-
tination. It is the role of the routing protocol to fi nd the best path according to metrics and objective 
functions. Several routing protocols are able to compute several equal cost paths toward a destination; 
this is called equal cost multiple path (ECMP). With ECMP routers distribute (load balance) the traf-
fi c among the paths of the same cost. This load balancing function may be on a  “ per packet ”  basis 
potentially unequally (X packets on path 1, Y packet on path 2) or sometimes called  “ per destination ”  
based on traffi c fl ows that are load balanced with all packets belonging to a traffi c fl ow always fol-
lowing the same path (using a hash function) to avoid packet reordering. 

 A   key function of the routing protocol is to fi nd an alternate path in the presence of link or node 
failures. This is referred to as  “ rerouting. ”  The time required to fi nd an alternate path once a net-
work element failure has been detected is called the  “ convergence time. ”  The area usually called  “ fast 
convergence ”  is very important considering the constant need for network reliability improvement. 
This area has led to remarkable improvements and optimizations. New protocols and failure detec-
tion techniques have been designed such as the Bidirectional Forwarding Detection (BFD) protocol 
[144]. This is a fast keepalive mechanism used to quickly detect a failure or inter-layer failure signal-
ing where the link layer sends an indication to upper layers upon detecting a failure at the link layer. 
Furthermore, a number of rerouting techniques have been developed to quickly fi nd an alternate path 
upon detecting a network failure. Such alternate path(s) may be determined on the fl y or pre-computed 
prior to the failure. Today’s routing protocols typically offer rerouting times in a matter of millisec-
onds or hundreds of milliseconds depending on the routing protocol in use. [246] explores all of these 
techniques and optimizations in great detail. 

 The   routing protocol may be coupled with lower layers protection restoration mechanisms. For 
example, an IP over optical network may rely on an optical restoration mechanism on top of which 
the routing protocol performs its own rerouting in the presence of failures. In this case, rerouting at 
multiple layers should be performed in a synchronized fashion. 

 Another   well-known mechanism sometimes also used in smart object networks consists of dupli-
cating the traffi c and sending two copies of the same packet along two different (possibly diverse) 
paths. The challenge is then to compute diverse paths between a pair of nodes, which may or may not 
be fully diverse, as shown in  Figure 5.2   . 

 The   paths A-B-E-H-J and A-D-C-F-I-J are said to be fully diverse. In contrast, the paths A-B-E-
H-J and A-D-G-H-J are partially diverse (they share the node H and link H-J). 
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  The   computation of fully diverse paths in a 
network is quite challenging when using a dis-
tributed routing protocol. Link states routing pro-
tocols allow the computing engine to fi nd diverse 
paths, but usually require an additional signaling 
mechanism to ensure the paths will stay diverse 
end to end. But ensuring end-to-end diverse 
paths with a distance vector routing protocol 
such as RPL (Routing for low-Power and Lossy 
networks, see [256]), the routing protocol for 
smart object networks, is signifi cantly more dif-
fi cult since the source cannot see the entire path. 
With RPL node A joins a set of parents along a 
directed acyclic graph (DAG) based on various 
criteria without knowing whether the path along 
those parents is diverse or not. Route recording 
techniques are possible but imply potentially 

costly overhead. These techniques consist of fi rst setting up a path and recording the nodes along 
that path, then computing the second path avoiding the nodes traversed by the fi rst path. Such a two-
step diverse path computation cannot guarantee fi nding disjointed paths, even if they exist (the well-
known  “ trapping ”  problem). RPL is described in great detail in Chapter 17. 

 The   routing protocol strongly impacts the overall network reliability. Rerouting in Low-power 
and Lossy Networks (LLNs) is an interesting topic since both the characteristics of these networks 
and traffi c requirements regarding the Service Level Agreement (SLA) signifi cantly differ from tradi-
tional IP networks, as discussed in the next section.   

    5.2       SPECIFICS OF ROUTING IN LLNs 
 Networks   made of smart objects signifi cantly differ from  “ traditional ”  IP networks. Traditional IP 
networks are made of main-powered routers with several mega- or even gigabytes of memory (RAM) 
for high-end routers, extensive fl ash memory, and one or more powerful CPU interconnected by 
highly stable links. Everything is relative. Still, these networks may be constrained considering the 
amount of traffi c they carry. IP core networks use 10 Gbits/s optical links (and more soon) and may 
be congested: we need to remember than their routing tables may be populated with more than hun-
dreds of thousands of routes with intra- and inter-domain routes, not to mention the complex tasks 
that these routers perform. 

 The   generic terms Low-power and Lossy Networks (LLNs) have been chosen to designate net-
works made of (highly) constrained smart objects interconnected by fairly unstable low-speed links, 
which unavoidably impose new constraints and challenges on the routing protocol of choice in LLNs. 

 As   discussed in Chapter 17, the unique set of characteristics that make up LLNs led to the for-
mation of a new IETF Working Group, called Routing Over Low-power and Lossy networks 
(ROLL;  http://www.ietf.org/dyn/wg/charter/roll-charter.html ). This group was chartered to design a 
routing protocol for such IP networks. The ROLL Working Group fi rst produced a detailed set of 
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 routing requirements for LLNs for various applications and conducted a survey studying the poten-
tial adequacy of existing IP routing protocols in light of these specifi c routing requirements. The 
ROLL Working Group quickly converged to defi ne a new IP routing protocol, called RPL, which is 
described in greater detail in Chapter 17. 

    5.2.1       What Makes the Routing in LLNs Different?   
    Figure 5.3    is an overview of the main differences. 

 First  , the devices and links used to interconnect smart objects are different. 
 The   constrained nature of smart objects is discussed in length in Chapters 1 and 11. Existing rout-

ing protocols do not take into account the router characteristics in their routing decisions. There are 
very few exceptions to this rule, but in the majority of cases, routing protocols only consider the set 
of reachable destinations along with their cost (distance vector) or the entire network topology (link 
state). In most cases, node characteristics are not considered in existing routing protocols. Link state 
routing protocols only consider static link attributes and costs. 

 Using   dynamic metrics: the idea of making the link metric dynamic (for example, based on the 
average queuing delay) was studied many years ago in the context of the ARPANET network, thus 
 some  form of dynamic node metric has been considered in the past. For a number of reasons (risk 
of route oscillation, especially in the presence of sudden congestion events, etc.) the use of dynamic 
metrics was abandoned. 

Routing for smart objects

Nodes are routers

Links and nodes are stable

Routing is not application-aware (MTR is a
vanilla version of it)

Application-aware routing, in-band processing
is a MUST

Links are highly unstable and nodes die much
more often

Nodes are sensor/actuators and routers

Current Internet Low-power and Lossy Networks (LLN)

IGP with typically few hundreds of nodes An order of magnitude larger in terms of number
of nodes

Nodes constraints or link bandwidths are
typically non-issues

Nodes/Links are highly constrained

 FIGURE 5.3  
       Routing in LLNs.    
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  Considering   node characteristics when computing paths is a  must  in most LLNs. Routers may 
signifi cantly differ from each other in several ways: 

      ●      Processing capability: Smart object resources can be equipped with a low-end, 8-bit microcon-
troller or more powerful dual 32-bit microcontrollers.  

      ●      Memory (and non-volatile memory, e.g., Flash) can vary from a few hundred bytes to a few dozen 
kilobytes.  

      ●      Energy is key in most LLNs. Whereas some nodes may be main-powered, battery-powered nodes 
must consume energy with extreme care to prolong the life of the network.    

 Considering   the wide range of node capabilities, it is desirable and sometimes necessary for the 
routing protocol to compute paths that meet traffi c requirements according to the limited network 
resources. For example, non-critical, pollution-monitoring data should preferably follow a non- optimal 
path but that traverse main-powered nodes, whereas more critical traffi c fl ow must imperatively follow 
the path that provides minimal latency. Another example is the advantageous use of a traffi c aggrega-
tor along the path to the destination. This is used to aggregate traffi c and consequently free up network 
resources in the network. Another example would be to restrict the path to nodes that can perform traf-
fi c encryption, which may not be available on all nodes or link layers. 

 Furthermore  , as discussed in Chapter 17, node constraints regarding memory, CPU power, and 
sometimes energy impose restrictions on the routing protocol design. Although the code size is usu-
ally not an issue on a typical router, it is imperative to design a lightweight routing protocol for LLNs 
that optimizes the code space and the number of states that must be maintained not only to reduce the 
memory and fl ash space requirements but also the energy required to run the protocol and power the 
memory needed to maintain routing states. Typically a lightweight IPv6 stack requires a few kilobytes 
to a few dozen kilobytes of RAM and a few dozen kilobytes of fl ash. The routing protocol must not 
dramatically exceed the amount of required resources. 

 Even   more important, links in LLNs are also extremely different from SONET/SDH, fi ber optics, 
Ethernet, and other media used in  “ traditional ”  IP networks. The bit error rate (BER) of an optical or 
Ethernet link is usually extremely low, detection and error correction are sometimes available, and 
protection/restoration techniques may be obtainable at these layers (e.g., with protected SONET/SDH 
VC, 1:1, and 1 � 1 optical protection, etc. making a link failure invisible to the IP layer). Links in 
LLNs are usually low speed (from a few Kbits/s to several MBits/s), but even more important is the 
variable quality, which is usually unpredictable because of a variety of environmental factors (inter-
ferences, fl oor noise, impedance variation in Powerline communication (PLC), etc.). 

 The   link failure profi le of a low-power link (wireless or PLC) signifi cantly differs from the serial 
or optical link. As shown in  Figure 5.4   , large variations of the packet delivery ratio (PDR) on these 
links is common. Different link failure profi les require new mechanisms for the routing protocol to 
avoid route oscillations and lack of stability in the network: excessive control plane traffi c also affects 
the network lifetime in the presence of battery-operated nodes. 

    Figure 5.4  shows the PDR variation of IEEE 802.15.4 links over time for several channels. More 
details can be found in the [254]. 

 Note   that lossy links are not limited to wireless links and most of the PLC links may also be fairly 
unstable because of impedance variation, various sources of interferences, fl oor noise, and so forth. 
Furthermore, PLC links play a critical role in LLN infrastructures such as Smart Grid networks as 
discussed in detail in Chapter 20  . 
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  The   use of lossy links has a direct implication on the routing protocol design: in most IP routing proto-
cols, one of the most critical components is the convergence time (time to fi nd/compute an alternate path 
around a failed network component). As soon as the failure is detected, the traffi c is rerouted along an 
alternate path to mitigate the failure impact on traffi c. Adopting a similar approach in the presence of lossy 
links may lead to routing instabilities and various types of oscillations and routing loops, which unavoid-
ably occur with distributed routing protocols during transient failure (although recent improvements have 
considerably reduced the duration of such loops for  “ traditional ”  IP networks). The need for such a fast 
convergence time with routing protocols such as IS-IS and OSPF is also due to the type of traffi c carried in 
these networks such as voice and video with very stringent traffi c disruption requirements. 

 Routing   in LLNs requires appropriate reactions during network-wide failures. Upon detecting the 
presence of a failure the traffi c is locally redirected to an alternate next hop without immediately trig-
gering a global recomputation of the paths in the network (a local routing protocol convergence also 
referred to as local repair). The failure may be transient and triggering a network-wide protocol con-
vergence would not only be needless but would trigger the exchange of routing protocol messages. 
This leads to consuming energy and network resources, which is clearly undesirable in constrained 
environments. Furthermore, smart objects do not send a large amount of traffi c, and it is likely that 
the node will only send a few packets, unlike voice and video traffi c on IP high-speed networks. 

 Last   but not least, scalability is of a different order of magnitude. The number of routers in an 
IP core network within a single administrative domain is a few hundred to a few thousand routers. 
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       A wireless lossy link.    
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 Although some LLNs are composed of a limited number of nodes for a foreseeable future (e.g., home 
automation), other types of LLNs are composed of hundreds of thousands of these routers (e.g., Smart 
Metering networks or Smart Cities). More details can be found in Part III of this book. 

 Most   of these routers will be unattended so the routing protocol must be able to work autono-
mously and appropriately react to all situations in large-scale networks made of constrained devices 
interconnected by unstable links. 

 For   the above-mentioned reasons, the new IP routing protocol RPL was designed to operate under 
the set of constraints described in Chapter 17.   

    5.3       LAYER 2 VERSUS LAYER 3  “ ROUTING ”  
 The   discussion on whether routing in LLN should be performed at layer 2 (link layer) versus layer 3 
(network layer: IP) has been a very sensitive topic. 

 Strictly   speaking, routing implies protocols and mechanisms to compute paths in a multi-hop net-
work at layer 3 (IP). It is possible to perform path computation at layer 2 in a multi-hop network 
using media access control (MAC) addresses. This is usually referred to as  “ mesh-under ”  in contrast 
with  “ router-over ”  (routing, thus at layer 3). 

 Beyond   the terminology discussion, which is of minor importance, it is worthwhile to observe the 
consequences of adopting a multilayer routing architecture with routing processes operating indepen-
dently at multiple layers. 

 Historically  , the research community has been extremely active in routing in sensor networks. 
Many published papers make no assumptions about the protocol in use, instead focusing on the algo-
rithmic aspects of routing and producing a large amount of interesting and useful work. Experiments 
have been conducted leading to the deployment of test beds usually deployed at a relatively small 
scale in real-life networks. In most cases, researchers implemented their protocols at layer 2 simply 
because their focus was more on algorithms than protocol architecture design. 

 With   the extremely fast adoption rate of IP in LLNs for a number of applications (extensively 
discussed in Part III of the book), protocol architecture design is undoubtedly most important when 
looking at the global picture as opposed to each layer or component individually. 

    5.3.1       Where Should Path Computation Be Performed? 
 Until   a few years ago, the number of low-power links available for LLNs was extremely limited and 
most people thought that IEEE 802.15.4 would be the only low-power link available (always a risky 
assumption). When a single link layer is in use, path computation can either take place at the link 
layer (layer 2) or IP layer (layer 3). 

 As   clearly pointed out in Chapter 12, new low-power layer 2 technologies emerged thus reinforcing 
the use of a layered architecture such as IP. This guarantees layer independency and, in particular, layer 2 
 “ agnosticism. ”  Remember, the ability to use multiple link layers was one of the fundamental building 
blocks of the TCP/IP architecture design discussed in Chapter 2. It became apparent that a routing protocol 
(at layer 3) was a must, which led to the formation of the ROLL Working Group and the design of RPL. 

 Then   the new question that emerged was whether or not it was desirable to adopt a multilayer 
routing architecture. Some paths computed by the link layer would then appear as IP links at layer 3 
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 that would perform routing operation between IP links. Such a multilayer routing architecture is 
depicted in  Figure 5.5   . 

 At   fi rst, it was thought that such a multilayer approach could be designed and deployed. As dis-
cussed in Chapter 16, the 6LoWPAN Working Group even defi ned a mesh addressing header for its 
6LowPAN adaptation layer that supported the  “ mesh-under ”  approach by encoding hops using IEEE 
802.15.4 addresses since it operates at the link layer. Currently, there is no such link layer  “ routing ”  
protocol designed. 

 This   is probably one of those times where it is desirable to remember lessons learned, such as mul-
tilayer routing architectures, which have been studied in great detail and even partially deployed in 
specifi c contexts. IP over asynchronous transfer modes (ATM) is a notorious example with the ATM 
layer using PNNI [13] as a routing protocol to compute the paths of the virtual connections (VCs) 
in the ATM domain and IP. VCs are considered physical links and IP performs routing at layer 3, 
a routing  “ architecture ”  that has shown a number of drawbacks and limitations. 

 It   is important to consider the consequences of such a  routing   “ architecture ” : 
 Lack   of visibility is one consequence. Since layer 3 considers the paths computed by layer 2 as IP 
links, the IP routing protocol has no visibility on the link layer path. This unavoidably leads to subop-
timal routing. Indeed, the link layer  “ routing ”  protocol computes paths according to its own metrics 
and constraints and the resulting path properties are not communicated to the IP layer. Such links 
have static metrics usually independent or inconsistent with the IP metrics. Various studies and exper-
iments dynamically updating the IP link costs according to the layer 2 path costs showed that such a 

At the IP layers: Nodes perform IP routing function and do not “see” the
nodes at the link layer. A and B have no visibility on some nodes at the link
layer (N1, N3, and N4 in this example). 

At the Link layer: Nodes performs “mesh-under” “routing” using MAC
addresses to compute paths at the link layer. In this example, N1, N3, and N4
are link layer only nodes.

     

A

C

    
N1

N2

N3

N4

Link layer (layer 2) – “Mesh-under” “routing” protocol

B

IP layer (layer 3) – IP routing protocol

 FIGURE 5.5  
       A multilayer routing architecture in LLNs.    
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 strategy led to IP routing oscillations if great care was not given to the link layer routing strategy. 
This introduced a great deal of complexity in the network. 

 Such   an issue is illustrated in  Figure 5.6   . In this example, domain 1 is a set of nodes (routers) 
interconnected by type 1 links (e.g., IEEE 802.15.4 links), whereas the nodes in domain 2 are inter-
connected type 2 links. Let’s consider a computed path between node A in domain 1 and node C in 
domain 2. When both domains are interconnected with IP but each domain makes use of mesh-under 
routing, node A  “ sees ”  a two-hop path from itself to C (A-B-C). In reality, if the IP routing protocol 
is a distance vector routing protocol, it may not even know the details of the path (set of links along 
the path) but only the resulting path cost. The A-B-C path cost is computed according to the metric 
used by the IP routing protocol (e.g., metric refl ecting the path latency). Now consider each link layer 
path. Within domain 1, the mesh-under routing protocol has computed the link layer path between 
node A and node B as A-N1-N4-N3-B according to the layer 2 metric, which may or may not be sim-
ilar to the metric used by the IP routing protocol. The same reasoning applies to domain 2. This 
clearly shows that the use of multilayer routing leads to loose end-to-end path consistency, which 
may be a serious drawback. Even if similar metrics are used at both layers, the IP routing protocol 
still does not see the link layer path computed by the link layer. If there is a link failure at the link 
layer, the link layer path would be recomputed (with a potential new path cost), but the IP link (A-B) 
metric would not be updated, which leads to another source of suboptimal routing. Although techni-
cally feasible, in practice it is diffi cult to dynamically update the link layer path cost at the network 
layer and not in multilayer networks. Consider a link failure between the nodes N1 and N4. The link 
layer mesh-under routing protocol would recompute a new path (A-N1-N2-N3-B in our example) 
with a new cost that may not be refl ected at the IP layer. This is illustrated in  Figure 5.7   .      Note: A 

At the IP layers: Nodes perform IP routing function and do not “see” the
nodes at the link layer. A and B have no visibility on the link layer topology
(e.g., nodes N1, N2, N3, and N4 in this example).

A-N1-N4-N3-B is the link layer path computed by the “mesh-under”
“routing” protocol operating at the link layer in domain 1.

A B C

N1

N2
N3

N5
N6

N7

N4
Link layer (layer 2) – “Mesh-under” “routing” protocol – Domain 1 Link layer (layer 2) – “Mesh-under” – Domain 2

 FIGURE 5.6  
       Interconnection of two IP routing domains, each using a mesh-under routing protocol.    
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 very common misunderstanding of Multiprotocol Label Switching (MPLS) leads to the conclusion 
that it lies between the link layer and the IP routing layer with its own routing component. MPLS pro-
vides a mechanism that pushes a label used for forwarding, but the MPLS control plane (including 
routing and signaling) relies on IP. For example, the Traffi c Engineering Label Switch Path (TE LSP) 
can be computed thanks to a traffi c engineering database populated by IS-IS or OSPF. The signaling 
protocol used to signal TE LSP is RSVP-TE [14]. In other words, MPLS traffi c engineering is not a 
multilayer routing architecture. Furthermore, IP routing does not  “ run ”  over MPLS TE LSPs. There 
are a few instances where a multilayer routing architecture is useful. For example, in IP over optical 
networks with Generalized Multiprotocol Label Switching (GMPLS) it might be effi cient to use path 
computation elements (PCE) that would try to simultaneously optimize resources at both layers to 
determine the most optimal multilayer routing strategy, but such networks are extremely different 
from LLNs. By all means, this is not to say that PCE-based systems will not be applicable to LLNs, 
but this discussion applies to the use of multilayer routing. 

 Network   Rerouting is another consequence. One of the main properties of a routing protocol is 
to fi nd an alternate path in the network during network component failures (link or node). When 
such a failure occurs, it is likely that both layers detect the failure and trigger the recomputation of a 
new path around the failed network element. But this may not always be the case. There are failures 
detected by both layers (e.g., a link failure that lasts long enough for the routing protocol to lose a 
routing adjacency) and other failures that are only detected by one of the two layers. In the presence 
of routing protocol at both layers, the only viable solution is using a timer-based bottom-up approach 
to avoid concurrent rerouting at both layers. In other words, upon detection of the failure, layer 3 
must wait until the expiration of a confi gurable timer before triggering a network reroute to give a 

At the IP layers: Nodes perform IP routing function and do not “see” the 
newly computed path at the link layer. 

A-N1-N2-N3-B is the new path computed by the “mesh-under” “routing” 
after the failure of the N1-N4 link.
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Link layer (layer 2) – “Mesh-under” “routing” protocol – Domain 1 Link layer (layer 2) – “Mesh-under” – Domain 2

 FIGURE 5.7  
       Rerouting at the link layer.    
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 chance to the lower layer to restore the link. The timer must be computed to be in the upper bounds 
of the layer 2 convergence time and is usually quite diffi cult to estimate. Furthermore, if the failure 
cannot be restored by the link layer and rerouting must take place at the IP layer, additional time will 
be needed to fi nd a repair path. Such issues have been analyzed in detail in [246]. The fact that lossy 
links in LLNs have specifi c link layer profi les further adds to the level of complexity, since the simple 
use of timers is unlikely to be suffi cient to coordinate rerouting in multiple layers. 

 Although   such a multilayer routing architecture may be very appealing in IP over GMPLS net-
works where multilayer optimization is relevant, the level of additional complexity and issues inher-
ent to multilayer routing is undoubtedly problematic for LLNs made of constrained and unattended 
nodes interconnected with lossy links and are at best no better than routing at the IP layer.   

    5.4       CONCLUSIONS 
 Routing   is undoubtedly one of the key components of networking and has been a topic of great inter-
est over the past two decades. A number of IP routing protocols have been successfully designed that 
support fast convergence, the ability to compute paths that meet specifi c QoS requirements in net-
works with hundreds or even thousands of nodes, and so forth. 

 But   routing in low-power and constrained networks (LLNs) imposes a number of new restrictions: 
links are highly unstable compared to optical, SONET/SDH, or Ethernet links, constrained links and 
nodes must be considered (with dynamic metrics), and the routing protocol must have a small foot-
print while supporting hundreds and thousands of nodes requiring large scalability. Last but not least, 
there should be no overacting while routing in LLN in the presence of failures considering the poten-
tial high degree of instability and the need to bound the control traffi c in these networks. These spe-
cifi c constraints led to a new routing protocol called RPL (discussed in great detail in Chapter 17). 

 Finally  , with the emergence of multiple types of low-power link layers such as IEEE 802.15.4, 
WiFi, and PLC, it quickly became obvious that routing at the network layer (IP) was a must. Although 
routing at the link layer may be available with some link layers, trying to adopt a multilayer routing 
architecture in LLNs is clearly not a viable option considering the dramatic increase of network com-
plexity and lack of effi ciency.                
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                Transport Protocols    6 
CHAPTER

  In   the IP stack, the transport protocols reside on top of the IP protocol. Applications do not use IP 
directly, but use the transport protocols to communicate with each other. In the IP protocol stack, 
there are two transport protocols that are by far the most widely used: the User Datagram Protocol 
(UDP), and the Transport Control Protocol (TCP). UDP is a best-effort delivery service, which does 
not add much on top of IP, whereas TCP is a reliable byte stream that adds a connection abstraction 
on top of the connectionless IP. Although there have been several other transport protocols defi ned, 
such as SCTP [229] and DCCP [152], they have as yet to be adopted by the mainstream. 

 Before   we discuss other transport protocols, we must review the terminology used around the 
transport protocols in the IP suite. At the IP layer, the basic unit of transportation is called a packet. 
Although data from higher layers are transported in these packets, to avoid confusion other words are 
used to describe the unit of transportation. In UDP, the basic unit of transportation is called a  data-
gram . When we discuss datagrams, we are referring to a UDP datagram. The TCP basic unit of trans-
portation is called a  segment . We use this terminology throughout this chapter. 

    6.1       UDP 
 UDP   is the simplest protocol in the TCP/IP suite. This protocol is specifi ed in the RFC768 document 
[202], which is exceptionally short; the full specifi cation fi ts on two printed pages. 

 Many   IP applications run over UDP. Simple request – response protocols such as Domain Name 
Service (DNS) lookups are implemented over UDP. Time-sensitive data such as real-time audio or 
video are also often transported over UDP. 

 For   smart object networks, the simplicity and lightweight nature of UDP makes it a compelling 
choice for data that need to be quickly transported such as sensor data. 

    6.1.1       Best-effort Datagram Delivery 
 UDP   provides a best-effort datagram delivery service. This mechanism is best-effort because the 
underlying IP network does its best to deliver the datagram, but does not guarantee that the datagrams 
are delivered at the destination. There are also no guarantees that the datagrams are delivered in the 
same order as they were sent. 

 UDP   provides an extra layer of multiplexing on top of IP. Where IP provides addressing of a 
specifi c host in an Internet, UDP provides per-process addressing by the use of ports. The ports are 
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 16-bit values used to distinguish between differ-
ent senders and receivers at each end point. Each 
UDP datagram is addressed to a specifi c port at 
the end host and incoming UDP datagrams are 
demultiplexed between the recipients. 

 UDP   also calculates a checksum over the 
datagram. The checksum covers the UDP header 
and data as well as a pseudo-header consisting 
of certain fi elds of the IP header, including the 
IP source and destination addresses. The check-
sum does not make UDP reliable; however, since 
UDP datagrams with a failing checksum are 
dropped without notifying the application pro-

cess. Delivery of UDP datagrams is not guaranteed and UDP datagrams may arrive out of order and 
in any number of copies due to the nature of IP.  

    6.1.2       The UDP Header 
 The   UDP header is small and consists of only 8 bytes. The size of the header is fi xed: there are no 
variable-length fi elds. 

 The   UDP header is shown in  Figure 6.1   . It contains four fi elds: the source port number, the destination 
port number, the length of the data portion of the datagram, and a checksum fi eld. All fi elds are 16 bits. 

      ●      Source port: This 16-bit fi eld contains the port number of the process that sent the datagram. This 
is used by the receiving process to know where to send a reply datagram. The source port fi eld 
does not need to be fi lled in so it is set to zero.  

      ●      Destination port: This 16-bit fi eld contains the port number of the process that is to receive the 
datagram. This fi eld must always be fi lled in.  

      ●      Length: This contains the length, in bytes, of the data that follow the header.  
      ●      Checksum: This is a 16-bit Internet checksum of the data in the datagram, the UDP header, and 

the source and destination IP addresses from the IP header.    

 The   source and destination port numbers are used when determining the destination of the data-
gram. Typically, the process can choose to listen for all incoming datagrams on a particular port, for 
datagrams that arrive on a port but have a specifi c source port number, or for datagrams that originate 
from a specifi c host. 

 The   length fi eld contains the length of the UDP header and the data in the datagram. The IP layer 
contains a length fi eld, which contains the same information as the UDP header length fi eld. Because 
the underlying IP layer may fragment packets, the UDP length fi eld is a sanity check against packets 
that have been incorrectly reassembled [210,228].   

    6.2       TCP 
 Unlike   the best-effort UDP, TCP [204] provides a reliable byte stream on top of the best-effort packet 
service provided by the IP layer. Reliability is achieved by buffering data combined with positive 

IP header

Source port Destination port

ChecksumLength
8 bytes

20–40 bytes

 FIGURE 6.1  
       The UDP header consists of four fi elds: source port, 
destination port, a length fi eld, and a checksum.    



656.2 TCP

 acknowledgments (ACKs) and retransmissions. TCP hides the packet-oriented IP network beneath 
a virtual circuit abstraction, in which each virtual circuit is called a connection. Before any data are 
transported, the two connection end points must explicitly set up a connection. A connection is identi-
fi ed by the IP addresses and TCP port numbers of the end points. 

 TCP   is the most common IP transport protocol. Many application layer protocols are defi ned 
over TCP, such as HTTP (Web), SMTP (e-mail), SNMP (network management), and XMPP (instant 
messaging). 

 For   smart objects, the benefi ts of using TCP are both the reliable service that TCP provides, and 
the interoperability with existing protocols and systems. 

 Although   TCP is more complex than UDP, the core functionality of TCP is lightweight. In this 
chapter, we fi rst give an overview of TCP, then turn to focus on its core functionality. 

    6.2.1       Reliable Stream Transport 
 TCP   provides a reliable stream transport service on top of the best-effort IP layer. TCP uses three 
mechanisms to achieve a byte-oriented reliable delivery: 

      ●      Acknowledgments and retransmissions: All data sent with TCP are acknowledged by the receiver. 
If the sender does not receive an acknowledgment within a given time interval, it retransmits the 
data.  

      ●      Sequence numbers: Every byte in the TCP byte stream is given a sequence number. The sequence 
numbers are used when matching acknowledgments with the corresponding data.  

      ●      Sliding window: The receiver advertises how many bytes it is currently able to receive and the 
sender sends only as much data as the receiver can receive. As the receiver receives the data, it is 
able to receive more data. This is known as a sliding window.    

 Each   byte in the TCP byte stream is assigned a sequence number. The stream is partitioned into 
segments that may be arbitrarily sized as shown in  Figure 6.2   . A TCP sender will attempt to fi ll each 
segment with enough data so that the segment is as large as the maximum segment size of the con-
nection, but this is not required. 

 Each   segment is prepended with a TCP header and transmitted in separate IP packets. In theory, 
for each received segment the receiver produces an ACK. In practice, however, most TCP implemen-
tations send an ACK only on every other incoming segment to reduce ACK traffi c. ACKs are also 
piggybacked on outgoing TCP segments. The ACK contains the next sequence number expected in 
the continuous stream of bytes. Thus, ACKs do not acknowledge the reception of any individual seg-
ment, but rather acknowledge the transmission of a continuous range of bytes. 

TCP byte stream

TCP segments

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5

SYN ... ... FIN

 FIGURE 6.2  
       A segmented TCP byte stream.    
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  If   a TCP segment is lost, there is a gap in the byte stream. TCP provides a mechanism for receiv-
ers to fi ll in the gap. For example, consider a TCP receiver that has received all bytes up to and 
including sequence number  χ , as well as the bytes  χ       �      20 to  χ       �      40 with a gap between  χ       �      1 and 
 χ       �      19 as seen in the top half of  Figure 6.3   . The ACK contains the sequence number  χ       �      1, which 
is the next sequence number expected in the continuous stream. When the segment containing bytes 
 χ       �      1 to  χ       �      19 arrives, the next ACK contains the sequence number  χ       �      41. This is shown in the 
lower half of  Figure 6.3 . 

 The   sending side of a TCP connection keeps 
track of all segments sent that have not been 
acknowledged by the receiver. If an ACK is 
not received within a certain time, the segment 
is retransmitted. This process is referred to as a 
time-out and is depicted in  Figure 6.4   . Here we 
see a TCP sender sending segments to a TCP 
receiver. Segment 3 is lost in the network and 
the receiver will continue to reply with ACKs 
for the highest sequence number of the continu-
ous stream of bytes that ended with segment 2. 
Eventually, the sender will conclude that seg-
ment 3 was lost since no ACK has been received 
for this segment and will retransmit segment 3. 
The receiver has now received all bytes up to and 
including segment 5 and will reply with an ACK 
for segment 5. Even though TCP ACKs are not 
for individual segments, it is sometimes conve-
nient to discuss ACKs as belonging to specifi c 
segments.  
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       A TCP byte stream with a gap and the corresponding 
ACKs.    
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       Loss of a TCP segment and the corresponding time-out.    
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    6.2.2        The TCP Header 
 The   TCP header is 20 bytes long and has room for a variable-sized option fi eld between the header 
fi elds and the application data. 

 The   TCP header, shown in  Figure 6.5   , consists of nine fi xed fi elds: 

      ●      Source port: A 16-bit fi eld that holds the port number of the sending process.  
      ●      Destination port: A16-bit fi eld that holds the port number of the receiving process.  
      ●      Sequence number: The 32-bit sequence number of the fi rst byte of data contained in the segment.  
      ●      Acknowledgment number: If the acknowledgment fl ag is set in the fl ags fi eld, the acknowledg-

ment number fi eld holds the 32-bit sequence number of the next byte that the receiver expects.  
      ●      Hlen: A 4-bit fi eld that holds the length of the header, including options, divided by four.  
      ●      Flags: The 6-bit fl ag fi eld contains the six fl ags FIN, SYN, RST, PSH, ACK, and URG.  
      ●      Window: The 16-bit window fi eld holds the amount of bytes that the receiver is able to receive.  
      ●      Checksum: The 16-bit checksum is the Internet checksum of the data, the TCP header, and the IP 

destination and source addresses.  
      ●      Urgent pointer: If the URG fl ag is set, this 16-bit fi eld points to a place in the byte stream that 

contains data that the application has defi ned to be urgent. The urgent pointer is rarely used.    

 The   source and destination port numbers hold the TCP port numbers of the sending and receiving 
process for the TCP segment. Unlike UDP, where the source port number is optional, both the source 
and destination ports must be present in the TCP header. 

 The   sequence and acknowledgment number fi elds are both 32-bit fi elds that hold TCP sequence 
numbers. The sequence number fi eld contains the sequence number of the fi rst byte of data in the 
TCP segment. If the segment contains a SYN or a FIN fl ag, which both occupy a position in the 
TCP byte sequence, the sequence number refers 
to the SYN or FIN. The acknowledgment number 
fi eld holds the sequence number of the next byte 
the receiver is expecting on this connection. The 
acknowledgment number fi eld is defi ned only if 
the ACK fl ag is set. In practice, most TCP seg-
ments, except for the initial SYN segment, have 
the ACK fl ag set. 

 The   hlen     fi eld holds the length of the header, 
including options and padding, counted in 4-byte 
words. Since the size of the TCP header is always 
divisible by 4 to allow for operation on proces-
sor architectures that require 32-bit alignment of 
32-bit memory accesses, the header length fi eld 
can be effi ciently represented using only 4 bits. 

 The   fl ags fi eld contains six fl ags: FIN, SYN, 
RST, PSH, ACK, and URG. The FIN fl ag is set 
in the fi nal segment on a TCP connection and the 
SYN fl ag is set in the fi rst segment. The RST fl ag 
terminates a connection, and is used both to abort 
an active TCP connection when, for example, the 
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 FIGURE 6.5  
       The TCP header consists of 20 bytes of header 
fi elds followed by options, if present. The options are 
padded so the packet header and options end on a 
32-bit boundary.    
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 controlling process has crashed, and to indicate that a TCP port is closed. The PSH fl ag is used to 
indicate that a TCP segment is the last in a sequence of segments sent by the application and that 
the receiving TCP should deliver these data directly to the application. The ACK fl ag is set in TCP 
segments where the acknowledgment sequence number fi eld holds the next sequence number to be 
expected. The URG fi eld, which is rarely used, indicates that an  “ urgent ”  data point will occur later in 
the byte stream. 

 The   window fi eld contains a 16-bit number that indicates how many bytes a TCP receiver is able 
to buffer. This is used in the TCP fl ow control mechanism described later. If the window fi eld is zero, 
the TCP sender should not send any more data until it has received a TCP segment with a window 
larger than zero. 

 The   checksum fi eld contains a 16-bit Internet checksum that is computed over the entire TCP 
header including options and padding, the data portion of the segment, and the IP destination and 
source addresses. 

 The   urgent pointer is a rarely used TCP feature that allows an application to specify that one byte 
in the byte stream is to be considered urgent. The urgent pointer is set only if the URG fl ag is set. If a 
TCP receiver sees an urgent byte, it notifi es the application. The application may then choose to dis-
card data that appear before the urgent data. If more than one urgent byte occurs in the byte stream, 
TCP only considers the last urgent byte.  

    6.2.3       TCP Options 
 TCP   options provide additional control information. They reside between the TCP header and the data 
of a segment. Since the original specifi cation of TCP [204], a number of additions have been defi ned 
as TCP options. These include the TCP selective acknowledgment (SACK) [170] and the TCP exten-
sions for high-speed networks [136] that defi ne TCP time stamps and window scaling options. 

 For   smart objects, the arguably most important TCP option is the maximum segment size (MSS) 
option. The TCP MSS option specifi es the largest TCP segment size that a TCP end point is able to 
accept. The MSS option is sent by both parties during the opening of a connection. The MSS option 
effectively limits the amount of data in each TCP segment. This is important for smart object net-
works, which typically can carry only small packets. 

 When   opening a TCP connection, both the TCP sender and the TCP receiver indicate the MSS they 
can accept by placing the TCP MSS option in the SYN and the SYNACK segments. When receiving 
a TCP MSS option, a TCP end point must reduce the size of the segments it sends accordingly. This is 
useful for TCP end points with small amounts of memory, because it allows the end point to set a limit 
on the size of the packets it will receive.  

    6.2.4       Round-trip Time Estimation 
 A   critical factor of any reliable protocol is the round-trip time estimation, since the round-trip 
time determines the time to wait for an ACK before retransmitting a segment. If the round-trip time 
estimate is much lower than the actual round-trip time of the connection, segments will be retrans-
mitted before the original segment or its corresponding ACK has propagated through the network. 
If the round-trip time estimation is too high, time-outs will be longer than necessary, thus reducing 
performance. 
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  TCP   uses feedback provided by its acknowledgment mechanism to measure round-trip times. 
Round-trip time measurements are taken once per window, since it is assumed that all segments in 
one window’s fl ight should have approximately the same round-trip time. Taking round-trip samples 
for every segment does not yield better measurements [7]. If a segment for which a round-trip time 
was measured is a retransmission, that round-trip time measurement is discarded [143]. This occurs 
because the ACK for the retransmitted segment may have been sent either in response to the origi-
nal segment or to the retransmitted segment. Using the round-trip time estimate for a retransmitted 
segment would make the round-trip time estimation ambiguous.  

    6.2.5       Flow Control 
 The   fl ow control mechanism in TCP assures that the sender will not overwhelm the receiver with data 
that the receiver is not ready to accept. Each outgoing TCP segment includes an indication of the size 
of the available buffer space, and the sender must not send more data than the receiver can accommo-
date. The available buffer space for a connection is referred to as the window of the connection. The 
window principle ensures proper operation even between two hosts with drastically different memory 
resources. 

 The   TCP sender tries to have one receiver window’s worth of data in the network at any given 
time provided the application wishes to send data at the appropriate rate (this is not entirely true; see 
the next section, Congestion Control). It does this by keeping track of the highest sequence number 
 s  ACKed by the receiver, and makes sure not to send data with a sequence number larger than  s       �       r , 
where  r  is the size of the receiver’s window. 

 Returning   to  Figure 6.4 , we see that the TCP sender stopped sending segments after segment 5 had 
been sent. If we assume that the receiver’s window was 1000 bytes and that the individual sizes of 
segments 3, 4, and 5 were exactly 1000 bytes, we can see that since the sender had not received any 
ACK for segments 3, 4, and 5, the sender refrained from sending any more segments. This is because 
the sequence number of segment 6 would be equal to the sum of the highest ACKed sequence number 
and the receiver’s window.  

    6.2.6       Congestion Control 
 If   fl ow control ignores that the buffer space will be overrun at the end points, the congestion control 
mechanisms [8,134] try to prevent the overrun of router buffer space. To achieve this TCP uses two 
separate methods: 

      ●      Slow start: Probes the available bandwidth when starting to send over a connection.  
      ●      Congestion avoidance: Constantly adapts the sending rate to the perceived bandwidth of the path 

between the sender and the receiver.    

 For   smart object networks, which may have only limited amounts of data to send, TCP congestion 
control is rarely invoked. Yet we review it here for completeness. 

 The   congestion control mechanism adds another constraint on the maximum number of outstand-
ing, unacknowledged bytes in the network by maintaining a congestion window for each connection. 
The minimum of the congestion window and the receiver’s window is used to determine the maxi-
mum number of unacknowledged bytes in the network. 
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  TCP   uses packet drops as a sign of congestion, because TCP was designed for wired networks 
where the main source of packet drops ( � 99%) is due to buffer overruns in routers. There are two 
ways for TCP to conclude that a packet was dropped: waiting for a time-out or counting the number 
of duplicate ACKs that are received. If two ACKs for the same sequence number are received, the 
packet was duplicated within the network (which can happen under certain conditions [193]). It could 
also mean that segments were reordered on their way to the receiver. However, if three duplicate 
ACKs are received for the same sequence number, there is a good chance that this indicates a lost 
segment. Three duplicate ACKs trigger a mechanism known as fast retransmit and the lost segment is 
retransmitted without waiting for its time-out. 

 During   slow start, the congestion window is increased with one maximum segment size per 
received ACK, which leads to an exponential increase of the size of the congestion window. Despite 
its name, slow start opens the congestion window quite rapidly; the name was coined at a time when 
TCP senders started by sending the entire data of the receiver’s window. When the congestion window 
reaches a threshold, known as the slow start threshold, the congestion avoidance phase is entered. 

 When   in the congestion avoidance phase, the congestion window is increased linearly until a packet 
is dropped. The drop causes the congestion window to reset to one segment, the slow start threshold is 
set to half of the current window, and slow start is initiated. If the drop is indicated by three duplicate 
ACKs, the fast recovery mechanism is triggered. The fast recovery mechanism halves the congestion 
window and keeps TCP in the congestion avoidance phase, instead of falling back to slow start. 

 Increasing   the congestion window linearly is harder than increasing the window exponentially, 
since a linear increase requires an increase of one segment per round-trip time rather than one seg-
ment per received ACK. Instead of using the round-trip time estimate and using a timer to increase 
the congestion window, many TCP implementations increase the congestion window by a fraction of 
a segment per received ACK.  

    6.2.7       TCP States 
 TCP   not only provides a reliable stream transfer, but also a reliable way to set up and take down con-
nections. This process is most often captured as a state diagram. The TCP state diagram is shown in 
 Figure 6.6   , where the boxes represent the TCP states and the arcs represent the state transitions with 
the actions taken as a result of the transitions. The boldface text shows the actions taken by the appli-
cation program. 

    6.2.7.1       Opening a Connection 
 For   a TCP connection to be established, one of the participating sides must act as a server and the 
other as a client. The server enters the LISTEN state and waits for an incoming connection request 
from a client. The client, in the CLOSED state, issues an  open , which results in a TCP segment with 
the SYN fl ag set to be sent to the server and the client enters the SYN-SENT state. The server enters 
the SYN-RCVD state and responds to the client with a TCP segment with both the SYN and ACK 
fl ags set. As the client responds with an ACK both sides are in the ESTABLISHED state and can 
begin sending data. 

 This   process is known as the TCP three-way handshake ( Figure 6.7   ), and not only sets both sides 
of the connection in the ESTABLISHED state, but also synchronizes the sequence numbers for the 
connection. 
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  Both   the SYN and FIN segments occupy one byte position in the byte stream (refer back to 
 Figure 6.2 ) and will reliably deliver to the other end point of the connection using the retransmission 
mechanism.  

    6.2.7.2       Closing a Connection 
 Closing   a connection is more complicated than opening one because all segments must be reliably 
delivered before the connection can be fully closed. Also, the TCP close function will only close one 
end of the connection; both ends of the connection will have to close before the connection is com-
pletely terminated. 

 When   a connection end point issues a close on the connection, the connection state on the clos-
ing side of the connection traverses the FIN-WAIT-1 and FIN-WAIT-2 states, optionally passing the 
CLOSING state, after which it ends up in the TIME-WAIT state. The connection is required to stay 
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       TCP state diagram.    



72 CHAPTER 6 Transport Protocols

 in the TIME-WAIT state for twice the maximum segment lifetime (MSL) to account for duplicate 
copies of segments that might still be in the network. The remote end goes from the ESTABLISHED 
state to the CLOSE-WAIT state where it stays until the connection is closed by both sides. When the 
remote end issues a close, the connection passes the LAST-ACK state and the connection is removed 
at the remote end.    

    6.3       UDP FOR SMART OBJECTS 
 In   the context of smart object networks, UDP has many benefi ts. First, UDP has a very low overhead 
for both header size and protocol logic. This means that both the packet transmissions and receptions 
consume less energy, and each packet has more room for application layer data. The simplicity and 
low complexity of the protocol logic may be advantageous for systems where memory footprint is at 
a premium. Since the protocol is simple, implementations typically have a very small code footprint. 

 The   simplicity of UDP also fi ts well with many smart object applications. For example, in a smart 
object system for home automation, temperature sensors may periodically report data. The sen-
sors can use UDP to send the data and to achieve low overhead. Since data are sent periodically, 
it does not matter that individual packets may be lost: a new temperature reading will be sent soon 
enough anyway. Generally, in smart object networks, UDP is well suited to traffi c with low reliability 
demands. It is possible to provide reliability at the application layer, but this increases the complexity 
of the application. 

 UDP   is also well suited to applications that require their own routing mechanisms. For these 
applications, routing can be implemented as an application overlay mechanism [67]. Finally, if 
applications want to use multicast delivery, UDP maps well onto the underlying multicast delivery 
mechanisms. 

 There   are two drawbacks of UDP for smart object networks. First, they often lose packets in 
transit. UDP does not provide any recovery mechanism for lost packets. It is up to the application 
to recover from packet loss, which increases the complexity of applications that require reliabil-
ity. Second, smart object networks often have small packet sizes and UDP does not provide any 
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 FIGURE 6.7  
       TCP three-way handshake.    
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 mechanism for applications to split their data into appropriately sized chunks for transmission. Thus 
the application must fi gure out what an appropriate packet size is and adjust its packets accordingly. 
Even if the IP layer provides support for packet fragmentation and reassembly, fragmentation at the 
IP layer is fragile, specifi cally in lossy networks [147]. Unlike UDP, TCP provides both reliability 
and a mechanism to automatically limit the packet sizes sent by applications.  

    6.4       TCP FOR SMART OBJECTS 
 For   smart object networks, TCP has several compelling properties. Since many smart object networks 
operate over links where packets can be lost, many applications may want to use a reliable mechanism 
that automatically retransmits lost packets. Although TCP is known to have performance problems 
for high-throughput data when packets are lost over wireless links [15], for many smart object net-
works high throughput is not the primary objective, and reliable delivery of data is more important. 
Furthermore, since smart object networks often interoperate with existing systems where TCP is very 
widely adopted, the ability to directly communicate with existing systems speaks in favor of TCP. 

 The   small packet sizes in many smart object networks require the packets to be kept small enough 
to fi t, but large enough to effectively use available resources. The TCP MSS option is very useful 
both for memory-constrained systems and for systems that are constrained by a small packet size, 
such as systems running over wireless 802.15.4 networks. The TCP MSS option provides a way to 
set a small packet size for all TCP packets sent over the network. This is in contrast to UDP, where 
no mechanism for limiting the size of sent and received packets exists. 

 Even   though the TCP specifi cation and its related additions make TCP appear to be a complex 
protocol, the core of TCP is quite simple [64]. TCP was originally defi ned for data transport for gen-
eral purpose computers, which require high throughput. Many of the complex mechanisms in TCP 
are intended to improve high-throughput performance. If high throughput is not a strict requirement, 
such as in most smart object networks, several mechanisms in TCP are not needed such as the sliding 
window algorithm and congestion control. 

 In   Chapter 13, we discuss uIP, an implementation of TCP for memory-constrained smart objects. 
Our purpose is to show that TCP is simple enough to be implemented in resource-constrained smart 
objects. 

 TCP   headers are large compared to UDP headers, but there are several ways a TCP header can be 
compressed [135]. TCP header compression methods have not yet been standardized for smart object 
networks, but this is likely to happen as the fi eld grows. 

 Finally  , many TCP implementations for smart objects are designed for severe resource constraints. 
As a result of the trade-off between memory footprint and throughput, such TCP implementations 
do not achieve as high a throughput as full-blown TCP stacks. There are two limiting factors. First, 
memory-constrained TCPs do not implement the sliding window mechanism. This means that a TCP 
sender cannot have more than one TCP packet for each active TCP connection in the network at any 
given time. Second, TCP delayed ACKs reduce the throughput. 

 The   TCP delayed ACK mechanism is widely deployed by TCP [19,40]. It is intended to reduce 
the amount of acknowledgment packets sent over a TCP connection. With delayed ACKs, incoming 
TCP data are not acknowledged immediately. Instead, the host waits for a short time, usually 200       ms, 
before sending the acknowledgment. During this time, another TCP segment may arrive. If a second 
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 TCP segment arrives, the ACK is sent immediately. If no TCP segment arrives, the ACK is sent after 
200       ms. This effectively reduces the amount of ACKs by half for a busy TCP connection. For a con-
strained TCP sender, who only sends one TCP segment at a time, the delayed ACK mechanism may 
signifi cantly reduce the throughput. By turning off the delayed ACK mechanism at the receiver, this 
problem is avoided.  

    6.5       CONCLUSIONS 
 The   two most widely used transport protocols in the IP protocol suite are UDP and TCP. Transport 
protocols run over the best-effort IP layer to provide a mechanism for applications to communicate 
with each other without directly interacting with the IP layer. UDP provides a best-effort datagram 
service where applications must provide their own reliability and fl ow control, if needed. TCP pro-
vides a reliable byte stream and reduces the application complexity at the cost of a larger header size 
and more complex transport layer protocol logic. 

 For   smart objects, there is still no standard transport protocol. UDP is lightweight and simple. The 
benefi ts of TCP are built-in reliability, control of the maximum size of its packets, and interoperabil-
ity with existing systems. Application requirements thus dictate the choice of transport protocol.            
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           Service Discovery    7 
CHAPTER

  Service   discovery is the process by which devices on a network learn what services are available. 
Without a mechanism for service discovery, new devices do not function properly as they have no 
way to discover services they may need, and no way to announce that they have services available. 
For example, in a smart object network deployed for building automation, a light switch device 
must use some form of service discovery to fi nd the available lights. Similarly, the lights need 
to use some form of service discovery to locate nearby light switches. For smart objects, auto-
matic service discovery is particularly important since most smart objects have very limited ways 
to interact with users. 

 Service   discovery is especially important in deployments where several applications run simulta-
neously. Each application needs to discover its peer devices as well as devices to which they report 
or request data. Service discovery is important also for deployments with a single application that is 
hard-coded into the system. For example, in a temperature data collection network, the temperature 
collection application typically needs to locate the data sink  —  the place the sensor data should be 
sent. Locating this data sink is an act of service discovery. 

 Service   discovery is important both for bootstrapping a network and for performing periodic ser-
vice discovery of a network in steady state. In steady state, new devices enter and offer new services 
to the network. Also, the network may provide a new service that the devices can use. 

 Service   discovery is closely related to autoconfi guration. Autoconfi guration is the process by which 
a device confi gures itself with network addresses and other information essential to its operation. Many 
service discovery frameworks contain an element of autoconfi guration. Autoconfi guration provides only 
network connectivity, however, and does not assist in confi guring the application layer. It is the purpose 
of the service discovery mechanism to assist the application layer in confi guring itself to perform its 
purpose. 

 As   yet there is no standardized service discovery mechanism for IP-based smart objects. In this 
chapter, we review a set of existing available IP-based service discovery protocols and discuss their 
suitability for IP-based smart object networks. There are several ongoing efforts to fi nd appropriate 
service discovery protocols for smart objects [190]. These efforts include using a compressed form 
of the Service Location Protocol (SLP) [230] and coupling service and neighbor discovery [166]. 
Some link layers provide mechanisms for a limited form of service discovery, such as IEEE 802.15.4, 
but it is not clear if these mechanisms can be effi ciently mapped onto high-level service discovery 
mechanisms. 
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    7.1        SERVICE DISCOVERY IN IP NETWORKS 
 The   IP architecture contains mechanisms for autoconfi guration of addresses, but it does not have any 
default service discovery framework. Address autoconfi guration is done either with a centralized pro-
tocol such as the Dynamic Host Confi guration Protocol (DHCP) [60] or with a distributed mechanism 
such as IPv4 auto address confi guration [36] or IPv6 stateless address confi guration [235]. 

 In   general purpose IP-based networks, a common use for service discovery has been to fi nd 
printers in the network. The printer provides a service for others to discover. Without service discovery, 
every computer attached to a network would have to be manually confi gured to recognize the print-
ers on the network. The properties of all printers, such as if they support color printing, would also 
need to be manually or semi-manually confi gured on every computer. With service discovery, this 
process is automated so that computers are able to directly fi nd the printers in the network. The 
printers announce not only their existence, but also their properties. No manual confi guration of the 
individual computers is needed. 

 The   IP protocol suite provides a number of different alternatives to service discovery. We review 
three: SLP, Zeroconf, and Universal Plug and Play (UPnP). These service discovery mechanisms are 
typically designed for traditional IP networks with general purpose computers and services such as 
printers. Their functionality is, however, generic enough to be used in a wide variety of situations. 

 In   addition to the protocols discussed here, there are a number of different service discovery pro-
tocols for IP-based systems. The community that developed the concept of web services has devised a 
number of web service discovery protocols. The most common are the Universal Description Discovery 
and Integration (UDDI) mechanism and the WS-Discovery protocol. UDDI was envisioned to be 
a global service registry to which applications and organizations would register their online services. 
The protocol was based on XML, service descriptions annotated with the Web Service Description 
Language (WSDL), and messages encapsulated in Simple Object Access Protocol (SOAP) objects. 
The UDDI centralized service registry never took off, however, and is not used. WS-Discovery uses 
the same underlying protocols as UDDI, but unlike UDDI, the WS-Discovery protocol is not based on a 
centralized service registry. 

 The   Device Profi le for Web Services (DPWS) specifi cation provides mechanisms for service 
discovery based on web services protocols and concepts. Although the mechanisms are often 
perceived as heavyweight, there is initial ongoing work to bring DPWS service discovery to smart 
objects [178]  .  

    7.2       SERVICE DISCOVERY PROTOCOLS 
 SLP  , the Zeroconf protocol suite, and the UPnP protocol suite are all service discovery mechanisms. 
All three provide service discovery, but Zeroconf and UPnP additionally provide address autocon-
fi guration. SLP does not do address confi guration by itself, instead it relies on the underlying IP layer 
to do it. 

    7.2.1       SLP 
 SLP   is an Internet Engineering Task Force (IETF) standard protocol described in RFC2608 
[101]. SLP is a lightweight service announcement and request protocol that allows devices to 
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 announce their services to other devices on the network and for devices to query the network for 
services. 

 In   SLP, devices have three roles: service agent (SA), user agent (UA), or directory agent (DA). 
SAs are service providers. They announce their services and respond to service queries. UAs do not 
provide any services but query the network for services. DAs are aggregation points that keep a data-
base of all available services and may act on behalf of SAs in answering service queries. 

 Services   in SLP are represented by URLs. When a UA requests a service from the network, 
it indicates what type of service it is interested in by providing part of the URL that it expects for 
service responses. For example, a UA may query the network for a printer by submitting a service 
request with the URL  service:printer . A printer that responds will have a URL that starts with  printer:  
In addition to the URL, an SA provides a set of parameters that inform the UA of the confi guration 
of the service. For example, a printer may indicate whether it can print in color or only in black and 
white. 

 SLP   messages are sent either using UDP or TCP. Messages that are sent using multicast are 
always sent using UDP, whereas unicast messages can be sent with either UDP or TCP. If a message 
is too large to fi t into a UDP packet, the message is sent over a TCP connection instead. 

    Figure 7.1    shows the behavior of a basic SLP service discovery operation. The process begins 
with the UA sending a service request message as a multicast to all SAs. In response to the service 
requests, the SAs send a service reply to the UA. The service replies are sent using unicast. To avoid 
overwhelming the UA, the SAs send their replies within a random time interval after receiving the 
service request. The time interval is confi gurable and is typically dependent on the speed of the under-
lying link layer. With a slow link layer, a longer time-out is confi gured to avoid overloading the link. 

 The   behavior of SLP when DAs are introduced is different. DAs provide the network with a way 
to cache services so that the DA instead of the SA sends service replies. This reduces the total amount 
of network traffi c because UAs direct all their service requests to the DAs instead of multicasting 
them to the entire network. Furthermore, the DA can combine multiple services into single replies, 
avoiding the overhead of sending individual SLP messages. 

    Figure 7.2    shows the behavior of an SLP network with a DA. The purpose of the DA is to keep 
track of all the services offered in the network and reply to service requests from UAs. Upon starting, 

SAs discover DAs by multicasting a special service request message 
that only DAs reply to. If a DA receives the message, the DA sends 
a service reply back to the SA, informing it about the availability of 
the DA. 

 SAs   explicitly register their services with DAs. This is done 
through a special service registration message that is sent by the SAs 
to the DAs. Service registrations have a lifetime specifi ed by the SA 
when it registers the service with the DA. 

 Before   sending a service request, a UA always sends a special 
service request that looks for a DA. If a DA receives the request, the 
DA sends a service reply to the UA. The UA will then send its ser-
vice request directly to the DA. The DA goes through its database 
of available services to fi nd the one that matches the service request. 
Those services are then collected into a single service reply message 
that the DA sends to the UA. 
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 FIGURE 7.1  
       The basic SLP service discovery 
exchange: a UA sends a service 
request and two SAs send a 
service reply.    
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  For   smart objects, SLP has several advantages 
over other IP-based service discovery protocol. First, 
the messages are lightweight in terms of overhead. 
Services are represented as URLs, which are speci-
fi ed by the participating parties. These URLs can 
therefore be compactly encoded without requiring 
any changes to the SLP mechanisms. Second, the use 
of DAs makes SLP scalable. This is a strong require-
ment for smart object networks, which may consist 
of thousands of nodes. Third, the SLP mechanisms 
are simple, which is important due to the limited 
memory and processing power of smart objects.  

    7.2.2       Zeroconf, Rendezvous, and Bonjour 
 Zeroconf   is a set of IETF standard protocols for performing automatic address confi guration, host-
name resolution without the presence of a Domain Naming System (DNS) server, and service dis-
covery using DNS. Apple’s implementation of Zeroconf is shipped under the brand name Bonjour. 
Bonjour was initially named Rendezvous, but the name was already trademarked by another company 
so the name was changed in response to a lawsuit. 

 The   address autoconfi guration part of Zeroconf is exactly the same as the automatic address con-
fi guration in IPv4 [36]. In fact, the IPv4 address autoconfi guration was initially developed as part of 
the Zeroconf effort and later fed back into IP. 

 Service   discovery in Zeroconf is done using the standard IP DNS protocols, but with extensions to 
allow for dynamic operation without DNS servers. The protocol is called mDNS, or multicast DNS. 
mDNS works by hosts performing DNS queries over a multicast group. All nodes on the network are 
members of the multicast group and receive all DNS queries. If the incoming DNS query matches the 
name of the node, it replies to the originator of the query. Service discovery in Zeroconf is performed 
using multicast DNS queries. The service discovery protocol overloads the DNS names to encode 
service descriptions. 

 The   multicast DNS and service discovery protocols in the Zeroconf suite are not standardized. 
Microsoft’s implementation, called Link-Local Multicast Name Resolution (LLMNR) has been 
published as an informational RFC [3]. Apple’s implementation is on its way to becoming published 
as an informational RFC, but was still in the draft stage in early 2010. 

 Zeroconf   has several benefi ts for smart objects. The protocols are simple, which makes their 
implementation suitable for memory-constrained microcontrollers. The protocol message overhead 
is small, which makes the protocols suitable for low-power radio links. The one drawback is that the 
protocols require link-local multicast of all queries and that the architecture does not provide any 
caching agent, similar to the DA in SLP. Thus the scalability of the architecture could be a problem 
in large-scale smart object networks.  

    7.2.3       UPnP 
 UPnP   is a full system confi guration and service discovery protocol suite intended for both computers 
and devices. UPnP was originally developed by Microsoft, but the work is being continued by 
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 FIGURE 7.2  
       SLP service discovery with a DA. The SAs send 
their service announcements to the DA, which 
answers service requests from a UA.    
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 the UPnP forum. UPnP runs over IP and uses both standard IP protocols such as HTTP as well as 
extensions such as HTTP-over-UDP. UPnP uses the SOAP format for data encapsulation and the 
Extensible Message Language (XML) as its data format. UPnP is an international standard published 
by the International Standards Organization (ISO). Early versions of parts of the UPnP protocol suite 
were published within the IETF, but the fi nal standardization took place in the ISO. 

 The   UPnP protocol suite consists of service discovery as well as network address autoconfi gura-
tion, device control, and device presentation. With the device control mechanisms of UPnP, a system 
can send a request to a device to make it perform actions. With the device presentation mechanism, a 
user gets information about a device presented as a web page. This is useful for devices such as print-
ers or cameras whose properties can be presented in a user-friendly manner. 

 For   address autoconfi guration, UPnP uses the standard IP autoconfi guration features such as 
DHCP and stateless address autoconfi guration. For IPv6, stateless address autoconfi guration is part of 
the standard IPv6 features [235], whereas it is considered a separate but widely implemented standard 
for IPv4 [36]. 

 UPnP   uses a protocol called Simple Service Discovery Protocol (SSDP) to perform service dis-
covery. Services are described by URLs. SSDP uses HTTP messages transported over best-effort 
UDP datagrams. The SSDP messages consist of an HTTP request with data consisting of a SOAP 
message that describes the service to be discovered. SSDP messages are sent using multicast to a spe-
cifi c multicast group. Nodes participating in the service discovery process join this group to receive 
messages. 

 SSDP   supports both service announcements and service discovery. A system may repeatedly 
announce its presence and the services it provides to allow new devices to fi nd it. New devices may 
also send out a request for all available services as it enters a network. By providing both announce-
ment and discovery, SSDP reduces the overall load on the network as new devices join. 

 For   smart objects, the UPnP architecture is not an ideal match due to the overhead inherent to the 
protocols used. Overhead includes implementation complexity and message overhead. Smart objects 
are limited in memory, bandwidth, and energy. The number of protocols in UPnP may be overwhelm-
ing to implement on a small microcontroller. The message overheads in the protocols have a negative 
impact on power consumption and bandwidth utilization. 

 Specifi cally  , the SSDP protocol sends service data over UDP in the verbose XML format encap-
sulated in a SOAP envelope. Neither XML nor SOAP were designed to have compact data represen-
tations, because compactness often is not needed for high-speed, high-bandwidth networks. Thus the 
UPnP messages sent over UDP often are large and the specifi cation requires that the entire message 
must be completely contained within a single UDP packet. When running over an IP-based smart 
object network, where the link layer maximum packet size is small, such packets must be broken into 
fragments that are sent separately. If one of the fragments is lost, all fragments must be discarded.   

    7.3       CONCLUSIONS 
 Service   discovery is the process by which an application learns what services are available on the 
network, and also by which the network learns what services the application can provide. For smart 
object networks, service discovery is an important mechanism as it is the way smart objects learn 
about each other’s presence and services. 



80 CHAPTER 7 Service Discovery

  For   IP-based smart objects, a consensus around a standard protocol for service discovery has yet 
to emerge. The IP architecture provides a set of service discovery mechanisms. In this chapter, we 
reviewed three of them: SLP, Zeroconf, and UPnP. SLP is a promising mechanism for smart objects 
due to its low complexity and low overhead, as well as its ability to scale with large networks. 
Zeroconf also has a low complexity and overhead but its scalability is unclear. UPnP has a large 
overhead due to message overhead and implementation complexity, thus is not a good alternative for 
the requirements and constraints of smart object networks.       
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            Security for Smart Objects    8 
CHAPTER

  Security   is important for smart objects because they are often deployed in important infrastructures 
such as the electrical power grid. 

 Smart   object security is multifaceted, and in this chapter we focus on the communication aspects 
of smart object security. We discuss the basics of smart object security and encryption, and review 
the security mechanisms in the IP architecture. For an in-depth look, read Stajano’s book on the sub-
ject [225]. 

 In   addition to communication security, smart objects also face other security-related prob-
lems. They are often deployed in places that make them amenable to intrusion attempts and in 
places where security breaches can be lethal. Smart objects deployed in people’s homes can lead 
to intrusion attempts for economical benefi t; for example, next generation electrical power meters 
can be tampered with to reduce the measured power consumption of households [183]. It has also 
been shown that the hardware confi guration of smart objects makes it possible to sniff encryp-
tion keys [96]. Smart objects deployed in places where failure of operation may jeopardize lives 
are particularly important to protect. For example, it has been shown to be possible to remotely 
reprogram pacemakers installed in patients ’  hearts [87]. Physical security measures and tam-
per resistance are not specifi c to smart objects but have been studied in other contexts as well 
[6,12,109]. 

 In   general, security is defi ned as protecting the system from a determined adversary. This means 
that the adversary is not only actively trying to break into the system, but is determined to do so. 
Thus, the adversary should be expected to go to any length to try and fi nd fl aws or holes in our secu-
rity model. Because we are dealing with a determined adversary, no part of the system can be left 
open to an attack. Just as a chain is no stronger than its weakest link, a system is no more secure than 
the weakest part, and a determined adversary  will  fi nd the weakest spot. 

 Security   is often confused with encryption. Although encryption is an important part of most 
security models, encryption alone is not a security model. Although strong encryption algorithms 
and keys do protect systems, most system breaches happen due to other problems than cryptographic 
failures [11]. Today’s encryption algorithms are strong enough to withstand a signifi cant amount of 
so-called brute force attacks. A brute force attack is when an attacker does not try to guess the secret 
encryption keys, but instead tries every possible combination of keys. Trying every key takes a signif-
icant amount of time, and a well-designed encryption algorithm ensures that the required time is long 
enough to ward off attackers. A strong encryption mechanism is, however, easily broken if the key is 
disclosed, for example, by a human operator. 
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  Security   models for smart objects are slightly different than those developed for general purpose 
computing systems. Smart objects typically have different threat models from general purpose com-
puting systems because their applications are vastly different. 

 There   is still no consensus about what should constitute a standard security architecture for 
IP-based smart object systems. In this chapter, we discuss smart object communication security con-
cepts in general as well as the existing security mechanisms for IP architecture. 

    8.1       THE THREE PROPERTIES OF SECURITY 
 To   explain security, we use a widely accepted security taxonomy that provides guidelines for what 
constitutes security [195]. Under this model, computer security consists of three parts: confi dentiality, 
integrity, and availability: 

      ●      Confi dentiality: Data should be confi dential in the sense that only the right parties should be able 
to view it.  

      ●      Integrity: Data should not be tampered with or altered in any way.  
      ●      Availability: Data should be available at the right time for the right parties.    

 We   use the term party to denote both individuals interacting with the smart objects and the smart 
objects themselves. Thus the parties can be either human or machine. 

    8.1.1       Confi dentiality 
 Confi dentiality   is perhaps the most evident notion of security because it is understood in the real 
world. A piece of data is confi dential only if the right parties can view it. If another party views the 
data, confi dentiality is breached. 

 Confi dentiality   is not as easy to ensure as it may fi rst seem. Before discussing how to implement 
confi dentiality, two things must be decided: what it means to view data and what parties should have 
the right to view the data. 

 Smart   object networks often communicate over wireless channels. Such channels are not protected 
by any physical security measures such as a protective casing. Because of this, every transmitted sig-
nal is easily overheard by attackers. Thus smart object confi dentiality mechanisms must be prepared 
to deal with the lack of physical communication security. 

 Smart   objects are physically distributed systems and are placed in physical locations where they may 
be tampered with. Thus the property of confi dentiality must hold even for data stored on the smart object 
devices. For example, a smart object system used in the Smart Grid may require devices to be placed in 
homes where they could be potentially exposed to anyone such as the casually curious computer com-
munications researcher, the investigative teenage hacker, or those with outright criminal intent. 

 Central   to the concept of confi dentiality is authentication. Authentication ensures that the identity 
of the sender is correct. There are several ways to achieve authentication. One example in general 
purpose computing systems is the password entry. Authentication is also necessary for automated 
node interactions. 

 Communication   confi dentiality can be achieved in various ways, most of which include encryp-
tion. Device data confi dentiality is more diffi cult because it requires both logical and physical mea-
sures to protect against attackers.  
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    8.1.2        Integrity 
 Data   keep their integrity if they are sent through a system and are not altered or tampered with before 
they reach the rightful recipient. If the data are altered, integrity is breached. Even though integrity 
and confi dentiality are related to each other, they are completely different concepts. 

 The   integrity of a message does not imply confi dentiality and confi dentiality does not imply integ-
rity. A message may be sent in the open for anyone to see, but still maintain its integrity. Conversely, 
a message may be sent encrypted, so that the confi dentiality is maintained, but be altered in transit. 
The recipient will have no way of knowing that the data were altered. 

 For   smart objects, integrity of the data is important for data originating from the smart objects and 
for data sent to the smart objects. The data originating in smart objects may be important for a decision-
making process that is external to the smart object network. If the integrity cannot be ensured, wrong 
decisions may be taken. Likewise, data sent to the smart objects may contain important information 
such as reconfi guring the smart object. Again, it is important that data integrity is maintained.  

    8.1.3       Availability 
 Data   should be available to the right party at the time they are needed. If availability is breached, the 
system is said to be suffering from a Denial of Service (DoS) attack. 

 For   smart objects, which often use wireless radio communication, radio jamming is a threat to 
communication availability. This can be handled at the radio link layer and at higher layers [259]. 
Network rerouting and secure channel hopping are mechanisms available for a low-power radio to 
defend against jamming [192]. With secure channel hopping, the nodes switch the physical radio 
channel on which they communicate in a pseudo-random fashion. The pseudo-random sequence is 
generated to be cryptographically secure: only legitimate nodes know the sequence of channels to 
be used. Thus an attacker cannot guess what channels the nodes will communicate on, which makes 
jamming attacks more diffi cult.   

    8.2        “ SECURITY ”  BY OBSCURITY 
 Before   we go any further, a strong note about the concept of security of obscurity must be made. 

 The   term security by obscurity is used to describe the erroneous notion that security can be 
achieved by keeping algorithms, architectures, and mechanisms secret. The idea is that as long as the 
secret is well kept, intruders and attackers cannot breach security. The problem with this model is that 
the moment the secret is out, the system is wide open to attacks. In many cases, it is impossible to 
keep such a secret for at least two reasons. First, anyone who works with the system knows about the 
secret and may leak it. Second, it may be possible to reverse-engineer the system so that the secret is 
exposed. In any case, secrecy cannot be relied upon. 

 The   alternative to security by obscurity is to publicly publish the algorithms and protocols used to 
achieve security, and only keep information such as keys secret. This has two major advantages. First, 
it allows the algorithms and mechanisms to be scrutinized by a large number of security experts. This 
type of review is much better at detecting fl aws than a single review by a small group of engineers. 
Second, if the designers of the system know that the algorithms and mechanisms are public, they 
know what the real secrets are  —  encryption keys. 
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  Despite   being known as a poor security model, security by obscurity has been used in a large 
number of systems, all of which have failed. The most striking example was the GSM mobile tele-
phony system, which used a secret encryption algorithm to avert potential attackers. The algorithm 
was, however, reverse-engineered and the system became publicly known. Since the security of the 
system was designed with the assumption that certain parts of the algorithms would be kept secret, 
the system became insecure when the algorithms became public. 

 The   concept of security by obscurity should not be confused with a legitimate need to keep secrets. 
Keeping the internal structure of a system a secret does improve security in many situations because 
it raises the bar for a potential attacker, which may discourage the casual attacker from attempting to 
break into the system. The problem of security by obscurity occurs when system designers begin to 
 rely  on the obscurity to provide security. The system designer should always work under the assump-
tion that the entire structure of the system, including algorithms and protocols, is fully visible to 
would-be attackers. Only then can truly secure systems be built. 

 Even   if the principle of security by obscurity is a known failure, it is important to repeat this mes-
sage to help future system designers avoid the same trap.  

    8.3       ENCRYPTION 
 Encryption   is a way to hide the meaning of a data message by running the message through an encryp-
tion mechanism. Encryption mechanisms, sometimes called ciphers, take the data to be encrypted 
(the plaintext) and an encryption key to form an encrypted form of the plaintext (the ciphertext). The 
ciphertext is decrypted by running it through a decryption mechanism. Like the encryption mecha-
nism, the decryption mechanism also needs a key to be able to turn the ciphertext back into plaintext. 

 Encryption   mechanisms can be divided into symmetric and asymmetric mechanisms. Symmetric 
mechanisms are considered symmetric because the same key used to encrypt the message can also 
be used to decrypt it ( Figure 8.1   ). Two parties that use a symmetric cipher to ensure confi dential-
ity of their communication thus require a shared key. There are a number of symmetric encryption 
algorithms available. The most common ones are the American Encryption Standard (AES) and the 
Digital Encryption Standard (DES). 

 Unlike   symmetric encryption algorithms, asymmetric algorithms use different keys for encryption 
and decryption ( Figure 8.2   ). Asymmetric algorithms allow two communicating parties to use non-shared 
keys when protecting the confi dentiality of their communication. There are several asymmetric encryp-
tion algorithms. The most well-known example is the Rivest-Shamir-Adleman (RSA) algorithm. 

 Asymmetric   algorithms are used in so-called public key encryption systems. In this system, every 
party keeps two keys: one private and one public. The public and private keys are used as encryption 
and decryption keys in an asymmetric encryption algorithm. Depending on how the messages are 
encrypted and decrypted, the private and public keys alternate as encryption and decryption keys. 

 As   a simple example of how a public key mechanism encrypts data sent from two nodes, consider 
nodes A and B who want to securely send a message to each other. To encrypt a message between 
nodes A and B, node A fi rst encrypts the message using its own private key. It then encrypts the 
message again, but with B’s  public  key. The message is now encrypted twice. Node A now sends 
the message to node B. Node B now decrypts the message using its own private key, then with node 
A’s public key. The message is now available in plaintext at node B. This may appear strange: How 
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 can node B decrypt the message without having access to the original encryption key with which 
A encrypted the message? This is the beauty of an asymmetric encryption system  —  it uses two 
different keys for encryption and decryption so the message can be decrypted without requiring the 
original encryption key. 

 The   confi dentiality of the message in the previous example depends on the nodes knowing the 
public keys. Before communication can commence, the nodes need to have these keys. This is done 
with a key distribution mechanism. With a public key mechanism, the public keys are not secret and 
can be distributed in plaintext across the network and stored in key repositories. Although the confi -
dentiality of the messages are not affected by an attacker planting a forged public key (because the 
messages would be impossible to decrypt), the availability of the data is. With a false public key, 
the nodes would no longer be able to access the data from each other. Thus secure key distribution 
mechanisms are needed. 

 For   symmetric encryption mechanisms, the key distribution mechanism clearly has to be secure 
because the keys are secret. Many security protocols use an asymmetric encryption mechanism to 
encrypt the secret, shared key for use in symmetric encryption mechanisms. 

 Symmetric   and asymmetric encryption algorithms are built using very different types of mathe-
matics. Symmetric encryption algorithms usually are defi ned using Boolean logic operations and bit 
substitutions that are computationally effi cient and easy to implement in hardware. In contrast, asym-
metric algorithms depend on the inherent complexity of certain mathematical functions and require 
signifi cantly more processing time to encrypt and decrypt messages than symmetric algorithms. 
Moreover, asymmetric algorithms are not as effi cient to implement as hardware as symmetric mecha-
nisms. Because of this, many security protocols may use asymmetric algorithms to set up a shared 
key, which then is used with a symmetric algorithm during communication. 

 Cryptographic   hash functions are another kind of cryptographic function. Hash functions are 
used to compute a value from a data message. This value can be used to maintain the data’s integrity. 
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 FIGURE 8.1  
       Symmetric encryption mechanisms use the same key for encryption and decryption.    
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 FIGURE 8.2  
       Asymmetric encryption mechanisms use different keys for encryption and decryption.    
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 The hash function is defi ned in such a way that it is easy to compute, but it is very hard to compute 
what data were used to compute the hash value. Hash functions are used for ensuring integrity of 
messages. By computing a hash value of the data message and a secret key, and transmitting this hash 
value together with the message, the receiver can check the integrity of the message by computing 
the hash value with the same secret key. If the hash values match, the message integrity has not been 
breached. This use of a hash value is called a message authentication code (MAC)    . Note that this 
use of the MAC acronym is different from the Medium Access Control (MAC) that is used in other 
places in this book.  

    8.4       SECURITY MECHANISMS FOR SMART OBJECTS 
 Smart   objects have a number of properties that set them apart from the general purpose comput-
ing systems for which typical computer security mechanisms have been developed. First, smart 
objects have limited computation abilities. For example, the microcontrollers used in low-power 
smart objects cannot execute asymmetric decryption operations within a reasonable time. For this 
reason, security mechanisms for smart objects must be based on computationally effi cient encryp-
tion and decryption mechanisms such as symmetric encryption. Second, the physical environment in 
which smart objects operate is different from, and often more hostile than, that of a general purpose 
computing system. 

 In   addition to the computation constraint, the power constraint of smart objects can also lead to 
security issues. To maintain low power consumption, wireless smart objects need to keep their radios 
switched off. An attacker can fool the smart object into keeping its radio on by sending bogus data to 
the device and depleting its battery, thus breaching the availability property. This attack is sometimes 
called a DoS attack or a sleep deprivation attack. 

 Stajano   [225] presents a number of mechanisms that defend against sleep deprivation attacks. One 
example is to use a cryptographically secure channel hopping strategy. This makes it extremely dif-
fi cult for an attacker to fi nd the smart object’s physical radio frequency, which makes it diffi cult to 
deplete its battery. 

    8.4.1       Security Policies for Smart Objects 
 Smart   objects require different security policies than general purpose computer systems because of 
the widely differing applications, requirements, and physical appearance of smart objects 

 Authentication   in smart object networks is a challenging topic because of the distributed nature 
of smart object systems. Not only are the devices physically distributed, but the system is also non-
centralized. Because the system is non-centralized, there is no central server that can verify identities. 
Furthermore, since smart objects do not have the same user interface as a general purpose computer, 
password-based authentication schemes do not work. 

 With   the understanding of the specifi c requirements and characteristics of smart object networks 
and ubiquitous computing, Stajano and Anderson developed a security model called the resurrecting 
duckling model [226]. 

 The   resurrecting duckling model is based on a real duckling and its mother duck. When a duck-
ling is born, it is immediately imprinted with the physical appearance of its mother duck. From this 
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 point on, the duckling blindly follows its mother duck. The duckling accepts whatever it sees fi rst as its 
mother duck, so it is possible to imprint the duckling with another duck that is not its biological mother. 
It is even possible to imprint the duckling with something completely different than a duck, such 
as a box. 

 The   resurrecting duckling security model is illustrated in  Figure 8.3   . Devices are in one of two 
states: imprintable or imprinted. The imprintable state is equivalent to being unborn. In the imprinted 
state, only death can bring the device back to its imprintable state. 

 In   the resurrecting duckling model, a node will be imprinted with the fi rst encryption key it sees 
after manufacturing. The device will use this encryption key throughout its life. To recover the device 
from a faulty key, or to restore the device in case the key is compromised, the resurrected duckling 
model allows for the device to be  “ killed ”  and restored to life. After its resurrection, the device is 
able to receive a new key. The device can be killed either by its mother duck, by old age, or by the 
completion of a specifi c transaction. Stajano [225] illustrates how a device can be killed by using an 
example of a medical thermometer that may be killed every time it is disinfected. 

 The   resurrected duckling model, and indeed any security model for smart objects, requires a way 
to securely transmit keys to the smart objects. Because smart objects do not have a user interface and 
often communicate using an insecure and easy-to-eavesdrop radio channel, key distribution is a chal-
lenge. But smart objects also have physical properties that can be leveraged for making effi cient and 
secure key distribution. 

 Physical   proximity can be leveraged to distribute keys. Keys can be sent using a short-range com-
munication mechanism such as infrared (IR) light. An IR light can be confi gured to require perfect 
line-of-sight, which makes the key distribution more diffi cult to breach. Physical proximity can also 
be used for physical contact. During physical contact, keys can be securely transmitted.  

    8.4.2       Link Layer Encryption 
 Because   smart objects often transmit information over insecure communication media, such as wire-
less radio, encryption is necessary to ensure confi dentiality and integrity of the transmitted messages. 
For this reason, many radio communication standards for smart objects include encryption mecha-
nisms. One example is the IEEE 802.15.4 low-power and low-data-rate radio standard that includes 
support for AES symmetric encryption for confi dentiality and integrity of its messages. The AES 
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 FIGURE 8.3  
       The resurrecting duckling model: devices are either imprintable or imprinted. After a device has been 
imprinted, only death can bring it back to the imprintable state.    
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 mechanism can be used to encrypt the data sent across the wireless radio medium as well as to pro-
vide a MAC to the data. 

 To   assist the implementation of security mechanisms for smart objects, several radio transceivers 
provide hardware functions for computing the necessary encryption functions. For example, the pop-
ular Texas Instruments CC2420 chip, which implements the IEEE 802.15.4 radio standard, includes 
an AES co-processor that encrypts and decrypts messages using AES so it can be used for encrypt-
ing over-the-air messages. In addition to encrypting messages, the co-processor can also be directly 
accessed from software, allowing the AES hardware to be used for other security processing as well. 
This includes security mechanisms such as the IP layer, which we discuss next. 

 The   link layer encryption provided by the radio layer can only ensure confi dentiality and integ-
rity over a single hop. To provide security over a longer path, preferably across the entire end-to-end 
communication path, security at the IP layer and above is needed.   

    8.5       SECURITY MECHANISMS IN THE IP ARCHITECTURE 
 The   IP architecture provides security mechanism at two layers of the IP stack: network and applica-
tion. Both mechanisms are optional. These mechanisms provide different types of security operations 
ranging from fully encrypted end-to-end channels to end-to-end message authentication. In addition 
to the security mechanisms in the IP architecture, the architecture allows applications to implement 
their own security mechanisms on top of the IP stack. 

 Security   in the IP architecture is provided by IPsec, which operates at the network layer, and trans-
port layer security (TLS), which operates at the application layer. IPsec works on individual packets, 
whereas TLS works on an application stream of data over a TCP connection. 

    8.5.1       IPsec 
 IPsec   is a network layer security suite that provides confi dentiality and integrity at the IP layer. IPsec 
was originally developed for IPv6, but has been retrofi tted to work for IPv4 as well. IPsec is defi ned 
in a number of RFC standards documents [118,145,148]. 

 The   IPsec architecture consists of two protocols: the Authentication Header (AH) and the 
Encapsulating Security Payload (ESP). AH provides integrity to messages and ESP provides confi -
dentiality and integrity. Both mechanisms additionally authenticate messages. 

 Keys   and other information, such as which encryption algorithms are used, are stored at the end 
points. A specifi c set of keys is called a security association (SA). Every packet belongs to a specifi c 
SA. Different SAs may use different encryption algorithms. To set up an SA, IPsec uses a key man-
agement protocol called Internet Key Exchange (IKE). 

 IPsec   makes use of both symmetric and asymmetric encryption mechanisms. For smart objects, 
symmetric mechanisms are preferred because of their lower computational complexity. Specifi cally, 
for smart objects equipped with hardware AES acceleration, which is common in many IEEE 
802.15.4 devices, it is possible to let IPsec take advantage of the AES acceleration. By using AES 
encryption as part of the IPsec SA, the smart object achieves a level of encryption performance that is 
impossible with software-only mechanisms.  
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    8.5.2        TLS 
 TLS   provides an end-to-end secure channel between two network end points. It provides confi dential-
ity and integrity as well as mechanisms for authentication of the communication end points. TLS is 
defi ned by RFC5246 [56]. 

 TLS   was originally developed under the name Secure Sockets Layer (SSL) by Netscape 
Corporation for the Netscape web browser, but was later standardized by the IETF as TLS. Although 
the name is now offi cially TLS, it is still widely known as SSL. Many will recognize TLS from its 
use in web browsers, where the  “ https:// ”  at the beginning of the URL signifi es that the data were 
transported over a TLS connection. 

 TLS   consists of several different layers and protocols. At the lowest layer, a symmetric encryption 
algorithm is used to provide confi dentiality and integrity. To establish a key for use in the symmetric 
encryption algorithm, TLS fi rst performs an authentication combined with a secure key exchange pro-
tocol. The authentication can be either unilateral, meaning that only one of the connection end points 
are authenticated, or bilateral, where both communication end points are authenticated. Unilateral 
authentication is used in the typical web browser to web server communication model, whereas bilat-
eral authentication is used for secure transactions between two web servers, which is common in 
enterprise systems. 

 Before   initiating the authentication phase, the TLS end points engage in a protocol negotiation 
phase. The end points use this phase to decide what encryption protocols to use for the remainder of 
the connection. TLS supports a number of different encryption protocols. 

 TLS   was designed to perform the most expensive computations on the server side. In a web 
browsing scenario, this means that the web server will carry the largest burden, which leads to scal-
ability problems for TLS-enabled web sites. 

 In   the authentication phase, TLS makes extensive use of asymmetric cryptography. For low-end 
smart objects, this security mechanism is inappropriate. There are, however, ongoing efforts to pro-
vide more lightweight cryptographic algorithms to achieve end-to-end security for computationally 
constrained microprocessors [99,188]  .   

    8.6       CONCLUSIONS 
 Smart   object security is important because smart objects are used in situations where a security breach 
can have potentially disastrous results, as systems ranging from critical infrastructures to on-body and 
in-body systems are equipped with smart objects. 

 Computer   security consists of three properties: confi dentiality, integrity, and availability. The pur-
pose of a security architecture is to uphold all of these properties. To implement a security architec-
ture, encryption is used to convert messages from plaintext into ciphertext, which is not readable by 
potential attackers. 

 Several   mechanisms for smart object communication security exist. Security models such as 
the resurrected duckling model provide simple authentication and key distribution mechanisms. 
Hardware-assisted encryption implementations enable strong encryption support even for computa-
tionally constrained smart object microprocessors. There is still no consensus as to what the standard 
security model for IP-based smart objects should be, but work is ongoing in this area.           
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  CHAPTER

  Thus   far, we have discussed the use of the IP architecture as the means by which smart objects are 
connected. We have discussed how the IP architecture is built, how IP works with message routing, 
and how IPv6 fi ts the requirements for smart objects exceptionally well. But we have not yet dis-
cussed how these technologies are used to create smart object systems, and how smart objects can be 
integrated into existing IT systems. In this chapter, we take a look at web services  —  a technology by 
which smart objects can be effi ciently integrated into existing IT and enterprise business systems. 

 Web   services are a framework for building distributed applications. They have typically been used 
to build applications that either interact using a web browser, or are somehow related to the World 
Wide Web. But the technology that makes up web services is not tied to the World Wide Web or the 
particular technology that typically is associated with it, such as web browsers. 

 Web   services are typically explained using examples from popular services that are used on the 
Web, such as fl ight travel booking systems, online book stores, or web searches. Even though those 
applications may sound removed from smart object systems, their inherent application properties are 
surprisingly similar to those in smart object systems. Web-style applications and smart object applica-
tions share many of the basic communication properties: they are composed of separate systems that 
exchange data. 

 Given   the prevalence of the Web and its associated technologies, web services have seen a tre-
mendous adoption in the general purpose IT world in the past couple of years. All major program-
ming languages provide libraries tailored to build web-service-oriented applications. Hence, a large 
body of existing IT systems is built using web services. There are numerous online courses and other 
training material available to learn how to build web service applications. 

 Web   services have traditionally been seen as a technology suitable for big servers, big datasets, 
and big systems. This technology has been used to couple database systems with each other in a 
framework that permits an expression of high-level concepts and dependencies, and yet is succinct 
enough to be standardized across a wide range of applications. 

 By   using web service technology for smart object applications, existing web-service-oriented sys-
tems, programming libraries, and knowledge can be directly applied to the emerging fi eld of smart 
object applications. This provides several benefi ts. For businesses, smart object applications can be 
directly integrated with existing business systems and use the same interfaces and systems existing 
business systems use. This makes it possible to integrate smart object applications into enterprise 
resource planning systems without any intermediaries, thus reducing the complexity of the system as 
a whole. For industries, smart object applications can be built using off-the-shelf technology without 
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 any customized interfaces or translators. Systems can be built without requiring smart object special-
ists in every step of the project. 

 In   this chapter, we discuss the use of web service technology for smart objects. Because of the 
expressiveness of the underlying principles, web services are highly suitable for smart objects. 
Despite the dominating belief that web services are a heavyweight concept, we demonstrate that they 
are indeed lightweight enough to be used for the resource-challenged environment in which smart 
objects exist. We do not discuss the details of web services in this chapter, however, as the concepts 
and the surrounding technology and its software are extensive and diverse. We keep the discussion at 
a relatively high level, and refer to more specialized publications for further details. 

 We   examine the technology and principles behind web services, how they map onto smart object 
concepts, and how they can be effi ciently implemented for smart objects. To ground the discussion, 
a concrete example of an existing web service for smart objects is provided: the Pachube service is 
a data-hosting service for smart-object-style applications where data are inserted and accessed using 
web service technology. 

 The   performance of web services for smart objects has been questioned, because web services 
were initially used for large server systems. At the end of this chapter, we critically examine this by 
discussing the performance of published web service implementations for smart object systems. We 
fi nd that the performance of web services for smart objects is indeed reasonable. 

    9.1       WEB SERVICE CONCEPTS 
 Web   services are typically described as communication between business servers, typically ini-
tiated by the interaction of a user through a web site. We make no exception to this, because this 
not only typifi es the behavior of the web service technology, but also highlights the machine-
to-machine communication aspects of web services. 

    Figure 9.1    is a canonical example of web service technology in action. In this fi gure a user is 
interacting with the web site of a travel agent through a web browser. Although this part uses the 

Airline
servers

Travel agent
server

Request:
2 persons

Stockholm - Tokyo

Web browser

Web service technology

Replies:
SAS Stockholm - Copenhagen - Tokyo
KLM Stockholm - Amsterdam - Tokyo

 FIGURE 9.1  
       A traditional example of a web service transaction. A human user uses the travel agent’s web site to look for 
fl ights. The travel agent server uses web service technology to query multiple airlines for possible routes and 
gets several results.    
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 World Wide Web, it is not where web services are used. Rather, web services enter where the interac-
tion between the user and the web site ends. 

 Web   services are used as a communication mechanism between the travel agent’s server and other 
servers that it communicates with to achieve its task. Neither the travel agent’s server nor the air-
lines ’  servers are run by the same parties, so web services provide an intermediary that allows them to 
exchange data without in-between translation, since all servers adhere to the web services framework. 

 The   travel agent’s server sends a series of web service requests to a number of servers that belong 
to airline companies. The travel agent server receives replies from a number of them; in this case 
one from SAS and one from KLM. The travel agent server can then format these replies and present 
them to the user. The presentation of the data is independent of the format in which the data were sent 
between the airline servers and the agent server. 

 The   example in  Figure 9.1  illustrates how web services work, but not how they relate to smart 
objects. To shift the focus back to smart objects,  Figure 9.2    shows an example of a smart object sys-
tem realized through web services. In this example, a building automation server is connected to a 
network of temperature sensors and radiators. The sensors and radiators are located in a building and 
connected either to a wireless network or a wired in-house network. The particular communication 
technology used does not matter, because the system is built on IP. 

 The   temperature sensors periodically post their temperature data to the building automation server 
using a web services framework. This allows the building automation server and the temperature sen-
sors to be provided by different vendors since they both agree on a common communication mecha-
nism and data format. The server may also query the sensors to get the current temperature value. 

 After   the building automation server has received the temperature data from the house’s tempera-
ture sensors, it uses this information to control the radiator. The radiator has a smart object with web 
service communication abilities, and the building automation server posts a confi guration request to 
the radiator. The radiator updates its setting to match the value requested by the automation server. 

Building automation
server

Temperature sensors post temperatures
to server

Server configures
radiator

 FIGURE 9.2  
       A smart object system implemented with web services. Temperature sensors post temperature data to 
a building automation server. The building automation server confi gures a radiator based on the 
temperature data.    
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    9.1.1        Common Data Formats 
 Web   services are a mechanism for exchanging data between disparate systems that are not developed 
by the same parties. The systems may be developed in different programming languages and run on 
vastly different hardware, but they still wish to exchange data in a system-independent way. For this 
reason, system-independent data formats are central to the web services framework. 

 The   Extensible Markup Language (XML) is the most common data format associated with web 
services, but it is not the only data format available. In fact, the web services framework is not depen-
dent on any particular data format, because it can operate across a range of data formats. 

 XML   is a general purpose document format that provides a structured mechanism to encode 
machine-readable information. In addition to being machine-readable, XML documents are also 
human-readable, making them readily created and edited by humans as well as machines. 

 XML   documents are composed of a set of tags, where each tag is shown as the name of the tag 
enclosed in the  � and �  characters. A tag consists of an open tag and a close tag. The close tag is the same 
as the open tag, but with the /character in front of the name. An example of a tag is  � data � one     �     /data     �     , 
where  � data �  opens the tag and  � /data �  closes the tag. The value of the tag is the text between the 
open and close tag, which in this case is  “ one ” .   Tags are nested to form a tree of tags. 

 An   example of an XML document is shown in  Figure 9.3   . This XML document contains a tem-
perature value from a fi ctional temperature sensor. The name of the sensor,  “ Temperature ” ,   is given 
in the  � name �  tag and the value is given in the  � value �  tag. The  � sensor �  tag contains informa-
tion about one particular sensor. In this document, only a single sensor is present but more can be 
added following the closing of the  � sensor �  tag. 

 Because   XML is a relatively verbose format, several ways to compress XML have been explored. 
The structured nature of XML makes XML possible to compress using source-specifi c techniques, 
and a number of variants of XML that use binary encodings rather than textual representations of the 
XML tags exist. There is, however, no standard for binary XML and none of the available formats 
have succeeded in achieving a de facto standard status. 

 An   alternative to the verbose XML format is the JavaScript Object Notation (JSON) format. 
JSON is specifi ed in RFC4627 [45] and provides a more lightweight markup than XML. Although 
JSON originally was designed to be easy to parse by JavaScript programs, the format is independent 
of any particular programming language. Libraries for parsing and constructing JSON messages are 
available for most programming languages. 

 An   example of a JSON document is shown in  Figure 9.4   . This document contains the same infor-
mation as the XML document in  Figure 9.3 , but is much more compact. The markup is more light-
weight, but provides less means by which the document can be automatically translated between 

<xml>
  <sensors>
    <sensor>
      <name>Temperature</name>
      <value>27.1</value>
    </sensor>
  </sensors>
</xml>

 FIGURE 9.3  
       An XML document.    
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 different formats. Yet, the JSON format is a good match for smart object systems, where compactness 
of representation is important due to the inherent resource constraints.  

    9.1.2       Representational State Transfer 
 There   are several ways to realize the web service concept. Some realizations are built on mechanisms 
that require signifi cant processing power and communication bandwidth, whereas others are more 
lightweight. In this discussion, we do not go into detail about the web service mechanisms on the 
expensive side of the spectrum. Examples of mechanisms that we do not discuss are SOAP (originally 
defi ned as Simple Object Access Protocol, but is now known as only an acronym), the Web Services 
Description Language (WSDL), and the Universal Discovery Description and Integration mechanism 
(UDDI). For the description of those standards and mechanisms, please see the standards documents 
or the many online descriptions available. 

 The   resource constraints inherent in smart objects regarding processing power, energy, and com-
munication bandwidth necessitate the use of lightweight mechanisms. Despite a reputation as a 
heavyweight, web services have nothing inherent in their interaction models, communication mecha-
nisms, or concepts that make them heavyweight. 

 Representational   state transfer (REST) is a lightweight instantiation of the web services con-
cept that is particularly well suited to the properties of smart objects. REST is not just a web ser-
vice instantiation, but an architectural model for how distributed applications are built. Systems built 
around the REST architecture are said to be RESTful. 

 REST   builds on three concepts: representation, state, and transfer: 

      ●      Representation: Data or resources are encoded as representations of the data or the resource. These 
representations are transferred between clients and servers. One example of a representation of a 
resource is a temperature value written as a decimal number, where the representation is the deci-
mal number and the temperature is the resource.  

      ●      State: All of the necessary state needed to complete a request must be provided with the request. 
The clients and servers are inherently stateless. A client cannot rely on any state to be stored in the 
server, and the server cannot rely on any state stored in the client. This does not, however, pertain to 
the data stored by servers or clients, only to the connection state needed to complete transactions.  

      ●      Transfer: The representations and the state can be transferred between client and servers.    

 REST  , as an architectural model, describes the interactions we have seen so far in this chapter. 
In the example of the travel agent ( Figure 9.1 ), the request for a reservation between Stockholm 
and Tokyo was a representation as were the replies from the airline servers. Likewise, the building 

{"sensors":
  [{"name": "Temperature", "value": 26.1}]
}

 FIGURE 9.4  
       A JSON document.    
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 automation system illustrated in  Figure 9.2  contains temperature data and radiator confi gurations as 
representations. 

 REST   is an architectural model that can be effi ciently implemented as a combination of the 
Hypertext Transfer Protocol (HTTP) [83]   and TCP/IP. With this instantiation of REST, HTTP 
requests are used to transfer representations of resources between clients and servers. Uniform 
Resource Identifi ers (URIs) are used to encode transaction states. 

 With   this implementation of the REST architecture in mind, we return to the building automation 
example in  Figure 9.2 . In this example, the temperature sensors submit their temperature data to the 
building automation server using the HTTP PUT method. To query sensors, the server uses the HTTP 
GET method. The server then sends its confi guration request to the radiator using the HTTP PUT 
method. 

 To   make the discussion concrete, we turn to a detailed discussion of how a REST HTTP transac-
tion for smart objects looks. Using the transaction from the building automation system in  Figure 9.2 , 
we focus on the server’s request for temperature data from one of the sensors. This request is imple-
mented by using the HTTP GET request, which is issued by the server to one of the sensors. The sen-
sor responds with the temperature data of the sensor in JSON format. 

 The   HTTP GET request sent by the server is shown in  Figure 9.5   . The HTTP request, which is 
human-readable, consists of two lines of text. The fi rst line contains the HTTP GET verb, followed 
by the URI that represents the temperature sensor. In this case this is as simple as /sensors/tempera-
ture, but more complex URIs are possible. Ending the fi rst line is the name and version of the HTTP 
protocol. HTTP 1.1 is the current version of the HTTP protocol. 

 The   second line of the server’s request contains the requested representation of the data that the 
client has to offer. This line contains the HTTP header  “ Content-type ”  followed by the type  “ applica-
tion/json ” .   This type is defi ned in the JSON specifi cation as the content type to be used for JSON data 
[45]. 

 The   client’s response to the server’s request is shown in  Figure 9.6   . Again, this HTTP reply is in 
a human-readable format. The reply consists of two parts, the HTTP header and the HTTP body. The 
header is two lines long. The fi rst line contains the HTTP/1.1 keyword, which again tells the receiver 
that this reply is in HTTP version 1.1 format. This keyword is followed by the HTTP status code 200, 

GET /sensors/temperature HTTP/1.1
Content-type: application/json

 FIGURE 9.5  
       An HTTP GET request for the data of a temperature sensor in JSON format. The server’s response is shown in 
 Figure 9.6 .    

HTTP/1.1 200 OK
Content-type: application/json

{"sensors":[{"name": "Temperature", "value": 26.1}]}

 FIGURE 9.6  
       HTTP response for the HTTP request in  Figure 9.5 .    
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 which tells the receiver that the HTTP request was successfully processed. The  “ OK ”  following the 
status code is a human-readable representation of the status code. 

 The   HTTP reply contains the same  “ Content-type ”  header as the request, which tells the receiver 
that the data in the HTTP body are in JSON format. Following the HTTP header is a blank line that 
divides the header from the body. 

 The   HTTP body contains the JSON data that represent the current temperature as sensed by the 
smart object’s sensor. 

 This   HTTP request is transported over a TCP connection, as discussed in Chapter 7  . Armed with 
the knowledge of how TCP works, we can now construct a detailed picture of how the entire REST 
transaction between the building automation server and the smart object client looks. 

    Figure 9.7    shows the full REST transaction including all packets that are sent for the complete 
transaction. The transaction is divided into three phases: the TCP connection open phase, the REST 
data transfer phase, and the TCP connection close phase. 

 The   transaction starts with the TCP connection phase. The TCP connection is opened by the 
exchange of the TCP SYN and TCP SYNACK segments between the server and the client. The server 
sends the TCP SYN to the client, and the client responds with the TCP SYNACK. When the server 
has received the TCP SYNACK segment, the connection enters the REST data transfer phase. 

 During   the REST data transfer phase, the server sends the HTTP request from  Figure 9.5  as one 
or more TCP segments to the client. The HTTP request may fi t in a single TCP segment, if the seg-
ment size is large enough. The segment size for a connection is determined by the client and server 
during the setup of the TCP connection. In this case, however, the HTTP request is small enough 
to fi t into most TCP segment sizes. All TCP segments are acknowledged by the receiver, and the 

Server Client

TCP connection open

REST data transfer

TCP connection close

TCP SYN

TCP FIN

TCP ACK

TCP SYN, ACK

TCP FIN, ACK

HTTP GET

HTTP reply

 FIGURE 9.7  
       A full REST web service transfer over HTTP/TCP/IP with all packets indicated.    
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 sender retransmits the segments if it does not receive the acknowledgments. In this case, however, the 
acknowledgments are piggybacked on the data packets sent in response to the reply. 

 The   client responds to the request with the response from  Figure 9.6 . Again, this is sent as one or 
more TCP segments, depending on the size of the response and on the maximum segment size of the 
connection. The data packets are acknowledged. If the entire HTTP response fi ts in a single TCP seg-
ment, the acknowledgment for the data is piggybacked on the TCP FIN segment sent during the TCP 
connection close phase. 

 After   the data transfer is complete, both the server and the client close the connection by sending 
a TCP FIN segment to the peer. This segment is acknowledged by a fi nal TCP ACK segment, and the 
entire transaction is complete.   

    9.2       THE PERFORMANCE OF WEB SERVICES FOR SMART OBJECTS 
 The   performance of web services for large-scale servers has been questioned on numerous occasions. 
Because of this, the performance of web services for smart objects has to be critically examined. 
Compared to the servers and networks on top of which large-scale web service applications run, smart 
object systems are severely constrained in both computational resources and bandwidth. Can smart 
objects maintain a good performance for web services? 

 In   addition to the runtime performance of web services for smart objects, the constrained resources 
of the smart object nodes also require the implementation complexity of web services to be examined. 
Can a tiny smart object node bear the complexity of web services? 

 To   answer these questions, we turn to the literature and fi nd two independent studies of web services 
for smart objects: one by Priyantha et al. [207] from Microsoft Research and one by Yazar and Dunkels 
[260] from the Swedish Institute of Computer Science. Both studies implement a web services framework 
for smart objects, but the two studies focus on different aspects of the system. The study by Priyantha et al. 
investigates the use of XML transactions enclosed in SOAP messages sent over HTTP and TCP, whereas 
the study by Yazar and Dunkels uses REST transactions directly over HTTP. Both studies have imple-
mented web services over the uIP TCP/IP stack [64], which is discussed in Chapter 13. 

    9.2.1       Implementation Complexity 
 For   smart objects, their limited resources require a low software complexity. Smart objects are 
resource limited not only in energy and bandwidth, but also in memory. For web services to be a 
viable communication mechanism for smart objects, implementations of web services mechanisms 
must have a small footprint. 

 Web   services for large-scale server systems have been criticized for being too complex even for 
large-scale systems, so it was not always clear that web services would be a viable alternative for smart 
objects. Recent implementations, such as those by Priyantha et al. and Yazar and Dunkels, have shown 
that web services are indeed a viable mechanism for resource-constrained smart object systems. 

 The   web services implementation by Priyantha et al. [207] is a simplifi ed variant of the SOAP-
based web services that provide interoperable functionality with existing systems, but does not imple-
ment the full specifi cation. Their system is implemented on top of the uIP TCP/IP stack [64], which is 
known for its small implementation complexity. 



999.2 The Performance of Web Services for Smart Objects

  The   code size and memory footprint for the web services implementation by Priyantha et al. is 
shown in  Table 9.1   . These data include both the size of the uIP TCP/IP stack and the simplifi ed HTTP 
server and XML parser. The uIP code size includes the IP protocol (the part of the TCP protocol 
required for acting as a TCP server), but does not include the UDP protocol. The code size is mea-
sured for the MSP430 microprocessor and the code is compiled with the gcc C compiler. 

 The   resulting code size is a few kilobytes, which is well suited for typical smart object systems. 
The system for which Priyantha et al. developed their web service implementation has 48 kB of code 
space available. 

 Similarly  , the code size and data footprint of the implementation by Yazar and Dunkels [260] is 
presented in        Tables 9.2 and 9.3     . The two tables show the size of two different implementations of 
web services for smart objects:  Table 9.2  illustrates the size of the implementation of REST-based 
web services for smart objects, and  Table 9.3  illustrates the size of the implementation of SOAP-
based web services for smart objects. The code size is for the MSP430 microprocessor and the code 
was compiled with the gcc C compiler. 

 Table 9.1          Memory Footprint for the Simplifi ed SOAP Web Services Implementation  a    

   Module  Code size  Data footprint 

   TCP/IP stack, uIP  2964  332 
   HTTP server  �  XML parser  2380   54 

   a   Source: B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny Web Services: Design and Implementation of Interoperable 
and Evolvable Sensor Networks. In  Proceedings of the 6 th  ACM conference on Embedded Network Sensory Systems 
(SenSys  ’ 08),  pp. 253 – 266, Raleigh, NC, USA, 2008.  

 Table 9.2          Memory Footprint for the REST Web Services Implementation  a    

   Module  Code size  Data footprint 

   TCP/IP stack, uIP  4274  412 
   HTTP server  3976   72 
   REST engine   692    4 

   a   Source: D. Yazar and A. Dunkels. Effi cient Application Integration in IP-Based Sensory Networks. In  Proceedings of the 
ACM BuildSys 2009 workshop, in conjunction with ACM SenSys 2009 , November 2009.  

 Table 9.3          Memory Footprint for the SOAP Web Services Implementation  a    

   Module  Code size  Data footprint 

   TCP/IP stack, uIP  4274  412 
   HTTP server  3976   72 
   XML parser  5260    4 
   SOAP engine  2354   36 

   a   Source: D. Yazar and A. Dunkels. Effi cient Application Integration in IP-Based Sensory Networks. In  Proceedings of the 
ACM BuildSys 2009 workshop, in conjunction with ACM SenSys 2009 , November 2009.  
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  Like   the system by Priyantha et al., the system by Yazar and Dunkels uses the uIP TCP/IP stack 
as the underlying IP communication layer. Unlike the system by Priyantha et al., the system by Yazar 
and Dunkels includes the full uIP stack, including the full TCP and IP implementations as well as the 
UDP implementation. Thus the code size is larger. Furthermore, the Yazar and Dunkels implementa-
tion contains additional functionality over the implementation by Priyantha et al., making the code 
size for the HTTP server, the XML parser, and the SOAP engine larger. 

 Taken   together, the two independent implementations by Priyantha et al. and Yazar and Dunkels 
show that the implementation complexity of web services is low. The results show that web ser-
vices fi t the memory constraints of smart object systems. Thus far, however, these data do not tell us 
whether the performance of web services is suitable for the bandwidth and power constraints of smart 
objects. We turn to this subject next.  

    9.2.2       Performance 
 Smart   objects are severely limited not only in memory size, but also in bandwidth and energy. For 
example, the IEEE 802.15.4 low-power wireless communication standard, which is often used for 
smart object systems, has a maximum data rate of 250 Kbits/s. The limited bandwidth has implica-
tions for both data throughput and data latency. Furthermore, since communication consumes energy, 
it is imperative that the communication is effi cient. 

 To   examine the performance of web services for smart objects we again turn to the systems devel-
oped by Priyantha et al. and Yazar and Dunkels. Priyantha et al. present performance data at the 
TCP level, but do not provide any performance numbers for complete web services transfers. Yazar 
and Dunkels provide performance measurements for full REST transfers over HTTP and TCP/IP. 
Furthermore, Yazar and Dunkels have measured the energy overhead associated with a web services 
transfer on a smart object platform. Both studies are performed over an 802.15.4 low-power radio on 
an MSP430-equipped smart object platform. 

    Table 9.4    contains the measurements of the TCP processing overhead as measured by Priyantha 
et al. These data show that the processing overhead and the transmission of TCP are low. A full TCP 
transaction, with data sent from the server to the sensor and a reply sent back to the sensor, followed 
by a reply from the sensor to the server, is completed within 40 ms. These data were obtained after 
turning off the delayed acknowledgment mechanism in TCP, which is known to increase the round-
trip time for single-segment TCP exchanges [64]. 

 Yazar   and Dunkels present measurements of the performance of web services requests over a network 
of smart objects where the smart objects route messages between each other, thereby extending the range 
of the network. Each hop of the network runs an IEEE 802.15.4 low-power wireless link. To save power, 
the radio runs a power-saving mechanism where the radio is switched off as often as possible, only to 
periodically wake up for a short while to check for a transmission from a neighboring node [25]. 

 The   completion times of a full REST transaction, including the TCP connection setup and closing 
phase, as measured by Yazar and Dunkels, are shown in  Figure 9.8   . The graph shows the completion 
time for three REST transfers with the number of network hops varied between one and four. The 
 “ dummy ”  transfer is a minimal REST transfer that contains only a few bytes of data, and the  “ tem-
perature ”  transfer is a complete temperature request with temperature data sent in JSON format. The 
 “ sensors ”  transfer contains a full set of sensor data from the smart object, which in this case includes 
temperature, humidity, visible light, and UV light data. 
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  In   addition to providing completion time data, the study by Yazar and Dunkels also measured 
the power consumption of a web services request. The fi ndings show that the power consumption 
increases from 1       mW when the smart object is idle, to 4       mW for the  “ dummy ”  call and 5       mW for the 
 “ sensors ”  call. 

 By   examining the results from the studies by Priyantha et al. and Yazar and Dunkels, it is clear 
that the web services are indeed reasonable for smart objects and that the performance is suitable for 
the constrained resources.   

 Table 9.4          TCP Processing Overhead  a    

   Time (ms)  Event  TCP action 

   0.00  Server Tx start  TCP data 
   6.19  Server Tx done  (74 byte request) 
   9.68  Sensor Rx done   
   10.67  Packet processed   
   10.68  Sensor Tx start  TCP ACK 
   11.71  Sensor Tx done   
   29.29  Server Tx start  TCP data 
   33.35  Server Tx done  (27 byte request) 
   35.53  Sensor Rx done   
   36.35  Packet processed   
   36.36  Sensor Tx start  TCP data 
   37.78  Sensor Tx done  (37 byte reply) 

   a   Source: B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny Web Services: Design and Implementation of Interoperable 
and Evolvable Sensor Networks. In  Proceedings of the 6th ACM conference on Embedded Network Sensory Systems 
(SenSys  ’ 08),  pp. 253 – 266, Raleigh, NC, USA, 2008.  
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 FIGURE 9.8  
       The completion time of full 
REST transfers over a multi-hop 
power-saving IEEE 802.15.4 
network, from Yazar and Dunkels 
[260]. The  y  axis shows the time 
in seconds and the  x  axis the 
number of hops.    
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    9.3        PACHUBE: A WEB SERVICE SYSTEM FOR SMART OBJECTS 
 To   ground the discussion about web services and RESTful interfaces for smart objects, we investigate 
Pachube, one particular real-world instantiation of a RESTful interface for smart objects. Pachube 
is a web site, as shown in  Figure 9.9   , to which users can submit sensor data from sensor networks 
and upload and store the data on the Pachube server. The sensor data can later be retrieved and pro-
cessed from the Pachube servers. The Pachube web site lists several ideas for which Pachube can be 
used such as electrical usage monitoring and management, real-time pollution monitoring, and home 
automation. 

 The   developers of Pachube envision it as the fabric on which smart object systems and applica-
tions can be built. Smart objects, sensor networks, and telemetry systems submit data to the Pachube 
servers where the data are stored for later retrieval. The data can be retrieved by stand-alone applica-
tions that process the data to either visualize the data for human users, or to autonomously operate on 
the data. Examples of applications that may want to work on these data without a human in the loop 
are building automation systems or electricity savings systems. The input to such a system consists of 

 FIGURE 9.9  
       The Pachube web site. Data sources are marked on a world map.    
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 temperature data and electricity readings from sensors that submit their data to Pachube. An excerpt 
of the Pachube web site that illustrates this concept is shown in  Figure 9.10   . 

 We   use Pachube as an example because of its status as an emerging service provider in the ecosystem 
that is about to form around smart objects. Pachube provides an open Application Program Interface (API) 
based on the RESTful architectural model and allows remote sensors to send their data to the Pachube 
servers over an HTTP connection. Where many of the applications for smart objects target industrial appli-
cations, Pachube illustrates the possibility of a consumer-oriented service for smart objects. 

    Figure 9.11    shows how data stored on the Pachube server can be displayed directly in a web browser 
window, but this is only one of the many available alternatives for accessing the data. Since the data 
stored on the servers are opaque, the data can be retrieved and processed independent of the API. 

 Pachube   provides an open API for accessing the sensor data stored on the servers over the Internet. 
It is intentionally simple and provides methods for uploading and downloading data. Application 
complexity is held outside of the system. Applications only query the Pachube servers for data, and 
any processing is performed on the application side. 

 Pachube   data are divided into feeds. Roughly speaking, one feed corresponds to one instance of a 
particular application. For example, a building automation system built on Pachube may use one feed 
for the sensor data and control from one building. 
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 FIGURE 9.10  
       Pachube is intended to be an intermediary for smart object applications.    
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  Feeds   are further subdivided into data streams. A data stream can come from one particular sensor 
or one particular physical location such as a room. Applications that work on the data can choose to 
collect data from one stream or many streams from the same feed, depending on the application. 

 Many     of the sensors that serve their data to the Pachube servers are connected to the Internet via 
an external device such as a PC. As the fi eld of smart objects continues to grow, we are likely to see 
IP-based smart objects that communicate directly with the Pachube server. 

    9.3.1       Interaction Model 
 The   interaction model of the Pachube API is simple. Clients, either smart objects or sensors con-
nected to an IP network through a PC, connect to the Pachube server using HTTP and send their data 
using the HTTP request. The server responds with a status code and an amount of data. The request 
may either provide new data to be stored on the Pachube servers or a request for data to be delivered 
from the same servers. Both types of requests are sent using HTTP. 

 When   a client performs an HTTP request to a Pachube server, the client fi rst sets up a TCP con-
nection to the server. Once the TCP connection has been successfully opened, the client sends its 
request using the normal HTTP mechanism where the fi rst line of data sent from the client contains 
the HTTP request verb, followed by additional lines of text that contain additional HTTP headers. If 
the request contains additional data, they follow after the HTTP headers. 

 The   server responds in standard HTTP by sending the status code as the fi rst data over the TCP 
connection. The status code is followed by the server’s HTTP headers. If the request caused any data 
to be sent back from the server to the client, these data are sent after the HTTP headers. 
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 FIGURE 9.11  
       A feed of sensor data from the Pachube web site.    
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  When   the HTTP interaction is complete, the TCP connection can either be closed directly or kept 
open in anticipation of another request at some later time. Whether the connection is closed or not 
is determined via a negotiation through the HTTP headers. If either the client or the server sends 
the connection close HTTP header, the connection is closed after the request has been completed. 
Otherwise the TCP connection is kept open in anticipation of another request between the client and 
the server.  

    9.3.2       Pachube Data Formats 
 Pachube   supports several data formats for exchanging data between clients and servers. Providing 
different forms of exchanging data allows integration of different types of systems with the Pachube 
servers. A simple sensor that only wants to submit data to Pachube may choose to send its data in a 
simple format that requires low effort to construct and transport, whereas a visualization system that 
processes sensed data from the Pachube server to visualize it needs meta-information about the data 
such as where the data were sampled and when. In the Pachube system, the clients decide how they 
want their data to be formatted as part of the requests they pose to the Pachube servers. The responsi-
bility for converting the data between the formats falls on the Pachube servers rather than the client, 
as the clients may be resource-constrained smart objects. 

 Not   all data formats contain the same amount of information. The simplest formats contain sensor 
data values, whereas the more complex formats contain metadata such as where the sensor data were 
obtained and at what time the data were sampled. Pachube supports the following formats: 

      ●      Extended Environments Markup Language (EEML): A custom version of XML tailored to con-
tain sensor data. The EEML format contains tags that specify the spatial location at which the 
sensor data were sampled, as well as meta-information about the sensor data such as the minimum 
and maximum values that the sensor data can reach, and the default unit in which the data are to 
be represented. An example of an EEML document is shown in  Figure 9.12   .  

<eeml xsi:schemaLocation="http://www.eeml.org/xsd/005
http://www.eeml.org/xsd/005/005.xsd">
<environment>
<location exposure="indoor" domain="physical"
disposition="fixed">
  <name>My Room</name>
  <lat>32.4</lat>
  <lon>22.7</lon>
  <ele>0.2</ele>
</location>
<data id="0">
  <tag>temperature</tag>
  <value minValue="23.0" maxValue="48.0">36.2</value>
  <unit symbol="C" type="derivedSI">Celsius</unit>
</data>
</environment>
</eeml>

 FIGURE 9.12  
       A document in EEML format that 
contains sensor data.    
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      ●       JSON: The JSON format contains the same amount of information as the EEML representation, 
but formatted in JSON rather than EEML. The JSON format is more compact than the EEML for-
mat, and is also easier to parse for programs implemented in JavaScript.  

      ●      ATOM and RSS: The ATOM and RSS formats contain less information than the EEML 
and JSON formats. The ATOM and RSS formats contain sensor data, but include only a lim-
ited form of metadata such as the spatial location of the sensors as well as tags and titles of the 
sensors.  

      ●      Comma-separated value format (CSV): This is the most basic format. It also contains the least 
amount of meta-information: the data stream contains only the sensor data. The CSV format is 
suitable for use on tiny units with limited processing power where creation or parsing of the more 
complex formats is not suitable.     

    9.3.3       HTTP Requests 
 All   Pachube requests between clients and servers are performed by using HTTP requests. As previ-
ously discussed, the REST architecture uses HTTP request types for different types of method invoca-
tions and Pachube is no different. Pachube uses four different HTTP request types for its operations: 
GET, PUT, POST, and DELETE. The different requests are used on different occasions: 

    GET: This request method is used to retrieve sensor data from a Pachube server. With a GET 
request, the URI provided as part of the request contains both the identity of the data feed and 
the client’s data format. The URI contains information about the type of data the client wants to 
receive, the identity of the feed, and what data format the client wants. The identity of the data 
feed is given as the directory part of the HTTP URI, whereas the data format is provided as a fi le 
extension.  
    PUT: This method is used when submitting new sensor data to the Pachube server. Data to be sub-
mitted from the client to the server are provided in the data portion of the HTTP request, which 
follows the HTTP header. As with the GET request, the feed identity and the data format are 
included in the HTTP URI that is sent together with the HTTP request.  
    POST: This request method is used to create a feed and to create a new data stream within a 
previously established feed. The body of the HTTP request sent by the client contains the defi ni-
tion of the feed or the data stream. The defi nition is provided in EEML format. When establish-
ing a stream, the server creates a stream into which the client may use the PUT method to insert 
data.  
    DELETE: This request method is used to delete a data feed or a data stream. The URI provided 
with the request contains the identifi er of the feed or stream. Once a feed or stream has been 
deleted, it cannot be restored.     

    9.3.4       HTTP Return Codes 
 On   every HTTP request the server responds to the client with a return code. The return code provides 
information about the request, such as if the request was successful or erroneous. If there was an 
error, the return code contains information about the cause of the error. HTTP return codes are repre-
sented as three-digit numbers. The basic HTTP return codes are specifi ed in the base HTTP specifi ca-
tion [83]  , but many HTTP servers have added their own codes. 
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  The   Pachube API uses HTTP return codes to inform the client about the state of the request. The 
return codes are sent to successful transactions as well as failed ones. For failed transactions, 
the return code provides insight into what caused the problem, and the HTTP body contains an XML 
document containing an error message. 

 The   HTTP return codes used by the Pachube API are 

      ●      200 OK: This code is returned when a request is completed successfully. Unlike the other return 
codes, this one does not indicate an error.  

      ●      401 Not Authorized: This return code is sent in response to a client request that needed authenti-
cation, but where the authentication key was invalid or not present.  

      ●      403 Forbidden: This error code is returned when the Pachube servers did not execute the request. 
The reason the server did not respond to the request is given in the body of the HTTP reply.  

      ●      404 Not Found: The requested URI was not found. Either the feed it requested could not be found, 
or the method that the client invoked did not exist.  

      ●      422 Unprocessable Entity: This return code is sent in response to client requests that contain 
EEML data. The return code tells the client that the EEML contained semantic errors, even if it 
was syntactically correct.  

      ●      500 Internal Server Error: This return code is sent when there is an internal error with the Pachube 
servers.  

      ●      503 No Server Error: This return code is sent when there are no Pachube servers available to com-
plete a request.     

    9.3.5       Authentication and Security 
 To   determine who can access what data, the Pachube system provides a simple form of authenti-
cation. The purpose of the Pachube authentication is to identify the client to the server, so that the 
server knows if it should trust requests from the client. Clients that are authenticated can insert data 
into a stream, create new streams within a feed, and retrieve data from a stream. Clients that cannot 
be authenticated are denied access to the data by the Pachube server. 

 The   Pachube authentication mechanism is simple. With each HTTP request performed by the cli-
ent, the client provides a secret key. The server checks the secret key with the pre-registered key for 
the feed that the client is trying to access. If the key supplied by the client matches the key stored on 
the server, the server allows the client access to the data. 

 The   key for a particular data feed is created when the feed is created. When creating the feed, 
the client needs to remember the key that was created as part of the feed since the key is needed for 
future access to the feed. 

 The   key is sent as part of each HTTP request performed by the client. The key can either be sent 
as part of the URI or as part of the HTTP headers. Since the authentication key is transmitted in clear 
text in every HTTP request, it is trivial for third parties to sniff the key as it traverses the network. 
The sniffed key can later be used not only to gain access to the data, but to delete the entire data feed, 
including the data history. 

 To   make it harder for third parties to gain unauthorized access to the authorization key, Pachube 
provides a way to encrypt the data stream using transport layer security through the Secure Sockets 
Layer (SSL). With SSL, the entire HTTP transaction is protected by encryption so that third parties 
sniffi ng on the data cannot read the key or the data transaction.  
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    9.3.6        Triggers 
 The   synchronous API provided by Pachube works well for applications that periodically submit data 
to Pachube and periodically poll the servers for new data, but it does not allow fully reactive applica-
tions. Reactive applications react instantly to incoming data. One example of a reactive application is 
a burglar alarm that directly alerts the owner when the sensors detect a break-in. 

 To   allow reactive applications, Pachube provides a mechanism called a trigger. A trigger is a 
small function that clients can upload to the server. Trigger functions are extremely simple and are 
only able to perform a threshold comparison on a data stream. If the data values in the data stream 
become greater than or less than the threshold provided in the trigger function, the trigger is executed. 

 When   a trigger is executed, the Pachube server performs an HTTP GET request to a prepro-
grammed URI. The URI, which is provided by the client when confi guring the trigger, points to an 
application hosted by the user on an external web server. The HTTP request sent by the Pachube 
server contains information about what feed and data stream caused the trigger to execute, as well as 
the current data value from the data stream. This permits reactive applications that do not need to poll 
the Pachube servers for data. After the trigger, the application may use the synchronous Pachube API 
to retrieve further information about the event that caused the trigger to execute. 

 Trigger   functions can be represented either in XML or in JSON notation. An example trigger 
is shown in  Figure 9.13   . This trigger function is programmed to react when the data stream value 
exceeds 20.0. The  “ trigger_type ”  keyword is set to  “  �  ”  (abbreviation for greater than). The stream 
ID is 0, the environment ID is 1233, and the user name is  “ Pachube ” . The threshold value is given by 
the  “ threshold_value ”  parameter and is set to 20.0. The  “ url ”  fi eld contains the URI that the Pachube 
server will call when the trigger is executed. The URI must correspond to the RESTful API of the 
reactive application. The  “ notifi ed_at ”  fi eld is updated with the date and time the trigger was last 
executed. Finally, the  “ id ”  parameter contains the identity number of this particular trigger function.   

    9.4       CONCLUSIONS 
 Web   services provide an established mechanism for exchanging data between disparate systems. 
They are widely used in general purpose IT systems and the integration benefi ts of running web ser-
vices on smart objects are large. With web services for smart objects, smart object systems can be 
readily integrated in general purpose IT systems such as enterprise resource planning systems and 
business systems. 

[{
"trigger_type":"gt",
"stream_id":"0",
"environment_id":1233,
"user":"pachube",
"threshold_value":"20.0",
"url":"http:\/\/www.example.com\/notify",
"notified_at":"",
"id":13
}]

 FIGURE 9.13  
       Pachube trigger function that 
triggers when the sensor data are 
greater than 20.0, expressed in 
JSON format.    
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  Web   services can be implemented using the REST principles, which are an architectural model 
for distributed systems. The REST principles can be effi ciently run on top of an HTTP connection, 
making it simple and compelling for the resource-constrained smart object devices. 

 Although   the performance of web services has been criticized in the context of large-scale server 
systems, recent studies show that web services can be effi ciently implemented on smart objects. Web 
services can be run over low-power radio networks with good results. 

 Taken   together, the interoperability and integration benefi ts of web services for smart objects, 
combined with their low resource requirements and good performance, make them a compelling 
choice for smart object systems.               
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CHAPTER

    10.1        INTRODUCTION 
 We   conclude the fi rst part of the book with a chapter exploring various connectivity models for 
IP-enabled smart object networks and the use of application layer overlay networks. 

 There   are several potential connectivity models for IP smart objects ranging from the  “ true ”  
Internet of Things where smart object networks are connected to the public Internet like any other net-
work to autonomous smart object networks that are not connected to the public Internet. In between 
there are a myriad of models introduced in this chapter. One model consists of building an applica-
tion layer overlay network that could be used to provide enhanced security, increase the scalability 
and effi ciency of smart object networks thanks to in-network processing while still preserving the 
end-to-end principle of the Internet. 

 Smart   object networks will undoubtedly play a central role in our day-to-day life in the near 
future, and the plethora of innovative applications that rely on these networks (several of them are 
discussed in Part III) will ineluctably contribute to the emergence of new deployment models and 
new architectures because of the remarkable fl exibility of IP.  

    10.2       AUTONOMOUS SMART OBJECT NETWORKS MODEL 
 In   this fi rst deployment model, as shown in  Figure 10.1   , smart object networks are completely auton-
omous and not connected to the public Internet. Indeed, there are several use cases that do not require 
any connectivity with the public Internet. For example,  most  of the Smart Grid applications just do 
not require Internet connectivity for most use cases. As discussed in detail in Chapter 20, Smart Grid 
networks are made of a number of networks including power generation to substation automation and 
control, smart metering, and building/home energy management. The power grid automation does not 
require any connectivity to the public Internet, nor do the smart meter networks in most deployment 
models. Utilities may not want their network to see (at least some part of) their networks connected to 
the public Internet. On the other hand, connection to the Internet may be required for the power grid 
to send dynamic pricing and load shedding information for home energy management to home energy 
controllers, which could either be done via the smart meter network or the public Internet. 

 In   other cases, such as industrial automation (e.g., nuclear power plant), the smart object network 
is in most cases completely disconnected from the public Internet. These networks use the IP protocol 
suite (they are IP smart object networks) but with no connection to the public Internet. 
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  The   lack of Internet connectivity leads to the question: Is IPv6 required in autonomous networks 
that do not require global addresses? The large address space provided by IPv6 is still a must in most 
cases, even if they are not used for global connectivity.  

    10.3       THE INTERNET OF THINGS 
 At   the other extreme lies the Internet of Things, where smart object networks truly belong to the 
Internet just like any other network. There are applications that will be no different than e-mail and 
web services and should be accessible by the Internet community. Any Internet user will have access 
to the information provided by smart objects such as telemetry either directly accessing the device 
or by means of intermediate servers. There are already very simple forms of Internet access to smart 
objects and the number of these applications will continue to grow. 

 The   connectivity model will likely have intermediate servers as shown in  Figure 10.2   . The servers 
will collect data from smart objects and the Internet will connect to these servers, as opposed to the 
smart object, to preserve scarce resources in smart object networks and increase scalability.  

    10.4       THE EXTENDED INTERNET 
 A   myriad of new services and applications will be used in the near future to extend the Internet to the 
physical world. This is sometimes referred to as the  “ Physical Internet. ”  
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 FIGURE 10.1  
       Autonomous smart object networks  .    
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  Smart   Cities will soon provide useful information to their citizens to improve their quality of 
life and help them make important daily decisions: environmental data such as air quality, real-time 
transportation information, emergency assistance, risk of attacks, and so forth. All of this valuable 
information can be provided to citizens via the public Internet. Other applications will provide data 
exploited by city departments to more effi ciently manage the city such as street light management, 
water/gas leak detection, or traffi c management. These data will be not be made available to citizens 
and may or may not go through the Internet. 

 The   term  “ Extended Internet ”  refers to intermediate deployment models between the Internet of 
Things and  “ autonomous smart object networks ” : smart object networks are partially or completely 
connected to the Internet with the appropriate security protection. The notion of application layer 
overlay is getting some traction and is discussed in the next section. The basic idea consists of intro-
ducing in-band (in-network) data processing in the network while still preserving the notion of an 
end-to-end principle between application servers. 

 Let  ’s consider  Figure 10.3   . The core IP infrastructure supports a myriad of applications and inter-
connects hundreds of thousands or even millions of smart object networks that are characterized by 
their constrained nature. All of these networks will make use of the IP protocol suite and the network 
may be connected to the Internet via a fi rewall in charge of securely controlling access to private IP 
networks from the public Internet. 

 In   other words, such architecture prolongs the current Internet (thus the reference to the Extended 
Internet) just enough to provide access to smart objects that used to be isolated from the Internet. 
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 FIGURE 10.2  
       The Internet of Things.    
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 Note that at best such networks used to be reachable from the Internet via complex and diffi cult to 
manage multiprotocol translation gateways: they are now using IP end to end. 

    10.4.1       The Role of Proxy Engines and the Application Overlay Networks 
 As   shown in  Figure 10.3 , these architectures may require the use of  “ proxy engines. ”  A proxy engine 
is a router/computer capable of performing a number of application-level processing tasks to improve 
the scalability of the Extended Internet. 

 The   use of multiprotocol translation gateways has been discussed in detail in Chapter 3, and a 
number of arguments have been listed to illustrate why using these gateways is highly undesirable 
compared to a true IP end-to-end architecture. The Extended Internet model is a true IP end-to-end IP 
architecture with no protocol translation. If an application requires sending information to an actuator 
or receiving data from a sensor within the Low-power and Lossy Network (LLN), the IPv6 address is 
not converted along the data path. Furthermore, since IP is used end to end, the associated semantic is 
also preserved in support of Quality of Service (QoS), management, routing, security, and so forth. In 
other words, IP is truly used end to end. 

 But   LLNs are not exactly comparable to  “ classic ”  IP networks due to their constrained nature and 
their large scale with potentially hundreds of millions of connected IP smart objects. Thus, it may be 
desirable in some situations to introduce proxy engines within LLNs to perform various tasks such as 
data collection and aggregation or even in-network data processing. 
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 FIGURE 10.3  
       The Extended Internet.    
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  Consider   the example of a Smart City equipped with hundreds of thousands of sensors and actua-
tors to control environmental factors. One model may consist of collecting all data in a data center for 
further data mining and processing. Data analysis could then trigger a set of actions and commands 
that would be sent to actuators. Although fairly simple, such a model is suboptimal in many respects. 
First, the data fl ows and data traffi c would signifi cantly increase, as traffi c gets closer to the sink/data 
center, which may affect the overall lifetime of the network. Traffi c congestion would degrade the 
QoS, but even more important, it would increase energy consumption in the network, which is highly 
undesirable for battery-operated nodes. This is illustrated in Chapter 17   where it is observed that the 
traffi c signifi cantly increases closer to the sink thus leading to a number of challenges to solve. This 
is due to the multipoint-to-point nature of most (not all) of the fl ows in LLNs. Clearly such a simple 
and na ï ve model is not likely to scale and provide the level of required effi ciency. 

 On   the other hand, in-band data processing would help increase the overall scalability of the net-
work by an order of magnitude. The idea of in-band data processing consists of introducing data pro-
cessing modules (proxy engines) in the network that interpret the data and potentially trigger local 
actions. In other words, distribute the  “ intelligence ”   in  the network. The network of proxy engines 
then forms an application overlay network embedded in smart object networks and in the Internet. 

 The   degree of distribution would be determined by the application characteristics and require-
ments.  Figure 10.3  shows an example of how such proxy engines could be used. 

 In   this model, traffi c fl ows are localized and processed by the network. Data processing engines 
are then responsible for interpreting the data and trigger a set of actions. For example, in its sim-
plest form, the proxy engine could simply detect information duplicates to avoid unnecessary traffi c 
to cross the network, but more complex tasks could also be performed such as data fusion, computing 
correlated data, performing data storage, or even triggering local actions on smart objects according 
to policy rules engines. This mode of operation is clearly in contrast with a purely centralized data 
model management that usually poorly scales and would be quite ineffi cient regarding network traf-
fi c, response times, and QoS. 

 A   proxy engine is not necessarily an additional  “ box ”  in the network, but refers to network func-
tionality. Modern routers already support this functionality. In addition to performing a myriad of 
networking tasks, the router hosts an application that performs in-band data processing. The router is 
thus one of the elements of the overlay application network. 

 Several   projects are exploring the ability to dynamically confi gure the overlay network according 
to traffi c observations. Nodes capable of hosting such applications could then join the network thus 
enabling in-network data processing where appropriate. 

 Furthermore  , in addition to increasing network scalability and the overall network effi ciency, the 
overlay network would help improve the application responsiveness. There are several applications 
that require immediate actions should an emergency be detected in the network. Instead of relaying 
the information up to the data center, a local proxy engine could trigger the appropriate action closer 
to the actuator reducing the overall reaction delays. 

 Finally  , the use of in-band processing could be extremely useful in the presence of sleeping nodes. 
When the node is battery-operated, it is signifi cantly more effi cient not to wake up a node each time 
a request is issued by a central application. The proxy engine can then be used to cache requests and 
relay them when appropriate. 

 Does   that  “ break ”  the end-to-end principle? Not at all. Proxy engines allow building overlay appli-
cation layers to perform in-band network processing. In a sense, web caching is already a primitive 
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 form of application overlay networks. In this model the network does not interfere with traffi c fl ows 
between end points. End points are simply moved within the network to increase its scalability. 
Manipulating data or adding complex states in the network in between the hosts would endanger the 
end-to-end principle. In this model, hosts communicate with other hosts (proxy engines) that commu-
nicate with data centers.   

    10.5       CONCLUSIONS 
 In   this chapter several deployment models for smart object networks ranging from autonomous 
networks to the Internet of Things were explored. Models such as the Extended Internet involving 
(dynamic) application overlay networks will likely emerge allowing data processing and local action 
in the network to further increase the network and application effi ciency as opposed to a na ï ve less 
effi cient centralized model unlikely to provide the required level of scalability.      
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CHAPTER

  Smart   objects are defi ned both by their physical appearance (the hardware) and by their behavior (the 
software). In this chapter we discuss the typical hardware design of a smart object, the various ways 
that the software of the smart objects typically is designed, and the implications of software mecha-
nisms on the power consumption of the smart objects. 

    11.1       HARDWARE 
 Smart   objects contain a piece of hardware, which is a set of electrical circuits. The hardware consists 
of four main components, as shown in  Figure 11.1   : 

      ●      Communication device: This gives the smart object its communication capabilities. It is typically 
either a radio transceiver with an antenna or a wired connection.  

      ●      Microcontroller: This gives the smart object its behavior. It is a small microprocessor that runs the 
software of the smart object.  

      ●      Set of sensors or actuators: These give the smart object a way to interact with the physical world.  
      ●      Power source: This is needed because the smart object contains electrical circuits.    

Radio Micro-
controller

Sensors,
actuators

Sensors,
actuators

Power

Wired
comm.

Micro-
controller

Power

 FIGURE 11.1  
       The hardware architecture of two smart objects: a radio-equipped, wireless smart object (left) and a smart 
object with wired communication (right).    
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  The   communication device gives the smart object the ability to communicate. The microcontroller 
runs the software of the smart object and also is the central point that connects the communication 
device and the sensors. The microcontrollers used in smart objects are similar to the microprocessors 
used in general purpose computers, but smaller. 

 A   power source is needed to provide the electrical circuitry with power. The most common power 
source is a battery, but there are other examples as well such as piezoelectric   power sources, that pro-
vide power when a physical force is applied, or small solar cells, that provide power when light shines 
on them. The power source provides power for all components and is therefore connected to all of them. 

 The   sensors and actuators give the smart objects a way to interact with the physical world. The 
sensors sense the environment and the actuators affect it. The canonical example of a sensor is a 
temperature sensor, but more complex sensors also exist such as cameras or devices for performing 
range-measurements using ultrasound. Like the sensors, the actuators can be very different ranging 
from a small LED indicator to relays for switching a high-voltage power source on and off. 

    Figure 11.2    highlights the components of a typical hardware platform, the MicaZ prototype board 
from Crossbow Technology. It shows the microcontroller, the power source, the radio transceiver, 
and an extension connector for connecting sensors or actuators. The power source is a battery pack 
consisting of two AAA cell batteries. The radio transceiver is mounted on the fl ip side of the board 
and cannot be seen. The system uses an external antenna attached to the side of the board. The board 
does not contain any sensors. Instead, sensors or actuators can be attached to the board through the 
extension connector. This allows the board to be used as a prototyping system for a wide range of 
different applications. 

 The   previous example is a prototype board used when experimenting with smart object systems. 
For fi nal products, the smart object hardware usually is tightly integrated with the product, making 
the hardware signifi cantly smaller. 

 We   now turn our attention to the different components that make up the hardware of a smart 
object: the communication device, the microcontroller, the sensors or actuators, and the power source. 

Power source
(batteries)

Microcontroller

Antenna

Radio transceiver
(on flip side of the  
board, not shown)

Extension connector
for sensor boards

 FIGURE 11.2  
       A MicaZ prototype board with a 
microcontroller, power source, 
communication device, and 
sensor connectors.    
 Photo courtesy of Crossbow Technology.   
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    11.1.1        Communication Device 
 The   communication device gives the smart object its communication capabilities. For wireless smart 
objects, the communication device typically is a radio transceiver. The word transceiver is a portman-
teau of the two words transmitted and receiver. As the name indicates, a radio transceiver is able to 
function both as a transmitter and receiver of radio messages. For a wired smart object, the communi-
cation device connects to a wired network connection such as Ethernet or Powerline communication 
(PLC). In this section, the focus is on radio transceivers, and the discussion of wired PLC connections 
can be found in Chapter 1  2. 

 Different   types of radio transceivers have different amounts of built-in processing capabilities. The 
simplest radio transceivers only send and receive individual bits of information into the air, whereas 
more capable transceivers package the information into packets, form headers, and even encrypt and 
decrypt the data using secure encryption methods. 

 Of   the hardware components of a smart object, the radio is usually the most power-consuming 
component. Compared to the power consumption of the microcontroller or the sensors, the radio 
transceiver often uses ten times as much power. This is due to the processing required for modulating 
and demodulating the radio signal. For low-power radios, only a small portion of the power consump-
tion is used to send the radio signal into the air. The conclusion is that listening is as power consum-
ing as sending. 

 Because   the radio is the most power-consuming component, and because idle listening is as expen-
sive as sending data, the radio must be switched off to conserve power. When the radio is switched off, 
however, it is not able to receive any data. To create multi-hop networks, the radios of all devices in 
the network must somehow be synchronized so they are able to receive data while conserving power. 
In Section 11.3  , we look into a number of duty cycling mechanisms that keep the radio off for most of 
the time, while still allowing data to be exchanged between the nodes. 

    Figure 11.3    is an example of a Radiocrafts single-chip radio transceiver for smart objects. The 
Radiocrafts chip contains both a radio transceiver and a microcontroller. The radio transceiver, man-
ufactured by Texas Instruments and called CC2430, is compatible with the IEEE 802.15.4 radio 

 FIGURE 11.3  
       Texas Instruments CC2430 single-chip 
radio transceiver with integrated 8051 
microcontroller and on-board antenna 
manufactured by Radiocrafts. The size of the 
board is 1.2      �      1.0       cm 2 .  

 Photos courtesy of Radiocrafts.   
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 standard and capable of transmitting and receiving individual packets, rather than individual bits. The 
bit rate of the radio transceiver is 250       Kbits/s.  

    11.1.2       Microcontroller 
 The   microcontroller gives smart objects their intelligence. It runs the software of the smart object 
and is also responsible for connecting the radio with the sensors and actuators. A microcontroller is a 
microprocessor with built-in memory, timers, and hardware for connecting external devices such as 
sensors, actuators, and radio transceivers. The microcontroller looks like a traditional microchip with 
a plastic casing and connectors of metal as seen in  Figure 11.4   . 

 Microcontrollers   are widely used and are the most common type of microprocessor. Of the total 
number of microprocessors sold in 2002, over 90% had signifi cantly smaller memory sizes than a 
modern PC [242]. Over 50% of all microprocessors were 8-bit processors, which typically can handle 

a maximum of 65536 bytes of memory. 
 Due   to cost and power constraints, the micro-

controllers used in smart objects are much smaller 
than the microprocessors used in general purpose 
PCs. Typically, a smart object microcontroller has 
a few kilobytes of on-chip memory and is run at 
a clock speed of a few megahertz. In comparison, 
modern PCs have several gigabytes of memory 
and run at several gigahertz.  Table 11.1    shows 
four common microcontrollers used in smart 
objects: the MSP430 from Texas Instruments, 
the AVR ATMega128 from Atmel, the 8051 from 
Intel, and the PIC18 from Microchip. 

   The prices for the microcontrollers in  Table 
11.1  vary both with the amount of memory, I/O 
ports, and other hardware options as well as the 
quantity of the chips. Although the price may be 

 FIGURE 11.4  
       An Atmel ATTINY 2313 smart object microcontroller 
with 20 pins. The ATTINY 2313 has 2       kB of ROM and 
128 bytes of RAM. This represents the low end of 
smart object microcontrollers.    

 Table 11.1          Microcontrollers Used in Smart Objects  

   Name  Manufacturer  RAM (kB)  ROM (kB)  Current consumption 
(active/sleep), mA 

   MSP430xF168  Texas Instruments  10  48  2/0.001 
   AVR ATmega128  Atmel  8  128  8/0.02 
   8051  Intel  0.5  32  30/0.005 
   PIC18  Microchip  4  128  2.2/0.001 

  Note: Each manufacturer has several models of each device. This table lists only one example from each manufacturer.  
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 over $10 for individual components when bought as single units, for bulk sale of 10,000 units or 
more, the price is often signifi cantly less. 

 Microcontrollers   have two types of memory: Read-Only Memory (ROM) and Random Access 
Memory (RAM). ROM is used to store the program code that encodes the behavior of the device 
and RAM is used for temporary data the software needs to do its task. Temporary data include stor-
age for program variables and buffer memory for handling radio traffi c. The content of the ROM is 
burned into the device when it is manufactured and is typically not altered after the device has been 
deployed. Nevertheless, most modern microcontrollers provide a mechanism for rewriting the ROM, 
which is useful for in-fi eld updates of software after the devices have been deployed. 

 The   purpose of the microcontroller is to execute its software. The software is stored in the ROM 
of the microcontroller and is typically stored on the microcontroller by the manufacturer when the 
device is manufactured. 

 In   addition to memory for storing program code and temporary variables, microcontrollers contain 
a set of timers and mechanisms for interacting with external devices such as communication devices, 
sensors, and actuators. The timers can be freely used by the software running on the microcontroller. 
External devices are physically connected to the pins of the microcontroller. The software communicates 
with the devices using mechanisms provided by the microcontroller, typically in the form of a serial 
port or a serial bus. Most microcontrollers provide a so-called Universal Synchronous/Asynchronous 
Receiver/Transmitter (USART) for communication with serial ports. Some USARTs can be confi gured 
to work as a Serial Peripheral Interface (SPI) bus for communicating with sensors and actuators.  

    11.1.3       Sensors and Actuators 
 Smart   objects interact with the physical environment in which they are deployed by using sensors and 
actuators. Sensors are used to sense the environment and actuators are used to affect or change the 
environment. 

 The   sensors and actuators attached to a smart object range from very simple to very complex. A 
smart object that measures the temperature needs only a simple temperature sensor. Conversely, a 
smart object used for surveillance or detection of people crossing a fence may need a set of sensors 
that include an ultrasonic range device or a camera. 

 Many   sensors are simple, in both form and function. For example, most temperature sensors are a 
variable resistor where the resistance varies with the surrounding temperature. By applying a current 
over the temperature resistor, and by measuring the resulting voltage, the temperature can be measured. 
More precise temperature sensors use similar, but more complex, ways of determining the temperature.  

    11.1.4       Power Sources 
 A   smart object is driven by electronics, and electronics need power. Therefore, every smart object 
needs a power source. Today, the most common power source is a battery, but there are several other 
possibilities for power, such as solar cells, piezoelectricity, radio-transmitted energy, and other forms 
of power scavenging. Smart objects located close to a power grid can also use power that is readily 
available. These are, however, the exception and not the norm. 

 Batteries   are the most common power source for today’s smart objects. They come in many forms 
and shapes. For smart objects, size typically is an issue, which limits both the amount of energy that 
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 can be stored in the battery, as well as the options for battery types. Lithium cell batteries are cur-
rently the most common. With low-power hardware and proper energy-management software, a smart 
object can have a lifetime of years on standard lithium cell batteries. 

 Rechargeable   batteries, which are popular in many forms of electronics such as cell phones and 
laptop computers, are not particularly well-suited to smart objects. Unlike cell phones and laptops, 
which are human-operated, most smart objects are designed to operate without human control or 
human supervision. Furthermore, many smart objects are located in diffi cult to reach places, and 
many are embedded in other objects. Therefore, in most cases it is impractical to recharge the batter-
ies used in smart objects. Nevertheless, a smart object may use rechargeable battery technology with 
some other form of energy scavenging to charge the batteries without a human in the loop. 

 Instead   of using rechargeable batteries, battery-equipped smart objects are typically designed so a 
single battery should last the entire lifetime of the smart object. By using low-power electronics and 
power-saving software, a smart object can have a lifetime of many years on a single standard AA-size 
battery. When the battery is depleted, the smart object is simply replaced with another, newer, version 
of the system. In many cases, the expected lifetime of the battery may be longer than the expected 
lifetime of the system in which the smart object is used. 

 But   batteries are not without problems. They are diffi cult to recycle and therefore are a burden 
to the environment. For large smart object systems, replacing depleted nodes may incur large costs. 
Batteries may fail prematurely due to unexpected conditions such as moisture or battery leakage. Due 
to these challenges, other power sources for smart objects are being explored. 

 Power   scavenging is a technique that harvests power from the physical environment. Solar cells 
represent the most common form of power scavenging. They harvest their power from the ambient 
and direct light that hits the smart object. Piezoelectricity is another source for power scavenging. For 
this source, physical movement is converted into energy used to power the smart object. For example, 
EnOcean’s smart light switches are completely driven by the energy harvested from the act of press-
ing the light switch. 

 The   energy in radio waves can also be used as a power source. A well-known example of this are 
Radio Frequency Identifi cation (RFID) tags that use radio energy to power a radio transceiver for a 
short while. The energy is emitted by an RFID reader device, which must be powered by an external 
power source. The reader transmits a directed radio beam with enough power to allow RFID tags to 
refl ect the radio signal. 

 The   RFID-style radio power technology can also be used to provide power to smart objects. The 
Intel WISP mote is a smart object platform that uses power from a nearby RFID reader to run a set 
of sensors, a microcontroller, and a radio transceiver [26]  . The PowerCast RF-powered modules, as 
shown in  Figure 11.5   , are single-chip modules that provide electrical power harvested from radio sig-
nals. The module requires an external antenna that picks up the radio signals. A transmitter module 
transmits the radio signals that power the module. 

 A   comparison of the different power sources is given in  Table 11.2   . It lists the maximum current 
draw and the typical charge capacity of a set of power sources for smart objects. The charge capacity 
determines how long the smart object can last with a given average current draw. A device with an 
average current draw of 0.1       mA can live for 30,000 hours, or about 3½ years, on a charge capacity of 
3000       mAh. With 3 volts, a current draw of 0.1       mA equals a power consumption of 0.3       mW. 

 Regardless   of the power source chosen for the smart object, power is a constrained resource. For 
battery-powered smart objects, the batteries typically cannot be recharged. For solar-powered smart 
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 objects, and those powered by power scavenging, energy is diffi cult to store for extended periods 
of time. For this reason, both the hardware and the software of the smart object must be designed to 
meet stringent power requirements. 

 In   Sections 11.2 and 11.3  , we look at software techniques to reduce the power consumption of 
smart objects.  

    11.1.5       Outlook: Systems on a Chip, Printed Electronics, and Claytronics 
 The   hardware technology used in today’s smart objects may not be used in the future. There are 
several novel technologies that can be used for smart objects such as system-on-a-chip techniques, 
printed circuits, and even science-fi ction-like technology such as Claytronics. 

 Systems   on a chip are electrical circuits that provide more than one function, integrated as single 
chips. For smart objects, systems on a chip that combine the radio transceiver, the microcontroller, 
and a few sensors on a single chip have a promising future. Integrating such a system on a chip with 

 FIGURE 11.5  
       PowerCast P2100 module converts radio energy from 
the air into electricity that powers an electrical circuit. 
The module requires an external antenna to pick up 
the radio signals (not shown).  

 Photo courtesy of PowerCast Corporation.   

 Table 11.2          Different Power Sources for Smart Objects, Their Maximum Current Draw, and the 
Amount of Charge They Store  

   Power source  Typical maximum current (mA)  Typical charge (mAh) 

   CR2032 button cell  20         200        
   AA alkaline battery  20         3000        
   Solar cell  40         Limitless 
   RF power  25         Limitless 
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 an antenna on a single board, the resulting hardware is easily added onto ordinary objects and prod-
ucts turning them into smart objects. Traditionally, the engineering of the antenna onto a board is a 
problem due to the sophisticated planning of the board area required and because legal regulations of 
the radio spectrum have required hardware designs to be certifi ed before use. By integrating a single-
chip solution with an antenna, the design and certifi cation procedure only needs to be done once sim-
plifying the process. 

 The   Texas Instruments CC2430 is an example of a system on a chip for smart objects ( Figure 
11.3 ). The CC2430 combines a radio transceiver with an 8051 microcontroller on a single chip. The 
on-chip 8051 microcontroller is programmed just like an ordinary microcontroller. 

 Ultra  -thin technology allows entire hardware designs to be implemented on bendable soft boards. 
This technology is useful for developing smart objects integrated in clothes or worn attached to the body, 
such as sporting or medical equipment. With ultra-thin technology, the hardware components are not 
bendable, just the board on which they are soldered. Because the components are small, if the board can 
be bent, so can the smart object.  Figure 11.6    shows an example of an ultra-thin, bendable circuit  board.    

 Printed   electronics is a technology that allows entire circuit designs to be printed out on ordinary 
paper with an ordinary printer, but with special ink as shown in Figure 11.7. The circuit boards can 
be quite complex and can include even simple microcontroller logic and sensors. Recent work has 
shown that simple batteries and displays can be printed. Printed electronics can result in drastically 
simplifi ed smart object production processes and lower cost. The drawbacks are low electronics per-
formance and large system size when compared to existing electronics. 

 Claytronics   [95] is a futuristic idea for how smart objects should work, behave, and be designed. 
Claytronics are objects made of small, programmable particles that can form complex objects all by 
themselves. Each object consists of a large number of small particles that can attach to each other in 
any direction. The objects can be self-constructed by the programmed particles. Each particle runs a 
small program that tells it how it should attach to its neighbors. So far, the Claytronics team has built 
large-scale prototypes demonstrating the feasibility of the idea and of the programming models [51]  , 
but the realization of actual Claytronics is still several years away.   

 FIGURE 11.6  
       An ultra-thin, bendable circuit board.  

 Photo courtesy of IMEC.   
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    11.2        SOFTWARE FOR SMART OBJECTS 
 The   behavior of a smart object is defi ned by the software running on the microcontroller inside the 
smart object. The software inside the smart object is usually written similar to software for general 
purpose computers. The programs are written in a programming language, such as C, and compiled 
with a compiler to machine code for the microcontroller. The machine code is written to the ROM of 
the microcontroller when the smart object is manufactured. When the smart object is switched on, the 
microcontroller runs the software. This process is illustrated in  Figure 11.8   . 

 Although   it is possible to program microcontrollers without using an operating system [173], 
most smart objects use operating systems. Because of the different requirements and constraints for 
a general purpose computer and a smart object, however, the operating systems for general purpose 
computers and smart objects are very different; smart object operating systems are much smaller and 
less resource-consuming. Because these operating systems are more specialized, they are also signifi -
cantly less complex. 

 Because   of power and cost constraints, smart objects have signifi cantly less memory than general pur-
pose computers. Memory size of a few kilobytes is common, compared to the many millions of kilobytes 
(gigabytes) of memory in today’s PCs. See  Table 11.1  for examples of typical memory confi gurations. 

 The   memory constraints of smart objects make programming them a challenge. The memory 
footprint of the software must be small enough to run within the given limitations and the software 
must not use too much dynamic memory. In this section, we discuss three operating systems for 
smart objects and show how they deal with the challenges of smart object programming. We also 

 FIGURE 11.7  
       Printed electronics allow circuits and simple displays to be printed using a regular ink-jet printer.  

 Photo courtesy of Acreo AB.   
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 discuss the three programming models of smart objects: multi-threading, event-driven programming, 
and protothreads. Finally, we look at how the software manages the limited memory in smart object 
microcontrollers. 

 The   smart object software must implement the communication protocols used by the smart 
objects. Because these protocols are designed in a layered style, where each layer is stacked on top 
of each other, communication protocols are typically known as a  stack . The software that implements 
the protocol is also called a stack. Throughout this book, we use the term stack to mean both the com-
munication protocols and their implementation. 

    11.2.1       Operating Systems for Smart Objects 
 Like   general purpose computers, smart objects use operating systems. These operating systems are 
very different from general purpose operating systems used on PCs and mobile phones. The severe 
resource constraints regarding memory and processing power make a large-scale operating system 
such as Microsoft Windows, Mac OS X, or Linux impossible to use. Even scaled-down versions such 
as Microsoft Windows Mobile or the Linux-based Google Android are too large. 

 Operating   systems for smart objects are tailored to the specifi c requirements of smart objects and 
to the specifi c constraints imposed by the hardware. The memory constraints make the programming 
model different from general purpose operating systems. The processing speed constraints require the 
use of low-level programming languages, such as the C programming language. 

 Smart   object operating systems do not have a user interface like a general purpose operating sys-
tem because no user directly interacts with the smart object operating system. Instead, the operating 

Compiler

Source code

0x78 0xa9 0x00 0x20
0x00 0x10 0x20 0x03
0x10 0xa9 0x80 0xcd
0x12 0xd0 0xd0 0xfd

Machine code

Microcontroller

#include <stdio.h> 

int main() { 
  printf(”Hello, world\n”); 
}

 FIGURE 11.8  
       The process of software development for a smart object. Source code is compiled to machine code that is 
written to the ROM of the smart object microcontroller.    
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 system is hidden deep within the microcontroller of the smart object. Usually, it is only the program-
mer of the smart object that comes in contact with the operating system. 

 In   this section, we briefl y look at three examples of operating systems for smart objects: Contiki, 
TinyOS, and FreeRTOS. In the next section, we look at the programming models used in those oper-
ating systems: event-driven programming, multi-threaded programming, and protothreads. 

 Contiki  , TinyOS, and FreeRTOS are all open sources and their source code is available on the 
Web. Contiki is implemented in the C programming language and supports a range of different 
processors and hardware confi gurations. Contiki provides full IPv4 and IPv6 connectivity through 
the uIP [64] and uIPv6 [73]   protocol stacks. uIPv6 is the only IPv6 stack for smart objects that has 
received the IPv6 Ready certifi cation [73]. TinyOS is an operating system developed for research 
into sensor networks and smart objects. It provides implementations for a wide range of network and 
routing mechanisms. An adaptation of the uIP stack for TinyOS exists [37], and recent versions of 
TinyOS have basic IPv6 support. FreeRTOS provides IP communication capabilities through either 
the uIP stack or the lwIP stack [64]. 

    11.2.1.1       Contiki Operating System 
 The   Contiki operating system is an open source operating system for networked embedded systems in 
general, and smart objects in particular. The fi rst version of Contiki was released in 2003. It is devel-
oped by a team of developers from the industry and academia. The Contiki project is lead by Adam 
Dunkels (one of the authors of this book). 

 Contiki   provides mechanisms that assist the programmer when developing software for smart 
object applications as well as communication mechanisms that allow smart objects to communicate 
with each other and the surrounding world. Contiki provides libraries for memory allocation and 
linked list manipulation as well as communication abstractions and low-power radio networking 
mechanisms [71]. Contiki has a fi le system called Coffee that allows programs to use fl ash ROMs as a 
traditional fi le store [241]. Additionally, Contiki provides a set of simulators that simplify the develop-
ment and experimentation with smart object networks [77,189]  . 

 Contiki   was the fi rst operating system for smart objects that provided IP communication with the 
uIP TCP/IP stack [64,67]. In 2008, the Contiki system incorporated uIPv6, the world’s smallest IPv6 
stack [73]  . The footprints of the uIP and uIPv6 stacks are small: less than 5       kB for the uIP stack and 
approximately 11       kB for uIPv6. This makes them suitable for use in the constrained environment of a 
smart object. 

 Many   components of Contiki are widely used in the industry. The uIP TCP/IP stack, and its larger 
cousin lwIP, is currently used by hundreds of companies in products ranging from car engines and 
airplanes to worldwide freighter container tracking systems and satellite systems. The protothread 
programming abstraction used in Contiki [70] is used in systems such as digital TV set-top boxes and 
high-performance server clusters. 

 Both   the Contiki system and applications for the system are implemented in the C programming 
language. Because Contiki is implemented in C, it is highly portable. Contiki has been ported to more 
than twelve different microprocessor and microcontroller architectures. 

    Figure 11.9    shows a Contiki program waiting until a button is pressed and then sending a  “ Hello, 
world ”  message to the entire network. The program uses the trickle algorithm to reliably send the 
message to every node [159]. The trickle algorithm ensures that the message is delivered, even if 
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 there are packet losses on the communication medium, by repeatedly transmitting messages until they 
are received. 

 Because   Contiki contains an IP stack, it can directly communicate with other IP-based applica-
tions and web services, including Internet-based services.  Figure 11.10    shows a Contiki program that 
posts a message to the Twitter microblogging service.  

    11.2.1.2       TinyOS Operating System 
 Like   Contiki, TinyOS is an open source operating system for smart objects and sensor networks. 
It was originally created at the University of California, Berkeley [113]  , but is currently being 
worked on by a team from Stanford University [158]. The initial versions of TinyOS were released 
in 2000. It is primarily used for research into wireless sensor networks and has a large user base 
from academia. TinyOS focuses on networking and communication mechanisms for wireless sensor 
networks. 

 TinyOS   is implemented in a TinyOS-specifi c programming language called nesC [90]  . This lan-
guage allows programs to be statically analyzed so certain types of race-condition bugs can be found 
at compile time. Recent work has also added the ability to detect bugs relating to memory safety at 
compile time [43]  . 

 Programs   in TinyOS are written to resemble the way hardware is designed. This was originally 
intended to allow systems to be dynamically partitioned between software and hardware [113]  . 
Programs are event-driven and consist of callback functions invoked in response to events, both 
external and internal. 

 TinyOS   has been ported to a wide range of systems and prototyping boards. 

PROCESS_THREAD(example_trickle_process, ev, data)
{
  PROCESS_EXITHANDLER(trickle_close(&trickle);)
  PROCESS_BEGIN();

  trickle_open(&trickle, CLOCK_SECOND, 128,
               &trickle_call);
  button_sensor.activate();

  while(1) {
    PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event &&
                             data == &button_sensor);

    packetbuf_copyfrom("Hello, world", 13);
    trickle_send(&trickle);

  }
  PROCESS_END();
}

 FIGURE 11.9  
       Contiki program waiting until a button is pressed to send the message  “ Hello, world ”  to all nodes in a network 
using the trickle algorithm.    
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     Figure 11.11    is an example of a TinyOS program. This program toggles an LED once every second. 
The program runs on any platform that provides an LED and a timer. 

 TinyOS   has previously used uIP for IP communication [37], but has recently incorporated an 
independent IPv6 implementation [1].  

    11.2.1.3       The FreeRTOS Operating System 
 FreeRTOS   is a small, open source operating system designed for embedded systems. Unlike Contiki 
and TinyOS, FreeRTOS provides real-time guarantees to applications. This means that applications 
running on top of FreeRTOS can schedule exactly when they want events in the system to occur. 

int
send_twitter_message(struct twitter_state *s)
{
  PSOCK_BEGIN(&s->sout);

  /* Send POST header */
  PSOCK_SEND_STR(&s->sout,
          "POST/statuses/update.json HTTP/1.1\r\n");
  
  /* Send Authorization header */
  PSOCK_SEND_STR(&s->sout, "Authorization: Basic");
  PSOCK_SEND_STR(&s->sout, s->base64_username_password);
  PSOCK_SEND_STR(&s->sout, "\r\n");
  
  /* Send Agent header */
  PSOCK_SEND_STR(&s->sout, "User-Agent: Contiki 2.3\r\n");
  PSOCK_SEND_STR(&s->sout, "Host: twitter.com\r\n");
  PSOCK_SEND_STR(&s->sout, "Accept: */*\r\n");
  
  /* Send Content length header */
  PSOCK_SEND_STR(&s->sout, "Content-Length: ");
  snprintf(s->lengthstr, sizeof(s->lengthstr),
           "%d", strlen(s->message));
  PSOCK_SEND_STR(&s->sout, s->lengthstr);
  PSOCK_SEND_STR(&s->sout, "\r\n");

  /* Send Content type header */
  PSOCK_SEND_STR(&s->sout,
    "Content-Type: application/x-www-form-urlencoded\r\n\r\n");

  /* Send status message */
  PSOCK_SEND_STR(&s->sout, s->message);

  /* Close connection */
  PSOCK_CLOSE(&s->sout);
  PSOCK_EXIT(&s->sout);
  PSOCK_END(&s->sout);
}

 FIGURE 11.10  
       Contiki program sending a message through the Twitter microblogging web service.    
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 This is important, for instance, in control applications where timing is of the essence. For example, an 
application that controls a robotic arm must be able to specify exactly when to turn the robot motor 
on and off or else the arm movements will be incorrect. FreeRTOS uses a preemptive, multi-threaded 
programming model. 

 FreeRTOS   provides TCP/IP support through both the uIP and the lwIP stacks. The system designer 
chooses which stack to use depending on the application requirements and system constraints. For 
an application with high throughput demands, lwIP is chosen. For an application with less strong 
demands on throughput but with strong demands on memory size, uIP is chosen. 

 FreeRTOS   has been ported to over 50 different microcontrollers and microprocessors, including 
the Texas Instruments MSP430 and the Atmel AVR.   

    11.2.2       Multi-threaded Versus Event-driven Programming 
 Multi  -threading is a programming technique that allows multiple programs to run at the same time on 
a single processor. In multi-threaded programming, each program is given its own thread of control 
that runs alongside all other threads in the system. Each thread is given time to run on the micropro-
cessor. To allow multiple programs to run at the same time, the operating system switches the threads 
so they each get their fair share of the microprocessor. 

 Multi  -threaded programming is widely used in general purpose operating systems, where the 
threads are protected from each other so that one thread cannot reach another thread without going 
through well-specifi ed interfaces. When threads are protected from each other, they are often called 
processes instead of threads. 

implementation {

  command result_t StdControl.init() {
    call Leds.init();
    return SUCCESS;
  }

  command result_t StdControl.start() {
    return call Timer.start(TIMER_REPEAT, 1000);
  }

  command result_t StdControl.stop() {
    return call Timer.stop();
  }

  event result_t Timer.fired()
  {
    call Leds.redToggle();
    return SUCCESS;
  }
}

 FIGURE 11.11  
       TinyOS program that blinks an LED every second.    
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  For   smart objects, the problem with multi-threading is that each thread requires its own piece of 
memory to hold the state of the thread, the so-called stack of the thread. The stacks contain local 
variables the thread uses and return values for the functions the thread calls, but also contains a com-
paratively large amount of unused memory. This memory must be allocated because it is unknown in 
advance how much stack memory each thread needs. Therefore the stack memory is typically over-
provisioned. 

 Because   of memory requirements, smart objects are often programmed differently. Event-driven 
programming is a memory-effi cient way to write software for smart objects. With this type of pro-
gramming, the software is expressed as event handlers: short sections of code that describe how the 
system responds to events. Examples of such events are an incoming radio packet from a neighboring 
node, a sensor reading from one of the sensors, and a timer. When the event occurs, the smart object 
responds by executing a part of its software. 

 Event  -driven programming requires less memory than multi-threaded programming because there 
are no threads that require stack memory. The entire system can run as a single thread, which requires 
only one single stack. 

 The   event-driven programming style is also a natural match for the event-driven nature of many 
smart objects. Because the object typically interacts with an event-driven environment, the program-
ming model captures the observable behavior of the system. 

 The   programming community has an ongoing debate about which of the two programming models 
(multi-threaded or event-driven) are best. Although it is possible to formally prove that the two mod-
els are equivalent [157], the programming model has implications on the structure and performance 
of the software running on top of the model. There are several ways to write software that take advan-
tage of the specifi c properties of both programming models [4]  . 

 Protothreads   [65,70]   are one way to combine the advantages of the event-driven and the 
multi-threaded programming models. Protothreads are a programming mechanism developed for 
memory-constrained systems that combine the event-driven and multi-threaded programming models 
in a memory-effi cient way. With protothreads, programs are sequentially structured, just like in the 
multi-threaded model, but use little memory similar to the event-driven model. Protothreads can be 
effi ciently implemented in the C programming language without any assembly language or changes 
to the compiler. The drawback is that programmers must explicitly store variables when protothreads 
block. Because protothreads are implemented in C, they are very portable across different platforms. 
This has made them useful in other contexts as well [191,211]. 

    Figure 11.12    shows an example of a program implemented with the multi-threaded programming 
model and the event-driven programming model.  Figure 11.13    shows the same program implemented 
with protothreads. The difference between the models is not only how the code is structured, but also 
the length of the code. Although the event-driven code has more lines of code, it is more memory-
effi cient than the multi-threaded model. 

    Table 11.3    shows a qualitative comparison between multi-threaded programming, event-driven 
programming, and protothreads. It lists six important aspects of the programming model: memory 
requirements, control structures, debug stack retention, implicit locking, preemption, and automatic 
variables. As discussed, the memory requirements for multi-threaded programming are higher than 
for event-driven programming and protothreads. With multi-threaded programming, the programmer 
can combine control structures, such as  if  statements and  while  loops, with blocking statements. This 
is impossible in event-driven programming. With multi-threaded programming and protothreads, the 
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void
radio_thread(void)
{
  while(1) {
    radio_on();
    timer_set(&t, T_AWAKE);
    wait_timer(&t);
    radio_off();
    timer_set(&t, T_SLEEP);
    wait_timer(&t);
  }
}

enum {
  ON,
  OFF
} state;

void
timer_eventhandler()
{
  switch(state) {
  case OFF:
    if(timer_expired(&t)) {
      radio_on();
      state = ON;
      timer_set(&t,
                T_AWAKE);
    }
    break;
  case ON:
    if(timer_expired(&t)) {
      radio_off();
      state = OFF;
      timer_set(&t, T_SLEEP);
    }
    break;
  }
}

 FIGURE 11.12  
       Examples of multi-threaded programming (left) and event-driven programming (middle).    

int
radio_protothread(struct pt *pt)
{
  PT_BEGIN(pt);
  while(1) {
    radio_on();
    timer_set(&t, T_AWAKE);
    PT_WAIT_UNTIL(pt,
        timer_expired(&t));
    radio_off();
    timer_set(&t, T_SLEEP);
    PT_WAIT_UNTIL(pt,
          timer_expired(&t));
  }
  PT_END(pt);
}

 FIGURE 11.13  
       Example of protothread-based programming.    
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  history of the debug stack is retained when interrupting the program during debugging, which is not 
the case in event-driven programming where the back trace of calls is lost when each event han-
dler has fi nished. Implicit locking is possible with both event-driven programming and protothreads, 
because it is certain that no called function will yield the thread. Preemption is, however, not possible 
with event-driven programming and protothreads. Automatic variables  —  variables located on the 
stack  —  are not retained in event-driven programming or with protothreads. 

 Each   programming model has its benefi ts and drawbacks. Different programming problems are 
solved differently with each programming model. For example, programs that require high-level 
logic with multiple sequential steps may be better implemented with multi-threading or proto-
threads, whereas low-level I/O behavior may be better implemented with event-driven programming. 
Ultimately, the choice of programming model is up to the software designer. For this reason, most 
smart object operating systems support a range of different programming models from which the sys-
tem designer can choose.  

    11.2.3       Memory Management 
 Because   of the restrictions put on power consumption, physical size, and cost of the microcontrollers 
used for smart objects, memory is constrained. Thus the available memory must be effi ciently man-
aged. There are several techniques to make the most of the constrained memory in a smart object. 
Unlike general purpose computers, where memory can be dynamically swapped to a hard drive, 
memory in a smart object microcontroller usually cannot be moved to secondary storage. 

 In   smart object software, memory can be either statically allocated at compile time or dynamically 
allocated at runtime. Statically allocated memory allows the programmer to know beforehand if the pro-
gram will fi t in the memory of the microcontroller, but it does not allow the system to dynamically 
respond to the demands at runtime. Dynamic memory allocation, on the other hand, is able to respond to 
the actual memory load the system requires, but it is not possible to predict how the system will behave. 

 Table 11.3          Qualitative Comparison Between Multi-threading, Event-driven Programming, and 
Protothreads  

    Property  Multi-threading  Event-driven programming  Protothreads 

   Memory requirements  Higher  Lower  Lower 
   Control structures  Yes  No  Yes 
   Debug stack retained  Yes  No  Yes 
   Implicit locking  No  Yes  Yes 
   Preemption  Yes  No  No 
   Automatic variables  Yes  No  No 

  Adapted from Dunkels et al. Protothreads: Simplifying event-driven programming of memory-constrained embedded 
systems. In  Proceedings of the Fourth ACM Conference on Embedded Networked Sensory Systems (SenSys 2006) , 
Boulder, CO, USA, November 2006.  
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  Because   of the different advantages and drawbacks of the dynamic and static allocation methods, 
hybrid methods are often used. In this section, we take a look at three methods: 

      ●      Static allocation: All memory is allocated at compile time and no memory is allocated at runtime.  
      ●      Dynamic allocation from static memory pools: Memory can be dynamically allocated at runtime 

from a fi xed set of static memory pools. The size of each allocation is predefi ned and cannot be 
changed at runtime.  

      ●      Dynamic heap allocation: Memory can be dynamically allocated at runtime and the size of each 
allocation can be determined at runtime.    

    Figure 11.14    shows how memory is allocated with static allocation, dynamic allocation from a static 
memory pool, and dynamic allocation from a heap. The fi gure shows memory allocations A and B 
allocated with the three different methods. With static allocation, the two allocations are present in 
memory from when the system boots up until the system is switched off. Memory is reserved for the 
two allocations and cannot be used for anything else. 

 With   dynamic allocation, the memory for the allocations is not reserved for just those allocations, 
but can also be used by other allocations. When memory is allocated dynamically from a static mem-
ory pool, the memory pool has been statically allocated. This static allocation is then broken up into 
fi xed-size segments. Memory can then be allocated from these fi xed-size segments. After a segment 
has been allocated, it can only be used by the program that allocated it. When the program is done 
with the segment, the program returns the segment to the memory pool. The memory allocator marks 
the segment as free, and can give it out to another program that asks for it. 

 Dynamic   allocation from a heap is more complex than dynamic allocation from a memory pool. 
With dynamic heap allocation, memory is allocated from a portion of the memory called the heap. 
Memory of any size can be allocated from the heap, as long as there are enough free consecutive 
bytes on the heap. Once a portion of the heap has been allocated, this portion of the memory cannot 
be moved or allocated by another program. When the program is done with its memory, it returns the 
memory to the heap. 

 The   benefi t of dynamic heap allocation is that memory segments of any size can be allocated. The 
price for this advantage is that the heap can become fragmented so that memory cannot be allocated 
from the heap, even if there are enough free bytes left. This is illustrated in  Figure 11.15   , where mem-
ory for allocation C cannot be allocated because there are not enough consecutive bytes left on the 
heap. Even if the number of free bytes on the heap is larger than the size of allocation C, the memory 
cannot be allocated due to fragmentation. 

Allocation AAllocation B

Allocation A Free block

Free block

Heap

Allocation A

 FIGURE 11.14  
       Static memory allocation (left), dynamic allocation 
from a static memory pool (middle), and dynamic 
allocation from a heap (right).    
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  Because   of the problems of fragmentation in dynamic heap allocation, most smart objects use 
static allocation for most purposes and dynamic memory pool allocation when dynamic memory allo-
cation is needed. Because smart objects are typically designed for a single task, static allocation pro-
vides a good baseline as a memory allocation strategy. But since the workload may vary, a certain 
amount of dynamic allocation is needed. 

    Table 11.4    summarizes the properties of the three different memory allocation mechanisms previ-
ously discussed.  

    11.2.4       Outlook: Macroprogramming, Java 
 So   far, most smart objects are programmed as single nodes that possibly collaborate to achieve a 
common goal. This style of programming does not always allow high-level behavior to be cleanly 
expressed, but can require high-level application logic to be manually broken down into low-level 
actions. There has been research into the possibility of programming ensembles of smart object net-
works with a single program. 

 Macroprogramming   [98,186] is a way to program a  network  of smart objects, as opposed to 
programming each individual node. With macroprogramming, the programmer writes the program 
to describe the behavior of the system and lets the underlying macroprogramming system parti-
tion the software on the nodes of the system. The programmer does not need to deal with low-level 
details such as how to send or receive radio packets, instead, he focuses on the application logic of 
the system to achieve the application goal. Program code is compiled into an intermediate format 

Allocation A

Allocation C

Allocation B

 FIGURE 11.15  
       The problem with dynamic heap allocation: allocation C cannot 
be allocated, even if there is enough memory on the heap, 
because the memory has been fragmented.    

 Table 11.4          Properties of Three Memory Allocation Mechanisms: Static Allocation, Dynamic 
Allocation From a Memory Pool, and Dynamic Heap Allocation  

    Property  Static  Memory pool  Heap 

   Runtime allocation  No  Yes  Yes 
   Dynamic size  No  No  Yes 
   Fragmentation  No  No  Yes 
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 interpreted by the nodes. The nodes communicate between each other to form networks on top of 
which the program is executed. A prototype system of the macroprogramming mechanism has been 
developed. 

 Even   though most smart objects are programmed in a low-level language such as C, there are 
several proposals to run high-level languages such as Java on them. The SunSpot nodes come with a 
Java virtual machine pre-installed [223]  , which allows them to directly run programs written in Java. 
The SunSpot hardware is, however, equipped with an ARM microprocessor, which is signifi cantly 
larger, more power-consuming, and more expensive than microcontrollers in other smart objects. For 
the smaller microcontrollers, Java machines are also available [69,82,198], but these typically impose 
memory constraints on the programs running on them. 

 In   the foreseeable future, however, smart objects will continue to be programmed on the node 
level in low-level languages such as C.   

    11.3       ENERGY MANAGEMENT 
 Smart   objects must be careful about how they spend their energy. Energy is provided either by a bat-
tery or by scavenging energy from the environment. In either case, energy is a constrained resource. 
Power optimization must occur both at the hardware and the software level. Without power-effi cient 
hardware, it is diffi cult to achieve low-power operation. Similarly, without power-effi cient software, 
it is impossible to achieve the low-power operation of the hardware. To understand how to orga-
nize the software to optimize the power consumption of a smart object, we must fi rst look at where 
energy is spent. 

 For   radio-equipped smart objects, and indeed most low-power radio devices, the radio transceiver 
is the most power-consuming component.  Figure 11.16    illustrates the power consumption breakdown 
for the Tmote Sky board [200]. It shows the power consumption of the microcontroller in sleep mode, 
the microcontroller in active mode, the radio transceiver in listen mode, and the radio transceiver in 
transmit mode. The power consumption of the microcontroller in sleep mode is very low. In fact, it 
is so low that it is not even visible on the graph. The radio transceiver consumes nearly ten times as 
much power as the microcontroller in active mode. 

 The   most striking observation from  Figure 11.16 , however, is that the power consumption of the 
radio in listen mode is almost as high as the power consumption of the radio in transmit mode. This 
means that it costs almost as much energy to receive a packet as it does to transmit it. But most 
important, this means that the process of idle listening for radio traffi c is very expensive. 

 Before   going into the implications of expensive radio listening, we look into the radio transceiver 
to understand why the cost of listening and transmission are almost equal.  Figure 11.17    is a sche-
matic drawing of the internals of a radio transceiver as adapted from Wang and Sodini [252]. The fi g-
ure shows the logical blocks of the transceiver: transmission circuitry (TX), reception circuitry (RX), 
local oscillator (LO), power amplifi er (PA), and a fi lter for the incoming and outgoing signal. The 
antenna is outside of the box. 

 For   a low-power radio, such as the IEEE 802.15.4, the output power delivered to the antenna 
is at most 1       mW. However, the device consumes 60       mW in total, as seen in  Figure 11.16 . Thus the 
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 additional 59       mW consumed by the transceiver is spent by the local oscillator and other parts of 
the transceiver circuitry. Because the reception and transmission circuitry are similar  —  they both 
modulate and demodulate the outgoing and incoming radio signal based on the clock coming from 
the local oscillator  —  it is clear that the power consumed by the power amplifi er is not the primary 
power consumer in this low-power radio transceiver. 

 For   a comparatively high-power radio, such as a WiFi 802.11 radio, the output power is much 
higher than 1       mW; therefore, the power spent on the power amplifi er is much higher (up to 100       mW) 
[80]. Similarly, mobile telephony radios such as GSM have an output power of 1000       mW. For 
these radios, energy is conserved by avoiding transmissions, but this is not the case for low-power 
radios. 
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 FIGURE 11.16  
       Power consumption of the microcontroller and the radio on the Tmote Sky smart object prototyping board. The 
power consumption of the microcontroller sleep mode is so low that it is not visible in the graph.    
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 FIGURE 11.17  
       Schematic drawing of a radio transceiver.    
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    11.3.1        Radio Power Management Mechanisms 
 The   observation that idle radio listening is expensive  —  as expensive as continuously transmitting 
packets  —  is important. This insight tells us that we cannot expect to save energy by avoiding trans-
missions, but that to conserve energy we must switch the radio off. When the radio is off we cannot 
hear transmissions from other nodes. 

 Not   listening on the radio severely limits the type of network that can be constructed with smart 
objects. The only types of networks possible are the star networks, as shown in  Figure 11.18   . Star net-
works are given this name because their structure resembles a star consisting of a central node with 
connections to outside nodes. In a star network, the central node has its radio turned on all the time. 
This node has an external power source. All of the other battery-powered nodes keep their radios 
switched off to conserve energy. Only when the nodes have data to send do they switch on their radio 
to transmit a message. The only node they can transmit to is the central node because all of the other 
nodes have their radios switched off. 

 The   star network approach is simple and useful, but it constrains the range of the smart object net-
work to that of the physical transmission range of the radio transceivers. For some applications, this 
is good enough. 

 To   allow the network range to be dynamically extended, the nodes must be able to receive trans-
missions from each other. With this ability, the network topology also can be constructed to provide 
redundant paths through the network, providing increased reliability. If a node goes down, the net-
work can reroute the traffi c around the failed node. This network structure is called a mesh network. 

    Figure 11.19    is an example of a mesh network. In a mesh network, all nodes can talk to each other 
and form a robust multi-hop network. The network can be dynamically extended as needed by adding 
more nodes. The new nodes automatically join the network and act as relay nodes that forward traffi c. 

 To   be able to form mesh networks, the radio transceivers of the nodes must be managed so that 
they are switched off when there is no traffi c but switched on when neighbors want to communicate. 
Thus, the nodes must have a way to rendezvous so that two nodes who want to communicate can 
reach each other. 

 FIGURE 11.18  
       Star networks are the only types of networks possible if the 
devices never have the radio on to listen for transmissions 
from neighbors.    
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  Over   the last ten years, several ways to synchronize the nodes so they can build mesh networks have 
been investigated [25,76,181,199,232,244,261,262]. Early work provided signifi cant energy savings 
over an always-on radio. For example, the S-MAC mechanism reduced the average time the radio was 
turned on from 100% to 35% [261]. The WiseMAC protocol reduced this further to around 20% [76]. 
The B-MAC protocol showed an idle radio on-time of 1% [199]. Later developments even reduced the 
idle radio on-time even further. 

 In   the remainder of this chapter, we look at two of these methods: the asynchronous low-power 
listening (LPL), as embodied in the X-MAC protocol [25] and the synchronous Time Synchronized 
Mesh Protocol (TSMP) [196].  

    11.3.2       Asynchronous Duty Cycling 
 LPL   achieves low-power operation by switching the radio off most of the time and periodically 
switching it on for a short while. This procedure is called duty cycling. By keeping the radio on for 
a short while, the duty cycling mechanism makes it possible to receive transmissions from neighbor-
ing nodes. This process is illustrated in  Figure 11.20   . The time during which the radio is on and off is 
confi gurable. This confi guration depends on the predicted traffi c load of the network. Example con-
fi gurations are an off-time of half a second and on-time of a few hundred microseconds. This is just 
enough to hear an incoming packet from a neighbor. 

 FIGURE 11.19  
       In a mesh network, all nodes can 
talk to each other, allowing the 
network range to be dynamically 
extended and enabling redundant 
network paths, which increase 
reliability.    

Receiver

 FIGURE 11.20  
       The radio duty cycling principle in LPL. The receiver keeps its radio off for most of the time, but switches it on 
for a short while to listen for a transmission from a neighbor.    
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  To   send a packet to a node, the sender fi rst sends a train of short packets called strobes. When the 
receiver hears a strobe, the receiver switches its radio transceiver on in anticipation of the data packet. 
The strobe train must be long enough for all neighbors to listen at least once within the period. This is 
shown in  Figure 11.21   . 

 LPL   reduces the power consumption in the network by switching the energy burden from the 
receivers to the senders. The receivers can have their radios switched off for most of the time, con-
serving power, at the cost of increased power consumption for the senders, who have to send more 
data on every transmission. This is a reasonable trade-off, however, since smart object networks are 
silent for most of the time. Thus it makes sense that the transmission is more costly if we can save 
energy for every other node. 

 The   LPL procedure described thus far suffers from a number of problems. First, the strobes wake 
up every node, not only the one receiving the fi nal packet. This wastes energy for all other receivers 
who must have their radios switched on but do not receive any useful data. Second, each packet trans-
mission takes a considerable amount of time. If receivers are switched off for half a second, the strobe 
train must be sent during half a second. 

 To   remedy these problems, each strobe is provided with the address of the recipient of the data 
packet. When another node hears the strobe, it determines that the packet is destined for another node 
and switches its radio off. When the node to which the data packet is addressed hears the strobe, it sends 

Receiver

Sender

 FIGURE 11.22  
       Strobe   acknowledgment optimization in LPL. Each strobe contains the address of the receiver of the data 
packet. When the receiver hears a strobe, it sends a strobe acknowledgment packet to the sender who then 
immediately transmits the data packet.    

Receiver

Sender  FIGURE 11.21  
       To transmit a packet with LPL, 
the sender fi rst sends a series 
of strobe packets to wake the 
receiver up.    
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 a short packet to the sender called a strobe acknowledgment packet. Because the sender knows that the 
receiver has its radio switched on, it immediately sends the data packet as shown in  Figure 11.22   . 

 As   a further optimization, the sender can learn the duty cycle of its receivers. If the nodes have 
a constant duty cycle, the sender can start sending its strobes just before it expects the receiver to 
switch its radio on. This reduces both the power consumption of the sender, who does not need to 
send as many strobes, and the load on the network [76]. 

 LPL   is not explicitly synchronized. The sender and receiver do not need to be explicitly in synch 
with each other. Instead, the strobing process provides an implicit synchronization mechanism where 
the nodes synchronize on each data exchange.  

    11.3.3       Synchronous Duty Cycling 
 Although   asynchronous, power-saving protocols such as LPL are useful in their simplicity, their per-
formance can be improved by making them synchronous. Synchronous protocols are built on explicit 
time synchronization. Asynchronous, power-saving protocols implicitly synchronize themselves on 
every data transmission, but synchronous protocols explicitly synchronize themselves before sending 
any actual data packets. Several methods for time synchronization exist [167,216]. 

 With   time synchronization, a synchronous protocol can reduce the time that the protocol has to 
keep the radio switched on reducing the overall power consumption. One example of a time-synchro-
nized, power-saving protocol is TSMP [196]. TSMP is the basis of the two industrial sensor network 
standards WirelessHART and ISA100a. In addition to providing a long lifetime by switching the 
radio off as often as possible, TSMP also achieves high reliability by constantly switching the physi-
cal radio frequency on which packets are sent. The network is centrally managed so that the entire 
network is scheduled by a network manager (a small server located next to the network). TSMP is 
designed for industrial use and is not intended to be suitable for people- or home-centric smart objects 
applications. 

 In   TSMP, all nodes are time synchronized within 50        μ s. Time is divided into slots that are 10       ms long. 
In every slot, a node is either listening, potentially transmitting (if the node has data to transmit), or sleep-
ing. When listening, the node listens for a short while at the beginning of the 10       ms time slot. If a node is 
transmitting in the time slot, the transmission will start within 100        μ s. Thus, the receiver does not need to 
keep its radio on for longer than 100        μ s every 10       ms in those time slots it is able to receive a packet. 

 The   time-synchronized process is shown in  Figure 11.23   . The sender only needs to send a very 
short synchronization byte before sending its packet, because the receiver can quickly determine if 
there is a packet transmitted or not.  

Receiver

Sender  FIGURE 11.23  
       With a time-synchronized protocol 
such as TSMP, nodes need 
shorter on-times because they 
know exactly when the sender 
potentially transmits reducing 
power consumption.    
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    11.3.4        Examples of Radio On-times 
 The   primary purpose of the radio power-saving mechanisms presented in  Table 11.5    is to reduce the 
power consumption by switching the radio off as often as possible. This is particularly important 
when the devices are idle or when there is no traffi c fl owing. Many smart object networks spend most 
of the time in idle mode. 

    Table 11.5  compares the idle radio on-time for fi ve power-saving radio mechanisms: the X-MAC 
mechanism [25] as measured in the Contiki implementation, the Arch Rock mechanism as reported 
by Hui and Culler [125], the ContikiMAC mechanism as measured in its Contiki implementation, the 
TSMP mechanism as reported by Pister and Doherty [196], and the Dozer mechanism as reported by 
Burri et al. [27]. TSMP and Dozer are synchronous mechanisms whereas the others are asynchronous. 
The radio on-time depends on the system confi guration and since different power saving mechanisms 
have different confi gurations, a direct comparison is not possible. The purpose of the table is to show 
that several existing mechanisms are able to keep the radio switched off for approximately 99% of the 
time. 

 Although   the synchronous mechanisms are more effi cient in reducing the idle radio on-time, this 
comes at the price of a higher network setup time. For example, with the TSMP protocol it may take 
several minutes for a node to join the network [196]. Additionally, the performance latency charac-
teristics for the different methods vary. There are as yet no comparative studies that shed light on the 
typical system latency for the previously mentioned power-saving mechanisms.   

    11.4       CONCLUSIONS 
 In   this chapter, we discussed the hardware and software for smart objects as well as the energy con-
sumption of smart objects and how the hardware and software needs to cooperate to save power. The 
hardware typically consists of four parts: a radio transceiver, a microcontroller, a power source, and a 
set of sensors and actuators. The software, which runs on the microcontroller, consists of an operating 
system and the application programs that defi ne the behavior of the smart object. Contiki, TinyOS, 
and FreeRTOS are three examples of such operating systems. Because of the power, size, and cost 
constraints of smart object hardware, there are severe memory constraints on smart object software. 

 The   power consumption of a smart object is important because many smart objects have con-
strained power budgets. Smart objects either run on batteries, which are diffi cult to replace or 

 Table 11.5          Idle Radio On-time for Five Different Power-saving Mechanisms  

   Mechanism  Type of mechanism  Typical radio on-time (%) 

   X-MAC  Asynchronous  1.4 
   Arch Rock  Asynchronous  0.65 
   ContikiMAC  Asynchronous  0.45 
   TSMP  Synchronous  0.32 
   Dozer  Synchronous  0.16 
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 recharge, or from environmental sources such as small solar cells. In either case, power is con-
strained. To provide a long lifetime, the smart object software must be smart about managing its 
energy consumption. 

 For   many smart objects, the communication device consumes the most power, both for radio-
equipped devices and for devices using other communication mechanisms. For radio-equipped sys-
tems, the radio consumes as much power when listening for radio traffi c as it does when sending 
data. Therefore, radio energy management mechanisms must switch off the radio as often as possible. 
Because no communication can take place if the radio is switched off, the system must have a mecha-
nism to synchronize nearby nodes so their radios are switched on simultaneously. Asynchronous, power-
saving protocols, such as LPL, provide a high degree of power saving without requiring any explicit 
time synchronization between nodes. By adding explicit time synchronization, it is possible to achieve 
higher power effectiveness, at the cost of higher network setup time, as well as the additional complex-
ity caused by the required time synchronization.                            
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CHAPTER

  Smart   objects communicate with each other, but the choice of communication technology varies 
between different applications and different environments. In this chapter we look at the various ways 
in which communication between smart objects works. The communication principles behind smart 
object communication and how it differs from communication between traditional computers are also 
discussed. We then turn to three communication standards for smart objects: IEEE 802.15.4, IEEE 
802.11 (WiFi), and Powerline communication (PLC). 

    12.1       COMMUNICATION PATTERNS FOR SMART OBJECTS 
 Smart   object communication patterns can be divided into three categories: one-to-one, one-to-many, 
and many-to-one. Each communication pattern is used in different situations. Many applications use a 
combination of the patterns. 

 Smart   objects have specifi c communication patterns based on their application. A person-
centric smart object network used to measure bodily metrics of hospital patients differs greatly from 
an industrial smart object network used to monitor vibration of industrial robots. Yet, these diverse 
types of networks share many of the principles behind the communication within the network. 

 Smart   objects often communicate over unreliable communication channels. The radio transmission 
of a smart object with a radio transceiver may be disturbed by other radio senders in the vicinity. Radio 
signals are also disturbed by physical obstacles between the sender and the receiver. Because low-power 
radios for smart objects use unlicensed radio frequency bands, where they coexist with other radio tech-
nologies, the risk of radio disturbance is even greater. For wired technologies, the risk of disturbance 
may be smaller, but is still a factor that the communication protocols must be prepared to deal with. 

 Because   the communication channels are inherently unreliable, the communication protocols run-
ning on top of the communication channels often have mechanisms that provide reliability. Messages 
that are lost because of radio disturbance are retransmitted. Not all applications require strict reliabil-
ity, however, and for such applications the underlying best-effort nature of the communication chan-
nel may provide enough reliability. 

 Radio   is not only an unreliable medium, it is also a shared medium. When sending a message over 
radio, it is possible that another nearby node simultaneously sends a message. Because the medium 
is shared, the two messages collide in the air and a receiver   may not be able to receive any of the sent 
messages. Communication protocols for radios must take this into account. 
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  Different   smart object applications have different communication demands. Applications involv-
ing mobile objects, such as body-worn sensors, typically require rapid knowledge of the changing 
network topology around them. In contrast, highly static applications, such as industrial monitoring 
of stationary equipment, do not require rapid updates of the network topology because the topology 
rarely changes. 

 The   power consumption of the radio transceiver affects network structures as well as possible com-
munication patterns. Because the radio must be switched off to conserve power, networks with very low 
power budgets cannot expect to maintain complex communication patterns over extended periods of time. 

 Armed   with a preliminary understanding of reliability concerns, the different application require-
ments, and the effect of power consumption, we turn to the three different types of communication 
patterns for smart objects: one-to-one communication, one-to-many communication, and many-to-one 
communication. 

    12.1.1       One-to-one Communication 
 The  -one-to-one communication pattern occurs when one smart object communicates with another smart 
object. The communication may involve other smart objects, however, as the communication may be 
routed through a network of smart objects. In  Figure 12.1   , two smart objects communicate with each 
other, but two other smart objects are involved because they forward packets between the communica-
tion end points.  

    12.1.2       One-to-many Communication 
 The   one-to-many communication pattern ( Figure 12.2   ) is used for sending messages from one node 
to several other nodes and possibly all other nodes in the network. This can be used, for example, for 
sending a command to a set of nodes in the network.  

 There   are several forms of one-to-many communication. Depending on the situation in which the 
communication pattern is used, the required reliability of the message delivery is different. If high 
reliability is required, the communication protocol must be able to retransmit the messages until every 

 FIGURE 12.1  
       One-to-one communication in a 
smart object network.    



14912.1  Communication Patterns for Smart Objects

 receiver has successfully received it. If reliability is not a hard requirement, the protocol may not need 
to retransmit any messages: the protocol hopes that the underlying communication medium is reliable 
enough for the message to reach the receivers. 

 Many   mechanisms and protocols have been designed to perform one-to-many communication in 
low-power radio networks. The simplest form of one-to-many communication is network fl ooding. 
This is done by having each node broadcast the message to be sent. When a node hears a broad-
casted message from a neighbor, the node rebroadcasts the message to its own neighbors. To avoid 
cross-talk, each node waits for a random interval before rebroadcasting the message. The effect of 
this mechanism is that the message eventually reaches all nodes in the network, unless messages are 
lost because of radio disturbances or radio collisions. 

 Although   a network fl ood may work well in many situations, it is not a reliable mechanism. There 
are no guarantees that messages sent with the mechanism reach their destinations. Messages that are 
lost due to disturbance or collisions are not retransmitted. To achieve reliable one-to-many communi-
cation, the communication protocol must detect lost messages and retransmit them. 

 Trickle   [159] is a reliable one-to-many communication mechanism explicitly designed for low-
power radio networks. It uses periodic retransmissions to ensure that lost messages are retransmitted. 
To avoid overloading the radio with too many transmissions, the protocol provides a mechanism to 
reduce the number of messages that are sent. By assigning each message a sequence number, the pro-
tocol knows which nodes have received a message. If a node is heard sending an old sequence num-
ber, any of its neighbors can retransmit its latest message to the node with the old sequence number, 
ensuring that the latest message is made known to all nodes. 

 One  -to-many communication is also used in routing protocols to establish one-to-one communi-
cation paths. For example, the one-to-one AODV protocol [194] uses a one-to-many phase to fi nd a 
path to the communication end point.  

    12.1.3       Many-to-one Communication 
 Many  -to-one communication ( Figure 12.3   ) occurs frequently in smart object networks that collect 
data from the nodes. In many-to-one communication, several nodes send data toward a single node. 
This node is often called a sink node.  

       FIGURE 12.2  
     One-to-many communication in a 
smart object network  .      
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  Many  -to-one communication can be used to collect sensor data, such as temperature data, from 
the nodes in the network, but it can also be used for network health status information. Nodes send 
periodic status reports to a sink node. The sink node then reports the overall performance of the net-
work to an outside observer. 

 In   many-to-one communication, there may be more than one sink inside the network. If the appli-
cation does not specify a specifi c node to which the data are to be sent, the network may choose to 
send the data to the sink closest to the sender. This allows networks with multiple sinks to collect data 
with a higher effi ciency than if all data had to be transported across the entire network. 

 To   set up a many-to-one communication network, the nodes build a tree structure with its root at 
the sink. The sink announces its presence by sending repeated broadcast messages indicating that the 
sender is zero hops away from the sink node. Its neighbors hear the transmissions and transmit mes-
sages indicating they are one hop away from the sink. In turn, their neighbors will broadcast that they 
are two hops away from the sink, and so on. With this simple method, every node in the network will 
eventually know how many hops away they are from the sink and which of their neighbors is closer. 
When sending a packet, a node only has to send it to a node that is closer to the sink. 

 Although   the hop-count-based routing path construction method is simple, it is not without prob-
lems. A node with a very short number of hops to the sink may be located where there is very bad 
radio coverage, while a node with more hops to the sink may be located where there is very good 
radio coverage. To reach the sink, it may be better to send to the node with better radio coverage 
but with more hops to the sink, because the packet has a higher chance of getting through without 
repeated retransmissions. 

 To   account for radio quality in addition to hop count, several cost metrics for many-to-one routing 
exist. Woo et al. [258] explored several metrics and found that a metric based on how many transmis-
sions are expected is a good choice. This metric, called expected transmissions (ETX) [50], computes 
an estimate of the amount of transmissions and retransmissions needed to reach the sink for a given 
path. When sending a packet, the node chooses the path with the smallest number of ETX. Others 
have corroborated this fi nding [85,94]  . 

 The   idea of ETX is best explained with an example.  Figure 12.4    shows a network of fi ve nodes, A 
to E. Node A wants to send a message to node E: What path should be taken? The path A-B-E is two 

       FIGURE 12.3  
     Many-to-one communication in a 
smart object network.      
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 hops, and the path A-C-D-E is three hops. If node A would use the hop count as a routing metric, path 
A-B-E would be chosen. An ETX-based routing metric takes the ETX of each path into consideration. 
The expected number of transmissions depends on the communication quality between two neighbors 
and can be estimated by sending probe packets between the neighbors and counting how many made 
it through. In the previous example, the ETX for each neighbor pair on the paths is already estimated. 
The routing protocol computes the sum of all ETX metrics for the paths to form a routing metric to 
the destination. In this case, the path A-B-E has an ETX of 5.3, which means that on average, a packet 
sent on this path requires 5.3 transmissions before it reaches its destination. The path A-C-D-E, on the 
other hand, has an ETX of 4.3, which is less than the path A-B-E. Thus the routing protocol chooses 
path A-C-D-E, which has a lower ETX, even if it has more hops than the path A-B-E. 

 The   Collection Tree Protocol (CTP) is an example of a many-to-one protocol that uses ETX for 
setting up a tree network [94]  . In CTP, each node periodically broadcasts its ETX toward the nearest 
sink node. To avoid overloading the network, the amount of broadcast is reduced through a suppres-
sion mechanism similar to that of Trickle [159].   

    12.2       PHYSICAL COMMUNICATION STANDARDS 
 Next  , we discuss three different physical communication mechanisms for smart objects: two radio 
transmission mechanisms, IEEE 802.15.4 and IEEE 802.11, and PLC. The three mechanisms are 
different in many aspects, but similar in others. Both IEEE 802.15.4 and IEEE 802.11 are wireless 
radio mechanisms. PLC is inherently wired, as it uses physical power lines as its physical medium. 
Nevertheless, all three mechanisms operate over an unpredictable physical transmission medium and 
must be prepared to deal with data loss. 

 From   a networking standpoint, the most important difference between the three mechanisms is 
the range of physical signals. IEEE 802.15.4 is a relatively short-range transmission mechanism with 
individual radio signals reaching only a few meters. IEEE 802.11 has a longer physical range, some-
times as much as several hundred meters. Finally, PLC has a physical transmission range determined 
by the length of the physical cables through which the signals are propagated and by the impedance 
of the loads connected to the wire. 

 The   physical range has implications for network formation. In a PLC network, all nodes connected 
to the same physical network have the same connectivity to other nodes as long as no node is physi-
cally disconnected from the cable. In contrast, IEEE 802.15.4 nodes must be prepared for the network 
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 FIGURE 12.4  
       ETX in a fi ve-node network.    
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 to dynamically change as nodes move or when the physical transmission environment changes. IEEE 
802.11 has similar properties, but they are not as pronounced because of its longer physical range. 

 Because   of its short range, IEEE 802.15.4 networks need a routing mechanism to provide a mesh 
network. Nodes must be prepared to relay traffi c from neighbor nodes to other nodes in the network, 
because the nodes cannot directly reach all other nodes. In PLC, individual nodes do not need to route 
data to each other because all nodes reach each other directly, but nodes may need to route data to 
nodes on other networks. For 802.11, most 802.11 networks have access points that are connected to 
each other. Therefore, the nodes themselves do not have to relay data to each other, but can send data 
to nodes with which they have no direct connection to the nearest access point.  

    12.3       IEEE 802.15.4 
 IEEE   802.15.4 is a standard radio technology for low-power, low-data-rate applications [100]  . 
The standard has been developed within the 802.15 personal area network (PAN) Working Group 
within the Institute of Electrical and Electronics Engineers (IEEE). IEEE 802.15.4 has a maximum 
data rate of 250,000 bits/s and a maximum output power of 1       mW. IEEE 802.15.4 devices have a 
nominal range on the order of a few tens of meters. The focus of the IEEE 802.15.4 specifi cation is 
to allow low-cost and low-complexity transceivers, which has made IEEE 802.15.4 popular for smart 
objects. Many companies manufacture IEEE 802.15.4-compliant devices. 

 Because   of the ubiquity of IEEE 802.15.4 and of the availability of IEEE 802.15.4- compliant radio 
transceivers, many of the recently developed low-power radio stacks are built on IEEE 802.15.4: 
WirelessHART, ISA100a, IPv6, and ZigBee. 

 The   IEEE 802.15.4 standard specifi es two layers: 

      ●      Physical: Specifi es how messages are transmitted and received over the physical radio medium.  
      ●      Media   access control (MAC): Specifi es how messages coming from the physical layer are handled.    

 Although   the IEEE 802.15.4 standard specifi es several mechanisms in the physical and MAC 
layers, not all parts of the specifi cation are widely used. For example, the WirelessHART standard 
uses the physical layer specifi cation and the MAC layer packet header format, but not the full MAC 
behavior. Instead, WirelessHART adds its own logic on top of the MAC format. 

 The   maximum packet size in 802.15.4 is 127 bytes. Packets are small because IEEE 802.15.4 
is intended for devices with low data rates. Because the MAC layer adds a header to each packet, 
the available amount of data for an upper layer protocol or application is between 86 and 116 bytes. 
Upper layer protocols, therefore, often add mechanisms to fragment larger data portions into multiple 
802.15.4 frames [176]. 

 IEEE   802.15.4 is typically implemented in a combination of hardware and software. The low-
level parts  —  the physical layer and parts of the MAC processing  —  are implemented in hardware, 
whereas the higher-level parts such as the MAC layer logic are implemented in software. Several 
implementations of the standard exist. 

 IEEE   802.15.4 networks are divided into PANs as shown in  Figure 12.5   . Each PAN has a PAN 
coordinator and a set of PAN members. Packets sent over a PAN carry a 16-bit PAN identifi er that 
specifi es to what PAN the packet is destined. A device can participate in one PAN as the PAN coor-
dinator and simultaneously participate as a PAN member in another PAN. 
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  The   IEEE 802.15.4 standard specifi es two types of devices: fully functional devices (FFDs) and 
reduced function devices (RFDs). FFDs are more capable than RFDs, and can act as PAN coordi-
nators. RFDs are simpler devices intended to be easier to implement, making them less costly to 
manufacture. RFDs can only communicate with FFDs. FFDs can communicate with both FFDs and 
RFDs. 

 Although   the 802.15.4 specifi cation defi nes three types of network structures that 802.15.4 
supports  —  star topology, mesh topology, and cluster tree topology  —  most of the protocols that 
operate on top of 802.15.4 do not use the 802.15.4 topologies. Instead, they build their own network 
topologies on top of the 802.15.4 MAC layer. For that reason, we do not go into detail into the network 
topologies defi ned by 802.15.4. 

    12.3.1       802.15.4 Addresses 
 Each   node in an 802.15.4 network has a 64-bit address that uniquely identifi es the device. Because 
of the limited packet size in 802.15.4, however, the length of the 64-bit addresses is prohibitive. 
Therefore, 802.15.4 allows nodes to use short addresses that are 16 bits long. Short addresses are 
assigned by the PAN coordinator and are valid only within the context of a PAN. Nodes may choose 
to send packets using either of the two address formats. 

 Addresses   are written as hexadecimal digits separated by colons. An example of a long 802.15.4 
address is 00:12:75:00:11:6e:cd:fb.  Figure 12.6    is an example of two 802.15.4 addresses, one long 
and one short. 

 Long   addresses are globally unique and each 802.15.4 device is assigned an address when manu-
factured. Each manufacturer requests a 24-bit, unique organizational unique identifi er (OUI) from the 
IEEE. For this, the requesting organization pays a one-time fee of $1650 to the IEEE. The OUI is 
used as the fi rst 24 bits of the address of the device. The remaining 40 bits are assigned by the manu-
facturer and must be unique for each device. 

 FIGURE 12.5  
       An IEEE 802.15.4 network 
with FFDs shown as dark dots 
and RFDs shown as hollow 
dots. Two of the FFDs are 
PAN coordinators in the two 
PANs, shown as dotted circles. 
The right PAN contains two 
FFDs, but only one is the PAN 
coordinator.    
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  Short   addresses are assigned at runtime by the PAN coordinator. A short address is valid only 
within the PAN in which it was assigned. Nevertheless, it is possible for a device with a short address 
to communicate with devices outside of its own PAN by including the 16-bit PAN identifi ers of 
its own PAN and the PAN of the device with which it communicates in each message. The IEEE 
802.15.4 standard does not specify any particular algorithm to be used by a PAN coordinator when 
assigning unique short addresses within the PAN.  

    12.3.2       The 802.15.4 Physical Layer 
 The   physical layer determines the physical radio frequency at which the radio operates, the radio 
modulation, and the encoding of the signal. IEEE 802.15.4 operates on three, license-free radio fre-
quency bands. Because of local radio regulations, the exact frequency is different in different parts of 
the world. In the United States, IEEE 802.15.4 uses the 902 – 928       MHz band. In Europe, 802.15.4 uses 
the 868 – 868.8       MHz band. In the rest of the world, 802.15.4 uses the 2400 – 2483.5       MHz band. 

 IEEE   802.15.4 defi nes 26 different operational channels. Within each frequency band, there are 
several channels defi ned, as shown in  Figure 12.7   . Channel 0 is defi ned only in Europe, and resides 
on the 868       MHz band. Channels 1 to 10 are defi ned only in the United States on the 902 – 982       MHz 
band. The channel spacing is 2       MHz. 

 Channels   11 to 26 are defi ned on the 2.4       GHz band, which makes them available everywhere. The 
channels are defi ned with 5       MHz channel spacing. 

 IEEE   802.15.4 uses two types of radio modulation, depending on the channel frequency. Channels 
0 to 10 use binary phase-shift keying (BPSK), whereas channels 11 to 26 use quadrature phase-
shift keying (QPSK). On all channels, IEEE 802.15.4 uses direct-sequence spread spectrum (DSSS) 
modulation. 

 Like   the modulation technique, the bit rate is dependent on the radio channel. The bit rate of chan-
nel 0 is 20,000 bits/s. For channels 1 to 10, the bit rate is 40,000 bits/s, and for channels 11 to 26 the 
bit rate is 250,000 bits/s. 

 The   IEEE 802.15.4 radio channels in the 2.4       GHz band share their radio frequency with 802.11 (WiFi) 
and have a considerable overlap with the 802.11 channels. Because 802.11 has a signifi cantly higher output 
power, 802.11 disturbs 802.15.4 traffi c.  Figure 12.8    shows the overlap between 802.15.4 and 802.11. All 
802.15.4 channels except channels 25 and 26 are covered by 802.11 channels. When the non-overlapping 
802.11 channels 1, 6, and 11 are used, there are two additional 802.15.4 channels (15 and 20) that do not 
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 FIGURE 12.6  
       IEEE 802.15.4 supports two 
addressing formats: long (64-bit) 
addresses and short (16-bit) 
addresses.    
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 see interference from 802.11 traffi c. Channel assignments are, however, subject to variations within differ-
ent jurisdictions and may change over time. 

 The   physical layer also provides mechanisms to measure the radio energy for a given radio chan-
nel. This is used by the MAC layer to determine if another node may be transmitting on a particular 
channel, and by the MAC coordinator to scan for available channels with a low idle energy level. 
A low idle energy level is an indication of low interference from other radio sources on the frequency 
of the channel. 

 The   radio energy detection mechanism is also used to provide a clear channel assessment (CCA) 
mechanism, where the physical layer can assess if another node is currently transmitting over the 
radio. This is done in one of three ways: by measuring the radio energy and comparing it with a pre-
defi ned energy threshold, by demodulating the incoming radio signal to see if it is a valid 802.15.4 
signal, or by a combination of the radio energy detection method and the signal modulation method. 
The CCA is used by the MAC layer to control access to the radio medium.  

868–868.8 MHz 
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2400–2483.5 MHz
Channels 11–26 

5 MHz

 FIGURE 12.7  
       IEEE 802.15.4 defi nes 26 
physical radio channels.    
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802.11 channel 1 802.11 channel 11802.11 channel 6

 FIGURE 12.8  
       IEEE 802.15.4 channels 11 – 24 overlap the 802.11 channels. Channels 25 and 26 are not covered by 802.11 
channels. When the non-overlapping 802.11 channels 1, 6, and 11 are used, two additional 802.15.4 
channels are undisturbed by 802.11.    
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    12.3.3        MAC Layer 
 The   purpose of the MAC layer is to control access to the radio medium. Because the radio medium is 
shared between all senders and receivers in the vicinity of each other, the MAC layer provides mech-
anisms for the nodes to determine when the medium is idle and when it is safe to send messages. 

 The   IEEE 802.15.4 MAC layer provides channel access management, validation of incoming 
frames, and acknowledgment of frame reception. Additionally, the 802.15.4 MAC provides optional 
mechanisms for a time-division multiple access (TDMA) mechanism for medium access where the 
PAN coordinator assigns time slots to PAN devices and enforces a schedule through the transmission 
of beacon messages. This beacon mode is, however, not widely used by the protocols running on top 
of 802.15.4, therefore, it warrants no further discussion. 

 Channel   access management is done by using the CCA mechanism provided by the physical layer. 
Before sending a packet, the MAC layer asks the physical layer to perform a CCA check. If the CCA 
indicates that another node is currently transmitting, the MAC layer refrains from sending its own 
packet. Instead, the MAC layer waits for a specifi ed time and later retries sending the packet. 

 The   MAC layer performs validation of incoming frames by computing a 16-bit cyclic redundancy 
check (CRC) of the entire frame [132]. The CRC is used to check for transmission errors in the frame 
and is computed by the sender of the frame as the frame is sent. It is added to the transmitted packets. 
If the CRC computed by the receiver does not match the CRC in the frame footer, the receiver dis-
cards the frame. 

 The   MAC layer provides a mechanism for automatic acknowledgment of received frames. If an 
incoming frame has the acknowledgment bit set, the MAC layer sends an acknowledgment frame into 
the air. The acknowledgment frame is sent only if the destination address of the incoming frame is the 
same as the address of the device, and if the CRC of the incoming frame is valid. The acknowledg-
ment frame is not explicitly addressed to the sender of the data frame, but is broadcast to all nodes. 
Because of this, many of the upper layer protocols running on top of 802.15.4 implement their own 
acknowledgment mechanisms.  

    12.3.4       The 802.15.4 Frame Format 
 Communication   protocols specify a common packet format so that all nodes know how to construct 
and parse packets from others. Packet formats consist of three parts: a header, a data portion, and a 
footer. The header contains control data such as addresses, sequence numbers, and fl ags. The data 
portion contains the upper layer data. Therefore, the structure of the data portion is typically unspeci-
fi ed, but left to the upper layer protocols for specifi cation. The footer, if specifi ed, usually contains 
checksums or cryptographic signatures. Such data can often be computed while the packet is trans-
mitted. The footer is then sent after the rest of the packet has been sent. 

 IEEE   802.15.4 defi nes a common packet format for all packet transmissions. The packet format 
consists of both a physical layer part and a MAC layer part. The physical layer adds a synchronization 
header and the MAC layer adds a header and a footer. The header format is shown in  Figure 12.9   . 

 The   header added by the physical layer consists of a preamble, a start of frame delimiter (SFD), 
and a length fi eld. The preamble is used to synchronize the sender and the receiver so the receiver is 
able to correctly receive the packet that follows. The SFD indicates to the receiver that the preamble 
ends and that the frame begins. The single-byte length fi eld tells the receiver how many bytes will 
follow. The maximum length of the packet that follows is 127 bytes. 
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  The   MAC layer header follows directly after the physical layer header. The MAC layer header 
contains two control bytes, called the frame control, that contain fl ags that tell the receiver how 
to interpret the rest of the header as well as fl ags to indicate whether or not the frame should be 
acknowledged. Following the frame control bytes is a single-byte sequence number. The sequence 
number is used to associate acknowledgments with the data packet they acknowledge. The acknowl-
edgment carries the same sequence number as the data packet. 

 After   the frame control and sequence number bytes are the addressing fi elds. They contain the 
address of the sender of the packet and the address of the receiver of the packet as well as identifi ers of 
the sending and receiving PAN. All addressing fi elds are optional. Their presence is indicated by fl ags 
in the frame control fi eld. The addressing fi elds are used by a receiver to determine if a received packet 
is destined for itself or not. The addressing fi eld is followed by an optional security fi eld that contains 
data for security processing, such as an optional cryptographic message integrity check (MIC) fi eld. 

 The   data follow the MAC layer header, and can be between 86 and 116 bytes long. The maximum 
size of the data is determined by how many optional MAC layer fi elds are used. The structure of the 
data portion of the 802.15.4 frame is not specifi ed by the 802.15.4 standard, but defi ned by the proto-
cols or applications running on top of 802.15.4. 

 At   the end of the 802.15.4 packet is the frame check sequence (FCS) footer, which contains the 
CRC that the MAC layer uses to check if incoming packets should be discarded due to bit errors.  

    12.3.5       Power Consumption 
 The   power consumption of IEEE 802.15.4 is determined by the current draw of the electrical circuits that 
implement the physical communication layer, and by the amount of time during which the radio is turned 
on. As shown in Chapter 11  , there are several ways a radio can be switched off while maintaining com-
munication abilities.  Figure 12.10    shows the power consumption of the electrical circuitry of the CC2420 
IEEE 802.15.4 transceiver, as reported by the CC2420 data sheet. It shows that the idle power consump-
tion is signifi cantly lower than both the listen and the transmit power consumption. In the idle mode, 
however, the transceiver is not able to receive any data. The power consumption in the transmit modes is 
lower than the power consumption in listen mode. The power consumption of the transmit mode depends 
on the output power, which is confi gurable via software on a per-packet basis.   
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 FIGURE 12.9  
       The IEEE 802.15.4 physical layer and MAC layer header formats.    
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    12.4        IEEE 802.11 AND WIFI 
 IEEE   802.11 is a wireless communication standard originally designed as a high-speed, short-range 
communication mechanism for laptops and general purpose PCs. IEEE 802.11 was introduced in the 
late 1990s and several versions of the standard have been released since its inception. Each new ver-
sion of the standard has enabled a higher transmission rate. The fi rst version of the standard, which 
was released in 1997, has a maximum transmission rate of 1 Mbit/s. The latest version of the standard, 
802.11g, has a maximum transmission rate of 54 Mbits/s. 

 WiFi   is a brand name of the WiFi Alliance. The purpose of the WiFi brand is to identify equipment 
and software that is compatible with other WiFi and 802.11 systems. With early 802.11 equipment, it 
was not certain that this equipment from different vendors would interoperate with each other. With 
the WiFi brand, this is no longer an issue. In this book, we use the name 802.11 to distinguish that we 
are discussing the underlying technology and not the interoperability aspects. 

 IEEE   802.11 and WiFi are used in many homes and offi ces to provide wireless Internet connec-
tivity. Today’s laptops have integrated 802.11 circuits. 802.11 base stations are low cost and avail-
able worldwide. Many home broadband routers and DSL modems contain an 802.11 base station. 
Smartphones such as the iPhone contain 802.11 transceivers. It has been estimated that the number of 
802.11 devices worldwide by 2012 will be counted in billions. 

 For   smart objects, 802.11 has many positive aspects. The widespread adoption of 802.11 makes 
deployment of smart objects easy. In locations where an 802.11 network exists, no additional infra-
structure is needed to support an 802.11 smart object network. Also, the availability of 802.11 chip-
sets, routers, and network access cards reduces the cost of hardware for 802.11-enabled smart objects. 
Furthermore, the widespread adoption and availability of 802.11 has led to a widespread knowledge 
and understanding of 802.11. For smart object businesses, this provides a large market of skilled net-
work architects and engineers. 

 Because   802.11 was designed for high-speed transport for laptops and PCs, it has had a reputation 
for being power-hungry. Compared to 802.15.4 transceivers, 802.11 transceivers typically have an 
order of magnitude higher power consumption. 
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 FIGURE 12.10  
       The power consumption of the 
CC2420 IEEE 802.15.4 radio 
transceiver.    
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  For   smart objects, power consumption is a critical issue. Traditionally, 802.11 has been seen as 
a power-hungry technology and therefore not deemed useful for smart objects. Recently, however, a 
new generation of low-power 802.11 transceivers has emerged. They are optimized for systems that, 
like smart objects, spend most of their time in sleep mode. By providing signifi cantly lower power 
consumption in sleep mode, these transceivers extend the life of standard AA cell batteries. 

    12.4.1       Network Topology and Formation 
 IEEE   802.11 supports two modes of network topology: infrastructure and ad hoc, also called indepen-
dent (IBSS) mode. In infrastructure mode, all 802.11 transceivers are in the direct range of an access 
point that handles all nodes within its range. In ad hoc mode, 802.11 transceivers can communicate 
directly with each other, without the need for an access point in range. Although most 802.11 trans-
ceivers support the ad hoc mode, infrastructure mode is mostly used. 

    Figure 12.11    is an example topology of an 802.11 network in access point mode. The network has 
two access points connected to a wired backbone network. The access point is connected to mains 
power. Every 802.11 transceiver is associated with one of the access points. Communication between 
nodes goes through the access points or directly over the radio medium. If nodes are in range of 
each other, they directly communicate with each other; otherwise, they communicate by sending 
their packets to the access point to which they are associated. Communication with outside networks 
always goes through the access point. 

 Before   communication takes place in an infrastructure mode network, the nodes must associate 
themselves with the access point. A set of nodes and their access point are called a basic service set 
(BSS). If more than one access point is involved, the set of nodes and access points are called an 
extended service set (ESS). A service set has a service set identifi er (SSID) associated with it. The 
SSID is typically a human-readable textual string. The string is typically called the network name or 
the network ID. 

 To   join a network, a node fi rst probes for available SSIDs. The scan can be either active or pas-
sive. With an active scan, the node broadcasts a probe request packet. The probe request can contain 
an SSID, in case the node wants to join a particular network, or it can contain a blank SSID, in case 
the node wants to probe any available network. The access points reply to the node with a probe 
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 FIGURE 12.11  
       A network topology of 802.11 in access point mode. 
Each 802.11 transceiver is associated with an 
access point. A network may be served by more 
than one access point. The access points typically 
have wired network access.    



160 CHAPTER 12 Communication Mechanisms for Smart Objects

 response packet. It contains the confi guration parameters for the network, such as what channels 
the network uses. When a node has found a suitable network with which to associate, the node fi rst 
must authenticate itself to the network. If the authentication request is accepted by the access point, 
the node sends an association request frame to it. The access point replies with an association reply 
frame, and the node is associated with the network.  

    12.4.2       Physical Layer 
 Most   IEEE 802.11 networks use the license-free 2.4       GHz band, but other radio frequencies are 
defi ned by the standards. The original 802.11 specifi cation, fi rst published in 1997, provided two ver-
sions of the radio layer: one for frequency hopping and one for DSSS. Later, other physical layers 
emerged such as 802.11a, 802.11b, and 802.11g, which use more elaborate modulation mechanisms 
and achieve higher speeds. 

 In   the 2.4       GHz band, IEEE 802.11 operates on 14 different physical radio channels as shown in 
 Figure 12.12   . Channels 12, 13, and 14 are not available in every country, most notably Japan, because 
a larger part of the 2.4       GHz band is available due to radio frequency licensing. The 14 channels are not 
completely separated, but have considerable overlaps. Channels 1, 6, and 11 are non-overlapping and 
current best practice for 802.11 networks says that those channels should be used whenever possible. 

 Several   bit rates are supported by 802.11. Each 802.11 packet is sent with a fi xed bit rate, but the 
bit rate may differ between packets. Transmitter – receiver pairs with a good physical connection may 
negotiate a higher bit rate when sending packets between each other. To be compatible with older 
versions of the standard, broadcast packets are sent with a lower bit rate than packets addressed to a 
specifi c host. This ensures that even older transceivers are able to participate in a network of 802.11 
devices, but also allows newer devices to make use of the higher speed of newer transceivers.  

    12.4.3       MAC Layer 
 The   purpose of the 802.11 MAC layer is to control access to the radio medium to ensure that transmis-
sions from different nodes do not interfere with each other. The 802.11 MAC layer is based on a carrier 
sense multiple access with collision avoidance (CSMA/CA) scheme. Before sending a packet, each node 
listens for transmissions from other nodes. If a transmission from another node is heard, the node defers 
its own transmission for a random period to allow the transmitting node to complete its transmission. 

802.11 channel 1 802.11 channel 11802.11 channel 6

2400–2483.5 MHz

 FIGURE 12.12  
       IEEE 802.11 operates on 14 different channels in the 2.4       GHz band. Channels 1, 6, and 11 do not overlap. 
Channels 12, 13, and 14 are not available in every country due to radio frequency licensing restrictions.    
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  The   802.11 MAC layer uses positive acknowledgments: a node 
that receives a packet from another node must reply with the trans-
mission of an acknowledgment packet. The purpose of the acknowl-
edgment packet is to let the sending node know that the packet was 
received. If the sending node does not receive the acknowledgment 
packet, the data packet is perceived to be lost. Even if the data packet 
was successfully received, but the acknowledgment packet was lost, 
the data packet is deemed lost. The acknowledgment process is 
shown in  Figure 12.13   . 

 In   wireless communication, the so-called hidden node problem 
occurs when a node is in range of two other nodes, but the two other 
nodes are not in range of each other. Because of this, these nodes 
may unknowingly interfere with communication of the fi rst node. 

 To   avoid the hidden node problem, the 802.11 MAC layer offers 
a request to send/clear to send (RTS/CTS) mechanism. When a node 
is about to send a packet, it broadcasts a request to send (RTS) mes-
sage. The RTS message contains the address of the node to which the 
data packet is to be sent. When the receiving node hears this mes-
sage, it replies with a clear to send (CTS) message, if it currently 
is possible for the node to send its packet. If the node knows that 
another transmission is about to take place, the node does not send 
its CTS message. The sending node sends its data packet only after 
hearing a CTS message. This process is illustrated in  Figure 12.14   . 

 The   RTS message serves a dual purpose. First, it is used as a 
request to the receiver to check if the medium is clear to use. Second, 
it tells all nearby nodes that a message transmission is about to take 
place, and they should not try to send any packet before this trans-
mission has ended.  

    12.4.4       Low-power WiFi 
 The   widespread adoption and the low cost of 802.11 equipment and 
modules make 802.11 a compelling choice for smart objects. Until 
recently, however, the power consumption of 802.11 components 
has been prohibitive. Because 802.11 was designed for laptops and 
general purpose PCs, where the power budget is less restrictive than 
for a smart object, existing 802.11 modules have required too much 
power to be usable in battery-powered smart objects. 

 Recently  , however, a number of low-power 802.11 circuits have 
emerged that enable battery-operated 802.11 devices. The low-power 
consumption of these devices adds several years of operation to tra-
ditional AA cell batteries. 

 Low  -power 802.11 devices not only improve the power consumption of data transmission and 
reception, but more important, they signifi cantly improve the power consumption of the 802.11 device 
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       The IEEE 802.11 MAC layer 
uses acknowledgment packets 
that inform the sender that 
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Time

Node A Node B

Data

CTS

RTS

Acknowledgment

 FIGURE 12.14  
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162 CHAPTER 12 Communication Mechanisms for Smart Objects

 in sleep mode. Since smart objects spend most of their time in sleep mode, even a small improvement 
to the sleep mode power consumption means a longer battery life. 

 In   addition to reducing the power consumption of existing modes of the 802.11 module, low-
power 802.11 modules also add a low-power mode that is not available in existing 802.11 modules. 
This mode allows the device to switch most of its parts off, but still be able to quickly resume opera-
tion when needed. 

    Figure 12.15    compares the power consumption of a conventional 802.11 module and a low-power 
802.11 module. Although there are signifi cant savings regarding transmission and reception power, 
the most important reduction in power consumption is during sleep mode.  Table 12.1    compares the 
power consumption of the standby and sleep modes of a conventional 802.11 transceiver and a low-
power 802.11 transceiver. This comparison shows that the power consumption in sleep mode is one 
order of magnitude lower than that of a conventional 802.11 transceiver. In addition to the sleep node, 
the low-power 802.11 transceiver also has a standby mode where the transceiver uses one tenth of the 
power it does in sleep mode. 
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 FIGURE 12.15  
       Comparison of power consumption in transmit, receive, and processing mode for conventional 802.11 and 
low-power 802.11.    

 Table 12.1          Power Consumption of Standby and Sleep Modes of a Conventional 802.11 
Transceiver and of a Low-power 802.11 Transceiver  

     Conventional 802.11 (mW)  Low-power 802.11 (mW) 

   Standby mode  N/A  0.018 
   Sleep mode  13  0.2   

  Note: Conventional 802.11 transceivers do not have a standby mode.  
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  The   difference between the sleep mode and the standby mode is how fast the transceiver is able to 
wake up. In standby mode, most of the transceiver is switched off. The only circuitry that is switched 
on is the wake-up module and the rest of the transceiver is switched off, consuming no power.   

    12.5       PLC 
 Smart   objects do not necessarily need to communicate over radio. When a wired infrastructure is 
available, it can also be used for smart object communication. Even though a wireless system has 
many benefi ts regarding extendibility, range, and ease of deployment, a fi xed wired infrastructure can 
be more economical. This is particularly true if the fi xed infrastructure is already in place. 

 PLC   is a way to send data over power lines. It has many uses ranging from long-range, high-
speed broadband provisioning to homes and offi ces to home automation. For smart objects, PLC 
is an attractive communication technology because of the widespread availability of power lines. 
Moreover, because smart objects need power to function, PLC has the potential to provide the smart 
objects with power and communication. 

    Figure 12.16    shows how a home is connected with PLC over its power lines. Each device con-
nected to the same power line can also use the power line for data communication. A home automa-
tion system can use the network to switch house lights on and off and to send a message to the home 
owner if the stove is turned on for an unusual amount of time. The TV can use the network to down-
load movies from the computer. 

 With   PLC, data are transported across the 50 or 60       Hz electrical distribution network. Because the 
electrical distribution network was not designed to carry high-frequency data signals, the electrical 
equipment may add signifi cant amounts of noise to any data signals transported across the network. 
Thus PLC transceivers and protocols must be able to manage data loss. 

Distribution
transformer

 FIGURE 12.16  
       PLC network within a home.    
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  PLC   can be used to send data over long haul links such as for providing broadband to homes, 
or over shorter distances, such as within a home or an offi ce building. Additionally, PLC has been 
used for automated meter reading of power meters in homes. PLC can also be used to control street 
lights and other large-scale electrical networks. PLC for short-range communication is designed only 
to communicate within one electrical domain such as a home or an offi ce building, because the modu-
lated data signal cannot traverse the electrical voltage transformers outside the electrical domain. 

 There   are several specifi cations and standards for PLC, both for broadband connectivity and for 
smart object applications. Homeplug [234] is a specifi cation for PLC specifi cally targeted to home 
environments. It provides a 15 Mbits/s data rate. The resulting transmission rate is similar to that of 
10 Mbits/s 802.11 [234]. 

 X10   [227] is an older home automation mechanism that uses power lines for communication. It 
was developed in 1975 and today there are many types of X10 devices available ranging from light 
bulbs and power outlets to automated vacuum cleaners and burglar alarms. X10 devices communicate 
with a transmission rate of 100 – 120 bits/s and a resulting data rate of 20 bits/s. Bits are sent during 
the zero-crossings of the current on the alternating current (AC) power lines. The X10 protocol con-
sists of short commands that can switch devices on and off, dim lights, and do slightly more complex 
processing such as timer-based commands. Because of its low data rate, however, X10 is not a viable 
communication mechanism for general smart object networks. 

    12.5.1       Physical Layer 
 PLC   uses the copper wire in the power lines as its physical medium. Because the copper wires are 
also used to carry a high-power AC signal, they are noisy for a physical medium for communication. 
To make matters worse, other devices, such as lamps, household appliances, computers, and TV sets, 
that are attached to the same power distribution network interfere in unpredictable ways. 

 Because   the underlying physical medium is unreliable, the physical layer in PLC communica-
tion stacks must provide a substantial amount of reliability. Most PLC standards use combinations of 
error-robust modulation, strong error-detection mechanisms, and automatic packet loss detection and 
retransmission schemes. 

 Different   PLC standards use different forms of modulation and carrier frequencies depending on 
the desirable data rate. Subsequently, data rates vary from hundreds of bits per second to millions of 
bits per second. Higher data rates typically imply shorter distances.  

    12.5.2       MAC Layer 
 Even   though PLC is a wired technology, the PLC MAC layer has more in common with wireless 
MAC layers than with wired MAC layers. Wired MAC layers such as Ethernet often use CSMA/CD 
where packet collisions are detected and handled via a back-off mechanism. Such collision detection 
builds on the fact that Ethernet transceivers are able to listen to incoming signals while transmitting 
their own signal. 

 PLC   transceivers are similar to wireless radio transceivers in that they cannot listen for incom-
ing signals while transmitting their own signals. Therefore, PLC uses CSMA/CA, which is similar to 
IEEE 802.15.4 and IEEE 802.11. The RPL MAC layer also provides automatic repeat request (ARQ) 
mechanisms.  
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    12.5.3        Power Consumption 
 PLC   networks always have access to power because they are connected to a power source. 
Thus power consumption of the devices is not of the same concern as for wireless radio devices. 
Nevertheless, achieving low-power consumption is still important for several reasons. First, low-
power consumption means low heat emissions. A PLC chip embedded in a device should not heat 
up the surrounding system. Second, and more important, many of the applications for PLC and smart 
object technology reduce power consumption of other devices. An example of this is Smart Grid 
applications, where smart object technology is used to lower the electricity consumption of homes, 
offi ces, and industrial settings. In such applications, it is important that the power consumed by the 
smart object devices is so low that the power savings incurred by the smart object technology signifi -
cantly outweighs the power consumed by the smart object devices themselves. 

 Modern   PLC chipsets have a power consumption on the same order of magnitude as wireless low-
power radios. For example, the Watteco WPC PLC modem chip has an average power consumption of 
less than 10       mW, which is similar to 802.15.4 transceivers and lower than low-power 802.11 transceivers.   

    12.6       CONCLUSIONS 
 Smart   objects communicate with each other, but the choice of communication technology varies 
between different applications and different environments. PLC is a viable communication technol-
ogy for smart objects deployed in environments where power lines are present, such as homes, and 
where the smart objects can be directly connected to the power lines. For smart objects deployed in 
environments without a fi xed infrastructure of network links or power lines, low-power radios are the 
most convenient technology. 

 Both   radio communication and PLC suffer from communication channels of varying and unpredict-
able quality. Communication protocols running on top of such channels must be able to repair lost pack-
ets through retransmissions. Smart object communication can be divided into three patterns: one-to-one, 
one-to-many, and many-to-one. Communication protocols may employ a combination of patterns. 

 IEEE   802.15.4 is a low-power radio standard designed for low-data-rate applications such as smart 
objects. It has a maximum data rate of 250,000 bits/s and operates over a set of license-free radio 
bands in the 868       MHz, 918       MHz, and 2.4       GHz ranges. Packets have a maximum size of 127 bytes. 
Many emerging standards and specifi cations are built on top of 802.15.4 including WirelessHART, 
ISA100a, 6LoWPAN, and ZigBee. There are several implementations of 802.15.4 available, both in 
hardware and as a combination of hardware and software. 

 Low  -power WiFi is emerging as a contender to IEEE 802.15.4 for smart objects. The advantage 
of WiFi is the abundant availability of infrastructure. Traditionally, power consumption has been an 
issue for WiFi, but with the latest low-power chipsets, the power consumption of the sleep mode 
is signifi cantly reduced. By applying mechanisms for radio duty cycling, the power consumption of 
WiFi may soon be in low enough for smart object applications. 

 PLC   allows data to be transported over a fi xed power line infrastructure. It has several applications 
ranging from long haul broadband connectivity for homes to home automation. Many PLC standards 
exist, with data rates varying from a few bits per second to multi-megabit per second transmissions. 
For smart objects, PLC is a promising technology when smart objects are deployed in homes, offi ces, 
and other places where a fi xed power line infrastructure is present.              
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              uIP  —  A Lightweight IP Stack    13 
CHAPTER

  IP   was long believed to be too complex and heavyweight to be usable in smart objects. The micro-
controllers used in smart objects are constrained regarding memory size and processing power. In this 
chapter, we dispel the myth that the IPs are heavyweight by studying the open source uIP IP stack, 
the fi rst IP stack for smart objects. 

 To   communicate using the IP, a device needs an IP stack. This is a software system that imple-
ments the IP protocols enabling IP communication. Every computer on the Internet runs an IP stack. 
They are part of all general purpose operating systems such as Microsoft Windows, Linux, and Mac 
OS. Smart objects are, however, severely memory-constrained and the IP stacks in general purpose 
computers require comparatively large amounts of memory. For example, the IP stack in Linux 
requires at least one megabyte of memory to maintain memory buffers for incoming and outgoing 
data. In contrast, as we discuss in Chapter 11, a smart object typically has only a few kilobytes of 
memory available. 

 At   a high level, the activities of the IP stack are simple: it sends and receives packets from the 
communication device driver. Applications communicate with the IP stack either through the operat-
ing system or directly with the IP stack. When a packet arrives from the communication device driver, 
the IP stack parses the packet headers in the packet, extracts any application data from the packet, and 
sends the data up to the application. When an application wants to send data, the application sends its 
data to the IP stack. The IP stack puts the application data into a packet, creates the necessary packet 
headers, and sends the packet to the communication device driver for transmission over the communi-
cation device. In addition to responding to direct requests from the application and to incoming pack-
ets, the IP stack also deals with periodic protocol processing such as performing retransmissions. 

 The   uIP TCP/IP stack is an implementation of the IP stack specifi cally designed to meet the strict 
memory requirements of smart objects and other networked embedded systems [64]. The fi rst ver-
sion of uIP was released in September 2001. It was released under a permissive open source license 
that allows the software to be used freely in commercial and non-commercial systems. Since its 
fi rst release, the uIP stack has seen a signifi cant industrial adoption, and the software is now used in 
systems and products such as oil pipeline monitoring systems, global container tracking systems, car 
engines, and pico satellites. 

 uIP   is the principal IP communication component of the Contiki operating system. Although the 
uIP stack can be used as a stand-alone software package, and often is used this way, its continued 
development is done within Contiki. 
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  uIP   has very low memory requirements. In its default confi guration, it requires only about one 
kilobyte of RAM and a few kilobytes of ROM. This includes the IP, ICMP, UDP, and TCP protocols. 
The specifi c code size depends on the processor on which the uIP is used. It is possible to reduce 
the RAM footprint further, but at the expense of standard compliancy. The smallest confi guration 
requires only about 100 bytes of RAM, but such a confi guration is not necessarily standard compliant. 
Also, the size of the memory footprint affects the achievable data throughput. For many applications, 
however, a low memory footprint is more important than a high throughput. 

 The   uIP stack was developed about one year after the release of the lwIP stack [64]. The lwIP 
stack is designed for slightly larger systems than uIP and requires a larger amount of memory both 
for buffering and for storing the executable code. An lwIP installation typically requires about 40       kB 
of RAM and 20       kB of ROM. The benefi t of the lwIP stack is the higher performance it achieves when 
compared to the uIP stack. 

 The   uIP stack was originally designed to be used both with and without an operating system, 
as shown in  Figure 13.1   . Today, many operating systems use the uIP stack for IP communication. 
The most prominent example is the Contiki operating system, which is also the current develop-
ment platform for uIP. FreeRTOS provides a choice of either the uIP stack or its larger cousin lwIP. 
TinyOS uses uIP for IPv4 communication, but recently has included a stand-alone implementation 
for IPv6. 

 The   uIP stack implements the network and transport layer protocols of the IP protocol family: IP, 
ICMP, UDP, and TCP. It was the fi rst IP stack for embedded systems to fully implement the TCP 
protocol in a way that makes it fully compatible with the standards. 

 The   fi rst versions of the uIP stack featured only IPv4 communication, but in 2008 Cisco Systems 
extended uIP with IPv6 capabilities. It was developed by Julien Abeill é  and Mathilde Durvy. The 
uIPv6 stack was the fi rst stack to comply with all the IPv6 requirements, which enabled it to use the 
IPv6 Ready logo, as shown in  Figure 13.2    [73]  . The uIPv6 extensions were also released as open 
source software and added to the Contiki operating system, making it widely available. 
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 FIGURE 13.1  
       The IP stack takes care of the communication. Applications can either use the IP stack through the operating 
system (left) or directly interface with the IP stack (right). The IP stack sends and receives packets from the 
communication device driver.    
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  uIP   uses three methods to reduce code size and memory 
usage: an event-driven programming interface, an intentionally 
simple buffer management scheme, and a memory-effi cient 
TCP implementation. We return to these mechanisms after 
looking at how uIP processes incoming and outgoing packets. 

    13.1       PRINCIPLES OF OPERATION 
 The   principle of operation for the uIP stack is simple, as 
shown in Figure 13.3. The uIP stack does three things: it 
processes packets that arrive from the communication device 
driver, it processes requests from the application, and it does 
periodic processing. The uIP forwarding module is respon-
sible for relaying traffi c to other nodes. The forwarding mod-
ule queries a routing protocol module to fi nd out to where 
packets should be relayed.  

 Input   processing starts when the communication device 
driver has received a packet. The driver calls the input pro-
cessing function of uIP, which processes the headers of the 
incoming packet, determines if the packet contains application 
data, and if so passes the data to the application. The applica-
tion may produce a reply to the incoming data, which then is 
handled by the output processing part of uIP. 

 Output   processing is simple. Output processing occurs after the application has been called from 
uIP, and only when the application has produced data for the uIP stack to send. The output processing 
code adds protocol headers to the packet that is to be sent and hands the packet over to the communi-
cation device for transmission. 

 Periodic   processing is done to perform timer-based actions such as retransmissions. The peri-
odic processing mechanisms in uIP are intentionally simple. The uIP periodic processing function is 
invoked regularly to check if there are any retransmissions needed. If so, it produces the packet to be 
retransmitted and gives it to the communication device driver which sends it out. 

 Forwarding   and routing are done separately. Forwarding is the process of resending a received 
packet to a neighbor, whereas routing is the process of determining to which neighbors packets 
should be forwarded. The uIP forwarding module maintains a table of destinations and addresses of 
the next-hop neighbor. Routing protocols, which typically are implemented on top of either UDP or 
TCP, populate the forwarding table based on data received from the routing protocol. 

    13.1.1       Input Processing 
 When   the communication device driver receives a packet from the network, it calls the uIP input pro-
cessing function to deliver the packet to uIP. The uIP input processing code parses the packet head-
ers and determines if the application should be called. If so, uIP delivers the application data to the 
application. 

 FIGURE 13.2  
       uIP was the fi rst IPv6 stack for smart 
objects to be certifi ed under the IPv6 
Ready program. Because it is certifi ed 
as IPv6 Ready, it may use the IPv6 
Ready logo.    
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  The   uIP input processing starts at the IP header. The fl ow of the input processing functionality is 
shown in  Figure 13.4   . Packet headers are parsed from top to bottom, starting with the IP header. The 
uIP input processing code fi rst checks the fi rst byte of the IP header to make sure that the incoming 
packet is an IP packet and that the version of the IP protocol matches one that uIP can handle. uIP can 
currently handle both IPv4 and IPv6 data, but can only handle one of them at a time. 

 After   making sure that the packet has the right IP version header, uIP checks the validity of the IP 
header. It checks the length that is reported in the IP header with the length of the packet it received 
from the underlying layer. If the length in the IP header is longer than the packet in the buffer, the 
packet is deemed to be malformed and is discarded. If the length of the packet in the buffer is longer 
than reported in the IP header, the packet is assumed to be well formed, but with garbage data in the 
end, and uIP continues to process the packet anyway. For IPv4, the fragment fl ag of the IPv4 header 
is checked. If the packet is an IP fragment, it is copied into the defragmentation buffer. If the frag-
ment buffer contains a full IP packet because of the incoming fragment, the reassembled IP packet is 
seen as the incoming IP packet and the input processing continues. For IPv6, IP fragment reassembly 
is performed as part of the extension header processing. 

 Next  , the source and destination addresses of the packet are inspected. Packets with an illegal IP 
source address are dropped. Examples are packets where the source address is a broadcast or multicast 
address. Packets with a destination IP address that does not match any of the IP addresses of the node 
are either discarded or delivered to the uIP packet-forwarding module. The uIP packet-forwarding mod-
ule may choose to forward the packets to a next-hop neighbor, depending on the destination IP address. 

 Packets   with a destination IP address that matches one of the IP addresses of the node are pro-
cessed further. Here, the processing code differs between IPv4 and IPv6. For IPv4, the IP header 
checksum is computed to make sure that it matches. For IPv6, no header checksum is defi ned. For 
IPv6 packets, uIP checks the packet for the existence of any extension headers and processes them. 

       FIGURE 13.3  
     The principle of operation for uIP. Incoming packets are passed to uIP from the communication device 
driver. After uIP has fi nished processing the data, if any, the packet is passed to the corresponding 
application. Outgoing data pass through uIP, which adds protocol headers, before the packet is passed to the 
communication device driver for transmission  .      

IP

ICMP

UDP TCP

Communication
device driver

Application ApplicationApplication

uIP

Incoming
packets

Outgoing
packets



17113.1  Principles of Operation

 If uIP found errors in the IPv6 extension headers, an ICMPv6 error message is generated and sent 
back to the sender. 

 When   uIP has verifi ed that the IP header is correct, that the length of the packet is correct, and that 
the destination address matches the address of the node, the packet is given to the correct transport 
layer protocol. uIP supports three such protocols: ICMP, UDP, and TCP. ICMP is, strictly speaking, 
not a transport layer protocol but it is implemented as such in uIP. 

 The   packet is processed differently depending on its upper layer protocol. TCP is the most com-
plex of the protocols that uIP implements. UDP processing is very simple. ICMP processing is very 
simple for IPv4 but slightly more complex for IPv6. 

    13.1.1.1       ICMP Input Processing 
 For   IPv4, the ICMP processing consists of a single piece of functionality  —  to respond to incom-
ing ICMP echo messages. When a node receives an ICMP echo message, it responds by sending an 
ICMP echo reply. The reply message contains a copy of the data in the ICMP echo message. ICMP 
echo messages are sent by the  “ ping ”  program present in most general purpose operating systems. 
The ping utility sends ICMP echo messages to check if a particular IP node is alive and for measuring 
the round-trip time to the node. When the ping program receives an ICMP echo reply that matches the 
ICMP echo message it previously sent, the program prints out the round-trip time to the screen. 

 ICMP   processing for IPv6 is more complex than IPv4 because ICMP has a more signifi cant role 
in IPv6 than in IPv4. In addition to the echo functionality, ICMP in IPv6 is used for neighbor discov-
ery (ND), router discovery, duplicate address detection, and other mechanisms. uIP supports ICMP 
neighbor solicitation messages, neighbor advertisement messages, router solicitation messages, and 
router advertisement messages. In IPv6, ICMP neighbor solicitation messages are also used to per-
form duplicate address detection, which is supported by uIP.  

    13.1.1.2       UDP Input Processing 
 UDP   input processing in uIP is simple. The input processing code fi rst recalculates the UDP check-
sum to make sure that the packet is valid. Then, it uses the UDP port numbers in the packet to fi nd 
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IP version check

ICMP/UDP/TCP

IP addresses check

Extension headers (IPv6)

Application

Forward packet

 FIGURE 13.4  
       Input processing in uIP. All incoming packets pass 
through the IP and transport layers before reaching 
the application.    
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 the application to which the packet data should be delivered. uIP maintains a list of applications and 
what UDP port numbers they use. An application may specify the remote end point by providing the 
IP address and UDP port number of the remote peer, or it could leave them blank. Applications with 
blank remote IP address and UDP port numbers receive all packets that arrive for the application’s 
UDP port. Otherwise, only packets from the specifi c IP address and UDP port number are delivered 
to the application.  

    13.1.1.3       TCP Input Processing 
 The   most complex protocol implementation in uIP is TCP. Still, the implementation is signifi cantly 
simpler than the TCP implementations in other IP stacks such as the BSD UNIX stack [172]. This 
occurs because the uIP TCP performs only the necessary mechanisms needed for standards compli-
ance and host-to-host interoperability. Because uIP is optimized for a small memory footprint and not 
for high performance, the uIP TCP implementation refrains from implementing a number of perfor-
mance-optimizing mechanisms that are present in other IP stacks. We return to this later in the chap-
ter in Section 13.4.2  . 

 TCP   processing begins by validating the TCP checksum. The TCP checksum is computed over 
the TCP header, the application data, and parts of the IP header. After validating the checksum, the 
TCP port numbers of the packet are checked against the list of active TCP connections. If the packet 
does not match any of the current connections, uIP checks the list of listening TCP ports, but only if 
the incoming packet has the TCP SYN fl ag set. If the packet is not for an active connection or is not 
a TCP SYN packet for a listening port, uIP sends a TCP RST packet to the IP address that sent the 
packet. 

 If   the incoming packet was a TCP SYN packet for a listening connection, uIP creates a new entry 
in the table of active TCP connections and fi lls in the correct TCP sequence number from the incom-
ing TCP SYN packet. If the TCP SYN packet contains a TCP maximum segment size (MSS) option, 
uIP remembers the MSS it can send over this connection. Next, uIP produces a TCP SYN packet with 
the ACK fl ag set and sends it back to the remote peer. 

 If   the incoming packet was destined for an active connection, uIP fi rst ensures that the TCP 
sequence number of the incoming segment is what uIP expects. If the sequence number is higher 
than expected, it indicates that a packet has been lost. If so, uIP discards the packet, knowing that the 
remote end will retransmit the packet some time later. Although it would be possible for uIP to buf-
fer the incoming packet so that it would be immediately available once the missing packet has been 
retransmitted, this would require buffer memory unavailable in the memory-constrained systems for 
which uIP is designed. 

 After   verifying the TCP sequence number, uIP performs a round-trip time (RTT) estimation mech-
anism. The purpose of the RTT estimation is for uIP to have a suitable value for the retransmission 
timer. For a TCP connection with a long RTT, the retransmission timer must be set to a high value, 
and conversely, a TCP connection with a short RTT requires a low value on the retransmission timer. 
uIP performs RTT estimation by keeping a counter for each TCP connection. The counter is incre-
mented as part of the periodic uIP processing. When a TCP packet arrives, uIP uses the value of the 
counter as an estimate for the RTT of the packet. An averaging fi lter is used to provide a smoothed 
RTT estimate for the TCP connection [134]. 

 Next  , uIP takes different actions depending on the state of the TCP connection. If the TCP connec-
tion is established, the application is invoked and passes the application data present in the incoming 
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 TCP packet. The application consumes the data and may produce a reply and uIP sends it back to the 
remote peer. If the TCP connection for which the incoming packet is destined is in a state where it is 
about to be opened or closed, the TCP connection switches states as described in the TCP specifi ca-
tion [204]. 

 When   a TCP connection is opened or closed, uIP informs the application of the event by calling it. 
Depending on the state of the TCP connection, the application may choose to send data in response to 
the event. The packet then makes its way through the output processing code of uIP.   

    13.1.2       Output Processing 
 Output   processing in uIP is simpler than input processing. Output processing starts when uIP calls 
the application. When called by uIP, the application can choose to produce a packet. uIP adds the 
necessary packet headers and passes the packet, with headers, to the communication device driver for 
transmission. The structure of the uIP output processing is shown in  Figure 13.5   . 

 For   TCP connections, an application cannot send data unsolicited, but must wait for uIP to call 
the application. uIP calls the application not only when new data arrive on the connection, but also as 
part of the periodic processing. This gives the application the opportunity to send data even when no 
data are arriving on the connection. Applications that use UDP may choose to send data at any time 
and do not need to wait for uIP to call them. 

 TCP   output processing starts when the application has been called either as part of the input pro-
cessing or during periodic processing. If called as part of the input processing, uIP either delivers a 
packet to the application or informs the application that a connection is opened or closed. In either 
case, the application may want to send data to the remote host. If so, uIP updates the connection state 
for the TCP connection, adds the necessary headers to the data, computes the necessary checksums, 
and sends the packet. The state of the connection needs to be updated because the application data 
will increase the TCP sequence number for the connection. The application may also want to close or 
abort the connection, and uIP will respond accordingly. 
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 FIGURE 13.5  
       uIP output processing is simpler than input 
processing. For TCP connections (left), all output 
processing starts with uIP calling the application. For 
UDP connections (right), applications may send UDP 
data directly but can also send data when called from 
the uIP input processing code.    
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  UDP   output processing may start either when uIP has called an application because of incoming 
data, or because the application calls uIP directly. uIP adds the UDP header to the application data, 
with the necessary UDP port numbers, and computes the UDP checksum before passing the packet 
to the IP layer to add the IP header. The IP layer adds its header and computes the IP checksum. The 
packet is then sent by the communication device driver.  

    13.1.3       Periodic Processing 
 The   purpose of the uIP periodic processing is to update timer-based counters, perform retransmis-
sions, and remove connections that have timed out. Periodic processing is typically invoked once or 
twice every second, depending on the confi guration of the system in which uIP runs. 

 Periodic   processing starts with updating the status of the IP fragment reassembly buffer. If a 
packet is waiting to be reassembled, the periodic code updates the counter that keeps track of the 
age of the packet. If the packet is older than 30 seconds, the packet is removed from the reassembly 
buffer. 

 Next  , the periodic processing code goes through every active TCP connection to check if there are 
any packets that should be retransmitted. If there is a pending retransmission, and if the retransmis-
sion includes application data, uIP calls the application to reproduce the data it previously produced 
for the original transmission of the packet. The application, or an application library provided by uIP, 
may have buffered the packet in an external memory buffer in preparation for a retransmission, in 
which case the application can copy the buffered packet back to uIP. To save memory, however, the 
application may have chosen not to buffer the packet, but to regenerate it instead. The contents of the 
packet may, for example, have originated in a ROM buffer from which it can be quickly copied into 
the retransmission packet, or the contents of the packet are easily regenerated. In either case, once the 
application has produced its packet, uIP constructs the necessary headers and sends out the retrans-
mission. uIP also updates the retransmission timer by doubling its value, the so-called exponential 
back-off procedure of TCP. 

 The   periodic TCP code also checks for connections that should be timed out. Connections that 
have retransmitted too many packets without receiving an acknowledgment are examples of this. 
Such connections are discarded by uIP.  

    13.1.4       Packet Forwarding 
 Packet   forwarding is done when uIP receives a packet that has a destination IP address that does not 
match any of the IP addresses of the node. A node typically has multiple addresses: one or more uni-
cast addresses and at least one broadcast or multicast address. Packets that do not match the addresses 
should be forwarded to a neighboring node, either because the address matches that of the neighbor 
or because the neighbor has a route to the destination address. 

 Packet   forwarding occurs only when uIP has been confi gured to be a router. The packet forward-
ing mechanism is then invoked as part of the output processing. 

 The   packet forwarding mechanism is modular and does not specify any particular routing mecha-
nism to be used. Rather, a routing mechanism will register itself with the forwarding module upon 
startup. For every packet, the forwarding mechanism asks the routing module to look up the desti-
nation IP address and return the address to the next-hop neighbor. The routing module may imple-
ment this any way it wants by using a table of destination addresses, a table of network prefi xes, a 
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 hash table of addresses, a cache of the recently used routes, or any other way it fi nds suitable. The 
routing protocol may perform a route discovery for each address not found in its cache. 

 By   separating packet forwarding and packet routing, uIP can adapt a wide range of requirements 
such as routing performance and memory requirements, as well as take advantage of future develop-
ment in routing protocols. A system with strict memory requirements and low routing performance 
requirements may use a cache confi guration that prompts frequent network route discoveries, whereas 
a system with strict requirements on routing performance but lax memory requirements may choose a 
larger cache setting.   

    13.2       uIP MEMORY BUFFER MANAGEMENT 
 Buffer   management is a critical operation in any protocol stack. Incoming and outgoing data pack-
ets are buffered in memory and the buffer management system ensures that there is enough memory 
available for the data packets. In a general purpose protocol stack, poor buffer management strategy 
can lead to suboptimal performance. In a smart object, where the memory requirements are excep-
tionally strict, buffer management has a critical function in ensuring that the protocol stack is able to 
function even when memory is scarce. 

 To   provide high throughput, traditional IP stacks use buffer management strategies of varying 
complexity [172]. Buffers need to be allocated and deallocated quickly to keep up with the large 
amounts of data coming from the network and sent by applications. For smart objects, where data 
rates typically are much lower than for general purpose computers, the buffer management strategy 
does not need to be optimized for high throughput. Instead, memory is a scarce resource so the buffer 
management mechanism must work effi ciently with small amounts of memory. 

 The   buffer management strategy of uIP is intentionally simple. To keep memory size and code 
complexity down, all packets in uIP are kept in a single memory buffer. Incoming packets are copied 
to this buffer when the communication device driver has received them. Outgoing packets are created 
directly into the same buffer. 

 Using   a single memory buffer has several advantages. First, there is no need for any complex buf-
fer management mechanisms to be implemented. Such mechanisms require code space and buffer 
memory, both of which are at a premium in a memory-constrained system. Second, the protocol imple-
mentations become simpler when they do not need to deal with multiple buffers. Third, because the 
buffer is at a single place in memory and does not move, the C compiler is often able to make better 
optimizations at the machine code level, which leads to more effi cient use of the scarce code memory. 

 The   packet buffer is large enough to contain one packet of maximum size. When a packet arrives 
from the network, the device driver places it in the global buffer and calls the uIP input processing 
code. If the packet contains application data, uIP calls the corresponding application with the applica-
tion data in the packet buffer. Because the data in the buffer will be overwritten by the next incoming 
packet, the application will either have to act immediately on the data or copy the data into a second-
ary buffer for later processing. The packet buffer will not be overwritten by new packets before the 
application has fi nished processing the data. 

 To   ensure that the packet buffer is not overwritten while uIP is processing a packet, uIP does not 
allow the communication device driver to write directly into the buffer, except when uIP explicitly 
asks it to do so. If a packet arrives when uIP is processing data in the buffer, the packet is queued 
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 either in the hardware of the communication device or by the communication device driver. Most 
communication devices have a hardware-implemented buffer memory in which they store incoming 
packets as they arrive. 

 The   size of the packet buffer is confi gurable at compile time. The total amount of memory usage 
for uIP depends on the applications of the particular system in which the implementations are to be 
run. The memory confi guration determines both the amount of traffi c the system should be able to 
handle and the maximum amount of simultaneous connections. A system sending and receiving large 
amounts of data to multiple simultaneous clients typically is confi gured to use more memory than a 
system that occasionally sends a few bytes. It is possible to run the uIP with as little as 100 bytes of 
RAM, but such a confi guration provides extremely low throughput and only allows a small number 
of simultaneous connections.  

    13.3       uIP APPLICATION PROGRAM INTERFACE 
 The   Application Program Interface (API) defi nes the way the application program interacts with the 
TCP/IP stack. The most common API for IP stacks is the BSD socket API. The BSD socket API is 
used in most UNIX systems and has heavily infl uenced the Microsoft Windows WinSock API. The 
socket API is, however, designed around a multi-threaded programming model. This model incurs a 
memory overhead, which is not ideal for smart objects and their constrained memory. 

 Instead   of the multi-threaded socket API, uIP provides an event-driven API. Having an event-
driven API has several advantages in the context of smart objects. First, event-driven mechanisms have 
a lower memory overhead than multi-threaded mechanisms. Second, the event-driven API does not 
need to use additional buffers between the uIP stack and the application, something that a traditional 
BSD socket API requires. This further reduces the memory requirements. Third, the event-driven 
API has a higher execution time effi ciency than a multi-threaded API, which is benefi cial because of 
the low processor speeds used in smart objects. Because applications are able to act immediately on 
incoming data and connection requests, low response times can be achieved even in low-end systems. 

 The   event-driven API is used primarily for TCP connections, even though UDP-based applica-
tions can also use it. The use of an event-driven API for TCP has later been used by other IP stacks 
for smart objects [1]. 

 Although   the event-driven API works well for many applications, there are applications that bene-
fi t from a sequential API. Therefore, uIP optionally provides a sequential BSD socket-like API based 
on protothreads. The sequential API is called protosockets and allows programs to be written in a 
top-down fashion. The protosockets ’  API also provides buffers for retransmissions, relieving the pro-
grammer of the potential burden of regenerating data for retransmission at the price of higher memory 
requirements. 

    13.3.1       The Event-driven API 
 The   event-driven uIP API uses an event-driven interface where the application is invoked in response 
to events that occur on TCP connections. uIP calls applications when data are received, when data 
have been successfully delivered to the other end of the connection, when a new connection has been 
set up, or when data have to be retransmitted. The application is also periodically polled for new data. 
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  Applications   provide a callback function to uIP. uIP calls the callback function for every event 
that occurs on a TCP connection. When invoked, the callback function must return quickly to uIP, 
and if the callback function blocks, uIP cannot respond to incoming packets. 

 To   reduce the memory size, uIP requires applications to participate in the process of retransmitting. 
IP stacks for general purpose computers or high-end servers buffer the transmitted data in memory 
until the data are known to be successfully delivered to the remote end of the connection. If the data 
need to be retransmitted, the stack takes care of the retransmission without notifying the application. 
With this approach, the data have to be buffered in memory while waiting for an acknowledgment 
even if the application might be able to quickly regenerate the data if a retransmission has to be made. 

 When   the application callback function is invoked, uIP passes it a number of fl ags that tell the 
application why it was invoked. Each event has a corresponding test function used to distinguish 
between different events. The functions evaluate to either zero or non-zero, depending on what event 
has occurred. Some events happen in conjunction with each other and the application must test for the 
existence of each such event separately. For example, new data can arrive at the same time as data are 
acknowledged. 

 Applications   are informed by the reception of data using a reception event. If the uIP test function 
uip_newdata() is non-zero, the remote host of the connection has sent new data. The application data 
are placed in the packet buffer. After the application invocation, the data are not retained by uIP, but 
are overwritten after the application function returns, and the application has to either act directly on 
the incoming data or copy the incoming data into a buffer for later processing. 

 Sending   data is done during an application invocation by copying the data into the packet buf-
fer before returning to uIP. uIP adjusts the length of the data sent by the application according to the 
available buffer space and the current TCP window advertised by the receiver. The amount of buf-
fer space is dictated by the memory confi guration and by the current MSS used over the connection. 
Applications can send only one packet of data at a time and must wait for the data to be successfully 
acknowledged by the remote peer before sending the next packet. 

 When   a connection is idle, uIP invokes the application function as part of the uIP periodic pro-
cessing with the poll fl ag set. The application tests for the poll fl ag to check if it was invoked due to 
periodic processing. 

 Polling   has two purposes. The fi rst is to let the application periodically know that a connection 
is idle, which allows the application to close connections that have been idle for too long. The other 
purpose is to let the application send new data that have been produced. The application can only 
send data when invoked by uIP, therefore polling is the only way to send data on an otherwise idle 
connection. 

    13.3.1.1       Retransmitting Data 
 Retransmissions   are driven by the periodic TCP timer. Every time the periodic timer is invoked, the 
retransmission timer for each connection is decremented. If the timer reaches zero, a retransmission 
should be made. As uIP does not keep track of packet contents after they have been sent by the device 
driver, uIP requires that the application takes an active part in performing the retransmission. When 
uIP decides that a segment should be retransmitted, the application function is called with the retrans-
mission fl ag set, indicating that a retransmission is required. 

 The   application checks the retransmission fl ag and produces the same data that were previously 
sent. From the application’s standpoint, performing a retransmission is no different from how the 
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 data were originally sent. Therefore, the application can be written in such a way that the same code 
is used both for sending and retransmitting data. Even though the actual retransmission operation is 
carried out by the application, it is the responsibility of the stack to know when the retransmission 
should be made. Thus the complexity of the application does not necessarily increase because it takes 
an active part in retransmitting.  

    13.3.1.2       Closing Connections 
 The   application closes the current connection by calling the uIP TCP close function during an appli-
cation invocation. This causes the connection to be cleanly closed. To indicate a fatal error, the 
application might want to abort the connection and does so by calling the uIP TCP abort function. 

 If   the connection has been closed by the remote end, the application is invoked with the closed 
fl ag set. The application may then do any necessary cleanups, such as freeing memory that was allo-
cated as part of the TCP connection.  

    13.3.1.3       Reporting Errors 
 There   are two fatal errors that can happen to a connection: the connection is aborted by the remote 
host, or the connection retransmitted the last data too many times and has been aborted. uIP reports 
this by invoking the application function with either the aborted or the timed out fl ag set. The applica-
tion checks for the existence of these fl ags to fi nd out if a connection was aborted or timed out.  

    13.3.1.4       Listening Ports 
 uIP   maintains a list of listening TCP ports. A new port is opened for listening with the uip_listen() 
function. When a connection request arrives on a listening port, uIP creates a new connection and 
calls the application function. The test function uip_connected() is true if the application was invoked 
because a new connection was created. 

 The   application can check the lport fi eld in the uip_conn structure to check to which port the new 
connection was connected.  

    13.3.1.5       Opening Connections 
 New   connections can be opened from within uIP by the function uip_connect(). This function allo-
cates a new connection and sets a fl ag in the connection state that opens a TCP connection to the 
specifi ed IP address and port the next time the connection is polled by uIP. The uip_connect() func-
tion returns a pointer to the uip_conn structure for the new connection. If there are no free connection 
slots, the function returns NULL. 

 The   function uip_ipaddr() may be used to pack an IP address into the two-element, 16-bit array 
used by uIP to represent IP addresses.    

    13.4       uIP PROTOCOL IMPLEMENTATIONS 
 To   optimize memory and code space, the protocol implementations in uIP implement only the neces-
sary mechanisms for compliance with the standards and interoperability. Many of the mechanisms 
in the TCP/IP protocol suite were designed to improve protocol performance. In general, uIP does 
not implement such mechanisms that provide a better performance at the expense of higher memory 
requirements. 
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    13.4.1        IP Fragment Reassembly 
 IP   fragment reassembly is implemented using a separate buffer that holds the packet to be reassem-
bled. An incoming fragment is copied into the right place in the buffer and a bit map is used to keep 
track of which fragments have been received. Because the fi rst byte of an IP fragment is aligned 
on an 8-byte boundary, the bit map requires a small amount of memory. When all fragments have 
been reassembled, the resulting IP packet is passed to the transport layer. If all fragments have not 
been received within a specifi ed time frame, the packet is dropped. 

 uIP   maintains a single buffer for holding packets to be reassembled. The buffer is separate from 
the packet buffer used by the test of uIP to avoid being overwritten by other packets. Because uIP 
only maintains a single buffer for reassembling fragments, uIP does not support simultaneous reas-
sembly of more than one packet. The reason for this design decision is that IP fragments are relatively 
uncommon in today’s networks.  

    13.4.2       TCP 
 The   TCP implementation in uIP is designed to be as simple as possible without removing any of the 
required TCP mechanisms. There are several mechanisms in TCP intended to provide a high through-
put. Many of these mechanisms are not needed in a system that has only small amounts of data to 
be sent. uIP therefore makes the trade-off that memory effi ciency is more important than high data 
throughput. If high data throughput is required, then uIP is not a suitable choice. 

 The   TCP implementation in uIP is driven by incoming packets and the periodic processing. 
Incoming packets are parsed by TCP and if the packet contains data to be delivered to the application, 
the application is invoked by the application function call. If the incoming packet acknowledges pre-
viously sent data, the connection state is updated and the application is informed, allowing it to send 
out new data. 

 TCP   allows a connection to listen for incoming connection requests. In uIP, a listening connection 
is identifi ed by the 16-bit port number and incoming connection requests are checked against the list 
of listening connections. This list of listening connections is dynamic and can be altered by the appli-
cations in the system. 

    13.4.2.1       Sliding Window 
 Most   TCP implementations use a sliding window mechanism when sending data. Multiple data seg-
ments are sent in succession without waiting for an acknowledgment for each segment. This is intended 
to provide a high throughput because the entire network pipe between the sender and the receiver can 
be fi lled with packets without waiting for the receiver to acknowledge the reception of the packets. 

 An   implementation of the sliding window mechanism uses a signifi cant amount of 32-bit additions 
and subtractions because of the 32-bit sequence numbers used by TCP. Because 32-bit arithmetic is 
expensive regarding code size on many 8- and 16-bit microcontrollers, uIP does not implement the 
sliding window mechanism. Also, uIP does not buffer sent packets and a sliding window implementa-
tion that does not buffer sent packets will have to be supported by a complex application layer. Instead, 
uIP allows only a single TCP segment per connection to be unacknowledged at any given time. 

 It   is important to note that even though most TCP implementations use the sliding window algo-
rithm, it is not required by TCP specifi cations. Removing the sliding window mechanism does not 
affect interoperability or standards compliance in any way.  
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    13.4.2.2        Retransmissions and RTT Estimation 
 Retransmissions   are driven by the periodic TCP timer. Every time the periodic timer is invoked, the 
retransmission timer for each connection is decremented. If the timer reaches zero, a retransmission 
should be made. 

 To   fi nd a suitable value for the retransmission time-out, TCP continuously estimates the current 
RTT of every active connection. The RTT estimation in uIP is implemented using TCP’s periodic 
timer. Each time the periodic timer fi res, it increments a counter for each connection that has unac-
knowledged data in the network. When an acknowledgment is received, the current value of the coun-
ter is used as a sample of the RTT. This sample is used together with Van Jacobson’s standard TCP 
RTT estimation function to calculate an estimate of the RTT [134]. The Karn and Partridge algorithm 
is used to ensure that retransmissions do not skew the estimates [143].  

    13.4.2.3       Flow Control 
 The   purpose of the TCP fl ow control mechanisms is to allow communication between hosts with 
wildly varying memory dimensions. In each TCP segment, the sender of the segment indicates its 
available buffer space. A TCP sender must not send more data than the buffer space indicated by the 
receiver. 

 In   uIP, the application cannot send more data than the receiving host can buffer, and an applica-
tion cannot send more data than the amount of bytes it is allowed to send by the receiving host. If the 
remote host cannot accept any data at all, the stack initiates the zero-window probing mechanism.  

    13.4.2.4       Congestion Control 
 The   congestion control mechanisms limit the number of simultaneous TCP segments in the network. 
From the outset, the algorithms used for congestion control are designed to be simple to implement 
and their implementation requires only a few lines of code [134]. 

 Since   uIP only handles one in-fl ight TCP segment per connection, the amount of simultaneous 
segments cannot be further limited, thus the TCP congestion control mechanisms are not needed.  

    13.4.2.5       Urgent Data 
 TCP  ’s urgent data mechanism provides an application-to-application notifi cation mechanism, which 
can be used by an application to mark parts of the data stream as more urgent than the normal stream. 
It is up to the receiving application to interpret the meaning of the urgent data. 

 In   many TCP implementations, including the BSD implementation, the urgent data feature 
increases the complexity of the implementation because it requires an asynchronous notifi cation 
mechanism in an otherwise synchronous API. As uIP already uses an asynchronous event-based API, 
the implementation of the urgent data feature does not lead to increased complexity.   

    13.4.3       Checksum Calculations 
 The   TCP and IP protocols implement a checksum that covers the data and header portions of the TCP 
and IP packets. Since the calculation of this checksum is made over all bytes in every packet sent and 
received, it is important that the function that calculates the checksum is effi cient. Most often, this 
means that the checksum calculation must be fi ne-tuned for the particular architecture on which the 
uIP stack runs. 
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  While   uIP includes a generic checksum function, it is also open to an architecture-specifi c imple-
mentation of the two functions uip_ipchksum() and uip_tcpchksum(). The checksum calculations in 
those functions can be written in highly optimized assembler rather than generic C code.   

    13.5       MEMORY FOOTPRINT 
 The   memory footprint of uIP is very small compared to existing IP stacks for general purpose com-
puters. The IP stack in Linux, for example, requires several hundred thousand bytes of memory. For 
the memory-constrained microcontrollers used in smart objects, such an IP stack does not fi t. 

 The   code footprint of uIP is a few kilobytes and the memory footprint is less than 2       kB. The 
code footprint is slightly higher for IPv6 than for IPv4.  Table 13.1      shows the breakdown in code 
and memory footprint for the different functions in uIPv6. The footprint is measured for the Atmel 
ATmega128 processor and the code is compiled with the gcc C compiler [73]  . 

 As   shown in  Table 13.1  about half of the code footprint is used by the IPv6 and the rest by TCP and 
UDP. For IPv6, the ND is the largest part, whereas the IPv6 input processing is small.  

    13.6       CONCLUSIONS 
 A   common belief has been that the IP stack is too complex to effi ciently implement for the micro-
controllers used in smart objects. This belief has been shown to be false by several memory-effi cient 
implementations of the IP stack. In this chapter, we investigated the widely used open source uIP 
stack, the fi rst IP stack for smart objects, to see how it achieves its low code and memory footprint. 
uIP was fi rst released in 2001. In 2008, uIP was the fi rst IP stack for smart objects to be certifi ed 
under the IPv6 Ready program. 

 Table 13.1          Memory Footprint of the Individual Functions 
in the uIPv6 Stack  

   Function  ROM  RAM 

   IPv6 ND input/output  4800  20 
   IPv6 ND structures  2128  238 
   IPv6 network interface management  1348  118 
   IPv6 address autoconfi guration  372  16 
   IPv6 input processing  1434  44 
   Packet buffer  0  1296 
   UDP  1345  0 
   TCP  4192  240 
    Total    15,619    1972  

  Note: The data are given in bytes. As a comparison, the memory footprint 
IP stack in a modern general purpose operating system is several 
hundreds of thousands of bytes.  
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  uIP   implements the most important protocols in the IP stack: IP, ICMP, UDP, and TCP. It con-
tains both an IPv4 and an IPv6 implementation. Application layer protocols such as HTTP and SNMP 
are implemented on top of uIP. 

 The   code and memory footprint of uIP is very small compared to that of IP stacks for general 
purpose operating systems. uIP requires only a few kilobytes of code to implement a full IPv6 stack. 
To achieve such a small footprint, the design of uIP is intentionally simple. Packets are processed in 
sequence, the buffer management mechanism is simple, and the application API is event-driven. The 
uIP stack is not unique in its effi cient memory. The mechanisms from uIP have been adopted by sev-
eral other IP stacks for smart objects.          
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               Standardization    14 
CHAPTER

    14.1        INTRODUCTION 
 Standardization   is in many ways synonymous with openness and interoperability. It is also because 
IP has always been an open standard with no royalties that a plethora of new applications emerged in 
the past few decades while ensuring interoperability between devices from different manufacturers. 
Standardization is not used just to produce documents that defi ne protocol specifi cations, but rather to 
ensure that implementers will be able to develop systems that smoothly interoperate. 

 Conversely  , the lack of standardization has many undesirable effects. Over the past 15 years, a 
plethora of proprietary technologies and architectures have been developed to address the require-
ments of Low-power and Lossy Networks (LLNs) for highly specifi c environments. At fi rst such an 
approach may satisfy the specifi c requirements for that application and is supposedly  “ optimized ”  for 
that environment, but proprietary solutions suffer from severe limitations: 

      ●      Limited evolution and innovation: There are very few examples of proprietary solutions that have 
survived. This means that proprietary solutions are tied to a particular organization, thus limiting 
the chances for other organizations and individuals to contribute new innovative ideas. The evolu-
tion of the solution is driven by the business priorities of that organization, not the willingness to 
design innovative applications and solutions.  

      ●      Absence of interoperability: More important is the lack of interoperability with non-proprietary solu-
tions. Although the proprietary solution may not require interoperability with the rest of the world at 
fi rst, such a situation rarely lasts for a long period of time and it quickly becomes necessary to con-
nect that proprietary  “ island ”  with other standardized networks. As discussed in length in Part I, con-
necting the two  “ worlds ”  by a gateway is not only technically challenging but usually an expensive 
and diffi cult  “ solution ”  to manage. This also means that the overall architecture is now based on the 
least common denominator, thus reinforcing the lack of fl exibility and evolution.    

 The   world of  “ smart objects ”  (sometimes also called  “ sensor networks ” ) is not an exception and 
has been remarkably driven by proprietary solutions until a few years ago. Dozens of proprietary 
solutions have been developed. The lack of standardization explains the limited scope of deployment 
in light of the unlimited number of opportunities. 

 The   use of an open standard such as IP for smart objects is crucial and a  must  to build a scalable 
architecture for the next Internet and other private IP networks. IP has largely demonstrated its fl ex-
ibility and ability to evolve to support new applications. 
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  It   must be noted that although IP is used in the Internet, its use is not limited to the Internet and 
has been deployed in networks with no relation to the Internet. The standardization body in charge of 
IP is the Internet Engineering Task Force (IETF).  

    14.2       THE IETF 
 The   IETF is the international open standardization body in charge of specifying the IP protocol suite. 
It was formed in 1986 and is exclusively made of individuals, not companies. The IETF motto (quote 
by David Clark in 1992)  “ We reject kings, presidents and voting. We believe in rough consensus and 
running code ”  has been driving the IETF and has led to the specifi cation of a number of IP-based pro-
tocols over the past two decades. 

 The   fi rst IETF meeting took place in January 1986 in San Diego, California, with 21 attendees. 
The IETF now meets three times a year with several thousands of attendees from all continents (see 
 Figure 14.1   ). 

    14.2.1       The IETF Mission 
 The   mission of the IETF, as referenced in [10] is  “ to produce high quality, relevant technical and 
engineering documents that infl uence the way people design, use, and manage the Internet in such a 
way as to make the Internet work better. ”  

 Documents   are produced in the form of RFCs (request for comments) by Working Groups (see 
the section IETF Organization for more details on the IETF process). 

 The   number of published RFCs has signifi cantly grown over the past 20 years as shown in  Figure 14.2   . 
 The   IETF is governed by these fundamental principles: 

      ●      Open process: Anyone is free to participate in the IETF with no conditions (e.g., no fees) via 
Working Group mailing lists and IETF meetings organized three times a year.  

      ●      Technical competence: The IETF only works on technical issues in which it has the required com-
petence and is willing to receive input from any technically competent sources.  
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      ●       Volunteer core: Each participant and leader volunteers in the IETF to make the Internet better.  
      ●      Rough consensus and running code: This is one of the fundamental rules of operation of the IETF. 

Standards are produced based on the combined engineering judgment of its participants and real-
life experience of implementations. There is no formal voting or counting and no requirement of 
unanimity. This helps when there is no unanimity but still a rough consensus determined by the 
Working Group chairs.    

 Each   Working Group has a bounded scope defi ned in its charter.  

    14.2.2       The IETF Organization 
 The   IETF is made up of Working Groups encompassing the following areas: 

      ●      Applications (APP): Protocols seen by user programs, such as e-mail and the Web. Examples 
include application layer optimization, Calendaring and Scheduling Standards Simplifi cation, 
Hypertext Transfer Protocol Bis, and Internationalized Domain Names in Applications (Revised).  

      ●      General (GEN): Catch-all for Working Groups   that do not fi t in other areas (there are very few).  
      ●      Internet (INT): Different ways of moving IP packets and DNS information. Examples include IP 

over IEEE 802.16 Networks, IPv6 over Low-power WPAN, IPv6 Maintenance, DNS Extensions, 
Dynamic Host Confi guration, Network Time Protocol, Timing over IP Connection and Transfer 
of Clock, Mobility EXTensions for IPv6, Mobility for IPv4, and so forth.  

      ●      Operations and Management (OPS): Operational aspects, network monitoring, and confi guration. 
Examples include Benchmarking Methodology, Global Routing Operations, IP Flow Information 
Export, MBONE Deployment, Performance Metrics for Other Layers, RADIUS EXTensions, and 
so forth.  

      ●      Real-time applications and infrastructure (RAI): Delay-sensitive interpersonal communications. 
Examples include audio/video transport, telephone number mapping, basic level of interoperabil-
ity for SIP Services, SIP for instant messaging and presence leveraging extensions, and so forth.  
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      ●       Routing (RTG): Getting packets to their destinations. Examples include Multiprotocol Label 
Switching (MPLS), Open Shortest Path First IGP, IS-IS for IP Internets, Path Computation 
Element (PCE), routing over Low-power and Lossy Networks, and so forth.  

      ●      Security (SEC): Authentication and privacy. Examples include IP security maintenance and exten-
sions, provisioning of symmetric keys, multicast security, and transport layer security.  

      ●      Transport (TSV): Special services for special packets. Examples include Datagram Congestion 
Control Protocol, congestion and pre-congestion notifi cation, robust header compression, 
Transport Area Working Group, TCP maintenance and minor extensions, and so forth.    

 The   Internet Engineering Steering Group (IESG) is responsible for the direct operation of the 
IETF and the overall quality of the work it produces. A detailed description of its charter can be 
found in [9]. The IESG is composed of the IETF chair and all of the area directors. The Internet 
Architecture Board (IAB) chair and the IETF executive director are also part of the IAB as ex-offi cio 
members of the IESG.  

    14.2.3       IETF Standard Tracks 
 When   working on standardization it is necessary to have a good understanding of the Internet stan-
dard process described in [22]. Producing a high-quality standard is not an easy task. The goals of the 
standardization process are 

      ●      Technical excellence  
      ●      Prior implementation and testing  
      ●      Clear, concise, and easily understood documentation  
      ●      Openness and fairness (a cardinal principle of the IETF)  
      ●      Timeliness    

 Finding   the right compromise between technical excellence, prior implementation and testing, 
giving a chance for all interested parties to comment and contribute, and timeliness in the fast moving 
world of high technology is somewhat challenging. 

 Internet   standard specifi cations fall into one of these two categories: 

      ●      Technical specifi cation (TS): Technical description of a protocol, services, procedure, convention, 
or format.  

      ●      Applicability statement (AS): As mentioned in [22  ]  ,  “ An applicability statement specifi es how, 
and under what circumstances, one or more TSs may be applied to support a particular Internet 
capability. ”  For example, an AS may specify the circumstances under which one or more techni-
cal specifi cations may (or may not) be utilized or parameterized (e.g., timer values, activation of a 
particular subfunction). An AS may have different requirement levels: 
      ●      Required: Implementation of the referenced TS as specifi ed in the AS is a  must  to be confor-

mant to the standard.  
      ●      Recommended: Although the implementation of the referenced TS is not a must for con-

formity, it is desirable in the domain of applicability of the AS. In other words, vendors are 
strongly encouraged to implement the referenced TS in their products and omission should be 
carefully justifi ed.  

      ●      Elective: Implementation of the TS is optional.  
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      ●       Limited use: Use of the TS is appropriate under very specifi c circumstances. A good example is the 
use of a TS in the experimental track, which should be limited to those involved in the experiment.  

      ●      Not recommended: When a TS is considered as inappropriate for general use.       

 Note   that each TS and AS is conceptually separate and could be combined in a single document. 
In other cases it is preferable to have separate documents. For example, the Routing Over Low-power 
and Lossy networks (ROLL) Working Group in charge of the routing issues in LLNs chose to develop 
a generic routing protocol (TS) that contains some AS but is also accompanied by a series of AS to 
provide recommendations on the use of the TS in specifi c environments (e.g., parameterization). 

 The   IETF standardization defi nes several categories of specifi cation: standard track, experimental, 
and informational. 

 Let  ’s fi rst focus on the standard track. Each document that follows the standard track can have 
three levels of maturity. 

    14.2.3.1       Level of Maturity of Standard Track Documents 
 The   fi rst level of maturity is known as the Proposed Standard (PS). A TS reaches this level of matu-
rity when the specifi cation is stable and has been extensively reviewed by the community, and known 
design choices have been resolved and are well understood. Although it is not required to have 
implementations to reach this maturity level, it is highly encouraged to get implementations for a 
TS to become a PS. This may also be required by the IESG when the protocol affects the core of the 
Internet. PSs are subject to changes based on experience if issues are found. 

 The   second level of maturity is called Draft Standard and is reached when at least two indepen-
dent and interoperable implementations exist (from different code bases) that have demonstrated suf-
fi cient and successful operational experience. Note that this applies to all of the options and features 
specifi ed by the specifi cation. 

 The   last level of maturity is the Internet Standard. A specifi cation may be elevated to this level 
when signifi cant implementations and successful operation have been obtained and the specifi cation 
has reached a high level of maturity. 

 There   are about 80 Full Standards, 90 Draft Standards, and 1532 Proposed Standards    . Unlike 
other standardization bodies, the IETF considers a specifi cation to be deployable when it reaches the 
PS maturity level.  

    14.2.3.2       Non-standard Track Specifi cations 
 There   are other categories (non-standard track) for documents that are not intended or ready to 
become standards. 

      ●      Experimental track: This is used for specifi cation resulting from research or development efforts. 
It is not uncommon for some specifi cation to move to the standard track once more experience in 
the fi eld has been acquired.  

      ●      Informational: This type of RFC is a documentation made available to the general community that 
does not represent an Internet community consensus or recommendation. Requirement documents 
for the specifi cation of a protocol are usually published as informational and used to provide some 
guidance during the protocol specifi cation cycle. For example (as discussed in Chapter 17), the 
ROLL Working Group has produced four application-specifi c requirement documents that have 
been used to design a routing protocol.    
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  Informational   and experimental specifi cation may either be submitted directly to the RFC editor 
(in which case the RFC editor will consult the IESG for review) or may be the product of a Working 
Group. 

 Note   that some specifi cations may be marked as  historic  when they are considered obsolete or 
have been superseded by a more recent specifi cation. For example, the RFC1863 (a BGP/IDRP Route 
Server alternative to a full mesh routing) has been reclassifi ed as historic since implementations of 
RFC1863 route servers do not exist and are not used as an alternative to full mesh routing. The cur-
rent technologies are the BGP route refl ectors, BGP confederations, or private autonomous systems 
(AS) numbers.  

    14.2.3.3       The Best Current Practice Series 
 The   best current practice (BCP) series is used to standardize practices and is the result of community 
deliberation. Note that BCPs do not follow the three-stage standard track process and once approved 
are published. BCPs are useful in many ways, both for implementers and end users.   

    14.2.4       The IETF Standard Process 
 The   fi rst stage of the life cycle is the posting of an individual submission document in the IETF direc-
tory. Note that this process is open to anyone and does not require any approval. The name of the 
document should be of the form draft-X-rev.txt where X is generally the author name followed by a 
concise description of the document content (e.g., draft-johnson-dns-extensions-multicast-00.txt) and 
rev is a number corresponding to the revision number of the document. 

 It   is very common to follow the document name by the targeted Working Group where the docu-
ment will be discussed. 

 Note   that each document (except once recommended by the IESG for publication) automatically 
expires after six months and can be simply refreshed by reposting the document after having incre-
mented the revision number. 

 As   shown in  Figure 14.3   , at this stage the document is being discussed in the appropriate Working 
Group. If the document addresses one of the Working Group items listed in its charter and there is a 
Working Group consensus to adopt the document as a Working Group document, then the document 
becomes  “ offi cially ”  adopted by the Working Group. Some documents may directly be elected to the 
status of Working Group documents. 

 Following   our previous example, the document name becomes draft-ietf-dns-extensions- multicast-00.
txt and effectively becomes the  “ property ”  of the Working Group. All changes and evolutions of the 
document must then be discussed and agreed upon by the community involved in the Working Group. 
Once the document comes through a number of iterations and is considered mature and stable, a 
Working Group Last Call is issued by the Working Group chairs. All comments received during that 
period must be addressed by the authors, at which point a publication request is sent to the Area Director 
by a Working Group chair. 

 Note   that the process is different for an individual submission that is not the product of the Working 
Group. In this case, the document is discussed with the RFC editor and the IESG that reviews it. 

 The   IESG determines whether or not the document satisfi es the applicable criteria for recommen-
dation action and also decides whether or not the technical quality and clarity is consistent with the 
required maturity level to which the specifi cation is recommended. In some cases the IESG may issue 
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 a general IETF last call period (between two and four weeks) during which anybody can send com-
ments. The IESG may decide to change the publication category. During review, IESG members may 
send comments on the specifi cation or  “ DISCUSS   ”    positions. The DISCUSS position identifi es one 
or more issues with the document that must be addressed by the authors in coordination with the 
Working Group chairs and (if needed) reviewed by the Working Group. A DISCUSS is a  “ blocking ”  
position that prevents the publication of the document until resolved. It may be stated for a number 
of reasons: specifi cation impossible to implement due to technical or lack of clarity issues, technical 
fl aws in the protocol design, likelihood that multiple implementations will not interoperate due to lack 
of clarity of the specifi cation, risk of damaging the Internet if the specifi cation was widely deployed, 
existence of security holes in the specifi cation, a normative reference necessary to implement the doc-
ument has been omitted, and so forth. DISCUSS must be resolved by the authors of the specifi cation 
with the help of the Working Chairs and potentially the Working Group. Once each DISCUSS is 
resolved the IESG approves the publication of the specifi cation. 

 If   approved for publication, a notifi cation is sent to the IETF and the RFC editor.  

    14.2.5       The IAB 
 The   IAB ( http://www.iab.org/ ) is made up of twelve sitting members and the IETF chair who serve as 
individuals and not representatives of companies. Six of the twelve members are appointed each year 
for a period of two years. 

 The   IAB is chartered to perform the following tasks: 

      ●      IESG appointment: The IAB reviews IESG candidates consenting to some, all, or none of the can-
didates provided by the IETF nominating candidates (Nomcom) for vacant IESG seats.  

      ●      Architectural oversight: This is undoubtedly a key mission of the IAB. The IAB pays particular 
attention to the long-term issues of the Internet. Such issues are brought to the attention of the 
groups that address them, when the groups are already in place. IAB members also participate 
in  “ Birds of Feather ”  (BOF) and help the IESG determine whether a new IETF Working Group 
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 or IRTG Research Group should be formed. The IAB also reviews the charter of newly formed 
Working Groups for review of the architectural consistency and integrity. IAB also organizes the 
Internet Research Task Force (IRTF) and is involved in the formation of new Research Groups. 
The IAB also convenes workshops on specifi c topics. For example, workshops have been orga-
nized in the past on  “ Internet Information Infrastructure ”  (October 1994),  “ Routing and Addressing ”  
(October 2006),  “ Unwanted Traffi c ”  (March 2006),  “ Social Networking ”  (June 2008), and so forth. 
The IAB is free to invite any relevant parties of the IETF or other organizations; the outcome of such 
workshops is a report destined for the IETF community and IESG.  

      ●      The IAB also provides oversight of the process used to produce Internet Standards. Appeals to 
handle complaints of improper execution of standards processes are also handled by the IAB.  

      ●      The IAB is the representative of the IETF community for technical liaisons with other organiza-
tions. Such liaisons are as informal as possible with the objective of improving the quality of the 
IETF standards. Examples of liaisons with other standardization bodies include: ISO ( http://www
.iso.org/iso/home.htm ), ITU ( http://www.itu.int/net/home/index.aspx ), IEEE ( http://www.ieee.org/
portal/site ), 3       GPP ( http://www.3gpp.org/ ), and IP/MPLS Forum ( http://www.ipmplsforum.org/ ).  

      ●      The IAB also approves the appointment of an organization to act as RFC editor (in charge of 
the editorial management of RFCs) and an organization to act as the Internet Assigned Numbers 
Authority (IANA) that is responsible for the assignment of the various protocol parameters speci-
fi ed by the IETF.    

 More   details can be found in [33]. 

    14.2.5.1       IRTF 
 The   mission of the IRTF is to  “ to promote research of importance to the evolution of the future 
Internet by creating focused, long-term and small Research Groups working on topics related to 
Internet protocols, applications, architecture and technology. ”  

 The   IRTF is organized into Research Groups (RGs) to focus on various topics related to proto-
cols, application architecture, and technologies. Similar to the IETF, IRTF members are individual 
contributors as opposed to company representatives. RGs are expected to have long-term membership 
to promote the development of research collaboration and teams for research-related topics. 

 The   IRTF is managed by the IRTF chair (appointed by the IAB) in consultation with the Internet 
Research Steering Group (IRSG), which includes the IRTF chairs, the RG chairs (appointed by the 
IRTF chairs in consultation with the IRSG and approval of the IAB), and potential individuals from 
the research community. 

 There   are twelve RGs    : 

      ●      Anti-Spam Research Group (ASRG)  
      ●      Routing Research Group (RRG)  
      ●      Delay-Tolerant Networking Research Group (DTNRG)  
      ●      Peer-to-Peer Research Group (P2PRG)  
      ●      Host Identity Protocol (HIP) Research Group (HIPRG)  
      ●      IP Mobility Optimizations (Mob Opts) Research Group (MOBOPTS)  
      ●      Network Management Research Group Charter (NMRG)  
      ●      Transport Modeling Research Group (TMRG)  
      ●      Scalable Adaptive Multicast Research Group (SAMRG)  
      ●      Crypto Forum Research Group (CFRG)  
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      ●       End-to-End Research Group Charter (END2END)  
      ●      Internet Congestion Control Research Group (ICCRG)    

 More   details on the IRTF can be found in [255].    

    14.3       IETF WORKING GROUPS RELATED TO IP FOR SMART OBJECTS 
 Until   2007 the IETF had not paid any particular attention to the world of smart objects. It was 
extremely important to quickly stop the emergence of proprietary protocols and pay the required level 
of attention and energy to specify IP-based protocols for smart objects. A presentation was made dur-
ing the Routing Area Plenary session during the IETF-69 in Chicago on July 2007 to highlight the 
need for specifi c work in this area (see Figure 14.4).        

 The   intent has always been to reuse existing IP protocols whenever possible with a strong incen-
tive to not  “ reinvent the wheel. ”  The world of smart objects is not an exception. Many of the existing 
IP protocols can be reused without change such as the UDP (User Datagram Protocol; see [202]) or 
TCP (Transport Connection Protocol; see [204]). 

 There   were other areas that required specifi c solutions. The use of IPv6 over IEEE 802.15.4 han-
dled by the 6LoWPAN Working Group requires protocol enhancement and some protocol adaptations 
to optimize the transport of IPv6 packets in an IEEE 802.15.4 frame. Another example is routing. 
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 FIGURE 14.4  
         Presentation during the Routing Plenary Session IETF 2007.    
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  This   section provides a description of the two IETF Working Groups (so far) that are focusing on 
issues specifi c to IP-based smart objects: 6LoWPAN and ROLL. New IETF Working Groups devoted 
to smart objects are likely to emerge. 

    14.3.1       The IPv6 over Low-power WPAN Working Group 
 The   IPv6 over Low-power WPAN (6LowWPAN) Working Group was formed in 2004 to work on 
protocol specifi cations to optimize the operation of IPv6 over networks made of IEEE 802.15.4 [129] 
links in LoWPAN (Low-power Wireless Personal Area Networks). The 6LoWPAN Working Group 
belongs to the Internet area (INT) of the IETF. 

 Note   that the 6LoWPAN Working Group uses the term LoWPAN whereas the ROLL Working 
Group prefers the more generic term Low-power and Lossy Networks (LLNs). The two terms are 
somewhat equivalent when referring to networks made of constrained devices regarding CPU, mem-
ory, or energy (some of these nodes, especially when battery-operated, may be in sleep mode for long 
periods of time) and usually interconnected by means of unstable links (qualifi ed as  “ lossy ”  links). 
Furthermore, these networks may be deployed on a large scale. As discussed in Chapter 2, the major 
distinction, though, is that LLNs are not restricted to IEEE 802.15.4 links but also occur in other low-
power links such as WiFi, Powerline communication (PLC), and so forth. In other words, a LoWPAN 
is an LLN where devices are interconnected by IEEE 802.15.4-compliant links. 

 The   key characteristics of LoWPANs include: 

      ●      Small packet size imposed by the IEEE 802.15.4 standard: The maximum packet size at the physi-
cal layer is 127 bytes minus a maximum of control fi elds of 25 bytes, which leaves 102 bytes avail-
able at the media access control (MAC) layer. Depending on the security mechanism in place, this 
only leaves 81 bytes available (21 octets of overhead in the AES-CCM-128 case, 9 octets for AES-
CCM-32, and 13 octets for AES-CCM-64), which is far below the minimum maximum transmis-
sion unit (MTU) size of the IPv6 packet imposed by [53]. According to [53],  “ IPv6 requires that 
every link in the Internet have an MTU of 1280 octets or greater. ”  Consequently, this requires a 
fragmentation and reassembly adaptation layer. The second consequence is the need for compression 
header techniques considering the header size of an IPv6 packet (40 bytes). Both the fragmentation/
reassembly and compression techniques specifi ed by the 6LoWPAN Working Group are detailed in 
Chapter 16.    

      ●      Support of both the 16-bit short address and the IEEE 64-bit extended MAC addresses.  
      ●      As in most LLNs, links are inherently  “ low ”  bandwidth: 250, 40, and 20 kbps for each of the 

currently defi ned physical layers (2.4       GHz, 915       MHz, and 868       MHz, respectively) of the IEEE 
802.15.4 standard.    

   [156] provides a 6LoWPAN problem statement and lists some of the goals of the Working Group 
such as fragmentation and reassembly, header compression, address autoconfi guration (a key require-
ment for LoWPAN and LLNs in general), network management, implementation considerations, and 
security.    

 The   6LoWPAN Working Group was re-chartered in 2008 to work on the following items: 

      ●      6LoWPAN bootstrapping and 6LoWPAN IPv6 ND Optimizations: The objective is to defi ne 
minor extensions to the IPv6 ND process defi ned in [185] for the specifi c environments of 
LoWPAN. This document is still in progress (proposed standard track  )  .  
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      ●       Produce 6LoWPAN header compression techniques that are improved forms of those defi ned in 
[176] known as HC1 and HC2; furthermore, the document will describe compression of non-link 
local addresses. This document will be a proposed standard likely to deprecate some of the mech-
anisms defi ned in RFC4944.  

      ●      Produce a 6LoWPAN architecture: This document will help design and implement 6LoWPAN 
networks and it will be informational.  

      ●      Use cases for 6LoWPAN: This document will show several application scenarios and the list 
of dominant parameters of each scenario regarding deployment, mobility, network size, power 
(battery- or main-powered nodes), security level, routing connectivity, criticality to support differ-
entiated Quality of Service (QoS), and typical traffi c patterns (point-to-point, point-to-multipoint, 
multipoint-to-point, etc.). This document will be informational.  

      ●      6LoWPAN security analysis defi ning the thread model of 6LoWPAN: This document discusses 
the suitability of key management mechanisms as well as bootstrapping, installation, commission-
ing, and setup issues. It will be informational.  

      ●      The fi nal Working Group item is related to routing requirements that are 6LoWPAN specifi c. This 
document will be informational.  

      ●                  Confusion between LLNs and 6LoWPAN networks: 6LoWPAN has sometimes been used as 
a generic term for LLN or sensor networks. 6LoWPAN is the work devoted to IPv6 optimization 
techniques and protocol adaptation for smart objects interconnected by IEEE 802.15.4 links. LLNs 
are made of a variety of links that are not limited to IEEE 802.15.4 and where the techniques for 
header compression and ND defi ned by the 6LoWPAN Working Group may not apply at all.     

    14.3.2       The ROLL Working Group 
 Routing   has always been a central component of networking and several IP routing protocols have 
been defi ned over the past two decades, both Interior Gateway Protocols (IGPs) such as IS-IS [30] 
and OSPF [179], for use within an Autonomous System (AS) or Exterior Gateway Protocols (EGPs) 
such as BGP [212] between AS. 

 Several   of these protocols in their early stages were designed for routers with very limited resources 
supporting low-speed interfaces with capabilities similar to smart objects, but the properties of these 
networks differed signifi cantly from LLNs. Most of the main differences are highlighted in  Figure 14.5   . 

      ●      Scalability: Although some LLNs may only have a few dozen nodes (e.g., in a home), there are 
environments that may have hundreds of thousands of nodes. As further discussed in Part III, 
some urban or Smart Grid networks will undoubtedly reach such numbers so scalability is very 
important. Large enterprises or service provider networks using OSPF or IS-IS as IGPs rarely 
exceed a few thousand nodes in a single area/level. The number of nodes in large LLNs does 
exceed the size of current IP-based networks by an order of magnitude.  

      ●      Network stability: This is another diffi cult challenge for routing in LLNs. Both nodes and links 
in the Internet and private IP-based networks are extremely stable. Not only have modern rout-
ers became extremely powerful regarding number of interfaces and software richness, but their 
reliability has also remarkably increased. Furthermore, modern routers are equipped with a high 
level of redundancy and support-enhanced software allowing for fast recovery in case of hardware 
or software failure. It is now possible on these routers to perform in service software upgrades 
(ISSUs), and many control plane protocols are capable of failure recovery with no impact on traffi c 
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 forwarding. Unfortunately, such mechanisms often require node resources not always available on 
smart objects that usually have no redundancy and a failure rate signifi cantly higher than Internet 
routers. In some cases, they simply  “ die ”  without being replaced and redundancy is in the network 
itself. Alternatively, some nodes may not be operational for a period of time (e.g., battery-operated 
devices that ran out of energy). But the most critical factor of network instability in LLNs is ineluc-
tably due to link error rates and  “ fl aps. ”  In the Internet optical fi bers provide very low bit error rates 
(BER) of the order of 10  � 8 , but low-power links such as IEEE 802.15.4, low-power WiFi, or PLC 
are characterized by high error rates and link instability. It is not uncommon for a link to  “ fl ap ”  
because of various kinds of interferences. Several examples are provided in Chapter 17  .  

      ●      Link and node instability in LLNs: This is diffi cult for routing protocols to overcome. The usual 
trade-off between network stability and convergence time is particularly challenging. In any routing 
protocol design, it is desirable to support fast convergence (ability to fi nd an alternate path after a 
network failure). This implies quick detection of the failures and recomputing alternate paths around 
the failed network component. Unfortunately, there is a serious risk of network instability, oscilla-
tions, and routing loops in the presence of frequent failures, especially with distributed routing pro-
tocols. This is why the compromise between fast failure recovery (convergence time) and network 
stability is quite challenging in LLNs. Such issues are discussed in great detail in Chapters 5 and 17  .  

      ●      Degree of constraints: Routers in IP networks are typically not constrained. Core routers have sev-
eral gigabytes of RAM and powerful CPUs. As explained in detail in Chapter 1, although smart 
objects are now equipped with a reasonable amount of memory and CPU power, these are an 
order of magnitude more constrained that routers in  “ traditional ”  IP networks. Another critical 
and very common node constraint is energy. It is fairly common for nodes in LLNs to be battery-
operated, in which case energy consumption is a major constraint. Some of these constraints can 
be used for constraint-based routing or as a metric (see Chapter 17).  

Routing for smart objects

Routing is not application-aware (MTR is a
vanilla version of it)

Current Internet Low-power and Lossy Networks (LLN)

Links and nodes are stable Links are highly unstable and nodes die much
more often

Application-aware routing, in-band processing
is a MUST

Nodes constraints or link bandwidths are
typically non-issues

Nodes/Links are highly constrained

IGP with typically few hundreds of nodes An order of magnitude larger in terms of number
of nodes

Nodes are routers Nodes are sensor/actuators and routers

 FIGURE 14.5  
       Routing in the Internet versus LLNs  .    
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      ●       Application aware routing: IP packets are routed in the Internet according to their destination and 
IGPs are responsible for computing shortest paths according to fi xed metrics. QoS allows packet 
coloring to assign different priorities to traffi c fl ows. In the presence of congestion, packet pro-
cessing is handled by sophisticated queuing algorithms according to the traffi c priority to provide 
the required Service Level Agreement (SLA). Multi-topology routing (MTR) has been introduced 
to support multiple virtual topologies over a given physical topology. The traffi c can then be for-
warded on a specifi c virtual topology according to its class of service. Not only does the rout-
ing protocol for LLN require the support of MTR and QoS routing in the network, but it may 
also be necessary to support application aware routing, which is the ability to route the traffi c 
according to the packet content. This must not be performed at each hop since it would require 
deep packet inspection and would also imply  “ layer violation, ”  but it could be done either at the 
edge of the network (by the source) or along the path (on data traffi c concentrators/aggregators). 
The packet content (application) could then be abstracted using the Diffserv Code Point (DCP) or 
Flow Label fi eld of the IPv6 packet to avoid packet inspection along the path (refer to Chapter 15 
for an IPv6 Technology overview). A specifi c capability of a node that could act as a data aggre-
gator could be advertised by the routing protocol, which would then directly infl uence the routing 
decision.  

      ●      Technical challenges: Routing in LLN is extremely challenging because of the high degree of 
network constraints (constrained links and devices, instability, scalability, etc.), but also because 
of the remarkable diversity of the requirements and environments where LLNs are deployed. 
The design of a routing solution addressing all requirements is a truly multidimensional issue. 
Three dimensions are presented in  Figure 14.6    highlighting the diversity of the requirements and 
constraints in each dimension for several applications. In a connected home network, the degree 
of link/node constraint is relatively low (reasonably low level of interference, most devices are 
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 main-powered, just a few devices are mobile nodes). At the other end of the spectrum industrial 
environments are signifi cantly more constrained: most of the devices are battery-operated, their 
number can be relatively large, and such networks are usually deployed in harsh environments.    

 There   are many environments with  “ middle ground ” -level constraints in all dimensions. 
Narrowing the scope to the four applications previously mentioned (industrial, urban networks, home 
and building automation) was meant to avoid a too disparate set of constraint levels. One approach 
when designing a protocol that must address such a wide set of constraints is to simply consider 
the superset of all requirements driven by all of these constraint dimensions. Although satisfactory 
in its functionality, this would unavoidably lead to a routing protocol not optimized for any of the 
environments and certainly too  “ heavy ”  for the constrained devices deployed in these networks. The 
approach taken by the designers of the routing protocol for LLN (as discussed in Chapter 17) was to 
adopt a modular approach that consisted of a defi ning a core of basic functionalities satisfying the 
set of common requirements augmented with optional capabilities activated when and where needed. 
This is where applicability statement documents come into play. 

    14.3.2.1       The Formation of a New Working Group: ROLL 
 The   unique characteristics of the LLNs justifi ed the formation of the ROLL Working Group. It was 
formed in March 2008 and belongs to the Routing Area Group (RTG). Detailed information about 
ROLL can be found at  http://www.ietf.org/html.charters/roll-charter.html . 

 ROLL   was initially chartered to produce detailed routing requirements and evaluate whether or 
not existing routing protocols already defi ned by other IETF Working Groups would meet its unique 
set of requirements. 

 The   set of applications of LLNs is vast: Smart Cities, transportation, assets tracking, home auto-
mation, healthcare, building automation, industrial automation, energy savings, Smart Grids, military 
applications, environmental studies, agriculture, and so forth. To stay focused and avoid building a 
routing solution that could not accommodate all requirements, the decision was made to limit the 
scope of the requirements to four main applications: industrial automation, urban networks, and home 
and building automation. The superset of all of the requirements driven by the aforementioned appli-
cations also covers many of the other areas previously mentioned. Furthermore, the goal was not to 
exclude any other area but rather to focus on some of the applications, knowing that these applica-
tions would also cover the requirements of many other ones. 

 The   ROLL Working Group has produced four corresponding application-specifi c routing require-
ments documents: Urban WSNs Routing Requirements in Low-Power and Lossy Networks, Industrial 
Routing Requirements in Low-Power and Lossy Networks, Home Automation Routing Requirements 
in Low-Power and Lossy Networks, and Building Automation Routing Requirements in Low-Power 
and Lossy Networks. 

 The   most recent versions of the requirement documents can be found at  http://www.ietf.org/html
.charters/roll-charter.html.  

 The   ROLL Working Group extensively discussed whether or not an existing protocol (with no 
change) could satisfy the specifi c routing requirements. To that end, several criteria were selected to 
evaluate whether or not existing protocols would satisfy the requirements of ROLL: 

      ●      Routing state: Scalability of the protocol regarding required states and the number of links and 
nodes in the network  
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      ●       Loss response: That criteria was used to study the impact of link churn (fairly common in LLN) 
on the routing protocol to make sure of local response without triggering global re-optimization  

      ●      Control cost: Ability for the routing protocol to limit the control cost (routing control plane  “ over-
head ” ) by the data rate plus a small constant  

      ●      Link and node cost: Requirement for the routing protocol to consider link and node metrics/
constraints in route computation    

 The   criteria previously listed have been studied in a series of existing protocols; namely OSPF 
(Open Shortest Path First; [179]), IS-IS (Intermediate System to Intermediate System; [131] and 
[238]), OLSR [41], TBRPF (Topology Dissemination Based on Reverse Path Forwarding; [187]), 
RIP (Routing Information Protocol; [163]), AODV (Ad-hoc On Demand Vector Routing; [194]), 
DYMO (Dynamic Mobile On-Demand routing), and DSR (Dynamic Source Routing; [141]). After 
six months, the Working Group reached a consensus that no existing protocol could satisfy the routing 
requirements spelled out in the series of application-specifi c routing requirements previously listed. 
Consequently, the ROLL Working Group was successfully re-chartered to specify a routing solution to 
fi nalize the protocol specifi cation by February 2010. Here are the ROLL Working Group items: 

      ●      Protocol work: The Working Group will either specify a new routing protocol or extend an exist-
ing routing protocol that satisfi es the list of requirements listed in the application-specifi c routing 
requirement documents.      1       

      ●      Routing metrics: Those specifi ed for IGPs such as OSPF and IS-IS are fairly straightforward and 
can be used by the network administrator to refl ect bandwidth, delays, cost, or any combination. 
Other RFCs such as [249] have introduced the ability to specify new link attributes (e.g., link pro-
tected by a fast reroute mechanism). Technologies such as MPLS Traffi c Engineering introduced 
a new set of link metrics such as Affi nities (administrative fl ag), Reservable Bandwidth, and so 
forth. But LLNs have other specifi c characteristics that require the specifi cation of new link and 
node routing metrics/constraints. Producing a set of routing metrics/constraints for the routing 
protocol of ROLL is a key Working Group item.  

      ●      Security: This is critical for a majority of the applications supported by LLNs. ROLL is producing 
a security framework for that purpose. Security requirements have been covered in detail in the 
routing requirement documents and special attention is given to security in the routing protocol 
design.  

      ●      Management: Most LLNs are made of nodes that must support minimal confi guration (such net-
works are usually installed by non-IT experts). Furthermore, the number of nodes can be very 
large. It is thus paramount to support 0-confi g setup mode of operation where the nodes can be 
installed in the fi eld without requiring any complex (if any) confi guration tasks.  

      ●      Architectural framework: The Working Group will produce an architecture document for routing 
and path selection in LLN whether to use a distributed versus centralized routing, use of routing 
hierarchy, and so forth.  

      ●      Applicability statements: The Working Group will also produce several application statement 
documents  . An applicability statement documents the use of protocols and mechanisms specifi ed 
by the Working Group in a particular context (e.g., how to use the routing protocol in an urban 
network with battery-operated devices under certain conditions of traffi c pattern).       

   1   The ROLL Working Group chose to specify a new routing protocol discussed in detail in Chapter 17.   
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    14.4        CONCLUSIONS 
 As   stated in the Introduction, standardization is absolutely critical and synonymous of openness and 
interoperability. IP is by excellence an open standardized technology. Anybody willing to contribute 
to IP standardization is free to participate in the IETF. The IETF has produced an impressive num-
ber of extremely high-quality standards over the past few decades ensuring interoperability between 
billions of devices. As IP networks (private IP networks and the Internet) continue to grow intercon-
necting several billions and most likely trillions of smart objects, standardization will continue to be 
crucial to ensure interoperability, manageability, and innovation while continuing to lower the cost of 
these networks in contrast with proprietary solutions. 

 This   chapter provided a fairly detailed description of the IETF, IAB, and IRTF regarding organi-
zation and mode of operation. It was shown that the IETF continues to quickly evolve and form new 
Working Groups standardizing new IP protocols for smart objects. New Working Groups are formed 
when needed since most of the existing IP protocols can be used in smart object networks. IETF will 
undoubtedly continue to be a fast moving and central standardization body for IP smart objects for 
years to come.                        
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CHAPTER

    15.1        IPv6 FOR SMART OBJECT NETWORKS? 
 A   number of books have been published on IPv6. This chapter provides a technology refresher to 
show how IPv6 is used for IP smart objects. More details on IPv6 that are less applicable to Low-
power and Lossy Networks (LLNs) are not covered in this chapter. For more information the reader 
is referred to [104], [49], [201], [17], [243], [164], and the IPv6 RFCs produced by the Internet 
Engineering Task Force (IETF) for more details. 

 As   discussed in Part I, IPv6 plays a fundamental role in the  “ Internet of Things/IP smart objects ”  
for many reasons that are briefl y examined in this chapter. By reviewing the key motivations for IPv6 
contained in [53], the choice of IPv6 for smart object networks will become quite obvious. 

 IPv6   strictly follows the fundamental architectural principles of IP, it is just the next revision of IP 
solving several limitations of IPv4. Even with these limitations, IPv4 has been a tremendous success and 
is still in operation after 25 years. IPv4 will undoubtedly remain in operation for years to come, and the 
IPv6 designers have developed a plethora of mechanisms allowing for a smooth transition to IPv6; for 
example, to interconnect native IPv6 clouds over an IPv4 core network to support the transition to IPv6. 

 Let  ’s now briefl y focus on some key functionalities of IPv6. 

      ●      Larger address space required for large-scale networks: Although some LLNs such as home 
automation networks may only consist of a few dozen nodes, in many other cases, the num-
ber of these nodes may be an order of magnitude larger than in conventional IP networks. This 
will be discussed in great detail in Part III    , but urban networks, Smart Grids, and industrial auto-
mation networks are examples where IP smart object networks will potentially comprise hundreds 
of thousands of nodes. With the IPv4 address depletion at the horizon of 2012, IPv6 is the obvi-
ous choice. By extending the address space from 32 to 128 bits, there are a signifi cantly larger 
number of addressable nodes as well as many more levels of addressing hierarchy (key for routing 
table effi ciency) and autoconfi guration features. Note that the scalability of multicast has been 
enhanced due to a new scope fi eld and the notion of anycast address will be introduced later in 
Section 15.3.1 of this chapter  . Scoped addresses allow better support of ad hoc networking 
and are also discussed in Section 15.3.3 of this chapter  . But these are not the only reasons for 
choosing IPv6.  

      ●      Autoconfi guration: With networks of very large scale, management at large (provisioning, confi gu-
ration, management of faults, inventory, performance analysis) quickly becomes very challenging. 
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 Thus, the set of autoconfi guration features natively supported by IPv6 is another reason to use it 
in smart object networks.  

      ●      Header change: Several unused IPv4 header fi elds have been removed (e.g., fragmentation, check-
sum, etc.) and a simpler structure with a fi xed header potentially augmented with optional daisy-
chained extended headers has been adopted. New fi elds have also been added (e.g., fl ow label).  

      ●      Authentication and privacy: Extensions have been defi ned in support of authentication, data integ-
rity, and (potentially) confi dentiality.  

      ●      Security: IPSec (optional in IPv4) is mandatory in IPv6.     

    15.2       THE IPv6 PACKET HEADERS 
    15.2.1       IPv6 Fixed Header 
 A   good way to start learning a protocol is to fi rst observe the packet header fi eld. The IPv6 packet 
header format is shown in  Figure 15.1   . 

 Description   of the fi elds include: 

      ●      Version (4 bits): IP versions number      �      6.  
      ●      Traffi c class (8 bits): 8-bit fi eld used to indicate the Class of Service (CoS) of the packet. Quality 

of Service (QoS) is discussed in Section 15.9.  
      ●      Flow label (20 bits): A label may be used by a source node to refer to a sequence of packets identify-

ing a fl ow that requires specifi c handling of the packet by routers along the path to its destination. 
The fl ow label should be randomly generated to help with hash key function implementation on the 
intervening router. It is expected that the source node does not use the same fl ow label value for two 
different fl ows at any time. Note that the use of this fi eld is still mostly experimental.  

      ●      Payload length (16 bits): This fi eld indicates the length of the payload (excluding the packet 
header). Note that the length of the extended headers (described in Section 15.2.2) is included in 
the payload length.  

      ●      Next header (8 bits): This fi eld identifi es the header that follows the IPv6 packet header. This pro-
vides a very fl exible way to add optional headers using a daisy chain.  

      ●      Hop limit (8 bits): This fi eld is decremented each time the packet is forwarded by a node. When 
the hop limit fi eld is equal to 0, the packet is discarded.  

Version Traffic class Flow label

IPv6 packet format

Payload length Next header Hop limit

Source address

Destination address

 FIGURE 15.1  
       IPv6 packet header format.    
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      ●       Source address: 128-bit IPv6 source address of the packet.  
      ●      Destination address: 128-bit IPv6 destination address of the packet.    

 This   leads to the observation that the fi xed IPv6 header (with no option) is 40 bytes long com-
pared to the 20-byte header of an IPv4 packet. Such extra overhead may be an issue for LLNs com-
posed of low-speed links, especially when the link layer maximum transmission unit (MTU) and the 
data payload are small (a fairly common situation in LLNs). That is precisely the case of the IEEE 
802.15.4 links described in Chapter 1  2  , a fairly popular link in LLN. This is why the 6LoWPAN 
Working Group specifi ed various header compression schemas to reduce the header overhead. These 
mechanisms are described in detail in Chapter 16. 

 In   contrast with IPv4, there is no checksum in the IPv6 header. Thus all the transport layer 
protocols are required to compute a checksum taking into account the IPv6 header. This is also true 
for UDP. Thus, the UDP checksum (optional in IPv4) is mandatory in IPv6 and all higher-level proto-
cols that use the 32-bit IPv4 address to compute their checksum. They must be modifi ed to use the 
128-bits IPv6 addresses.  

    15.2.2       Extended Headers 
 IPv6   has a fi xed header optionally followed by a daisy chain of headers called extended headers. 
Optional headers follow the fi xed header and precede the transport header. 

 The   next header value simply identifi es the type of the following header. Consider  Figure 15.2   . 
In the fi rst example, the next header value is equal to 6, thus identifying a TCP header (there is no 
extended header in this case and the transport packet data unit (PDU) immediately follows the fi xed 
header). In the third example, there is a series of three extended headers following the fi xed IPv6 
that are daisy-chained. The IPv6 next header value is equal to 43, indicating that the next header 
(fi rst extended header is a routing header) is composed of a next header fi eld with a value of 51 that 
indicates the presence of an authentication header. The transport header is specifi ed by the value of 6 

Next header = 6 (TCP) TCP header + payload

Next header = 43 (routing) Next header = 6 (TCP) TCP header + payload

Next header = 43 (routing) Next header = 6 (TCP)
Next header = 51 (AH)
(authentication)

TCP header + payload

Case 1: no extended header

Case 2: with a routing header

Case 3: with a routing header and authentication headers

 FIGURE 15.2  
       An IPv6 extended header.    
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 (referring to a TCP) in the next header fi eld of the authentication header. This provides a very fl exible 
architecture, adding header only when needed. 

 Note   that headers  must  appear in a specifi c order and are not processed by intermediate routers 
along the data path except the hop-by-hop option header. Indeed, the hop-by-hop header is the only 
header that must be processed by all the routers along the path including the source and the destina-
tion, which is why, when present, it must immediately follow the fi xed header (its presence is indi-
cated by a value of 0 in the next header fi eld of the fi xed header). 

 As   specifi ed in [53], all IPv6 implementation must support the following extended headers: 

      ●      Hop-by-hop options [53]  
      ●      Routing (type 0) [53]  
      ●      Fragment [53]  
      ●      Destination options [53]  
      ●      Authentication (specifi ed in [146] and [155])  
      ●      Encapsulating security payload (specifi ed in [145])    

   [53], [145], [146], and [155  ]   defi ne each of the extended headers including the format, process-
ing rules, error handling, and so on. Since the objective of this chapter is not to be an IPv6 refer-
ence book, a brief description of the extended headers relevant to LLNs is provided and implementers 
should refer to the RFCs for implementation details. 

 Options   in headers: there are two extension headers (hop-by-hop options header and the destina-
tion options header) that carry a variable number of type-length-values (TLVs) that allow specifi ca-
tion of a number of options for the header. The option type identifi er (T value) defi nes the option 
type and the two higher order bits specify what the node is expected to do if the option is not recog-
nized such as ignore, silently discard, discard and send an Internet Control Message Protocol (ICMP) 
packet, and so forth. The third higher order bit specifi es whether or not the option data can be changed 
en route along the data path.  

    15.2.3       The Hop-by-hop Option Header 
 The   hop-by-hop option header is used to carry extra information and must be processed by all routers 
along the data path including the source and destination of the IP packet. Its structure is depicted in 
 Figure 15.3   , which shows the fi rst 8-bit identifying the next header, followed by an 8-bit fi eld speci-
fying the payload length not including the fi rst 8 bits, followed by the payload of variable length car-
rying the set of TLVs.  

    15.2.4       The Routing Header 
 The   routing header is used to identify a set of nodes that must be traversed by the packet along its 
path to the destination, also known as  “ source routing. ”  This does not require listing all the nodes 
along the paths: a subset of some nodes along the path can be listed as opposed to all nodes (a source 
routing technique referred to as loose source routing). 

 The   fi rst two fi elds are identical to the fi rst two fi elds of the hop-by-hop option header. The rout-
ing option is a routing variant and the segment left fi eld indicates the number of remaining route seg-
ments before reaching the destination. The type-specifi c data fi eld is a variable length fi eld of a type 
defi ned by the routing type fi eld value. 
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  For   example, a particular instantiation of the routing header is shown in  Figure 15.3  for the rout-
ing header of type 0. The routing header is type 0 and only carries unicast addresses. 

 The   processing of the routing header is interesting because it is used not only to list the set of 
nodes that must be traversed but also to record the set of nodes that have been traversed. 

 Next   is an important note on security. When a node needs to reply to a packet that was received 
with a routing header, the response packet must not include a routing header that was automatically 
computed by reversing the route specifi ed in the routing header of the received packet unless the 
integrity and the authenticity of the received source address and routing header have been verifi ed. 

 A   drawback to routing header subtype 0 (RH0) is the introduction of security issues that have 
been documented in [2] that lead to its deprecation. Indeed, a single RH0 may contain multiple inter-
mediate routers/hosts and it is legal to include the same address more than once. This means that 
a single packet may circle and be processed multiple times by the same routers/hosts, leading to a 
Denial of Service (DoS) attack. Note that the same attack exists with IPv4 but is exemplifi ed in the 
case of IPv6 since many addresses could be listed in the header. 

 Consequently  , other routing header subtypes have been used. Routing header subtype 1 has been exper-
imented with and routing header subtype 2 is defi ned for IPv6 Mobility in [140] (see  Figure 15.4   ).  

    15.2.5       The Fragment Header 
 In   contrast with IPv4, the routers along the data path never perform any form of fragmentation. IPv6 
mandates that each link must be able to carry 1280-byte packets, which is not always the case in LLN. 

Routing header type 0

Routing header

Hop-by-hop option header

IPv6 extended headers

Next header

Next header

Next header

Hdr ext length

Hdr ext length

Hdr ext length

Address 1

Address n

0

Routing type

Type-specific data

Segments left

Segments left

Option

Reserved

 FIGURE 15.3  
       Hop-by-hop and routing headers.    
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 In particular, the MTU of IEEE 802.15.4 links is equal to 127 bytes. In this case, it is required to 
handle packet fragmentation and reassembly at the link layer. This is specifi ed in [176] and [124] 
as a result of a work item from the 6LoWPAN Working Group. These mechanisms are described in 
Chapter 16  . 

 This   implies that IPv6 should support mechanisms to discover the minimum MTU supported on 
each link along the path to the destination    . This is performed using a procedure called path maximum 
transmission discovery (PMTU) defi ned in [171]. It uses a sequence of ICMP packets along the path 
until it discovers the minimum MTU along the path. This value is then cached on the host in a table 
on a per-destination basis and must be rediscovered on a regular basis since IP paths may change due 
to rerouting from network element failures. An implementation not supporting PMTU may simply 
decide to send packets no larger than 1280 octets. 

 An   IPv6 source node fragments a packet each time its size is larger than the minimum MTU along 
the path to the destination. 

 The   format of the fragment header is shown in  Figure 15.5   . The fragment header is identifi ed by 
the value 44 present in the next header fi eld of the previous header (which could either be the IPv6 
fi xed header or the routing header, if present). The next header value is identical to the original next 
header type of the fragmented packet. The fragment offset simply indicates the offset of the fragment 
(in 8-octet units) relative to the start of the fragmentable part of the original packet. The identifi ca-
tion fi eld is a 32-bit encoded value chosen by the source node to identify the fragmented packet that 
will be reassembled by the destination node. Each time a source node fragments a packet it uses a 
different identifi cation number for each fragmented packet destined to a specifi c node. The source 
is expected to use an identifi cation number different from any already sent packet for the expected 
lifetime of a packet. A simple wraparound counter considering the 32-bit encoding scheme for the 
identifi cation number is assumed to be perfectly reasonable. The 2-bit  “ reserved ”  fi eld is set to 0 and 
the M-bit is used to indicate whether the fragment is the last one (1: more fragment, 0: last fragment). 

 Now   let’s illustrate the fragmentation process of a packet. The original packet has an unfragment-
able part made of the original header and any extended header that must be processed by the nodes 
along the path to the destination (all headers up to and including the routing header if present). The 
rest of the packet makes the fragmentable part of the packet. 

 The   format of each fragment is shown in  Figure 15.5 . Each fragment is made of the unfragment-
able part of the original packet, the fragment header, and the payload of the fragment. Note that the 
unfragmentable part of each packet has a payload size equal to the size of the fragment excluding the 
length of the IPv6 header. The next header fi eld of the last header of the unfragmentable part is set to 
44. Now looking at the fragment header, it contains a next header value that identifi es the fi rst header 
of the fragmentable part of the original packet. 

Next header Hdr ext length = 2

Home address

Reserved

Routing type = 2 Segments left = 1

IPv6 routing header subtype 2  FIGURE 15.4  
       Routing header subtype 2.    
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  Fragments   may be lost, especially in LLNs where bit error ratios (BERs) are fairly high and links 
are potentially quite unstable. IPv6 mandates that all fragments are to be received within 60 seconds 
after the reception of the fi rst fragment (which may or may not be fragment number 1). After the time 
expires, and not all fragments have been received, the procedure is simply stopped and all fragments 
are discarded. An ICMP error message is then sent to the source of the packet. Other error cases (e.g., 
incorrect packet length, etc.) are also covered and illustrated in [53].  

    15.2.6       The Destination Option Header 
 The   destination option header is used to carry optional information processed by the destination node, 
and is identifi ed in the next header fi eld of the previous header by a value of 60. The format of the 
destination option header is quite straightforward: an 8-bit next header fi eld followed by an 8-bit 
header extension length fi eld indicating the length of the header in 8-octet units, excluding the fi rst 
8 octets. The payload contains one or more TLVs. 

 Optional   information is encoded in two different ways: (1) by using a TLV carried within the des-
tination option header or (2) by defi ning a new extended header. The highest two order bits are used 
to indicate the expected behavior of the destination that does not recognize the option.  

    15.2.7       The No Next Header 
 This   header (value      �      59) is used to indicate that nothing follows this header.   

Fragment header

Original packet to be fragmented

Fragmentation process

Unfragmentable part

Unfragmentable part

Unfragmentable part

Unfragmentable part Fragmentable part

Fragment header

Fragment header

Fragment header Fragment 1

Fragment 2

Fragment n

Option

ReservedNext header Fragment offset (13 bits) Res M

 FIGURE 15.5  
       Fragment headers.    
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    15.3        IPv6 ADDRESSING ARCHITECTURE 
 Needless   to say, IPv6 addressing deserves a chapter on its own. 

 Its   addressing architecture is described in [116]. 
 This   section will help understand Chapter 16     where header compression mechanisms specifi ed by 

the 6LoWPAN Working Group for IPv6 over IEEE 802.15.4 and the routing operation in general will 
be discussed. This is not a data format, but a true addressing architecture instead. 

 128  -bit addresses allow 3.4 10 38  addresses, in other words, 4.8 10 23  addresses per person on earth 
or 6.6 10 23  addresses per square meter, which should leave enough addresses for years to come. 

    15.3.1       Notion of Unicast, Anycast, and Multicast 
 A   unicast address uniquely identifi es a single interface by its address. An interface can have multiple 
unicast addresses and must have at least one link-local address. A link-local address is an address 
used on a link between two nodes. In some cases, link-local addresses are suffi cient if the node does 
not need to send packets beyond a local link. Note that a node may assign a unicast address (or a set 
of unicast addresses) to more than one interface if and only if it treats them as one interface when 
presenting to the network layer. This could be useful to load balance traffi c over a set of physical 
interfaces. 

 An   anycast address is an identifi er for a set of interfaces: a packet sent to an anycast address is only 
delivered to one of the interfaces of the set, typically the closest one according to routing metrics. 

 In   contrast, a packet sent to a multicast address is delivered to all interfaces identifi ed by the multi-
cast address. There is no broadcast in IPv6, so multicast addresses are used. For example, routing con-
trol packets in IPv4 use broadcast addresses whereas specifi c multicast addresses are used in IPv6  .  

    15.3.2       Representation of IPv6 Addresses 
 32  -bit IPv4 addresses are represented in the following form: x.y.z.t (e.g., 124.4.12.3). A portion of the 
address represents the network part and the rest of the address represents the host part. 

 128  -bit IPv6 addresses are usually represented in the form x:x:x:x:x:x:x:x where each x is a hexa-
decimal value (thus representing 16 bits); for example, 2020:CA28:0000:0000:0023:0222:0000:2900. 

 Since   these addresses can be rather long, there is a way to simplify text representation. For exam-
ple, 0000 can be represented as 0 or even nothing. A sequence of 16 bits all equal to 0 can be repre-
sented as ::, which can only be present once in an address. 

 Back   to the previous examples, the address can be represented as 2020:CA28::23:222:0:29. 
 The   ::1 address represents the loopback address (the equivalent of the 127.0.0.1 address for IPv4 

addresses) and :: is the unspecifi ed address. This must not be addressed to any node and simply speci-
fi es an absence of address; for example, :: can be used as the source address of the node that has not 
yet learned its own unicast address, and must not be used as a destination address or in the routing 
header. 

 IPv6   does not impose any specifi c boundary for the network part similarly to classless inter-
domain routing (CIDR) used in IPv4. 

 In   a mixed environment (IPv4 and IPv6) it is sometimes convenient to use the following format: 
2020:CA28::222:124.4.12.3 (see  Table 15.1   ). 
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     Table 15.1  shows the initial allocation of prefi x range. The IPv6 address type is conditioned by the 
values of the leading bits of the address. For example, multicast addresses always start with 11111111 
(FF). Anycast addresses are part of the unicast address space.  

    15.3.3       Unicast Addresses 
 A   unicast address is made of a subnet prefi x and an interface identifi er (interface ID). Interface IDs 
are used to identify an interface on a link and thus must be unique on that link; it is very common for 
the interface ID to be identical to the link layer address of the interface. As discussed in Chapter  16     , 
this interesting property is exploited for header compression when carrying IPv6 packets over IEEE 
802.15.4 links. 

    15.3.3.1       Global Unicast IPv6 Addresses 
 As   shown in  Table 15.1 , global unicast addresses have their three leftmost bits set to 001. 
Consequently, a global unicast address belongs to the 2000:: to 3FFF:FFFF:FFFF:FFFF:FFFF:FFFF:
FFFF:FFFF range. In most cases, the leftmost 64 bits are used to identify the network portion of the 
address (thus implying a /64 prefi x length) and the rightmost 64 bits are used to identify the host por-
tion of the address. 

 Table 15.1          Initial Allocation of Prefi x Ranges  

   Allocation  Prefi x (binary)  Fraction of address space 

   Reserved  0000 0000  1/256 
   Unassigned  0000 0001  1/256 
   Reserved for NSAP allocation  0000 001  1/128 
   Reserved for IPX allocation  0000 010  1/128 
   Unassigned  0000 011  1/128 
   Unassigned  0000 1  1/32 
   Unassigned  0001  1/16 
   Aggregatable global unicast addresses  001x xxxx  1/8 
   Unassigned  010x xxxx  1/8 
   Unassigned  011x xxxx  1/8 
   Unassigned  100x xxxx  1/8 
   Unassigned  101x xxxx  1/8 
   Unassigned  110x xxxx  1/8 
   Unassigned  1110 xxxx  1/16 
   Unassigned  1111 0xxx  1/32 
   Unassigned  1111 10xx  1/64 
   Unassigned  1111 110x  1/128 
   Unassigned  1111 1110 0  1/512 
   Link-local unicast addresses  1111 1110 10  1/1024 
   Site-local unicast addresses  1111 1110 11  1/1024 
   Multicast addresses  1111 1111  1/256 
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  To   allow for address aggregation to reduce routing table sizes in the Internet, IPv6 mandates using 
addresses provided by Service Providers. The network portion of the address is subdivided into a 

      ●      48-bit fi eld corresponding to the prefi x provided by the Service Provider  
      ●      16-bit fi eld used by the network administrator to allocate subnets within a site (thus resulting in 

2 16  available subnets)  
      ●      64-bit fi eld corresponding to the host part (the interface ID); that large a fi eld allows for embed-

ding the 48-bit media access control (MAC) address, which is extremely convenient for address 
autoconfi guration as explained in Section 15.7    

 The   process of building the interface ID is detailed in Section 15.7.  

    15.3.3.2       Local Unicast IPv6 Addresses 
 There   are two types of local unicast IPv6 addresses: link-local and site-local. 

 Link  -local unicast addresses are used on a single link for autoconfi guration, neighbor discovery, 
or in the absence of router. Since the scope is local, packets with link-local scope are never forwarded 
by the router beyond the scope of the link. 

 The   site-local address was initially introduced in [114  ]  . The site-local address is an address for-
warded within a site that does not need to reach in the Internet (thus no need for a global routable 
prefi x). Consequently, packets with such addresses were not forwarded by routers outside of the 
site. Site-local addresses have been deprecated by [127  ]   and must no longer be supported by new 
implementations. New implementations must treat site-local addresses as global unicast addresses. 

 The   format of the link- and site-local unicast IPv6 addresses is depicted in  Figure 15.6   . 
 Thus   a link-local scope unicast address always starts with FE80:0:0:0 followed by the interface ID. 

    15.3.3.2.1       Unique Local Unicast Addresses 
   [117] defi nes the concept of unique local addresses that are globally unique and intended for local 
communication (not routable in the Internet). 

 A   unique local unicast address has the format shown in  Figure 15.7   . 
 By   default, the scope of unique local unicast addresses is global. These addresses may be used 

within a site or even between sites, although they are not routable in the Internet. 
 The   choice was made to choose a 7-bit prefi x length providing about 2.2 trillion addresses while only 

using 0.781% of the IPv6 addressing space. The allocation of the Global ID must use a pseudo-random 

54 bits10 bits 64 bits

1111111010 0 Interface ID

Format of link-local unicast IPv6 address

Format of site-local unicast IPv6 address

10 bits 38 bits 16 bits 64 bits

1111111011 0 Interface IDSubnet ID

 FIGURE 15.6  
       Format of the link- and site-local 
unicast IPv6 addresses.    
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 algorithm consistent with [75]. Assignments are self-generated with an extremely high probability of 
uniqueness. [117] proposes the use of the following pseudo-random algorithm: 

    1.     Obtain the current time of day in 64-bit Network Time Protocol (NTP) format (see [175] for the 
specifi cation).  

    2.     Obtain an EUI-64 identifi er from the system running this algorithm. If an EUI-64 does not exist, 
one can be created from a 48-bit MAC address as specifi ed in Section 15.7.1. If an EUI-64 cannot 
be obtained or created, a suitably unique identifi er, local to the node, should be used (e.g., system 
serial number).  

    3.     Concatenate the time of day with the system-specifi c identifi er to create a key.  
    4.     Compute an SHA-1 digest on the key as specifi ed in [74,79]; the resulting value is 160 bits.  
    5.     Use the least signifi cant 40 bits as the Global ID.  
    6.     Concatenate FC00::/7, the L bit set to 1, and the 40-bit Global ID to create a local IPv6 address 

prefi x.    

 Collisions   still exist but with an extremely low probability. Good approximations give a prob-
ability of collision of 1.81 10  � 12  for 2 connections, 4.54 10  � 9  for 100 connections, and 4.54 10  � 5  for 
10,000 connections.    

    15.3.4       Anycast Addresses 
 An   anycast address is an address allocated to a set of interfaces that typically belong to different 
routers. When a packet is destined to an anycast address, it is delivered to the closest interface that 
has this anycast address, where the term  “ closest ”  is determined by the routing protocol. An anycast 
address must be assigned to a router not a host and cannot be used as a source address. 

 Since   anycast addresses are unicast addresses, when an interface is confi gured with an anycast 
address it must be explicitly confi gured on the router owning that interface. This is done because any-
cast addresses cannot be distinguished from any other unicast addresses. 

 One   example of an anycast address is the subnet-router anycast address. This address format is 
formed by a subnet prefi x of n bits that identifi es a specifi c link followed by 128-n bits all set to 0. 

40 bits 16 bits

Format of an IPv6 unique local address

8 bits 64 bits

FCOO::/7

L = 1: prefix locally assigned
L = 0: defined in the future

Used to create a globally unique prefix

Subnet within a site

L Global ID Subnet IDPrefix Interface ID

 FIGURE 15.7  
       Format of the unique local unicast addresses.    
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 So in this example, a packet sent to the subnet-router anycast address is delivered to one of the rout-
ers on that subnet link.  

    15.3.5       Multicast Addresses 
 Multicast   addresses are used in many contexts and are very important (remember that IPv6 does not 
use broadcast addresses). A multicast address identifi es a group of nodes called a multicast group 
and must not be used as a source address or in a routing header. The format of a multicast address is 
shown in  Figure 15.8   . 

 All   multicast addresses start with FF (fi rst 8 bits of the address), followed by a 4-bit fl ag fi eld, a 
4-bit scope fi eld, and a 112-bit group ID. 

    15.3.5.1       Flags 
 The   R fl ag is used to embed a rendezvous point in the address (see [219]). The P fl ag identifi es a uni-
cast prefi x-based multicast address, as defi ned in [103]. The T fl ag determines whether the multicast 
address is permanent (T      �      0) and assigned by the Internet Assigned Numbers Authority (IANA; what 
is considered a well-known address) or a transient address (T      �      1). Then a second 4-bit fi eld identi-
fi es the scope of the multicast address (e.g., link-local, node-local, site-local, etc.). 

 Some   multicast addresses are reserved such as FF00:0:0:0:0:0:0:0, FF01:0:0:0:0:0:0:0, FF02:0:0:
0:0:0:0:0, FF03:0:0:0:0:0:0:0, FF03:0:0:0:0:0:0:0, FF05:0:0:0:0:0:0:0, FF06:0:0:0:0:0:0:0, FF07:0:0:

ScopeFlags11111111 Group ID

8 bits 4 bits 4 bits 112 bits

000T
Value for the scope:

0  reserved
1 node-local scope
2 link-local scope
3 (unassigned)
4 (unassigned) 
5 site-local scope
6 (unassigned)
7 (unassigned)
8 organization-local scope
9 (unassigned)
A (unassigned)
B (unassigned)
C (unassigned)
D (unassigned)
E global scope
F reserved

T = 0: permanently assigned address
T = 1: transient multicast address

 FIGURE 15.8  
       Format of an IPv6 multicast address.    
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 0:0:0:0:0, FF08:0:0:0:0:0:0:0, FF09:0:0:0:0:0:0:0, FF0A:0:0:0:0:0:0:0, FF0B:0:0:0:0:0:0:0, FF0C:0:0:
0:0:0:0:0, FF0D:0:0:0:0:0:0:0, FF0E:0:0:0:0:0:0:0, and FF0F:0:0:0:0:0:0:0. 

 Other   predefi ned addresses that are used often include: 

      ●      Multicast address for all node-local (scope restricted to the node) IPv6 nodes: FF01:0:0:0:0:0:0:1  
      ●      Multicast address for all link-local IPv6 nodes: FF02:0:0:0:0:0:0:1  
      ●      Multicast address for all node-local IPv6 routers: FF01:0:0:0:0:0:0:2  
      ●      Multicast address for all link-local IPv6 routers: FF02:0:0:0:0:0:0:2  
      ●      Multicast address for all site-local IPv6 routers: FF05:0:0:0:0:0:0:2    

 Well  -known multicast addresses have also been defi ned for routing protocols: 

      ●      Multicast address for all link-local RIP routers: FF02:0:0:0:0:0:0:9  
      ●      Multicast address for all link-local OSPF routers: FF02:0:0:0:0:0:0:5  
      ●      Multicast address for all link-local OSPF DR routers: FF02:0:0:0:0:0:0:6  
      ●      Multicast address for all link-local PIM routers: FF02:0:0:0:0:0:0:D    

 The   solicited-node address is a multicast address that has the format FF02:0:0:0:0:1:FFXX:XXXX 
and is computed from the node’s unicast and anycast addresses. The 24 lower order bits of the unicast 
or anycast address are appended to the prefi x FF02:0:0:0:0:1:FF00::/104. 

 Each   node must compute and join (to use multicast terminology) the solicited-node address for 
each of its unicast and anycast addresses, thus making the node listen and process packets sent to that 
multicast address. 

 The   solicited node address is used during the address resolution procedure detailed later in Section 
15.5.1.   In IPv4, when a node needs to obtain the link layer address (MAC address) of a node it uses 
a procedure known as Address Resolution Protocol (ARP), which sends a broadcast message on the 
link that disturbs all of the nodes including the ones that do not run IPv4. With IPv6 one could use a 
link-local all-node multicast address but a further optimization consists of using the solicited-node 
address instead in the neighbor solicitation message.   

    15.4       THE ICMP FOR IPv6 
 ICMP   has been used in the Internet for a long time for error reporting and diagnostics, supporting a 
variety of features such as echo request/reply, notifi cation of various errors (TTL exceeded, destina-
tion unreachable, etc.), redirection, and so forth. 

 ICMPv6   is a key component of the IPv6 architecture and not only supports most of the features 
available with IPv4 but was also augmented with several features supported by other non-ICMP pro-
tocols such as ARP and the Internet Group Membership Protocol (IGMP) as well as new key func-
tionalities used in support of useful IPv6 features such as autoconfi guration (see Section 15.7)  . RPL, 
the routing protocol for smart objects (discussed in great detail in Chapter 17), also makes use of 
ICMPv6. ICMPv6 is identifi ed by a new protocol type (type 58) specifi ed in the immediately preced-
ing header fi eld. 

 Most   of the ICMPv6 features are specifi ed in [42  ]  , but some have been defi ned in other RFCs. 
 ICMPv6   specifi es two categories of messages: error and informational. 
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  Each   ICMP message has the following structure: 

      ●      8-bit type fi eld: Indicates the type of message (and thus the format of the remaining data).  
      ●      8-bit code fi eld: Used to provide additional granularity for a given ICMP message type.  
      ●      16-bit checksum: The reason for adding a checksum is that (by contrast with IPv4) the IPv6 

header does not have any checksum. The checksum is the 16-bit complement sum of the entire 
ICMPv6 message starting with the ICMPv6 message type fi eld prepended with a pseudo-header 
of IPv6 header fi eld.  

      ●      Variable length data fi eld.        

   [42] specifi es the rules used to determine the source address for the ICMP message. For example, 
if the message is a response to a message sent to a unicast address the node belongs to, the source 
must be this address. If the message is a response to an error (e.g., the forwarding failed), even if the 
original message was sent to an address that does not belong to the node, the source must be a unicast 
address belonging to the node. It must follow standard source address selection rules unless another 
unicast address belonging to the node can give more information about the destination. For example, 
the node can use a source address in the reply message that can be useful for diagnostics  . 

 Refer   to [42] for a detailed set of messages and processing rules.  

    15.4.1       ICMPv6 Error Messages 
 The   type fi eld of error messages is a value between 0 and 127. 

    Table 15.2    lists ICMPv6 informational messages defi ned in [42] with a short description. 
 All   packets received with an error in the IPv6 header or an extended header must be discarded and 

an ICMP error message sent. Some fi rewalls do not send ICMP error messages to dissimulate their 
presence, which can be an issue for troubleshooting or protocols such as PMTU.  

    15.4.2       ICMP Informational Messages 
 The   type fi eld of informational messages is a value between 128 and 255. 

    Table 15.3    lists some of the ICMPv6 error messages with a short description. 
 As   IPv6 continues to evolve, new functionalities are added and additional ICMP codes are 

specifi ed. 
 RS  , RA, NS, and NA ICMPv6 messages are very important for autoconfi guration and described in 

great details in Section 15.7. 
 A   number of other ICMPv6 messages were defi ned in other RFCs. For instance, major protocols 

such as multicast listener discovery (MLD; [92]) and Mobile IPv6 [140] make extensive use of exist-
ing and new ICMPv6 messages.   

    15.5       NEIGHBOR DISCOVERY PROTOCOL 
 The   Neighbor Discovery Protocol (ND; specifi ed in [185]) provides a set of key autoconfi guration 
features for IPv6 such as the discovery of the presence of neighbors on a link, discovery of routers on 
the link that provide important information like the network prefi x, discovery of link layer addresses, 
or maintenance of reachability information about paths to active neighbors. 
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  Needless   to say, ND plays an important role in IP smart object networks. 
 ND   offers a number of services that include: 

      ●      Router discovery: Discovery of a router capable of forwarding packets destined to off-link 
addresses.  

      ●      Prefi x discovery: Discovery of the set of addresses that are on-link for the attached link using the 
network prefi x.  

      ●      Parameter discovery: Discovery of MTU, hop limits, and so forth.  
      ●      Address autoconfi guration: Process by which the node can compute its unique global address.  
      ●      Address resolution: Discovery of the link layer address. ARP is used in IPv4 to discover the link 

layer address for a node knowing its IPv4 address. In IPv6, such function is performed by the ND, 
which is also used to detect if a node has a new link layer address.  

      ●      Next-hop determination: Algorithm to fi nd the IP next hop to use to forward a packet for a specifi c 
destination.  

      ●      Neighbor unreachability detection (NUD): Process by which a router determines that a neighbor is 
no longer reachable.  

      ●      Duplicate address detection (DAD): Verifi cation process ensuring that the address a node is 
intending to use is not already in use by another node.  

      ●      Redirect: Process allowing a node to fi nd a better next hop to reach a specifi c destination.    

 Table 15.2          ICMPv6 Error Messages  

     Type  Code  Description 

   Destination unreachable  1  0  No route to destination (no routing entry for the 
packet). This does not include packet drop error 
due to congestion. 

       1  Communication with destination administratively 
prohibited (e.g., case of a fi rewall that cannot 
forward the packet because of fi ltering action 
triggered by policy). 

       3  Address unreachable for other reasons than the 
reasons listed above. 

       4  Port unreachable. 
   Packet too big  2  0  The packet size exceeds the MTU of the 

outgoing link (used by the PMTU discovery 
process). 

   Time exceeded  3  0  Sent when the hop limit fi eld (after being 
decremented) is equal to 0 or the received 
packet has a hop limit fi eld equal to 0. 

   Parameter problem (problem with 
the fi eld of the IPv6 header or 
extended headers) 

 4  0  Erroneous header fi eld encountered. 

       1  Unrecognized next header type encountered. 
       2  Unrecognized IPv6 option encountered. 
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  ND   specifi es fi ve new ICMP message types. The following sections describe a packet format type 
and describe the processing rules for each packet along with the associated services. 

 The   ND protocols defi ne a series of options that may appear in the ND messages such as the source/
target link layer address option, the prefi x information option, and redirect header or the MTU option. In 
this section we provide more details on the prefi x information option since this option plays an impor-
tant role in the stateless autoconfi guration feature described later in Section 15.7 of this chapter  . 

    15.5.1       The Neighbor Solicitation Message 
 The   format of the neighbor solicitation (NS) message is shown in  Figure 15.9   . 

 The   NS message is used for address resolution, neighbor unreachability detection (NUD), and 
DAD. An NS message is sent by a node to obtain or confi rm the link layer address of a neighbor for 
which it knows the IP address. The NS messages are multicast packets using the solicited-node mul-
ticast address of the target address for the destination address and an address of the requesting node 
or the unspecifi ed address during the DAD process for the source address. Upon receiving the NS 
packet, the target replies with a neighbor advertisement (NA) message, if appropriate. The choice of 
source and destination addresses depends on the service performed and will be detailed later  . 

 NS   may include a link layer address option. It allows the receiver to learn the link layer address of 
the sender without having to perform address resolution. The receiver will still be required to perform 
NUD if he wants to confi rm the reachability of the initial sender of the NS message. The presence of 
this option is not always allowed, for instance, a node performing DAD procedure must not include it 
in an NS message. 

 Finally  , NS messages are also used to detect that a neighbor is unreachable.  

    15.5.2       The NA Message 
 The   neighbor advertisement (NA) is used to provide the link layer address to a requesting node or to 
inform of a link layer address change. NA messages are used for address resolution, NUD, and DAD 
procedures in response to an NS message, but they may also be used for other purposes, usually in 
such as an unsolicited way for instance to inform of relate an address change or a mobility event. 

 The   source address is the address of the sender. The destination address is the address of the 
requester present in the received NS message. If the source address of the NS message is an unspecifi ed 

 Table 15.3          ICMPv6 Informational Messages  

     Type  Code  Description 

   Echo request  128  0   
   Echo reply  129  0   
   Router solicitation (RS)  133    See Section 15.5.4   
   Router advertisement (RA)  134    See Section 15.5.3 
   Neighbor solicitation (NS)  135    See Section 15.5.1 
   Neighbor advertisement (NA)  136    See Section 15.5.2 
   Redirect  137     
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 address, then the destination address is the all-nodes multicast address. As shown in  Figure 15.9 , the for-
mat of the NA message is very similar to the format of the NS message with the addition of three bits: 

      ●      R-bit: When set, this indicates that the sender is a router. This is used to detect, via the unreach-
ability process, that a router changes to a host.  

      ●      S-bit: When set, the solicited fl ag indicates that the advertisement was sent in response to the 
reception of an NS message. This bit is used as a reachability confi rmation for NUD.  

      ●      O-bit: The override fl ag is set to indicate that the advertisement should override an existing cache entry.    

 Note   that the target address is the target address present in the NS message. 
 If   there is an unsolicited message, the target address corresponds to the IP address of the node for 

which the link layer address has changed. In this case, the destination address is the all-nodes multi-
cast address. 

 NA   messages typically carry a target link layer address option.  

    15.5.3       The Router Advertisement Messages 
 Router   advertisement (RA) messages are periodically sent by routers and serve multiple purposes: 
they are used by routers to advertise their presence in addition to various link and Internet parameters, 
including the network prefi x information used by the host to confi gure their unicast global address. 

ChecksumCode = 0

Reserved

Type = 136

Target Address

Options

ChecksumCode = 0

Reserved

Type = 135

Target address

Options

Format of the NS message

Format of the NA message

ICMP field

ICMP field

R S O

8 bits 8 bits 16 bits

8 bits 8 bits 16 bits

 FIGURE 15.9  
       Format of the neighbor solicitation (NS) and neighbor advertisement (NA) messages.    
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  RA   messages can either be sent by routers unsolicited (periodically) as well as solicited in response 
to an RS message sent by a host that does not want to wait for the reception of an unsolicited RA mes-
sage (e.g., especially useful for mobile nodes). With periodic timers they are slightly randomized to 
avoid global synchronization of all routers on the link. 

 RA   messages contain information about prefi xes used for on-link determination and/or autono-
mous address confi guration. RA messages also inform nodes whether they should use a stateful 
(DHCP) and/or stateless autonomous address confi guration (see Section 15.7). 

    Figure 15.10    shows the format of the RA message. 
 Next   is a description of the various fi elds   of an RA message. 

 IP   fi elds: 

      ●      Source address: Local-link address assigned to the interface from which the packet is sent.  
      ●      Destination address: Typically the source address of the sender of the RS message (solicited mes-

sage) or the all-nodes multicast address (FF02::1;unsolicited message). In the case of a solicited 
message, when the source address is not provided in the RS message, the RA message is also sent 
using the all-nodes multicast address.    

 RA   message: 

      ●      Current hop limit: The default value that should be used in the hop count fi eld of an IPv6 header 
for outgoing IP packets.  

Reserved

Type = 133

Options

Checksum

Checksum

Code = 0

Code = 0

Type = 134

Reachable time

Retransmission timer

Options

Format of the RA message

Format of the RS message

ICMP field

ICMP field

8 bits 8 bits 16 bits

8 bits 8 bits 16 bits

Reserved Router lifetimeM 0Cur Hop Limit

 FIGURE 15.10  
       Format of the RA and RS messages.    
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      ●       The M-bit or managed address confi guration bit: When set, this indicates to the host that it must 
use the administered stateful protocol for address autoconfi guration in addition to the stateless 
address autoconfi guration mode.  

      ●      The O-bit (other stateful confi guration) fl ag: Indicates whether confi guration information other 
than addresses can be obtained via DHCPv6.  

      ●      Router lifetime: This fi eld indicates the lifetime of the associated default route in seconds. When 
set to 0, the router should not be considered a default router.  

      ●      Reachable time: This value is used by the NUD process and indicates in milliseconds the time that 
a node assumes a neighbor is reachable after having received reachability confi rmation.  

      ●      Retransmission timer: Time in milliseconds between the retransmission of NS messages. This 
timer is used by the address resolution and the NUD processes.    

 The   most notable options that a RA message may contain are 

      ●      Source link layer address: This fi eld indicates the link layer address of the interface from which 
the RA message was sent. The router may omit this option if load balancing across a set of link 
layer addresses is desired.  

      ●      MTU: Maximum transmission unit on the link.  
      ●      Prefi x information: This important optional fi eld indicates the list of prefi xes used for on-link 

determination and autoconfi guration. The router should provide all of its on-link prefi xes (for 
multi-homed hosts).  

      ●      DNSS: Provides the address of a recursive DNS server available on the network.    

    15.5.3.1       Options Prefi xes Advertised in the RA Messages 
 The   prefi x information is used in RA messages to provide hosts with on-link prefi xes and prefi xes for 
address autoconfi guration. The format of the prefi x information option is shown in  Figure 15.11   . 

 Description   of the prefi x information option fi elds: 

      ●      Prefi x length: Number of leading bits in the prefi x that are valid (from 0 to 128 bits).  
      ●      L-fl ag: When set, this indicates that the prefi x can be used for on-link determination. Conversely, 

when the L-fl ag is cleared, no statement can be made on whether the prefi x is on- or off-link.  

Length = 4 Prefix length ReservedType = 3

Preferred lifetime

Reserved

Prefix

Format of the prefix information TLV

8 bits 8 bits 8 bits 8 bits

Valid lifetime

L A

 FIGURE 15.11  
       Prefi x information option.    
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      ●       A-fl ag (autonomous): When set, this indicates that this prefi x can be used for autonomous address 
confi guration.  

      ●      Valid lifetime: This indicates in seconds the length of time that the prefi x is valid.  
      ●      Preferred lifetime: Length of time in seconds that the address generated from the prefi x via state-

less autoconfi guration remains in the  “ preferred ”  state.    

 The   notion of valid and preferred lifetimes offers an effi cient mechanism for smooth renumbering, 
which may happen, for example, when migrating from one Service Provider to another. The valid 
lifetime is simply the lifetime of a prefi x, where the preferred lifetime indicates the period of time 
during which a host should use the prefi x. After the expiration of the preferred lifetime, if the valid 
lifetime has not expired, a host only uses the address for already established communications.  

    15.5.3.2       Recursive DNSS Option Advertised in the RA Messages 
   [138  ]   specifi es an RA option allowing a router to advertise recursive DNS server (RDNSS) addresses 
in RA messages. This provides a useful alternative to DHCP to locate DNS servers. This is particu-
larly interesting for smart objects using stateless autoconfi guration that retrieves DNS information 
processing the unique RA message, thus saving potentially scarce energy resources. 

 The   RDNSS option (see Figure 15.12) uses the regular ND messages such as RA and RS previ-
ously described.  

 All   addresses share the same lifetime value that indicates the maximum time in seconds over 
which a node can use the RDNSS address for name resolution. A node may send an RS message 
to refresh the state before the expiration of that time. It is recommended to set the lifetime values 
between MaxRtrAdvInterval and 2* MaxRtrAdvInterval where MaxRtrAdvInterval is defi ned as the 
maximum time in seconds allowed between sending unsolicited multicast RA messages from the 
interface. A value of 0xFFFFFFFF represents infi nity, and a value of 0 indicates that the addresses 
must no longer be used.   

    15.5.4       The Router Solicitation Message 
 The   router solicitation (RS) message is sent by a host to get an RA message in reply (if at least one 
router is present on the link) without having to wait for the expiration of the RA periodic timer. 

ReservedLengthType = 25

Addresses of recursive DNS servers

Format of the RDNSS option TLV

8 bits

Length = 1+2∗n where n is the number of recursive DNS servers addresses

8 bits 16 bits

Lifetime

       FIGURE 15.12  
     RDNSS information option  .      
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  The   RS message structure is very simple (a 32-bit fi eld set to 0). The IP fi elds are: 

      ●      Source address: IP address of the interface used to send the RS message or unspecifi ed address 
during autoconfi guration (see Section 15.7).  

      ●      Destination address: Typical all-routers multicast address (FF02::2).    

 The   ICMP type is equal to 10.  

    15.5.5       The Redirect Message 
 Redirect   packets are sent by routers to inform a host of a better fi rst node on the path to the 
destination.  

    15.5.6       Neighbor Unreachability Detection (NUD) 
 NUD   is a powerful mechanism used for unicast destination allowing a node (a host or a router) to 
verify the reachability of a neighbor. When the path to the neighbor seems to fail, if the destination is 
the ultimate destination, the address resolution should be performed again. On the other hand, if the 
neighbor is a router, it might be appropriate to select another router. The procedure used in this case 
is the next-hop determination (the neighbor cache entry is then deleted). 

  First  , how does a node determine whether a neighbor is reachable?  Positive confi rmation that a 
neighbor is reachable can either be the receipt of an NA message in response to an NS message or a 
hint from the upper layer (e.g., receipt of a TCP ACK or new non-duplicate data from the peer via the 
neighbor). When the transport protocol cannot provide a hint (e.g., UDP), then the node sends a probe 
to the neighbor (solicited unicast NS message). Receipt of an unsolicited message such as an RA or 
NA message with the  “ solicited ”  fl ag set to 0 cannot be used for a neighbor reachability confi rmation 
(only confi rms one way path integrity). 

 Neighbor   cache entries are found in various states. For example, if no reachability confi rmation 
has been received from a neighbor after Reachabletime milliseconds (confi guration timer), the neigh-
bor cache entry is fl agged as  “ stale. ”  If the node must send a packet to that neighbor, it starts another 
timer after the expiration. If no neighbor reachability has been received, it starts an active probing 
procedure. The probing procedure (at this stage the cache entry is in the PROBE     state) consists of 
sending a unicast NS message to the neighbor using the cached link layer address of that neighbor. 
NS messages are retransmitted every RetransTimer millisecond until an NA message in received in 
response. If after sending MAX_UNICAST_SOLICIT messages no NA message has been received, 
the cache entry is deleted. 

 Link   layer information reporting link failures can be used to trigger the cache entry deletion, but 
the indication that the link layer is operational cannot serve as a neighbor reachability confi rmation 
(the link layer may be operational, although the neighbor is not reachable).   

    15.6       LOAD BALANCING 
 There   are several circumstances where it is useful for a router to make use of input load balancing 
(reception of traffi c from different interfaces that share the same IPv6 address). 
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  This   is achieved by not including any link layer addresses in the RA messages. Consequently, 
this forces the host to send NS messages to get the router link layer address to which the router will 
reply with NA messages using different link layer addresses, depending on which host issued the NS 
message.  

    15.7       IPv6 AUTOCONFIGURATION 
 The   ability for a node to support autoconfi guration is very important, especially when the number 
of nodes is extremely large and the nodes are unattended, which is precisely the case in smart object 
networks. In these networks, for example, in a city where the number of smart objects can easily be 
on the order of hundreds of thousands or even millions, one cannot expect each node to be manually 
confi gured. In several requirement documents the term 0-confi g was even mentioned. This is why 
the set of autoconfi guration features supported by IPv6 is particularly well suited to smart object net-
works. Although some of these features were supported with IPv4, several new features have been 
added to IPv6 that are particularly useful for smart objects. 

    15.7.1       Building the Link-local Address 
 When   an interface is fi rst initialized the node builds its link-local address by prepending the well-
known link-local prefi x FE80::0/10 (the fi rst 10 leftmost bits are 1111 1110 10) followed by 54 bits 
set to 0 and the interface ID. Note that the interface ID may be of any length (less than 118 bits, 
otherwise the autoconfi guration process fails), but generally 64-bit addresses (EUI-64 identifi er) are 
used. 

 Let  ’s take a node with a 48-bit MAC address to illustrate how such an address is converted into an 
EUI-64 address to build the interface ID (see  Figure 15.13   ). 

 The   process is fairly straightforward: the 16 bits (FFFE) are simply inserted in the middle of the 
48-bit MAC address to produce the 64-bit EUI-64 format address. The interface ID is then created 
from the EUI-64 address by complementing the universal/local bit in the EUI-64 address, which is 
the next to lowest order bit of the fi rst octet of EUI-64. 

 The   link-local address has an infi nite preferred and valid lifetime and never times out. 
 In   our previous example the link-local address would be FE:80:0:0:0:0:0:0:0:14:B1:FF:FE:CA:8

E:47. At this stage, the node can communicate with any other node on the same link. These packets 
will not be forwarded by routers on other links.  

    15.7.2       The Stateless Autoconfi guration Process 
 The   autoconfi guration process consists of several steps: 

      ●      Creation of a link-local address and uniqueness on a link  
      ●      Determination of what should be autoconfi gured  
      ●      Determination of whether addresses should be obtained using a stateless or a stateful procedure    

 The   stateless autoconfi guration process (described in [235  ]  ) allows a node to generate its link-
local, site-local, and global addresses using a combination of local information and information 
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 advertised by routers with no confi guration on the host, minimal (if any) confi guration on the router, 
and no external server (in contrast with stateful confi guration). Both stateless and stateful autocon-
fi guration mechanisms may be combined and complement each other. As discussed in Section 15.5.3, 
the M-bit of the RA message indicates whether to use a stateless or a stateful autoconfi guration 
mechanism. 

 Autoconfi guration   is only supported on multicast capable links (and links that emulate multicast). 

    15.7.2.1       Building Unicast IPv6 Addresses 
 As   discussed earlier, a global address is obtained by concatenating the prefi x information with the 
interface ID. The stateless mechanism is used by hosts only and not routers, with the exception of the 
link-local address that is generated by a router and the support of the DAD mechanism, which is also 
supported by routers. 

 The   fi rst step of the process is building the link-local address by prepending the interface ID with 
FE80:0:0:0. The link-local address allows local communication between all nodes residing on the 
local link. 

 Before   assigning a unicast address (link-local or global), the node must fi rst verify the uniqueness 
of the address with the DAD procedure. This does not apply to anycast addresses. The DAD proce-
dure uses the NS and NA messages, and if the address is already in use by another node, the proce-
dure stops and a new interface ID must be confi gured on the node. DAD is not completely reliable so 
it is possible that duplicate addresses exist. All packets received before the completion of the DAD 
process destined to the address under verifi cation must be silently discarded.  

    15.7.2.2       DAD Process 
 The   DAD process verifi es the uniqueness of an address prior to assigning it to an interface. This 
process must be used regardless of the address allocation technique (stateless, stateful, or manual 
confi guration). 

00 14 B1 CA 8E 47

00 14 B1 FF FE CA 8E 47

00 14 B1 FF FE CA 8E 47

000000x0: when X = 0 indicates that the MAC
address is unique, if X = 1 the MAC address is
unique

48-bit MAC address

The 16-bits [FFFE] are inserted
in the middle of the 48-bit address

Interface identifier in EUI-64 format

 FIGURE 15.13  
       Building an interface ID.    
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  The   node fi rst starts by computing the EUI-64 address if needed. It then assigns the all-nodes multi-
cast address to the interface and the solicited-node multicast address of the tentative address. To verify 
the uniqueness of the address, the node sends a (confi gurable) number of NS messages (see Section 5.1 
of [235  ]  ). NS messages must be separated by RetransTimer milliseconds. This parameter is advertised 
in the RA messages sent by the routers. The target address present in the NS message must be equal to 
the address checked. In this case, the IP source of the NS message is sent to the unspecifi ed address, and 
the destination address is sent to the solicited-node multicast address of the target address. The DAD 
mechanism allows for jittering when NS messages are fi rst sent to avoid the race condition should a set 
of nodes try to simultaneously run the procedure  —  for example, after a power outage. 

 When   a node receives an NS message, it does the following: 

      ●      If the target address has already been assigned to the node, this is a duplicate address (therefore it 
cannot be used).  

      ●      If the target address is in a  “ tentative ”  state (the receiving node is also trying to assign that same 
address to itself) and the source address is unicast, then the sending node is not trying to run the 
DAD procedure but is in fact trying to obtain the link layer address. In this case, the NS message 
should simply be discarded. On the other hand, if the source address of the NS message is not uni-
cast but is equal to the unspecifi ed address, the NS message is from a node running the DAD proce-
dure that is trying to assign the same address to one of its interfaces (this address cannot be used).    

 If   an NS message for a tentative address is received prior to having sent an NS for the same 
address, the tentative address is a duplicate (it is about to start DAD for an address that another node 
is also trying to use). This occurs when two nodes are trying to run the DAD procedure for the same 
address, but one of them has sent the NS message before the other (by using random timers). There is 
also a mechanism that covers the case of an NS message sent approximately at the same time. 

 In   short, if the node does not receive an NA for the target address, it is free to assign it to the 
interface, otherwise there is a duplicate and the address cannot be used. When this happens the DAD 
process is stopped and an error message must be generated. The DAD process is not entirely reliable; 
for example, when a packet drops because of some unreliable links (pretty common in lossy environ-
ments) or if the links were partitioned when the DAD process took place.   

    15.7.2.3       Optimistic DAD 
   [177] has defi ned a modifi cation to the DAD procedure called  “ optimistic DAD ”  to reduce the address 
confi guration delays in the successful cases while reducing disruption in the failure cases. [183] intro-
duces addresses called  “ optimistic ”  assigned to an address that is available for use, but whose DAD 
procedure has not yet been completed. In a nutshell, an optimistic address is equivalent to a dep-
recated address because it is available for use but should not be used if another suitable address is 
available. Note that optimistic DAD should be used for addresses based on unique identifi ers (e.g., 
typically not for manually confi gured addresses).  

    15.7.2.4       Creation of the Unicast Global and Site-local Addresses 
 Building   the unicast global and site-local addresses requires obtaining the prefi x information from the 
RA messages sent by routers. The node may either wait until it received a periodic RA message or 
may send an RS message to the all-routers address to receive a solicited RA message. If no RA mes-
sage is received, the node must attempt to use stateful autoconfi guration. 



22315.7 IPv6 Autoconfi guration

  Once   the set of prefi xes has been received, the node assigns these addresses to the interfaces after 
completing the DAD process previously detailed. Figure 15.14 provides an example of stateless auto 
confi guration process.   

    15.7.3       Privacy Extensions for Stateless Address Autoconfi guration in IPv6 
   [184]   specifi es extensions for autoconfi gured stateless addresses derived from non-changing addresses 
(typically IEEE addresses). This may be an issue if privacy must be preserved; indeed, a packet 
sniffer could infer the host activity fairly easily. Thus changing the address of a host over time could 
help preserve privacy. This may be of particular interest for strategic smart objects reporting sensi-
tive data. An eavesdropper may be able to track the movement of a mobile smart object because of its 
address (a case where encryption would not help since the address is not encrypted). 

 Even   with DHCP IPv4 addresses would not change that often. The issue becomes more apparent 
with IPv6 since the interface ID would never change (with permanent link layer address use) even if 
the node joins another network thus inheriting a new prefi x ID. 

   [184] proposes a set of mechanisms in order to create additional global scope addresses based on 
a randomly generated interface identifi er. It must be noted that the stateless address autoconfi guration 
mechanisms remain unchanged. These addresses are only used for outgoing sessions and would be 
used for short periods of time (hours to days) before being deprecated. The actual value of the ran-
domized identifi er changes over time, but a unique identifi er can be used to generate more than one 
address. 

NS: IP Src: :: (unspecified) - IP Dest:
FF02::1:FFCA:8E47, target address:
2002:E0:2:3:14:B1FF:FECA:8E47

Station S
Interface ID = 00:14:B1:FF:FE:CA:8E:47 (64 bits)

1) Compute the interface identifier EUI-64 format
2) Assign the solicited-node multicast address to the interface:
    FF02:0:0:0:0:1:FFCA:8E47
3) Assignment of a link local address:
    FF80:0:0:0:0014:B1FF:FECA:8E47

4) Building of the global unicast address:
    2002:E0:2:3:14:B1FF:FECA:8E47

5) DAD process (shown for the global unicast address only)

6) In the absence of reply the global unicast address
    (2002:E0:2:3:14:B1FF:FECA:8E47) is assigned to the
    interface

RA: IP Dest: FF02::1,
Prefix=2002:E0:2:3::/64

       FIGURE 15.14  
     Stateless autoconfi guration  .      



224 CHAPTER 15 IPv6 for Smart Object Networks — A Technology Refresher 

  Two   approaches are proposed for the generation of randomized IDs depending on whether stable 
storage is available on the node. In this case, historical data can be recorded and used as input for the 
algorithm after a system restart. 

 When   stable storage is available, the algorithm assumes that a 64-bit  “ history value ”  is available. 
The very fi rst time the system boots up, a pseudo-random algorithm such as [75] can be used to gen-
erate the history value. The history value changes as new random identifi ers are generated. Here are 
the proposed algorithms specifi ed in [184]: 

    1.     Take the history value from the previous iteration of this algorithm (or a random value if there is 
no previous value) and append the interface identifi er generated to it.  

    2.     Compute the MD5 message digest [215] over the quantity created in the previous step.  
    3.     Take the leftmost 64 bits of the MD5 digest and set bit 6 (the leftmost bit is numbered 0) to zero. 

This creates an interface identifi er with the universal/local bit indicating local signifi cance only. 
Save the generated identifi er as the associated randomized interface identifi er.  

    4.     Take the rightmost 64 bits of the MD5 digest computed in step 2 and save them in stable storage 
as the history value to be used in the next iteration of the algorithm.    

 Without   stable storage there is no history value and pseudo-random algorithms such as [75] can be 
used. 

 The   DAD procedure must be triggered for the newly computed temporary address. 
 One   drawback of using randomized temporary addresses is the increased complexity when 

troubleshooting.   

    15.8       DHCPv6 
    15.8.1       Stateful Autoconfi guration 
 DHCPv6   specifi ed in [62] and DHCP for IPv4 provide similar services: a  centralized  mechanism to 
confi gure node addresses (including the host part of the node address) and obtain other useful infor-
mation such as DNS addresses. Compared to its IPv4 counterpart some changes have been made in 
IPv6     (some message types have been removed, others have been added, the ability to request more 
than one address has been added, etc.). 

 As   discussed in Section 15.5.3, if the M-bit (managed confi guration fl ag of the RA message) is 
set, the requesting node must use the administered stateful protocol for address autoconfi guration 
(DHCP) in addition to the stateless address autoconfi guration mode. 

 The   discovery process of the DHCP server consists of sending a message to the well-known link-
local address (FF02::1:2) used to address all DHCP agents on the local link in contrast with DHCPv4 
that uses broadcast addresses. If it turns out that the DCHP server is not located on the same link, 
routers can be confi gured   to relay these messages or to send a direct reply to the requesting node if 
the router knows the DCHP address. When relaying the request, the relaying routers use all DHCP 
address site-local multicast addresses: FF05::1:3  . 

 Once   the DHCP server has been located, messages are exchanged between the requesting node 
and the DHCP server to gather the requested data. 

 Another   mechanism known as prefi x delegation and specifi ed in [240] can be used in some 
cases to automate the delegation of IPv6 using DHCP. Prefi x delegation is typically used by Service 



22515.9 IPv6 QoS

 Providers: the customer router acts as a DHCP client requesting prefi xes to the Service Provider 
router that acts as a DHCP server (and does not have to know the topology of a customer’s network).  

    15.8.2       Stateless DHCP 
 Once   the IPv6 global address has been obtained by manual confi guration or the stateless autoconfi gura-
tion process previously described, stateless DHCPv6 services (specifi ed in [61]) allow a node to obtain 
various information such as DNS recursive name servers or SIP servers. In contrast with stateful DHCP, 
stateless DHCP does not perform address assignment but is limited to providing confi guration informa-
tion. Such a stateless DHCP server does not maintain any dynamic state for DHCP clients. 

 Stateless   DHCP servers only support a subset of the DHCP messages specifi ed in [63]. The DHCP 
client uses a DHCP information-request message to obtain confi guration information to which the 
stateless DHCP server replies with a reply message that carries confi guration information such as 
DNS recursive name servers or SIP servers. 

 The   simplicity of stateless DHCP makes it a very appealing functionality for smart object networks.   

    15.9       IPv6 QoS 
 This   section does not provide a complete description of the wide set of mechanisms and protocols 
designed over the past decade to provide QoS in IP networks, but rather highlights the fact that QoS 
in IPv6 is very similar to QoS in IPv4. This is excellent news considering the number of mecha-
nisms and protocols that have been successfully designed for IPv4 to provide very tight Service Level 
Agreements (SLAs) to IP traffi c. As a reminder, IP networks do carry traffi c such as voice and high-
defi nition video that are very sensitive to delays, jitter, and packet loss. 

 QoS   is undoubtedly a key architectural component of IP networks and has been approached in 
many ways. The fi rst and most simple approach is to throw more bandwidth in the network, increas-
ing the network capacity by using higher speed links and/or new links to avoid any potential conges-
tion. As traffi c increases, upon crossing some link utilization thresholds, the network is upgraded to 
 “ try ”  to avoid congestion in the network and minimize queuing delays and jitter. Although very effec-
tive, such an approach (usually referred to as an over-provisioning policy) may be very expensive, 
especially when SLAs must be maintained in the presence of link and/or node failures. This topic is 
discussed in great detail in [246  ]  . 

 In   most cases, congestion cannot be avoided and may occasionally take place for a period of time 
in parts of the network because of a burst of traffi c, a network element failure, and so forth. 

 The   objective of QoS mechanisms is to assign different priorities to the traffi c, consequently, pro-
viding a differentiated treatment to packets according to their Class of Service (CoS). QoS does not 
create bandwidth but does provide a preferential treatment to the most important or sensitive traffi c, 
where the notion of  “ most important ”  is defi ned by the user according to confi gurable parameters. 

    15.9.1       The Diffserv Model 
 Diffserv  , specifi ed in [16], basically relies on the ability to mark traffi c (usually at the edge of the 
network) and uses a per-hop behavior (PHB) on each node along the path where resources are appro-
priately assigned to a limited number of CoS identifi ed by the packet marking. 
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  The   fi rst step,  “ classifi cation/marking, ”  is usually performed at the edge of the network and con-
sists of  “ coloring ”  the packets according to user-specifi ed rules. Coloring (marking) refers to setting 
the traffi c class (TC) fi eld of the IPv6 header (or the ToS fi eld with IPv4). Such rules are based on 
the source/destination address, higher-level protocol, nature of the applications, or other sophisticated 
rules. Some routers can even support deep packet inspection techniques to perform on-the-fl y classifi -
cation (typically not available on a smart object, at least for now). 

 The   TC fi eld is divided in two subfi elds: 

      ●      Diffserv Code Point (DCP)  —  6 bits identifi es the PHB. Several of them have been standardized 
including best effort, expedited forwarding (EF, specifi ed in [137]), and assured forwarding (AF, 
specifi ed in [112] and [97]) with several levels of drop preference.  

      ●      The Explicit Congestion Notifi cation (ECN) specifi ed in [208] explicitly notifi es the presence of 
a congestion instead of the implicit notifi cation by dropping packets. Although initially targeted 
for TCP, the ECN could be used by other transport protocols including future transport protocols 
under investigation for smart object networks.    

 Once   the packet has been marked with the appropriate CoS, each router along the path can pro-
cess the packet accordingly using a PHB defi ned for its CoS. This basically involves two categories 
of mechanisms: 

      ●      Traffi c management: This refers to the use of queuing mechanisms. A plethora of queuing mecha-
nisms have been defi ned, implemented, and deployed over the past decade that can be used to 
provide very fi ne-grained QoS according to the CoS.  

      ●      Congestion avoidance: When queues are getting full, instead of simply dropping packets, sev-
eral mechanisms can be used to start dropping packets using a probabilistic approach when the 
queue length crosses specifi ed thresholds. The rate at which packets are dropped can be a function 
of the CoS within the same queue, should multiple CoS share a queue. The most common con-
gestion avoidance mechanism is the  “ weighted random early detection ”  algorithm called WRED 
(see [84]).    

 Queuing   mechanisms are usually fairly simplistic on smart objects considering the memory and 
CPU constraints, but the mechanisms are supported by IPv6.  

    15.9.2       The IntServ Model 
 The   integrated service (IntServ) model was defi ned in 1994 ([20]) to support real-time and non-
real-time services. It relies on resources reservation mechanisms to effectively reserve resources in 
the network for critical fl ows. Resources reservation is performed using the RSVP protocol [21]. 

 IntServ   has not been as popular as Diffserv in core networks mainly because of its limited 
scalability, but it is being used more often at the edge of the network for call admission control 
(CAC). 

 The   use of the IntServ model in smart object networks is not likely to take place in the near future, 
because it requires non-negligible control plane overhead and state maintenance, unless a lightweight 
version is designed that could be combined with the routing functions.   
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    15.10        IPv6 OVER AN IPv4 BACKBONE NETWORK 
 Although   most networks will likely migrate to IPv6 in the next 3 to 5 years, IPv4 will undoubtedly 
be used in many networks for decades to come. This raises the legitimate question: How should IPv6 
 “ islands ”  of smart objects be interconnected if the backbone network is not natively supporting IPv6? 
Indeed, a Service Provider, a city, or large enterprise may want to deploy an IPv6 smart object net-
work without having to immediately migrate its IPv4 backbone network to IPv6. This is achievable 
because of tunneling mechanisms that have been in used in the Internet for many purposes for a long 
time. These tunneling mechanisms are convenient but require some extra confi guration on the edge 
routers supporting the tunnels and may not always offer the most optimal path in the network. Still, 
they are useful mechanisms to enable an IPv4 network with IPv6 capabilities. 

 One   solution may be to run dual stacks on routers and hosts in the network, thus supporting native 
IPv6 and IPv4 for the applications that have not yet migrated to IPv6 [91]. But let’s focus on the situ-
ation where the backbone network does not support IPv6 natively. 

 Several   mechanisms have been defi ned. This section provides a brief overview of a mechanism 
referred to as 6to4 and specifi ed in [34]. If the network is MPLS enabled, other approaches such as 
6PE (IPv6 Provider Edge) can be used where the customer PE-CE (Provider Edge – Customer Edge) 
links are IPv6 enabled and the core-facing interface of the PE routers is IP/MPLS enabled. Details on 
this technology and deployments can be found in [247]. 

 6to4   uses  dynamic  tunnels to interconnect IPv6 islands over an IPv4 core network, effectively 
making the IPv4 network a collection of link layer point-to-point links. 

    Figure 15.15    illustrates the 6to4 router to router, but 6to4 host-to-host tunneling also exists, 
although it is much less relevant to smart objects    . 

 This   is how the site prefi x (/48) is formed: 

      ●      IANA assigns a permanent 13-bit top-level aggregator equal to 0     x     0002 under the IPv6 format pre-
fi x 001 for 6to4. Thus the fi rst 16 bits of the address are 2002.  

      ●      The next 32 bits correspond to the IPv4 address of the relay router (R1 in as depicted in  Figure 15.15 ).  
      ●      The next 16 bits are the SLA ID (site level aggregation identifi er  )  .  
      ●      The next 64 bits of the address correspond to the interface ID.    

 Let  ’s consider the example in  Figure 15.15 . 

      ●      The IPv4 addresses of R1 and R2 used for the 6to4 tunnel are, respectively, 192.100.1.1 and 
192.100.2.2.  

      ●      The IPv6 prefi x address for site 1 is 2002:      �     IPv4 address of R1     �     /48 or 2002:c064:101 in hexa-
decimal notation.  

      ●      The IPv6 prefi x address of site 2 is 2002:      �     IPv4 address of R2     �     /48 or 2002:c064:202.  
      ●      S is an IPv6 sensor sending an IPv6 packet to a host H. The IPv6 address of S is 

2002:c064:101:10::10.  
      ●      H is a host collecting sensor data. The IPv6 address of H is 2002:c064:202:20::20    .    

 Now   let’s consider the process of sending a packet from S (2002:c064:101:10::10) to H 
(2002:c064:202:20::20). Upon receiving the packet, R1 extracts the IPv4 tunnel end point, which is 
c064:202     �     192.100.2.2. Then it adds an IPv4 packet header to the IPv6 packet (tunneling) where the 
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 IPv4 source and destination address are, respectively, 192.100.1.1 and 192.100.2.2. Upon receiving 
the packet R2 performs a similar operation and forwards the corresponding IPv6 packet to H. 

 This   shows a simple and dynamic mechanism to interconnect two IPv6 islands across an IPv4 
core network. There are more complex scenarios when the destination site does not have a router sup-
porting this mechanism. In this case, it is also possible to use relays that can be autodiscovered.  

    15.11       IPv6 MULTICAST 
 IP   multicast is a key functionality of IP. In the past two decades, many protocols and features have 
been developed to support multicast services, and a number of applications used in the Internet and 
private IP networks make use of IP multicast (e.g., content distribution, video, etc.) to save network 
resources and avoid traffi c duplication when sending a fl ow to a number of recipients. 

 Smart   object networks consisting of a sink sending data to a number of sensors or actuators is 
another example where multicast can be used to send commands to a set of devices or perform a soft-
ware upgrade while avoiding unnecessary traffi c duplication. 

 IPv6   has greatly benefi ted from the IPv4 past experience: many of the IPv4 multicast features and 
protocols have been reused with minimal changes other than the addressing scheme and some IPv4 
multicast protocols have been not been adopted for IPv6, while other ones have been redesigned. 

 As   previously discussed, multicast is used by IPv6 by the ND protocol (e.g., unsolicited RA mes-
sages are sent to all-nodes multicast address FF02::1) and for IPv6 autoconfi guration. Beyond link-local 
scope, IP multicast supports the building of multicast distribution trees (MDT) using various routing 
protocols and a protocol for multicast group management. 

Source=2002:c064:101:10::10
Dest=2002:c064:202:20::20

Src=192.100.1.1
Dest=192.200.2.2

2002:c064:101:10::10

2002:c064:202:20::20

R1’s IPv4 address = 192.100.1.1
(0xc064:101)
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 FIGURE 15.15  
       6to4 tunnels.    
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  IPv6   uses MLD (multicast listener discovery) for multicast group management in order to dis-
cover local multicast listeners and which multicast addresses are of interest on the local link. The 
information is then provided to the multicast routing protocol to ensure that the multicast traffi c of 
interest is distributed to links with interested multicast listeners. MLD is in many ways similar to 
IGMPv2 [81] used for IPv4. MLD is specifi ed in [92]. A second version called MLDv2 [251] is 
equivalent to IGMPv3 for IPv4 [29  ]  . 

 The   main difference between MLD and IGMP is that MLD uses ICMP (the next header fi eld 
value of the preceding header is equal to 58), whereas IGMP packets are encapsulated in IP packets 
(Protocol Number 2). 

 MLD   packets are sent using the local link address as the source address with a hop limit fi eld 
equal to 1, since they are not forwarded by routers beyond the local link. All MLD messages are sent 
with an IPv6 Router Alert option in a hop-by-hop option header to make sure that routers examine the 
messages even if they are   sent   to a multicast group that is of no interest to the routers. 

 Routers   connected to multicast-enabled links listen packets sent to the all link layer multicast 
address (e.g., addresses that start with 0     x     3333 on Ethernet links  )  . 

 Three   types of MLD messages are defi ned: 

      ●      Multicast listener report: These are messages sent by a node expressing its interest in joining a mul-
ticast group. The report message is sent to the multicast address of interest. If the router already 
receives traffi c for that multicast group, it only resets a timer, otherwise it joins the relevant MDT. 
Reports are sent periodically by each interested listener (note that a listener does not resend a report 
if another node has sent a similar report since the router is only interested in knowing that there is at 
least one interested listener for that multicast group).  

      ●      Multicast listener done: These messages are sent to the link-local all-routers address to inform 
routers that the node is no longer interested by a multicast group    .  

      ●      Multicast listener query (with two subtypes, known as general query and multicast-address-
specifi c query): Queries are sent by routers requesting multicast listeners to send reports. This 
happens when a Done message is received in order to know if there is still at least one listener 
interested by a specifi c multicast group. If no report for this multicast group is received, the router 
knows that it no longer needs to forward multicast traffi c for that group. The general query mes-
sages are periodically sent to all nodes on the local link (IP address link-local all-routers FF02::2) 
requesting them to report all multicast groups they are interested in.    

 MLD   makes use of an elected router, which is the only router sending queries. This is only to min-
imize the number of queries. Since all MLD packets are sent to multicast addresses, they are received 
by all routers on the link, not just the elected router. 

 A   number of multicast routing protocols have been designed for IPv4: Distance Vector Multicast 
Protocol (DVMRP), Multicast OSPF (MOSPF), Protocol Independent Multicast (PIM), Core Based 
Trees (CBT), Pragmatic General Multicast (PGM), and so forth. 

 Learning   from deployment experience, IPv6 chose to only keep a few variants of PIM and the 
IPv6 implementation is very similar to the IPv4 version: 

      ●      PIM-SM (PIM Sparse Mode) [78]  
      ●      PIM-SSM (PIM Source Specifi c Multicast) [119  ]    
      ●      PIM-Bidir (Birectional) [106]    
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    15.11.1        IPv6 Multicast Addressing 
 IPv6   addressing and multicast addressing were discussed in Section 15.3. [102] provides multicast 
allocation guidelines for permanent and dynamic multicast addresses. 

 The   general approach consists of mapping the low order 32 bits of the IPv6 multicast address 
(called the group ID) into a link layer destination address: [102] specifi es how the group IDs are 
assigned. 

 There   are several types of multicast addresses: permanent IPv6 multicast addresses, permanent 
IPv6 multicast group IDs, and dynamic IPv6 multicast addresses. 

 The   permanent IPv6 multicast addresses are assigned with group IDs in the range of 0     x     00000001 
to 0     x     3FFFFFFF (see [115] for examples). 

 Permanent   group IDs are allocated in the range 0     x     40000000 to 0     x     7FFFFFFF. 
 Dynamic   addresses can either be allocated by a server or by the host and must have their T-bit 

set (see  Figure 15.8 ). Allocation servers use the group ID range 0     x     80000000 to 0xFFFFFFFF. When 
allocated by a host, the generated group ID must also belong to the 0     x     80000000 to 0xFFFFFFFF 
range and a pseudo-random algorithm must be used to generate that number.   

    15.12       CONCLUSIONS 
 As   discussed in the beginning of the chapter, a number of reference books have been released and 
the aim of this chapter was to provide a technology refresher needed to better understand the key 
functionalities of IPv6 in smart object networks. A particular focus was made on the IPv6 addressing 
architecture (key for smart object networks) and the auto confi guration features provided by IPv6 for 
auto confi guration, which are much needed to manage a large number of (unattended) smart objects. 
The number of enhancements provided by IPv6 made it the natural protocol of choice for IP smart 
object networks.                                                                      
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CHAPTER

    16.1        TERMINOLOGY 
 Before   digging into the IP protocols developed for smart object networks, several terms that may be 
confusing need to be defi ned. According to [156] a LoWPAN is Low-power Wireless Personal Area 
Networks (LoWPANs) composed of devices conforming to the IEEE 802.15.4-2003 standard defi ned 
by the IEEE [129]. IEEE 802.15.4 devices are characterized by short range, low bit rate, low power, 
and low cost. 

 IEEE   80.15.4 networks have the following characteristics: 

      ●      Small packet size (the maximum transmission unit or MTU on IEEE 802.15.4 links is 127 bytes), 
which provides even less room for data when including other headers (as discussed in detail in 
Section 16.2).  

      ●      Support for both 16-bit short or IEEE 64-bit extended media access control (MAC) addresses.  
      ●      Low data rates; the IEEE 802.15.4 specifi cation allows various data rates from 20       Kbits/s 

(868       MHz) to 250       Kbits/s (2.45       GHz).  
      ●      Support of star and mesh topologies.  
      ●      Constrained devices regarding power (e.g., battery-operated devices), memory, and CPU. Most of 

the time these devices are low cost.  
      ●      Large number of deployed devices in the network requiring scalable technologies.  
      ●      IEEE 802.15.4 networks are usually ad hoc networks since their location is usually not predeter-

mined. Furthermore, some locations (e.g., mobile smart objects used for asset tracking, wearable 
sensors) may be moving devices.  

      ●      The nodes within a LoWPAN are interconnected by IEEE 802.15.4 links, which are usually unre-
liable, especially when compared to wired links such as Ethernet or fi ber-optic links. This key 
aspect of such smart object networks has been discussed in Chapter 12.  

      ●      It is very common for nodes to be in sleep mode for long periods of time. Depending on the device, 
it can be in various sleep mode states that have a different impact on the energy consumption while 
in sleep mode and the speed at which the node can wake up (see Chapter 11 for more details).    

 A   LoWPAN is a Low-power and Lossy Network (LLN) where the links interconnecting the nodes 
are IEEE 802.15.4 links. When the Internet Engineering Task Force (IETF) 6LoWPAN Working 
Group was formed, it was decided to exclusively work on the required IPv6 protocol extensions for 
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 LoWPAN (such as fragmentation and reassembly, header compression, neighbor discovery adaptation, 
etc.) where the nodes were exclusively interconnected by IEEE 802.15.4 links. 

 Then   the Routing Over Low-power and Lossy network (ROLL) Working Group was formed to 
deal with routing issues in networks with similar characteristics at the IP layer thus alleviating the 
restriction of using IEEE 802.15.4 links, since by defi nition routing operates at the network layer. 
This led to the use of the more generic term Low-power and Lossy Network (LLN). 

 Note   that the terms  “ nodes, ”   “ routers ”  (when discussing a routing-related item), and even  “ devices ”  
(since most smart objects performing sensing or actuating are usually routers) are used interchangeably.  

    16.2       THE 6LoWPAN ADAPTATION LAYER 
 Since   IPv6 mandates supporting links with an MTU (Maximum Transmission Unit) of 1280 bytes, it 
was necessary for IEEE 802.15.4 links that have an MTU of 127 bytes to specify an adaptation layer 
below IP responsible for handling packet fragmentation and reassembly. 

 The   MTU size of IEEE 802.15.4 links was purposely small to cope with limited buffering capa-
bilities and to limit the packet error rate since the bit error rate (BER) is relatively high. Various 
header compression techniques have been added to the adaptation layer that are specifi ed in [176] 
and [124]. The compression header techniques originally specifi ed in [176] were improved in [124] 
in many ways: individual compression on the traffi c class (TC) and fl ow label fi eld, use of share 
contexts that is particularly useful when using non-link-local addresses, and optimizations for multi-
cast addresses. 

 The   IEEE 802.15.4 frame MTU is 127 bytes minus a set of protocol fi elds: 

      ●      Maximum MAC frame overhead: Frame control (2 bytes)      �      sequence number (1 byte)      �      address-
ing fi eld (up to 20 bytes with the source and destination PAN ID and the source and destination 
64-bit extended addresses)      �      FCS (2 bytes)      �      25 bytes.  

      ●      MAC security header: 21 bytes (AES-CCM-128), 13 bytes (AES-CCM-64), and 9 bytes (AES-
CCM-32).    

 In   the worst case this only leaves 81 bytes (127 bytes  �  25  �  21      �      81) for the data payload (IPv6 
packets). After removing the size of the IPv6 header (40 bytes), there are 41 bytes left. Next, we must 
deduct the transport layer protocol header (8 bytes for UDP and 20 bytes for TCP), thus leading to a 
very short payload for the application layer. 

 This   shows that an adaptation layer is needed to comply with the IPv6 requirement to support a 
minimum MTU size of 1280 bytes as well as to support compression techniques to reduce protocol 
overhead. 

 The   6LoWPAN adaptation layer provides three main services: 

      ●      Packet fragmentation and reassembly  
      ●      Header compression  
      ●      Link layer (layer 2) forwarding when multi-hop is used by the link layer    

 In   most cases the use of effi cient compression techniques allows most applications to send their 
data within a single IPv6 packet. 
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  As   previously discussed in Chapter 12, IEEE 802.15.4 frames support the use of 16-bit short 
addresses (temporary addresses allocated by the personal area network or PAN coordinator or 64-bit 
long addresses (24 bits are used for the organizational unique identifi er; OUI      �      40 bits assigned by 
the chipset manufacturer). 

 Similar   to IPv6, the 6LoWPAN adaptation layer makes use of header stacking (headers are added 
only when needed). 

 The   6LoWPAN adaptation currently supports three headers: a mesh addressing header, the frag-
ment header, and the IPv6 header compression header (they must appear in that order when present). 

 The   6LoWPAN adaptation layer defi nes what is called the  “ encapsulation header stack, ”  which 
precedes each IPv6 datagram. The encapsulation header stack is shown in  Figure 16.1   . 

 As   shown in  Figure 16.2   , the fi rst byte of the encapsulation header identifi es the next header. For 
example, if the fi rst 2 bits are equal to 11, the next header is a fragmentation header. 

 If   the fi rst 8 bits are equal to 01000001, what follows is an IPv6  uncompressed  packet. In contrast, 
a value of 01000010 indicates that what follows is a header related to a compressed header using HC1 
compression (see Section 16.2.3 for details on 6LoWPAN header compression techniques). 

IEEE 802.15.4 
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 FIGURE 16.1  
       6LoWPAN encapsulation header stack.    
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    16.2.1        The Mesh Addressing Header 
 The   mesh addressing header is used in conjunction with a mesh-under  “ routing ”  approach where 
nodes that are not in direct communication make use of multi-hop  “ routing ”  at the link layer using 
link layer addresses. According to IEEE 802.15.4, only full function devices (FFDs) perform 
mesh-under operation. Reduced function devices (RFDs) systematically send all of their traffi c 
to FFDs. 

 The   source and destination nodes are then referred to as the originator and fi nal destination, 
respectively. 

 As   shown in  Figure 16.2     , the fi rst 2 bits of the dispatch byte identify the presence of a mesh-
header and are equal to 10.

      Figure 16.4    shows the various bits of mesh addressing type and header: 

      ●      Bit 2 (V, Very fi rst bit): 
    0: The originator address is an IEEE extended 64-bit address (EUI-64).  
    1: The originator address is a short 16-bit address.     

The 6LoWPAN dispatch byte (first byte)

2 bytes

Frame

control
Seq # Addressing field Data payload FCS

2 bytes0 to 20  bytes

Security

header

0 to 21 bytes1 byte

IPv6 header

compression
IPv6 payload

First byte: The dispatch byte

00 Not a 6LoWPAN frame

01 IPv6 addressing header

10 Mesh header

11 Fragmentation header (6 lower bits
are 100xxx)

 FIGURE 16.2  
       Dispatch byte of the IPv6 header compression header.    
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      ●       Bit 3 (F, Final destination): 
    0: The fi nal address is an IEEE extended 64-bit address (EUI-64).  
    1: The fi nal address is a short 16-bit address.     

      ●      Bits 4 through 7 (HopLeft): The HopLeft fi eld value is decremented by each node before send-
ing the packet to its next hop. When the HopLeft fi eld reaches the value of 0, the packet is simply 
discarded. When equal to 15, an additional byte (called the deep hops left) immediately follows 
when forwarding along a path with more than 14 hops is needed.  

      ●      The originator and fi nal link layer address fi elds then follow (16 or 64 bits).    

 It   is possible to use short 16-bit addresses for broadcast and 64-bit addresses as a source address 
since the V and F permit the use of different link layer address formats. 

 With   mesh-under routing it is necessary to provide the originator and fi nal destination as well as 
the hop-by-hop source and destination addresses. 

       FIGURE 16.3  
     Value of the 6LoWPAN dispatch byte.      

The 6LoWPAN dispatch byte (first byte)

Pattern   Header type

00 xxxxxx   NALP - not a LoWPAN frame
01 000001   IPv6 - uncompressed IPv6 addresses
01 000010   LOWPAN_HC1-LOWPAN_HC1 compressed IPv6
01 000011   reserved - reserved for future use
...   reserved - reserved for future use
01 001111   reserved - reserved for future use
01 010000   LOWPAN_BCO - LOWPAN_BCO broadcast
01 010001   reserved - reserved for future use
...   reserved - reserved for future use
01 111110   reserved - reserved for future use
01 111111   ESC - additional dispatch byte follows
10 xxxxxx    MESH - Mesh header
11 000xxx   FRAG1 - fragmentation header (first)
11 001000   reserved - reserved for future use
...   reserved - reserved for future use
11 011111   reserved - reserved for future use
11 100xxx    FRAGN - fragmentation header (subsequent)
11 101000   reserved - reserved for future use
...   reserved - reserved for future use
11 111111   reserved - reserved for future use

First byte: The dispatch byte
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  Thus   the set of link layer addresses is as follows. When a node A sends a frame to a fi nal destina-
tion C via the node B: 

      ●      The originator address of the mesh header is set to the link layer address of A.  
      ●      The fi nal destination address of the mesh header is set to the link layer address of C.  
      ●      The source address of the IEEE 802.15.4 frame is the address of the node sending the frame (A).    

 The   destination address of the IEEE 802.15.4 frame is the link layer address of the next-hop node 
as determined by the mesh-under routing protocol (B in this example). Upon receiving the frame, B 
performs the following process: 

      ●      The hop left fi eld is decremented.  
      ●      If the hop left fi eld is not equal to 0 (if equal to 0, the frame is discarded), then B determines that 

the next hop is C.  
      ●      The originator and fi nal destination address of the mesh header are unchanged.  
      ●      The source address of the IEEE 802.15.4 frame is set to the link layer address of B.  
      ●      The destination address of the IEEE 802.15.4 frame is set to the link layer address of C.    

5 bits 11 bits 16 bits

11000 Datagram_tag First fragmentDatagram_size

11100 Datagram_tagDatagram_size Datagram_offset

16 bits

Subsequent fragments

Fragment header

Mesh header

2 

bits

4 bits

Originator address10 V F Hop left

16 or 64 bits 16 or 64 bits

V=0 originator 64-bit

EUI address

V=1 originator 16-bit

short address  

V=0 final destination

64-bit EUI address

V=1 final destination

16-bit short address  

5 bits 11 bits 16 bits

Final address

 FIGURE 16.4  
       6LoWPAN mesh and fragmentation headers.    



23716.2 The 6LoWPAN Adaptation Layer

  This   is similar to the mode of operation with IP routing over a link layer where the source and 
destination addresses of the IP packet are never changed, and the source and destination addresses 
present in the link layer frame correspond to the address of two adjacent nodes (connected by a com-
mon link layer). 

 As   previously discussed, there is no mesh-under protocol defi ned. For further discussion about 
routing at multiple layers see Chapter 5.  

    16.2.2       Fragmentation 
 Fragmentation   may be required at the 6LoWPAN adaptation layer when the IPv6 payload cannot be 
carried within a single IEEE 802.15.4 frame because it exceeds the MTU size. In this case, the link 
frame is broken into multiple link fragments using the fragment header shown in  Figure 16.4 . All 
fragment sizes are expressed in units of 8 bytes. The fi rst fragment does not contain a datagram off-
set, which makes it slightly different from the subsequent fragment. 

 Description   of the fragment fi elds (see  Figure 16.4 ): 

      ●      datagram_size: This 11-bit fi eld is used to indicate the size in 8-byte units of the original IPv6 
packet (or IPv6 fragmentation also taking place at the IP layer). Link layer fragmentation sup-
ports a 1280-byte packet as mandated by the IPv6 specifi cation [51]  . The datagram_size may only 
be needed in the fi rst link fragment and then elided in other link fragments. The drawback of this 
approach is that subsequent link fragments (other than the fi rst link fragment) may arrive fi rst, 
especially in the presence of multi-hop routing. In this case the receiver would not know how 
much memory should be allocated for the entire frame.  

      ●      datagram_tag: This fi eld is used in conjunction with the IEEE 802.15.4 source address (or origi-
nator address if a mesh header is present), the IEEE 802.15.4 destination address (or the fi nal 
destination address if a mesh header is present), and the datagram_size to uniquely identify the 
fragmented frame and must be identical for all link fragments. It is recommended to increment the 
datagram_tag for successive fragmented frames.  

      ●      datagram_offset: The 8-bit datagram_offset fi eld is present in all link fragments except the fi rst 
fragment and indicates the offset in 8-byte units from the beginning of the payload datagram.    

   [176] specifi es the use of a reassembly timer that is started when receiving the fi rst link fragment 
and upon the expiration of which, if not all link fragments have been received, all fragments must be 
discarded. The maximum value of the reassembly timer is 60 seconds.  

    16.2.3       6LoWPAN Header Compression 
    16.2.3.1       Header Compression Using LOWPAN_HC1 and LOWPAN_HC2 
 A   plethora of IP compression techniques have been designed over the past decade (e.g., ROHC, 
see [18]). These techniques rely on stateful fl ow-based compression optimized for long-lived fl ows. 
The basis of this principle consists of suppressing common values within a long-lived fl ow, which 
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 is a very effi cient approach for long-lived fl ow between two nodes. Unfortunately these compres-
sion techniques are less suited to 6LoWPAN networks with typically short-lived fl ows (often these 
devices send a few packets and then go back into sleep mode with the exception of infrequent fi rm-
ware upgrades that may require large fl ows to be exchanged). Thus the whole idea of header stateless 
compression techniques in 6LoWPAN consists of avoiding information redundancy across layers as 
opposed to between IP packets that belong to the same long-lived fl ow as ROCH. 

 The   general idea of the 6LoWPAN header compression is to derive the IP address from link layer 
addresses to avoid needless information duplication and suppression of IPv6 headers that have com-
mon values (typically elide the fi elds that have a value of 0). Furthermore, the use of shared contexts 
such as the use of a common network prefi x for the LoWPAN allows address compression of IPv6 
global addresses. 

 6LoWPAN   header compression can either be stateless or stateful and is fl ow independent. Several 
of the IPv6 headers have common values and are easily compressed; for example, the IP version (v6), 
the fl ow label, TC, and so on. Furthermore, information such as the IPv6 interface ID can be derived 
from the link layer frame when using extended 64-bit 802.15.4 addresses. 

   [176] fi rst focused on highly optimizing the compression unicast link-local addresses. A new 
encoding technique (IPHC) was then introduced in [124] to cope with multicast addresses and non-
link-local addresses along with other optimizations such as the individual compression of the IPv6 
fl ow label and TC fi eld. 
        More than likely, the header compression part of [176] will be deprecated at some point to only 
support one header compression technique such as IPHC. There has been no decision to deprecate the 
header compression defi ned in [176], so both header compression techniques are described in the fol-
lowing section. 

    16.2.3.1.1       The HC1 Compression Technique 
 The   HC1 compression technique relies on the following observations: 

      ●      IP version is always 6.  
      ●      Since HC1 is optimized for link-local addresses, the IPv6 interface ID (bottom 64 bits of the IPv6 

address) can be inferred from the link layer MAC address.  
      ●      The packet length can be inferred from the frame length fi eld of the IEEE 802.15.4 frame (or from 

the datagram size fi eld of the fragment header when present).  
      ●      Common value for the TC and fl ow label is 0 (as shown later in Section 16.2.3.3  , IPHC allows for 

individual compression of these fi elds).  
      ●      Next header is UDP, TCP, or ICMP.    

 These   observations allow a considerable reduction of the protocol overhead. The only IPv6 
header fi eld that cannot be compressed and must be carried in full is the 1-byte hop limit fi eld. 
This leads to only 3 bytes instead of the 40-byte IPv6 header: 1 byte for the dispatch byte (equal 
to 01000010), followed by a 1-byte HC1 byte, and 1 byte for the hop limit fi eld, as shown in 
 Figure 16.5   .   

 When   set, bit 7 of the HC1 byte allows for the compression of the next header of the original IPv6 
header. 
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  The   non-compressed fi elds must follow the HC1 byte in this particular order: source address 
prefi x (64 bits) and/or interface ID (64 bits), destination address prefi x (64 bits) and/or interface ID 
(64 bits), TC (8 bits), fl ow label (20 bits), and next header (8 bits). 

    16.2.3.2       The HC_UDP Compression Technique (HC2 Byte) 
 When   bit 7 of the HC1 byte is set, it indicates more header compression according to the HC2 encod-
ing format. If bits 5 and 6 of the HC1 byte are equal to 0 and 1, respectively, this indicates the com-
pression of the UDP header (called HC_UDP encoding). In this case, the HC2 byte immediately 
follows the HC1 byte (thus before the IP hop limit fi eld) and provides information on the UDP header 
compression scheme. The HC_UDP compression technique allows compression of the UDP header to 
various degrees. When non-compressed, the UDP fi elds must appear in the same order as the original 
UDP header (source port, destination port, length, and checksum). 

 HC  _UDP encoding allows compression of the source and destination UDP ports in addition to 
the length fi eld. The length fi eld can be inferred from the length fi eld of the IEEE 802.15.4 frame. 
According to [176], the UDP checksum is never compressed and always carried in full, but improve-
ments have been added to allow UDP checksum compression [124] and are described later in 
Section 16.2.3.6  . 

 The   main idea for compressing the source and destination UDP port uses a short_value 4-bit fi eld 
instead of the original 16-bit fi eld. The original 16-bit fi eld is simply obtained by the formula short_
value     �     61616 (0xF0B0). 

IPv6 header

compression 
IPv6 payload

Dispatch byte

HC1 byte (second byte)

0 1 10 0 0 0 0

1    0

1: Source prefix compressed (derived from link layer), 0 otherwise

1: Source interface ID compressed (derived from link layer), 0 otherwise

1: Destination prefix compressed (derived from link layer), 0 otherwise

1: Traffic class and flow label compressed (equal to 0), 0 otherwise

XX: Identifies the next header. 00 (uncompressed–full bits are sent), 01
(UDP), 10 (TCP), 11 (ICMP)   

1: Destination interface ID compressed (derived from link layer), 0 otherwise

1: Compression of the transport layer using HC2 compression, 0 otherwise

 FIGURE 16.5  
       6LoWPAN HC1 byte.    
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  Bit   values of the HC2 byte: 

      ●      Bit 0 (UDP source port): When cleared, this indicates that the UDP source port is not compressed 
and thus carried in full. Conversely, when set, the compressed short_value is carried in line.  

      ●      Bit 1 (UDP destination port): When cleared, this indicates that the UDP destination port is not 
compressed and thus carried in full. Conversely, when set, the compressed short_value is carried 
in line.  

      ●      Bit 2 (length): When cleared this indicates that the length fi eld of the UDP header is carried in 
line. Conversely, when set, the length is computed from the IPv6 header (this can be derived from 
the IEEE 802.15.4 frame). The value of the UDP length fi eld in this case is equal to the payload 
length of the IPv6 fi eld minus the length of all headers present between the IPv6 header and the 
UDP header.  

      ●      Bits 3 through 7 are reserved.    

   Figures 16.6, 16.7 and 16.8 provide different examples of header compression. As shown in 
 Figure 16.8   , HC1     �     HC2 header compression allows a very effi cient compression technique for reduc-
ing the header size from 40 bytes (IPv6 header)      �      8 bytes (UDP header) down to 7 bytes.    

       FIGURE 16.6  
         Header compression using HC1 and HC2 bytes.      

IPv6 header

compression 
IPv6 payload

HC2 byte (second byte)

0: UDP source port carried in full (16 bits)
1: UDP source port = short-value follows. original UDP destination port =
short_value+ 61616 

0: UDP length field carried in full
1: UDP length field compressed and derived from the IPv6 payload length field
(that may itself be derived from the IEEE 804.15.4 frame) 

Dispatch byte                         HC1 byte

0: UDP destination port carried in full (16 bits)
1: UDP destination port = short-value follows. original UDP destination port =
short_value+ 61616  

Reserved

0 1 10 0 0 0 0 X X X X X 0 1 1



       FIGURE 16.7  
     Compression of the IPv6 HC1 link-local IPv6 addresses without UDP header compression.      
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 FIGURE 16.8  
       Maximized compression of IPv6 and UDP headers using HC1 and HC2 with link-local IPv6 addresses.    
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    16.2.3.3          The 6LoWPAN Improved Compression Technique and Stateful 
Shared Context-based Compression 

 The   compression techniques defi ned in [176] are quite effi cient for unicast link-local addresses (used 
in many circumstances such as ND, DHCP, and other local protocols as discussed in Chapter 15), but 
have a very limited effect on global and multicast addresses. Effi cient compression techniques for 
global IPv6 addresses are needed for communication between nodes residing in different IP subnet-
works (typically nodes in different PANs in the context of IEEE 802.15.4 networks), where routable 
addresses are required. In this case the HC1 compression technique requires carrying the sources and 
destination IPv6 addresses in-line (non-compressed). 

 Improvements   defi ned in [124] are presented in this section, specifi cally new compression tech-
niques referred to as LOWPAN_IPHC and LOWPAN_NHC (called IPHC and NHC for simplicity). 
As already discussed, IPHC will more than likely become  the  header compression technique used by 
the 6LoWPAN adaptation layer and HC1 and HC2 will undoubtedly be deprecated. 

 The   IPHC encoding is depicted in  Figure 16.9   . IPHC requires 13 bits, 5 bits of which are taken 
from the rightmost part of the dispatch byte and an optional additional byte is added. 

IPHC byte

 0    1    2     3  4    5     6    7      8     9      0    1   2    3       4   5Bit number

0 1 1 TF NH HLIM CID SAC SAM M DAC DAM IPHC byte (with additional byte)

Uncompressed Headers

TF = 00

TF = 01

TF = 10

2
bits

ECN

ECN Res

DSCP

ECN DSCP

Res Flow label

Flow label

2
bits

2
bits

6
bits

2
bits

6
bits

4
bits

20
bits

20
bits

IPv6 payload
IPv6 header
compression

 FIGURE 16.9  
       IPHC encoding: traffi c and fl ow label compression.    
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  All   non-compressed header fi elds always appear in the same order as the non-compressed IPv6 
header as specifi ed in [53]. The version fi eld is always elided and the IPv6 payload length fi eld is 
inferred from the length fi eld of the IEEE 802.15.4 fi eld or from the 6LoWPAN fragmentation header 
when present. 

 Description   of the IPHC byte includes: 

      ●      Bits 3 and 4 (TF: Traffi c Class): These bits allow for more granular compression of the TC and 
fl ow label IPv6 header fi elds. 
    00: Both the TC and fl ow label fi elds are carried in line as shown in  Figure 16.9 . Note that 4 bits 
have been added for byte alignment.  
    01: The TC fi eld is compressed to 2 bits (ECN), as defi ned in [209  ]   and the fl ow label fi eld is 
uncompressed. Since the ECN bits are encoded using 2 bits and the fl ow label fi eld is uncom-
pressed, this leads to 22 bits to which 2 bits of padding are added for byte alignment.  
    10: The fl ow label fi eld is compressed (fully elided) and the TC fi eld is carried in-line.  
    11: The TC and fl ow label fi elds are compressed.     

      ●      Bit 5 (next header): 
    0: The full 8-bit header of the next header is carried in-line.  
    1: The IPv6 next header fi eld is elided and another encoding mechanism (called next header cod-
ing; NHC) defi ned later is added.     

      ●      Bits 6 and 7 (HLIM, hop limit): In contrast with the HC1 compression technique, IPHC allows 
compression of the hop limit fi eld of the IPv6 header. 
    00: The hop limit fi eld of the IPv6 packet is carried in-line.  
    01: The hop limit fi eld is elided and the hop limit is equal to 1.  
    10: The hop limit fi eld is elided and the hop limit is equal to 64.  
    11: The hop limit fi eld is elided and the hop limit is equal to 255.     

      ●      Bit 8 (context identifi er extension; CID). 
    0: There is no use of additional context information.  
    1: An additional 1-byte CID is added that immediately follows the destination address mode 
(DAM) fi eld.     

      ●      Bit 9 (source address compression; SAD). 
    0: Address compression is stateless.  
    1: Address compression is stateful based on context.     

      ●      Bits 10 and 11 (source address mode; SAM).    
 If   SAC     �     0 

    00: The full 128-bit address is carried in-line.  
    01: The fi rst 64 bits of the IPv6 address are elided and the value of the 64 bits is the link-local 
prefi x, padded with zeros. The remaining 64 bits are carried in-line.  
    10: The fi rst 112 bits of the IPv6 address are elided and the value of those bits is the link-local 
prefi x, padded with zeros. The remaining 16 bits are carried in-line.  
    11: The address is fully elided. The fi rst 64 bits are the link-local prefi x. The remaining 64 bits 
are inferred from the IEEE 802.15.4 frame, similarly to HC1.    

 If   SAC     �     1 
    00: The address is the unspecifi ed address (::).  
    01: 64 bits. The 64-bit prefi x address is derived from the context information (see Section 
16.2.3.4) and the remaining 64 bits are carried in-line.  
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     10: 16-bits. The 64-bit prefi x address is derived from the context information (see Section 16.2.3.4) 
and the remaining 16 bits are carried in-line.  
    11: 0 bits. The address is derived from the context information and potentially the link layer and 
no bits are carried in-line.    

      ●      Bit 12 ( multicast compression; M). 
    0: The destination address is not a multicast address.  
    1: The destination address is a multicast address.     

      ●      Bit 13 (destination address compression; DAC). 
    0: The compression of the destination address is stateless.  
    1: The compression of the destination address is stateful, based on the context.     

      ●      Bits 14 and 15 (DAM).    
 If   DAC     �     0 

    00: 128 bits. The full 128-bit address is carried in-line.  
    01: 64 bits. The fi rst 64 bits of the IPv6 address are elided and the value of the 64 bits is the 
link-local prefi x, padded with zeros. The remaining 64 bits are carried in-line.  
    10: 16 bits. The fi rst 112 bits of the IPv6 address are elided and the value of the 112 bits is the 
link-local prefi x, padded with zeros. The remaining 16 bits are carried in-line.  
    11: The address is fully elided. The fi rst 64 bits are the link-local prefi x and the remaining 
64 bits are inferred from the IEEE 802.15.4 frame, similarly to HC1.    

 If   DAC     �     1 
    00: Reserved.  
    01: 64 bits. The prefi x address is derived from the context information and the 64 bits are car-
ried in-line.  
    10: 16 bits. The prefi x address is derived from the context information and the 16 bits are car-
ried in-line.  
    11: The address is derived from the context information and potentially the link layer and no 
bits are carried in-line.    

 If   M     �     1 and DAC     �     0 
    00: 128 bits. The full address is carried in-line.  
    01: 48 bits. The address is coded using 48 bits and has the form FFXX::00XX:XXXX:
XXXX.  
    10: 32 bits. The address is coded using 32 bits and has the form FFXX::00XX:XXXX.  
    11: 8 bits. The address is coded using 8 bits and has the form FF02::00XX.    

 If   M     �     1 and DAC     �     1 
    00: 48 bits. The address is coded using 48 bits and has the form FFXX::XXLL:PPPP:PPPP:
PPPP:PPPP:XXXX:XXXX. X denotes nibbles carried in-line, P denotes nibbles to encode 
the prefi x (i.e., given by the specifi c context), and L denotes nibbles used to encode the 
prefi x length. The prefi x information P and L is derived from the context itself. This for-
mat is compliant with the unicast-prefi x-based IPv6 multicast addresses defi ned in [103] 
and [219].  

    01: Reserved  
    10: Reserved  
    11: Reserved     
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    16.2.3.4        The Context Identifi er (CID) 
 IPHC   relies on the notion of shared context between the sending node compressing the IPv6 packet 
and the receiving node expanding the received packet. The current specifi cation does not describe 
how contexts are shared or maintained. At some point there might be protocol extensions or a new 
protocol for dynamic setup and negotiation of shared contexts. As indicated previously, the CID fi eld 
in the LOWPAN_IPHC encoding indicates that an additional bit is added that follows the IPHC byte 
and precedes the IP header fi elds that are carried in-line. 

 That   byte is used to identify the context used to identify the source and destination, respectively 
(the fi rst 4 bits called the source context identifi er or SCI is used for the source address and the fol-
lowing 4 bits called the destination context identifi er or DCI is used for the destination address). Since 
4 bits are used to identify the context, up to 16 contexts are allowed.  

    16.2.3.5       The IPv6 Next Header Compression 
 As   seen in Chapter 15, IPv6 makes use of stacked headers where the next header fi eld is used to indi-
cate the header type that immediately follows. Similar to HC1 where the next header information is 
encoded in the HC1 byte (bits 5 and 6), IPHC specifi es a compression mechanism to elide the IPv6 
next header fi eld. IPv6 next header compression is indicated by setting bit 5 of the IPHC byte and by 
adding a new byte called the LOWPAN_NHC byte. This immediately follows the non-compressed 
(carried in-line) IPv6 header fi eld, as show in  Figure 16.10   . 

 The   NHC byte is of variable length depending on the next header type, which allows a more effi -
cient and fl exible compression technique. As shown in  Figure 16.10 , the fi rst 7 bits of the NHC byte 

The IPHC encoding bytes and traffic and flow label compression

2-3 bytes (3 bytes with the Context Identifier Extensions)

IPHC
encoding

In-line IPv6
header fields

Var length 
NHC ID

Compressed
next header

NHC byte for IPv6 next header
encoding

Next header (compressed or not) (1 bit)

IPv6 extension header ID (3 bits)

Potentially other NHC encoding

NHC
encoding

In-line next
header
fields

IPv6 payload

1    1   1   0      EID      NH 

 FIGURE 16.10  
       IPv6 packet using LOWPAN_IPHC and LOWPAN_NHC compression.    
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 are used to identify the next header that follows. The extension header ID (EID) fi eld indicates which 
extended IPv6 header immediately follows. 

      ●      0: IPv6 hop-by-hop options  
      ●      1: IPv6 routing  
      ●      2: IPv6 fragment  
      ●      3: IPv6 destination options  
      ●      4: IPv6 mobility header (defi ned in [140])  
      ●      5: Reserved  
      ●      6: Reserved  
      ●      7: IPv6 header    

 The   hop-by-hop option header, routing header, fragment header, and destination option header are 
described in Chapter 15. 

 The   last bit of the NHC byte is used to indicate whether the next header is compressed using the 
LOWPAN-NHC technique (bit set) or whether the next header is carried in full (bit cleared). 

 When   using the NHC compression technique, the IPv6 extended header is kept unchanged with 
two exceptions: 

      ●      The next header fi eld is simply elided when the NH fi eld of the NHC byte is set (to avoid redun-
dancy of the information).  

      ●      The length fi eld of an extended IPv6 header such as the hop-by-hop option or routing header (see 
Chapter 15) is used to indicate the length of the IPv6 extension header not including the LOWPAN_
NHC byte.     

    16.2.3.6       Compression of the UDP Header Using LOWPAN_NHC 
 Section   16.2.3.2 described the use of the HC_UDP byte to compress the UDP source port, destination 
port, and length fi eld headers. The compression technique indicates a 4-bit short value that is used to 
extract the original UDP port using the formula 61616 (0xF0B0)      �      short_value. 

 NHC   introduces another UDP header compression technique with several improvements. 
 A   range of 16 contiguous well-known ports is specifi ed in the form 0xF0Bx, thus identical to the 

HC_UDP compression technique for UDP ports. This introduces compatibility issues with applications 
already using these ports. This is why the specifi cation recommends using the Transport Layer Security 
Message Integrity Check (TLS MIC; see [55]) to validate the content and its integrity. 

 Although   [53] mandates the use of UDP checksum, the [124] specifi cation allows bypassing this 
rule if and only if the upper layer permits. Although the [124] specifi cation allows an intermediate 
node to elide the UDP checksum even if the received packet has the UDP checksum in-line, it also 
clearly states that this should not be done without the confi rmation that the operation is authorized by 
the sender. Conversely, an intermediate node may decide to insert a UDP checksum after receiving a 
packet without a UDP checksum after having computed its value according to the rules specifi ed in 
[202] and [53]. 

    Figure 16.11    shows the format of the NHC byte for the UDP header. 

      ●      Bit 5 (Checksum; C). 
    0: The 16-bit UDP checksum fi eld is not compressed and carried in-line.  
    1: The 16-bit UDP checksum is elided and recovered and recomputed by the 6LoWPAN termina-
tion point.     



24716.2 The 6LoWPAN Adaptation Layer

      ●       Bits 6 and 7 (Ports; P). 
    00: Both the source and destination 16-bit ports are carried in-line.  
    01: The 16 bits of the source port are not compressed and carried in-line. The fi rst 8 bits of the 
destination port are elided (and equal to F0) and the remaining 8 bits are carried in-line.  
    10: The fi rst 8 bits of the source port are elided (and equal to F0) and the remaining 8 bits are car-
ried in-line. The 16 bits of the destination port are not compressed and carried in-line.  
    11: The fi rst 12 bits of the source and destination ports are elided and equal to 0xF0B0. The 
remaining 4 bits of both ports are carried in-line.       

    Figure 16.11  shows a complete example where: 

      ●      IPHC is used for header compression.  
      ●      NHC is used to compress an extended IPv6 fragment header.    

 NHC   is used to compress the UDP header with maximum level of compression (the checksum is 
elided and both the source and destination ports are compressed). 

1 1 1

In-line (uncompressed)
IPv6 header fields

NHC byte (NHC ID=1110:
extended header)
extended header = fragment
header (EID=2 (010)) 

0 0 1 0 0

1 1 1 1 0 C P

0 1 1 TF NH HLIM CID SAC SAM M DAC DAM

=1

=1 =11

Example of IPHC + NHC for extended IPv6 option (fragment) and for UDP compression

IPHC bytes (now includes dispatch)

IPv6 payload

In-line IPv6
fragment

header fields

4-bit field for the UDP source
port followed a 4-bit field for
the UDP destination port.

NHC byte (NHC ID=11110: UDP
compressed) C=0: Checksum elided
P=11: First 12 bits of both the
source and destination are
0xF0B and elided.

 FIGURE 16.11  
       IPv6 packet using LOWPAN_IPHC and LOWPAN_NHC compression for extended IPv6 header compression 
and UDP header compression.    
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  So   in the very best case 

      ●      With link-local unicast address, HC1 encoding allows compression of the IPv6 header to two octets 
(the dispatch byte      �      the HC1 byte). When routing over multiple hops, the compression still performs 
quite well compressing the IPv6 header to 7 octets (the dispatch byte      �      the HC1 byte      �      1 byte for 
the IP hop limit fi eld      �      2 bytes for the sources address      �      2 bytes for the destination address).  

      ●      With the use of global addresses, the IPv6 header can be compressed to 4 bytes (2 bytes for the 
IPHC encoding      �      1 byte for context identifi er extension      �      1 byte for the IP hop limit fi eld      �      0 
bytes for the source and destination addresses with the interface IDs derived from the IEEE 
802.15.4 link layer address). When using Context 0, the 1 byte for the context identifi er is not 
needed. Potentially, additional bytes may be added if the TC and fl ow label fi eld of the IPv6 fi eld 
are not compressed.    

 In   the best case, the compressed UDP header only requires 2 bytes (1 byte for the NHC header      �      1 
byte for the compressed source and destination UDP ports) when the UDP checksum fi eld is elided.  

    16.2.3.7       Header Compression of Multicast Address 
 The   LOWPAN_HC1 encoding technique specifi ed in [176] does not allow compression of multicast 
addresses, consequently, 128-bit multicast addresses must be carried in-line, uncompressed. [124] 
specifi es an encoding technique for effi cient compression of IPv6 multicast addresses using shared 
contexts. 

 The   fi rst mode of operation is based on stateless compression. The M-bit and the DAC bit of the 
IPHC bytes must be set to 1 and 0, respectively. 

 As   a reminder, each node is assigned a solicited multicast address used in IPv6 ND messages 
during the duplicated address detection (DAD) process. The solicited-node address has the form 
FF02::1:FFXX:XXXX and is computed from the node’s unicast and anycast address. The 24 lower 
order bits of the unicast or anycast address are appended to the prefi x FF02::1:FF00::/104. 

 The   multicast stateless compression supports the compression of the solicited-node multicast 
address in addition to any IPv6 multicast address where the upper bits of the multicast group identi-
fi er are zeros. The least signifi cant bits identify the multicast group and the multicast scope in-line. 
The fl ag bits are carried in-line except when the DAM fl ag is set (address in the form FF0X::0XXX) 
in which case the fl ags are not carried in-line.  Figure 16.12    shows the format of the compression mul-
ticast address. 

 The   second mode is based on a stateful context-based address compression. In this case both the 
M-bit and the SAC bit of the IPHC bytes are set. The SAM is set to 01, which indicates that the address 
is derived using context information and the 64 bits identifying the multicast group are carried in-line 
for unicast-prefi x-based IPv6 multicast addresses. The prefi x length and network prefi x are derived 
from the context. In contrast with the IPv6 multicast addressing architecture defi ned in [54], [103] spec-
ifi es a multicast address format that carries unicast prefi x information in the IPv6 multicast address: the 
112-bit fi eld is replaced by an 8-bit reserved fi eld      �      an 8-bit fl ag fi eld      �      a 64-bit prefi x information 
fi eld (identifying the network prefi x of the unicast subnet that owns the multicast address)      �      a 32-bit 
group ID. 

 Thus  , for a unicast-prefi x-based IPv6 multicast address the IPHC encoding only requires 
6 bytes: 4 bits for the fl ags, 4 bits for the scope, an 8-bit reserved fi eld, and the 32-bit group identifi er. 
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 As specifi ed in [219], the address of the rendezvous point can be encoded in the IP multicast group 
address to simplify the deployment of   intra  -domain multicast confi guration and help in the inter-
domain case. The reserved fi eld is then used to encode the Rendezvous Point Interface ID (RIID).   

    16.2.4       Stateless Confi guration 
 As   explained in Chapter 15, the IPv6 interface ID may be derived from the EIU-64 that is computed 
by converting a 48-bit MAC address. In IEEE 802.15.4, all devices have a 64-bit EUI address, but the 
use of short 16-bit addresses is also allowed. When using a short address, a pseudo 48-bit address is 
computed using the following algorithm: 

      ●      The fi rst 16 bits correspond to the PAN ID.  
      ●      The next 16 bits are all zeros.  
      ●      The remaining 16 bits correspond to the short address.    

 This   48-bit address is then used according to the  “ IPv6 over Ethernet ”  encapsulation technique 
[44]. 

  Note   : Multicast IPv6 packets are transmitted as broadcast IEEE 802.15.4 frames (IPv6 only sup-
ports multicast, whereas IEEE 802.15.4 only supports broadcast). A multicast IPv6 packet is transmitted 
using IEEE 802.15.4 frames with the required destination PAN ID and the broadcast address 0xFFFF.   
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 FIGURE 16.12  
       Stateless and stateful multicast address compression    .    
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    16.3        CONCLUSIONS 
 In   this chapter, we reviewed in detail the 6LoWPAN adaptation layer that optimized the transport of 
IPv6 packets in IEEE 802.15.4 frames. 6LoWPAN allows the support of the necessary fragmenta-
tion and reassembly mechanisms considering the limited MTU of IEEE 802.15.4. Furthermore, the 
6LoWPAN adaptation layer provides effi cient header compression mechanisms avoiding information 
redundancy to dramatically reduce the IP overhead headers to a few bytes, which is particularly inter-
esting on links that only support small frame sizes. 6LoWPAN is not a generic term referring to smart 
object networks but an adaptation layer to carry IPv6 packets over IEEE 802.15.4 frames.                   
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CHAPTER

    17.1        INTRODUCTION 
 As   already discussed in Chapter 14, the Internet Engineering Task Force (IETF) formed a new 
Working Group called ROLL (Routing Over Low-power and Lossy networks;  http://www.ietf.org/
dyn/wg/charter/roll-charter.html ) in 2008 with the objective of specifying routing solutions for Low-
power and Lossy Networks (LLNs). The fi rst objectives of the Working Group were to produce a 
set of routing requirements (discussed in Section 17.2), determine whether or not existing IETF 
routing protocols would satisfy the requirements spelled out in the routing requirement documents, 
and establish a routing security framework and defi ne new routing metrics for routing in LLNs. The 
Working Group quickly converged on the fact that none of the existing routing protocols would sat-
isfy the fairly unique set of routing requirements for LLNs. Thus ROLL was re-chartered to design a 
new routing protocol called RPL (Routing Protocol for Low-power and Lossy Networks) explained 
in detail in this chapter. Note that the terminology used in ROLL specifi cations can be found 
in [248].  

    17.2       WHAT IS A LOW-POWER AND LOSSY NETWORK? 
 When   not familiar with the environment of IP smart object networks interconnected by lossy links, 
one may wonder: How lossy is lossy? Ethernet and Optical links have remarkably low BERs. 
A lossy link is not just a link with higher BER uniformly distributed errors. Packet drops on lossy 
links are extremely frequent, and the links may become completely unusable for quite some time for 
a number of reasons such as interference. This observation has strong consequences on the protocol 
design. Indeed, knowing that link failures are frequent and usually transient also means that the rout-
ing protocol should not overreact to failures in an attempt to stabilize under unstable conditions. For 
example, if node A selected node B as its preferred next-hop, and as a result of temporary lack of 
connectivity between A and B, node A chooses an alternate next-hop C and immediately triggers a 
re-computation of the routing table. This would not only lead to routing instabilities but would gener-
ate a signifi cant amount of control plane traffi c impacting the entire network. 

 It   is worth pointing out that by lossy link what immediately comes to mind are wireless links, but 
remember that Powerline communication (PLC) links are also lossy. 
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     Figure 17.1    shows the packet delivery ratio (PDR) for two low-power IEEE 802.15.4 links as a 
function of time (in seconds). The PDR signifi cantly varies from 60 to 100%.  

    17.3       ROUTING REQUIREMENTS 
 When   defi ning a new protocol, it is always tempting to start right away with the protocol specifi ca-
tion, processing rules, packet encoding, etc. But without a clear understanding of the requirements, 
this unavoidably leads to further diffi culties when trying to adapt the protocol as new requirements are 
added. To avoid such situations, IETF Working Groups usually produce requirement documents that 
follow the  “ informational ”  track (please refer to Chapter 14 for more details on standardization tracks). 
In the case of the ROLL Working Group one of the main challenges was to determine the scope of 
the work. In contrast with traditional IP networks (e.g., a core Service Provider network), LLNs can 
greatly vary from each other. A mobile Delay Tolerant Network (DTN) used to study wildlife does 
not have much in common with a dense  “ always on ”  network used for industrial automation. Thus the 
choice was made to limit the scope to four main applications: urban networks (including Smart Grid 
applications), building automation, industrial automation, and home automation. These applications are 
representative of other types of networks and there was an urgent need to design routing solutions for 
them. Thus it was believed that by addressing the routing requirements of these applications, a routing 
protocol for LLN would address the vast majority of routing requirements of smart object networks. 
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 FIGURE 17.1  
       Packet Delivery Ratio for two IEEE 802.15.4 links.    
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  Requirement   documents usually use normative language in IETF terms (see [23]  ): the MUST, 
SHOULD, and MAY in these documents indicate if a feature is mandated or simply desirable. 
MUST, SHOULD, and MAY are used in protocol specifi cations. For example, if a protocol document 
specifi es that a feature MUST be supported then an implementation is not compliant with the RFC if 
it does not support the feature in question. 

 The   ROLL Working Group has produced the following four routing requirements: [169], [24], [197], 
and [57]. These sections provide an overview of the major routing requirements spelled out in these docu-
ments (the MUST). 

 These   routing requirements make no assumption on the link layer in use; they specify a list of 
routing requirements for networks made of LLNs. 

      ●      Unicast/anycast/multicast: Several requirement documents list the support of unicast, anycast, and 
multicast traffi c as mandatory. The support of the multicast traffi c is explicitly listed in the ROLL 
Working Group charter.  

      ●      Adaptive routing: Most requirements specify the need for adaptive routing where new paths are 
dynamically and automatically recomputed as conditions change in the network (e.g., link/node 
failure, mobility, etc.). Furthermore, the routing protocol must be able to compute routes opti-
mized for different metrics (e.g., minimize latency, maximize reliability, etc.). [169] also specifi es 
that the routing protocol must be able to fi nd a path that satisfi es specifi c constraints such as pro-
viding a path with a latency lower than a specifi ed value.  

      ●      Constraint-based routing: All documents mention that the routing protocol has to support con-
straint-based routing to take into account various node characteristics used as constraints such as 
energy, CPU, and memory as well as link attributes ([197]) such as link latency.  

      ●      Traffi c characteristics: There are a number of LLNs highly focused on data collection (e.g., telem-
etry) where most of the traffi c is from leaf nodes such as sensors to a data collection sink. This 
type of traffi c is also referred to as multipoint-to-point (MP2P) traffi c. It is often necessary in these 
networks to also support point-to-multipoint (P2MP) traffi c; for example, when the sink sends a 
request to all nodes in the network, acknowledgments in the context of reliable messaging are 
necessary or a central management tool performs a software update. Furthermore, as pointed out 
in [169] and [24], the routing protocol must support point-to-point (P2P) communication between 
devices in the network. The routing protocol must also support the computation of parallel paths 
(not necessarily disjoint) to absorb bursts of traffi c more effi ciently. In some cases ([197]) it was 
required to not just support Equal Cost Multiple Path (ECMP). Note that other routing protocols 
such as ISIS or OSPF only support ECMP (avoiding loops with non equal load balancing is some-
what challenging).    

      ●      Scalability: As discussed throughout the entire book  , LLNs are composed of a very large number 
of nodes, thus scalability is very important. The routing protocol requirement documents indicate 
a number of nodes between 250 [24] to 1000 [169] and up to 10 4  in [57]. There are deployments 
that even require the support of millions of nodes (see Part III); in this particular case, the deploy-
ment of the routing protocol may follow specifi c rules (e.g., network partitioning).  

      ●      Confi guration and management: As expected, there is a long list of requirements related to confi g-
uration. In most documents, it is clearly spelled out that the routing protocol must be able to auto-
confi gure with minimal or even 0-confi guration. In other words, the end user must be able to place 
the node in its environment without intervening in the confi guration and the routing protocol must 
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 be able to join the routing domain and start functioning from a routing perspective (see [197] for a 
detailed example). [24] also specifi es that the routing protocol must be able to isolate a misbehav-
ing node to limit/eliminate its impact on other nodes. [169] mentions that an application should 
not require any reconfi guration even after replacement of the devices (in other words, a new IP 
address must not be reassigned to the node).  

      ●      Node attribute: [169] mentions that when there are sleeping nodes in the network (a frequent situ-
ation with battery-operated nodes), the routing protocol must discover the capability of a node to 
act as a proxy. A packet could be delivered to a proxy that could relay the packet to the destina-
tion once awakened.  

      ●      Performance: Indicating performance numbers in requirement documents is always a risky propo-
sition. Performance may not only greatly vary between implementations but is subject to potential 
changes as new applications emerge. A protocol should never be designed with hard numbers in 
mind to preserve its future use. Thus performance numbers in requirement documents should not 
be seen as  “ hard ”  numbers or bounds but simple indications providing some order of magnitude. 
For example, [197] mentions that the routing protocol must fi nd routes and report success or fail-
ure within several minutes. In [24], the routing protocol must provide mobility with a convergence 
time below 0.5       s and it must converge within 0.5       s if no nodes have moved and within 2       s if the 
destination has moved. But again, these numbers should be seen as indicative as opposed to hard 
performance targets or bounds.  

      ●      Security: As discussed in Chapter 8 and shown in Part III, security is very important in most LLNs. 
There are some LLNs (e.g., Smart Cities telemetry networks) where minimal security is required, 
but in most cases (e.g., Smart Grid, building automation, industrial automation, etc.) security is 
absolutely critical. Authentication is listed as an absolute must in all documents. Encryption is also 
an absolute must. Note that [169] mentions that  “ the routing protocol must gracefully handle routing 
temporal security updates (e.g., dynamic keys) to sleeping devices on their  ‘  awake  ’  cycle to assure 
that sleeping devices can readily and effi ciently access the network. ”     

 How   should confl icting objectives be dealt with? It is always challenging to consider a set of 
requirements dictated by several applications that signifi cantly differ from each other. The fi rst na ï ve 
approach is to consider the union of all of the requirements. Unfortunately, such an approach is usu-
ally unrealistic or undesirable. The union of all requirements may not be possible considering the 
constrained nature of smart objects and the need to bound the complexity of the protocol. There are 
even cases where some of these requirements are contradictory. Even if all of these requirements 
were satisfi ed by a single routing protocol, the results may not be benefi cial. Why would a rout-
ing protocol operating in a building have to support features needed for urban networks? It may be 
more advantageous to only support the required features to limit the resource (node and network) 
consumption in the network. The other approach adopted by RPL was to design a modular routing 
protocol where the core component of the application would be specifi ed by the RPL specifi cation 
with optional fe atures activated only where and when needed. For example, RPL specifi es how to 
build a destination oriented directed acyclic graph (DODAG), but the characteristics of the DODAG 
are specifi ed by an objective function. For the time being, think of a DODAG as a logical routing 
topology over a physical network that is built by the routing protocol to meet specifi c criteria. How 
RPL builds DODAGs is further explored in detail in the rest of this chapter. It is even possible for a 
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 node to join multiple DODAGs (if the application requires different objectives that must be realized 
through the use of multiple DODAGs) and mark the traffi c according to the DODAG characteristics 
in support of Quality of Service (QoS) awareness and constrained-based routing. Then applicability 
documents will be produced to provide guidance on how the core RPL protocol could be used, in 
conjunction with specifi c objective functions, and confi gured to meet specifi c requirements support-
ing the application and environment.  

    17.4       ROUTING METRICS IN SMART OBJECT NETWORKS 
 Routing   metrics are a critical component of the routing strategy and have been studied for decades. 
Most of the IP routing protocols used in today’s networks such as OSPF [179] or IS-IS [131] use 
static link metrics. The network administrator is responsible for confi guring the link metrics, which 
may refl ect the link bandwidth, delay, or combine several metrics. Some Service Providers are com-
bining up to three metrics (e.g., delays, bandwidth, cost) in the link metric. Then the routing protocol 
computes the shortest path taking into account these static link metrics. 

 Several   attempts were made to use dynamic link metrics. For example, extensive studies were 
made in ARPANET-2 to dynamically compute the link metric based on the averaged queue length 
to refl ect the level of congestion. These strategies were abandoned due to the diffi culty in designing 
stable systems. One of the main challenges with dynamic metrics is to carefully control the rate at 
which new metrics are advertised. Frequent link metric refreshers provide a high level of accuracy 
but may also lead to routing oscillation. For example, when the link metric refl ects the link utilization, 
increasing the metric discourages traffi c from traversing the link and triggers the rerouting of traffi c 
in other parts of the network. As the link utilization decreases, the link metric also decreases thus 
attracting more traffi c. If not controlled carefully, such strategies unavoidably lead to traffi c oscilla-
tion and thus to jitter, potential packet reordering, and so on. Extreme care must be taken to limit the 
control traffi c overhead in LLN where bandwidth and energy are usually scarce resources. In addition 
to the potential traffi c oscillation, routing updates too frequently create congestion in the network that 
would drain energy, which may be a real issue for battery-operated nodes. 

 Another   characteristic of the current routing protocol’s metrics is that they are only related to links, 
which makes perfect sense in the current Internet because most core routers are not traffi c bottlenecks. 

 In   contrast, routing in LLN does require more sophisticated routing metrics strategies. 
 Let  ’s clarify the distinction between routing  metric  and  constraint . A metric is a scalar used to 

determine the best path according to some objective function. For example, if the link metric is rep-
resentative of the link propagation delay, the path cost represents the total propagation delay to the 
destination and the objective function may specify fi nding the shortest path based on the propagation 
delay. Some metrics may not be additive; for example, the objective function may be to fi nd the path 
where the minimum link quality is maximized. A constraint is used to include or eliminate links or 
nodes that do not meet specifi c criteria (this is usually referred to as  constraint-based routing ). For 
example, the objective function may not select any path that traverses a node that is battery-operated 
or a link that does not provide link layer encryption. The objective function may combine link/node 
metrics and constraints such as  “ fi nd the path with the minimum delay that does not traverse any non-
encrypted link. ”  An example is provided in Section 17.5. 
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  The   set of link and nodes metrics/constrained for RPL are defi ned in [250] and discussed in the 
next section. [250] allows routing objects to be defi ned as constraints or metrics with a great deal of 
fl exibility. Let’s consider the link quality level (LQL). The LQL is an integer between 0 and 3 that 
characterizes the link quality (poor, fair, good). The objective function (OF) may stipulate to prune 
links with a  “ poor ”  quality level (LQL is used as a constraint) or to fi nd the path that provides the 
minimum number of links with poor quality (LQL is used as a metric). This applies to all routing 
objects that can be used as a metric or constraint. 

    17.4.1       Aggregated Versus Recorded Routing Metrics 
 The   path cost is defi ned as the sum of the cost of all links along the path. This implicitly makes use 
of aggregated metrics. For example, if the metric refl ects the link’s throughput where the metric is 
inversely proportional to it, the best path is the path with the lowest cost (the path cost is the sum of 
all link metrics along the path). On the other hand, in some cases it might be useful to record each 
individual link metric as opposed to an aggregated value. In the reliability metric, one approach adds 
the link’s LQL along the path (aggregated metric), but this comes with a loss of information in which 
case it might be useful to record the LQL of all links along the path. [250] supports both aggregated 
and recorded metrics.  

    17.4.2       Local Versus Global Metrics 
 A   metric is said to be local when it is not propagated along the DODODAG. In other words, a node 
would indicate its local cost (in contrast with a global metric), but the cost will not be propagated any 
further.  

    17.4.3       The Routing Metrics/Constraints Common Header 
   [250] specifi es a common header for all metrics and constraints with several fl ags used to indicate 
whether the routing object refers to a routing metric or a constraint, if the routing object is local ver-
sus global, if the global metric is aggregated versus recorded, if a constraint is optional or mandatory, 
and if a metric is additive or reports a maximum/minimum.  

    17.4.4       The Node State and Attributes Object 
 The   node state and attribute (NSA) object is used to report various node state information and node 
attributes. 

 Nodes   may act as traffi c aggregators. Knowing that a node can aggregate traffi c may infl uence the 
routing decision in an attempt to reduce the amount of traffi c in the network. It is likely that a single 
fl ag will not suffi ce and additional information will have to be specifi ed. 

 Nodes   may have limited available resources. Extensive discussions took place in the ROLL 
Working Group to defi ne which node parameters should be provided. One scheme would have 
been to report the available CPU processing power, available memory, etc. But this would become 
extremely bandwidth intensive and irrelevant considering how quickly such metrics vary. It was thus 
decided to simply make use of a 1-bit fl ag set when a node sustainably experiences some level of 
congestion. It is the responsibility of the node to determine, according to local policy, when the fl ag 
should be set potentially triggering traffi c rerouting to avoid that node.  
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    17.4.5        Node Energy Object 
 Energy   is a critical metric in LLNs, especially in the presence of battery-operated nodes. The 
approach taken by [250] provided several levels of granularity to characterize the node energy: (1) the 
node power mode, (2) estimated remaining lifetime and potentially, and (3) potentially some detailed 
set of power-related metrics and attributes. 

    1.     The node power mode: Three fl ags are used to indicate whether the node is main-powered, bat-
tery-powered, or if the node is powered by energy scavenging (solar panels, mechanical, etc.).  

    2.     The approach to estimated remaining lifetime provides some indication of the power level 
for both battery-operated and scavenging nodes. With the battery-operated node, the unit is the 
current expected lifetime divided by the desired minimum lifetime. [250] provides two examples 
of how to compute this value. 

    If the node can measure its average power consumption, then H can be calculated as the ratio 
of desired max power (initial energy E_0 divided by desired lifetime T) to actual power H      �      P_
max/P_now. Alternatively, if the energy in the battery E_bat can be estimated, and the total 
elapsed lifetime, t, is available, then H can be calculated as the total stored energy remaining ver-
sus the target energy remaining: H      �      E_bat/[E_0 (T-t)/T]  .  
    In the latter case (scavenger), the unit is a percentage (power provided by the scavenger divided 
by the power consumed by the application).     

    3.     The detailed set of power-related metrics and attributes may potentially be used and is to be 
defi ned in the future  .     

    17.4.6       Hop-count Object 
 The   hop-count object simply reports the number of hops along the path.  

    17.4.7       Throughput Object 
 The   throughput object is used to report the link throughput. When used as a metric, the throughput 
can be used as an additive metric or to report a maximum or a minimum.  

    17.4.8       Latency Object 
 The   latency object is used to report the path latency. Similar to the throughput, latency can be used as 
a metric or a constraint. When used as a metric the latency object expresses the total latency (additive 
metric) and the maximum or minimum latency along the path. When used as a constraint, the latency 
can be used to exclude links that provide greater latency than predefi ned values.  

    17.4.9       Link Reliability Object 
 Routing   protocols such as OSPF or IS-IS do not use reliability metrics simply because links used in 
the Internet such as SONET/SDH, Optical links, and Ethernet are extremely reliable with low error 
rates. They do fail and a plethora of fast recovery mechanisms have been defi ned, but the link quality 
usually expressed as BER for these types of links is not used for path selection. The situation is radi-
cally different in LLNs where links are lossy and not only can the BER be high, but the link states can 
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 vary quite signifi cantly over time.  Figure 17.1  illustrates the PDR for two links (indoor and outdoor) 
over time. This stresses the importance of considering the  “ lossyness ”  of a link when computing the 
best path to a destination. Very similar lossy characteristics can be shown in PLC links. 

 Many   research papers have investigated a set of reliability metrics for lossy links such as low 
power links (e.g., [50], [85]  ). The most popular reliability metric thus far is the expected transmission 
(ETX) count metric, which characterizes the average number of packet transmissions required to suc-
cessfully transmit a packet. The ETX is consequently tightly coupled to the throughput along a path. 
Several techniques have been proposed to compute ETX. 

 One   method described in [50] sends regular probes in  each direction  to compute the delivery ratio 
for a specifi c link. ETX is defi ned as 1/(Df * Dr) where Df is the measured probability that a packet is 
received by the neighbor and Dr is the measured probability that the acknowledgment packet is suc-
cessfully received. One way to compute Df and Dr is to send probes at regular time intervals, since 
both end points of the link know the frequency at which probes are sent. By reporting the number of 
received probes in the opposite direction, each node can easily compute both values. Other proposals 
have been made in [85] and [150]. 

 It   is important not to specify at the IETF the method for computing ETX values. The ETX is a 
link-specifi c quantity and the technique used to compute the ETX value should be independent of the 
link layer and not specifi ed by the network layer that only carries it for routing protocol decisions. 
Some links may use link layer mechanisms, and in other cases probing techniques and the ETX value 
may be derived from one of these techniques or any combination. 

 The   ETX for a path is computed as the sum of the ETX for each link along the path (e.g., RPL 
reports cumulative path ETX as discussed next).  

    17.4.10       Link Colors Attribute 
 There   are circumstances where it may be useful to  “ color ”  a link to report a specifi c property. Such 
mechanisms have been defi ned in other protocols such as IS-IS, for example, to indicate that a link 
is protected with lower layer recovery mechanisms. A similar approach is adopted by RPL. The 
link color is encoded using a bit vector and the meaning of each color is left to the implementer. As 
described later in this section, RPL computes paths over a dynamically built DODAG. The DODAG 
root uses an OF required for each node along the path reporting path metrics to also report the set of 
colors of each link along the path. For example, suppose that the color blue is used to indicate the 
support of the link layer encryption. Upon receiving the path metric, if link colors are recorded, a 
node may decide to elect as a parent the parent reporting paths with encrypted links (blue links) or 
with the maximum number of blue links in the absence of a path exclusively made of blue links.   

    17.5       THE OBJECTIVE FUNCTION 
 The   routing metric is insuffi cient for the routing protocol to compute the  “ best ”  path. The OF may be 
so simple that it could be implicit. For example, the OF of RIP [163] is to select the path with minimal 
hop count. OSPF or IS-IS would compute the paths that provide the minimum cost where the path cost 
is simply the sum of the static link cost along the path. In other cases such as MPLS TE the OF may 
be slightly more complex:  “ fi nd the shortest path according to some metric such as the OSPF/ IS-IS 
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metric or the Traffi c Engineering metric that satisfi es some constraint such as the available reserv-
able bandwidth or the type of recovery protection provided by the link. ”  This is known as constraint-
based routing. Still, the objective may be signifi cantly more complicated. It is supported by the path 
computation element (PCE) architecture ( http://www.ietf.org/dyn/wg/charter/pce-charter.html ) 
to compute sophisticated MPLS Traffi c Engineering Label Switch Paths (TE LSP). For exam-
ple, the request might be to compute the shortest constraint path with multi-metric optimization (a 
Nondeterministic Polynomial (NP)-complete problem). 

 With   LLNs there is strong interest in using several OFs because deployments greatly vary with dif-
ferent objectives and a single network may support traffi c with very different requirements in terms of 
path quality. Consider the case of a mixed network with battery- and main-powered nodes, a vari-
ety of high and low bandwidth links, and two main applications (telemetry and critical alarms). 
This is a situation where it might be extremely useful for each node supporting both applications to 
be able to use two paths. These would include one  “ time sensitive ”  path for alarms where the objective is 
to have a short delay and a highly reliable path with no constraint on the type of nodes along the path to the 
destination, and another  “ not time sensitive path ”  for the telemetry traffi c where it is benefi cial to not tra-
verse any battery-operated node to preserve energy and where the objective would be to minimize hops to 
avoid traffi c congestion in the network. RPL addresses these requirements by building two DODAGs with 
each one having its own OF. The OF is used in conjunction with the routing metric to compute the path. 

 Consider    Figure 17.2    which depicts an LLN. In this network, the link’s LQLs are provided in addi-
tion to the latency and availability of link layer encryption. In addition, node 11 is battery-operated. 
The arrow shows the best computed path from the low-power and lossy network border router (LBR) 
to node 34 for two different OFs, OF1 and OF2, defi ned in the following: 

    OF1:  “ Use the LQL as a global recorded metric and favor paths with the minimum number of low 
and fair quality links, use the link color as a link constraint to avoid non-encrypted links. ”  Note 
that two paths are available with an equivalent aggregated LQL metric: 34-35-24-13-1 and 34-33-
23-22-12-1. But because the OF specifi es using a recorded metric, the path 34-33-23-22-12-1 is 
chosen since it only has two links of  “ fair ”  quality.  
    OF2:  “ Find the best path in terms of latency (link latency is used as a global aggregated metric), 
while avoiding poor quality links and battery-operated nodes. ”  Several paths have been pruned 
because they traverse battery-operated nodes (node 11) and traverse poor quality links (link 
12-23). The best path (lowest latency) is 34-24-13-1.     

    17.6       RPL: THE NEW ROUTING PROTOCOL FOR SMART OBJECT NETWORKS 
 This   section describes RPL (IPv6 Routing Protocol for Low-power and Lossy Networks), the newly 
specifi ed IP routing protocol for smart object networks, in detail. RPL is still a work in progress and 
the IETF RFC should be used as the fi nal reference. Various aspects may change or be added to the 
specifi cation. 

    17.6.1       Protocol Overview 
 Similar   to IETF specifi cations (see [214]), this section provides an overview of the RPL mode of 
operation. 
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  Considering   the wide set of routing requirements spelled out in the application-specifi c docu-
ments and discussed in Section 17.3, RPL was designed to be highly modular. The main specifi cation 
[256] covers the intersection of these requirements. The prime objective is to design a highly modular 
protocol where the core of the routing protocol would address the intersection of the application-
specifi c routing requirements, and additional modules would be added as needed to address specifi c 
requirements. 

 RPL   was designed for LLNs where constrained devices are interconnected by (wireless and 
wired) lossy links. Many of the routing protocol design decisions were strictly driven by the unique 
characteristics of these networks. When observing the link failure profi les of the link layers in the 
Internet or private IP networks (Ethernet, Optical links, etc.), error rates are relatively low and the 
link error profi les show uniform distribution. Thus routing protocols designed for such link profi les 
quickly react to link failure with no risk of oscillation since link fl aps are rare events. When failures 

Non encrypted link

Battery operated node

Fair quality (LQL=2)

Poor quality (LQL=3)

Good quality (LQL=1)

Latency in millisecondsX

LLN Network

OF1 OF2LBR (Node 1)

1312

333231

41 42 43 44 45 46

24

3534

232221

11

LBR (Node 1)

10
10

131250

10

1020 10

1010
333231

41 42 43 44 45 46

24
20

35
20

34

232221

20

LBR (Node 1)

5
10

10

5 131250

10

1010 10

1010
333231

41 42 43 44 45 46

24
20

35
20

34

20

232221

11

 FIGURE 17.2  
       Examples with two different OFs.    
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 do occur, various dampening techniques are used. This drove the design principles of various  “ fast 
reroute ”  mechanisms. As soon as the link failure is detected (thanks to link layer notifi cation or fast 
keep alive mechanisms such as Bidirectional Forwarding Detection; BFD [144] or link layer triggers), 
the traffi c is immediately rerouted onto a backup path to minimize the traffi c disruption. The situa-
tion in LLN is rather different.  Figure 17.1  shows the packet delivery ratio (PDR) for two wireless 
links and the situation is extremely similar to PLC links. Such link failure profi les are not uncommon 
and demonstrate that it is imperative to handle link failure in a very different manner in LLN. First, a 
node should try to determine whether or not the link should be considered as down (not an easy deci-
sion in LLNs) and, consequently, inadequate for traffi c forwarding. The same reasoning applies to 
determining whether or not a link should be considered as usable in the fi rst place (known as  “ local 
confi dence ” ). This means that a node should carefully observe a link and start using it or determine 
whether to stop using it (thus triggering a global path recomputation in the network). 

 The   lossy nature of these links is not the only LLN characteristic that drove the design decisions 
of RPL. Because resources are scarce, the control traffi c must be as tightly bounded as possible. In 
these networks the data traffi c is usually limited and the control traffi c should be reduced whenever 
possible to save bandwidth  and  energy. Using a fast probing mechanism as with many other routing 
protocols is just not an option, and ideally the control traffi c should decrease as the routing topology 
stabilizes. Nodes are constrained in nature, which implies that the routing protocol should not require 
heavy state maintenance. 

 Bearing   in mind the lossy nature of links in LLN helps understand the RPL design choices made 
during the specifi cation design. 

 RPL   is a distance vector protocol that builds a DODAG where paths are constructed from each 
node in the network to the DODAG root (typically a sink or an LBR). There are a number of reasons 
why it was decided to use a distance vector routing protocol as opposed to a link state protocol. The 
main reason was the constrained nature of the nodes in LLNs. Link state routing protocols are more 
powerful (the detailed topology is known by all nodes) but require a signifi cant amount of resources 
such as memory (Link State Database; LSDB) and control traffi c to synchronize the LSDBs. An 
example of DODAG is shown in  Figure 17.2 . Various procedures described in Section 17.6.2   govern 
how the DODAG is constructed and how nodes attach to each other according to an OF. In contrast 
with tree topologies, DODAGs offer redundant paths, which is a MUST requirement for LLNs. Thus 
if the topology permits, RPL may provision more than one path between a node and the DODAG root 
and even other nodes in the network. 

 Before   digging into the protocol specifi cation, a high-level overview of the protocol is in order. 
First, one or more nodes are confi gured as DODAG roots by the network administrator. A node dis-
covery mechanism based on newly defi ned ICMPv6 messages is used by RPL to build the DODAG. 
RPL defi nes two new ICMPv6 messages called DODAG information object (DIO) messages and des-
tination advertisement object (DAO) messages. DIO messages (simply referred to as DIO) are sent 
by nodes to advertise information about the DODAG, such as the DODAGID, the OF, DODAG rank 
(detailed in the next section), the DODAGSequenceNumber, along with other DODAG parameters 
such as a set of path metrics and constraints discussed in the previous section. When a node discovers 
multiple DODAG neighbors (that could become parents or sibling), it makes use of various rules to 
decide whether (and where) to join the DODAG. This allows the construction of the DODAG as nodes 
join. Once a node has joined a DODAG, it has a route toward the DODAG root (which may be a 
default route) in support of the MP2P traffi c from the leaves to the DODAG root (in the up direction). 
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  RPL   uses  “ up ”  and  “ down ”  directions terminology. The up direction is from a leaf toward the 
DODAG root, whereas down refers to the opposite direction. The usual terminology of parents/chil-
dren is used. RPL also introduces the  “ sibling ” ; two nodes are siblings if they have the same rank 
in the DODAG (note that they may or may not have a common parent). The parent of a node in the 
DODAG is the immediate successor within the DODAG in the up direction, whereas a DODAG sib-
ling refers to a node at the same rank. Back to the example in  Figure 17.2 , 13 is a parent of 24, 22, 
and 23 are siblings, and 43 and 44 are children of 33. A DODAG is said to be grounded if it is con-
nected to what RPL calls a  “ goal, ”  which can be a node connected to an external (non-LLN) private 
IP network or the public Internet. A non-grounded DODAG is called a fl oating DODAG. 

 RPL   uses iterations controlled by the DODAG root to maintain the DODAG; the DODAGSe-
q uenceNumber is a counter incremented by the DODAG root to specify the iteration number of the 
DODAG  . 

 A   mechanism is now needed to provide routing information in the down direction (for the traf-
fi c from the route to the leaf) and for the P2P direction since the DODAG provides defaults routes 
to the DODAG root from each node in the network. For this mechanism, RPL has defi ned another 
ICMPv6 message called the DAO message. DAO messages (simply referred to as DAO) are used 
to advertise prefi x reachability toward the leaves. DAOs carry prefi x information along with a life-
time (to determine the freshness of the destination advertisement) and depth or path cost informa-
tion to determine how far the destination is. Note that the path in this direction is dictated by the 
DODAG built by RPL in the other direction. In some cases DAOs may also record the set of vis-
ited nodes. This is particularly useful when the intermediate nodes cannot store any routing states, 
which is discussed later in Section 17.6.6  . If a parent receives destination advertisements that can 
be aggregated from multiple children, local policy may be used to perform prefi x aggregation in 
an attempt to reduce routing table and the size of DAO messages. Note that redundant DAO mes-
sages are aggregated along the DODAG. An OF may be specifi cally designed to maximize prefi x 
aggregation. 

 What   about P2P traffi c? RPL supports P2P traffi c. When node A sends a packet destined to node 
B, if B is not in direct reach, it forwards the packet to its DODAG parent. From there, if the destina-
tion is reachable from one of its children, the packet is forwarded in the down direction. In other 
words, the packet travels up to a common ancestor at which point it is forwarded in the down direc-
tion toward the destination. An interesting optimization periodically emits link-local multicast IPv6 
DAOs. Thus if the destination is in direct range (one hop away), a node can send the packet directly 
to the destination without following the DODAG. The degree of optimality for P2P traffi c is dis-
cussed in Section 17.6.10. 

 Sending   DIO and DAO messages is governed by the use of trickle timers. The trickle timers use 
dynamic timers that govern the sending of RPL control messages in an attempt to reduce redun-
dant messages as discussed in detail later in Section 17.6.10  . When the DODAG is unstable (e.g., 
the DODAG is being rebuilt) RPL control messages are sent more frequently (the DODAG becomes 
inconsistent). On the other hand, as the DODAG stabilizes messages are sent less often to reduce the 
control plane overhead, which is very important in LLNs. 

 Once   the DODAG is built and routing tables are populated, routing is fully operational. As links 
and nodes fail, paths are repaired using local and global repair mechanisms. Local repairs quickly fi nd 
a backup path without an attempt to globally reoptimize the DODAG entirely, whereas global repairs 
rely on a reoptimization process driven by the DODAG root. 
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  RPL   also supports the concept of DODAG instances identifi ed by an Instance ID called the 
RPLInstanceID. It might be useful to form different topologies according to various sets of con-
straints and OFs. An RPL node may join multiple DODAG instances; for example, one DODAG 
optimizes for high reliability and another DODAG optimizes for low latency. Data packets are then 
forwarded along the appropriate DODAG according to the application requirements.  

    17.6.2       Use of Multiple DODAG and the Concept of RPL Instance 
 As   previously discussed, a DODAG is a set of vertices connected by directed edges with no directed 
cycles. As shown in  Figure 17.2 , RPL builds DODAGs forming a set of paths from each leaf to the 
DODAG root (typically an LBR). In contrast with tree topologies, DODAGs offer redundant paths, 
a MUST requirement for LLNs. Thus if the topology permits, there is always more than one path 
between a leaf and the DODAG root. 

 The   notion of DODAG instance is quite straightforward and similar to the concept of multi-
topology routing (MTR) supported by other routing protocols such as OSPF and IS-IS. The idea is 
to support the construction of multiple DODAGs over a given physical topology. Why more than 
one DODAG? This is done to steer traffi c to different paths optimized according to the requirements. 
Consider the case of a physical network made of a series of links with different qualities (e.g., reliabil-
ity, throughput, latency) and nodes with different attributes (e.g., battery-powered vs. main-powered). 
If the network carries traffi c with different QoS requirements, it might be useful to build one DODAG 
optimized for low latency and another DODAG optimized to provide high reliability while avoiding 
battery-operated nodes. In this case, RPL can build two DODAGs according to two different OFs.  If a 
node carries both types of traffi c it may then decide to join both DODAGs (DODAG instance).  When 
a delay-sensitive packet must be sent along the DODAG, it is fl agged (in the packet header) with the 
appropriate DODAG instance and forwarded along the appropriate DODAG. This decision is made 
by the application. 

    Figure 17.3    shows how two DODAGs are built from a given physical topology. DODAG 1 
(instance 1) is built to optimize the path reliability while avoiding battery-operated nodes, whereas 
DODAG 2 (instance 2) is optimizing the latency. Depending on the sequence event, RPL may not 
compute the exact same routing topology. Also note that only preferred parents are depicted on the 
picture along with siblings. 

 A   destination-oriented DODAG (DODODAG) is a DODAG rooted at a single destination. Within 
an instance, the LLN routing topology can be partitioned among multiple DODAGs for a number of 
reasons such as providing a greater scalability.  Figure 17.4    shows multiple DODAGs in a specifi c 
DODAG instance. 

 A   node can only join a single DODODAG within a DODAG instance. 
 A   DODAG is identifi ed by its instance (RPLInstanceID). A DODAG is uniquely identifi ed by 

the combination of the DODAG instances (RPLInstanceID) and the DODAGID (the identifi er of the 
DODAG that must be unique within the scope of a DODAG instance in the LLN). A DODAG itera-
tion is uniquely identifi ed by the tuple  { RPLInstanceID, DODAGID, DODAGSequenceNumber } .  

    17.6.3       RPL Messages 
 A   good way to gain further insight into a protocol after a protocol overview is to look at the proto-
col packet formats. RPL specifi es three messages (using the same ICMPv6 codepoint): the DODAG 
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 Information Object (DIO), the DODAG Destination Advertisement Object (DAO), and the DODAG 
information solicitation message (DIS). 

    17.6.3.1       DIO Messages 
 DIO   messages are sent by RPL nodes to advertise a DODAG and its characteristics, thus DIOs are 
used for DODAG discovery, formation, and maintenance. DIOs carry a set of mandatory information 
augmented with options. 

 The   DIO base option is mandatory and may carry several suboptions. The following fl ags and 
fi elds are currently defi ned: 

      ●      Grounded (G): Indicates whether the DODAG is grounded, in other words, the DODAG root is a 
goal for the OF (e.g., the DODAG root is connected to a non-LLN IP network such as a private 
network or the public Internet).  

      ●      Destination Advertisement Trigger (T): The T bit is used to trigger a complete refresh of the 
routes in the down direction (downward routes).  
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      ●       Destination Advertisement Stored (S): The S bit is used to indicate that a non-root ancestor is stor-
ing routing table entries learned from DAO messages.  

      ●      Destination advertisement supported (A fl ag): The A fl ag is set when the DODAG root supports 
the collection of prefi x advertisements and enables the advertisement of prefi xes in the DODAG.  

      ●      DODAGPreference (Prf): The Prf is a 3-bit fi eld set by the DODAG root to report its preference. 
It can be used to engineer the network and make some DODAGs more attractive to join.    

 The   DODAGSequenceNumber is the sequence number of the DODAG that characterizes the 
DODAG iteration and is exclusively controlled by the DODAG root. 

 The   RPLInstanceID is used to identify the DODAG instance and is provisioned at the DODAG 
root. 

 The   Destination Advertisement Trigger Sequence Number (DTSN) is an 8-bit integer set by the 
node sending the DIO. The DTSN is used by the procedure to maintain the downward routes as dis-
cussed in Section 17.6.6. 

 The   DODAGID is a 128-bit integer set by the DODAG root and that uniquely identifi es the 
DODAG. 

 The   DODAG Rank is the rank of the node sending the DIO message. 
 The   rank determines the relative position of a node in the DODAG and is used primarily for loop 

avoidance. The rank is computed according to the OF and is potentially subject to local node policy. 
The rank (although potentially derived from routing metrics) is not a metric. For example, a node that 
fi rst joins a DODAG may not select the node with the lowest rank as a parent (closer to the DODAG 
root) should there be an alternate node with a deeper rank advertising a path with a lower cost. Once 
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 the rank has been computed, the node cannot join a new parent with deeper rank for loop avoidance  
except under specifi c circumstances discussed in Section 17.6.7  . 

 When   two nodes have the same rank, the nodes are said to be siblings (they are located at a similar 
level of optimality in the DODAG). It is highly desirable to make the rank a coarse value to favor the 
use of siblings. A sibling is a node that has the same rank and is used to increase connectivity. If the 
OF chooses to use the path ETX as the rank, more than likely the nodes will all have a different rank 
and thus the probability of fi nding a sibling will be very low. A rounded ETX (a coarse-grained value 
derived from the ETX) helps to increase the probability of fi nding siblings. A   node may forward a 
packet to one of its siblings, if the link to its most preferred parent is not viable, at the risk of forming 
a loop (loop detection mechanisms can then be used to detect such a loop). 

    17.6.3.1.1       Use of the Rank for DODAG Parent Selection 
 If   Rank (A)      �      Rank (B), then node A is located in a more optimal location than node B and it is safe 
for B to select A as a DODAG parent with no risk of forming loops. 

 On   the other hand, if Rank(A)      �      Rank(B), it is not safe for B to select A as a parent (unless B 
joins the DODAG for the fi rst time) since A may be in B’s sub-DODAG. Selecting A as a parent 
would potentially form a routing loop. This may be allowed in a limited manner according to the 
max_depth rule explained in Section 17.6.7 to allow for local repair. 

 Note   that the rank is a monotonic scalar. The rank of a node is always higher than the rank of any 
of its parents. 

 The   rank is a 16-bit value used for the number of purposes described in detail in this chapter. At the 
time of writing, [256] suggests to consider the rank as a fi xed point number, where the position of the 
decimal point is determined by value advertised by the DODAG root called the MinHopRankIncrease. 
The MinHopRankIncrease represents the minimum amount that a rank can increase on each hop and is 
used to detect siblings. The integer portion of the rank is called fl oor (Rank/MinHopRankIncrease). 

    A node A has a rank less than the rank of a node B if fl oor (Rank(A)/MinHopRankIncrease) is 
less than fl oor (Rank(B)/MinHopRankIncrease).  
    A node A has a rank greater than the rank of a node B if fl oor (Rank(A)/MinHopRankIncrease) is 
greater than fl oor (Rank(B)/MinHopRankIncrease).  
    Two nodes A and B are siblings if: fl oor (Rank(A)/MinHopRankIncrease)  �  �  fl oor (Rank(B)/
MinHopRankIncrease). In other words, A and B are siblings if the integer portion of their rank is 
equal.  
    This can be better illustrated with an example. If MinHopRankIncrease is equal to, say, 2 5       �      32 
and the rank is equal to 953, then the integer portion of the rank is equal to int(953/32)      �      29. All 
the nodes with a rank between 928 and 959 will have the same integer part for their rank, so they 
will be siblings.  
    Note that this may still change but this would not affect how the notion of rank is used in [256].    

 The   DODAGID is a 128-bit integer that uniquely identifi es the DODAG and is set by the DODAG 
root. If the DODAG root uses an IPv6 address, the same IPv6 address must not be used by any other 
uncoordinated DODAG root within the LLN for the same DODAG instance. 

 Several   suboptions are defi ned for DIOs. One of the most important is the DODAG metric con-
tainer suboption used to report the path metrics described in the previous section. 

 A   second important suboption is the destination prefi x suboption used for prefi x advertisement in 
the down direction (thus to provision state to route a packet in the up direction) for prefi xes other than 
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 the default route. This may be useful to advertise prefi xes other than the default route. The prefi x is 
accompanied by a preference fi eld compliant with [59] and a prefi x lifetime. 

 The   third important suboption is the DODAG confi guration suboption used to advertise several 
DODAG confi guration parameters such as trickle timers. Sending of RPL messages is governed 
by trickle timers and a detailed description of the trickle algorithm can be found later in Section 
17.6.10  . To ensure consistency across the DODAG, the trickle timer’s confi guration is adver-
tised by the DODAG root. Since these timers are unlikely to change in the DODAG, a node may 
decide not to include the DODAG timer suboption in every DIO, except if the DIO is sent in reply 
to a DIS. The three parameters advertised in the DODAG timer confi guration suboption include 
DIOIntervalDoubling, DIOIntervalMin, and DIORedundancyConstant. These are discussed in detail 
in Section 17.6.9. Other DODAG parameters such as the DAGMaxRankIncrease used by the local 
repair mechanism (specifi ed in Section 17.6.7) and the MinHopRankIncrease are also advertised. 
Other parameters are likely to be added in further revisions of RPL to support additional features.   

    17.6.3.2       DAO Messages 
 DAO   messages are used to propagate destination information along the DODAG in the up direction 
to populate the routing tables of ancestor nodes in support of P2MP and P2P traffi c. The DAO mes-
sage includes the following information: 

      ●      DAO sequence: A counter incremented by the node owning the advertised prefi x each time a new 
DAO message is sent.  

      ●      RPLInstanceID: The topology instance ID as learned from the DIO.  
      ●      DAO rank: Corresponds to the rank of the node that owns the prefi x.  
      ●      DAO lifetime: It is expressed in seconds and corresponds to the prefi x lifetime.  
      ●      Route tag: 8-bit integer that can be used to tag  “ critical ”  routes. The priority could be used to 

indicate whether the route should be stored by the nodes with a lower rank (closer to the DODAG 
root), which could be useful if nodes have limited memory capacities and must be selective about 
which destination information to cache. Note that the size of that fi eld has been changed several 
times and is subject to further changes.  

      ●      Destination Prefi x: The Prefi x Length fi eld contains the number of valid leading bits in the prefi x.  
      ●      Reverse Route Stack: The RRS is discussed in detail in Section 17.6.6, and contains a number of 

RRCount (another fi eld of the DAO message) IPv6 addresses used in LLNs with nodes that can-
not store routing tables.     

    17.6.3.3       DIS Messages 
 DIS   messages are similar to the IPv6 router solicitation (RS) message, and used to discover DODAGs 
in the neighborhood and solicit DIOs from RPL nodes in the neighborhood. A DIS has no additional 
message body.   

    17.6.4       RPL DODAG Building Process 
 In   this section, the DODAG building mode of operation for RPL is discussed. The DODAG for-
mation is governed by several rules: the RPL rules used for loop avoidance (based on the DODAG 
ranks), the advertised OF, the advertised path metrics, and the policies of the confi gured nodes. 
A node may be part of several DODAG instances, and within a DODAG instance there may be sev-
eral DODAGs rooted by different nodes. 



268 CHAPTER 17 RPL Routing in Smart Object Networks

  DIO   messages are sent upon the expiration of the trickle timer (see Section 17.6.10 for more 
details). The basic idea is to send DIOs more frequently when a DODAG inconsistency is detected 
(e.g., when the node receives a modifi ed DIO with new DODAG parameters such as a new OF, 
new DODAGSequenceNumber, or the parent advertises a new DODAG Rank, etc.), a loop is de t-
ected (e.g., the node receives a packet from a child that is intended to move down along the same 
child according to its routing table), or the node joins a DODAG with a new DODAGID or has 
moved within a DODAG. When a DODAG inconsistency is detected the node resets its trickle timer 
to cause the advertisement of DIO messages more often. As the DODAG stabilizes and no inconsis-
tency is detected, DIO messages are sent less frequently to limit the control traffi c. 

 When   a node starts its initialization process it may decide to remain silent until it hears a DIO 
advertising an existing DODAG. Alternatively, the node may issue a DIS message to probe the neigh-
borhood and receive DIO messages from its neighbors more quickly. Another option is to start its 
own fl oating DODAG and to begin multicasting DIO messages for its own fl oating DODAG (note 
that this may be desired if it is required to establish and maintain inner connectivity between a set 
of nodes in the absence of a goal/grounded DODAG). Unicast DIOs are sent in reply to unicast DIS 
messages and also include a complete set of DODAG confi guration options. 

 The   G-bit is only set if the DODAG root is a goal. If the advertising node is the DODAG root, the 
rank is equal to the RPL variable called the ROOT_RANK (equal to 1). 

 Upon   receiving a DIO message, a node must fi rst determine whether or not the DIO message 
should be processed. If the DIO message is malformed, it is silently discarded. If not, the node must 
then determine whether the DIO was sent by a candidate neighbor. The notion of a candidate neigh-
bor is tightly coupled with the notion of local confi dence, and that important notion is implementation 
specifi c and used to determine if a node is eligible for parent selection. For example, when a node 
fi rst hears about a neighbor it may choose to wait for a period of time to make sure that the connect-
ing link is suffi ciently reliable. 

 Then   the node determines whether the DIO is related to a DODAG it is already a member of. 
 If   the rank of the node advertising the DIO is less than the node’s rank plus some RPL confi gu-

rable value called the DAGMaxRankIncrease, then the DIO is processed. This rule is called the max_
depth rule and is explained in detail in Section 17.6.7  . 

 If   the DIO message is sent by a node with a lesser rank and the DIO message advertises a (different) 
DODAG that provides a better path according to the OF, then the DIO message must be processed. 

 The   DIO must also be processed if it is originated by a DODAG parent for a different DODAG 
than the node belongs to since the DODAG parent may have jumped to another DODAG. 

 A   collision may occur if two nodes simultaneously send DIOs to each other and decide to join 
each other. This is why DIO messages received during the risk window are simply not processed. 
Because of the random effect of the trickle timers, it is expected that the next DIO messages are not 
likely to collide again. 

 For   the DODAG root operation on the DODAGSequenceNumber the DODAGSequenceNumber 
is only incremented by the DODAG root. It may be incremented upon the expiration of a confi gurable 
timer, upon a manual command on the DODAG root, or upon the reception of a signal from down-
stream (yet to be determined by the RPL specifi cation). A node may safely attach to a parent regard-
less of the advertised rank if the parent in the next DODAG iteration (the DODAGSequenceNumber 
is higher than the node’s current one) since that parent cannot possibly belong to the sub-DODAG of 
that node. This is further discussed in Section 17.6.8. 
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    17.6.4.1        A Step-by-step Example 
 The   DODAG building process is illustrated by  Figure 17.5   , which shows the physical network topol-
ogy and how the DODAG is built. The link metric is the ETX and the OF fi nds the path minimizing 
the path ETX where the path ETX is defi ned as the sum of the ETX for all traversed links. The OF 
specifi es an additional constraint of avoiding battery-operated nodes and the rank is based on the hop 
count. Note that the OF could have been different; for example, it could have been computed as a 
function of the ETX (e.g., Rank      �      int(ETX*10)/10). 

    Step 1: The DODAG root starts sending link-local multicast DIO messages. This is one possi-
ble event sequence. One of the nodes could also decide to send a DIS message, in which case 
the DODAG root (LBR) would immediately send the DIO in reply to the DIS message.  
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 FIGURE 17.5  
       Example of DODAG formation.    
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     Step 2: Nodes 11, 12, and 13 receive the LBR DIO. Upon processing the DIO (which comes from 
a lower ranked node thus a lower rank value), nodes 11, 12, and 13 select LBR as their DODAG 
parent (note that nodes 12 and 13 may have waited for some period of time to build enough local 
confi dence). At this point, nodes 11, 12, and 13 compute their new rank based on the hop count 
and the path ETX value is computed. Node 11 also selects node 12 as a sibling and vice versa 
(same rank).  
    Step 3: Shows the resulting DODAG after another round of iteration. Note that link 22-11 has 
been pruned from the DODAG since node 12 is a better parent considering the OF (minimize the 
path ETX). Node 23 has selected two parents offering equal cost paths (ETX      �      3.3).  
    Step 4: Shows the fi nal DODAG. Node 46 has not selected node 35 as a best parent since the OF 
specifi es the constraint of not traversing a battery-operated node. Local policy may be used to 
indicate whether constraints also apply to siblings (in this example, node 34 did select node 35 as 
a sibling). A potential sibling loop 33-34-35-33 has formed (discussed in Section 17.6.7)  .    

 The   shape of the resulting DODAG depends on the event sequence ordering.   

    17.6.5       Movements of a Node Within and Between DODAGs 
 There   are a few fundamental rules that govern movements within a DODAG: 

    1.     A node is free to jump to any position in any other DODODAG that has not been previously vis-
ited at any time. For example, a node may decide to select a new node as a parent that belongs 
to a new DODAG regardless of the rank. The new DODAG may be the same DODAG (same 
DODAGID, same RPLInstanceID) but with a higher DAGSequenceNumber or it may be a dif-
ferent DODAG (different DODAGID and/or different RPLInstanceID). It is recommended to 
jump to another DODAG only when all queued packets have been transmitted along the previ-
ous DODAG. Jumping back to a previous DODAG is similar to moving inside a DODAG. This 
is why a node should remember its DODAG identifi ed by the RPLInstanceID, DODAGID, and 
DODAGSequenceNumber along with its rank within that DODAG. Jumping (moving) back 
should then honor the rules of the previous position so as not to potentially create a loop (max_
depth rule).  

    2.     A node may advertise a lower rank at any time when it has jumped to another DODAG.  
    3.     Within a DODODAG iteration a node must not advertise a rank deeper than L   �   DAGMax-

RankIncrease where L is the lowest rank. The DAGMaxRankIncrease is an RPL variable adver-
tised by the DODAG root, and a value of 0 has the effect of disabling this rule. There is one 
exception to this rule; the poison-and-wait rule where the node advertises an infi nite rank that is 
described right after. The reasons for this rule are further discussed in Section 17.6.7.    

 When   a node prepares to move to a new DODAG iteration it may decide to defer the movement 
to see if it could join another node with a better path (even if the rank is higher) cost according to 
the OF. 

 It   is perfectly safe for a node to move up in the DODAG and select new parents with a lower rank 
than its current parents’ rank. In this case, the node must abandon all prior parents and siblings that 
have now become deeper than the node in the DODAG and potentially select new ones. 

 If   a node wants to move down in its DODODAG causing the rank to increase, it may use the 
poison-and-wait rule discussed in Section 17.6.7. 
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  What   if a node receives a DIO message specifying an OF that it does not support or recognize? 
The two options are either not to join the DODAG or to join as a leaf. Such a node may not join as a 
router since the node would then be incapable of propagating an appropriate metric, which may lead 
to a DODAG using an inconsistent metric. Thus when a node joins as a leaf node, it can receive and 
process DIO messages and send DAO messages. But it should not send DIO messages and thus can-
not act as an RPL router.  

    17.6.6       Populating the Routing Tables Along the DODAG Using DAO Messages 
 As   the DODAG is being built, the next task is populating the routing tables along the DODAG in 
support of the down traffi c (toward the leaves). DAO messages are used to propagate prefi x reach-
ability along the DODAG. 

 DAO   operation is still being discussed within the IETF ROLL Working Group. More than likely 
several changes will take place and the mechanisms described in this section refl ect the DAO mode of 
operation at the time of writing: the reference should be the fi nal RFC for RPL. 

 A   sequence number is included to detect the freshness of the information and outdated or duplicate 
messages are simply discarded. The sequence number is incremented by the node that owns the prefi x. 
A node sends unicast DAO to its preferred parent only (note that this is the option taken by RPL at the 
time of writing; further revisions of RPL may suggest sending the DAO messages to a set of parents, 
which would require extensions to the DAO message propagation rules). Allowing for sending DAO 
messages to more than one parent would enable load balancing in the down direction of the DODAG. 

 The   DAO message contains the rank of the node owning the advertised prefi x. That rank may be 
used by a node who received multiple DAO from different children for the same destination prefi x as 
a selection criteria to select the next-hop that provides the more optimal route, although the rank may 
not refl ect the actual path cost to the advertising node. RPL also supports the inclusion of the DAG 
Metric Container in DAO messages to provide the path cost. 

 Note   that RPL supports the ability to prune a route by sending a prefi x with a lifetime set to 0. 
This is also called a  “ no-DAO ”  message. 

    17.6.6.1       Use of the Reverse Route Stack in DAO Message 
 Some   nodes in the network may have signifi cant constraints regarding memory and may be incapable 
of storing routing entries for downward routes. Although not an issue in support of the MP2P traf-
fi c, such nodes cannot store routing states upon receiving DAO messages from their children and, 
consequently, the P2MP traffi c or P2P traffi c cannot be routed to the destination leaf. Thus RPL has 
specifi ed extensions to accommodate this type of node (also called non-storing nodes) in LLNs. The 
mechanism records paths traversing memory-less nodes when forwarding the DAO. Let’s consider 
 Figure 17.6    where nodes 22 and 32 cannot store any routing updates. P1 and P2 are two IPv6 prefi xes 
owned by nodes 42 and 43, respectively, and advertised to node 32 by means of DAO. Upon receiv-
ing the unicast DAO message, node 32 appends the IPv6 prefi x of node 42 to the reverse route stack 
of the received DAO. Upon receiving the DAO from node 32, node 22 (which is also memory-less) 
performs a similar operation and appends the IPv6 address of node 32. Each time, the RRCount coun-
ter is incremented. Once the DAO message reaches a node capable of storing routing states (node 12), 
the node detects that the DAO has traversed a region with nodes incapable of storing routing states by 
observing the presence of the reverse route stack in the DAO. Then node 12 simply extracts the set of 
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 hops associated with the advertised prefi x, stores them locally in its routing table, and then clears the 
reverse stack header and the RRCount counter. Upon receiving a packet destined to, say, prefi x P1, 
node 12 consults in the routing table and makes use of source routing to send the packet to node 42. 
This allows reaching the fi nal destination with intermediate nodes incapable of storing states. This 
mechanism can be generalized to a network exclusively made of memory-less nodes thus leading to a 
situation where all node-to-node communication would transit via the DODAG root. 

 Thus   DAO message can be used to propagate reachability information and also to record routes 
for regions comprising non-storing nodes. These two mechanisms could also be decoupled. 

 The   source routing mechanisms used by RPL have not yet been defi ned. They could be based on 
IPv6 source routing, which would require a new extended header (potentially with compressed IPv6 
addresses) or labels. Furthermore, the mechanism described here is subject to change and RPL may 
evolve to not allow for the mix of storing and non storing nodes in the same network in an attempt to 
simplify the specifi cation.  

    17.6.6.2       Routing Table Maintenance 
 If   a node loses routing adjacency with a child for which it has an associated prefi x, it should clean up 
the corresponding routing entry and report the lost route to it parents by sending a no-DAO message 
for the corresponding entry. 

 Prefi xes   may be in three different states: (1) connected (prefi x locally owned by the node), (2) 
reachable (prefi x with a non-0 lifetime received from a child), and (3) unreachable (prefi x that has 
timed out for which a no-DAO message will be sent to the parent the node had previously advertised 
that prefi x to). 
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nodes 22, 32 and 42 for 
prefixes P1 and 22, 32 and 
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 FIGURE 17.6  
       Use of reverse route stack in DAO message.    
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  Two   timers have been specifi ed for the processing of DAO messages: 

      ●      DelayDAO timer: This timer is armed each time there is a trigger to send a new DAO message 
(e.g., reception of a DIO message that requests to receive new DAO messages). At the time 
of writing, the DelayDAO timer is set to a random value between [DEF_DAO-LATENCY/
Rank(Node)] and [DEF_DAO_LATENCY/Rank (parent’s node)] for nodes deeper in the DODAG 
to advertise their prefi xes fi rst. By attempting to order the sequencing of DAO, the chances to 
aggregate prefi xes along the DODAG in an attempt to reduce the number of DAO messages and 
routing table size increase.  

      ●      RemoveTimer: This timer is used to remove stale prefi xes that are no longer advertised by nodes 
in the sub-DODAG. There is a mechanism that allows a node to request DAO to be sent to refresh 
the states. In the absence of replies after n requests, the timer is started and upon its expiration 
routes are removed in the absence of DAO advertising these routes. The node then also informs 
its own parent with a no-DAO.    

 One   event that triggers the sending of a DAO message (or more precisely arming the DelayDAO 
timer) is the reception of a new DIO message from a parent. 

 All   routes learned through DAO messages are removed if the corresponding interface or the rout-
ing adjacency for these prefi xes is determined as down. 

 DAOs   are sent as unicast messages to DODAG parents, but they can also be sent to the link-local 
scope all-nodes multicast address (FF02::1). In the case of multicast messages, the node only adver-
tises its own local prefi xes, and these prefi xes can also be advertised by a node to its DODAG parent 
using a unicast DAO. A node is not allowed to advertise prefi xes learned from one of its children 
using multicast DAO. The main purpose of multicast DAO is to help with the  “ one-hop ”  P2P traffi c 
between two nodes that can communicate directly with each other even when the link does not belong 
to the DODAG. 

 As   illustrated in  Figure 17.7   , a multicast DAO is received by the node from node 23 advertising 
prefi x P1. Thus if a packet received or originated by node 32 is destined to prefi x P1, it is sent directly 
to node 23 without having to follow the DODAG. In the absence of multicast DAO, such a packet 
would fi rst be sent to the parent of node 32 (node 22), which would relay the packet to its parent 
(node 12). At this point, node 12 would have P1 in its routing table due to the DAO message received 
from its child, node 23. Thus the path would have been 32-22-12-23. 

 In   its current form there is exactly one prefi x per DAO message. But as prefi xes travel along the 
DODAG, a node can factor out some of their common attributes. For example, prefi xes advertised 
at the same rank could be packed in the same DAO message with a unique rank without needing to 
repeat the same rank for each prefi x. The same reasoning applies to many other prefi x attributes. Thus 
by packing prefi xes into the same message and factoring out their common attributes, the control traf-
fi c overhead is reduced and wasting bandwidth is avoided. More than likely DAO packing will be 
added to the RPL specifi cation.   

    17.6.7       Loop Avoidance and Loop Detection Mechanisms in RPL 
 Routing   loops are always undesirable and one of the objectives of routing protocols is to avoid the 
formation of loops whenever possible. 
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  In   high-speed networks, the packet TTL is decremented at each hop so a looping packet is quickly 
destroyed even if the loop has a short duration. Even with link state routing protocols such as OSPF 
and IS-IS, temporary loops (often called micro-loop due to their limited lifetime) may form during 
network topology changes due to the temporary lack of synchronization of the node’s LSDB. At high 
data rates, even a short duration loop can lead to packet drops and link congestion. Various mecha-
nisms have been proposed to avoid such loops. 

 In   LLNs, the situation is somewhat different. First the traffi c rate is generally very low, thus a 
temporary loop may have a very limited impact. Second, it is extremely important not to overreact 
in the presence of instability. In contrast with  “ traditional ”  IP networks where fast reaction (recon-
vergence) is very important, it is crucial not to react too quickly in LLNs. Thus loops may exist; 
they must be avoided whenever possible and detected when they occur. RPL does not fundamentally 
guarantee the absence of temporary loops, which would imply expensive mechanisms for the control 
plane and may not be appropriate to lossy and unstable environments. RPL instead tries to avoid 
loops by using a loop detection mechanism via data path validation. 

    17.6.7.1       Loop Avoidance 
 One   of the RPL’s rules, the max_depth rule, states that a node is not allowed to select as a parent a 
node with a rank higher than the node’s rank   �   DAGMaxRankIncrease. Let’s explain why this rule 
exists by considering the network depicted in  Figure 17.5 . 

 The   fi rst reason is simply to reduce the risk of a node attaching to another node that belongs to 
its own sub-DODAG, thus leading to a loop that may require counting to infi nity. For example, in 
 Figure 17.5  if node 24 loses all of its parents and decides to select node 46 as a parent, since the path 
to the root from node 46 is via node 24, a loop would form and node 24 has no way to learn that node 
46 actually belongs to its own sub-DODAG. As explained in Section 17.6.8, the max_depth rule does 
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 FIGURE 17.7  
       P2P routing in a DODAG with multicast DAO.    
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 not prevent loops from occurring, but it limits the loop sizes and allows the detection of such a loop 
without having to count to infi nity. 

 Another   RPL rule requires that the rank to increase the set of feasible parents should not be 
increased to avoid a  “ greediness ”  effect. Consider again  Figure 17.5 . Suppose that nodes 22 and 23 are 
both at rank 3, share a common parent (node 12), and there is a viable link between them (nodes 22 and 
23 are siblings). Suppose that both nodes 22 and 23 try to increase their set of feasible successors to 
have alternate routes in case of link failure with their preferred DODAG parent (e.g., by detaching and 
moving down in a controlled manner). Suppose that node 22 fi rst decides to select nodes 23 and 12 as 
DODAG parents (the new rank is now 4, the highest rank of both parents). Suppose now that node 23 
does not follow the RPL rule and processes the DIO from node 22 (which now has a deeper rank than 
node 23). Node 23 may then decide to select both nodes 12 and 22 as DODAG parents, thus increasing 
its rank to 5. Then node 22 may reiterate the process until counting to infi nity and restarting the process. 

 This   explains two fundamental loop avoidance rules of RPL (except in specifi c conditions such 
as attempts to perform a local repair as explained next): (1) a fi rst node is not allowed to select as 
a DODAG parent a neighboring node that is deeper in the DODAG than the fi rst node’s self 
rank � DAGMaxRankIncrease and (2) a node is not allowed to be greedy and attempt to move deeper 
in the DODAG to increase the selection of DODAG parents (possibly creating loops and instabil-
ity). Indeed, suppose that node 23 is now allowed to, and for some reason (temporary better metric) 
decides to, select node 43 as a DODAG parent. This leads to a loop  …  

 Still  , even with the loop avoidance mechanisms stated earlier, loops may take place in a num-
ber of circumstances within a DODAG. DODAG loops can take place when a DIO message is lost 
(examples are given in Section 17.6.8), but these are not the only type of RPL loops. DAO loops 
may occur when a node fails to inform its parents that a destination is no longer reachable. If the 
DAO message is lost, the parent may keep the route to that destination in its routing table. If the child 
wants to send a packet to that destination, the parent would send it back to the child thus leading to a 
loop. One proposal is to use acknowledgments for DAO messages, which would dramatically reduce 
the risk of DAO loops. Another possible type of loop is a sibling loop. Consider again  Figure 17.5 . In 
case of multiple failures of links toward the root (e.g., links 35-24, 34-24, and 33-23), a packet sent 
by node 35 to the LBR may very well loop (35-34-33-35) since siblings are by defi nition at the same 
rank. If one link fails (e.g., 35-24) and node 35 reroutes a packet destined to the root to node 34, the 
packet will then be forwarded to the root by node 34 with no loop, but in a multi-failure scenario like 
the one described above a sibling loop may form. In most cases routing protocols may experience 
similar issues during multiple failures and do not even try to solve the problem. 

 How   about loops between RPL DODAG instances? When a host sends a packet for a destination it 
also selects an RPL DODAG instance according to the path objectives. RPL states that once a packet 
is forwarded along an RPL instance (specifi ed by the RPLInstanceID in its header), it should not be 
rerouted along another DODAG instance even if the corresponding DODAG is  “ broken, ”  which is 
precisely to avoid such loops. RPL might be extended at some point to allow defaulting to a  “ wide ”  
connectivity DODAG with minimal constraints to increase the chance of at least one valid path to the 
root, in which case, it will be necessary to specify a rule to avoid loops between DODAG instances.  

    17.6.7.2       RPL Loop Detection Mechanism 
 In   the previous section we showed that routing loops are hardly avoidable, thus loop detection mech-
anisms must be available. The loop detection mechanism piggybacks routing control data in data 
packets by setting fl ags in the packet header (this is sometimes referred to as data path validation). 
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 The exact location where these fl ags are carried is not yet defi ned (e.g., fl ow label, existing, or even 
new IPv6 extended header). The idea is to set a fl ag in the packet header that is used to verify that the 
packet is making forward progress in order to detect loops, or to detect a DODAG inconsistency. 

 For   example, when a packet is rerouted to a sibling, a fl ag is set in the packet header to indicate 
that the packet has been forwarded to a sibling. When it reaches the next hop, if the packet has to be 
forwarded again to another sibling because there is no available link toward the root, then the packet 
is dropped. In its current revision, RPL allows for a one-hop sibling path (only 1 bit is used) since it 
is believed that in most cases a one-hop sibling will provide a viable path to the root but that a single 
bit could be extended to a counter. The idea is to limit the number of hops along a sibling path to 
avoid sibling loops. Similarly, DAO loops can be detected by using a  “ down ”  bit. When a packet is 
sent in the down direction, the bit is set. Upon receiving a packet with the  “ down ”  bit set, if the rout-
ing table of the node indicates to send it in the up direction, the DODAG is inconsistent (there may 
be a loop) and the packet may be discarded. Such inconsistency triggers the resetting of the DIO 
trickle timers. As further optimization, the child that has received the packet in error can send it back 
to the parent with an  “ error ”  bit set to trigger the cleanup of the route by the parent that will in turn 
send the packet again to another child or sibling. That process allows recursive routing table cleanup. 
The same mechanism could be used for other types of loop detection and routing table cleanup.   

    17.6.8       Global and Local Repair 
 Repair   mechanisms are key components of routing protocols. As the network topology changes 
because of link and node failures or link/node metric changes, it is imperative to dynamically update 
the routing decision to adapt to topological changes. To that end, various mechanisms have been 
defi ned to rebuild the DODAG upon network topology changes. The fi rst case to handle is  DODAG 
repair  when a network element (e.g., such as a link or a node) fails. RPL must then rebuild a new 
DODAG according to the new topology. Repairs must be handled with care in lossy environments to 
avoid rebuilding a DODAG upon a transient failure, since rebuilding a DODAG has a global impact 
on the network and nodes resources. Overreacting would potentially compromise routing stability. 

 RPL   specifi es two complementary repair mechanisms: a  global  and a  local  repair technique. There 
are many other routing protocols that use local repair strategies to quickly fi nd an alternate path (which 
may momentarily not be optimal) deferring the global repair of the entire topology. This is the approach 
taken by RPL: when a link is considered nonviable and an alternate path must be found (as opposed to 
being a transient failure that does not require any action), the node triggers a local repair to quickly 
fi nd an alternate path, even if the alternate path is not optimum (local optimum). Then in a second step, 
which may be deferred, the DODAG is rebuilt for all the nodes in the network (global optimum). 

      ●      Local repair: To quickly fi nd an alternate path when the most preferred path or all other alternate 
paths are no longer available with a minimal attempt to fi nd an optimal path.  

      ●      Max_depth rule: A node cannot advertise a rank less than or equal to any of its parents. It may 
advertise a rank lower than in a previous advertisement if the node has jumped in the DODAG to 
improve its position. The max_depth rule also states that within a DODAG iteration a node must 
not advertise a rank deeper than L � DAGMaxRankIncrease, where L is the lowest rank that the 
node has advertised within the DODAG iteration. Note that the DAGMaxRankIncrease is an RPL 
variable advertised by the DODAG root and a value of 0 has the effect of disabling this rule. There 
is one exception to this rule: the poison-and-wait rule where the node advertises an infi nite rank.    
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  Although   this has already been discussed, let’s re-explain why such as rule was introduced: one 
of the main risks when joining a parent is to be on the path of that node to the DODAG root (in other 
words, to attach to one of a children). Should that happen, a loop would be formed and the rank 
would then continuously increment until reaching the  “ infi nite ”  value for the rank at which point the 
nodes would detach from each other. This is also referred to as the  “ count-to-infi nity ”  problem that 
also exists in other distance vector routing protocols because with this type of routing protocol a node 
does not have global visibility of the network topology. Thus the idea is to introduce a mechanism 
that reduces the number of iterations of successive increments, in other words, avoid waiting to count 
until  “ infi nity. ”  A node triggering a local repair is allowed to choose as a parent a node whose rank is 
less than L � DAGMaxRankIncrease where L is the lowest rank value that has been advertised within 
the DODAG iteration. Once again, the DODAG root may decide to set the DAGMaxRankIncrease 
value to 0. If at some point the rank of the node exceeds L � DAGMaxRankIncrease, the rank is con-
sidered equal to infi nity and the loop is broken. This mechanism is illustrated using  Figure 17.8   . 
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 FIGURE 17.8  
       Illustration of the use of the DAGMaxRankIncrease value.    
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  Suppose   that the link between node 12 and the root fails and DAGMaxRankIncrease    �    5. In this 
example suppose that node 12 has a rank of 2. That means node 12 can join any node with a maxi-
mum rank of (rank_of_node 12)    �    5    �    7. This includes all nodes in the network (in this simple 
example). In the best case, node 12 selects a node that does not belong to its sub-DODAG and no 
loop is formed (e.g., if node 12 decides to join node 21). Let’s now suppose that node 12 attaches to 
a node in its sub-DODAG, say node 32 (note that the line between node 12 and 32 is oriented in the 
12-     � 32 direction). What happens next is that node 12 sends an updated DIO refl ecting its new rank 
5. Node 22 in turn updates its rank to 6, node 32 updates its rank to 7, and node 12 updates its rank 
to 8, which exceeds the maximum allowed value. At this point the loop will be broken and the node 
will detach. This illustrates how the use of the DAGMaxRankIncrease avoids counting to infi nity 
(0xFFFF)  . 

 In   addition, RPL has defi ned another mechanism known as  “ poisoning, ”  which is useful when 
performing local repair while trying to avoid loops. 

 The   poison-and-wait mechanism considers the situation of a node running out of parents after 
a network element failure. According to the local policy the node may simply decide to root a new 
 “ fl oating ”  DODAG (in this case the G-bit of the DIO must be cleared) after having set its rank to 1 
(it is the DODAG root) and the DODAGPreference (the node may decide to lower its preference). 
Alternatively, the node may decide to try to rejoin the DODAG by selecting a new parent. According 
to the RPL rules it cannot join a node if that makes its rank higher than L � DAGMaxRankIncrease in 
the DODAG iteration that it has left. Note that if the DAGMaxRankIncrease value is set to 0 by the 
DODAG root, the node cannot join any node that would increase its rank. The  “ poisoning ”  mecha-
nism sends a poisoning DIO message to all children to be removed as a parent and trigger a new par-
ent selection so the node is not an ancestor of any of the nodes in its sub-DODAG. This mechanism is 
illustrated in  Figure 17.9   . 

 Suppose   link 24-13 fails. Node 24 does not have any alternate parent or sibling. In this case, it 
resets its trickle timer to trigger the sending of a new DIO, and upon expiration of the trickle timer it 
sends a DIO with Rank      �      Infi nite (value      �      0xFFFF)  . As the new DIO travels in the sub-DODAG, 
nodes act to potentially select another parent. For example, node 36 becomes isolated, node 35 starts 
using node 23 as a new parent, so does node 34, etc. The end result is that the former children of node 
24 no longer use node 24 as an ancestor. Note that an implementation may choose to send multiple 
DIO poisoning messages should one of them get lost. After the expiration of a local timer (to give a 
better chance for all nodes in the sub-DODAG to change their next-hop decision), it becomes safe for 
node 24 to call the OF and select a new parent  regardless of its rank  as long as the max_depth rule is 
respected. The poisoning message may be lost resulting in attaching to a child, which may lead to a 
loop (but the max_depth rule would avoid counting to infi nity). Step 2 in  Figure 17.9  shows node 24 
then joining the DODAG via node 34 before advertising its new rank. 

        Although the poisoning node advertises an infi nite rank, it retains its original rank to be compli-
ant with the max_depth rule exposed earlier. 

 The   poisoning approach is not  “ guaranteed ” ; the poisoning DIO may be lost resulting in loop 
 formation that could be broken faster because of the max-depth rule without having to count to 
infi nity. 

 Global   repair is achieved by RPL when the DODAG root generates a new DODAGSequenceNumber. 
As the DIO messages are propagated down the DODAG, each node detects the new DODAG
SequenceNumber, the OF function is reevaluated, and nodes potentially select new parents. 
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  Note  : This allows bypassing the RPL rule that states a fi rst node must not process the DIO 
and select as a parent a second node that would result in the fi rst node increasing its rank above 
L � DAGMaxRankIncrease. If a node using the old DODAGSequenceNumber receives a DIO with a 
new DODAGSequenceNumber from a second node with a rank too high according to the max_depth 
rule, there is no risk that the second node lies in the sub-DODAG of the fi rst node, because the second 
node is in the new DODAG iteration and, consequently, there is no risk of loop. Thus the DODAG 
is recomputed entirely according to the OF creating an entirely new DODAG iteration. Such a global 
repair is not only used to effectively  “ repair ”  a DODAG but also to reoptimize it. Indeed, once a node 
has selected a parent, it continues to ignore DIO from other nodes in its current iteration resulting in 
an increase in its rank above L � DAGMaxRankIncrease. But what if one of these nodes effectively 
advertises a more optimal route according to the OF? That better path would then be ignored until a 
new DODAGSequenceNumber was originated by the DODAG root. Thus the global repair mecha-
nism is not only used to repair a DODAG but also to reoptimize it. 

 Global   repair rebuilds the DODAG. As such it is not only used as a repair mechanism but also a 
reoptimization technique for the DODAG. It requires extra cost regarding control traffi c and is driven 
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 FIGURE 17.9  
       Illustration of the Poison-And-Wait Approach.    
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 by the root. Mechanisms could be added to request the DODAG root to trigger the global repair. Still, 
local repair is useful since the effect is localized and may occur more rapidly. As with any distance 
vector protocol, the risk of reattaching anywhere in the DODAG is forming loops. Thus the max_
depth rule has been defi ned to limit the impact of forming loops, and to avoid counting to infi nity 
should a loop be formed. Additionally, RPL supports the poisoning mechanism triggered by a node 
with no parent to avoid any node in its sub-DODAG to use it as an ancestor. At this point it would be 
safe for the node to locally repair by joining any node regardless of its rank as long as the max_depth 
rule is honored for that DODAG iteration. Finally, the ability of forming a fl oating DODAG upon 
losing connectivity with parents, in an attempt to preserve inner connectivity between a set of nodes 
in the network, is supported by RPL.  

    17.6.9       Routing Adjacency with RPL 
 Routing   adjacency in RPL defi nitely deserves its own section. With routing protocols such as OSPF 
or IS-IS a routing adjacency between two neighbors is established once the neighbors have exchanged 
and agreed on various routing protocol parameters (e.g., protocol version, frequency of hellos, dead-
timers) and once the LSDBs have been synchronized. From that point, routing adjacencies are main-
tained thanks to the exchange of  “ hello ”  packets sent every X seconds (X being confi gurable). If no 
hello is received after n * X seconds (n confi gurable) then the routing adjacency is considered as 
down, which triggers a routing protocol convergence. The situation in LLNs is radically different 
since the exchange of  “ hellos ”  between nodes would drain energy from the nodes as well as poten-
tially cause congestion on limited bandwidth links in LLNs, which is highly undesirable when energy 
and bandwidth are scarce resources. 

 The   approach taken by RPL recommends using a probing technique based on IPv6 Neighbor 
Discovery (ND); namely sending IPv6 solicitations messages (see Chapter 15). The use of ND 
implies neighbor reachability verifi cation when data traffi c is to be sent. The routing adjacency is then 
considered valid upon receiving a neighbor advertisement message with the  “ solicited ”  fl ag set. Other 
probing techniques could also be used. Alternatively and/or additionally other types of active probing 
are used according to the network characteristics and design. 

 If   the most preferred parent is temporarily unavailable, then the node forwards the packet to an 
alternate parent (if available). In the absence of an alternate parent the node selects a sibling (if there 
is a sibling available). 

 Some   implementations may choose to use algorithms to keep track of the number of recorded 
failed probes within a specifi c time window. It is important not only to consider the percentage of 
failed probes but also the time period during which the percentage of failed probes has been calcul-
ated in the presence of lossy links. It is not rare for a failure to be transient, which should not dis-
qualify the parent. Thus an implementation should obverse the percentage of failed probes against 
the time frame. The reception of any message such as a DIO from a neighbor may be used as probes 
(failed or successful) if the link can be trusted to be symmetrical.  

    17.6.10       RPL Timer Management 
 Timer   management is an important component of any protocol and RPL is no exception. The DIO 
timers used by RPL rely on the trickle algorithm proposed by [160], and other RPL timers may 
use the same algorithm in the future. Most routing protocols send keepalives to maintain routing 
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 adjacency and any other control packets necessary to update their routing tables without explicitly 
trying to limit the control protocol overhead. This is done because the required bandwidth is negligi-
ble compared to the data traffi c in  “ classic ”  IP networks. But such an approach would be problematic 
in LLNs where links are unstable and network resources are scarce. The issue is that limiting the con-
trol traffi c also impacts the ability to maintain synchronization, the ability to quickly react to network 
changes, and so forth. 

 The   trickle algorithm uses an adaptive mechanism to control the sending rates of control plane 
traffi c such that nodes hear just enough packets to stay consistent under various circumstances. In 
the presence of change nodes send protocol control packets more often and control traffi c rates are 
reduced when the network stabilizes. The trickle algorithm does not require complex code and states 
in the network. This is an important property considering the constrained resources on the nodes 
(some implementations only require 4 – 7 bytes of RAM for state maintenance). 

 RPL   treats the DODAG construction as a consistency problem and makes use of trickle timers to 
decide when to multicast DIO messages. When an inconsistency is detected RPL messages are sent 
more often, and then as the network stabilizes RPL messages are sent less often. 

 Trickle   behavior is controlled by several parameters: 

      ●      I: Current length of the communication interval.  
      ●      T: Timer value; T is in the range [I, I/2].  
      ●      C: Redundancy counter.  
      ●      K: Redundancy constant (learned from the DODAG root).  
      ●      I min : Smallest value of I learned via the DIO message. I min       �      2 DIOIntervalMin  ms where 

DIOIntervalMin is advertised by the DODAG root in DIO messages.  
      ●      I doubling : The number of times I may be doubled before maintaining a constant multicast rate. 

I doubling  is advertised as DIOIntervalDoubling by the DODAG root in DIO messages.  
      ●      I max : Largest value of I max       �      I min  * 2  Idoubling .    

 In   RPL trickle a node sets the trickle variable I min  and I doubling  to the original values learned 
from the DIO messages, C      �      0, I      �      I min , and a random value is chosen for T in the range [I/2,I]. 
Each time a node receives a consistent DIO message from a DODAG parent, the C counter is 
incremented. When the timer expires, C is compared to the RPL constant (K      �      DEFAULT_DIO_
REDUNDANCY_CONSTANT) to decide whether or not to multicast a DIO message. When the 
communication interval I expires, I is doubled, the C counter is reset, and a new value of T is chosen 
until I reaches the maximum value of I max . The RPL specifi cation explicitly states that the variable C 
may not be incremented. Indeed in some cases it may be benefi cial not to increment C to avoid the 
suppression of some RPL control messages (this aspect is still under consideration). 

 When   is the RPL trickle timer reset? The trickle timer has to be reset each time a DODAG incon-
sistency is detected to increase the frequency at which DIO messages are sent to quickly update 
the DODAG: when a new node joins the DODAG, when it receives a multicast DIS message from 
another node, when the node moves within a DODAG, when a node receives a modifi ed DIO mes-
sage from a DODAG parent refl ecting some changes in the DODAG, when a potential loop is 
detected (e.g., a DODAG parent receives a packet that it would have forwarded inward), when the 
rank of a DODAG parent has changed, and so forth. 

 By   tuning the values of I min  and I max  it becomes possible to achieve some trade-off between 
the need for consistent DODAG, speed to propagate changes, and the protocol overhead. Some 
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 simulations indicate that by setting I min  and I max  to a few dozen milliseconds and 1 hour, respectively, 
the control traffi c could be reduced to up to 75% compared to a fi x beacon value of 30       s. Knowing 
this, applicability statement documents combined with the specifi cs of the network where RPL is 
deployed should provide further guidance. For example, in some cases it may not be advantageous to 
set the I min  value too small (e.g., with low power MAC layers) to avoid simultaneous sending of DIO 
messages. The expected effect of using the trickle algorithm on control traffi c is shown via simulation 
in the next section.  

    17.6.11       Simulation Results 
 Although   only real-life deployments provide actual data on the effi ciency of a protocol, there are a 
number of tools that a protocol designer can use during the design process, and simulation is undoubt-
edly one of the most useful. Although simulators are not  “ formal ”  mathematical proofs, they do pro-
vide useful data and help improve the level of confi dence on the design choices. Furthermore, in most 
cases, there is no mathematical model that can be used to simulate the level of complexity of the pro-
tocol and real-life conditions. 

 During   the design process of RPL, a number of simulations were performed. [239]   is 
undoubtedly one of the major contributions in this area. A discrete event simulator has been devel-
oped based on OMNET �  �  [254] and the Castalia module for Wireless Sensor Networks within 
OMNET �  � . 

 One   of the major challenges when developing a smart object network simulator is model link 
behavior. With lossy links such as low-power wireless links or PLC links, none of the mathematical 
models such as Markov Chains are applicable. Thus the approach taken in [239] uses real-life link 
traces as input to get high-fi delity results representative of real networks. Hundreds of link traces 
were gathered to build a link failure model database for both indoor and outdoor low-power lossy 
links. Each trace provided the PDR at different times. For some links, the received signal strength 
indication (RSSI) was available and due to the correlation between the RSSI and the PDR [254], it 
was possible to derive the PDR from the RSSI. 

 The   simulator reads a topology database and randomly selects real-life traces when simulating 
RPL, thus providing very useful results that can be trusted. When a packet is to be transmitted by a 
node, the PDR of the link is read from the database and the packet is dropped with a probability equal 
to 1-PDR (different random number generators are used for all links to avoid link correlation). 

 Several   networks have been simulated with consistent results and the results for one of them are 
provided in this section (the simulated network is depicted in  Figure 17.10   ). 

 Data   traffi c is  “ constant bit rate ”  with a confi gurable rate. In the simulation run, the constant data 
traffi c rate was set to 5 packets per second (a fairly high traffi c rate for LLNs, but the idea was to 
stress the network to exacerbate some protocol characteristics). 

 Link   failures are directly read from the link behavior database to which random failures were 
added according to an M/M/1 Markov Chain model (the interarrival times were set to a mean of 1 per 
hour). 

 In   these simulations, 25% of packets were destined to the root and 75% to other nodes. In most 
networks a good proportion of the traffi c is sent to the root or sink behind the root. In these simula-
tions we chose to have a fairly high proportion of P2P traffi c to study the effi ciency of P2P routing 
with RPL. 
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  The   objective was to observe RPL behavior in a number of conditions (steady state, high stress) 
regarding several metrics for a single DODAG instance computed using the network topology shown 
in  Figure 17.11   . The RPL metric is the ETX (as described earlier) and the OF consists of minimizing 
the ETX path cost. 

 Several   RPL characteristics were studied: control traffi c, routing table size, path effi ciency, and 
failure handling. 

    17.6.11.1       Control Traffi c 
 In    “ classic ”  IP networks, the control traffi c overhead (the routing protocol in this case) is generally 
not problematic considering the bandwidth available on high-speed links and is negligible compared 
to the data traffi c. This is in contrast with LLNs where it is imperative to minimize the control traf-
fi c overhead and try to bound the control traffi c to the data traffi c. It is also imperative to reduce the 
traffi c control load as the network stabilizes, which is the main motivation for using dynamic trickle 

 FIGURE 17.10  
       Topology of the simulated network.    
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 timers. The values of the trickle timers for I min  
and I doubling  in these simulations were 1 and 16 
seconds, respectively.  Figure 17.11  shows how 
the data and control traffi c varies over time. 

 The   fi rst observation is that the control traffi c 
is clearly negligible compared to the data traffi c 
(for that data traffi c assumption, which is more 
true as we get closer to the DODAG root), but 
more importantly as the DODAG stabilizes the 
control traffi c decreases signifi cantly. This illus-
trates the desired effect of the trickle timers. We 
can observe waves of the control traffi c. Each 
time an inconsistency is detected in the DODAG 
such as a path cost change, new parent after a 
failure, or a global repair mechanism triggered 
by the DODAG root (the DODAG root incre-
ments the DODAGSequenceNumber), the DIO 
changes and the trickle timers are reset. These 
factors explain the waves of control traffi c. As 
expected and desired, when the DODAG stabi-
lizes the traffi c control is reduced accordingly as 
expected because of the trickle timers.  

    17.6.11.2       Routing Table Size 
 Nodes   in LLNs have constrained memory. In 
extreme cases, some nodes cannot even store 
a routing table. RPL supports the insertion of 
such nodes in the network as discussed in the 
previous sections. In other cases routing tables 
may potentially contain dozens of entries, but 
nodes have limited memory for the storage of 
the routing table compared to IP core routers 
that can easily store hundreds of thousands of 
BGP routes. Thus, it is interesting to observe the 
memory requirements of RPL regarding routing 
table sizes.  Figure 17.12    shows the Cumulative 

Distribution Function (CDF) for the number of required routing table entries (the number of routing 
entries increases as we get closer to the sink). Note: these results are in the absence of route aggrega-
tion in the network. There is tremendous interest in coupling RPL with route aggregation to limit the 
routing table sizes, and this work is currently in progress.  

    17.6.11.3       Path Effi ciency 
 The   DODAG computed by RPL is a sub-topology of the physical connectivity graph just like any 
other routing protocol. In other words, there are paths that the traffi c has to follow along the DODAG 
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 although a more optimal path may actually 
exist (outside of the DODAG) in the physical 
connectivity. This is particularly true for P2P 
traffi c where the traffi c from node A to node 
B must meet a common ancestor before being 
redirected down to the DODAG toward the 
destination (node B), with the exception of the 
P2P traffi c between two nodes that are in direct 
range because of the use of multicast DAO. 
Thus the idea is to see how  “ suboptimal ”  the 
path computed by the DODAG for P2P traffi c 
is compared to an  “ ideal ”  routing protocol that 
would systematically compute the best avail-
able path between A and B based on the actual 
connectivity. 

       Note: it is critical to remember that although 
RPL builds a DODAG this is not a P2MP or 
MP2P routing protocol: RPL fully supports P2P 

routing. RPL has even been enhanced with mechanisms such as multicast DAO to provide shortcuts 
for nodes in direct range and optimized P2P routing. 

   RPL provides a good quality path for the majority of cases. Still additional mechanisms may be 
added in the future with regards to P2P routing. As a reminder, these are simulations results and as 
such cannot be generalized. The results are shown in  Figure 17.13   . Other simulations on that particu-
lar subject are in progress.  

    17.6.11.4       Failure Handling 
 The   ability of a routing protocol to compute an alternate path in the presence of network element fail-
ures has always been a critical characteristic of a routing protocol. Unfortunately, there is always tension 
between the control traffi c cost, the environment, and the ability to quickly reroute the traffi c. In a highly 
stable high-speed network, routing protocols use fast failure detection mechanisms to quickly detect a 
failure and reroute the traffi c along a backup path. In contrast, in lossy environments in the presence of 
frequent failures the routing protocol should not constantly recompute paths (thus leading to high control 
traffi c, oscillations, etc.), which is what RPL achieves as explained in detail earlier in this chapter  . RPL 
makes use of two different repair mechanisms that have been discussed in Section 17.6.8: global repair 
triggered by the DODAG root and local repair where nodes locally handle the failure. We provide several 
simulation results showing both mechanisms. The metric used to illustrate the effect of RPL repair mech-
anisms is the amount of time during which no path was available when having to send a packet during 
the course of the simulation. For example,  Figure 17.14    shows that in 80% of the cases the period of time 
without path was around 20       s  for the specifi c RPL parameters used in these simulations, of course . In 
 Figure 17.14  we also show the CDF for the failure period when fi rst using global repair only. 

    Figure 17.14  shows the failure time for two different frequencies of global repair: in the fi rst 
case, global repair (generation of new DODAGSequenceNumber) is set to 1 hour and in the second 
case it is reduced to 1       mn. As expected, this allows reduction in the failure time at the cost of increas-
ing the control traffi c cost (we can observe an increase of the control traffi c, looking at node 11 in the 
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 middle of the network). As discussed earlier, it was decided to add a local repair mechanism to reduce 
the failure time. This way, the local repair mechanism quickly provides an alternate path followed by global 
repair to further reoptimize the DODAG. This is shown in  Figure 17.15    where the global repair mechanism 
is set to 1 hour and local repair is activated. We observe that the failure time is reduced  dramatically . The 
traffi c control is  slightly  increased with local repair but localized (not even visible on the simulation run).    

DAGSequenceNumber frequency=1hour

DAGSequenceNumber frequency=1mn

100

90

80

70

60

50

40

30

20

10

0
0 500 1000 1500 2000 2500 3000

CDF of Timespan during which no path is found

C
D

F
 in

 P
er

ce
nt

ag
e

N
um

be
r 

of
 p

ac
ke

ts
 in

 e
ac

h 
10

 m
in

s

Number of packets transmitted by node 11
(middle) in each 10 min interval

Time without service

100

90

80

70

60

50

40

30

20

10

0
0 20 40 60 80 100 120

CDF of Timespan during which no path is found

C
D

F
 in

 P
er

ce
nt

ag
e

Time without service

350

300

250

200

150

100

50

0
0 0.5

Time(s) x 104

1 1.5 2 2.5 3 3.5 4

Data packet
Control packets

Data packet
Control packets

N
um

be
r 

of
 p

ac
ke

ts
 in

 e
ac

h 
10

 m
in

s

Number of packets transmitted by node 11
(middle) in each 10 min interval

350

300

250

200

150

100

50

0
0 0.5

Time(s) x 104

1 1.5 2 2.5 3 3.5 4

 FIGURE 17.14  
       Time without service with global repair only.    



28717.7 Conclusions

    17.7        CONCLUSIONS 
 This   chapter was entirely devoted to RPL, the new routing protocol for IP smart object networks 
developed by the IETF ROLL Working Group. A series of novel mechanisms have been designed 
to make RPL an effi cient distance vector routing protocol for smart object networks in support of 

DAGSequenceNumber frequency = 1hour without local repair

DAGSequenceNumber frequency = 1mn with local repair
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 P2P, MP2P, and P2MP traffi c designed for LLNs. RPL has been designed as highly modular, with 
a very small footprint, and able to support a wide range of metrics and constraints according to the 
environments of interest while operating in constrained environments thus reducing the control traf-
fi c whenever possible. RPL can even be deployed to support multiple routing topologies according to 
the objective function (e.g., optimize reliability, minimize latency, etc.). Furthermore, several mech-
anisms referred to as global and local repair have been designed to provide alternate paths in the 
presence of failures and to reoptimize the routing topology on a confi gurable periodic basis while 
ensuring a high degree of robustness and fl exibility. Early implementations show that RPL will only 
require a few kilobytes of Flash and a very few KB of RAM in its current specifi cation.                       
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    18.1        MISSION AND OBJECTIVES OF THE IPSO ALLIANCE 
 As   discussed in Chapter 14, the Internet Engineering Task Force (IETF  —   http://www.ietf.org/ ) is the 
standardization body in charge of producing the technical specifi cation for the IP protocol suite. 

 Companies   such as Cisco, ArchRock, Proto6, SICS, Atmel, and others that from the beginning 
believed in the benefi ts of an end-to-end IPv6 solution to make the  “ Internet of Things ”  a reality were 
faced with the following realities: 

      ●      The only available technical documents were related to protocol designs or detailed technical 
requirements produced by the IETF. They were diffi cult for engineers not involved in the IETF on 
a daily basis to read. There was clearly an absence of white papers and tutorials showing how the 
IP protocol suite specifi ed by the IETF and, in particular for smart objects networks, could be used 
and deployed in a variety of environments such as building automation, Smart Cities, and Smart 
Grids, just to mention a few.  

      ●      There was no interoperability event showing how a network of smart objects could be built using 
a variety of devices from different vendors thus demonstrating the benefi t of using an open stan-
dard such as IP. Other existing alliances (sometime specifying semi-closed protocols) were orga-
nizing events to certify products. Furthermore, the IETF considered the existence of interoperable 
and independent implementations in the Internet as a necessary condition to promote an RFC to a 
high level of standard, as discussed in Chapter 14.  

      ●      Building an IP ecosystem for smart objects considering the number of companies involved in 
building solutions for smart object networks such as chipset suppliers, integrators, automation sys-
tems (home, building, etc.), telecommunication companies, software vendors, and also end users 
(utilities, large companies, telecommunication service providers) and research institutions was 
paramount to collectively contribute to such a new alliance, gather input from all members to fi ll 
the potential gaps, and quickly increase the number of members speaking with a common voice.    

 Thus   it quickly became necessary to form a new open, worldwide industry alliance to promote the 
use of IP as the open and interoperable standard for smart objects. This led to the formation of the IP 
for Smart Objects alliance (IPSO  —   www.ipso-alliance.org ). 

 The   IPSO alliance was formed in September 2008 by the founding members shown in  Figure 18.1    
and has been growing at an impressive rate since its formation with about 50 members as of October 
2009. 
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  The   mission of IPSO is not to specify protocols (this is done at the IETF) but to promote the use 
of IP for smart objects: 

      ●      Create awareness of existing and new IP-based technologies designed for smart objects. How 
many times have we heard  “ Yes, IP is a great technology that could be used in smart objects such 
as sensor and actuators in the future… ” ? No, it is  there  and the key mission of the IPSO alliance 
is to show that sophisticated interoperable systems composed of IP-enabled smart objects can be 
built today, using the same protocol as in existing IP networks with no compromise on perfor-
mance and effi ciency compared to existing proprietary approaches.  

      ●      White papers and tutorial are needed. Indeed, IETF RFCs and Working Group documents are not 
always easy to read so the IPSO alliance produces white papers and webinars focusing on tech-
nologies (tutorial) and use cases. To date, the alliance has produced the following white papers: 
      ●      IP for Smart Objects: This white paper provides a high-level overview on why IP is the proto-

col of choice for smart object networks.  
      ●      Lightweight IPv6 Stacks for Smart Objects: The Experience of Three Independent and 

Interoperable Implementations: This white paper covers key implementation aspects based on 
the experience of three implementations of IPv6 stacks.  

      ●      6LoWPAN: Incorporating IEEE 802.15.4 into the IP Architecture: This white paper introduces 
the key concepts of the 6LoWPAN adaptation layer (support of IPv6 on IEEE 802.15.4 links) 
and provides a good overview of several of its functionalities such as header compression and 
fragmentation as well as the 6LoWPAN adaption layer overall architecture.  

      ●      Neighbor Discovery in IPv6: This document discusses several optimization mechanisms to the 
IPv6 Neighbor Discovery Protocol for effi cient usage of IPv6 in the low-power networks that 
may or may not support multicast at the link layer.  

      ●      Security in Low-power and Lossy Networks (LLNs): A survey of the security issues encoun-
tered in LLNs along with the existing IP-based security mechanisms that can be used in LLNs.  

Kinney Consulting
Nivis
PicosNet
Proto6
ROAM
SAP
Sensinode
SICS
Silver Spring Networks
Sun Microsystems
Tampere University
Watteco
Zensys

Atmel
Cimetrics
Cisco
Duke Energy
Dust Networks
Électricité de France R&D
Eka Systems
Emerson Climate Technologies
Ericsson
Freescale
Gainspan
IP Infusion
Jennic

Arch Rock

Founding members
Alliance

 FIGURE 18.1  
       Initial founding members of the 
IPSO alliance.    
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      ●       Low-Power Technologies in Smart Object Networks: Provides the general characteristics 
of three low-power technologies for smart objects: IEEE 802.15.4, low-power WiFi, and a 
low-power Powerline communication (PLC) technology (Homeplug, WPC). Further revisions 
of this white paper will cover additional low-power technologies that will be defi ned for smart 
objects in the future.  

      ●      Several new white papers are in progress such as  “ embedded web services, ”   “ smart cities, ”  etc  .     
      ●      Link companies that provide IP-based smart objects for control and actuation (hardware and software).  
      ●      Support and organize interoperability events, which is a key activity of the IPSO alliance.    

 The   IPSO alliance is also actively working on an IP for smart object certifi cation and more details 
will be available in the near future.  

    18.2       IPSO ORGANIZATION 
 The   IPSO alliance is very lightweight and straightforward (see Figure 18.2), with an objective to be 
similar to IETF by being open and having low subscription fees.  

 To   date, the IPSO Board of Directors is composed of nine members (one member per company) 
and each company has to be an IPSO promoter member. In contrast to the IETF, IPSO members rep-
resent companies, not individuals. Half of the Board of Directors is renewed every year. The Board of 
Directors is responsible for defi ning the strategy of the alliance and also defi nes the goals and objectives 
as well as controlling the operation of the alliance (budget, meeting, press release, etc.). The Board of 
Directors is helped in its mission by several committees and the Technology Advisory Board (TAB). 

 IPSO   committees are formed when a specifi c task has to be performed under the governance of the 
Board of Directors and with the help of the TAB. Each committee has a charter along with milestones 
to help track deliverables. The target, set of deliverables, and duration greatly vary between commit-
tees. For example, the Marcom committee is a long-lived committee that drives the communication 
strategy of the alliance. Other committees can be formed to perform a specifi c task before disband-
ing. A security committee and a building automation were formed to exclusively focus on the security 
aspects to show that many well-proven IP security mechanisms are already available that can be imple-
mented on smart objects. 

Simple 2 tier structure
Promoter – voting rights, elect and serve on BoD

Contributor – participate in all events and committees

Fees: $5000 for promoter; $2500 for contributor

Board of directors – define alliance strategy, external
communications, direct internal activities

Technical advisory board – review technical
publications, oversee technical committees

Committees (to date):
MarCom; Interoperability; Membership

Structure of the IPSO alliance
Alliance

       FIGURE 18.2  
     Structure of the IPSO alliance.      
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  The   TAB, whose objective it is to be the  “ technology arm ”  of the IPSO alliance, is nominated by 
the Board of Directors. It can produce white papers and tutorials in the form of webinars on request 
or decide to produce its own white papers. In addition, the TAB oversees some of the technical white 
papers produced by the different committees. TAB members also represent IPSO in various technol-
ogy conferences and support alliance liaisons with other technology standardization bodies.  

    18.3        A KEY ACTIVITY OF THE IPSO ALLIANCE: 
INTEROPERABILITY TESTING 

 Fostering   interoperability between native IP smart objects around the IP protocol specifi cations pro-
duced by IETF is one of the most critical missions of the IPSO alliance. Showing large test beds with 
a variety of smart objects communicating with each other  using IP without any protocol translation 
gateway  is a key activity of IPSO. 

 A   fi rst series of tests including several media (such as IEEE 802.15.4 or IEEE 802.11) was com-
pleted in March 2009 in Palo Alto, California. The objective of that fi rst interoperability event was 
to show a global system composed of a number of IP-native devices communicating with each other. 
The interoperability committee will organize further events with more complex scenarios involving 
all the layers on the IP protocol stack beyond IP connectivity, but that fi rst interoperability event was 
a key milestone. 

 As   shown in  Figure 18.3   , the test bed included the following components: 

      ●      IPv6 web server  
      ●      A set of IPv4 and IPv6 network clouds connected to the Internet composed of several types of 

smart objects    

 Note   that  “ border routers ”  are not performing any form of protocol translation.  The traffi c is IP 
end-to-end.  The IPv6 network did communicate with the web server natively whereas IPv6 clouds 
were interconnected using 6to4 tunnels (see Chapter 15 for a description of 6to4 tunnel mechanisms). 

IPv6

IPSO web-server

(hosted by Cisco)

6 to 4 tunnel

SO

SO

Communication flow

SO: Smart object

SO

SO SO

Router
Router

Interop test specification
Alliance

 FIGURE 18.3  
       Interop test specifi cation.    
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  A   series of tests was made up of the following steps, strictly complying with the IPv6 specifi cation: 

    Step 1: Autoconfi guration of an IPv6 link local address.  
    Step 2: Discovery of the default router by the IP smart object and autoconfi guration of the global 
IPv6 address (due to the RA messages sent by the router).  
    Step 3: Direct communication between smart objects using ICMP Echo Request/Reply messages to 
demonstrate inter smart object connectivity. Such ICMP packets were exchanged within subnetworks, 
between smart objects lying in different subnetworks across the Internet, and fi nally with the IPv6 web 
server connected to the Internet (all communication fl ows are depicted by the arrows in  Figure 18.3 ).  
    Step 4: Data communication. Each smart object sent data to the web server. In this case it was 
temperature reading, but the type of data could be vibration, humidity, gas detection, light, tem-
perature, etc. Note that the protocol transport used in this experiment was UDP and a simple appli-
cation running over UDP was designed for that purpose.  
    Step 5: Consisted of sending command/response between smart objects effectively enabling native 
inter-device IP communication.    

    Figure 18.4    illustrates the displays of data received on the IPv6 web server. Note that not all smart 
objects were using the same link layer. This is the beauty of IP: media agnosticism. In this particu-
lar case, two link layers were used: IEEE 802.11 and IEEE 802.15.4 (900       MHz and 2.4       GHz). It is 
expected that other link layers (such as the PLC link) will be used in further interoperability events. 

 In   May 2009, IPSO announced the world’s fi rst interoperability test event between IP smart 
objects with 11 participants at NETWORLD � INTEROP 2009. The test bed included four different 
wireless physical layers and media access communication protocols: Primex wireless, Gainspan Low 
power WiFi, Nivis 6LoWPAN (IPv6 over IEEE 802.15.4), and Sigma Design’s wireless home control 
technology based on the Zwave chipset radio. Note that all stacks were native IP stacks over various PHY/
MAC with no layer 3 protocol translation. 

First Public Interop Event
Alliance

 FIGURE 18.4  
       First public Interop event of IPSO, March 2009.    
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  One   company, SAP, had developed software 
for data gathering displaying all the data gathered 
from the various smart objects connected around 
the world through the Internet, as shown in  Figure 
18.5    (in this fi gure the smart object was a tempera-
ture sensor but other types of sensors and actuators 
were connected to the network). In March 2008, 
the IPSO alliance announced the fi rst interop dem-
onstration of the RPL routing protocol discussed 
in Chapter 17. 

 IPSO   was even listed as one of the best inven-
tions of 2008 by  TIME  magazine ( Figure 18.6   ).  

    18.4       CONCLUSIONS 
 Without   a doubt, the IPSO alliance will continue to 
grow at an impressive rate and its success clearly 
demonstrates the unanimous momentum for the 
use of IP for smart object networks. By providing 
white papers, tutorials, and webinars and organiz-

ing interoperability events, the IPSO alliance shows that the use of IP for smart objects is not a futuristic 
or idealistic vision of what is sometimes referred to as the  “ Internet of Things, ”  but a technology that can 
be used  today  using open standards without the need for costly proprietary solutions.         

 FIGURE 18.5  
       IPSO demonstrator at NETWORLD � INTEROP 2009.    

 FIGURE 18.6  
       IPSO  —  Best Invention of 2008 by  TIME  magazine.    
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  Before   the consensus to adopt IP for smart objects became a reality, several non-IP solutions were 
developed and deployed, and are still being deployed. Until recently, the IP architecture was often 
considered too heavyweight to use for low-power short-range networks. Therefore, a number of cus-
tom protocol stacks and architectures were developed. In this chapter, we provide a high-level over-
view of two such protocol specifi cations: ZigBee and Z-Wave  . Both have been developed for specifi c 
low-power, short-range, and low-bit-rate radios, and smart objects are their main application areas. 

 In   general, custom protocol stacks are incompatible with the IP architecture. As discussed in 
Chapter 3, there are a number of disadvantages with these architectures when they are to be connected 
to IP networks. For this reason, many of the custom low-power radio specifi cations are currently 
moving toward an IP-based model. In the summer of 2009, ZigBee announced that the specifi cation 
would be amended with IP for the smart energy profi le. 

 In   addition to ZigBee and Z-Wave, there are a number of protocol specifi cations for the smart object 
domain that we do not cover here. The WirelessHART stack is designed for low-power and high-
 reliability industrial monitoring networks. WirelessHART is defi ned on top of the IEEE 802.15.4 radio 
standard and uses a time-synchronized protocol to provide very low power consumption as well as a 
channel hopping mechanism to maintain low radio interference [196]. WirelessHART networks are con-
trolled by a central network manager that computes the channel hopping, timing schedules, and routing 
for the entire network. The ISA100a standard is also designed for low-power industrial wireless monitor-
ing. ISA100a is similar to WirelessHART in many aspects, but is built on the network layer of IPv6. 

    19.1       ZIGBEE 
 ZigBee   is a proprietary specifi cation for wireless communication between smart objects based on the 
specifi c IEEE 802.15.4 radio link layer. The ZigBee specifi cation is owned by the ZigBee Alliance. 
For noncommercial projects, the ZigBee Alliance provides the specifi cation for download from their 
web site [263]. For commercial projects, a membership in the ZigBee Alliance is required. 

 The   ZigBee Alliance was formed in 2002 as a nonprofi t organization. ZigBee Alliance membership 
is open to any company. The alliance has three membership levels: promoter, participant, and adopter. 
The membership fee is higher for promoter members and participants, but lower for adopter members. 

 Implementations   of the ZigBee protocols stack have been developed as stand-alone librar-
ies that are intended to be used without an operating system, and for smart object operating 
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 systems such as Contiki and TinyOS [50,231]. Independent open source implementations also 
exist [5]. 

 There   are four versions of the ZigBee specifi cation: ZigBee 2004, ZigBee 2006, ZigBee 2007, 
and ZigBee Pro  . Both ZigBee 2004 and ZigBee 2006 are considered deprecated and are not used in 
new products. ZigBee 2007 is currently the most used version of the specifi cation, and is often simply 
called  “ ZigBee. ”  ZigBee 2007 adds a number of features that were not present in the 2006 version 
such as support for packet fragmentation and the ability to dynamically switch physical radio chan-
nels. ZigBee Pro increases the amount of devices in each network from 31,101 to 65,540 and adds a 
number of network mechanisms such as multicasting and source routing. Finally, an extension to the 
ZigBee 2006 specifi cation, called ZigBee residential, is also available but is not widely used. 

 ZigBee   is based on the IEEE 802.15.4 standard and does not provide any alternatives as underly-
ing radios. The ZigBee protocols are defi ned around the concepts and addressing modes provided 
by the underlying IEEE 802.15.4 radio, making it diffi cult to adapt the ZigBee protocols to other 
radios. 

    19.1.1       ZigBee Device Types 
 ZigBee   specifi es three different device types: the ZigBee Coordinator (ZC), the ZigBee Router (ZR), 
and the ZigBee End Device (ZED). These three devices play different roles in a ZigBee network as 
shown in  Figure 19.1   . 

 A   ZigBee network has exactly one ZC device. The ZC coordinates the actions of the network as a 
whole and is responsible for bootstrapping the network. The ZRs build a network between themselves 
 through which packets are exchanged. The ZEDs are logically attached to a ZR. ZEDs communicate 
only with their ZR, but cannot communicate between each other. 

 Each   of the ZigBee device types has been designed for a specifi c deployment. ZCs and ZRs have 
a higher power requirement than ZEDs and cannot be battery-powered. The ZED has a lower power 
requirement and achieves a long lifetime on batteries. Regarding IEEE 802.15.4, ZC and ZR are fully 
functional devices (FFDs), whereas the ZEDs are reduced function devices (RFDs). 

ZigBee End Device

ZigBee Router

ZigBee Coordinator

 FIGURE 19.1  
       A ZigBee network consists of three device types: the ZigBee Coordinator, of which there is exactly one in each 
network, ZigBee Routers, and ZigBee End Devices.    
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  The   ZC is responsible for bootstrapping the network. During the bootstrapping process, the ZC chooses 
the personal area network (PAN) identifi er that will be used by the network, as well as the physical 
radio channel on which the network will operate. After bootstrapping, the ZC acts as a normal ZR device. 

 ZEDs   are off most of the time, thus they are not able to receive any traffi c sent to them. Instead, they 
periodically wake up and check for messages at the ZR with which they are associated. The ZR buffers 
data sent to their ZED nodes and sends these data whenever they get a poll request from a ZED. The 
ZED transmits data to the ZR at any time, since the ZR is always awake. The wake-up schedule for ZED 
is defi ned by the application developer, not by the ZigBee specifi cation. The number of ZEDs associated 
with a ZR is limited. In the ZigBee 2007 specifi cation, a ZR can handle a maximum of 14 ZEDs.  

    19.1.2       Layers in the ZigBee Stack 
 The   ZigBee specifi cation is divided into fi ve layers, as shown in  Figure 19.2   : the physical (PHY) 
layer, the medium access control (MAC) layer, the network (NWK) layer, the application support 
(APS) layer, and the application framework   (AF) layer. In addition to the fi ve layers, a cross-layer 
entity called the ZigBee Device Object (ZDO) is also present in the architecture. Of these layers, 
PHY and MAC are not part of the ZigBee specifi cation; they are taken from the IEEE 802.15.4 radio 
standard. The NWK, APS, and AF layers are part of the ZigBee specifi cation, as is the ZDO. 

 The   layering of the ZigBee stack is reminiscent of the layers in the IP stack. Just like in the IP archi-
tecture, each layer in the ZigBee stack has a specifi c purpose. There is, however, one major difference 
between the layering in the IP architecture and the layering in the ZigBee stack: in the ZigBee stack, the 
layers cannot be changed. The IP architecture is built to allow multiple types of MAC and PHY layers. The 
same protocols can be used even if the specifi c radio standard changes. In contrast, the ZigBee specifi ca-
tion is designed specifi cally for the IEEE 802.15.4 MAC and PHY layers. Also, the upper layer protocols 
make explicit use of mechanisms provided by the radio layer. For example, instead of providing its own 
NWK layer addressing scheme, ZigBee uses IEEE 802.15.4 MAC layer addresses even at the NWK layer. 

 We   will now discuss the ZigBee layers in more detail.  

PHY

MAC

NWK

APS

AF ZDO

IEEE 802.15.4

ZigBee

 FIGURE 19.2  
       The ZigBee protocol stack builds upon the MAC and PHY layers from the IEEE 802.15.4 radio standard. 
The NWK, APS, AF, and ZDO are part of the ZigBee specifi cation.    
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    19.1.3        PHY and MAC Layers 
 The   PHY layer transports bits across the physical radio medium. The MAC layer mediates access to 
the medium so that multiple transmitters do not transmit at the same time. 

 Because   ZigBee uses IEEE 802.15.4 for its MAC layer, ZigBee also uses the same addressing for-
mat at 802.15.4. ZigBee supports the short addressing mode in which addresses are 16 bits wide. This 
allows each ZigBee network to support at most 65,536 nodes. In practice, the number of possible 
nodes is reduced because a number of addresses are reserved. In ZigBee 2004 and 2006, a network 
includes a maximum of 31,101 nodes, whereas in ZigBee 2007 and ZigBee Pro, the maximum num-
ber of nodes in a network is 65,540. 

 The   ZigBee stack uses IEEE 802.15.4 for the MAC and PHY layers, but does not use every aspect 
of the standard; most notably, ZigBee does not make use of its beacon mode. The beacon mode builds 
a time-synchronized schedule of all nodes. Avoiding the beacon mode helps reduce the complexity of 
ZigBee implementations. 

 ZigBee   uses a carrier sense multiple access with collision avoidance (CSMA/CA) scheme for its 
MAC layer. Before a packet is sent, the MAC queries the PHY for other current radio transmissions. 
If another node is currently sending a packet, the node refrains from sending its own packet. Instead, 
it sets a timer and tries to resend the packet at a later time. 

 The   MAC layer does hop-by-hop acknowledgments for all ZigBee packets except broadcast 
packets. The acknowledgment uses the standard IEEE 802.15.4 acknowledgment mechanism. If an 
acknowledgment is not received, the packet is retransmitted up to three times. ZigBee also performs 
end-to-end acknowledgments at the application support sublayer, as described next. 

 ZigBee   does not use any duty cycling mechanisms at the MAC layer. Instead, nodes have either 
their radio turned on all the time or turned off all the time, except when sending data. ZRs and ZCs 
have their radios constantly on, whereas ZDEs may keep their radio off all the time. Nodes that have 
their radio turned on all the time have a signifi cantly higher energy consumption and therefore cannot 
be battery-operated. Only nodes that keep their radios turned off have a low enough power consump-
tion to be battery-operated. 

 The   IEEE 802.15.4 standard is described in more detail in Chapter 12.  

    19.1.4       NWK 
 The   NWK layer performs addressing and routing and is the equivalent of the IP layer in the IP 
architecture. The ZigBee network layer provides two forms of data delivery: broadcast and unicast. 
Multicast is also supported, but multicast data are delivered using broadcast with software fi ltering of 
the incoming packets at the receiver. Broadcast delivery is a form of network fl ooding, which sends a 
packet to all nodes on the network. The packet can be tagged with a maximum hop count that deter-
mines how far the packet can travel in the network. Because the broadcast packet reaches every node 
in the network, a broadcast is an expensive operation. Unicasts, on the other hand, are sent only to the 
node to which they are addressed. Both broadcasts and unicasts can travel up to 30 hops. 

 The   ZigBee stack has two schemes for routing unicast packets: network routing and source rout-
ing. In network routing, the network takes care of fi nding the best route for the packet to take through 
the network. In source routing, the sender must explicitly state through which nodes the message 
should pass to reach its destination. Source routing is useful for large networks where each node in 
the network may not be able to maintain large routing tables for all nodes. Instead, the ZC node, 
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 which is assumed to have signifi cantly more memory than the other nodes, can maintain all routing 
information for all nodes. This reduces the memory load for the network at the expense of a slight 
overhead in each packet. But as node addresses are short in ZigBee, this overhead is small. To keep 
the overhead to a bounded value, source routing is limited to fi ve hops. Source routing is available 
only in the ZigBee Pro version. 

 There   are two types of network routing: mesh and tree routing. Mesh routing builds a connected 
mesh between the ZR devices and transports data in a point-to-point fashion. The tree routing scheme 
builds a tree where the ZC is the root of the tree and ZEDs are the leaf nodes. Tree routing is not 
available in ZigBee Pro. 

 The   ZigBee mesh routing algorithm is an adaptation of the Internet Engineering Task Force (IETF) 
standard protocol Ad hoc On-demand Distance Vector (AODV) Protocol [194]. AODV is a reactive 
on-demand protocol, which means that routes are not established until they are needed; that is, nodes 
do not know about each other until the fi rst packet is sent. When a packet is sent, the originating node 
broadcasts a routing request packet. This routing request reaches all nodes in the network. 

 Nodes   set up a reverse path to the originating node as part of the route request procedure. When 
a node receives a routing request packet, it adds an entry for the originating node in its routing table. 
The routing table entry is fi lled with the address of the originating node as well as the address of the 
node from which the route request came. This packet should be sent to this node to reach the origina-
tor. Thus a reverse path is built in the network. 

 When   the route request reaches the requested node, this node sends a unicast route reply back to 
the originator of the request. Since the nodes in the network have built a reverse path, the network 
knows how to reach the originator node. As the nodes on the path forward the unicast route reply, 
they add the destination node to their routing tables along with the node from which they received the 
route reply. When the route reply reaches the originator, the route is set up and the originator and the 
destination begin exchanging packets. 

 The   network routing mechanism works well for small networks, but as the network grows, the 
amount of state each node has to maintain increases. In large networks with hundreds or thousands of 
nodes, the routing tables in the memory-constrained nodes begin to overfl ow. Additionally, the net-
work fl ooding of the route request packets becomes problematic. In such situations, the source rout-
ing mechanism can be used instead.  

    19.1.5       APS Sublayer 
 The   APS sublayer is equivalent to the transport layer in the IP architecture. It is a thin layer that acts 
as an intermediary between the NWK layer and the application layer. The purpose of the APS is to do 
end-to-end acknowledgments and to fi lter out duplicate packets. 

 The   APS layer has a connection between two nodes called a binding. A binding is unidirectional  —  
a node is bound to another node, but the other node is not necessarily bound back to the fi rst node.  

    19.1.6       AF 
 The   ZigBee application layer is called application framework (AF) and runs on top of the APS layer. 
The AF supports multiple applications and demultiplexes incoming data between the registered appli-
cations. Some of the applications are defi ned by the ZigBee specifi cation, whereas others are imple-
mented independently by vendors. In ZigBee, an application is called a profi le. 
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  ZigBee   profi les are identifi ed with an integer between 0 and 240, called an end point. This is the 
equivalent of the port number in the IP architecture. When the AF layer processes a packet, it demul-
tiplexes the packet based on the end point identifi er. Applications register with an end point identi-
fi er at the AF layer. If a packet arrives for an end point identifi er that is not registered, the packet is 
silently dropped. If the application has been registered, the packet is passed to the application layer. 

 ZigBee   profi les are used in cases for which the ZigBee technology is intended. For example, the 
ZigBee Alliance has defi ned a profi le for home automation, smart energy management, building auto-
mation, and toys. 

 There   are two types of application profi les: public and vendor-specifi c. Each application profi le is 
identifi ed by an integer between 1 and 240. This integer is called a profi le end point. The profi le with 
end point zero is the ZDO and it is used for network confi guration and setup. Profi le identifi ers are 
allocated and managed by the ZigBee Alliance. Public profi les are intended to be interoperable across 
different vendors, whereas vendor-specifi c profi les are intended to be used only by products from one 
specifi c vendor. 

 The   ZDO profi le is responsible for network maintenance. It provides mechanisms for interacting 
with the NWK and APS layers, which is done during network confi guration. The ZDO is therefore 
drawn as a prolonged horizontal box as seen in  Figure 19.2 .  

    19.1.7       Network Setup 
 The   ZigBee network setup process involves all layers of the ZigBee stack. This process establishes 
a physical communication link between the nodes in the network, distributes address information 
between the nodes in the network, and discovers and binds the services on the nodes. 

 The   network setup process begins at the PHY layer. The ZC starts by scanning the 16 available 
physical radio channels of the IEEE 802.15.4 radio to fi nd the channel that has the least current radio 
energy. This channel is assumed to be the one with the least interference from other equipment. Since 
IEEE 802.15.4 runs on the unlicensed 2.4       GHz band, there are several sources of interference such as 
WiFi networks and microwave ovens. The channel scan samples each channel for 0.5       s. Thus the pro-
cess takes eight seconds and gives only a snapshot of the channel activity. When the scan is complete, 
the ZC chooses the channel with the least activity for the network. This channel is retained through 
the lifetime of the network. 

 After   the PHY layer channel selection is complete, the MAC layer creates a new PAN ID for the 
network. The PAN ID is a 16-bit integer selected at random by the ZC. Once the ZC has selected a 
PAN ID, it begins to announce its presence on the selected channel and with the selected PAN ID 
through repeated beacon messages. When the physical channel and PAN ID have been selected, the 
network formation is said to be complete. 

 Once   the ZC has formed the network, ZRs and ZEDs begin to join it. Nodes join a network by 
sending out their own beacon messages. If a ZR or ZC hears a beacon from a node that is not part of 
a network, it responds by sending a beacon message back. The node collects all answers it receives 
and decides which network and ZR it should try to associate with. The process by which the node 
chooses its network and parent is application-specifi c. If network security is enabled, after a node has 
selected a network and a parent, it authenticates itself with the parent. Now the node is fully part of 
the network.  



30119.2 Z-Wave

    19.1.8        ZigBee Is Migrating to IP 
 The   layers of the ZigBee stack loosely correspond to the layers of the IP stack. The ZigBee stack 
is, however, incompatible with the IP architecture. This causes severe problems when ZigBee net-
works are deployed together with existing IP-based services and applications. There is no way for the 
ZigBee network and the IP-based services to communicate except through custom gateways. A gate-
way needs to run both the full ZigBee stack and an IP stack, which effectively doubles the memory 
requirement for the gateway device. Additionally, these gateways require installation, custom hard-
ware, and custom software, inducing signifi cant costs. These problems are not specifi c to ZigBee, 
however; we discuss these generic problems at length in Chapter 3. 

 To   reduce the costs and trouble of integrating ZigBee networks with IP-based networks and ser-
vices, the ZigBee Alliance announced in mid-2009 that ZigBee will move toward an IP-based infra-
structure for the latest application profi le for smart energy metering. By incorporating IP into the 
ZigBee architecture, the hope is that existing ZigBee applications will be able to run over IP instead 
of over the custom NWK layer in the current ZigBee specifi cation. This reduces the cost of integrat-
ing with existing IP networks. In addition, there is ongoing work outside of the ZigBee Alliance to 
adopt the existing ZigBee application profi les to run over a UDP/IP [237], allowing the ZigBee appli-
cation profi les to become applications running on top of the IP architecture. How the ZigBee Alliance 
will progress with the migration toward IP was not decided   at the writing of this book.   

    19.2       Z-WAVE 
 Z-Wave   is an alliance that developed its own patented low-power RF technology for home auto-
mation and small residential environment. The Z-wave technology is not IP-based and has its own 
physical, MAC, networking, transport, and application layers. The application layer makes use of 
command classes that describe devices and the language used to communicate with these devices. 
The information discussed next is based on the public information available on the Z-Wave/Zensys 
web site. 

 The   main application of Z-Wave products is home automation such as garage doors, alarm sys-
tems, door locks, sensors for HVAC and energy management, lighting and windows, home health-
care, sprinklers, and other home applications. Z-Wave provides a developer kit that allows developers 
and original equipment manufacturers (OEMs) to develop products using the Z-Wave technology due 
to the use of an API and handles its own certifi cation program. 

 Z-Wave   technology has been designed to be plug and play, requiring minimal manual intervention 
to connect new devices that expand the meshed network. The Z-Wave technology has been designed 
to be low power so it is used on both main-powered and battery-operated nodes such as smoke detec-
tors or other types of sensors. 

 The   RF Z-Wave technology uses binary frequency shift keying (B-FSK) modulation and operates 
in the sub-1       GHz band. Since 2008 it also supports the 2.5       GHz band for a throughput between 9.6 
and 40 Kilobits/s (performances indicated by Zensys). The MAC layer uses link layer acknowledg-
ment and retransmission with collision avoidance and checksum for error detection. 

 The   ZM3102 Z-Wave ®  Module is an integrated RF communication module using the unlicensed 
short-range frequency band 902 — 928       MHz in the United States and 868.0 – 868.6       MHz in Europe. The 
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 Z-W0301 Single Chip is a chipset made of the following components: an RF transceiver, the 8-bit 
8051 microcontroller unit (MCU) core from Texas Instruments equipped with 32       K of fl ash memory, 
2       K of RAM for the Z-Wave protocol, and OEM application software. The Zensys 300 series power 
consumption is 2.5        μ A   in sleep mode, 21       mA in receive mode, 5       mA (MCU  “ on ”  and radio  “ off ” ), 
transmission of 23       mA (at  � 5       dBm), and 37       mA (at 0       dBm). 

 Z-Wave   products support the basic device class protocol libraries and command classes that 
reference the command exchanges between the devices. Home automation can be performed via 
an Internet connection through an IP/Z-Wave protocol translation gateway since Z-Wave does not 
natively support the IP protocol. The role of the gateway is then to connect the Z-Wave world to the 
Internet. 

 The   technology is supported and promulgated by the Z-Wave Alliance ( www.z-wave.com ).  

    19.3       CONCLUSIONS 
 Several   non-IP protocol specifi cations for smart objects have been developed. The ZigBee specifi ca-
tion, developed by the ZigBee Alliance, is based on the IEEE 802.15.4 radio standard and provides a 
set of mechanisms for creating networks of nodes as well as the establishment of applications on top 
of the network. The ZigBee specifi cation is owned by the ZigBee Alliance and vendors need to join 
the alliance to commercialize ZigBee technology. 

 Z-Wave   is another specifi cation for low-power communication in wireless smart object systems. 
It is patented and owned by the Z-Wave Alliance. Z-Wave specifi es an entire network stack from the 
physical layer to the application layer. The application layers are tailored to specifi c market segments 
such as home automation or energy management. 

 Neither   ZigBee nor Z-Wave are compatible with IP, which is a signifi cant problem for emerg-
ing systems that need to integrate with IP-based networks and services. To alleviate these problems, 
the ZigBee Alliance announced in mid-2009 that it would work towards allowing ZigBee to use IP, 
enabling seamless integration between ZigBee networks and IP networks.            
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                Smart Grid    20 
CHAPTER

    20.1        INTRODUCTION 
 The   power grid is the electrical network delivering electricity to houses, offi ces, and industrial users. 
As shown in  Figure 20.1   , electricity is produced by plants (nuclear, coal, solar, geothermal, wind) and 
transported through a hierarchical power grid network where electricity fl ows from power generation 
sources to homes after a succession of voltage transformations performed by substations. Electricity is 
generated and transported over long distances at high voltage (between 110 and 400       kV) to reduce line 
loss. The line voltage is then stepped down by transformers located in a primary substation (typically to 
40 – 60        kV) until it reaches pole top transformers (United States) or a secondary substation (Europe) 
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       Current grid infrastructure.    
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 where the voltage is further stepped down to 110/220       V (see  Figure 20.2   ). Power lines may either be 
overhead or underground depending on the voltage and country. 

 The   approximate number of primary substations in Europe is several thousands and the number of 
secondary substations is as large as several hundreds of thousands in the largest countries. 

 Since   there is one smart meter per house and several per building, there are hundreds of millions 
of meters in the world. 

 Thus   far, the power grid has been mostly managed and designed according to power consumption 
forecasts using monodirectional information fl ows. In the past few decades power demand was highly 
stable and predictable. With increasing environmental concerns to reduce CO 2  emission and the cost of 
energy, the end user has changed its power consumption behavior, thus making the power demand less 
predictable. Additionally more users have access to electricity leading to an increase in energy consump-
tion. Even more important is the change of power production in the grid with the generation of power 
from distributed renewable energy sources referred to as  “ distributed generation ”  both within the grid 
or downstream of the smart meter (at medium and low voltage). Distributed generation refers to solar 
panels, wind turbines, or micro combined heat and power (CHP) equipment that can convert waste heat 
with gas micro-turbines or fuel cells (signifi cantly more effi cient than combustion-based generation). 

 It   is predicted that 20% of produced power will be from renewable sources in Europe by 2020. 
In some countries that proportion has already exceeded 40%. Power generation from unpredictable 
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 distributed generation sources and user power consumption behavior changes increased the level of 
unpredictability. This requires fi ne-grained monitoring and management of the grid to maintain a high 
level of reliability and reduce the number of network outages. This type of management is not always 
deployed in today’s grid networks. Furthermore, power is injected in parts of the grid that are not 
always monitored, such as the medium voltage (MV) and low voltage (LV) areas, which adds to the 
requirement for widespread advanced monitoring and control systems in the grid. 

 Power   grid operators (also called utilities) are facing diffi cult challenges when managing the grid 
for the previously mentioned reasons as well as governmentally imposed restrictions on greenhouse 
gas emission. There is a strong requirement to design the next generation of the  “ greener ”  grid with 
a reduced carbon footprint in an increasingly more complex environment with increasing demand, 
power consumption changing patterns, and in the presence of a distributed sources generation that 
considerably reduces the level of predictability. 

 The   introduction of a potentially large number of electric cars (plug-in hybrid electric vehicles; 
PHEV) is undoubtedly a unique opportunity, but it brings its own challenges to the grid network. 
Smart mechanisms will be required to smooth out the energy consumption and draw power from the 
grid when it is appropriate according to power production. Note that it may also be interesting to use 
the millions of car batteries as a future electricity storage buffer for peak shaving. 

    Figure 20.3    shows the number of minutes of outage in the distribution grid. 
 Each   minute of network outage has economical consequences. The current grid  “ consists of more 

than 9,200 electric generating units with more than 1,000,000 MW of generating capacity connected 
to more than 300,000 miles of transmission lines … . Today’s electricity system is 99.97% reliable, yet 
still allows for power outages and interruptions that cost Americans at least $150 billion each year  —  
about $500 for every man, woman and child. ”       1    

   1  See  The Smart Grid: An Introduction , US Department of Energy, at  http://www.oe.energy.gov/1165.htm .   
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  The   consequence of these outages is the need for an advanced networking infrastructure in the Smart 
Grid from generation to distribution and fi nally homes and buildings. Such an infrastructure is made of bil-
lions of smart objects performing sensing and actuating in the grid to provide  “ real-time ”  information about 
the grid health and consumer demand to optimize the grid operation. Based on this set of data, the network 
will be able to adjust in  “ real time ”  to perform load shedding and accurate grid management with the objec-
tive of increasing grid reliability by reducing grid outages while reducing carbon footprint and cost. 

 Smart   objects such as sensors and actuators will collect data across the network to feed analyti-
cal tools to better manage the network and also to trigger various actions within the network (e.g., 
power consumption regulation based on dynamic interaction between the end user and the grid, fault 
isolation, etc.). Several scenarios are further analyzed in Section 20.3 of this chapter. Some of these 
actions will be triggered from within the network (using distributed in-network intelligence) while 
others will be managed using centralized systems (e.g., SCADA applications). 

 Thus   grid reliability is one of the most critical priorities for utilities. The grid should be managed 
by an extremely reliable communication network that provides the necessary infrastructure of real-
time monitoring and distributed grid management to reduce network outages: without a doubt IP net-
works have demonstrated their ability to meet these requirements. 

 The   forecast of investments from utilities in Smart Grid networks exceeds $42 billion, and some 
forecasts are signifi cantly higher. 

 Power   grid networks are designed for future use, thus providing a great deal of fl exibility with 
extremely high reliability and security. 

 Security   is undoubtedly another priority for Smart Grid designers since advanced networks sup-
porting critical infrastructure may be prone to various forms of attacks. The good news is that a pleth-
ora of existing IP security technologies are used to safeguard the overall networking infrastructure. 

    20.1.1       How Can We Defi ne the Smart Grid? 
 There   is no single defi nition of the Smart Grid. Instead, there is a set of expectations that must be met 
to face the wide range of new requirements exposed in the previous section. The Smart Grid must 
enhance the current grid network with advanced sensing actuators and a highly secure networking 
infrastructure to improve grid effi ciency, performance, and reliability as well as to support a wide 
range of new services (e.g., better knowledge of power consumption profi les, use of PHEV, distrib-
uted sources such as solar panel and residential power generation, and smart home appliances). 

 The   Smart Grid is one of the major applications for smart object networks, and the IP protocol 
will be central to them. As described through several use cases explored in this chapter, most of the 
expectations and requirements for the Smart Grid involve smart object networks: sensors (e.g., mea-
suring the current, voltage, phase, or reactive power) and actuators (e.g., circuit breakers, etc.) to effi -
ciently monitor and control the power grid, sensing in smart meters to measure power consumption, 
and a number of smart devices used in homes, buildings, and factories that communicate via special-
ized energy management devices with the grid for effi cient energy management. 

 A   typical power grid architecture from power generation to the home/building is depicted in 
 Figure 20.4   : power is generated by plants and then distributed to the end user through a distribution net-
work. The particularity of the grid network lies in its hierarchical structure. High voltage (HV) lines are 
connected to (primary) substations where the voltage is reduced to MV before being even further reduced 
to LV using pole tops (United States) or secondary substations (Europe). Finally, electricity is delivered to 
the end user where a smart meter is used to monitor energy usage (and to perform many other functions). 
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  In   each part of the network, smart objects are used to provide a myriad of services that are 
described in Section 20.3. 

 In   this chapter we outline several use cases for smart object networks in Smart Grid networks: 

      ●      Substation monitoring and control  
      ●      Smart metering  
      ●      Home energy management      

    20.2       TERMINOLOGY 
 There   are several common terms used when referring to Smart Grid architectures: 

      ●      Substation automation/integration (SA/I): The core grid network from power generation to power 
distribution. It includes the primary and secondary substations.  

      ●      Neighbor area network (NAN): Refers to the network between the substations and the homes. It 
includes the concentrators and smart meters.  

      ●      Home area network (HAN): The home network including smart appliances, home energy control-
ler (HEC), etc.     
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    20.3        CORE GRID NETWORK MONITORING AND CONTROL 
 This   fi rst use case shows the role of sensors and actuators in the core grid for monitoring and control. 

 Monitoring   and control undoubtedly deserves its own book considering the number of applica-
tions involving smart objects that utilities need to use to effectively monitor and control the power 
grid. The objective of this section is to provide an overview of three applications: 

      ●      Substation monitoring and control  
      ●      Substation condition-based maintenance (CBM)  
      ●      Line dynamic rating    

    20.3.1       Use Case 1: Secondary Substation Monitoring and Control 
 As   discussed previously, secondary substations are used to step down the power voltage from medium 
(40 – 60       kV) to low voltage (110/220       V). As shown in  Figure 20.4 , a substation hosts transformers as 
well as a number of devices called intelligent end devices (IEDs) such as circuit breakers, voltage 
sensors, reclosers, and surge protectors. IEDs are currently mostly managed by a centralized system 
located at the network control center (NCC) called the Supervisory Control and Data Acquisition 
(SCADA) application. 

 As   shown in  Figure 20.5   , in Europe secondary substations are equipped with transformers and 
remote terminal units (RTUs) that receive data from sensors and trigger local actions (referred to 
as substation monitoring and control). In addition, the substation may also host a smart meter 
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 concentrator that collects data from the meters and performs local processing to report information 
back to the SCADA system as discussed later in Section 20.4. Substations are connected to a data 
network using various types of networking technologies. 

 Sensed   data can trigger local actions performed within the substation or they can alternatively be 
reported to the SCADA application where the appropriate action is taken. Smart Grid networks tend 
to introduce distributed intelligence in the grid in contrast with a purely centralized system. 

 Smart   objects such as sensors are primarily used to monitor the MV and LV power lines and report 
a number of quality metrics such as the voltage and current levels for each phase. Other metrics of 
interest for utilities can then be derived such as the active and reactive power (known as the P and Q 
values). Such metrics can either be computed by the sensor, the RTU, a smart router located in the sub-
station, or the SCADA application. Sensors also report ground faults, fuse status, cable temperature, 
and voltage or current values exceeding some pre-confi gured thresholds that are sent to the SCADA 
application. They are also potentially stored in equipment within the substation (e.g., smart routers). 

 Smart   objects in a substation are not limited to sensors: circuit breakers (actuators) are also used 
for substation control and can either be controlled by the RTU or by the operator in charge of the 
SCADA application. 

 In   some grid networks, distributed algorithms can be used between substations (primary and second-
ary) to perform automatic failure recovery. Upon detecting a fault, the distributed algorithm automatically 
locates the fault and isolates the faulty line thus providing a fully automatic error recovery mechanism. 

 The   RTU has historically been using protocols defi ned by IEC      2    such as IEC 60870-5-101 and IEC 
60870-5-105 (mostly in Europe), or DNP3 (Distributed Network Protocol) and Modbus in primary 
substations in the United States, but there is clearly a trend toward a truly end-to-end IP architec-
ture from smart objects such as sensors and actuators to the SCADA application. Such smart objects 
already exist and could then directly be connected to a smart router that performs various tasks (such 
as hosting distributed algorithms to trigger local actions by sending orders to actuators such as circuit 
breakers) in addition to routing the IPv6 traffi c to the SCADA application and between substations. 
This is represented by the  “ direct ”  lines between the sensor and the router, thus replacing the tradi-
tional (usually analog) connection between sensors and RTUs and thus opening the door to a myriad 
of new services. 

 In   addition to providing critical information to utilities regarding grid health, these smart objects 
greatly contribute to the reduction of the number of grid network outages. As shown by the secondary 
substation in  Figure 20.5 , smart objects are an integral part of the central nervous system of the power 
grid.  

    20.3.2       Use Case 2: Substation CBM 
 The   use of sensors to proactively determine the need for equipment maintenance based on the health 
condition of the device is one of the most prevalent uses of smart objects in industrial networks; sub-
station automation and control is not an exception. By monitoring the device, utilities can perform 
maintenance before a failure occurs, thus saving the cost of the device but also indirect costs due to 
network outages. The alternative approach based on preventive maintenance with regular preplanned 
maintenance is not only usually less effective but more costly. 

   2   IEC: International Electrotechnical Commission  —   http://www.iec.ch/.    
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  CBM   includes the periodic sending of health reports (from a few minutes to hours) by a smart 
object, such as a sensor, to a central system in addition to sending alarms triggered by specifi c events. 
The number of such smart objects used for CBM in a substation is impressive. Here is a small subset 
of the wide set of sensors used in today’s environments: 

      ●      Partial discharge detectors  
      ●      Infrared thermographic imaging monitors  
      ●      Vibration sensor on rotating equipment  
      ●      Acoustic emission defect sensors  
      ●      Moisture in oil sensors  
      ●      Load current measurement sensors  
      ●      Backscatter sensors  
      ●      Wind speed sensors  
      ●      Temperature sensors  
      ●      Humidity sensors  
      ●      Dissolved gas analysis sensors  
      ●      Self-reporting distribution transformer (health metric life odometer)  
      ●      Liquid leaks  
      ●      Low oil levels  
      ●      Overhead cable ice load, swing, and tilt sensors    

 The   analysis of a set of reported values by sensors (due to well-known equations) is used to detect 
anomalies. For example, knowing the load and other parameters, utilities can determine the expected 
temperature of the system. When exceeding a threshold, an indication that maintenance is required 
is triggered, thus potentially avoiding expensive failures in equipment such as transformers. Another 
typical example is the use of dissolved gas analysis sensors to monitor transformers. The analysis of 
various dissolved gases in transformers such as oxygen hydrogen, methane, ethane, ethylene, carbon 
monoxide, and dioxide can help identify a transformer failure. Smart objects (sensors) allow for very 
regular (once a day or even every hour) analysis in contrast to the usual yearly on-site samplings that 
were sent to a laboratory for further analysis. 

 The   benefi ts of CBM are clear. Not only will CBM prolong the life of expensive devices and in some 
cases even increase their effectiveness, it will also avoid catastrophic failures that lead to costly grid net-
work outages. The use of smart objects for CBM also reduces the cost of preventive maintenance and 
increases workforce effectiveness in many ways. Whereas CBM solutions have been in use for years for 
local purposes usually using proprietary solutions, the need to generalize their use across the network 
involving extended communication between a myriad of devices shows the need for using a unifi ed 
communication infrastructure to support the required level of services. IP is undoubtedly the ideal can-
didate for that purpose supporting a wide range of devices: from large computers to smart objects.  

    20.3.3       Use Case 3: Line Dynamic Rating 
 Line   dynamic rating is yet another use case where IP smart objects can signifi cantly improve the effec-
tiveness of the power grid. With the emergence of distributed generation, it is common to face situations 
where power generation exceeds the grid transmission capacity. For example, in a region of New York 
1200 MW of generation is already operational with 8000 MW of generation planned for the future. 
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  Transmission   line capacity is limited. Resistive heating melts conductors at too high a current and 
voltage cannot be increased infi nitely. If the power line load is increased, the conductor temperature 
also increases leading to sagging through thermal expansion. This may cause line damage in addition 
to affecting the transformer effi ciency. The grid transmission capacity is usually expressed in static 
ratings using worst-case weather scenarios (high air temperature and minimal wind: typically full sun 
with a high temperature of 40 ° C (104 ° F) and wind speed perpendicular to the conductor of 1.4 mph). 
Utilities may decide to increase the static ratings by 10 to 20% during extreme situations for a short 
period of time on the basis of weather reports. But static ratings do not take into account real-time 
conditions, thus imposing static bounds to the power fl ows even when weather conditions allow for 
an increase in the grid capacity. 

 Unlike   static rating, dynamic rating makes use of real-time measurements of parameters such as 
temperature. It has been found that during high wind conditions, conductor thermal capacity could be 
increased for a period of time thus leading to more effi cient use of wind generation. 

 Dynamic   rating makes use of various techniques. First, it can be based on weather because of 
equations using air temperature, solar heating, and wind speed. This technique does not require sen-
sors mounted on the power line, thus it does not consider the effective line load. The weather moni-
toring equipment must be appropriately placed to refl ect the weather parameters of the line. Other 
dynamic rating techniques involve the use of several sensors on the line. For example, real-time 
conductor temperatures can be converted to an equivalent wind speed used with a series of other 
parameters to compute the dynamic line rating. To be effective this technique requires the use of sev-
eral sensors along the power line that communicate with each other, which is another piece of smart 
object networks. Another dynamic rating technique is based on sag/tension monitoring that provides 
real-time data converted to equivalent wind speed. 

 The   Electric Power Research Institute (EPRI) has developed monitor sagometers and backscat-
ter conductor temperature sensors in addition to a new rating calculation equation (dynamic thermal 
circuit rating; DTCR) to optimize the power transmission capacity of existing lines at moderate cost. 
The New York Power Authority (NYPA) has been working with EPRI to use real-time or historical 
weather and electrical load data to compute dynamic ratings. Required real-time data involve a vari-
ety of smart objects: temperature/backscatter sensors, video sagometers, and tension sensors installed 
on HV lines exposed to high wind capacity connected to the line. 

 Depending   on the study, it was shown that the gain in power transmission capacity can vary 
between 10 and 20% and even up to 30% in some cases. The Electric Reliability Council of Texas 
(ERCOT), who started to use dynamic rating in 2005, reported signifi cant power transmission gains: 
during a typical winter day, improvement ranged from 10% (South Houston) to 30% (North West) 
and even reached 128% in a South North region. 

 Most   of the smart objects (sensors) used for dynamic rating are equipped with radio communica-
tion and when not main-powered, solar panels can be used as a local source of energy power. Power 
supply typically is provided by solar panels, but emerging alternatives include contactless power 
scavenging from the electromagnetic (EM) fi eld around high voltage, high current cables.  

    20.3.4       Technical Characteristics and Challenges 
 Most   core grid monitoring and control applications have common characteristics and present similar 
technical challenges. 
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    20.3.4.1        The Networking Environment 
 Most   of these smart object networks operate in fairly harsh environments due to high temperature 
or strong electromagnetic interferences (EMI), especially in HV and MV substations, due to induc-
tive load switching, lightning strikes, electrostatic discharges, and radio frequency interferences. 
Furthermore, the power grid covers vast areas of operation including many outdoor networks that 
have their own source of disturbance. This means that the plethora of smart object networks used in 
the core grid for monitoring and control are operating in harsh conditions but must still provide a very 
high level of reliability, thus imposing diffi cult challenges to software and hardware engineers.  

    20.3.4.2       Traffi c Flows and Network Topologies 
    20.3.4.2.1       Substation Monitoring and Control 
 Historically   most of the traffi c fl ows have been between sensors and the RTU that communicates with 
the centralized SCADA application. Local traffi c fl ows are typically between IEDs and RTUs in both 
directions (sensors reporting various metrics and RTUs or smart routers sending orders to actuators 
such as circuit breakers). 

 With   the emergence of new standards such as IEC 61850 and distributed intelligence in the Smart 
Grid, we can clearly anticipate a strong increase of the traffi c between smart objects residing within 
substations (smart object to smart object communication). 

 Consequently  , traffi c fl ows tend to move from a hub and spoke model (between substations and 
the SCADA application) to a more distributed model (between smart objects and local processing 
devices and between smart objects residing in different substations).  

    20.3.4.2.2.       CBM Applications 
 CBM   reports can be sent as often as every minute for highly critical equipment monitoring and up to 
hours or even weeks for less critical or less stressed devices. In some circumstances critical alarms 
may be sent upon detecting an anomaly requiring immediate action. For example, a dissolved gas 
analysis sensor is expected to send data to the data concentrator in the substation once a day, but this 
transmission rate could be increased to once every hour if the transformer exceeds its static rating. 

 Data   are usually collected by a central system that stores all reports and alarms for immediate 
processing to identify the set of immediate required actions and also for further processing for failure 
profi le analysis, assets management, and so forth. 

 Although   most of the fl ows are multipoint to point (from the smart objects to the central system), 
some of them may be locally processed within a substation for immediate local processing. An alarm 
may require an immediate local action on an actuator (another smart object). 

 Finally  , some scenarios may involve point-to-point traffi c between smart objects to collectively 
determine the required set of actions.  

    20.3.4.2.3       Dynamic Ratings 
 Two   main applications hosted in the Network Operating Center are involved in dynamic rating 
operations: the Dynamic Line Rating System (DLRS) and the Dynamic Transformer Rating System 
(DTRS). 

      ●      DLRS: Receives data from the sensors in the fi eld and computes the dynamic rating of the power 
line. It then compares the calculated line dynamic rating to the current loading information gath-
ered from sensors in the substation.  
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      ●       DTRS: Receives data from the sensors in the fi eld to compute the dynamic transformer rating. It 
then compares the calculated transformer dynamic rating to the current load information to deter-
mine if the transformer has exceeded its capacity.    

 Dynamic   line rating sensors send reports to the data concentrator every minute that it transmits data 
to the DLRS. Note that other substation sensors (switch, circuit breakers) also send data to the DLRS to 
compute the dynamic rating since they could bottleneck if their rating is below the line’s rating. 

 Dissolved   gas analysis sensors typically send data to the DLRS once a day, but this frequency 
may be increased to once per hour if the transformer exceeds its static rating.   

    20.3.4.3       Smart Object and Link Characteristics 
 As   in most industrial networks, smart objects designed for power grid automation are usually ruggedized 
and must be highly reliable to the critical nature of the applications. Sensors and actuators vary from fairly 
simple to highly sophisticated devices that have fairly constrained resources (CPU, memory, etc.). 

 Links   interconnecting the smart objects are both wired (in substation) and wireless (for some outdoor 
applications), usually with low speed and with a relatively high error rate (also qualifi ed as lossy links).  

    20.3.4.4       Quality of Service and Network Reliability 
 As   with most industrial applications, Quality of Service (QoS) is a critical component of the overall 
architecture. Although some data are not critical, others such as critical alarms have real-time require-
ments and the networking infrastructure must guarantee reliable delivery, minimized delays, and 
bounded jitters, which makes IP highly suitable to these environments. IP supports high QoS due to a 
number of techniques discussed in Chapter 15 (traffi c classifi cation, shaping, scheduling, congestion 
avoidance, traffi c engineering, etc.). 

 With   CBM, the level of required QoS signifi cantly varies with the nature of the report. Some data 
are clearly non-critical and a packet loss may not be a problem, whereas a critical alarm requires low 
networking delay and high network reliability. Most of the alarms in substation monitoring and con-
trol applications are critical. Similarly, dynamic rating is yet another example where QoS is vitally 
important. In many cases, the data sent every minute to the DLRS and DTRS must be reliably trans-
mitted with moderate tolerance to delays. 

 IP   networks also provide a wide range of QoS that make it attractive for these types of networks.  

    20.3.4.5       Scalability 
 The   number of smart objects in Smart Grid networks is extremely high. As pointed out in the 
Introduction of this chapter, a single power network can be made up of hundreds of thousands of sec-
ondary substations/pole tops. With at the very least a few dozen smart objects per substation/pole top, 
in addition to thousands of sensors located on power lines, the number of smart objects could be several 
millions. Thus scalability is a prime concern, which again supports the use of protocols such as IP (and 
in particular IPv6) that largely proved their scalability. As discussed in detail in Chapter 17, IP protocols 
such as routing (RPL) for these types of smart object networks have been designed to be highly scalable.  

    20.3.4.6       Reliability Requirement 
 Reliability   of the control network for the Smart Grid is highly critical and tightly coupled with the sup-
port of QoS. Not only must these smart object networks be operational at all times, they must also be 
able to recover various types of failures within usually bounded times.  
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    20.3.4.7        Mobility 
 Mobility   in Smart Grid networks is generally low to moderate. With the exception of the human work-
force having to perform on-site maintenance, most of the smart objects are fi xed powered devices.  

    20.3.4.8       Security 
 Security   is undoubtedly one of the most critical concerns in Smart Grid networks considering the 
high criticality of power grid networks. As discussed in Part I, Chapter 8, IP has been enhanced with 
a number of security mechanisms and its degree of exposure through the public Internet helped reach 
a very high degree of security because of authentication, encryption, and non-repudiation techniques.  

    20.3.4.9       Network Management 
 Considering   the number of smart objects and other devices  and  their critical concerns, network man-
agement is key and the grid has a long history of sophisticated network management with SCADA 
applications. Substation automation requires network management considering the number of devices, 
autoconfi guration, and device/service discovery is highly desirable.    

    20.4       SMART METERING (NAN) 
    20.4.1       Applications and Use Cases 
 Electrical   meters have been greatly enhanced with added features whereas not so long ago (and this 
is still the case in many countries) metering management was limited to manual reading of electrical 
meters requiring periodic trips to each physical location. 

 The   fi rst set of enhancements, automatic meter reading (AMR), consisted of adding communi-
cation functionality to the meters to perform an automatic collection of power consumptions, load 
curves, alarms, and status from the NCC for automatic billing as well as device monitoring of the 
meters. Moreover, real-time power consumption helped provide accurate billing instead of using 
historical data coupled with predictions (the requirement is usually to provide meter reading every 
15 minutes, although the data may only be downloaded once a day). 

 The   next step consisted of equipping meters with more advanced functionalities such as sens-
ing for power-quality monitoring and power fault reports, thus leading to the concept of Advanced 
Metering Infrastructure (AMI). 

 Communication   between a central system and smart meters became truly two-way in support of a 
myriad of new and advanced applications such as dynamic pricing, demand-response (DR), and grid 
monitoring due to advanced sensing capabilities. 

 Dynamic   pricing and demand-response allow the utility to perform load shedding, thus optimizing 
their infrastructure. Although dynamic pricing is likely to be provided by the smart meters to the end 
user (most likely to an HEC residing in the home), dynamic signals supporting DR may also be sent 
by other means such as the Internet. 

 Two  -way communication is fundamental for the support of advanced services in AMI networks. 
The following list provides a subset of the information exchanged between smart meters and the cen-
tral SCADA application: 

      ●      Dynamic pricing (new hour tariff)  
      ●      Load curves  
      ●      Actuation of a circuit breaker  



31720.4 Smart Metering (NAN)

      ●       Closing delay on metrological fault  
      ●      Alarm reset  
      ●      Communication time out before circuit breaker opens    

 Data   retrieved by the SCADA application from smart meters: 

      ●      Power consumption per hour tariff (kilowatt consumed for each tariff)  
      ●      Active alarms  
      ●      Logs of historical alarms  
      ●      Power supply remaining battery life  
      ●      Nominal battery life  
      ●      Circuit breaker state  
      ●      Smart meter parameters such as serial number, manufacturer identifi cation, meter type, etc.    

 Furthermore  , smart meters can also be used for several additional services that are of great interest 
for utilities: 

      ●      Geographic information system that keeps track of the meter location, phase the meter is con-
nected to, automatic detection of any change in the LV network, and automatic data upload for 
newly connected meters.  

      ●      Grid monitoring where the smart meter is part of the grid and as such can be used for grid moni-
toring. For example, it could report alarms and help localize faults along MV feeders or could 
detect an absence of voltage on a phase that is not detected by the feeder breaker.  

      ●      Report power outage in near real time with the ability to perform fault location (grid vs. private 
installation side).  

      ●      Since the smart meter is also a sensing device, it can be used to provide load curves on any single 
phase to perform grid network engineering and reduce losses and voltage drops.    

 Several   large-scale deployments of smart meters already took place and many are planned in the 
future. For example, in one of the largest deployments the entire customer base (over 27 million) was 
equipped with smart meters supporting a wide range of services such as real-time power consump-
tion, the ability to change the maximum amount of power available at any given time, the ability to 
turn power on and off, automatic detection of power outage, and so forth. 

 In   Japan, smart meters are equipped with various sensing capabilities. 
 In   the United States Duke Energy, PGE, and several other utilities are deploying millions of smart 

meters with advanced AMI functionalities such as near real-time power consumption, dynamic pric-
ing, etc. Several other countries also started similar deployments on very large scales (e.g., France, 
UK, Ireland, Nordic countries, Germany, Australia, New Zealand, Turkey, etc.). 

 Smart   metering is not limited to electrical meters, it also applies to water and gas meters (since 
this chapter is devoted to Smart Grid networks, we focus mainly on electrical meters).  

    20.4.2       Technical Challenges and Network Characteristics 
    20.4.2.1       The Networking Environment 
 Although   the networking environment is not as harsh as substations with HV or MV lines, smart 
meter networks are mostly outdoors and, as discussed in the next section, connectivity between smart 
meters may be greatly affected by the nature of the links used in these environments.  
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    20.4.2.2        Traffi c Flows and Network Topologies 
 Smart   meter networks may have different topologies: star topologies up to a concentrator, meshed 
topologies made of routers, and smart meters acting as routers or a mix of both. These networks are 
usually hierarchical and concentrators are interconnected via a backbone network. The current trend 
is to migrate these networks to IP end to end.  

    20.4.2.3       Smart Object and Link Characteristics 
 In   contrast with gas meters, electrical smart meters are main powered devices (equipped with a bat-
tery for redundancy purposes). Still, this does not mean that power consumption is not an issue. 
Furthermore, smart meters usually have moderate constraints in CPU processing and are required 
to have enough storage capacity not only to store information related to power consumption that 
could be less frequently downloaded by utilities, but also to store a detailed log of power outages. 
Regulation varies between countries, but it is common to require the storage of several months of his-
torical faults, alarms, and power consumption. 

 Smart   meters are thus smart objects forming a complex multi-hop network and act as end devices 
and routers. Meters are interconnected by wireless links (mostly in the United States) or Powerline 
communication (PLC) technology (in Europe although some meters are also using wireless technolo-
gies in Europe too). These networks are a perfect example of smart object networks and, more pre-
cisely, Low-power and Lossy Networks (LLNs). Indeed, smart meters are constrained in CPU power 
and memory as well as power consumption since utilities require drastically reduced energy con-
sumption. Moreover, smart meters are interconnected by lossy links. When using wireless links, link 
reliability is usually quite low with a large amount of link fl aps. This also applies to PLC links where 
the reliability can greatly vary for a number of reasons such as impedance variation, fl oor noise, and 
so forth, as discussed in Chapter 12. Link bandwidth is also fairly limited, from a few Kbits/s in the 
worst case to a few hundreds of Kbits/s in the very best case. The myriad of link layers in use also 
explains the suitability of IP as the convergence layer in smart meter networks, which allows for the 
use of PLC, high and low bandwidth wireless technologies, or a combination of both.  

    20.4.2.4       Quality of Service and Network Reliability 
 QoS   and network reliability requirements are relatively low in smart metering networks. Meter read-
ing is usually not a critical application and network outage of a few hours is usually not a major 
issue. With the emergence of new applications such as dynamic pricing and DR QoS and reliability, 
requirements tend to increase but are not likely to be very high.  

    20.4.2.5       Scalability 
 Smart   meters are made of millions of devices, thus scalability must be extremely high. Once again, 
this is another compelling reason to use IP. New IP protocols such as RPL (discussed in Chapter 17) 
have been designed to support a large number of IP smart objects in a single network.  

    20.4.2.6       Mobility 
 There   is no mobility requirement in smart metering networks.  

    20.4.2.7       Security 
 Smart   metering networks is another area of the Smart Grid where security is a paramount concern, 
since the hacking of a smart meter could lead to cutting power to potentially thousands of homes. 
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 Smart meter vendors actively work on the use of sophisticated authentication and encryption 
technologies.  

    20.4.2.8       Longevity 
 Smart   meters are required to last for at least two decades, preferably with no human intervention. 
This requires the support of dynamic software upgrades but, more important, fl exible hardware and 
software functionalities capable of supporting features that will be required in the next two decades.    

    20.5       HAN 
    20.5.1       Applications and Use Cases 
 As   previously noted, solutions for energy management are currently extremely rudimentary. The only 
sensing device available for energy monitoring is the electrical meter reporting the total energy con-
sumption in the home with no granularity. 

    Figure 20.6    shows a typical HAN confi guration. The HEC is connected to the HAN on one side 
and to the grid on the other side either via the Internet or the smart meter. The HAN is composed of 
a variety of smart objects connected via both wireless (e.g., IEEE 802.11, IEEE 802.15.4) and PLC 
links forming a low-speed control command network. Note that some HANs will be wireless only, 
others will exclusively use PLC, and others will be made of a mix of wireless and PLC links. 
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    20.5.1.1        The Role of Smart Objects 
 Smart   objects are at the heart of the HAN and provide effi cient energy management solutions: 

      ●      Smart appliance: An appliance equipped with a smart object(s) capable of sensing, actuating, and 
communicating with the HEC. The smart appliance typically reports energy consumption to the HEC 
(sensing) and could also be controlled by the HEC according to the DR signals (discussed later in 
Section 20.5.1.1.2) and to user-defi ned rules on the HEC. In some cases, a dialog could even take place 
between the smart appliance and the HEC to make appropriate decisions according to the situation. 
For example, it might not be wise to interrupt a washing machine cycle if the cycle is about to end. 
Restarting a new cycle after pausing for several hours may end up consuming more energy.  

      ●      Smart plugs: It may take some time before all appliances are equipped with smart objects. Thus an 
intermediate solution is to use an electrical wall-plug adaptor equipped with a sensor to measure 
the energy consumption in near real time and allow for appliance control (on/off action). Such 
smart plugs (or alternative form factor like a DIN rail mounting design) could be used for a vari-
ety of devices such as a pool pump, heater, HAVC, and so forth and can communicate with the 
HEC using PLC or wireless communication.  

      ●      Smart thermostats: Could control the temperature setting of the room based on the received DR 
signal from the HEC and could lower the temperature by several degrees for a period of time and 
report energy savings.    

 As   discussed in the Introduction, the Smart Grid enables a myriad of new services from power 
generation to home and buildings. Although this section is mainly devoted to home energy manage-
ment, it is fairly straightforward to fi gure out how similar services can be supported for building 
energy management (further discussed in Chapter 24 devoted to the Building Automation Use case). 

 There   are two main applications of interest to the end user discussed in this section: 

      ●      Home energy management  
      ●      Demand-response    

    20.5.1.1.1       Home Energy Management 
 Many   studies have shown that user energy saving ranges between 5 and 15% if the users were given 
the appropriate tools to accurately monitor their energy consumption at home. There is very limited 
data provided to the user who does not have access to accurate billing and does not know which 
devices in the home are the main sources of energy consumption. Thus it is imperative to provide 
user-friendly tools that allow access to the power usage in the home via a simple display as well as 
other forms of data access (PDA, Web Interface). 

 In   addition to (real-time and historical) power usage, other useful information could be provided 
such as tips from utilities to help save energy and main sources of energy consumption in the home 
(HVAC, swimming pools, etc.). For example, the following set of data could be provided to the user: 
energy usage in kWh (total and per device), energy cost (total and per device), and CO 2  consumption. 
These data could be provided in real time and also with historical statistics over the past few hours, 
days, or even months. 

 Another   service could be to detect a malfunctioning device by observing the power consump-
tion and compare it to energy consumption profi les of similar devices. In some cases, it might even 
be useful to correlate the energy consumption and other external data such as weather. Observing 



32120.5 HAN

 the heat energy consumption and correlating the data with weather information could detect that the 
heater does not perform at its maximum level of effi ciency or provide some indication of the level of 
thermal isolation of the home. 

 Furthermore  , users should have the ability to act upon devices according to their consumption 
based on a series of rules such as time of the consumption, real-time energy pricing, and so forth. 

 Finally  , it is envisioned that other services will emerge such as micro-generation management 
(information related to the energy produced by renewable energy sources such as solar panels and 
wind locally generated by the home) and PHEV (indication of energy consumption by a car, charging 
level, etc.).  

    20.5.1.1.2       Demand-Response 
 One   of the main challenges utilities are facing is adapting the grid capacity to user demand and in 
particular handling peak loads. Peak load shaving can only be performed in two ways: 

      ●      Over-provisioning the grid capacity (clearly not a viable option)  
      ●      Spot purchase energy on the market, which turns out to be a costly option since energy bought  “ on 

the fl y ”  is usually signifi cantly more expensive than the normal price    

 The   concept of DR is based on the ability of the grid to dynamically interact with the home (or a 
building) to regulate the power demand according to the grid capacity with some pricing incentive 
for the end user. Upon peak load on the grid, the utility sends a signal to the end user via the HEC 
requesting power consumption reduction to perform load shedding at peak times. Simplifi ed DR pro-
grams have been in place in several countries for years; a signal is sent to the smart meter at specifi c 
times of the day (known by the end user) to indicate the energy price. By knowing that electricity 
costs X cents between 7:00 a.m. and 11:00 p.m. and Y cents during 11:00 p.m. and 7:00 a.m., there is 
a strong incentive for the end user to use high-impact appliances during low price periods whenever 
possible. Such static pricing shifts occurring at the same time are a bit more controversial since there 
is a tendency for all demanding energy appliances to simultaneously start thus leading to peak load on 
the grid. Some utilities then improved the system by shifting low price periods on a per region basis. 

 The   concept of DR goes one step beyond with several additional features: 

      ●      Dynamic pricing: In accordance with the grid load, the energy price is dynamically adjusted and 
communicated to the HEC.  

      ●      Critical alarms: Such signals can be sent at any time to cope with unexpected events in the grid 
that require lower energy consumption (e.g., network outage). Such signals could also be sent in 
specifi c conditions for an entire day when price is at a maximum. Such signals have a higher pri-
ority than dynamic pricing signals.    

 DR   is two-way communication: signals are sent to the HEC and energy consumption reduction 
reports (potentially validated due to meter readings) are provided back to the power grid. Such reports 
are then used for energy bill discounts. It is even envisioned for the HEC to be able to provide proactive 
information to the grid about energy consumption that could be off-loaded from the grid, should the grid 
run into peak load. Such information enables the grid to take appropriate actions upon peak loads. 

 Does   that mean that utilities will control end-user appliances? No. Fortunately full control is given 
to the end user who may even decide to ignore near real-time pricing indications. This is where the 
HEC comes into play. As shown in  Figure 20.5 , the HEC controls the HAN and all of the connected 
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 devices and smart objects in general in the home. Functionally the HEC is connected to both the 
HAN where smart objects are connected (sensors, actuators) and the grid via either the smart meter 
or the Internet. DR signals are received from the grid to report dynamic energy pricing that is then 
processed by the HEC according to user-confi gured rules. For example, an end user may decide to 
reduce by X degree the temperature of a room if the energy price exceeds Y cents per kWh. It might 
also be possible to interact with the device to postpone a specifi c action (e.g., start a washing machine 
cycle) by several hours to avoid peak times. A friendly user interface can then be used by end users to 
control their devices and appliances in the home according to real-time energy pricing. 

 Needless   to say, such an architecture opens the door to non-energy-related applications: appliance 
monitoring for health management, simulation using lighting management scenarios, and so forth. 
These applications fall into the category of home automation and are further discussed in Chapter 23.    

    20.5.2       Technical Challenges and Network Characteristics 
    20.5.2.1       The Networking Environment 
 The   HAN environment is signifi cantly less challenging than an HV substation environment. That 
being said, low-power wireless links such as IEEE 802.15.4 may also be subject to all sorts of inter-
ference due to other wireless radios (e.g., IEEE 802.11) and appliances. Similarly, the electrical wir-
ing system may be of variable quality with noises creating various perturbations of the low-speed 
PLC, not to mention the issue of coexistence with other high-speed PLC technologies used for other 
purposes than control/command.  

    20.5.2.2       Traffi c Flows and Network Topologies 
 The   HAN topology is fairly straightforward. PLC should be able to reach out to almost all devices in 
the home (there are systems that provide connectivity across multiple phases while offering several 
Kbits/s of bandwidth). Smart objects could also be connected in a mesh wireless IP network. Home 
automation has been one of the targeted applications for the routing protocol in LLNs, which are dis-
cussed in great detail in Chapter 17. 

 Most   of the traffi c fl ow for energy management in the HAN is between smart devices and the 
HEC. There may be a few point-to-point fl ows between smart devices and the meter or the HEC 
and the meter. In the future, distributed energy management applications may require communication 
between smart objects to better optimize energy management in the home.  

    20.5.2.3       Smart Object and Link Characteristics 
 Smart   objects in the HAN such as smart plugs, thermostats, or microcontrollers embedded in smart 
appliances are all fairly inexpensive (a few dollars for the communication engine and in the near future 
a few dozen cents), which also means limited CPU and memory. There is a mix of main- and battery-
 powered devices usually equipped with low bandwidth communication capabilities (a few dozen 
Kbits/s). The degree of constraints varies with cost, but simple devices such as light bulbs equipped 
with sensor/actuator capability are envisioned. In such a case where costs must be as low as possible, 
resources are likely to be extremely scarce. Note that resource constraints also have an impact on soft-
ware design; for example, the routing protocol designed by the Internet Engineering Task Force (IETF; 
RPL) supports devices with extremely limited memory and new mechanisms have been designed to 
allow routing in a home network where nodes may not have any routing table storage capability.  
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    20.5.2.4        Quality of Service and Network Reliability 
 The   HAN for energy management is unlikely to be a multi-QoS network where packet prioritization 
is required in case of network congestion. Indeed, in contrast with applications such as substation or 
industrial automation, all messages have similar QoS requirements. Requirements for reliability are 
not high. A temporary HAN failure has limited consequences. The smart appliance or smart plug may 
be out of control for a period of time with no dramatic consequences.  

    20.5.2.5       Scalability 
 Scalability   is not a primary concern, since in the foreseeable future HANs are expected to be limited to a 
few dozen smart objects, although that number may be higher (a few hundred) for multidwelling units.  

    20.5.2.6       Mobility 
 Mobility   in the HAN is required but moderate. Most devices are fi xed.  

    20.5.2.7       Security 
 Security   requirements are high. Such networks must be secure. Authentication and encryption tech-
nologies are an absolute must.  

    20.5.2.8       Network Management 
 The   HAN is a typical example of a network that must be self-managed and requires minimal confi gu-
ration from the end user. Smart devices must be self-confi gured with autodiscovery, and several IP 
protocols are already available to perform this discovery (e.g., Bonjour protocol developed by Apple). 
Once installed the smart object starts to discover the network, be part of the routing protocol, and 
announce itself to the HEC that discovers the device’s capabilities. Several powerful HAN manage-
ment solutions with a very friendly user interface are already available.   

    20.5.3       Summary of the Technical Challenges 
 For   each use case, we provided an overview of the technical challenges.  Figure 20.7    provides a sum-
mary of the technical challenges and characteristics for the Smart Grid use cases discussed in this 
chapter. Note that the ranking may slightly vary between applications.   

    20.6       CONCLUSIONS 
 The   worldwide Smart Grid initiative involves a complete transformation of the networking infrastruc-
ture used to manage the power grid with billions of connected devices to achieve better energy man-
agement, reduced carbon footprint, support of new sources of renewable energy with an extremely 
high level of reliability, and reduction of cost. The number of applications where smart objects will 
play a key role in our future is only bounded by our imagination. Smart Grid networks are an area 
where smart objects will defi nitely play a major role. 

 Sensors   and actuators have been used in the current grid for years. Their number will dramatically 
increase over the next few years in all areas of the Smart Grid from distribution to homes and build-
ings. Their communication models will be based on IP, end to end, which undoubtedly meets all of 
the stringent requirements of Smart Grid networks. 
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  Although   a power grid managed by isolated/standalone communication control grid networks was 
a viable option a few years ago, the emergence of innovative applications for grid monitoring and 
control, DR, and many other applications makes the need for an end-to-end standardized-based com-
munication protocol a must. 

 The   adoption of IP end to end has a direct consequence on cost and manageability. The use of 
multiprotocol gateways interconnecting proprietary protocols is a non-starter considering the com-
plexity of such a network, the scalability requirements, and cost pressure. IP-enabled smart objects 
connected to multi-service IP networks is a core component of Smart Grid networks, and these new 
generations of grid networks will dramatically change the way power is consumed for the better of 
our planet.      
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 FIGURE 20.7  
       Summary of the technical challenges and characteristics for the use cases presented in this chapter.    
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             Industrial Automation    21 
CHAPTER

  Industrial   automation is the automation of industrial processes by means of modern computer-assisted 
technology. It is a broad industry comprised of many segments and application domains. A common 
way to divide the industrial automation market is according to the type and characteristics of the 
process: 

      ●      Process manufacturing (continuous processes) is the branch of manufacturing that deals with for-
mulas and raw material. The output cannot be distilled back to its basic components, for example, 
food, paper, steel, ore.  

      ●      Discrete manufacturing (manufacturing of discrete units) is the branch that deals with orders and 
parts. The output is easily identifi able things, for example, cars, toys, computers.    

 The   opportunities for wireless communica-
tion within the industrial automation market are 
growing at a rapid rate for several reasons. One 
reason is the available access to diffi cult loca-
tions and hazardous areas in the plant. For these 
applications, maintenance and diagnostic tasks 
can be accomplished more quickly, effectively, 
and safely using a wireless connection. Process 
manufacturing has an estimated growth rate of 
32% per year, and is expected to become a $1.1 
billion business by 2012 (see  Figure 21.1   ). For 
discrete manufacturing the growth rate is esti-
mated to be almost as high and is expected to 
grow from $400 million to over $800 million 
by 2012.      1    

    21.1       OPPORTUNITIES 
 Industrial   automation has always lagged behind telecommunications and consumer applications when 
it comes to adopting wireless communication technologies. This originates from the more stringent 

   1  ARC Advisory Group,  http://www.arcweb.com .   
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 performance and reliability requirements in industrial automation, and also from the conservative mind-
sets in these industries. Wireless communication is, however, becoming more widespread in industry, 
especially since the recent ratifi cations of standards designed with industrial automation requirements in 
mind.      2    

 During   recent years, industrial automation vendors have moved forward and are now talking about 
 wireless infrastructure  as an important goal. The trend is to connect more than just sensors; the inten-
tion now is to provide a wireless backbone for everything in the plant from sensor information to por-
table human machine interfaces (HMIs) to mobile phones. However, it is important to note that most 
vendors currently see wireless technology as complementary to wired, and not as a replacement. 

 Discrete   manufacturers are mainly focused on planning and deploying wireless infrastructures within 
their factories and assembly lines for measurement and service applications. In contrast, process manu-
facturers are focused more on cable replacement and mesh sensor networking technologies. Almost all 
standardization organizations have also made a clear distinction between these two industry segments 
and have created separate working groups to propose solutions that match their different requirements. 

 The   use of wireless technologies in industrial automation provides new possibilities and advantages 
compared to the existing wired solutions. These technologies will enable easier access to more informa-
tion related to the process and the equipment used in the process. Today, many plant automation instal-
lations only provide the basic process values, for example, temperature, fl ow, and pressure. There is a 
lot of valuable information such as the status and condition of the equipment and the addition of more 
process measurement points that offer a signifi cant opportunity to increase the productivity of industrial 
installations. It is possible to access this information with wired sensors; however, the cost is prohibitive 
due to the required redesign, installation, and wiring. For some applications wiring is extremely expen-
sive due to limited availability of space and hazardous areas, which puts requirements on the cables and 
connectors. This is where wireless technology provides a very attractive solution due to its nonintrusive 
nature. It is easier to retrofi t wireless equipment on existing installations; they require no (or very little) 
wiring, which makes planning, design, and installation easier and more cost-effective. 

 Wireless   technology also provides fl exibility regarding scalability; it is easier to extend a network 
with more sensors than using wired technologies. Mobility is another attractive feature, which makes 
it easier to reconfi gure a network by moving sensors to different positions if the application process is 
altered thus requiring sensors mounted in different locations. 

 Besides   providing easy access to information, easier installation, and scaling, wireless technology 
opens up a range of new applications. It is now possible to mount sensors on rotating equipment such 
as rolling mills for paper and steel, robot swivels, and moving equipment. It is even more reliable to 
use wireless technologies since there will never be any cable or connector problems due to wear and 
tear, which often causes problems for swiveling equipment using wired solutions. Wireless also offers 
a cost-effective way to use temporary installations to fi ne-tune a process during a few months or col-
lect statistical data and then remove the installation. 

 Recently   the trend of industrial automation is to provide remote access possibilities to plants, or at 
least parts of plants (e.g., to remote control vehicles), and collect condition monitoring information. 
Wireless technology provides an easy way to connect to these industrial automation sites, especially 
sites located in remote parts of the world such as mines and onshore and offshore oil and gas fi elds. 

   2  WirelessHART was ratifi ed in September 2007 and ISA100.11a-2009 was ratifi ed in September 2009.   
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 With wireless access, the control room no longer has to be located on site; instead it can be located in 
or near population centers where people prefer to work and live. Actual personnel only need to travel 
to the site location for maintenance or if problems arise. 

 Wireless   technology also enables a new fi eld called the mobile workforce. In different vertical indus-
tries there are many areas where mobility can be leveraged to benefi t a mobile workforce; for example, 
fi eld maintenance, site survey, and localization. A wireless localization application makes it possible to fi nd 
and track inventory and valuable assets and workers that are moving inside and outside of the plant. The 
ability to locate each worker quickly or to allow remote access to a site and the information it contains 
offers safety and productivity benefi ts. 

 All   in all, wireless technology will open up many new possibilities within the industrial automa-
tion area.  

    21.2       CHALLENGES 
 For   wireless communication technology to become successful in the industrial automation market 
there are many challenges that must be overcome. These challenges range from issues arising from 
the wireless communication technology, related technologies such as batteries and security, and plant 
automation control systems to the general mindset of people in the business. 

 One   of the biggest hurdles wireless communication technology faces is the misconception of how 
easy the wireless communication is to compromise. This is because it is possible to sit outside the 
fence surrounding the plant site and eavesdrop on the plant traffi c, inject fake traffi c, or even jam the 
wireless signals. Therefore, all wireless communication technologies used in a plant must employ 
security mechanisms (e.g., encryption, authentication, integrity checking) to ensure unmolested 
communications. 

 The   environment in which the wireless technology solution will operate is considered very harsh. 
A plant typically consists of metal constructions (pipes, walls, fl oors, machines, etc.) and moving 
equipment (forklifts), which create fading problems for wireless signals. In addition, there is elec-
trical machinery (drives, welding), which affects the radio by causing electromagnetic interference 
(EMI) in the frequency spectrum. 

 Another   important aspect is that the physical location of the wireless equipment is determined 
by the process that it monitors or controls, and not by where the radio communication environment 
is best. 

 In   the face of these challenges it is important that wireless technology can deliver data reliably. 
Furthermore, many wireless industrial automation applications have very tough requirements for reli-
ability such as wireless control and localization in safety critical areas. In wireless communication 
several different approaches for reliable communication exist. One solution is to employ mesh net-
work topology; another approach is to add error control techniques. 

 As   discussed in Section 21.1, industrial automation is a wide area that contains many applications 
and use cases, which in turn puts a wide range of requirements on the wireless communication. It is 
quite obvious that a single radio communication technology cannot satisfy all of the requirements on 
the physical layer; however, using a unifi ed technology on a higher layer (IP) could be an advantage 
for many parts of the automation network, since there is a trend for wired communication (i.e., fi eld 
buses) to use IP-based protocols. 
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     Table 21.1    summarizes some of the important attributes of industrial automation processes. These 
attributes differ widely between the process and discrete manufacturing areas. 

 In   the following list are some generic requirements that are important in industrial automation 
settings: 

      ●      Global availability: Industrial automation solutions have a requirement to be globally available, 
thus requiring the use of globally available frequency bands. Solutions are therefore operating in 
the unlicensed 2.4   GHz ISM band.      3    Unfortunately, this frequency band is used by many different 
communication technologies which in turn could cause potential interference problems.  

      ●      Coexistence: Industrial plants often contain many different wireless communication technologies 
that operate in the same frequency band, for example, IEEE 802.11- and IEEE 802.15-based tech-
nologies both operate in the 2.4   GHz ISM band. Thus, it is very important that a solution can coex-
ist in a radio environment with a large amount of interference as well as limit its own disturbance.  

      ●      Lifetime: Most industrial automation systems have lifetimes measured in tens of years. During 
this lifetime equipment is expected to provide good availability and require a minimum of mainte-
nance. Battery-powered wireless equipment is not expected to require a battery change more often 
than a few years, however, longer intervals are preferred.  

      ●      Security: As for all general wireless networking the security, authenticity (making sure data come 
from the correct sensor node), and integrity (making sure no one has tampered with the data) are 
very important.  

      ●      Interoperability: Using standardized equipment and communication is very important for most 
process plant owners. They want to be able to use equipment from different vendors, and they 
want it to work together seamlessly.    

 Preferably   the new wireless technology should integrate into the existing plant automation system 
similar to wired technology. The challenge is that wireless technology will be used in new applica-
tions that take advantage of its features such as mobility and temporary installations. This is some-
thing that current plant automation systems cannot handle, so to capitalize on the wireless advantages 
these systems must be upgraded. 

 Different   industrial applications will have very different requirements and will set different solu-
tions, values, or bounds for each of these requirements. The solution developer must focus intently on 

 Table 21.1          Generic Requirements for Industrial Automation Processes  

   Process attribute  Process manufacturing  Discrete manufacturing 

   Sensor types (data type)  Predominantly analog  Predominantly discrete 
   Production cycle length  100 days  Few hours to 1 day 
   Typical control loop times  1 to 1000 s  1 to 500 ms 
   Device density  Low  High 
   Devices per plant  10,000  10,000 

   3  ISM  —  Industrial, Scientifi c, and Medical, defi ned by the International Telecommunication Unit (ITU).   
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 what the application requires. Then the challenge 
is to choose a set of network properties that will 
satisfy all application requirements (see  Figure 
21.2   ). The real objectives for any wireless indus-
trial product are determined by the application 
in which it must perform, not by the technology 
deployed. 

 In   industrial automation plants wireless tech-
nologies are deployed on a large scale, and the 
complexity of the wireless infrastructure is increas-
ing. A major challenge is how to plan, deploy, 
and manage this in a cost-effective way. Multiple 
wireless technologies must be able to coexist in 
the same frequency band. One technology should 
preferably support multiple applications  —  for 
example, VoIP, video, and process data  —  on the 
same wireless network. To support this it must be 
possible to engineer and manage the infrastructure 
as well as guarantee minimum requirements on 
Quality of Service, coexistence, positioning services, roaming, and security. The automation process in 
most cases is too costly to stop if a retrofi t wireless installation is planned; therefore it should be pos-
sible to integrate it into the automation system without disturbing the running process.  

    21.3       USE CASES 
 With   the use of wireless communication in indus-
trial automation it is possible to access more 
information about the process and the devices 
connected to it. Furthermore, new use cases and 
applications arise that will improve the life cycle 
of the plant. This section describes three use cases 
in industrial automation with different require-
ments for latency, reliability, and data rate (see 
 Figure 21.3   ). 

    21.3.1       Condition Monitoring 
 Condition   monitoring is the fi rst use case in which 
wireless technologies will be used for industrial 
automation. Condition monitoring is a very wide 
use case that contains many different applications. 
In general, it can be described as the collection 
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       Key challenges in industrial automation.    
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 of data related to the condition and status of machinery, which is used to predict failures, generate 
alarms, and schedule maintenance. Condition monitoring tasks are sometimes performed as manual 
labor; personnel have to travel to the site and manually collect data from the equipment or even visu-
ally inspect the condition. 

 A   major driver for wireless condition monitoring is the ability to easily install a condition moni-
toring solution in an existing plant and hook it up to a condition analysis system. The condition moni-
toring system can be installed without interfering with the plant control system as a kind of add-on 
solution. Wireless technologies also make remote condition monitoring easier, as the condition infor-
mation can be accessed from anywhere in the world. 

 There   are many different parameters to monitor on the wide array of equipment and machinery 
used in industrial automation. It is very common to monitor the condition of rotating or swiveling 
equipment such as motors, pumps, fans, and robots that contain bearings. These are usually moni-
tored using vibration analysis, but acoustic analysis is also used. Vibration is very common in indus-
trial settings. Almost everything in a plant vibrates (machines, pipes, structures), which makes it a 
very good case for condition monitoring. Temperature is also a good indicator of the condition of 
the equipment, where a high temperature usually indicates a problem. Oil can be monitored to detect 
wear debris or even to detect release of certain gases detectable in the oil through gas chromatogra-
phy, which is used to indicate equipment condition. 

 The   following requirements are important for condition monitoring applications: 

      ●      Latency: The time delay from when data are produced (measured) to when they are available to the 
automation system, for example, distributed control or asset monitoring systems. The importance of 
latency varies, but it is not considered to be the most important requirement for condition monitor-
ing. When it comes to actual latency requirements it is usually in the range of seconds or minutes.  

      ●      Duty cycle: The rate (period) with which new data are required to be produced and made avail-
able to the plant automation system. The duty cycle requirement varies from a few milliseconds to 
seconds to weeks (or even months) depending on the application. In some cases there is no strict 
cycle; instead the condition monitoring system or personnel determines (randomly) when mea-
surements should be performed.  

      ●      Throughput: The bandwidth required to transport the data according to the duty cycle and latency 
requirements. The amount of data sent varies from application to application, ranging from send-
ing a single temperature value once every few minutes to sending a full vibration time series col-
lected over a few seconds every few seconds.  

      ●      Range: The range requirement for condition monitoring within a plant is usually a few hundred 
meters with line-of-sight to less than 100 m with no line-of-sight. For remote condition monitor-
ing the range can be much longer. A range of several miles is required to connect to an offshore 
platform.     

    21.3.2       Wireless Control 
 Industrial   automation control applications can be divided into two categories: real-time and event-based. 
For real-time control applications, process signals must be received within a specifi ed amount of time to 
correctly operate the process. To support real-time control applications, networks often must be able to 
guarantee end-to-end communication deadlines. On the other hand, event-based control applications are 
more relaxed and wait until the signal is received (no deadline) before making any decisions. 
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  For   more than 30 years wired communication networks have been used for distributed control, but 
recent advances in wireless technologies have enabled wireless control to be used in industrial auto-
mation. The main benefi ts of introducing wireless networking in industrial control applications are 
cost, fl exibility, and reliability. In many sites (chemical plants, refi neries, oil platforms) distributed 
control systems are installed and a large number of controllers and instruments are distributed over 
the site and either connected by wired or wireless communication. 

 In   process automation (i.e., chemicals, metals, and minerals) there are relatively slow-moving pro-
cesses and the time constants range from seconds to minutes. One example is the fl otation process. 
Flotation is a separation technique used in minerals, the paper industry, de-inking, and water treat-
ment. The control program of the controller, for this kind of process, has a loop time of approximately 
0.5 to 1 s, but the scan rate of analog or digital input/output devices (I/Os) is faster (in the range of 
20 ms). The control is based on several measurements and control actions. The measured entities include 
conductivity, airfl ow, water fl ow, pH measurements, and tank levels. The control actions include air 
valves and water pumps and control loops such as level control, pump control (before and after the fl ota-
tion series), and air- and slurry-fl ow control. A more challenging scenario is the metallurgy process of hot 
rolling, which must have control requirements in milliseconds. The rolling speed varies between passes: 
slow in the beginning and faster as the strip gets thinner. The speed may be as fast as 10 m/s and to reach 
the desired performance in the thickness control a sampling rate of 10 to 20 ms is usually needed. 

 Wireless   control in discrete manufacturing differs quite substantially when compared to process 
automation, since the requirements at machine level are mission-critical and considerably more strin-
gent than typical requirements for other areas. In an automotive assembly plant, up to 100,000 I/O 
points may be present in a dense area and small roundtable production machines can have up to ten 
devices per m 3  machine volume (300 per machine). Furthermore, fast response times are generally 
less than 15 ms, and it is important that coexistence is permitted in multiple cells; up to 300 devices in 
a single machine have to be supported. Most of the existing wireless systems/standards do not satisfy 
the needed balance of requirements such as latency versus data rate, reliability, power consumption, 
and node density. Some technologies are designed for high throughput applications between small 
numbers of terminals and have less stringent latency and power requirements. 

 Wireless   communication systems for industrial automation and control must fulfi ll the following 
requirements: 

      ●      Device mounting: The orientation of the sensor and actuator nodes is very important and has a 
clear impact on reliability and latency. A misplaced device can cause decreased throughput or 
increased delay.  

      ●      Latency: Ranges from milliseconds to minutes depending on the specifi c application.  
      ●      Duty cycle: The rate (period) with which new data are required to be produced and made avail-

able to the control system. As mentioned, typical duty cycle requirements for control applications 
range from a few milliseconds to seconds.     

    21.3.3       Mobile Workforce 
 Information   and Communication Technology (ICT) has a dramatic impact on the productivity of 
industrial installations. With the advent of wireless technologies, engineering tasks carried out through 
portable or detachable HMI units are now very common in all industries. Wireless technologies can 
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 improve productivity by effectively supporting more fl exible work processes that are not hindered or 
limited by the location of plant personnel relative to the process and control equipment they need to 
install, confi gure, operate, and maintain. The main objective of the mobile workforce area is to opti-
mize the workfl ow of a plant throughout its life cycle. 

 Asset   tracking and local access to devices enable a faster installation and commissioning proce-
dure. In addition, direct access to the maintenance and control systems while in the fi eld can stream-
line the process even further, such as effectively supporting check-in/check-out processes where 
physical presence in the plant is required. Error-prone off-line work can be moved to online updates 
with support for automated validation and verifi cation. 

 As   a way to lower operation costs and improve product quality, the level of plant automation is 
increasing. This means that fewer operators (personnel) are required to run the plants, and that the 
role and scope of the operator are expanding to cover a larger part of the plant’s operation. To sup-
port this, mobile access to plant information is essential as one person will need to handle device 
specifi cs while controlling the total system. If specifi c information or control actions are restricted 
to the control room, this type of operation is impossible. Also, as the number of dedicated people for 
specifi c process sections decreases, asset tracking and localization will play an important role to help 
guide operators and service personnel to the right place within the plant. Collaborative support func-
tions will also become more important, as the experts will not necessarily be available on site when a 
problem occurs. Support for streaming (video, voice, and data) to a remote expert can help solve criti-
cal issues in a timely manner and avoid expensive emergency service calls (especially important for 
plants located in remote locations where travel is prohibitive). 

 The   main benefi ts of asset monitoring and service come from two aspects: 

      ●      The mobility aspect is access to any information, at any time, from anywhere. It enables online 
integrated access to computerized maintenance systems (CMMS). This eliminates error-prone off-
line double work as the data can be updated and validated during a service or maintenance task.  

      ●      The ability to automatically identify and locate devices supports asset tracking and audit tasks. 
Location-dependent services help speed up routine maintenance as well as troubleshooting tasks. 
Information and actions can be dynamically adapted based on the service person’s location in the 
plant, and the location-dependent service can highlight that a device in close proximity needs a 
maintenance check.    

 The   ability to precisely locate a person within a plant can also be used to improve the safety of 
the workforce. Proximity to a potentially dangerous situation on the plant fl oor can be signaled to the 
worker. Virtual safety functions can be implemented so that the mobile worker is able to safely stop 
the operation of the plant within a defi ned proximity. This improves productivity as the shutdown can 
be limited (in a dynamic manner) and improves safety as the worker always has an emergency stop 
on hand. 

 Sensors   carried by workers can be used to monitor their health and signal if an emergency situa-
tion occurs (notify other plant personnel, or even initiate a shutdown in the area where the worker is 
located). 

 The   following requirements are important to mobile workforce applications: 

      ●      Latency: This is important to certain aspects of the mobile workforce such as localization to warn 
personnel when entering dangerous areas or performing emergency shutdowns. On the other 
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 hand, accessing system documents when inspecting faulty equipment does not require minimum 
latency.  

      ●      Throughput: For the mobile workforce it is important to have access to all data in the system such 
as voice, video, and sensor data. High-quality video streaming could have a fairly high require-
ment on the throughput (as well as latency).  

      ●      Range: The range for a localization service within a plant usually requires coverage of the plant 
size (tens of thousands of square meters), while remote maintenance range requirements are sev-
eral miles, or possibly even global access.  

      ●      Multiprotocol: When plant operators move around in the plant it is important that they have access 
to the plant information wherever they are using whatever wireless technology is operating in the 
vicinity. It is not feasible to have to change equipment (PDA, phone, laptop) just to be able to 
communicate; the portable communication equipment must be able to seamlessly switch between 
different technologies.      

    21.4       CONCLUSIONS 
 Industrial   automation has traditionally been performed with wired systems. Wireless communication 
is rapidly emerging in industrial communication due to the increased ease of installation with wireless 
systems as well as the ability to install systems in locations where wired systems are cumbersome or 
impossible. Examples of such places are rotating machinery or highly mobile systems. 

 Industrial   automation systems are used for condition monitoring, control applications, and the 
mobile workforce. Common to all industrial automation applications are the requirements for global 
availability of components, coexistence between wired and wireless technologies, lifetime, security, 
and interoperability. Wireless technology is rapidly emerging to meet these needs.                
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              Smart Cities and Urban 
Networks    22 

CHAPTER

    22.1        INTRODUCTION 
 In   1900, only 13% of the world’s population lived in cities. By 2050, that number will have risen to 70%. 
Vibrant and creative cities drive economic, social, and cultural development. This urbanization is both an 
emblem of our economic and societal progress and a challenging strain on the urban infrastructure. 

 The   integration of Information and Communication Technology (ICT) with development projects 
can change the urban landscape by developing Smart Cities. Smart Cities can dramatically improve 
their citizens ’  quality of life, encourage business to invest, and create a sustainable urban environ-
ment. As illustrated throughout this chapter by means of several use cases, smart object networks will 
play a critical role in making Smart Cities a reality. 

 A   number of cities have started to enable smart object networks in support of a number of new ser-
vices. Transport offi cials in Singapore, Brisbane, and Stockholm are using smart systems to reduce con-
gestion and pollution. Public safety offi cials in major cities like New York are not only able to solve 
crimes and respond to emergencies, but also to help prevent them. City managers in Albuquerque, 
New Mexico, have achieved a 2000% improvement in effi ciency in sharing information across agen-
cies, keeping citizens informed, and providing critical municipal services from residential and commer-
cial development to water to public safety. A large hospital organization in Paris is implementing an 
integrated patient-care-management solution to facilitate seamless communication across its business 
applications enabling them to track every stage of a patient’s stay in the hospital. Many cities in the 
world have deployed smart object networks to effi ciently manage outdoor lighting management systems, 
thus performing proactive maintenance and signifi cantly reducing energy consumption. Personal Travel 
Assistant, a company launched in Seoul, South Korea, helps residents reduce personal carbon footprint, 
transit costs, and travel time via their new, web-based service. Furthermore, this company is developing 
a metropolitan area sensor network in Beijing for high-resolution monitoring of urban environments. 
These are just a few examples of new services improving the quality of life of citizens in cities, reducing 
the carbon footprint, and contributing to green initiatives because of innovative smart object networks. 

 Smart   Cities require a large ubiquitous IP network interconnecting a myriad of devices via various 
links (fi xed and wireless) in support of a number of new services      1    such as 

      ●      Transport: Traffi c fl ow management, speed control, congestion charging, information systems, 
vehicle tracking, onboard safety, parking management  

   1       See  Smart City , PA Consulting Group at  http://www.paconsulting.com/ .   
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      ●       Public safety and security: Access control systems, alarm monitoring, emergency warning, and 
situation management  

      ●      Public services: Remote patient monitoring, patient records management, education/learning networks  
      ●      Identity: Biometric/smart card systems  
      ●      Utilities: Facilities management (e.g., energy, water), climate control, energy generation and 

storage management, water/gas leak detection, and network management  
      ●      Environment: Data collection and monitoring (noise, pollution, etc.)  
      ●      Social networking      

 This   chapter specifi cally focuses on smart object networks; needless to say that high-speed 
networks are also needed to support other services such as video, telephony, etc. 

 Smart   object networks will consist of smart objects of a different nature such as magnetic, thermal, 
visual, seismic, infrared, acoustic, and radar, which are able to monitor a wide variety of ambient con-
ditions that include temperature, humidity, sunlight, soil makeup, air makeup, noise levels, pollution, 
energy, presence or absence of certain kinds of objects, mechanical stress levels, and so on. 

 In   the rest of this chapter, three use cases for smart object networks in Smart Cities are consi dered: 
urban environmental monitoring, social networking, and intelligent transport systems. 

    22.2       URBAN ENVIRONMENTAL MONITORING 
 Pervasive   computing (in particular, sensing and actuation) can be used to monitor and control various 
natural and infrastructure systems that affect the urban environment. The following use cases provide 
an overview of several pervasive sensing applications and their use in the context of urban environ-
mental monitoring.  

    22.2.1       Urban Ecosystem Monitoring 
 We   are living in an increasingly urbanized world. Further increases in size and rates of population 
growth will no doubt increase the stress on the environment. While urbanization is an important 
driver of environmental changes, it is not the only urban-related infl uence. The conversion of land to 
urban uses, the extraction and depletion of natural resources, and the disposal of urban wastes as well 
as urbanization in general are having a global impact.      2    To provide a  “ healthy ”  environment both for 
citizens and for the natural ecosystem, the city should be viewed as an organic body with metabolic 
processes.      3    Inputs and outputs should be measured by pervasive sensing, and this information can 
help determine the source of pollution and the appropriate action to preserve the environment. 

 This   requires the deployment of a dense smart object network across the city to implement perva-
sive and multifunctional monitoring. Such networks are comprised of various sensors (temperature, 
humidity, radiation, light intensity, etc.) deployed in cities to enable real-time monitoring of the urban 
ecosystem. These smart objects, mounted on buildings, streetlights, and cars, gather data autonomously 
transmitted to data centers via a private IP network or the Internet for further analysis. As discussed in 
Chapter 10, data may also be interpreted by the network (referred to as  “ local processing ” ). Note that 
in some cases, mobile sensors and actuators may require location-positioning systems. 

   2       World Resources Institute, 1997.   
   3       Abe Wolman, 1965.   
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  There   are many implemented systems and ongoing research projects of environmental smart object 
networks. The US Department of Natural Resources and Parks has built water-quality monitoring sys-
tems in King County, Washington.      4    The UK government supports an urban pollution monitoring project 
comprised of a number of mobile sensing systems that give a broader and denser picture of how pollution 
affects urban spaces and the people within them.      5    In Singapore, the Singapore-MIT Alliance for Research 
and Technology (SMART) has been working on the use of a wireless sensor network for the continuous 
monitoring of water distribution systems. This research includes a low-cost wireless sensor network for 
high data rate collection and online monitoring of hydraulic parameters within large urban water distri-
buted systems. Water-quality parameters (i.e., pH, chlorine residual, turbidity, conductivity, and dissolved 
oxygen) are also monitored. The system can use high-frequency pressure measurements of hydraulic tran-
sient events to detect leaks and predict pipe bursts remotely.      6      

 The   amount of environmental data of interest is very large and fast growing: air-quality moni-
toring, water-quality monitoring, temperature and humidity monitoring, microenvironmental sunlight 
monitoring, weather condition monitoring, environmental pollution monitoring, exhaust emission 
monitoring, waste discharge monitoring, and soil pollution monitoring. 

 Information   can be accessible to citizens or may exclusively be used by the city. This highlights 
the need for various information management models that have different security requirements. 

    22.2.1.1       Resource Management 
 Energy   and water management (see examples illustrated in Figure 22.1 and 22.2) are critical resources 
that must be managed with great care in large cities. 

 Home   and building energy management is absolutely critical and Smart Grids will play a key role 
in energy saving and carbon footprint reduction. Effi cient energy management systems developed for 

   4        http://www.kingcounty.gov/environment/data-and-trends/monitoring-data.aspx .   
   5        http://www.equator.ac.uk/index.php/articles/563 .   
   6        http://censam.mit.edu/research/res2/index.html#s1 .   

       FIGURE 22.1  
     Prototype monitoring system for water distribution network.      
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 homes in the context of the Smart Grid also apply to buildings in cities (see Chapters 20 and 22). 
Additionally, public infrastructures such as road lighting can be more effi ciently managed due to the 
deployment of IP smart object networks. Networks where each light is equipped with a sensor have 
been deployed to perform proactive maintenance and even dynamic lighting management according 
to several external factors such as the local environment, the presence of cars or citizens in the areas, 
etc., with the objective of reducing cost but also providing a better lighting service to citizens. Systems 
such as ROAM [122]   provide a complete lighting management system as shown in  Figure 22.3   . 

 Water   management in large cities is also a key component and an important expense. Similar to 
the energy management systems, smart object networks can be used to optimize water consumption 
in the city and detect water leaks in the ground, which is a fairly frequent source of water wastage. 

 Such   networks are usually static, with mostly multipoint-to-point traffi c patterns with moderate 
Quality of Service (QoS) requirements. One of their prime characteristics is to be large scale. Such 
road lighting management networks have been deployed with millions of nodes.   

    22.2.2       Natural Hazards Monitoring and Early Detection 
 Natural   hazards monitoring and forecasting is another important application for smart object net-
works. In contrast with urban ecosystem monitoring, natural hazards monitoring needs to meet 
more stringent and complicated design requirements. The monitoring network must cover large 
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       FIGURE 22.2  
     Integrated hydraulic and water-  quality monitoring system.      
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 geographical regions in which natural hazards may occur while avoiding  “ blind zones. ”  The system 
must operate throughout long disaster-free periods, measure a variety of variables contributing to the 
hazard, and communicate over potentially large geographical regions. When the event damages the 
environment, such as with fl oods or hurricanes, this further complicates the requirements. This sys-
tem must withstand the event, which usually poses a hazard to network survival and survival of the 
smart objects directly measuring the event. Typical smart objects used in hazard monitoring include 
volcano monitoring sensors, seismic sensors, tsunami early warning systems, slope deformation mon-
itoring sensors, and so forth. 

 Early   warning fl ood detection is one type of natural hazard monitoring. In many developing coun-
tries, current systems for fl ood detection still rely on human observations. People read the river level 
off of markings and the rain level from water collecting gauges several times a day and manually 
send their reports. Comparison with previous records provides some indication of potential hazards 
that may occur. Overall, this detection system is not very reliable, because there is a lack of enough 
measurements, quick aggregation, and accurate prediction. More sophisticated smart object networks 
performing continuous measurements are required to improve the level of prediction. 

 Forest   fi re modeling and early detection are important to control and prevent this natural hazard. 
Traditionally, forest fi res are detected using fi re lookout towers located at high points. Charged cou-
pled device (CCD) cameras and infrared (IR) detectors are installed on top of towers. In case of fi re or 
detection of smoke, the system alerts local fi re departments, residents, and industries. But the accuracy 

 FIGURE 22.3  
       ROAM lighting management networks.    
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 of these systems is largely affected by weather conditions, and it is diffi cult to avoid blind zones with 
a small number of towers. Smart object networks are critical for building near real-time forest fi re 
detection systems. Large-scale wireless sensor networks can be easily deployed with good coverage 
using airplanes. Sensors can then monitor a variety of variables including temperature, relative humid-
ity, and smoke that help to precisely detect fi re. The communication range of the sensor node is usu-
ally limited to save power and increase lifetime. Similar to the other examples, such distributed smart 
object networks can be self-formed using IPv6 as the networking protocol and RPL (see Chapter 17) 
as the routing protocol. 

    Figure 22.4    shows a typical forest fi re detection system. Nodes are self-organized into  “ clusters ”  
where cluster heads aggregate collected data and report to a data processing center. Some sensor 
nodes are kept in idle or sleep mode to save energy. The shaded area represents a forest zone with 
higher fi re potential that needs to be monitored by more active sensors. Smart object networks can 
make use of the Internet or any other private IP networks to send their report to data centers. This can 
be seen as an example of overlay network as discussed in Chapter 10.  

    22.2.3       Technical Characteristics and Challenges 
 Smart   object networks used for urban ecosystem monitoring and natural hazards monitoring present a 
series of technical challenges. 

    22.2.3.1       The Networking Environment 
 Urban   environmental networks are mostly outdoor networks and the connectivity between smart 
objects may be greatly affected by the nature of the links used in these environments. Multipath effect 
and channel fading vary signifi cantly with the environment. For example, a wireless channel on a 
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 FIGURE 22.4  
       Architecture of a typical forest fi re detection system.  
 (Source: MOHAMED HEFEEDA. Forest Fire Modeling and Early Detection Using Wireless Sensor Networks. Simon Fraser University, Canada.)   
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 rainy day is much worse than on sunny days. Moreover, the shielding of buildings and other spa-
tial factors will cause signifi cant asymmetry in a wireless channel. This is one of the reasons why 
Powerline communication (PLC) is used in some cases.  

    22.2.3.2       Traffi c Flows and Network Topologies 
 In   general, traffi c fl ows are between nodes and information collectors (that may be distributed in the 
network for local data processing) and data centers. The up-streaming traffi c fl ows are signifi cantly 
higher than the down-streaming ones. There are also scenarios where data are exchanged directly 
between sensors and actuators for immediate actions. Networks have different topologies, but mesh 
network topologies are very frequent.  

    22.2.3.3       Smart Object and Link Characteristics 
 As   discussed in length in Chapters 11 and 12, sensor technology has dramatically progressed over the 
past decade regarding size, power consumption, and reliability. However, miniaturization, cost reduction, 
and low-power consumption are still necessary for environmental sensors, which will undoubtedly be 
developed soon. The additional requirement for natural hazard monitoring applications is the high level 
of sensitivity, stability, and accuracy of sensors even in extremely harsh environments. 

 Environmental   smart object networks are complex wireless multi-hop networks. Sensor nodes 
are usually deployed in harsh environments, and these networks are usually unattended in remote 
geographic areas; thus links may be unstable and vulnerable to interferences.  

    22.2.3.4       QoS and Network Reliability 
 QoS   and network reliability requirements greatly vary with applications. Urban environment moni-
toring is usually delay-tolerant and a network outage of a few hours is usually not a major issue. In 
contrast, natural hazard monitoring requires low latency and a high level of reliability.  

    22.2.3.5       Scalability 
 The   number of sensor nodes deployed in monitoring environments may be of the order of hundreds or 
thousands or even millions of nodes. Moreover, the network used in urban sensing must be scalable 
from medium scale (district area) to large scale (metropolitan area).  

    22.2.3.6       Mobility 
 Recent   advances in mobile communications trigger research in mobile wireless sensor networks, and 
hybrid structures provide more effective and fl exible networks with a mix of fi xed and mobile nodes. Fixed 
nodes with higher computational and power resources can be deployed as urban infrastructure in some hot 
spots, whereas mobile nodes (usually more constrained) are used to augment the sensing coverage.  

    22.2.3.7       Security 
 Security   requirements are very high. Such networks must be highly secured to prevent tampering, 
both at the hardware level as well as data and management levels. Authentication and encryption 
technologies are mandatory.  

    22.2.3.8       Network Management 
 Because   of the large networking scale and its vital function to the population, network manage-
ment is a key concern. Most systems today have been produced as research platforms and require 
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 considerable technical expertise to be deployed and managed. There are ongoing efforts in self-
management and self-confi guration to evolve toward remote and unattended usability.    

    22.3       SOCIAL NETWORKS 
 In   the fi rst decade of the twenty-fi rst century, Social Network Services (SNSs) have captured the 
attention of millions of people and millions of dollars from investors all over the world. They have 
encouraged new ways to communicate and share information. Until now, most SNSs were web based 
and offered similar basic functions such as a network of friends, blogging, e-mail, instant messaging, 
discussion forums or communities, commenting, and media uploading. Facebook, MySpace, Twitter, 
LinkedIn, Tagged, as well as content-sharing web sites like YouTube and Flickr, are all fast growing 
social networks that provide a variety of ways for users to interact for various social and professional 
purposes, transforming the Web into a social platform. 

 Smart   objects performing a variety of tasks (e.g., activity recognition, location, condition sens-
ing) are now available by the millions embedded in mobile devices (e.g., cellphones, PDAs, laptops, 
devices on personal vehicles). Considering the increasing popularity of SNSs, along with the increas-
ing usage of instant messages as a replacement to e-mails in the business world and otherwise, there 
is undoubtedly a strong incentive for sharing information learned from sensed data as well. Recently, 
applications that integrated social networks and smart object networks such as Wireless Sensor 
Networks (WSNs) that enabled novel developments in communications have been a high topic of 
interest. A few key applications of successful integration of SNSs and smart object networks are the 
extension of web-based SNSs for monitoring the elderly and kids. There are many other examples 
such as a mobile sensing system for outdoor game communities. 

    22.3.1       Extension of Web-based SNSs 
 Online   SNSs have been extensively used by millions of people and the extension of web-based SNSs 
that take advantage of smart objects (e.g. sensors) is defi nitely appealing. In this section, we introduce 
two applications to show how WSNs bring the SNSs from the Internet into daily lives. CenceMe and 
the identifi cation of social acquaintances in localized areas are examples of WSNs. 

 CenceMe   is a component of the MetroSense Project [174], a collaborative project sponsored by 
Dartmouth College, NSF, Intel, Nokia, and Motorola, that is developing new applications, classifi ca-
tion techniques, privacy approaches, and sensing paradigms for mobile phones to establish a global 
mobile sensor network capable of societal-scale sensing. CenceMe is a personal sensing system that 
enables members of social networks to share their sensing presence with their friends in a secure 
manner. A sensing presence captures a user’s status regarding activity (e.g., sitting, walking, meet-
ing friends), disposition (e.g., happy, sad, doing okay), habits (e.g., at the gym, coffee shop today, at 
work), and surroundings (e.g., noisy, hot, bright, high ozone). CenceMe injects a sensing presence into 
popular social networking applications such as Facebook, MySpace, and IM (Skype, Pidgin) allowing 
new levels of  “ connection ”  and implicit communication (albeit nonverbal) between friends in social 
networks. The CenceMe system is implemented, in part, as a thin-client on a number of standard and 
sensor-enabled cell phones and offers a number of services that can be activated on a per  “ buddy ”  basis 
to expose different degrees of a user’s sensing presence including: life patterns, presence, friend feeds, 
social interaction, signifi cant places, buddy search, and buddy beacon. 
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  Currently  , a number of mobile devices have been integrated into the CenceMe system: the Nokia 
N800 Internet Tablet, Nokia N95, Nokia 5500 Sport, Moteiv Tmote Mini (above the N95), and the 
prototype BlueCel accessory (above the 5500). Each sensing client is confi gured to periodically push 
its sensed data to the CenceMe core. All of a user’s processed sensor data can be viewed via a web 
browser by logging into the user’s account on the CenceMe portal. Additionally, a subset of the user’s 
status information is made available to the user’s buddies (subject to his confi gured sharing policies) 
through their CenceMe portal pages, and through plug-ins to popular social networking applications. 
 Figure 22.5    shows a snapshot of a user’s data page on the CenceMe portal.  Figure 22.6    shows the 
architecture of the CenceMe system. 

 Identifying   social acquaintances in localized areas was an idea put forward by the W3C workshop 
on the future of social networking [123]. Today at conferences a social network site or forum is often 
supplied by the organizers to let attendees defi ne and maintain their social network and discuss par-
ticular topics. When an attendee fi nds someone sharing similar interests, there is no other way to have 
a face-to-face conversation apart from sending e-mails and organizing a meeting at a certain place 
at a certain time. Equipped with smart devices integrating WSNs and SNSs, the attendees can make 
the experience much more effi cient and convenient. Benefi ting from the system, which can indentify 

Welcome Homer Simpson.

User Home Update Profile Device Software Log Out

Patty Bouvier’s data

CenceMe buddies in the neighborhood:
Time

Time

Buddies

Place

2007-08-14 17:10:38

2007-08-14 17:10:47
2007-08-14 17:00:05
2007-08-14 15:10:23

Most recent Significant Places:

Selma

Office
Dirt Cowboy Cafe

Library

Current Physical Activity: Stationary
Current Social Activity: Talking

Ambient Sound Level: 55dB
[Plot trace of sound history]

[Plot trace of brightness index history]
Ambient Brightness Index [0,1]: 0.63

Peek at Patty’s surroundings

My Buddies

Facebook Friends

Patty

Selma

Lenny
[-]

[ - ]

MySpace Mates
No MySpace account registered.

Pidgin Pals

Carl

Barny
Maggie

Skype Sidekicks
kype account registered.

Last known location

 FIGURE 22.5  
       Snapshot of the CenceMe portal.    



344 CHAPTER 22 Smart Cities and Urban Networks

 users ’  precise locations and defi ne information from the social network sites, people can be reminded 
when they come across someone special. For instance, one might receive an alert on his mobile phone 
as soon as someone he wants to meet or exchange messages with on a forum appears in a shared 
place.  

    22.3.2       Monitoring the Elderly and Kids 
 Applications   in this section show another usage of smart objects for monitoring the elderly and kids, 
which helps with family healthcare and communications. Without a doubt such applications will grow 
very quickly. 

 Social   networks and WSNs can also be combined to support independent living and healthcare 
for the elderly [130]. By deriving a semantic presence based on context from sensor-enabled social 
networking devices, useful tasks can be carried out for the elderly. For example, for daily living pur-
poses the network can check the status of friends and fi nd shopping or walking buddies to promote 
mobility. By using semantic representations of information from smart objects, one can build on the 
idea of connecting people through shared activities and interests. More important, the system can send 
alerts based on abnormal activity patterns or a change in life dynamics. Through sensor readings of 
body position or health measurements, requests can be issued for attention not just to clinicians but to 
nearby friends in the elderly person’s social network. Social science and medical research have consis-
tently pointed to social engagement as an important indicator and predictor of health status. 

 Monitoring   kids is another important application. The new  num8  watch by  Lok8u  has a GPS track-
ing device and satellite positioning system concealed inside so that parents can locate the wearer to 
within 10 feet on Google maps. The watch can be tightly fastened to a kid’s wrist and it can send 
an alert if forcibly removed. Parents can see the location of their child on Google maps by clicking 
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 FIGURE 22.6  
       Architecture of CenceMe.    
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  “ where r you ”  on a secure web site or texting  “ wru ”  to a special number. Safe zones can also be 
programmed with parents alerted if their kids stray outside this zone. The makers of the  num8  watch 
claim it gives peace of mind to parents and makes children more independent.  

    22.3.3       Technical Characteristics and Challenges 
 Most   of the smart object networks integrated with social networks share common characteristics and 
present similar technical challenges. 

    22.3.3.1       The Networking Environment 
 Most   smart object networks operate in fairly harsh environments due to the channel uncertainty and 
complex, strong interferences in the ISM band. In indoor networks, the prediction for transmission 
fading is rather diffi cult while the power decay is considerable. Considering common urban use cases, 
a variety of disturbances (i.e., other radios used for other purposes) exist in personal areas and the 
multipath effects are obvious due to the refl ection and shelter of obstacles (e.g., buildings, vehicles). 
In outdoor networks, link quality is highly dependent on the environment.  

    22.3.3.2       Traffi c Flows and Network Topologies 
 For   social network communications, most traffi c fl ows are burst traffi c embedded with audio, video, 
or SMS services. Traffi c fl ows greatly vary from point-to-multipoint (P2MP), multipoint-to-point to 
point-to-point (P2P), and P2P traffi c is certainly very common.  

    22.3.3.3       Smart Objects and Link Characteristics 
 Smart   objects used in these networks share the same characteristics: cheap, fl exible, spatially distrib-
uted, and autonomous. The smart objects used in social networks are mostly embedded in users ’  por-
table devices such as mobile phones and laptops, thus they can be recharged periodically. However, 
this does not mean that power consumption is not an issue. Sensors used for social communication 
are highly information-rich and should monitor various types of quantities including temperature, 
sound, slope, healthy parameters, images, and so on.  

    22.3.3.4       QoS 
 The   social wireless network is a multi-QoS system. The required QoS varies with the application. Real-
time data (e.g., sounds, images, texts) are usually quite demanding regarding throughput, delay, jitter, and 
so on. At the other end of the spectrum, short messages and location reports do not require high QoS.  

    22.3.3.5       Scalability 
 Scalability   is not a pivotal characteristic in social applications. The scalability of these smart object 
networks is usually limited to a few dozen or a few hundred smart objects.  

    22.3.3.6       Reliability Requirement 
 As   for requirement on reliability, it is not as high as that of public applications. But the requirement 
of security, especially privacy, is quite essential for human-involved systems.  

    22.3.3.7       Mobility 
 In   social sensing, the support of tracking and sensing of mobile targets with mobile sensing devices 
is essential. Mobility is one of the keys to success for the integration of smart object networks and 
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 SNSs. With the exception of a few fi xed sensors such as smart objects equipped at the checkpoints in 
orienteering resorts, most of the sensors keep moving together with the users. Thus it is a real chal-
lenge to build and maintain mobile sensing systems in both complex urban environments and outdoor 
terrains. 

 To   improve the ability of spatial network organization and management, it is essential to model 
the mobility of an ad hoc network. Seeing the tight link between the mobility of an ad hoc network 
and human movement, research focusing on modeling users ’  movement patterns has been performed 
(see [182]). This research reported that movement of humans is strongly impacted by the need to 
socialize in one form or another. Humans are known to associate in particular ways that can be math-
ematically modeled. Research also proposed a new mobility model founded on social network theory. 
[139] studies the internal relation between the relative movement of mobile users and users ’  social 
attributes. By quantizing users ’  social attributes, the studies created the Attractor Matrix, which 
described the relationship of human relative movements as a guide for modeling the user mobility for 
ad hoc networks.  

    22.3.3.8       Security 
 Needless   to say, security is another priority of social applications. As social networks become increas-
ingly smarter, great concerns about the privacy of the information shared among peers on social net-
work services arise. Indeed, people want to keep a clear view and total control on what is shared and 
with whom. With the ability to set sensing presence information on user profi les dynamically on these 
services from mobile applications directly, users are more concerned about what the system really 
knows about them and shares with others. Note that location tracking is already possible with exist-
ing cell phones, but the amount of shared data is further increased in this case. These concerns tend to 
inhibit innovation in social network services because most new usages allowed by location techniques or 
context-aware information retrieval give users the impression of a loss of control [86].  

    22.3.3.9       Network Management 
 WSNs   in social applications are a typical example of networks that must be self-managed and require 
minimal confi guration from the end user. Smart devices must be self-confi gured with autodiscovery 
and automatic computing.    

    22.4       INTELLIGENT TRANSPORT SYSTEMS 
 As   the demand of transportation increases, traffi c congestion becomes a major concern in most large 
cities. Thus Intelligent Transportation System (ITS) is one of the key challenges for the future. ITS 
varies in technologies applied from basic management systems such as car navigation to dynamic 
traffi c signal control systems, variable message signs, automatic car plate recognition, and speed cam-
eras to monitoring applications such as security CCTV systems to even more advanced applications 
that integrate live data and feedback from a number of other sources such as parking guidance and 
information systems, weather information, and bridge deicing systems. Smart object networks play 
an important role in most of those systems. Most ITSs rely on smart object networks for communica-
tion; for example, the dynamic traffi c light sequence system relies on the sensor nodes distributed 
both on roadside and vehicles to defi ne the traffi c fl ow condition. The car navigation system relies on 
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 the wireless sensor network established among vehicles and control center to monitor and control the 
traffi c condition, and most automatic road enforcement and charging systems identify the vehicles 
with RFID. 

 The   following use cases provide an overview of the applications of smart object networks in traf-
fi c monitoring and automatic charging systems. 

    22.4.1       Traffi c Monitoring and Controlling 
    22.4.1.1       Dynamic Traffi c Light Sequence 
 Traffi c   congestion and tidal fl ow management were recognized as major problems in modern urban 
areas and have caused much frustration and loss of man hours. Several technologies have been devel-
oped to ease the frustration. The image processing system gives the quantitative description of traffi c 
fl ow by processing the image of vehicles captured by roadside cameras. The major problem with this 
system is the high false acceptance rate (FAR) and high false rejection rate (FRR) under the situation of 
jam-packed traffi c due to the aliasing between the images of different vehicles. The second technique 
is called the beam interruption technique, which determines the number of vehicles by counting the 
times the beam is interrupted and sends it from one side of the road and receives it on the other side. 
The problem with this technique is that parallel vehicles would be counted only once; furthermore, in 
a multi-driveway road, the interruption caused by the vehicle closer to the beam sender could be pos-
sibly continued by vehicles on the driveway relatively far from the sender without interval. This makes 
a long-lasting interruption so the system struggles to determine exactly how many vehicles passed by. 
The WSN solution suffers none of these problems. 

 New   technologies based on smart objects have been developed. In one of these systems, each 
vehicle is identifi ed by a WiFi Access Point (WAP) from an RFID tag, thus forming a wireless sen-
sor network. The WAP then collects and relays the information through the wireless network to the 
data center, which analyzes and processes it for optimized traffi c light sequence. Dynamic traffi c light 
sequence has circumvented or avoided the problems that came with previous systems that used image 
processing and beam interruption techniques. RFID technology with appropriate algorithms and data-
bases were applied to multi-vehicle, multi-lane, and multi-road junction areas to provide an effi cient 
time management scheme. A dynamic time schedule was worked out for each car lane. 

 RFID   together with WSN technologies are anticipated to create a revolution in traffi c manage-
ment and control systems. The database contains online statistical information, which can be used by 
operators and planners to develop better models in the future. 

 This   system relies on algorithms based on the traffi c fl ow model. Simulations show that a proper 
strategy makes a remarkable improvement. However, it is diffi cult to fi nd a general model that per-
forms well in all traffi c conditions, especially when traffi c conditions change throughout the day. 
Ideally the system should be self-adaptive, which means that historical data should be memorized and 
taken into account.  

    22.4.1.2       Traffi c Condition Monitoring and Control 
 One   of the main objectives of ITS is to monitor and control traffi c conditions. One of the well-known 
approaches is a system called COOPERS in which WSNs play an important role (see [121] for fur-
ther reference). COOPERS is an acronym for CO-OPerative systEms for intelligent Road Safety 
and is a European research and development and innovation activity within the Call 4 (Co-operative 
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 Systems and in vehicle integrated safety systems) of the 6th Framework Program by the European 
Commission – Information Society and Media. The COOPERS approach extends the concepts of 
in-vehicle autonomous systems and vehicle-to-vehicle communication (V2V) with tactical and stra-
tegic traffi c information provided in real time by the infrastructure operator. Infrastructure to vehicle 
communication (I2V) in this respect will signifi cantly improve traffi c control and safety via effec-
tive and reliable transmission of data fully adapted to the local situation of the vehicle (ensemble of 
vehicles). I2V will extend the responsibility of the infrastructure operator compared to today regard-
ing accuracy and reliability of information to drivers. The highest effect of I2V communication will 
be achieved in areas of dense traffi c areas where risk of accidents and traffi c jams is extremely high. 
Conversely, the real-time communication link between infrastructure and vehicle can also be used for 
V2I (vehicle to infrastructure) communication utilizing vehicles as fl oating sensors to verify infra-
structure sensor data as a primary source for traffi c control measures. 

 Given   that traffi c condition monitoring and control requires high accuracy and real-time informa-
tion, the networking infrastructure is essential. A pure noncentralized network can hardly meet the 
demand because of stability, delays, and accuracy. However, the V2V communication as a supplement 
to the system shows the characteristics of self-organizing networks, which makes it a typical smart 
object network.  

    22.4.1.3       Vehicle Coordination Calculating and Sharing 
 The   ideal solution to traffi c condition informing is a coordination system in which vehicles are able 
to calculate and share their own coordination and velocity by communicating with other vehicles or 
a fi xed facility through a wireless network. As soon as the coordination system is established, drivers 
become aware of the traffi c condition of a certain area by the density of vehicles with the coordina-
tion within the area. 

 There   are three types of nodes installed in this system: the vehicle unit on the individual vehicle; 
the roadside unit along both sides of a road, and the intersection unit on the intersection. The vehicle 
unit (installed in every vehicle) measures the vehicle parameters and transfers the data to the road-
side units. The roadside unit gathers the information of the vehicles in the neighborhood and trans-
fers it to the intersection unit. (Roadside units are installed on the lampposts along both sides of the 
road approximately every 50 to 200       m according to the wireless cover range.) The intersection unit 
receives and analyzes the information from other units and passes them to the strategy subsystem. 
Such a system is depicted in  Figure 22.7    where the intersection unit, roadside units, and vehicle units 
are denoted as A, B, and C. Roadside units broadcast messages every second. The message includes 
its identifi er (ID) and its relative location to the intersection. The vehicle unit is put in the listening 
mode. When a vehicle receives the broadcast message, the vehicle unit switches to active mode. If 
a vehicle unit receives messages from more than three nodes, it can calculate the location ( x, y ) and 
velocity  v   . Then, the vehicle unit sends the information ( x, y, v ) to the roadside unit nearby. The 
roadside units collect and compute the information from the vehicle nodes around, and pass on the 
information to the intersection unit one by one remotely. Since a massive amount of data is received 
from the vehicles, the roadside units aggregate the data before transferring them. The intersection unit 
is connected to the strategy subsystem directly. Then the strategy subsystem calculates an optimized 
scheme to control and/or guide the execution subsystem. This subsystem provides information such 
as signal light, variable message sign, GPS navigation system, and so on. The roadside unit distrib-
utes on both sides of a road. A roadside unit only collects vehicle information in one direction.  
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    22.4.1.4        Parking Lot Monitoring 
 Many   existing systems that monitor parking lot occupancy require installation during the construc-
tion of the structure. Systems implemented in existing lots typically require complex installation. 
Furthermore, the information captured by these systems is typically confi ned to the structure in which 
it is captured. A smart object network such as a WSN typically provides a cheap infrastructure that 
can be easily installed after construction. For example, UCLA implemented a low-cost, easy-to-install 
parking lot occupancy monitoring system that integrates with an online database to provide parking 
space information locally and remotely. This system provides incoming cars with information about 
parking availability with online access using computers and cell phones. It provides an overall occu-
pancy count for the parking structure as well as more detailed zone-level information. Sensors are 
placed at each entrance, exit, and transition points between the zones. Sensors at the entrance and exit 
points wirelessly transmit data on entering and exiting vehicles to a central base station at the exit 
kiosk. Sensors monitoring the transition points between zones detect traffi c and direction to determine 
if vehicles are moving between zones. The sensors send these data to the central base station, which 
analyzes all incoming data to give a real-time count of total available parking spots and counts for 
each zone. After the initial installation, the designers enhanced the system so that the base stations 
can upload information as well as download data from other  “ linked ”  parking lots to help drivers 
choose a parking lot if the one they are in is fully occupied. The primary target for expanded deploy-
ment would be the same parking level of the medical building as well as the adjacent parking struc-
ture. LED display signs in the parking structures are another improvement of the system. The displays 
automatically provide availability information to the incoming cars.   

    22.4.2       Automatic Charging and Fining 
    22.4.2.1       Automatic Road Enforcement 
 The   prime objective of the Automatic Electronic Enforcement Project is to reduce the number of road acci-
dent victims by deploying automatic electronic enforcement mechanisms to detect traffi c law violations. 
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       Vehicle coordination calculating and sharing systems.  

 (Source: From Wenjie Chen et al. WITS: A Wireless Sensor Network for Intelligent Transportation System.)   
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 This project includes a comprehensive survey of the published literature, a research study evaluating driver 
behavior, a mapping of junctions and roads where cameras and other equipment might potentially be sited, 
and an analysis to establish the cameras ’  optimum distribution among many other criteria. 

 Statistics   showed that from 2002 – 2003 18% of all fatal accidents were caused by excessive speed; 
speed that was either illegally high or excessive given the circumstances or conditions on the road. 
A number of research studies have demonstrated that speed cameras or traffi c light cameras can 
signifi cantly reduce the number of accidents. Digital speed-limit enforcement cameras that detect 
and identify speeding motorists have already been found effi cient and effective in the United States, 
England, Scotland, Australia, New Zealand, and Spain. Such systems have been deployed in a num-
ber of countries on roads and traffi c light junctions subject to frequent accidents. Data collected by the 
devices are then sent to the database of the administrator wirelessly in a direct or indirect way (i.e., 
relayed by other nodes). The objective is to reduce the number of people killed and injured on the 
roads by altering driving norms by inducing drivers to be more observant of the traffi c laws, chiefl y 
speed limits, and of traffi c lights.  

    22.4.2.2       Automatic Congestion Pricing for Cordon Zones 
 Congestion   pricing is considered an effective way to improve transportation system performance. 
Many transportation experts believe that congestion pricing offers promising opportunities to cost-
effectively reduce traffi c congestion, improve the reliability of highway system performance, and 
improve the quality of life for residents. However, the low-effi ciency of manual-toll facilities would 
be intolerable during rush hour, which may overwhelm the benefi t delivered by the strategy. Thus 
automatic charging technology is crucial to the effectiveness of the strategy. Automatic License 
Plate Recognition (ALPR) is one of the solutions. ALPR technology is used on most electronic 
tolling facilities around the world both in free-fl ow and toll-lane-based situations (some lanes are not 
free of use and subject to charge, thus less congested). ALPR is based on captured images of vehicle 
license plates, which are then processed through optical character recognition software to identify the 
vehicle by its license plate. Some systems use front- and rear-located cameras to capture the images 
to improve identifi cation rates. Once identifi ed, the facility sends the data to a data center and the 
required charge or permit-checking processes are undertaken.   

    22.4.3       Technical Characteristics and Challenges 
    22.4.3.1       The Networking Environment 
 Most   of these smart object networks operate in open roadside environments, which means the shelter 
effect of buildings is low, but the interference is reasonably high. 

 For   on-vehicle nodes, the mobility causes other problems. One problem is the Doppler effect, 
which is caused by rapid movement of transmitters and/or receivers. The other problem is transient 
connectivity, which requires very effi cient interactions among mobile nodes.  

    22.4.3.2       QoS and Network Reliability 
 Generally  , the requirement of QoS in ITS is relatively high due to the need for real-time traffi c infor-
mation. For example, real-time data such as images, video streams, and short messages are quite 
demanding regarding throughput, delay, and jitter. In contrast, some data like statistical reports do not 
have stringent QoS requirements.  
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    22.4.3.3        Scalability 
 The   scale of the network depends primarily on the scale of the urban area, which makes networks in 
large cities like Beijing and New York harder to establish.  

    22.4.3.4       Reliability Requirement 
 Reliability   requirement in ITS is moderate. Many experiments of WSN for ITS have been done by 
universities and companies all around the world, however, the reliability of most of these networks 
is far from the level needed for business application. The value of the intelligent transport system 
depends on its reliability though.  

    22.4.3.5       Mobility 
 As   mentioned before, the WSN for ITS is a mixture of both mobile and fi xed nodes where fi xed 
nodes are used to collect and relay the information generated by the on-vehicle sensors.  

    22.4.3.6       Security 
 Because   of urban critical infrastructure, the security level required by ITS is relatively high, although 
security issues have not been a primary concern thus far. However, it is predictable that methods to 
protect a person’s privacy and defend the attack of malicious nodes will quickly become a prime 
concern.  

    22.4.3.7       Network Management 
 Management   of such large-scale networks, whether in a centralized or a distributed manner, is essen-
tial for a successful ITS. The deployment and maintenance of such systems may be costly but it is a 
necessity. There are a number of projects currently working on the management of such large-scale 
networks.    

    22.5       CONCLUSIONS 
 Smart   Cities will signifi cantly improve the quality of life in large cities due to a wide range of innova-
tive services. This chapter showed several examples of such applications. Environmental monitoring, 
increased public safety and security, effi cient resources management such as energy and water, ITS, 
and the development of new social networks are just a few examples. 

 All   of these new applications rely on the deployment of IP smart object networks offering a high 
degree of scalability, reliability, and security in (most of the time) harsh and unattended environments. 
This is why the use of IP technologies is central to the successful deployment of such networks. There 
is a strong need for the support of a variety of media and a true end-to-end IP architecture avoiding 
complex and hard to manage multiprotocol gateways. This wide spectrum of applications requires 
the deployment of IP multiservice networks with differentiated services regarding QoS, reliability, 
and security while ensuring a great deal of fl exibility considering the number of future applications. 
In some cases, Virtual Private Network (VPN) technologies can be deployed to logically separate the 
fl ows if needed. 

 The   hardware and software technologies are available and the deployment of IP smart object 
networks in Smart Cities will undoubtedly take place on a large scale in the near future.                         
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           Home Automation    23 
CHAPTER

    23.1        INTRODUCTION 
 Home   automation is not a novel subject. Instead, home automation products (such as X10 products) have 
been on the market for more than 25 years. Nonetheless, home automation has not yet reached the mass 
consumer market. A large and growing market for home control solutions has emerged for high-end solu-
tions, especially in the United States. Such solutions cost  $ 20,000 – 30,000, with typical projects easily 
costing between  $ 50,000 and 100,000. With the Custom Electronic Design and Installation Association 
(CEDIA; a largely American trade organization leads this segment) certifying over 2000 professionals and 
conducting a large trade show on an annual basis, the signifi cance of this market segment is undisputed. 
However, homes in this high-end market segment typically cost more than  $ 1 – 2 million. Attempts to shift 
from this segment toward the mass market thus far have yielded only a limited market segment expansion. 

 On   the other end of the spectrum, there is a market segment largely driven by enthusiasts. Most of 
them are buying the corresponding products through the Internet or  “ historically ”  through mail order. 
With products in this segment signifi cantly cheaper than in the high-end market and with installations 
typically performed by skilled customers, total solution cost is an order of magnitude lower. However, 
it is obvious that the size of this market segment is strongly limited by the number of skilled custom-
ers who are willing to perform their own integration work. 

 The   overall market opportunity has been estimated by various industry analysts (OnWorld, Parks 
Associates, and InStat) to be huge. Typical calculations set the potential number of devices in the 
long term as high as 50 – 100 per home then multiply this number with a number of target house-
holds in the range of 200 – 300 million worldwide. Slightly more conservative approaches estimate the 
need for one device for every 80 – 100 square feet (or approximately one device for every 8 – 10 square 
meters) in the home and still reach the market potential of several billion devices. 

 Standardization   plays a pivotal role in approaching the mass market, and the lack of standardiza-
tion thus far is one of the main reasons why systems were so costly. Several initiatives have attempted 
to set the standard for home control and unlock access to the mass consumer market. X10, one of the 
earliest to try and set an industry standard based on Powerline communication (PLC), has arguably 
been closest to succeeding with products in mass retail outlets such as Radio Shack. Today, from 
the perspectives of feature set, manufacturer support, and robustness, X10 must be seen as outdated. 
Members of the Electronics Industry Association have built CEBus, a standard for home automation 
with a spread spectrum modulation-based power line technology providing more features than X10. 
However, fi nally released in 1992, CEBus failed to play a visible role in the market. 
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  KNX  , which goes back to the Instabus or EIB, Batibus, and the European Home Systems Protocol 
(EHS), is well accepted for building control and leads the wireline home automation market in the 
high-end segment in Europe. However, its wireless variant KNX RF has failed to gain any signifi cant 
market momentum.  

    23.2       MAIN APPLICATIONS AND USE CASES 
 Home   automation is an area of multiple and diverse applications that include lighting control, secu-
rity and access control, comfort and convenience, energy management, remote home management, 
and aging independently and assisted living (see  Figure 23.1   ). Note that the term  “ home automation ”  
appears to be used more frequently than  “ home control. ”  However, most customers are not drawn 
toward a fully automated home in the  “ Jetson’s ”  style. Instead most consumers clearly indicate that 
they want solutions that help them easily and conveniently control their home. 

    23.2.1       Lighting Control 
 Lighting   automation was probably the fi rst application area in the home automation space. In terms 
of sales it is still the largest segment. With future growth, it may be expected that lighting control 
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 FIGURE 23.1  
       An overview of some home control devices.  

 (Source: ELV/eQ3 group.)   
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 devices will be the device types with the largest number of units deployed. The types of lighting con-
trol devices in the market are as diverse as the application scenarios. Key differentiations in lighting 
control device types include: 

 Type   of device: 

      ●      Controllers: Handheld controls, key fobs, in-wall controllers, room occupancy sensors, movement 
sensors, etc.  

      ●      Actuators: Switches, dimmers (leading edge, trailing edge, universal dimmers), LED lighting 
actuators    

 Key   differentiations: 

      ●      Mounting location: Switch panel (e.g., in DIN rail form); gang box, wall-mount box  
      ●      Number of channels: Single channel, dual channel, multichannel actuators and controllers  
      ●      Power source: Main-powered, battery-operated, energy  “ scavenger ”      

    23.2.2       Safety and Security 
 Alarm   systems may immediately come to one’s mind when considering this solution area. In fact, 
the integration of alarm systems with home automation is one potential path the industry may take. 
However,  “ safety and security ”  in home automation is often seen from a slightly different angle. Instead 
of focusing on burglar alarms and adding protection against other risks, the actual  and  perceived safety 
are moved to the center of attention. Key use cases include situations like wirelessly turning on the 
lights before opening the garage and/or leaving the car, creating a safe path of light into the home, pro-
viding a panic button to turn on all lights, or creating a lived-in look for a home when traveling. 

 Devices   for safety and security include movement sensors and door and window contacts as well 
as RF-based smoke detectors, gas sensors, and water leakage sensors. 

 Access   control is sometimes seen as an application space in home automation on its own, yet is 
sometimes seen as an extension of safety and security. Key devices include garage door openers as 
control solutions for garage door drives and electronic door locks. With electronic door locks one 
key challenge in the consumer market is how devices can be retrofi t, especially when no wires can be 
installed and when the door is not going to be changed.  

    23.2.3       Comfort and Convenience 
    “ Comfort and convenience ”  is often used as a term in home automation for a solution area. This is 
also an area where home automation can bring signifi cant value. It usually encompasses devices 
from multiple areas starting with lighting control, adding energy conservation, access control, and 
safety and security. Actuators to control motorized blinds, shutters, and curtains are often counted 
in this area, although the devices are also used in various use cases; for example, window actuators 
can be seen as devices that increase comfort and convenience for home owners. However, such 
devices also have a strong use case for conserving energy and protecting buildings from mold and 
mildew. In energy-effi cient houses, the buildup of humidity and subsequent problems with mold 
are on the rise. This is not only a concern because it is very expensive to repair, but even more so 
as a large health risk for the occupants.  
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    23.2.4        Energy Management 
 With   energy prices increasing and the attention for CO 2  reduction growing both on a public and 
private level, effi cient energy management has become the main focus for home automation. See 
Chapter 20 for more details. 

 As   a brief reminder, solutions typically focus on controlling heating, ventilation, and air condi-
tioning (HVAC) in homes. The primary use case here is to integrate the control of the HVAC ther-
mostat into overall home automation. Examples include switching the thermostat into setback mode 
when the house is not occupied and to turn it back into comfort mode just before family members 
return. Another driver is the convenience of programming the (typically weekly) temperature profi le 
with a graphical user interface in a PC or web browser. As pointed out in Chapter 20, such control 
could be driven by the home energy controller (HEC) according to the dynamic pricing information 
provided by the power utility. 

 Usually   lighting control is added from an energy conservation perspective. Controlling the entry 
of sunlight into buildings with shades and blinds and controlling heat dissipation with roller shutters 
are additional examples of home automation used to conserve energy. 

 In   Europe, one type of heating control plays a pivotal role: more than one billion mechanical radi-
ator thermostats are installed in both residential and commercial environments. Water-based heating 
with radiators is regulated with valves that are controlled by these radiator thermostats. The ther-
mostat head can be exchanged without changing the valve, allowing for installation by end users 
without requiring a professional installer. Electronic thermostats with timed programs can save as 
much as 30% of the heating energy. Wireless communication enables remote control of thermostats 
and allows integrating window contacts, providing further opportunities for energy savings. While 
mechanical thermostats act based on the temperature next to the radiator, a wall-mounted wireless 
room thermostat can improve the regulation by measuring the temperature in a more relevant loca-
tion to actual room usage. Furthermore, wireless electronic thermostats enable the added convenience 
of using remote controls to set all thermostats in a room or in the home without having to walk up to 
every individual unit. 

 This   application area is highly challenging with its demand for battery-to-battery communication 
(see  Figure 23.2   ). Unlike thermostats in HVAC applications in the United States, the room thermo-
stat, plus the valve actuator, window sensors, and remote controls need to be battery-operated. This 
is creating a strong need for battery-to-battery communication on a regular basis that is typically not 
found in home automation applications in the United States.  

    23.2.5       Remote Home Management 
 Remote   home management puts another angle on the other types of use cases in home automation 
and is seen by several Service Providers as an interesting opportunity to enrich their services portfo-
lio. It typically describes the ability to control home automation devices from outside the home. With 
access to the Internet so ubiquitous, remote home management can be provided at very low cost, cre-
ating a simple, yet powerful business case. Applications include checking on the home from abroad, 
receiving alarms from smoke sensors, door contacts, movement detectors or water leakage sensors, 
controlling heating and HVAC before returning back home, and use cases in aging independently and 
assisted living.  
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    23.2.6        Aging Independently and Assisted Living 
 With   the demographics rapidly changing in North America, Europe, and even more so in countries such 
as Japan and China, supporting older people through home automation quickly becomes an important 
application for emergency assistance or monitoring changes in life dynamics. The objective is for people 
to stay longer in their private residences with the help of home automation applications, thus reducing the 
burden on public funding of retirement homes and increasing the quality of life for the people involved. 

 Home   automation sensors can also be used for assistance applications that monitor activity and 
health of people, providing for added safety for elderly people in homes. More complex systems can 
also be used to aggregate a set of data to detect any change in the life dynamics.   

    23.3       TECHNICAL CHALLENGES AND NETWORK CHARACTERISTICS 
 At   fi rst the technical requirements and network characteristics appear straightforward for home auto-
mation. Compared to other applications fi elds such as building control or industrial sensor applica-
tions, home automation appears signifi cantly less demanding. The key success factor will be the 
emergence of a universally accepted standard for home automation such as IP. 

    23.3.1       Type of Topology and Traffi c Matrix 
 From   a home automation user’s perspective, the paramount requirement is that devices can be 
installed anywhere in the home. With the advent of mesh networking solutions in the early 2000s, 
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 FIGURE 23.2  
       Battery-to-battery communication.  

 (Source: ELV/eQ3 group.)   
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 home automation was seen as an easy fi eld for its application. Unfortunately several non-IP solu-
tions designed for home devices underestimated several technical challenges. On the other hand, 
solutions such as HomeMatic have proven that a full scale mesh networking solution may not be 
required to provide RF coverage for an entire home. The same is true for early implementations of 
the 868       MHz modes of the 2006 version of the IEEE 802.15.4 standard, most notably the so-called 
Parallel Sequence Spread Spectrum (PSSS) communication modes. Also true is that direct communi-
cation only appears not to be suffi cient in all circumstances. It is also expected to see the use of mixed 
media such as wireless and PLC. Communication topologies in home automation are mixed. On one 
hand, many use cases require communication between a central controller and/or gateways device 
from and to sensor and actuator devices. On the other hand, sensor and actuator devices are required 
to communicate directly with each other. Both need to be easily and reliably accommodated. 

 Communication   occurs infrequently on a per-device basis. Practically no home automation appli-
cation requires more than a single message per minute per device when wireless communication is 
used. Remote controls may be used to rapidly conduct multiple settings and also to control dimming 
of the device by holding buttons for longer periods of time. However, remote controls in home auto-
mation are not expected to be used for  “ zapping ”  like TV remotes. Even with the low number of per-
device messages, traffi c may concentrate at gateway and central controller devices.  

    23.3.2       Number of Devices 
 The   majority of deployments is expected to be in the range of 50 to 100 nodes. Larger homes and 
more advanced solutions scenarios may see an increase of up to 150 to 200 nodes. Although not yet 
common, there are already deployments with over 200 nodes in a single home. It is obvious that IP 
provides all of the necessary ingredients and is proven for just these types of networks.  

    23.3.3       Degree of Mobility 
 The   vast majority of devices are stationary in home automation. Devices such as remote controls can 
be considered as portable devices. In contrast with truly mobile devices, remote controls do not need 
to support communication while being moved (it may be assumed that devices that have sent a com-
mand will typically stay in the same location until they have received responses).  

    23.3.4       Robustness and Reliability 
 Hard   real-time requirements basically do not exist in home automation and individual packets may be 
lost and retransmitted in most circumstances. However, robustness and reliability of the overall com-
munication are paramount to consumer acceptance and market success. Furthermore, note that typical 
installations will not be performed by skilled and trained installers, which means that home automa-
tion networks must be easy to install and extremely reliable. 

 For   reasons of reliability, robustness, and ease of confi guration, confi rmed two-way communica-
tion is strongly preferred over unidirectional links.  

    23.3.5       Requirements for Quality of Service 
 Requirements   for fi ne-grained control of Quality of Service (QoS) are relatively rare in home automa-
tion. One could distinguish immediate control commands where response time is observed by a user 
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 from background control algorithms, status reporting, and setup functions that could operate with longer 
round-trip delay and more jitter in response times. However, based on the concurrent requirement for 
low cost and low complexity, functions for QoS may be traded in favor of meeting other requirements.  

    23.3.6       Battery Operation 
 Long  -term battery operation is a key requirement in home automation. This includes initiating and 
accepting communication to, from, and also between battery-based devices. Battery-to-battery com-
munication was added later in some proprietary solutions. However, the solution was optimized for 
infrequent, ad hoc use by remote controls to switch battery-operated devices. This key application 
was designed mainly for door locks. However, adding such battery-to-battery communication late has 
resulted in most remote controls on the market implemented on earlier versions of the technology 
without these modes. 

 Battery  -less operation in devices on a long-term basis would be desirable for home automation 
devices. The vision is that energy could be collected at a device and used for device operation com-
munication. Examples include devices from EnOcean that use piezo elements in wall switches to gen-
erate electricity or thermostats and other sensor devices with photovoltaic cells. Note that PLC is also 
an interesting option for this type of device. However, for residential home automation, several chal-
lenges remain to be solved for battery-less devices to become more attractive such as cost, limited 
amount of energy available via scavengers, and product lifetime (still limited for currently available 
battery-less devices).  

    23.3.7       Operating Environment 
 The   operating environment for home control is in several aspects much less demanding than, for 
example, the environments in which industrial controls are deployed. This is, for example, true for 
operating temperature ranges, dust and dirt, chemicals in the environment, electromagnetic interfer-
ers, or vibration. However, there may be one exception where the environment for home automation 
is very challenging. In densely populated areas the use of licensed RF bands is rapidly growing. This 
is especially the case for the 2.4       GHz band where WLAN has reached a level of deployment that 
already saturates the spectrum in certain regions. For devices that need to operate on batteries on a 
multiyear basis, this is a very serious concern since it is practically impossible to predict the devel-
opment of the use of the 2.4       GHz band even for the lifetime of the fi rst set of batteries in a device. 
Depending on the crowdedness of the 2.4       GHz band, frequent retransmissions in a battery lifetime 
may be affected. It may be noted that practically all signifi cant wireless home control technologies in 
Europe are using the 868       MHz band, where the risk of interference is much lower because it is less 
crowded.  

    23.3.8       Security 
 Originally  , the level of security required in home control applications was seen as low. As a matter 
of fact, none of the home control solutions or industry standards in the market provides security in all 
devices. Even most wireless alarm systems do not use security technologies in their protocol stacks. 
Security is provided today in home automation typically in devices for access control only. This is 
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 the case in dedicated garage door opener solutions with both rolling code systems and bidirectional 
authentication solutions. In some technology platforms security has been added just recently. There 
are a few products that currently provide the implementation of AES-128-based authentication. Even 
a plug-in switch device can be confi gured to require authentication. 

 It   remains to be seen how market and customer requirements regarding security will develop in 
the home automation space. While the operational needs remain much lower than for industrial appli-
cations, building control, or smart meter and Smart Grid applications, it can be expected that products 
without security will be unsuccessful.  

    23.3.9       Ease of Installation and Setup 
 Especially   in the consumer market, easy setup and confi guration are critical for success, and the solu-
tion must truly be plug and play. This is very different from the main market segments for home 
automation.   

    23.4       CONCLUSIONS 
 The   lack of a universally accepted standard that can meet all relevant market and customer require-
ments is among the key obstacles for adoption of home automation with its associated application 
fi elds in the consumer market. Compared to analyst predictions just 4 – 6 years ago, the development 
of this market is disappointing. 

 The   IP protocol suite and especially IPv6 provide many of the ingredients that could prove essen-
tial for success in home automation. The IP protocol work conducted by the 6LoWPAN, ROLL IETF 
Working Groups (as discussed in detail in Chapter 17), and other working groups fully applies to 
home automation smart object networks.           
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             Building Automation    24 
CHAPTER

  With   ever-increasing energy costs, energy savings have become critical in buildings. Building auto-
mation is a way to save energy in buildings and provide critical functions such as fi re emergency 
evacuation. Smart objects are rapidly entering this market because of the reduced installation costs 
that wireless systems provide. 

 Building   automation is the instrumentation, mechanization, and data aggregation of a variety of 
discrete building systems to make monitoring and controlling of building equipment more effi cient. 
Building Automation Systems (BAS) automatically adjust heating ventilation and air conditioning 
(HVAC) and lighting systems to meet the targeted environmental conditions for the building, while 
minimizing energy cost. Building automation also increases the security and safety of the building 
environment by monitoring and controlling the installed physical security and fi re systems. BAS is 
often interchangeably called Facility Management Systems (FMS), Building Management Systems 
(BMS), Energy Management Systems (EMS), or Intelligent Building Systems (IBS). 

 Traditionally  , BAS and enterprise network systems were separately installed and maintained by 
the facility and IT organizations, respectively. The cost of supporting two complex pervasive networks 
within a building has led to the integration of the facility equipment onto the IT network. This conver-
gence has brought about economic advantages but also highlighted differences in the performance, 
latency, and other operational characteristics of mission-critical systems with that of offi ce networks. 

 BAS   is deployed in a variety of commercial vertical markets including universities, hospitals, gov-
ernment, lower education (K – 12), hospitality, and manufacturing. The building types serving these 
markets include single tenant and multi-tenant owner occupied and leased buildings; multi-building 
single site environments such as university campuses, and widely dispersed multi-building multi-site 
environments such as franchise operations. Full-blown BAS typically target buildings ranging in size 
from 100       K square feet structures (fi ve-story offi ce buildings), to multimillion square feet skyscrapers. 
Buildings sized from 50 to 100       K square feet fall into the  “ mid-market ”  sector. These buildings are typi-
cally instrumented with preconfi gured HVAC, lighting, and security solutions using either residential or 
commercial grade sensors and controllers. 

 Smart   objects have a clear place in the building automation ecosystem by providing both the sen-
sors that the BAS needs, as well as the actuators that affect the physical environment. Smart object 
networks installed as part of BAS can be either wireless using radio communication, or wired using 
Powerline communication (PLC) or Ethernet. 

 To   accomplish this spectrum of building topologies and sizes, the BAS must be able to meet the 
nuances of each specifi c facility. This chapter provides an overview of the BAS architecture for larger 
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 buildings describing the various components, systems, and their interrelationship giving context to 
the needed technical, networking, and performance requirements. 

    24.1       BAS REFERENCE MODEL 
 Before   discussing the applications of building automation, we present a common reference model 
that we use throughout this chapter. This reference model describes the BAS from the lowest layer to 
the highest layers in the hierarchy. Each section describes the basic functionality of the layer, its net-
working model, power requirements, and a brief description of the communication requirements. The 
entire section references the block diagram seen in  Figure 24.1   . 

    Figure 24.1  shows the fi ve major logical subsystems that make up a BAS. These subsystems have 
layered solutions starting at the sensor layer moving upward in complexity toward the enterprise. 
While these fi ve subsystems are common to most facilities, they are by no means the exhaustive list  —  
a chemical facility may require a complete fume hood management system, a manufacturing facility 
may require interfacing to the programmable logic controllers subsystems, or a multi-tenant facility 
might require a comprehensive power management subsystem. The objective in the overall design is 
to integrate all common functions into the system yet allow maximum fl exibility to modify these sys-
tems and add other systems as dictated by the job requirements. 

 To   understand the network systems requirements of a BAS in a commercial building, there is a 
framework for the basic functions and composition of the system. A BAS is a horizontally layered 
system of sensors and controllers. Additionally, a BAS may also be divided vertically across alike but 
different building subsystems as noted next. 

 Other   than the sensors and actuators layers, much of a BAS is optional and all upper layers have 
stand-alone functionality. These devices can be tethered together to form a more synergistically 
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 robust system. The customer decides how much of this vertical  “ silo ”  should be integrated to perform 
the needed application within the facility. This approach also provides excellent fault tolerance since 
each node is designed to operate in an independent mode if the higher layers are unavailable. 

 As   shown in  Figure 24.1 , HVAC, fi re, security, lighting, and shutter control are components that 
can be woven together into applications tailored to the customer’s requirements. Shutter control 
is an emerging application domain prevalent in the European market. These major subsystems are 
connected logically through application software called building applications. This horizontal stack 
follows the vertical stack design in that each silo is optional. The customer can integrate all the sub-
systems at once or add them as the facility or budget dictates.  

    24.2       EMERGING BUILDING AUTOMATION APPLICATIONS 
 In   addition to HVAC applications, there are numerous emerging applications of building automations 
technology. Such applications are encoded by the building application layer, which is a software layer 
that binds the various system silos into a cohesive systemic application. This discussion is meant to 
show a snapshot of emerging use cases and describe how these diverse systems can be coordinated 
with holistic building automation applications. 

    24.2.1       Occupancy and Shutdown 
 A   major energy saving technique in commercial buildings is to automatically commence HVAC and 
lighting operations prior to building occupancy. Conversely, building shutdown allows the systematic 
reduction in HVAC and lighting operations as the building goes unoccupied. 

 The   HVAC system is usually charged with defi ning occupied and unoccupied times. The fi re and 
security operations are always operable and lighting is most often subservient to the HVAC. These 
times are typically programmed into the system by facility operations; however, it could be learned 
adaptively by the security’s access control system. The target occupancy time drives the HVAC subsys-
tem to turn on all ventilation equipment at an optimal time so that each space is ready for occupancy at 
the prescribed time. These algorithms will be adaptive over time but also include systemic instrumen-
tation such as outdoor air and relative humidity to turn on the equipment at the last possible moment 
yet still meet the target environmental needs just before occupancy. The lighting systems will also be 
turned on just prior to occupancy. 

 Conversely  , the HVAC systems will also determine the earliest possible time it can shut down 
heating/cooling yet still control the set points to meet the requisite parameters. Lighting again is eas-
ier since the lights can be extinguished as soon as they are no longer needed. Building owners may 
use the lighting systems to pace the janitorial service providers by defi ning a strict timetable that the 
lights will be on in a given area; the janitorial service providers will need to keep in step to complete 
their work prior to the lights being turned off. 

 The   system may also include a telephone or computer interface that allows any late workers to 
override the normal HVAC and lighting schedules simply by dialing into the system and specifying 
their locale. The lights and fan system will continue to operate for a few extra hours in the immediate 
vicinity. The same applies to occupancy sensors in meeting rooms. Either by automatic sensing or a 
simple push of the occupied switch, the HVAC and lighting schedules will extend the normal schedule 
for the meeting room.  
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    24.2.2        Energy Management 
 The   occupancy/shutdown applications noted above optimize the runtime of large equipment. This is a 
major energy saving component. However, even during occupancy large equipment can be modulated 
or shut off temporarily without affecting environmental comfort. This suite of applications runs in the 
HVAC domain; however, the HVAC silo will interact with the lighting system to reduce the lighting 
load to help in the overall reduction of energy. 

 The   load-rolling and demand-limiting applications permit the sequencing of equipment to reduce 
the overall energy profi le or to shave off peak energy demands in the facility. The BAS will con-
stantly monitor real-time energy usage and automatically turn off unneeded equipment (or reduce the 
control set point) to stave off peaking the facility’s electrical profi le. Demand peaks set by commer-
cial facilities are frowned upon heavily by utilities and are often accompanied by huge energy charge 
increases for one year.  

    24.2.3       Demand Response 
 Recently   real-time pricing has furthered the incentives to save energy. This allows a facility to proac-
tively use or curtail energy based on its current price. Again, the HVAC subsystem takes the lead in 
this application by polling the current and future pricing structures from the electrical utility company 
via the Internet. The array of data is automatically analyzed and energy strategies are executed to 
defer or reduce energy use until the price rate drops.  

    24.2.4       Fire and Smoke Abatement 
 In   the United States, most local building codes now require commercial buildings to incorporate com-
prehensive fi re and life/safety systems into a building. It is well documented that loss of life in a 
building is mainly caused by smoke inhalation and not the actual fi re. The product safety standard-
ization organization, Underwriters Laboratories (UL), has a fi re certifi cation program (UL-864) that 
governs fi re and smoke operations in commercial buildings. This program requires rigorous interac-
tive testing with UL to obtain certifi cation. In addition to the obvious need to minimize life/safety sit-
uations in a building, facility operators are highly encouraged to implement these systems to receive 
insurance cost reductions. 

 The   UL fi re and smoke systems operate in either a manual or automatic mode. The manual 
mode provides critical fi re and smoke information on a display to be controlled by a Fire Marshal. 
The automatic mode is a preprogrammed set of events that automatically control the fi re. In practice, 
the fi re system will be set to automatic mode and operate accordingly until the Fire Marshal arrives. 
At that point the system is normally overridden to manual mode so that the Fire Marshal can control 
operations from the command center as deemed necessary. 

 The   fi re certifi cation program UL-864 is comprised of fi re system operations (UOJZ) and smoke 
control (UUKL). UOJZ certifi cation allows all fi re and smoke operations, events, and alarms to be 
controlled from a Fire Workstation. Local fi re panels can only be accessed and commanded from 
this workstation. Operator authentication and command authorization are required for all operations. 
Alarms can only be acknowledged from this device. One and only one Fire Workstation can ever 
govern a given area at a time to assure that destructive control operations cannot inadvertently occur 
by two operators simultaneously controlling a space. 
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  The   smoke abatement certifi cation, UUKL, is an adjunct function of the fi re system that auto-
matically or manually purges the fi re and directs smoke safely out of the building. This is done by 
exhausting smoke from exit passageways and refuge areas by judicially adjusting pressures and 
dampers in the affected areas. Furthermore, it will actually assist in putting out the fi re by starving the 
fi re of oxygen in the affected area while simultaneously routing smoke out the building in the adja-
cent areas. 

 While   the smoke abatement operation could be the province of the fi re system alone, economics 
dictates that the fi re system off-load the smoke abatement operation to the HVAC system. In practice, 
the fi re system will receive the initial fi re indication by one or more of its smoke detectors. It will 
then inform the HVAC system of the physical locale of the fi re. The HVAC system will then take 
charge of the smoke abatement operation by automatically adjusting the air handlers and dampers. 
The HVAC system must incorporate a comprehensive prioritization scheme throughout its system. 
This prioritization scheme must allow all smoke operations to take control precedence over all other 
control operations including manual operator control. All affected devices must support a supervision 
policy that assures that all operations requested were executed properly. The system will automati-
cally return to normal operation once the smoke situation has abated. 

 Many   buildings also trigger the evacuation application (see the next section) coincidentally with 
a smoke control situation. The evacuation application assists building inhabitants in safely leaving a 
building. Elevator control policies may restrict inhabitants from calling for the elevators while simul-
taneously posting the elevators to the ground fl oor for use by fi re personnel.  

    24.2.5       Evacuation 
 Evacuation   is a systemic operation that may be activated as part of the fi re/smoke control application, 
or may be activated for other reasons such as terrorist threats. Evacuation requirements most often 
activate subsystems of the fi re, security, and lighting silos. The fi re system normally supports the 
intercom subsystem in the facility. The intercom system will then trigger the recorded voice evacu-
ation instructions. This may be in concert with the fi re system audio indications if a fi re situation is 
active or stand-alone. The lighting subsystem will be activated to turn on the lights and evacuation 
paths to aid in the evacuation. The security system coincidentally opens all doors to allow a smooth 
safe egress from the building. If the building also supports elevator control, the elevators operate as 
directed by a preprogrammed evacuation policy.   

    24.3       EXISTING BUILDING AUTOMATION SYSTEMS 
 Existing   BAS is typically installed using wired connections. Although wired connections provide 
good effi ciency when the system is deployed, wired systems are diffi cult and expensive to install and 
update if the building changes. For this reason, wireless mechanisms are emerging. Before discussing 
wireless technology, we review existing BAS. 

 EIA  -485 and Ethernet are the dominant media used in BAS. Sensors, actuators, area controllers, 
zone controllers, and building controllers are connected via EIA-485 three-wire twisted pair serial 
media operating nominally at 38,400 to 76,800 baud. This will run to 5000       ft without a repeater. With 
the maximum of two repeaters, a single communication trunk could serpentine 15,000 feet dropping 
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 as many as 255 control devices along its path. Wired sensing devices that typically had been hard-
wired to the controller are increasingly placed on an EIA-485 sensor bus. 

 The   HVAC, fi re, access, intrusion, lighting, and shuttering subsystems are often integrated using 
LAN-based Ethernet technology. These enterprise devices connect to standard CAT-5 through work-
group switches. 

 In   the past fi ve years, wireless technologies such as 802.15.4, WiFi, and Powerline communication 
(PLC) have been deployed for sensor and controller networks.  Figure 24.2    depicts a wired network 
and an equivalent wireless network. WiFi is deployed to extend the enterprise layer for portable user 
interface communications. WiFi communications replace the Ethernet connection if the application 
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 operates within the WiFi performance characteristics. Multi-building sites also connect onto the facil-
ity intranet or over the Internet if the available performance matches the application requirements. 

    24.3.1       Existing Control Protocols 
 Sensors  , actuators, area controllers, zone controllers, and building controllers all typically coexist on 
an EIA-485 multi-drop network. EIA-485 provides the proper communication speed and fl exibility at 
a reasonable cost. Through the early 1990s the protocols running on these networks were proprietary. 
However, in mid-1990 the Building Automation Control Network (BACnet) and Local Operating 
Network (LON) protocols were developed by the HVAC industry consortia that defi ned electrical 
interfaces as well as a standard set of objects, properties, and services for sensing and controlling 
devices. The emergence of these protocols allowed vendor interoperability of these devices. Since 
their inception these protocols have been augmented to include energy management, lighting, secu-
rity, and fi re support. Other protocols such as Digital Addressable Lighting Interface (DALI) have 
also been developed to increase interoperability for targeted markets. 

    24.3.1.1       BACnet 
 BACnet   is an ISO standard protocol designed to maximize interoperability across many products, 
systems, and vendors in commercial buildings. BACnet was conceived in 1987 and fi rst released in 
1995 as an HVAC protocol. Standard objects, properties, and services were defi ned supporting device 
and object discovery, object creation, the reading and writing properties of objects, event notifi ca-
tion, network security, and routing. Since its fi rst release fi re, security, and lighting functionalities 
have been added. BACnet currently supports six media types including Ethernet (802.3 and UDP/
IP), EIA-485, Arcnet, LON, RS-232, and ZigBee. The BACnet object set is very generic supporting 
object types such as analog input and binary input. The defi nition maximizes fl exibility but obfuscates 
semantic meaning. Hence, the system integrator must have a priori knowledge of the object’s use. 
Without it, the integrator could easily reference the boiler temperature point instead of the outdoor air 
temperature point.  

    24.3.1.2       LON 
 LON   competes with BACnet most often at the sensor and fi eld bus layers. LON is an ISO/IEC stan-
dard that was originally developed by the Echelon Corporation and that typically is used with ISO/IEC 
14908.2. Whereas BACnet is purely a software protocol that runs on standard communication hardware, 
many LON implementations use specialized chips that implement the protocol. Unlike BACnet, which 
has very loose binding, LON has defi ned standard device profi les with rich semantic meaning. This 
assures interoperability albeit at a slight decrease in fl exibility.  

    24.3.1.3       DALI 
 DALI   is a lighting protocol standard defi ned within IEC 62386. This protocol was created to allow 
interoperable control of digital lighting for small areas and applications. It provides for multiple 
types of lights including fl uorescent, emergency, HID, low voltage halogen, incandescent, and LEDs. 
Commands include ON/OFF and UP/DOWN. Predefi ned scenes can be confi gured and saved for later 
recall. Communication occurs over a two-conductor cable (no shield is required). The effective trans-
mission rate is 1200       bps for longer distance and reliability.    
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    24.4         BUILDING AUTOMATION SENSORS AND ACTUATOR 
CHARACTERISTICS 

 Sensor   and actuator performance is dictated by the class of device.  Table 24.1    illustrates examples of 
the real-time performance required of the sensor and controller network. As noted, the sensor to actu-
ation time can be as short as 100       ms for some applications. Many applications such as smoke detec-
tion and smoke purge actuation must occur within a few seconds. Less critical applications such as 
room temperature control can take minutes. Application performance requirements span many orders 
of magnitude. The mission-critical nature of these applications is the reason that the control networks 
and IP networks have yet to completely merge onto the enterprise network. 

 Fire   sensing and response is considered the highest priority function in BAS. Security systems 
rank second followed by HVAC and lighting applications. Historically, fi re and safety subsystems 
have been hardwired or implemented on completely dedicated infrastructures to ensure that the fi re 
and security systems are not affected by the HVAC and lighting subsystems. Market and customer 
pressure, however, is changing this approach since customers want application interaction across 
these systems with the HVAC and lighting subsystems. 

    24.4.1       Area Control 
 An   area describes a small physical locale (300 – 500       ft 2 ) within a building, typically a room. Room and 
area control are terms often used interchangeably, although the former is confi ned to the application 
set defi ned within a room; the latter encompasses areas outside a room such as auditoriums, atria, and 
stairways. Common sensors feeding area controllers include temperature, occupancy, ambient light-
ing load, and smoke detectors. Sensors found in specialized areas (such as chemistry labs) might also 
include air fl ow, pressure, CO 2 , and CO particle sensors. Actuation includes temperature set point, 
airfl ow adjustment, lights, and blinds/curtains. 

 The   controllers deployed within an area are most often stand-alone devices that provide the neces-
sary functionality without further assistance by the higher layers of the architecture. However, when 
these devices are connected to the higher layers, these layers provide additional functionality including 
manual override and time series and event data for further analysis. Likewise, the enterprise level can 
then override the local control from a centralized location. When connected to the higher layers, the con-
trollers deploy a fail-soft algorithm that reverts to local control if the higher order communication is lost. 

 Room   temperature controllers are soft real-time devices implementing nominally 60       s control 
loops. Environmental data are provided to the controller by its sensors each minute in either a polled 

 Table 24.1          Sensor Expected Performance Characteristics  

   Sensor type  Expected response time 

   Space temperature  10       min 
   Duct temperature  1       min 
   Fire detection  3       s 
   Occupancy  1       s 
   Door access  1       s 
   Static pressure  100       ms 
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 or event-driven fashion. The controller then analyzes the data and modulates the actuators accord-
ingly to meet the application requirements. 

 Ambient   lighting sensors and solar sensors periodically sample the room’s light load. This informa-
tion is forwarded to the lighting panel. The lighting panel then automatically adjusts the light level to 
the desired set point by modulating the external solar light load with the interior lighting, typically min-
imizing electrical demand. When available a room occupancy sensor will override the algorithm when-
ever the room is unoccupied. The solar sensor may also forward radiant heat infi ltration to the HVAC 
control. The HVAC controller then includes these data in the heating or cooling load requirement. 

 Room   lighting control also requires real-time performance. Room lights need to have near instan-
taneous response to a light switch activation. The lighting operator expects to see some change in the 
scene within 300       ms after a complex lighting command has been executed. 

 Door   control requires much higher performance. Persons entering a facility will expect a latency 
of no more than 300       ms between swiping the access card and entry approval. Camera pan-tilt-zoom 
commands need to execute with less than 250       ms latency. 

    24.4.1.1       Area Controller Communications 
 Area   and room controllers need to communicate to higher order (zone) controllers as well as subor-
dinate sensors and actuators. The controllers operate on a fi eld bus. Although the fi eld bus is often 
implemented with the same EIA-485 physical network as the sensor bus, the communication rates, 
packet size, buffering, and fragmentation are increased to handle the larger packet transmissions. The 
protocol on the fi eld bus is most often a peer-to-peer protocol to ease sharing controller data across 
the controllers.   

    24.4.2       Zone Control 
 Zone   control supports a similar set of characteristics as the area control, albeit to an extended space. 
A zone is normally a logical grouping or functional division of a commercial building that also coin-
cidentally maps to a physical locale such as a fl oor.  Table 24.2    illustrates zones for the various func-
tional domains within a commercial building. 

 Zone   control may have direct sensor inputs (smoke detectors for fi re), controller inputs (room 
controllers for air handlers in HVAC), or both (door controllers and tamper sensors for security). Like 

 Table 24.2          Examples of Commercial Zones  

   Functional 
domain 

 Zone 

   HVAC  Air handler is the area served by a single fan system; typically a fl oor or adjacent fl oors in a 
building. 

   Lighting  A bank of lights that all operate consistently. 
   Fire  An area of a facility that operates consistently when fed by the same fan system or covered by 

the same set of smoke detectors or follows the same pressurization and alarm annunciation 
rules. The zone may also be a functional grouping when a certain area is governed by a set of 
fi re dampers. 

   Security  A subset of the building operating in a similar fashion such as a logical collection of lockable 
doors. 
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 area/room controllers, zone controllers are stand-alone devices that operate independently or may be 
attached to the larger network for more synergistic control. 

 Zone   controllers may have some onboard sensor inputs and also provide direct actuation; how-
ever, they also direct the actions of their underlings via commands as well as respond to environmen-
tal changes reported by those same underlings. For example, an air handler controller might directly 
sample the duct pressure, the supply air temperature, and return air temperature. However, it may 
also send commands to other networked devices querying the outdoor air temperature and relative 
humidity. Similarly, a fi re panel may have all the smoke detectors directly wired, yet send commands 
to other adjacent fi re panels to request their status if a fi re condition arises. A list of zone controller 
characteristics is defi ned in  Figure 24.2 .  

    24.4.3       Building Control 
 Building   controllers (BCs) provide the overall orchestration of the system. While the sensor and area 
controllers provide real-time focused applications; the BCs provide broad systemic functionality. The 
BCs also provide the view ports into the embedded real-time systems for the operator, integrators, 
and enterprise applications. The BCs cache and archive important real-time data from the area con-
trollers and act as an agent to Enterprise Application Servers for long-term data archival and retrieval. 

 BCs   are completely fi eld programmable devices that are designed to integrate into all system con-
trol operations. HVAC BCs often must map a wide variety of legacy protocols into a single object 
model for a single representation of the building’s data to the user. HVAC BCs also provide sophis-
ticated applications such as energy management, alarm annunciation, trending time series data, and 
scheduling all activities during the week. 

 The   fi re subsystem application is stand-alone and in many cases dictated by the fi re codes. 
However, the BCs may monitor the fi re subsystem as a secondary reporting device. Here the smoke 
detectors, pull boxes, strobes, and evacuation subsystems that are under the control of the fi re con-
troller are also integrated into the HVAC BC for viewing and monitoring by building operations. By 
regulation, the HVAC system cannot affect changes to the fi re system. 

 The   fi re subsystem may be further integrated into the HVAC BC in cases where the HVAC sys-
tem operates in concert with the fi re subsystem to provide a smoke abatement application. 

 From   a control point of view, the security subsystems are stand-alone. As noted earlier, local door 
controllers support building entry algorithms. Cameras may be controlled from a centralized location. 
An optional centralized video server is deployed to allow remote wireless viewing of cameras. This 
server also supports motion alerts on unexpected changes in the camera’s view. The security system 
can also be tied into the HVAC system to facilitate the experience of someone entering a facility. 
This application is discussed in Section 24.2  . 

 Lighting   applications are most often localized to a room or area. Lighting manufacturers do not 
deploy server-level devices to control the entire facility; they provide application  “ hooks ”  into the 
lighting panels that allow the BAS to monitor and override the local lighting algorithms. 

 Emerging   shuttering systems are often extensions of the lighting system, which works in concert 
with the shuttering system to control the required light levels while reducing overall energy. Since 
energy management is the province of the HVAC silo, the HVAC BC monitors and overrides both of 
these systems as needed to meet the needed energy savings targets.   
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    24.5        EMERGING SMART-OBJECT-BASED BAS 
 Wireless   communication and smart object technology have the potential to signifi cantly reduce instal-
lation costs for BAS. This is increasingly important for modern buildings in which rooms and walls 
are reconfi gurable by customers. With a wireless BAS, the reconfi guration of walls is easily managed 
without requiring reinstallation of a wired BAS. 

 Wireless   networks have recently become economically feasible for building control applications. 
Wireless communication reduces installation cost by easing sensor installation and eliminating wiring 
material and labor costs. Since the sensors monitor the environment and inject status data onto the 
network, these devices can be deployed using battery power. This is not true for their actuator coun-
terparts. Actuators change the environment by modulating dampers and opening and closing doors 
as well as other similar activities. The very nature of these devices most often deems battery power 
insuffi cient to perform the task. 

 A   recent addition to sensor technology is battery-less sensors. These devices use power scavenging 
from the environment such as mechanical activation, ambient light, or vibration to create enough energy 
to transmit its packets. As this technology matures it will surely become a required addition to BAS. 

    24.5.1       Emerging Sensors, Actuators, and Protocols 
 Sensors   and actuators are often the leaves of the network tree structure. The actuators are the sen-
sors ’  counterparts modifying the characteristics of the system based on the input sensor data and the 
application control deployed. Traditionally, sensors were hardwired devices deployed on proprietary 
networks. Lately, economics have allowed sensors to be connected using a wireless smart object net-
work. Installing addressable sensors on its own network eliminates the need for homerun wiring from 
the sensor to the controller, reducing installation cost. Addressable sensors also allow applications 
to readily accept many sensor inputs rather than a few providing better environmental control and 
comfort. 

    24.5.1.1       EnOcean 
 EnOcean   is an emerging wireless communication device and communication protocol that allows 
point-to-point communication without the use of conventional power sources. EnOcean devices scav-
enge the power necessary to communicate by means of mechanical activation, temperature differen-
tials, vibration, or solar load.   

    24.5.2       IP-based Enterprise Protocols 
 Multiple   protocols are supported at the enterprise level of the BAS since this layer supports not only 
the embedded control operation but also the user interface and end user enterprise applications. 

    24.5.2.1       Peer-to-peer Controller Communication 
 BCs  , often called supervisory controllers, orchestrate the overall BAS operation. Control and data 
access functions implemented on the enterprise level typically use BACnet or LON. DALI and 
EnOcean protocols are room-level protocols that do not surface at the enterprise layer. BACnet 
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 supports IP intrinsically, hence, controller and enterprise communication is seamless via BACnet 
routing. LON utilizes IP gateways to move LON controller data onto the enterprise network.  

    24.5.2.2       Enterprise Communication 
 The   control protocols used on the control and sensor networks typically are not viable for user 
access at the enterprise layer. Web services and SNMP have been added to the enterprise layer in 
many implementations to assist in integration with end user applications and Network Management 
Systems, respectively. 

 Some   vendors have developed public web services to allow third-party application access to the 
building data. BACnet has recently defi ned a set of web services that cleanly map the BACnet object 
model data to standard web services. Other groups, such as Open Building Information Exchange 
oBIX), have developed other sets of web services and are working with standards bodies such as the 
Organization for the Advancement of Structured Information Standards (OASIS) toward standardization.    

    24.6       CONCLUSIONS 
 BAS   use sensors and actuators dispersed in buildings to control their heating, ventilation, and air 
conditioning. With more effi cient integration techniques, new applications have emerged such as 
advanced energy management and intelligent fi re and evacuation control. 

 Existing   BAS is typically deployed using wired communication technology. With the advent of 
effi cient wireless communication and smart object technology, this is changing. Due to the reduced 
installation costs of wireless technology, BAS is moving in the direction of wireless smart object net-
work systems. Wireless sensors can be deployed with battery-less, power-scavenging technology.       
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          Structural Health Monitoring    25 
CHAPTER

    25.1        INTRODUCTION 
 The   world is full of stationary structures  —  some small, some huge, others new, most of them very 
old  —  such as buildings, damns, or bridges. Buildings include offi ce complexes, apartment buildings, 
or power plants. The commonality between these large structures is that they are critical in every-
one’s day-to-day life: bridges are used by pedestrians, cars, trucks, and trains and millions of people 
live in buildings. Any damage in these structures may result in life-threatening situations and serious 
fi nancial loss. Thus, monitoring the health of these structures with smart object networks is impera-
tive to detect any irregularities or anomalies that could be a sign of damage and lead to problems in 
the future. 

 Structural   health monitoring (SHM) defi nes an abstract condition for a physical structure such as a 
bridge, crane, tower, or other physical object or even heavy machinery. Measurement data are used to 
monitor physical quantities and computer models are used to analyze the data and classify the current 
state of the structure and trigger alerts if necessary. SHM typically becomes a part of the structure for 
its entire lifetime, and the structure’s condition will be inferred from its physical measurements. Due 
to the lifetime requirements and physical size of the objects, wiring of the sensors recording physical 
quantities is not a preferred solution or even possible, especially for existing structures not equipped 
with wiring. Enabling SHM on such structures would be a major investment and effort. In most cases, 
smart objects are interconnected via low-power wireless links, a solution that avoids costly and error-
prone wiring within the structure. 

 The   bridge shown in  Figure 25.1    is used for research purposes. The acceleration sensors transmit 
the acceleration measurements using a wired network. 

 One   of the main challenges with SHM is that the structure health is not determined by a single 
measured quantity. There is no single sensor that tells directly if, for example, a bridge is going to 
collapse. The only viable methodology consists of periodically measuring a series of physical quan-
tities and then using various data analysis and data mining techniques to analyze the data and fi nd 
irregularities or changes that could be a sign of an emerging problem. 

 The   structure’s condition must be described by the physical quantities measured from the struc-
ture. Typical physical quantities include accelerations, strains, pressure, temperature, wind speed, 
fl ow, position, orientation, chemical quantities, and wave propagation quantities. Timely availability 
of the measurements has a large effect on the delay of detection, therefore near real-time measure-
ments are used. This also sets requirements on the transmission bandwidths of the network. While 
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 monitoring the structure, only the output measurements are available, without knowing the state (or 
condition) of the structure or the input that caused the damage. In the subsequent analysis phase, it is 
assumed that these measurements are representative of the normal condition of the structure. 

 In   civil engineering studies, a typical sampling frequency is often less than or equal to 100       Hz.
Nyquist theorem states that to detect signal frequencies up to a frequency  f , the sampling frequency 
has to be double that frequency (2* f  ). A typical SHM application includes vibration measurements 
(accelerometer) sampled at 100       Hz for 10 minutes at a time. With existing hardware, it is possible 
to sample at up to 8       kHz, which could lead to nearly 5 million samples per sensor for one measure-
ment event; this repeats once or a few times per day. If each sample uses 16-bit encoding that means 
9.6       MB. Yet, new sensors are already moving to kHz sampling frequencies, which produce 10 times 
more data. In this case the data are stored in fl ash memory. 

 Even   for a stand-alone sensor with memory to store measurements, this many samples is a real 
issue. With 1       kHz sampling frequency, existing hardware stores measurements for a 30       s period; for 
example, with 16-bit samples the overall main memory needed is 60       KB, but storing measurements 
for a 10 minute period is not yet possible within the main memory. Thus, the data often need to be 
stored in an external fl ash memory, which increases processing and energy consumption overhead. 
Typically a wireless sensor node cannot sample, process, transmit, and receive simultaneously; it exe-
cutes one of these functions at a time. 

 For   many applications of the measured data (e.g., data analysis) time synchronization is required. 
The accuracy of timing after synchronization is in the scale of microseconds, but due to clock drifts, 
the synchronization needs to be done regularly (maybe every half a minute). Due to local process-
ing of the data, the sampling is done in an asynchronous way (no continuous sampling), but at least 
the neighbor nodes should perform synchronized measurements. This can be achieved by running a 
time synchronization algorithm in the network requiring communication from sensors/cluster heads 
to sensors. 

 There   are two distinct methods for analyzing the sensor data: online and off-line applications, 
where the data are either processed at the scene or off-line. The choice of mode greatly affects the 
networking solutions. There is also an obvious trade-off in local data processing versus data trans-
mission. The rule of thumb is that energy-wise transmitting one byte is as expensive as running 8000 
CPU cycles. This means that computation should be done as close to the measurement point as pos-
sible, such as locally on the nodes. Only the fused information should be transmitted to those nodes 
that need the information (e.g., certain covariance information might be needed in another node to be 
able to perform Kalman-fi ltering, etc.). The computing capabilities of the nodes are very constrained. 
The microprocessor in many sensor products is a TI MSP430 with 10       kB of RAM and 256       kB fl ash 

 FIGURE 25.1  
       Experimental bridge used for SHM studies.    
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 memory running at 8       MHz. The node also has a 4       Mbit serial data fl ash memory. The nodes are typi-
cally equipped with a 6LoWPAN (IPv6 over IEEE 802.15.4 links, as discussed in Chapter 16) proto-
col stack. 

 A   study performed for one sensor type showed that the power required to transmit 1 bit roughly 
corresponded to 74 CPU cycles of computing. Such a number cannot be generalized but provides a 
good sense of the cost ratio between data transmission and CPU cycle cost for existing sensors. 

 Often   the positions of sensors needs to be known. Sometimes they need to be very accurately 
fi xed in advance, and sometimes the sensors need to be installed exactly in the same locations as was 
done previously. Location is not only important for data analysis, but also for networking. Hence 
localization support might be needed, which means that the nodes would have to be equipped with 
GPS or ultrasound sensors, because the radio signal strength-based localization results in low accu-
racy if the device does not have direct and constant line-of-sight to satellites. 

 Sensors   used to measure physical quantities of the structure are located in different physical loca-
tions in the structure. To have a holistic view on the entire structure, the detector (software and model 
used to analyze the data) must have access to all of the data. Two alternative architectures are pos-
sible: centralized and decentralized. With centralized architecture the data are mediated through the 
wireless sensor network to a central node. The centralized node is then responsible for assessing the 
structure’s condition based on the measurements. In a decentralized architecture, there is more analy-
sis local to the sensors. 

 Two   modes of measurement can be differentiated: periodic and continuous. In a periodic type of 
a measurement, a fi xed period of time (e.g., 10 minutes) is dedicated to the measurements after which 
the data are mediated to a central location and analyzed. In a continuous measurement mode, the con-
dition of the structure is continually measured parallel to the data mediation and its analysis. This sets 
stringent requirements on the throughput of the network as well as the response time for the detector. 
For example, consider a sensor network with 50 sensors measuring vibrations with 1       kHz frequency 
and 16-bit samples. Each of the 50 sensors produces 2 bytes of data 1000 times per second. Overall, 
this results in 100       kB/s data traffi c. Taking a media access control (MAC) layer payload of 100 bytes, 
each sensor would need to send 20 packets per second or 1000 packets per second in the whole net-
work. Again, if we have only a couple of data sinks, each sink would need to handle hundreds of 
packets per second. 

 Two   modes of analysis can be used. The data-based mode uses measurement data to estimate a 
model of the normal behavior and use it to assess the condition of the structure. Statistical time-series 
models are well suited for this task. The model-based approach relies on a computer-based model 
of the physical structure and fi nite element method to derive results on the behavior of the structure. 
Such complex calculations can only be performed on high-performance servers.  

    25.2       MAIN APPLICATIONS AND USE CASE 
 In   this section, a use case is presented to illustrate the use of network-based monitoring techniques in 
civil structures. This use case monitors a bridge using a smart object network. 

 The   smart object network is made of sensors measuring the desired physical phenomena, based 
on which the damage detection of the bridge structure is accomplished. One of the approaches uses 
acceleration sensors to record acceleration, or vibration, of the structure. Temperature could also be 
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 recorded, since there are known connections between vibration profi les and the temperature, although 
these may be structure-dependent. As mentioned in the Introduction, other quantities that could be 
recorded include strains, pressure, temperature, wind speed, fl ow, position, orientation, chemical 
quantities, and wave propagation quantities. Pinning down a specifi c set of features requires inter-
action with domain specialists who know the theory of structures, or an extensive set of redundant 
measurements and an empirical work in data analysis to select what measurements are useful in prac-
tice [236]. While the latter approach may be interesting to researchers, it is too costly to be used in 
practical use case scenarios. 

 Data   acquisition and data analysis are discussed in Section 25.4. Let’s now assume that we have a 
model that supplied the data to estimate or approximate the probability of the damage present in the 
bridge. For estimating the global probability of the damage, all the data must arrive where the model 
probability computation takes place. Alternatively, the computation may be performed in a distrib-
uted fashion, since the probability computation is decomposable due to the conditonal independence 
assertion done in the model. This is a basic building block in constructing Bayesian networks. 

 Once   the probability computation is realized, a cut-off point for a decision must be set. All the prob-
abilities exceeding the threshold cause an alarm. What to do with the alarms is essentially a question of 
business logic and at best should be separated from making the best possible decision in the model.  

    25.3       TECHNICAL CHALLENGES 
 Based   on the previous description of the functionalities required for SHM, this section highlights 
the functional requirements and technical challenges required of smart object networks. A Wireless 
Sensor Network (WSN) is required in this case, but some structures may be monitored with wired 
smart object networks. 

 There   are two fundamental properties of the SHM that put pressure on how the smart object 
network must work. First, the WSN for SHM produces  large amounts of data  at various intervals. 
Typical applications do not produce a small amount of continuous data or frequent small bursts, 
rather every 8 hours a relatively large amount of data must be transferred from the sources to one 
or more sinks. This does not happen all over the network at one time, but a certain section of the 
network needs to transfer the data at a given time. Secondly, SHM is used in many areas where lives 
could be lost. Thus, once a section of the sensor network starts to transfer data, the data must get to 
their destination with a  high reliability . 

 An   SHM WSN is not only about periodic one-way transmission of measurement data. If the data 
mining reveals a possible problem in the structure, advanced applications would control the sensors 
to continue measuring the structure at a redefi ned frequency and data delivery interval. Additional 
functionality of an SHM smart object (sensor) network includes service discovery; sensors need to 
fi nd sinks, or nodes performing data fusion, and the sinks must be able to fi nd the sensors. 

 As   discussed in the previous section, there are two types of modes for data mining, off-line and 
online. In this section we mainly focus on the off-line mode, where data are not analyzed within the 
sensor network but instead are transmitted to sinks/gateways and from there onto servers. Online 
mode makes similar requirements on the network: large amounts of data must be periodically sent 
to an entity, either a sink or gateway to external networks, or a place for data fusion and online data 
mining. 
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  Designing   the network structures and data routing is ultimately about choices, one performance 
aspect rules out another one, all functional design decisions affect performance in some way. SHM 
is about static deployments and use cases. Thus, support for highly dynamic networks is not needed. 
We can expect the network to bootstrap itself in a matter of hours or even days, rather than seconds. 
Also, once the network routing has started, changes include nodes just dying out and nodes replaced 
at a very modest frequency. 

 We   can also consider, sometime in the distant future, that structures could be built with the wire-
less sensors already embedded into the building materials. Such a network would need to bootstrap 
itself, confi gure each node’s role (e.g., by elections), and be able to run for a very long time. 

 SHM   applications do not require extremely large sensor networks. One network might consist of 
up to a few hundred nodes. If larger structures need to be monitored, multiple independent sensor net-
works could be used. 

    25.3.1       Autoconfi guration 
 The   network should be able to automatically confi gure itself and the routing paths. There are usu-
ally no strict requirements on timeliness. To make accurate measurements from multiple sensors at 
the exact same instance, time synchronization with accuracy in the order of milliseconds is usually 
required, possibly over multiple hops.  

    25.3.2       Multicast Support 
 To   create the bootstrapping function, and also save energy, routing should support multicast (as in 
the case of RPL, the routing protocol developed by the IETF ROLL Working Group discussed in 
Chapter 17). This is especially needed for the service/node discovery.  

    25.3.3       Routing 
 Since   SHM produces large amounts of data at one time, the routing protocol should be able to sup-
port more than one routing path between a data producer and the sinks. This requirement is not man-
datory, since the use of multiple paths can be simulated on a higher layer by a sensor sending its data 
to multiple sinks. This helps to use different paths if the sinks are carefully placed, for example, each 
sensor would send every second packet to a different data sink or sensors are confi gured to use differ-
ent sinks.  Reliability  is key in SHM networks: when a group of sensors provides their data for further 
processing (data mining), these data must be routed/transported in a reliable way. If one part of the 
data is lost, the entire sampled data may be useless. This requirement is more important than real-
time operation. Also, bandwidth problems can be partly solved by using multiple data sinks. In such 
a case, the routing metric used by RPL is likely to be the reliability metric (see Chapter 17). The rout-
ing protocol should be aware of the energy levels of the sensor nodes and seek to balance the energy 
consumption of the whole network. Note that RPL also supports energy awareness in its routing deci-
sion. It is required for the routing protocol to fi nd alternate routes in case of link and node failures as 
well as to compute new routes as new links and nodes are added in the network. It is desirable for the 
change to be localized and not visible all around the sensor network. RPL addresses this requirement 
by relying on local repair combined with global repair (reoptimization). There are no tight constraints 
on the time for repairing the network unlike in the bootstrapping phase. 
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    25.3.3.1        Coupling with Radio Resource Management (RRM) 
 Since   the sensor nodes need to save power, they will sleep most of their lifetime. Because the hard-
ware typically only supports one function at a time (measuring or data transmission/reception), nodes 
are not always able to receive data. Thus, the routing protocol should consider the node availability 
regarding the radio interface and each node’s ability to further forward or route packets. It is of little 
use to send data on a certain path if that path will be truncated as hops down the path will be sleeping.   

    25.3.4       Network Topology 
 Typically   a sensor network deployed for an SHM application would follow a DAG (directed acyclic 
graph)-like topology with multiple routes. For example, there could be a set of sensors around one 
pole of a bridge connected over multiple paths and hops to sinks.  

    25.3.5       Network Scalability 
 An   SHM application typically requires tens or at most a few hundred nodes. Most of these would be 
running the measurement applications, while the rest are used for routing only purposes.  

    25.3.6       Degree of Mobility 
 Bridges   and buildings typically do not move, neither do the sensors. Thus, support for mobility is not 
required.  

    25.3.7       Link and Device Characteristics 
 SHM   requires reliable data delivery. If the links are lossy, per-hop acknowledgments and retrans-
missions, forward-error correction, or other reliability mechanisms such as bi-casting are required at 
the link layer. Wireless sensor networks are usually required because of the absence of wiring infra-
structure. This also means that there are no power cables either. Conversely, in the presence of wir-
ing infrastructure to supply power to the sensors, it is possible to also install wired communications. 
A common setup requires that the sensors are battery-operated, but the sinks, or gateways to external 
networks, are main-powered. Sinks pass so much data, they would need huge batteries to last any 
sensible time period. As the sensors are wireless, the power source must be local as well. To avoid 
frequent servicing of the nodes, energy levels should be sustained at an operating level of the sensor 
and the associated radio as long as possible. To alleviate the problem, energy harvesting could be 
used. Energy can be harvested from solar radiation using solar cells, vibration scavengers, or even 
from radio waves, as is done in some environmental monitoring applications.  

    25.3.8       Traffi c Profi le 
 As   discussed earlier, SHM produces a large amount of traffi c bursts. Thus, once sensors have col-
lected enough data, they need to transfer those data to the sinks. This event may take a very long time.  

    25.3.9       Quality of Service 
 SHM   does not have any particular need for Quality of Service (QoS). The issue is mainly about reli-
able data delivery when monitoring information needs to be transmitted to a sink.  
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    25.3.10        Security 
 Monitoring   the health of structures saves lives and allows timely response to emerging problems. The 
data provided by sensors are thus very important. Not only must the network provide reliable data 
delivery, but it also must support the ability to verify the data source. When measurement data of a 
structure are collected, one must be able to trust the data. Thus, data origin authentication is a security 
feature that must be available. Encryption of the transmitted data and eavesdropping is not a primary 
concern. The sensor data are mostly public information.  

    25.3.11       Deployment Environment 
 The   environment where SHM applications are deployed may signifi cantly vary from harsh outdoor 
environments to less demanding indoor locations. Both cases still demand unattended operation for as 
long as possible. Device failure is the only reason for a serviceman to appear. Unrelated to the sensor 
network, if the data mining of the sensor data reveals potential damage to the structure a full-blown 
investigation will be carried out.   

    25.4       DATA ACQUISITION AND ANALYSIS 
 As   mentioned in the Introduction, two modes can be characterized according to the analysis model 
used. In the off-line mode, data are gathered from sensors without any guarantee of the timeliness of 
the sensor data samples. Usually, this type of solution is used when developing the actual algorithms 
to detect novelty or to characterize the sensor signals as normal or faulty. The sole purpose in the off-
line mode is to gather representative data from the structure under observation. These data are then 
analyzed to learn how to detect damages from observed data or how to classify states of normal or 
faulty conditions. This research phase may take months to two years. 

 If   the experimental conditions can be manipulated, such as in research structures in a laboratory 
environment, then these conditions need to be stored with the time information. The time information 
is particularly necessary when the conditions are aligned with the measurement time series. This is 
a prerequisite for simulating an online detection system, where the detection decisions take place as 
soon as data are available (real-time or near-real-time detection). The online mode would be the pre-
ferred mode in a real environment, although practical considerations may hinder making real-time or 
near-real-time decisions. 

 There   is an interesting trade-off between the computation accomplished in nodes and the com-
munication needs between the sensor nodes. If data analysis can be performed, even at a low level, 
the amount of communicated data sent from a node may be reduced. For example, some form of 
compression may be used to summarize data before sending the data over to the central node. The 
form of compression may vary depending on the models used in detection. Recent results with com-
pressive sampling [31] suggest that lower sampling frequencies may be used without losing essential 
information. 

 Assuming   that a database of sensor network measurements is available, the estimation of the 
model may proceed. Once the data analyst has decided what model class to use, he can learn or esti-
mate the parameters of the model from the database. The detection model must be assessed according 
to two criteria: the probability of false alarms and the probability of true detection. Estimating these 
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 measures requires the truth of the state of the bridge at the same time as decisions are made. As men-
tioned earlier, damages can be simulated in laboratory conditions to create labeled data (data where 
the operating condition, damage or no damage, is known). To assess the overall diagnostic accuracy, 
Receiver Operating Characteristic (ROC) analysis can be used [233]. In ROC analysis, the true posi-
tive rate is compared with the false-positive rate for varying decision cut-off points. To optimize the 
decisions for unseen data, so-called generalization must be achieved. It is then possible to estimate 
generalization accuracy by simulation using cross-validation techniques. In cross-validation, data that 
have not been a part of the training set will be used to measure the detector’s ability to alert alarm-
ing situations outside the training data, and therefore the model building effort as a whole. The best 
model is the one that has the best generalization ability among all models.  

    25.5       FUTURE APPLICATIONS AND OUTLOOK 
 One   can expect a growing body of applications around networked monitoring of structures, both 
small and large. Interesting applications can be seen in ski lifts, ferris wheels, roller coasters, etc. The 
key factor in these applied use cases is the health and safety of humans in man-made structures.  

    25.6       CONCLUSIONS 
 SHM   is yet another key area where smart object networks will play a central role. Structures such as 
buildings, bridges, dams, or heavy machinery are expensive and used by millions of people in their 
everyday life, thus monitoring their health is critical. Various models to sense and process the data 
have been presented (off-line vs. distributed) to carry large amounts of bursty traffi c with a high level 
of reliability; a must have in these networks. 

 Although   sensors may be retrofi tted in existing infrastructures using wireless sensor networks, 
sensors will more than likely become part of the structure and be powered by energy harvesting.          
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              Container Tracking    26 
CHAPTER

  In   the information age, it is easy to forget that global trade is as much about physical items being 
moved across the world as it is about information being transferred across the Internet. Every day 
there are over 6 billion tons of goods transported in over 12 million containers across the world. In 
the United States alone over 17,000 containers are loaded and unloaded every day. 

 Approximately   90% of the world’s traded goods are shipped inside so-called intermodal contain-
ers used for loading goods onto ships, trains, and freighter airplanes. Intermodal containers come in 
several formats, some of which are specifi ed by ISO standards. For intermodal container shipping, 
there is a large installed base infrastructure of loading cranes, shipping docks, and freighter ships. 

 Smart   object technology is increasingly being used to track the movement of containers as they 
are transported on ships, at ports, and through exchange points at places around the world. Smart 
objects can be installed in the containers, in container locks, or in devices that are attached to the 
inside or outside of the containers. The ability to retrofi t existing containers with smart objects is a 
key requirement, as the predicted lifetime of a container is many years. 

 The   ability to track the goods as they are shipped across the world is tremendously benefi cial for 
both the shipping company as well as its customers. The shipping companies are able to verify that 
the location of the goods is what the company expects it to be, as well as to gauge the time delay, 
should there be problems with the shipment. Likewise, customers are able to track their goods as they 
are transported by the shipping company providing an added value to the customer. 

 Container   tracking is not only about tracking the location of the containers, however. With the 
ability to track goods and containers, additional services can be added. Container security is perhaps 
the most apparent one. With container security tracking, the shipping company is informed instantly 
when the integrity of its container is breached. Thus the shipment can be immediately stopped and 
inspected at the next port or exchange point. 

 Security   tracking is not the only application of smart object container tracking. The goods inside 
the containers can be monitored using sensor-equipped smart objects placed inside the containers. 
These sensors can monitor temperature, humidity, and vibration conditions for the goods in the con-
tainers. This information helps the customers assess the status of their goods after shipment is com-
plete. This is of particular interest for the shipment of foodstuffs and other goods that are sensitive to 
the transportation environment. The sensor information can be stored by the smart object and trans-
mitted as the goods are unloaded, or transmitted in real time to the shipping company. 

 Container   tracking has previously been implemented using bar codes and bar code readers allow-
ing a coarse-grained tracking of the goods. Bar codes require a substantial amount of human labor, 



382 CHAPTER 26 Container Tracking

 however, increasing the cost of the solution. Subsequently, RFID tags have been used for similar 
purposes. RFID readers are available at ports and unloading points and can automatically scan large 
numbers of RFID tags, reducing the handling costs. 

 Bar   codes and RFID tags can only be used to track the location of containers at each unloading 
location. They cannot be used for real-time tracking or for additional services such as lock security or 
sensor monitoring. For these services, smart objects are needed. 

 Two   commercially deployed smart object-based container tracking systems, the GE CommerceGuard 
system and the IBM Secure Trade Lane system, are discussed next. 

    26.1       GE COMMERCEGUARD 
 The   GE CommerceGuard system provides global tracking of containers as well as immediate 
notifi cation if the security of the container is breached. The system is semi-IP-based where the 
end devices are not IP end points, but communicate with fi xed readers that are IP end points. The 
CommerceGuard system was developed in 2002 by the company AllSet Marine Security AB and sold 
to General Electric in 2005. Its container security device and attachment to an intermodal container 
are shown in  Figure 26.1   . 

 The   CommerceGuard system consists of two components: container security devices and readers. 
The container security devices are placed on the containers and communicate with the readers. 
Readers are placed both at ports and reloading locations as well as on the ships. There are also mobile 
readers that are attached to mobile phones or laptops. 

 The   readers communicate with the container security device using a low-power radio and a pro-
prietary protocol. The readers are connected to the Internet and communicate using TCP/IP over an 
Inmarsat satellite connection. The readers have contact with a database that maintains the location of 
all container security devices in the system. Customers and users can interact with the system through 
the database. The CommerceGuard architecture is shown in  Figure 26.2   . 

 The   container security device consists of a microprocessor, a radio transceiver, a power source 
in the form of a battery, and a set of sensors. Different container security devices have different con-
fi gurations of the sensors, but all container security devices have a sensor that detects the opening and 
closing of the door. The door sensor can also detect if someone is trying to open the door, but fails. 

 FIGURE 26.1  
       The CommerceGuard container security device (left) and the lock installed in an intermodal container (right).    
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  Container   security devices can be equipped with additional sensors such as 
temperature, humidity, vibration, radioactivity, and motion. A particular set of sen-
sors is confi gured depending on the goods transported in the container. The sensors 
collect data for storage and act on the data according to a set of application-
specifi c rules. 

 The   radio transceiver on the container security device is duty cycled to pro-
vide a long lifetime when running on batteries. The reader and security device 
communicate using an out-of-band protocol to establish a duty cycle that fi ts 
the activities of the location at which the reader is deployed. Readers on a ship, 
where containers are likely to be present for a longer time and where there is 
no container mobility, announce a duty cycle that allows the security devices to 
keep the radio off most of the time. In contrast, readers placed at a busy sea port 
with high container mobility announce a high duty cycle. Thus security devices 
keep their radio on for longer amounts of time, allowing for more frequent com-
munication with readers. This allows the readers to communicate with security 

devices as they are moved between ships and freighter trucks while maintaining low-power consump-
tion for the security devices. 

 Readers   are either stand-alone fi xed readers as shown in  Figure 26.3    or implemented as an add-on 
to a phone. The purpose of the reader is to communicate with the container security device using the 
short-range radio. The readers run the uIP IP stack [64]. The IP stack enables IP-based communica-
tion with the device. This reduces the need for custom communication software, leading to lower 
deployment costs. 

 Users   and customers interact with the CommerceGuard system using a web browser, as shown in 
 Figure 26.4   . The user interacts with the database that contains information about the security device’s 
location and physical conditions inside the containers to which they are attached.  

Phone

Container seal

Fixed reader

Database
Customer

Internet

 FIGURE 26.2  
       CommerceGuard architecture: container security devices communicate either with dedicated, fi xed readers, 
or with a phone, and the reader or phone sends the packets over the Internet to a database from which 
customers download tracking data.    

 FIGURE 26.3  
       Fixed reader.    
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    26.2        IBM SECURE TRADE LANE 
 The   IBM Secure Trade Lane (STL) system was recently developed for container tracking and secure 
management for IBM by ETH in Z ü rich in 2006 [58]. The STL system consists of a container security 
device called the tamper-resistant embedded controller (TREC), which communicates with a data-

base that tracks the movement of the container to 
which the TREC is attached. 

 Similar   to the CommerceGuard system, the 
TREC device contains a microprocessor, sensors, 
and several communication options. Unlike the 
CommerceGuard system, which required a reader 
device to communicate with the security devices, 
the TREC is able to directly communicate with the 
Internet using its on-board General Packet Radio 
System (GPRS) communication device. A block 
diagram of the TREC is shown in  Figure 26.5   . 

 The   TREC contains three different commu-
nication devices: a GPRS interface that provides 
Internet connectivity when the device is within 
range of a mobile telephony system; a satellite 
communication system that allows Internet con-
nectivity when the device is at sea, where there 
is little or no GPRS coverage; and an 802.15.4 
low-power radio transceiver, which is used for 
short-range communication such as with a mobile 
reader terminal. Additionally, the 802.15.4 device 
can be used for communicating with a gateway 
device, which in turn connects to the Internet. 

 All   communication devices are used to send 
information about the system to a database server 
over the Internet. The ability to use the Internet 
to transport information signifi cantly reduces 
management overhead due to the ubiquitous 
presence of Internet connectivity. 

 The   CommerceGuard system and the IBM 
STL system show the transition from semi-IP-
based systems to fully IP-based systems. The 
CommerceGuard system used IP at the readers 
but did not fully run IP to the end points. The 
more recent IBM STL system runs IP all the way 
into the containers, making management of the 
system easier.  

 FIGURE 26.4  
       The user interface of the CommerceGuard system 
running on a laptop.    
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 FIGURE 26.5  
       A block diagram of the TREC and its connections.    
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    26.3        CONCLUSIONS 
 Global   trade relies on the effi cient shipment of goods since 90% of all goods are shipped in contain-
ers. The ability to track the location of such containers and to continuously and remotely inspect their 
status helps both shipping companies and their customers. Because of its success, smart object tech-
nology is increasingly being used for global container tracking. 

 We   provide an overview of two container tracking systems: the GE CommerceGuard, developed 
in 2002, and the IBM Secure Trade Lane, developed in 2006. The GE CommerceGuard is semi-IP-
based where IP end points are located at ships and ports, but the containers are not IP end points. The 
IBM STL system places the IP end points at every container, relying on the now-established infra-
structure of Internet connectivity through satellite and GPRS connections. These are both examples 
of IP-based smart object systems that show the trend of pushing IP further into the actual devices.    
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