

Deep	Learning	in	Python
Master	Data	Science	and	Machine	Learning	with	Modern	

Neural	Networks	written	in	Python,	Theano,	and	TensorFlow
	

	

	

Introduction

Chapter	1:	What	is	a	neural	network?

Chapter	2:	Biological	analogies

Chapter	3:	Getting	output	from	a	neural	network

Chapter	4:	Training	a	neural	network	with	backpropagation

Chapter	5:	Theano

Chapter	6:	TensorFlow

Chapter	7:	Unsupervised	learning,	autoencoders,	restricted	Boltzmann	
machines,	convolutional	neural	networks,	and	LSTMs

Conclusion

	

Introduction
	

Deep	 learning	 is	 making	 waves.	 At	 the	 time	 of	 this	 writing	 (March	 2016),	 Google’s
AlghaGo	program	just	beat	9-dan	professional	Go	player	Lee	Sedol	at	the	game	of	Go,	a
Chinese	board	game.

	

Experts	 in	 the	 field	 of	 Artificial	 Intelligence	 thought	 we	 were	 10	 years	 away	 from
achieving	 a	 victory	 against	 a	 top	 professional	 Go	 player,	 but	 progress	 seems	 to	 have
accelerated!

	

While	deep	 learning	 is	 a	 complex	 subject,	 it	 is	 not	 any	more	difficult	 to	 learn	 than	 any
other	 machine	 learning	 algorithm.	 I	 wrote	 this	 book	 to	 introduce	 you	 to	 the	 basics	 of
neural	networks.	You	will	get	along	fine	with	undergraduate-level	math	and	programming
skill.

	

All	 the	materials	 in	 this	book	can	be	downloaded	and	installed	for	free.	We	will	use	 the
Python	programming	language,	along	with	the	numerical	computing	library	Numpy.	I	will
also	 show	 you	 in	 the	 later	 chapters	 how	 to	 build	 a	 deep	 network	 using	 Theano	 and
TensorFlow,	 which	 are	 libraries	 built	 specifically	 for	 deep	 learning	 and	 can	 accelerate
computation	by	taking	advantage	of	the	GPU.

	

Unlike	other	machine	learning	algorithms,	deep	learning	is	particularly	powerful	because
it	automatically	learns	features.	That	means	you	don’t	need	to	spend	your	time	trying	to
come	up	with	and	test	“kernels”	or	“interaction	effects”	-	something	only	statisticians	love
to	do.	Instead,	we	will	let	the	neural	network	learn	these	things	for	us.	Each	layer	of	the
neural	 network	 learns	 a	 different	 abstraction	 than	 the	 previous	 layers.	 For	 example,	 in
image	classification,	the	first	layer	might	learn	different	strokes,	and	in	the	next	layer	put
the	strokes	together	to	learn	shapes,	and	in	the	next	layer	put	the	shapes	together	to	form
facial	features,	and	in	the	next	layer	have	a	high	level	representation	of	faces.

	

Do	you	want	a	gentle	introduction	to	this	“dark	art”,	with	practical	code	examples	that	you
can	try	right	away	and	apply	to	your	own	data?	Then	this	book	is	for	you.

	

	

	

	

Chapter	1:	What	is	a	neural	network?
	

A	neural	network	is	called	such	because	at	some	point	in	history,	computer	scientists	were
trying	to	model	the	brain	in	computer	code.

	

The	 eventual	 goal	 is	 to	 create	 an	 “artificial	 general	 intelligence”,	which	 to	me	means	 a
program	that	can	learn	anything	you	or	I	can	learn.	We	are	not	there	yet,	so	no	need	to	get
scared	about	the	machines	taking	over	humanity.	Currently	neural	networks	are	very	good
at	performing	singular	tasks,	like	classifying	images	and	speech.

	

Unlike	the	brain,	these	artificial	neural	networks	have	a	very	strict	predefined	structure.

	

The	brain	is	made	up	of	neurons	that	talk	to	each	other	via	electrical	and	chemical	signals
(hence	the	term,	neural	network).	We	do	not	differentiate	between	these	2	types	of	signals
in	artificial	neural	networks,	so	from	now	on	we	will	 just	say	“a”	signal	 is	being	passed
from	one	neuron	to	another.

	

Signals	are	passed	from	one	neuron	to	another	via	what	is	called	an	“action	potential”.	It	is
a	 spike	 in	 electricity	 along	 the	 cell	membrane	 of	 a	 neuron.	 The	 interesting	 thing	 about
action	potentials	is	that	either	they	happen,	or	they	don’t.	There	is	no	“in	between”.	This	is
called	the	“all	or	nothing”	principle.	Below	is	a	plot	of	the	action	potential	vs.	time,	with
real,	physical	units.

	

These	 connections	 between	 neurons	 have	 strengths.	 You	 may	 have	 heard	 the	 phrase,
“neurons	 that	 fire	 together,	 wire	 together”,	 which	 is	 attributed	 to	 the	 Canadian
neuropsychologist	Donald	Hebb.

	

Neurons	with	strong	connections	will	be	turned	“on”	by	each	other.	So	if	one	neuron	sends
a	signal	(action	potential)	to	another	neuron,	and	their	connection	is	strong,	then	the	next
neuron	will	also	have	an	action	potential,	would	could	then	be	passed	on	to	other	neurons,
etc.

	

If	the	connection	between	2	neurons	is	weak,	then	one	neuron	sending	a	signal	to	another
neuron	 might	 cause	 a	 small	 increase	 in	 electrical	 potential	 at	 the	 2nd	 neuron,	 but	 not
enough	to	cause	another	action	potential.

	

Thus	we	can	 think	of	a	neuron	being	“on”	or	“off”.	 (i.e.	 it	has	an	action	potential,	or	 it
doesn’t)

	

What	does	this	remind	you	of?

	

If	you	said	“digital	computers”,	then	you	would	be	right!

	

Specifically,	 neurons	 are	 the	 perfect	 model	 for	 a	 yes	 /	 no,	 true	 /	 false,	 0	 /	 1	 type	 of
problem.	We	call	this	“binary	classification”	and	the	machine	learning	analogy	would	be
the	“logistic	regression”	algorithm.

	

The	above	image	is	a	pictorial	representation	of	the	logistic	regression	model.	It	takes	as
inputs	x1,	x2,	and	x3,	which	you	can	imagine	as	the	outputs	of	other	neurons	or	some	other
input	 signal	 (i.e.	 the	 visual	 receptors	 in	 your	 eyes	 or	 the	mechanical	 receptors	 in	 your
fingertips),	and	outputs	another	signal	which	is	a	combination	of	these	inputs,	weighted	by
the	strength	of	those	input	neurons	to	this	output	neuron.

	

Because	we’re	going	 to	have	 to	eventually	deal	with	actual	numbers	and	 formulas,	 let’s
look	at	how	we	can	calculate	y	from	x.

	

y	=	sigmoid(w1*x1	+	w2*x2	+	w3*x3)

	

Note	that	in	this	book,	we	will	ignore	the	bias	term,	since	it	can	easily	be	included	in	the
given	formula	by	adding	an	extra	dimension	x0	which	is	always	equal	to	1.

	

So	each	input	neuron	gets	multiplied	by	its	corresponding	weight	(synaptic	strength)	and
added	to	all	the	others.	We	then	apply	a	“sigmoid”	function	on	top	of	that	to	get	the	output
y.	The	sigmoid	is	defined	as:

sigmoid(x)	=	1	/	(1	+	exp(-x))

	

If	you	were	to	plot	the	sigmoid,	you	would	get	this:

You	can	see	that	the	output	of	a	sigmoid	is	always	between	0	and	1.	It	has	2	asymptotes,
so	that	the	output	is	exactly	1	when	the	input	is	+	infinity,	and	the	output	is	exactly	0	when
the	input	is	-	infinity.

	

The	output	is	0.5	when	the	input	is	0.

	

You	 can	 interpret	 the	 output	 as	 a	 probability.	 In	 particular,	 we	 interpret	 it	 as	 the
probability:

	

P(Y=1	|	X)

	

Which	can	be	read	as	“the	probability	that	Y	is	equal	to	1	given	X”.	We	usually	just	use
this	and	“y”	by	itself	interchangeably.	They	are	both	“the	output”	of	the	neuron.

	

To	get	a	neural	network,	we	simply	combine	neurons	together.	The	way	we	do	this	with
artificial	neural	networks	is	very	specific.	We	connect	them	in	a	feedforward	fashion.

I	have	highlighted	in	red	one	logistic	unit.	Its	inputs	are	(x1,	x2)	and	its	output	is	z1.	See	if
you	can	find	the	other	2	logistic	units	in	this	picture.

	

We	 call	 the	 layer	 of	 z’s	 the	 “hidden	 layer”.	Neural	 networks	 have	 one	 or	more	 hidden
layers.	A	neural	network	with	more	hidden	layers	would	be	called	“deeper”.

	

“Deep	learning”	is	somewhat	of	a	buzzword.	I	have	googled	around	about	this	topic,	and	it
seems	 that	 the	 general	 consensus	 is	 that	 any	 neural	 network	 with	 one	 or	 more	 hidden
layers	is	considered	“deep”.

	

Exercise
	

Using	the	logistic	unit	as	a	building	block,	how	would	you	calculate	the	output	of	a	neural
network	Y?	If	you	can’t	get	it	now,	don’t	worry,	we’ll	cover	it	in	Chapter	3.

	

	

	

	

	

	

Chapter	2:	Biological	analogies
	

I	described	in	the	previous	chapter	how	an	artificial	neural	network	is	analogous	to	a	brain
physically,	but	what	about	with	respect	to	learning	and	other	“high	level”	attributes?

	

Excitability	Threshold
	

The	 output	 of	 a	 logistic	 unit	must	 be	 between	 0	 and	 1.	 In	 a	 classifier,	we	must	 choose
which	class	to	predict	(say,	is	this	is	a	picture	of	a	cat	or	a	dog?)

	

If	1	=	cat	and	0	=	dog,	and	the	output	is	0.7,	what	do	we	say?	Cat!

	

Why?	Because	our	model	is	saying,	“the	probability	that	this	is	an	image	of	a	cat	is	70%”.

	

The	50%	line	acts	as	the	“excitability	threshold”	of	a	neuron,	i.e.	the	threshold	at	which	an
action	potential	would	be	generated.

	

Excitatory	and	Inhibitory	Connections
	

Neurons	have	the	ability	when	sending	signals	to	other	neurons,	to	send	an	“excitatory”	or
“inhibitory”	 signal.	 As	 you	might	 have	 guessed,	 excitatory	 connections	 produce	 action
potentials,	while	inhibitory	connections	inhibit	action	potentials.

	

These	are	like	the	weights	of	a	logistic	regression	unit.	A	very	positive	weight	would	be	a
very	excitatory	connection.	A	very	negative	weight	would	be	a	very	inhibitory	connection.

	

Repetition	and	Familiarity
	

“Practice	makes	perfect”	people	often	 say.	When	you	practice	 something	over	 and	over
again,	you	become	better	at	it.

	

Neural	networks	are	 the	same	way.	If	you	train	a	neural	network	on	the	same	or	similar
examples	again	and	again,	it	gets	better	at	classifying	those	examples.

	

Your	mind,	by	practicing	a	task,	is	lowering	its	internal	error	curve	for	that	particular	task.

	

You	will	 see	how	this	 is	 implemented	 in	code	when	we	 talk	about	backpropagation,	 the
training	algorithm	for	a	neural	network.

	

Essentially	what	we	 are	 going	 to	 do	 is	 do	 a	 for-loop	 a	 number	 of	 times,	 looking	 at	 the
same	samples	again	and	again,	doing	backpropagation	on	them	each	time.

	

Exercise
	

In	 preparation	 for	 the	 next	 chapter,	 you’ll	 need	 to	 make	 sure	 you	 have	 the	 following
installed	on	your	machine:	Python,	Numpy,	and	optionally	Pandas.

Chapter	3:	Getting	output	from	a	neural	network
	

Get	some	data	to	work	with
	

Assuming	you	don’t	yet	have	any	data	to	work	with,	you’ll	need	some	to	do	the	examples
in	 this	 book.	 https://kaggle.com	 is	 a	 great	 resource	 for	 this.	 I	 would	 recommend	 the
MNIST	 dataset.	 If	 you	 want	 to	 do	 binary	 classification	 you’ll	 have	 to	 choose	 another
dataset.

	

The	data	you’ll	use	for	any	machine	learning	problem	often	has	the	same	format.

	

We	have	some	inputs	X	and	some	labels	or	targets	Y.

	

Each	 sample	 (pair	 of	 x	 and	 y)	 is	 represented	 as	 a	 vector	 of	 real	 numbers	 for	 x	 and	 a
categorical	variable	(often	just	0,	1,	2,	…)	for	y.

	

You	put	all	the	sample	inputs	together	to	form	a	matrix	X.	Each	input	vector	is	a	row.	So
that	means	each	column	is	a	different	input	feature.

	

Thus	X	is	an	N	x	D	matrix,	where	N	=	number	of	samples	and	D	=	the	dimensionality	of
each	input.

	

If	y	is	not	a	binary	variable	(0	or	1),	you	can	turn	it	 into	a	matrix	of	indicator	variables,
which	will	be	needed	later	when	we	are	doing	softmax.

	

So	for	the	MNIST	example	you	would	transform	Y	into	an	indicator	matrix	(a	matrix	of	0s
and	1s)	where	Y_indicator	is	an	N	x	K	matrix,	where	again	N	=	number	of	samples	and	K
=	number	of	classes	in	the	output.	For	MNIST	of	course	K	=	10.

	

Here	is	an	example	of	how	you	could	do	this	in	Numpy:

	

def	y2indicator(y):

https://kaggle.com

		N	=	len(y)

		ind	=	np.zeros((N,	10))

		for	i	in	xrange(N):

				ind[i,	y[i]]	=	1

		return	ind

	

In	this	book,	I	will	assume	you	already	know	how	to	load	a	CSV	into	a	Numpy	array	or
Pandas	dataframe	and	do	basic	operations	like	multiplying	and	adding	Numpy	arrays.

	

Architecture	of	an	artificial	neural	network
	

Unlike	biological	neural	networks,	where	any	one	neuron	can	be	connected	to	any	other
neuron,	 artificial	 neural	 networks	 have	 a	 very	 specific	 structure.	 In	 particular,	 they	 are
composed	of	layers.

	

Each	layer	feeds	into	the	next	layer.	There	are	no	“feedback”	connections.	(Actually	there
can	be,	and	 these	are	called	recurrent	neural	networks,	but	 they	are	outside	 the	scope	of
this	book.)

	

You	already	saw	what	a	neural	network	looks	like	in	Chapter	1,	and	how	to	calculate	the
output	of	a	logistic	unit.

	

Suppose	we	have	a	1-hidden	 layer	neural	network,	where	x	 is	 the	 input,	z	 is	 the	hidden
layer,	and	y	is	the	output	layer	(as	in	the	diagram	from	Chapter	1).

	

	

Feedforward	action
	

Let	us	complete	the	formula	for	y.	First,	we	have	to	compute	z1	and	z2.

	

z1	=	sigmoid(w11*x1	+	w12*x2)

z2	=	sigmoid(w21*x1	+	w22*x2)

	

And	then	y	can	be	computed	as:

	

y	=	sigmoid(v1*x1	+	v2*x2)

	

Note	that	inside	the	sigmoid	functions	we	simply	have	the	“dot	product”	between	the	input
and	weights.	 It	 is	more	 computationally	 efficient	 to	use	vector	 and	matrix	operations	 in
Numpy	instead	of	for-loops,	so	we	will	try	to	do	so	where	possible.

	

Binary	classification
	

As	you	can	see,	the	last	layer	of	our	simple	network	is	just	a	logistic	regression	layer.	We
can	interpret	the	output	as	the	probability	that	Y=1	given	X.

	

Of	course,	 since	binary	classification	can	only	output	a	0	or	1,	 then	 the	probability	 that
Y=0	given	X:

	

P(Y=0	|	X)	=	1	-	P(Y=1	|	X),

	

because	they	must	sum	to	1.

	

Softmax
	

What	if	we	want	to	classify	more	than	2	things?	For	example,	the	famous	MNIST	dataset
contains	the	digits	0-9,	so	we	have	10	output	classes.

	

In	this	scenario,	we	use	the	softmax	function,	which	is	defined	as	follows:

	

softmax(a[k])	=	exp(a[k])	/	{	exp(a[1])	+	exp(a[2])	+	…	+	exp(a[k])	+	…	+	exp(a[K])	}

	

Note	that	the	“little	k”	and	the	“big	K”	are	different.

	

Convince	 yourself	 that	 this	 always	 adds	 up	 to	 1,	 and	 thus	 can	 also	 be	 considered	 a
probability.

	

Now	in	code!
	

Assuming	 that	you	have	already	 loaded	your	data	 into	Numpy	arrays,	you	can	calculate
the	output	y	as	we	do	in	this	section.

	

Note	 that	 there	 is	 a	 little	bit	 of	 added	complexity	 since	 the	 formulas	 shown	above	only
calculate	 the	output	 for	one	 input	sample.	When	we	are	doing	 this	 in	code,	we	 typically
want	to	do	this	calculation	for	many	samples	simultaneously.

	

def	sigmoid(a):

		return	1	/	(1	+	np.exp(-a))

	

def	softmax(a):

		expA	=	np.exp(A)

		return	expA	/	expA.sum(axis=1,	keepdims=True)

	

X,Y	=	load_csv(“yourdata.csv”)

W	=	np.random.randn(D,	M)

V	=	np.random.randn(M,	K)

	

Z	=	sigmoid(X.dot(W))

p_y_given_x	=	softmax(Z.dot(V))

	

Here	 “M”	 is	 the	 number	 of	 hidden	 units.	 It	 is	what	we	 call	 a	 “hyperparameter”,	which
could	be	chosen	using	a	method	such	as	cross-validation.

	

Of	 course,	 the	 outputs	 here	 are	 not	 very	 useful	 because	 they	 are	 randomly	 initialized.
What	 we	 would	 like	 to	 do	 is	 determine	 the	 best	 W	 and	 V	 so	 that	 when	 we	 take	 the
predictions	of	P(Y	|	X),	they	are	very	close	to	the	actual	labels	Y.

	

Exercise
	

Add	the	bias	term	to	the	above	examples.

	

	

Chapter	4:	Training	a	neural	network	with	
backpropagation
	

There	is	no	way	for	us	to	“solve	for	W	and	V”	in	closed	form.	Recall	from	calculus	that
the	 typical	 way	 to	 do	 this	 is	 to	 find	 the	 derivative	 and	 set	 it	 to	 0.	We	 have	 to	 instead
“optimize”	our	objective	function	using	a	method	called	gradient	descent.

	

What	is	the	objective	function	we’ll	use?

	

J	=	-sum_from_n=1..N	(sum_from_k=1..K	(T[n,k]	*	logY[n,k]))

	

You’ll	 notice	 that	 this	 is	 just	 the	 negative	 log-likelihood.	 (Think	 about	 how	 you	would
calculate	the	likelihood	of	the	faces	of	a	die	given	a	dataset	of	die	rolls,	and	you	should	get
a	result	in	a	similar	form).

	

And	if	you	turned	your	label/target	variables	(now	called	T)	into	an	indicator	matrix	like	I
mentioned,	it	should	now	be,	well,	a	matrix,	thus	having	2	indices,	n	and	k,	as	above.

	

In	Numpy	this	could	be	calculated	as	follows:

	

def	cost(T,	Y):

		return	-(T*np.log(Y)).sum()

	

So	 now	 that	we	 have	 an	 objective	 function,	 how	 do	we	 optimize	 it?	We	 use	 a	method
called	“gradient	descent”,	where	we	“travel”	along	the	gradient	of	J	with	respect	to	W	and
V,	until	we	hit	a	minimum.

	

In	a	picture,	gradient	descent	looks	like	this.

	

	

	

Convince	yourself	that	by	going	along	the	direction	of	the	gradient,	we	will	always	end	up
at	a	“lower”	J	than	where	we	started.

	

In	 general,	 knowing	 how	 to	 compute	 the	 gradient	 is	 not	 necessary	 unless	 you	 want	 to
know	 how	 to	 code	 a	 neural	 network	 yourself	 in	Numpy,	which	we	 do	 in	my	 course	 at
https://udemy.com/data-science-deep-learning-in-python.	 In	 this	 book,	 since	 we	 are
focusing	on	Theano	and	TensorFlow,	we	will	not	do	this.

	

Once	you	find	the	gradient,	you	want	to	take	small	steps	in	that	direction.

	

You	can	imagine	that	if	your	steps	are	too	large,	you’ll	just	end	up	on	the	“other	side”	of
the	canyon,	bouncing	back	and	forth!

	

Thus	we	do	our	weight	updates	like	so:

	

weight	=	weight	-	learning_rate	*	gradient_of_J_wrt_weight

	

Where	the	learning	rate	is	a	very	small	number,	i.e.	0.00001.	(Note:	if	the	number	is	too

https://udemy.com/data-science-deep-learning-in-python

small,	gradient	descent	will	take	a	very	long	time.	I	show	you	how	to	optimize	this	value
in	my	Udemy	course).

	

That	is	all	there	is	to	it!

	

If	you	want	to	convince	yourself	that	this	works,	I	would	recommend	trying	to	optimize	a
function	you	already	know	how	to	solve,	such	as	a	quadratic.

	

For	example,	your	objective	would	be	J	=	x**2	+	x,	and	the	gradient	of	J	is	2x	+	1,	so	the
minimum	can	be	found	at	-1/2.

	

Exercise
	

Use	gradient	descent	to	optimize	the	following	functions:

	

maximize	J	=	log(x)	+	log(1-x),	0	<	x	<	1

	

maximize	J	=	sin(x),	0	<	x	<	pi

	

minimize	J	=	1	-	x^2	-	y^2,	0	<=	x	<=	1,	0	<=	y	<=	1,	x	+	y	=	1

	

More	Code
	

Before	we	start	looking	at	Theano	and	TensorFlow,	I	want	you	to	get	a	neural	network	set
up	 with	 just	 pure	 Numpy	 and	 Python.	 Assuming	 you’ve	 went	 through	 the	 previous
chapters,	you	should	already	have	code	to	load	the	data	and	feed	the	data	into	the	neural
network	in	the	forward	direction.

	

#	…	load	data	into	X,	T…

#	…	initialize	W1	and	W2

	

def	forward(X,	W1,	W2):

		Z	=	sigmoid(X.dot(W1))

		Y	=	softmax(Z.dot(W2))

		return	Y,	Z

	

def	grad_W2(Z,	T,	Y):

		return	Z.T.dot(Y	-	T)

	

def	grad_W1(X,	Z,	T,	Y,	W2):

		return	X.T.dot(((Y	-	T).dot(W2.T)	*	(Z*(1	-	Z))))

	

for	i	in	xrange(epochs):

		Y,	Z	=	forward(X,	W1,	W2)

		W2	-=	learning_rate	*	grad_W2(Z,	T,	Y)

		W1	-=	learning_rate	*	grad_W1(X,	Z,	T,	Y,	W2)

		print	cost(T,	Y)

	

And	watch	the	cost	magically	decrease	on	every	iteration	of	the	loop!	Some	notes	about
this	code:

	

I	 have	 renamed	 the	 target	 variables	 T	 and	 the	 output	 of	 the	 neural	 network	 Y.	 In	 the
previous	chapter	I	called	the	targets	Y	and	the	output	of	the	neural	network	p_y_given_x.

	

Notice	we	return	both	Z	(the	hidden	layer	values)	as	well	as	Y	in	the	forward()	function.
That’s	because	we	need	both	to	calculate	the	gradient.

	

Don’t	 worry	 about	 how	 I	 calculated	 the	 gradient	 functions,	 unless	 you	 know	 enough
calculus	to	derive	them	yourself	and	then	implement	them	in	code.

	

So	 what	 exactly	 is	 backpropagation?	 It	 just	 means	 the	 “error”	 is	 getting	 propagated
backward	through	the	neural	network.	Notice	how	“Y	-	T”	shows	up	in	both	gradients.	If
you	had	more	than	1	hidden	layer	in	the	neural	network,	you	would	notice	more	patterns
emerge.

	

Notice	 that	 we	 loop	 through	 a	 number	 of	 “epochs”,	 calculating	 the	 error	 on	 the	 entire
dataset	 at	 the	 same	 time.	 Refer	 back	 to	 chapter	 2,	 when	 I	 talked	 about	 repetition	 in
biological	analogies.	We	are	just	repeatedly	showing	the	neural	network	the	same	samples
again	and	again.

	

Exercise
	

Use	 the	above	code	on	 the	MNIST	dataset,	or	whatever	dataset	you	chose	 to	download.
Add	the	bias	terms,	or	add	a	column	of	1s	to	the	matrix	X	and	Z	so	that	you	effectively
have	bias	terms.

	

In	addition	to	printing	the	cost,	also	print	the	classification	rate	or	error	rate.	Does	a	lower
cost	guarantee	a	lower	error	rate?

	

	

Chapter	5:	Theano
	

Theano	 is	 a	Python	 library	 that	 is	 very	popular	 for	 deep	 learning.	 It	 allows	you	 to	 take
advantage	of	the	GPU	for	faster	floating	point	calculations,	since,	as	you	may	have	seen,
gradient	descent	can	take	quite	awhile.

	

In	this	book	I	show	you	how	to	write	Theano	code,	but	if	you	want	to	know	the	particulars
about	how	to	get	a	machine	that	has	GPU	capabilities	and	how	to	tweak	your	Theano	code
and	commands	to	use	them,	you’ll	want	to	consult	my	course	at:	https://udemy.com/data-
science-deep-learning-in-theano-tensorflow

	

Theano	Basics
	

Learning	Numpy	when	you	already	know	Python	is	pretty	easy,	right?	You	simply	have	a
few	new	functions	to	operate	on	special	kinds	of	arrays.

	

Moving	from	Numpy	to	Theano	is	a	whole	other	beast.	There	are	a	 lot	of	new	concepts
that	just	do	not	look	like	regular	Python.

	

So	 let’s	 first	 talk	about	Theano	variables.	Theano	has	different	 types	of	variable	objects
based	on	the	number	of	dimensions	of	the	object.	For	example,	a	0-dimensional	object	is	a
scalar,	 a	 1-dimensional	 object	 is	 a	 vector,	 a	 2-dimensional	 object	 is	 a	matrix,	 and	 a	 3+
dimensional	object	is	a	tensor.

	

They	are	all	within	the	theano.tensor	module.	So	in	your	import	section:

	

import	theano.tensor	as	T

	

You	can	create	a	scalar	variable	like	this:

	

c	=	T.scalar(‘c’)

	

https://udemy.com/data-science-deep-learning-in-theano-tensorflow

The	string	that	is	passed	in	is	the	variable’s	name,	which	may	be	useful	for	debugging.

	

A	vector	could	be	created	like	this:

	

v	=	T.vector(‘v’)

	

And	a	matrix	like	this:

	

A	=	T.matrix(‘A’)

	

Since	we	generally	haven’t	worked	with	tensors	in	this	book,	we	are	not	going	to	look	at
those.	When	 you	 start	 working	with	 color	 images,	 this	 will	 add	 another	 dimension,	 so
you’ll	 need	 tensors.	 (Ex.	 a	 28x28	 image	would	 have	 the	 dimensions	 3x28x28	 since	we
need	to	have	separate	matrices	for	the	red,	green,	and	blue	channels).

	

What	 is	 strange	 about	 regular	 Python	 vs.	 Theano	 is	 that	 none	 of	 the	 variables	 we	 just
created	have	values!

	

Theano	variables	are	more	like	nodes	in	a	graph.

	

(Come	to	think	of	it,	isn’t	the	neural	network	I	described	in	Chapter	1	simply	a	graphical
model?)

	

We	 only	 “pass	 in”	 values	 to	 the	 graph	 when	 we	 want	 to	 perform	 computations	 like
feedforward	or	backpropagation,	which	we	haven’t	defined	yet.	TensorFlow	works	in	the
same	way.

	

Despite	that,	we	can	still	define	operations	on	the	variables.

	

For	example,	if	you	wanted	to	do	matrix	multiplication,	it	is	similar	to	Numpy:

	

u	=	A.dot(v)

	

You	can	think	of	this	as	creating	a	new	node	in	the	graph	called	u,	which	is	connected	to	A
and	v	by	a	matrix	multiply.

	

To	actually	do	the	multiply	with	real	values,	we	need	to	create	a	Theano	function.

	

import	theano

matrix_times_vector	=	theano.function(inputs=[A,v],	outputs=[u])

	

import	numpy	as	np

A_val	=	np.array([[1,2],	[3,4]])

v_val	=	np.array([5,6])

u_val	=	matrix_times_vector(A_val,	v_val)

	

Using	 this,	 try	 to	 think	 about	 how	you	would	 implement	 the	 “feedforward”	 action	 of	 a
neural	network.

	

One	of	the	biggest	advantages	of	Theano	is	that	it	links	all	these	variables	up	into	a	graph
and	can	use	 that	 structure	 to	 calculate	gradients	 for	you	using	 the	 chain	 rule,	which	we
discussed	in	the	previous	chapter.

	

In	Theano	regular	variables	are	not	“updateable”,	and	to	make	an	updateable	variable	we
create	what	is	called	a	shared	variable.

	

So	let’s	do	that	now:

	

x	=	theano.shared(20.0,	‘x’)

	

Let’s	also	create	a	simple	cost	function	that	we	can	solve	ourselves	and	we	know	it	has	a
global	minimum:

	

cost	=	x*x	+	x

	

And	let’s	tell	Theano	how	we	want	to	update	x	by	giving	it	an	update	expression:

	

x_update	=	x	-	0.3*T.grad(cost,	x)

	

The	grad	function	takes	in	2	parameters:	the	function	you	want	to	take	the	gradient	of,	and
the	variable	you	want	the	gradient	with	respect	to.	You	can	pass	in	multiple	variables	as	a
list	 into	 the	2nd	parameter,	as	we’ll	be	doing	 later	 for	each	of	 the	weights	of	 the	neural
network.

	

Now	let’s	create	a	Theano	train	function.	We’re	going	to	add	a	new	argument	called	the
updates	argument.	 It	 takes	 in	a	 list	of	 tuples,	and	each	 tuple	has	2	 things	 in	 it.	The	 first
thing	is	the	shared	variable	to	update,	and	the	2nd	thing	is	the	update	expression	to	use.

	

train	=	theano.function(inputs=[],	outputs=cost,	updates=[(x,	x_update)])

	

Notice	that	‘x’	is	not	an	input,	it’s	the	thing	we	update.	In	later	examples,	the	inputs	will	be
the	data	and	labels.	So	the	inputs	param	takes	in	data	and	labels,	and	the	updates	param
takes	in	your	model	parameters	with	their	updates.

	

Now	we	simply	write	a	loop	to	call	the	train	function	again	and	again:

	

for	i	in	xrange(25):

				cost_val	=	train()

				print	cost_val

	

And	print	the	optimal	value	of	x:

	

print	x.get_value()

	

Now	let’s	take	all	these	basic	concepts	and	build	a	neural	network	in	Theano.

	

A	neural	network	in	Theano
	

First,	 I’m	 going	 to	 define	my	 inputs,	 outputs,	 and	weights	 (the	 weights	 will	 be	 shared

variables):

	

thX	=	T.matrix(‘X’)

thT	=	T.matrix(‘T’)

W1	=	theano.shared(np.random.randn(D,	M),	‘W1’)

W2	=	theano.shared(np.random.randn(M,	K),	‘W2’)

	

Notice	 I’ve	 added	 a	 “th”	 prefix	 to	 the	 Theano	 variables	 because	 I’m	 going	 to	 call	 my
actual	data,	which	are	Numpy	arrays,	X	and	T.

	

Recall	that	M	is	the	number	of	units	in	the	hidden	layer.

Next,	I	define	the	feedforward	action.

	

thZ	=	T.tanh(thX.dot(W1))

thY	=	T.nnet.softmax(thZ.dot(W2))

	

T.tanh	is	a	non-linear	function	similar	to	the	sigmoid,	but	it	ranges	between	-1	and	+1.

	

Next	 I	define	my	cost	 function	and	my	prediction	 function	 (this	 is	used	 to	calculate	 the
classification	error	later).

	

cost	=	-(thT	*	T.log(thY)).sum()

prediction	=	T.argmax(thY,	axis=1)

	

And	 I	 define	 my	 update	 expressions.	 (notice	 how	 Theano	 has	 a	 function	 to	 calculate
gradients!)

	

update_W1	=	W1	-	lr*T.grad(cost,	W1)

update_W2	=	W2	-	lr*T.grad(cost,	W2)

	

I	create	a	train	function	similar	to	the	simple	example	above:

	

train	=	theano.function(

		inputs=[thX,	thT],

		updates=[(W1,	update_W1),(W2,	update_W2)],

)

	

And	I	create	a	prediction	function	to	tell	me	the	cost	and	prediction	of	my	test	set	so	I	can
later	calculate	the	error	rate	and	classification	rate.

	

get_prediction	=	theano.function(

		inputs=[thX,	thT],

		outputs=[cost,	prediction],

)

	

And	similar	to	the	last	section,	I	do	a	for-loop	where	I	just	call	train()	again	and	again	until
convergence.	(Note	that	the	derivative	at	a	minimum	will	be	0,	so	at	that	point	the	weight
won’t	change	anymore).	This	code	uses	a	method	called	“batch	gradient	descent”,	which
iterates	over	batches	of	the	training	set	one	at	a	time,	instead	of	the	entire	training	set.	This
is	a	“stochastic”	method,	meaning	that	we	hope	that	over	a	large	number	of	samples	that
come	 from	 the	 same	distribution,	we	will	 converge	 to	 a	 value	 that	 is	 optimal	 for	 all	 of
them.

	

for	i	in	xrange(max_iter):

		for	j	in	xrange(n_batches):

				Xbatch	=	Xtrain[j*batch_sz:(j*batch_sz	+	batch_sz),]

				Ybatch	=	Ytrain_ind[j*batch_sz:(j*batch_sz	+	batch_sz),]

	

				train(Xbatch,	Ybatch)

				if	j	%	print_period	==	0:

						cost_val,	prediction_val	=	get_prediction(Xtest,	Ytest_ind)

	

	

Exercise
	

Complete	the	code	above	by	adding	the	following:

	

A	function	to	convert	the	labels	into	an	indicator	matrix	(if	you	haven’t	done	so	yet)	(Note
that	the	examples	above	refer	to	the	variables	Ytrain_ind	and	Ytest_ind	-	that’s	what	these
are)

	

Add	bias	terms	at	the	hidden	and	output	layers	and	add	the	update	expressions	for	them	as
well.

	

Split	your	data	into	training	and	test	sets	to	conform	to	the	code	above.

	

Try	it	on	a	dataset	like	MNIST.

Chapter	6:	TensorFlow
	

TensorFlow	 is	 a	 newer	 library	 than	Theano	 developed	 by	Google.	 It	 does	 a	 lot	 of	 nice
things	for	us	like	Theano	does,	like	calculating	gradients.

	

Once	you	have	TensorFlow	installed,	come	back	to	the	book	and	we’ll	do	a	simple	matrix
multiplication	example	like	we	did	with	Theano.

	

Import	as	usual:

	

import	tensorflow	as	tf

	

With	 TensorFlow	 we	 have	 to	 specify	 the	 type	 (Theano	 variable	 =	 TensorFlow
placeholder):

	

A	=	tf.placeholder(tf.float32,	shape=(5,	5),	name=‘A’)

	

	

But	shape	and	name	are	optional:

	

v	=	tf.placeholder(tf.float32)

	

	

We	use	 the	‘matmul’	function	in	TensorFlow.	I	 think	this	name	is	more	appropriate	 than
‘dot’:

	

u	=	tf.matmul(A,	v)

	

	

Similar	 to	 Theano,	 you	 need	 to	 “feed”	 the	 variables	 values.	 In	 TensorFlow	 you	 do	 the
“actual	work”	in	a	“session”.

	

with	tf.Session()	as	session:

		#	the	values	are	fed	in	via	the	argument	“feed_dict”

		#	v	needs	to	be	of	shape=(5,	1)	not	just	shape=(5,)

		#	it’s	more	like	“real”	matrix	multiplication

		output	=	session.run(w,	feed_dict={A:	np.random.randn(5,	5),	v:	np.random.randn(5,	
1)})

	

		print	output,	type(output)

	

Instead	of	doing	a	simple	quadratic	optimization	like	we	did	in	the	last	chapter,	I’m	going
to	 jump	straight	 into	how	you’d	create	a	neural	network.	Although	 I	would	 recommend
doing	a	simple	quadratic	if	you	want	more	practice.

	

A	neural	network	in	TensorFlow
	

Let’s	create	our	 input,	 target,	and	weight	variables.	Notice	I	have	again	omitted	 the	bias
terms	 for	 you	 to	 do	 as	 an	 exercise.	 Also	 notice	 that	 a	 Theano	 shared	 =	 TensorFlow
variable:

	

X	=	tf.placeholder(tf.float32,	shape=(None,	D),	name=‘X’)

T	=	tf.placeholder(tf.float32,	shape=(None,	K),	name=‘T’)

W1	=	tf.Variable(W1_init.astype(np.float32))

W2	=	tf.Variable(W2_init.astype(np.float32))

	

Let	me	repeat,	since	it’s	kind	of	confusing	-	a	Theano	variable	!=	TensorFlow	variable.

	

We	 can	 specify	 “None”	 in	 our	 shapes	 because	 we	 want	 to	 be	 able	 to	 pass	 in	 variable
lengths	-	i.e.	batch	size,	test	set	size,	etc.

	

Now	 let’s	calculate	 the	output	 (notice	 I’m	using	ReLU	as	my	hidden	 layer	nonlinearity,
which	is	a	little	different	from	sigmoid	and	softmax):

	

Z	=	tf.nn.relu(tf.matmul(X,	W1))

Yish	=	tf.matmul(Z,	W2)

	

I	call	this	“Yish”	because	we	haven’t	done	the	final	softmax	step.

	

The	reason	we	don’t	do	this	is	because	it’s	included	in	how	we	compute	the	cost	function
(that’s	just	how	TensorFlow	functions	work).	We	calculate	the	cost	as	follows:

	

cost	=	tf.reduce_sum(

		tf.nn.softmax_cross_entropy_with_logits(

				Yish,

				T

)

)

	

While	these	functions	probably	all	seem	unfamiliar	and	foreign,	with	enough	consultation
of	the	TensorFlow	documentation,	you	will	acclimate	yourself	to	them.

	

Like	our	Theano	example,	we	want	to	create	train	and	predict	functions	also:

	

train_op	=	tf.train.RMSPropOptimizer(

		learning_rate,

		decay=0.99,

		momentum=0.9).minimize(cost)

predict_op	=	tf.argmax(Yish,	1)

	

Notice	how,	unlike	Theano,	 I	 did	not	 even	have	 to	 specify	 a	weight	 update	 expression!
One	could	argue	that	it	is	sort	of	redundant	since	you	are	pretty	much	always	going	to	use
w	 +=	 learning_rate*gradient.	 However,	 if	 you	 want	 different	 techniques	 like	 adaptive
learning	 rates	 and	momentum	you	 are	 at	 the	mercy	 of	Google.	 Luckily,	 their	 engineers
have	already	included	RMSProp	(for	an	adaptive	learning	rate)	and	momentum,	which	I
have	 used	 above.	 To	 learn	 about	 their	 other	 optimization	 functions,	 consult	 their
documentation.

	

In	TensorFlow,	you	need	to	call	a	special	function	to	initialize	all	the	variable	objects.	You
do	that	like	this:

	

init	=	tf.initialize_all_variables()

	

And	then	finally,	you	run	your	train	and	predict	functions	in	a	loop,	inside	a	session:

	

with	tf.Session()	as	session:

		session.run(init)

	

		for	i	in	xrange(max_iter):

				for	j	in	xrange(n_batches):

						Xbatch	=	Xtrain[j*batch_sz:(j*batch_sz	+	batch_sz),]

						Ybatch	=	Ytrain_ind[j*batch_sz:(j*batch_sz	+	batch_sz),]

	

						session.run(train_op,	feed_dict={X:	Xbatch,	T:	Ybatch})

						if	j	%	print_period	==	0:

								test_cost	=	session.run(cost,	feed_dict={X:	Xtest,	T:	Ytest_ind})

								prediction	=	session.run(predict_op,	feed_dict={X:	Xtest})

								print	error_rate(prediction,	Ytest)

	

Notice	we	are	again	using	batch	gradient	descent.

	

The	error_rate	function	was	defined	as:

	

def	error_rate(p,	t):

				return	np.mean(p	!=	t)

	

Ytrain_ind	and	Ytest_ind	are	defined	as	before.

Chapter	7:	Unsupervised	learning,	autoencoders,	
restricted	Boltzmann	machines,	convolutional	
neural	networks,	and	LSTMs
	

Wow!	So	at	this	point,	you’ve	already	learned	what	I	consider	to	be	the	“basics”	of	deep	
learning.	These	are	the	fundamental	skills	that	will	be	carried	over	to	more	complex	neural	
networks,	and	these	topics	will	be	repeated	again	and	again,	albeit	in	more	complex	forms.

	

However,	I	don’t	want	to	leave	you	in	a	place	where	“you	don’t	know	what	you	don’t	
know”.

	

There	is	lots	more	to	learn	about	deep	learning!	Where	do	you	go	from	here?

	

Well,	this	book	focused	primarily	on	“supervised	learning”,	which	I	think	makes	a	lot	
more	sense	to	most	people.	You	want	to	teach	a	machine	how	to	behave	by	showing	it	
examples	of	how	to	do	things	“correctly”,	while	“penalizing”	it	when	it	does	something	
incorrectly.

	

But	there	are	other	“optimization”	functions	that	neural	networks	can	train	on,	that	don’t	
even	need	a	label	at	all!	This	is	called	“unsupervised	learning”,	and	algorithms	like	k-
means	clustering,	Gaussian	mixture	models,	and	principal	components	analysis	fall	into	
this	family.

	

Neural	networks	have	2	popular	ways	of	doing	unsupervised	learning:	Autoencoders	and	
Restricted	Boltzmann	Machines.

	

Surprisingly,	when	you	“pre-train”	a	neural	network	using	either	of	these	unsupervised	
methods,	it	helps	you	achieve	a	better	final	accuracy!

	

Deep	learning	has	also	been	successfully	applied	to	reinforcement	learning	(which	is	
rewards-based	rather	than	trained	on	an	error	function),	and	that	has	been	shown	to	be	
useful	for	playing	video	games	like	Flappy	Bird	and	Super	Mario.

	

Special	neural	network	architectures	have	been	applied	to	particular	problems	(whereas	
we	have	been	talking	about	data	in	the	abstract	sense	in	this	book).

	

For	image	classification,	convolutional	neural	networks	have	been	shown	to	perform	well.	
These	use	the	convolution	operator	to	pre-process	the	data	before	feeding	it	into	the	final	
logistic	layer.

	

For	sequence	classification,	LSTMs,	or	long	short-term	memory	networks	have	been	
shown	to	work	well.	These	are	a	special	type	of	recurrent	neural	network,	which	up	until	
recently,	researchers	have	been	saying	are	very	hard	to	train.

	

What	other	domains	have	you	thought	about	applying	deep	learning	to?	The	stock	market?	
Gambling?	Self-driving	vehicles?

	

There	is	tons	of	untapped	potential	out	there!

	

	

	

Exercise
	

Send	me	an	email	at	info@lazyprogrammer.me	and	let	me	know	which	of	the	above	topics	
you’d	be	most	interested	in	learning	about	in	the	future.	I	always	use	student	feedback	to	
decide	what	courses	and	books	to	create	next!

	

mailto:info@lazyprogrammer.me

Conclusion
	

I	really	hope	you	had	as	much	fun	reading	this	book	as	I	did	making	it.

	

Did	you	find	anything	confusing?	Do	you	have	any	questions?

	

I	am	always	available	to	help.	Just	email	me	at:	info@lazyprogrammer.me

	

Do	you	want	to	learn	more	about	deep	learning?	Perhaps	online	courses	are	more	your	
style.	I	happen	to	have	a	few	of	them	on	Udemy.

	

A	lot	of	the	material	in	this	book	is	covered	in	this	course,	but	you	get	to	see	me	derive	the	
formulas	and	write	the	code	live:

	

Data	Science:	Deep	Learning	in	Python

	

https://udemy.com/data-science-deep-learning-in-python

	

Are	you	comfortable	with	this	material,	and	you	want	to	take	your	deep	learning	skillset	to	
the	next	level?	Then	my	follow-up	Udemy	course	on	deep	learning	is	for	you.	Similar	to	
this	book,	I	take	you	through	the	basics	of	Theano	and	TensorFlow	-	creating	functions,	
variables,	and	expressions,	and	build	up	neural	networks	from	scratch.	I	teach	you	about	
ways	to	accelerate	the	learning	process,	including	batch	gradient	descent,	momentum,	and	
adaptive	learning	rates.	I	also	show	you	live	how	to	create	a	GPU	instance	on	Amazon	
AWS	EC2,	and	prove	to	you	that	training	a	neural	network	with	GPU	optimization	can	be	
orders	of	magnitude	faster	than	on	your	CPU.

	

Data	Science:	Practical	Deep	Learning	in	Theano	and	TensorFlow

	

https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow	

	

Would	you	like	an	introduction	to	the	basic	building	block	of	neural	networks	-	logistic	
regression?	In	this	course	I	teach	the	theory	of	logistic	regression	(our	computational	

mailto:info@lazyprogrammer.me
https://udemy.com/data-science-deep-learning-in-python
https://udemy.com/data-science-deep-learning-in-python
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow/
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow

model	of	the	neuron),	and	give	you	an	in-depth	look	at	binary	classification,	manually	
creating	features,	and	gradient	descent.	You	might	want	to	check	this	course	out	if	you	
found	the	material	in	this	book	too	challenging.

	

Data	Science:	Logistic	Regression	in	Python

	

https://udemy.com/data-science-logistic-regression-in-python

	

To	get	an	even	simpler	picture	of	machine	learning	in	general,	where	we	don’t	even	need	
gradient	descent	and	can	just	solve	for	the	optimal	model	parameters	directly	in	“closed-
form”,	you’ll	want	to	check	out	my	first	Udemy	course	on	the	classical	statistical	method	-	
linear	regression:

	

Data	Science:	Linear	Regression	in	Python

	

https://www.udemy.com/data-science-linear-regression-in-python

	

If	you	are	interested	in	learning	about	how	machine	learning	can	be	applied	to	language,	
text,	and	speech,	you’ll	want	to	check	out	my	course	on	Natural	Language	Processing,	or	
NLP:

	

Data	Science:	Natural	Language	Processing	in	Python

	

https://www.udemy.com/data-science-natural-language-processing-in-python

	

Finally,	I	am	always	giving	out	coupons	and	letting	you	know	when	you	can	get	my	stuff	
for	free.	But	you	can	only	do	this	if	you	are	a	current	student	of	mine!	Here	are	some	ways	
I	notify	my	students	about	coupons	and	free	giveaways:

	

My	newsletter,	which	you	can	sign	up	for	at	http://lazyprogrammer.me	(it	comes	with	a	
free	6-week	intro	to	machine	learning	course)

	

My	Twitter,	https://twitter.com/lazy_scientist

	

https://udemy.com/data-science-logistic-regression-in-python
https://udemy.com/data-science-logistic-regression-in-python
https://www.udemy.com/data-science-linear-regression-in-python
https://www.udemy.com/data-science-linear-regression-in-python
https://www.udemy.com/data-science-natural-language-processing-in-python
https://www.udemy.com/data-science-natural-language-processing-in-python
http://lazyprogrammer.me
https://twitter.com/lazy_scientist

My	Facebook	page,	https://facebook.com/lazyprogrammer.me	(don’t	forget	to	hit	“like”!)

	

	

	

	

	

https://facebook.com/lazyprogrammer.me

	Introduction
	Chapter 1: What is a neural network?
	Chapter 2: Biological analogies
	Chapter 3: Getting output from a neural network
	Chapter 4: Training a neural network with backpropagation
	Chapter 5: Theano
	Chapter 6: TensorFlow
	Chapter 7: Unsupervised learning, autoencoders, restricted Boltzmann machines, convolutional neural networks, and LSTMs
	Conclusion

