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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications and
numerical implementation, but richness and relevance of applications and imple-
mentation depend fundamentally on the structure and depth of theoretical under-
pinnings. Thus, from our point of view, the interleaving of theory and applications
and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of creative
cross-fertilization with diverse areas. The intricate and fundamental relationship
between harmonic analysis and fields such as signal processing, partial differential
equations (PDEs), and image processing is reflected in our state-of-the-art ANHA
series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet the-
ory depends not only on classical Fourier analysis, but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This
leads to a study of the Heisenberg group and its relationship to Gabor systems,
and of the metaplectic group for a meaningful interaction of signal decomposition
methods. The unifying influence of wavelet theory in the aforementioned topics
illustrates the justification for providing a means for centralizing and disseminating
information from the broader, but still focused, area of harmonic analysis. This
will be a key role of ANHA. We intend to publish with the scope and interaction
that such a host of issues demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish

vii



viii ANHA Series Preface

major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Time-frequency and time-scale analysis Image processing
Numerical partial differential equations Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in math-
ematics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solu-
tions they could represent, some of the most basic notions of analysis were defined,
e.g., the concept of “function.” Since the coefficients of Fourier series are integrals,
it is no surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed because
of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena, such
as sound waves, can be described in terms of elementary harmonics. There are two
aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodu-
lar trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
The coherent states of mathematical physics are translated and modulated Fourier
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transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

John J. Benedetto
Series Editor

University of Maryland
College Park





Preface

Beautiful mathematical ideas abound in multimedia software! Some of these ideas
are not encountered until late in undergraduate or even postgraduate study, but
they can be appreciated and used much earlier.

This book is based on the course Topics in Applied Mathematics: Multimedia
Algorithms, first taught at Washington University in the Fall of 1997. The course
aims to teach undergraduate mathematics majors a few dozen pearls, strung
together by their ubiquity in many applications. Students in the course are
expected to know enough computer programming for basic implementation.
Because of this prerequisite, many engineering and computer science students sign
up for the course, which seems to work best if students collaborate to combine
programming and theorem-proving experience.

The text remains concise and focused on the mathematical ideas presented in
the work by avoiding explicit programming instructions. However, the author has
constructed a companion website that provides the computer programs described
in the book as well as additional references and data files, such as images and
sounds, to enhance the reader’s understanding of key topics. Readers may access
this supplementary material at:

http://www.math.wustl.edu/~victor/mfmm/index.html/.

Algorithms are often divided into “integer” (discrete, exact) and “real”
(continuous, approximate) types. Multimedia software is a big user of both types of
algorithms, combining them as needed, so this text does not enforce any kind of seg-
regation. Understanding and analyzing a mix of procedures—with the assumptions,
principles, and techniques commonly used in their implementation—helps students
uncover mathematical gems in a more natural way than by separation into
“discrete mathematics” and “applied analysis.”

When mathematical theory is crucial to the main application being presented,
then proofs with appropriate rigor must be understood. This book is aimed at
providing a comprehensive understanding to mature undergraduate students who
have gotten beyond Calculus. An appendix with basic background material is
available to fill in the gaps. Further readings in more advanced sources are suggested
at the end of each chapter.

xi



xii Preface

When the main emphasis of the text is on practical implementation, then
standards, conventions and common practice must be understood with reference
to the actual standards documents. Key algorithms are presented in pseudocode
and Standard C to assist readers with programming, experimentation, and the
solution of exercises.

I am grateful to my former student, Dr. Wojciech Czaja, for his assistance in
preparing some of the exercise solutions and his numerous useful comments. I am
also grateful to the National Science Foundation for the financial support, through
grant DMS-9631359, that helped me create the course and this book.

How to Use This Book

The main target audience for this work is mathematics majors who have taken Cal-
culus and are familiar with computers and programming. These students will learn
some of the mathematical theory underlying multimedia application software, and
will be able to write simple versions of programs that are found therein. Students
majoring in computer science and engineering may also benefit from the material
and mathematical concepts presented in this book.

This text is not intended as a tutorial on multimedia programming for computer
scientists. It is also not intended for a basic numerical analysis course, though it has
been used in a second course on numerical methods. Instead, this work is intended
to fill the need for a concise text that covers more than just applied Fourier analysis,
and is as rigorous as any undergraduate mathematics textbook.

The material is divided roughly into six equal chapters, intended for a pace of
six lecture hours per chapter. Thus, the entire text may be covered in one semester
with time left for examinations and student projects as was done at Washington
University. Alternatively, one or two chapters may be omitted to fit the material
into a trimester.

There is a good deal of independence among the chapters to permit tailoring the
course to a specific instructor’s needs. For example, if students are already familiar
with recursive programming and computer arithmetic, then Chapter 1—Numbers
and Arithmetic—may be skipped. Likewise, students well prepared in linear algebra
may skip Chapter 2—Space and Linearity.

The core of the course is in Chapters 3, 4, 5, and 6 on Fourier analysis,
approximation, wavelet analysis, and coding. Any one of these later chapters
can be a starting point for an undergraduate thesis in applied mathematics. For
example, an individual or a small group of students might begin by working all the
exercises in Chapter 5—Scale and Resolution—then writing a review of different
discrete wavelet transform implementations based on the further readings listed at
the end of that chapter.

Some of the longer exercises in the text are designed to give students a taste
of applied research, though complete solutions are supplied in an appendix. The
shorter exercises in the book may be easily modified for examinations. There is
also a supplementary manual containing several hundred exercises and solutions
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(as well as sample programs) not included in the book, available to instructors
upon request. Users of the book may request a PDF copy of this manual through
the publisher’s website at:

http://www.birkhauser.com/978-0-8176-4879-4/.

Besides being an ideal textbook for upper undergraduate and beginning
graduate students, the work may also serve as a useful reference for multimedia
applications developers and other researchers and practitioners interested in the
mathematics underlying multimedia design and implementation.

Mladen Victor Wickerhauser
St. Louis, Missouri

August 2009
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Chapter 1

Numbers and Arithmetic

Processing, display, and communication of digital information, that is, information
encoded as numbers, is accomplished by arithmetic with various kinds of numbers.
Such computations are performed with algorithms, which are sequences of opera-
tions with numbers such as addition, multiplication, and reading and writing digits.
Only finite algorithms can be used: these are procedures in which

• Every operation can be performed in a finite time;

• The algorithm is guaranteed to stop after a finite number of operations.

For an algorithm to be finite, its arithmetic operations can only be carried out
to a finite degree of precision. In reality, a computer can keep only a small number
of digits for each number because memory, processing and data communication are
costly resources. But this usually poses no problems since the digital information
of multimedia signals is itself of low precision. For example, a “CD-quality” digital
sound recording consists of a sequence of numbers measuring the electrical output
of a microphone at sequential times, with a precision of 5 decimal digits or less
per measurement. Images from typical scanners are even less precise, consisting of
arrays of numbers measuring light intensity to 3 decimal digits. Physical measure-
ment is always imprecise, so these low precisions cannot be improved much. But
the result is that computation for multimedia signal processing can be done with
low precision arithmetic.

Most computers distinguish between integers and floating-point numbers or
floats, which are approximations to real numbers. Either class is suitable for rep-
resenting finite-precision information, but floats are somewhat more convenient for
computation because the memory needed to store one of them is independent of its
magnitude.

All computers have a fixed range of representable values for both integers and
floats, and have efficient circuitry for arithmetic with numbers in those ranges. For
example, most computers can perform floating-point arithmetic very efficiently at
some built-in fixed precision, such as seven or 14 decimal places. More precision is

1M.V. Wickerhauser, Mathematics for Multimedia, Applied and Numerical 
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2 Chapter 1. Numbers and Arithmetic

obtained with more complicated arithmetic algorithms that are consequently less
efficient.

This chapter will discuss some of the mathematical properties of integer and
floating-point arithmetic, define precision and analyze the propagation of error
caused by low-precision computation, and describe a standard computer represen-
tation of floats with an explanation of how it aids efficient computation with good
control of error propagation.

1.1 Integers

Denote the set of integers by Z def= {. . . ,−2,−1, 0, 1, 2, 3, . . .}. The use of the letter
‘Z’ derives from the German noun “Zahl,” or “number.” Denote the positive integers
by Z+ def= {x ∈ Z : x > 0} = {1, 2, 3, . . .} and the negative integers by Z− def= −
Z+ = {x ∈ Z : x < 0} = {−1,−2,−3, . . .}; neither subset contains zero, so
Z = Z− ∪ {0} ∪ Z+ is a disjoint union. Finally, denote the set of natural numbers
by N def= Z+∪{0} = {x ∈ Z : x ≥ 0} = {0, 1, 2, . . .}. An element of Z is determined
by a finite list of symbols.

Division

For any integers a, b with a �= 0, there are unique integers q and r, called the
quotient and remainder, respectively, satisfying

1. b = qa+ r;

2. 0 ≤ r < |a|.
If a, b ∈ N, then q, r ∈ N as well. Quotient q is given by integer division q =

⌊
b
a

⌋
,

where the floor function �x� computes “the greatest integer less than or equal to
x.” Remainder r is the leftover: r = b− qa.

The “long division” algorithm can be used to determine q and r from a and b.
Integer division takes finitely many steps: if a and b have at most N digits, then
computing q and r requiresO(N2) one-digit operations1 such as trial multiplications
or subtractions.

The Standard C programming language has special integer quotient and remain-
der operators / and % for computing q and r, as seen in this fragment of a computer
program:

int a, b, q, r;
...
q = b/a;
r = b%a;
...

1See Section B.3 for an explanation of this “big-Oh” notation.
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Standard C guarantees that conditions 1 and 2 hold for a > 0 and b ≥ 0, but,
unfortunately, condition 2 is not guaranteed if a or b is negative. For example, one
typical machine computes as follows:

a b q=b/a r=b%a
5 17 3 2
5 -17 -3 -2
-5 17 -3 2
-5 -17 3 -2

If a �= 0 and the remainder upon division of b by a is zero, then a is said to
divide b and is called a divisor of b, and b is said to be divisible by a. Some facts
are:

• any a divides b = 0 (take q = 0 and r = 0 in b = qa+ r);

• a = 1 divides any b (take q = b and r = 0 in b = qa+ r);

• if a divides b then ±a divides ±b (if b = qa, then −b = −qa, and so on);

Lemma 1.1 If b > 0 and a divides b, then 0 < |a| ≤ b.

Proof: Note that b = |b| = |qa| = |q||a| > 0, so |q| ≥ 1. Thus b−|a| = (|q|−1)|a| ≥
0, so b ≥ |a|. Finally, a �= 0 since qa = b �= 0. �

Greatest common divisors

A positive integer c is said to be the greatest common divisor of two integers a and
b if

gcd-1: c divides both a and b;

gcd-2: Any integer that divides both a and b also divides c.

If it exists, it must be unique by property gcd-2 and the last remark of the previous
section. The proof is that if c1 and c2 are both greatest common divisors of a and b,
then c1 divides c2 so c1 ≤ c2, but then also c2 divides c1 so c2 ≤ c1. Thus c2 = c1.
But existence is guaranteed, too:

Theorem 1.2 Every pair of integers a, b, not both zero, has a greatest common
divisor, which can be written as xa+ yb for some integers x, y.

Proof: Let D = {xa + yb : x, y ∈ Z}. D contains some nonzero integers since
not both a and b are zero, so D must contain some positive integers since d ∈
D ⇒ −d ∈ D. Let c = x0a+ y0b be the smallest positive integer in D. Then any
integer z that divides both a and b will divide c, since a = nz and b = mz implies
c = (x0n+ y0m)z. Hence c satisfies property gcd-2.

To show that c divides a, write a = qc + r with 0 ≤ r < c. Then a = q(x0a +
y0b) + r, so r = (1− qx0)a+ (−qy0)b ∈ D. Then r must be zero, since otherwise it
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would be a smaller positive element of D than c. The same argument shows that c
divides b, so c satisfies property gcd-1. �

We write c = gcd(a, b). For example, gcd(−12, 16) = 4. Note that gcd(0, 0) is
undefined since every integer, no matter how large, divides both zeroes. Hence, the
“not both zero” is a necessary assumption.

By convention, gcd(a, 0) = |a| for any a �= 0. Other useful facts are:

• gcd(a, b) = gcd(b, a) = gcd(|a|, |b|).
• If a′ = max(|a|, |b|) and b′ = min(|a|, |b|), then gcd(a, b) = gcd(a′, b′).

• If a �= 0 and b �= 0, then gcd(a, b) ≤ min(|a|, |b|).
• If a divides b, then gcd(a, b) = |a|.
An efficient algorithm for computing greatest common divisors has been known

for thousands of years, and was written down by Euclid around 300 BC. To start
it off, first prepare the inputs by replacing a ← max(|a|, |b|) and b ← min(|a|, |b|),
so as to guarantee that a > 0, b ≥ 0, and a ≥ b:

Euclid’s Algorithm

gcd( a, b ):
[0] Let c = a
[1] Let a = b%a
[2] Let b = c
[3] If a>0, then go to [0]
[4] Print b

To analyze this algorithm, let an, bn be the respective values of a, b after the
nth visit to step 2. Step 1 insures that a > a1 > a2 > · · · ≥ 0, and since each an

is an integer, the loop must terminate after at most a steps. Steps 0 and 2 require
copying the digits of a and c, step 1 is the division algorithm, step 3 requires reading
the digits of a number to see if they are all 0, and step 4 requires printing the digits
of a number. Hence, each step takes finitely many calculations, so the algorithm is
finite.

Suppose k ≥ 1 is the least index for which ak = 0. Then ak−1 divides bk−1, so
the printed value is bk = ak−1 = gcd(ak−1, bk−1).

Note that any common divisor of both a and b also divides both a1 = b%a and
b1 = a. For n = 1, 2, . . . , k, the same observation reveals that any common divisor
of an and bn is a common divisor of both an+1 and bn+1. Hence, by induction on n,
the set of common divisors of a and b equals the set of common divisors of an and
bn. In particular, these sets have the same largest element, gcd(an, bn) = gcd(a, b)
for all 1 ≤ n < k, and the printed value will be gcd(ak−1, bk−1) = gcd(a, b).

How many iterations through steps 0–2 will Euclid’s algorithm take? Recall
that for 1 ≤ n < k, an+1 < an, so an+1 = an − dn for some 0 < dn ≤ an. But
also, bn+1 = an, so for any 1 ≤ n ≤ k − 2, an+2 = bn+1%an+1 = an%an+1, which
implies two things: an+2 < an+1 = an − dn, and also an+2 = an%(an − dn) ≤ dn.
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Thus an+2 ≤ min{an − dn, dn} ≤ 1
2an. Thus the number of iterations required by

Euclid’s algorithm is at most 2 log2 a, which is O(N) for N -digit inputs a.

Primes

Integers a and b are called relatively prime if gcd(a, b) = 1. Any integer a is
relatively prime to b = 1.

Lemma 1.3 If c divides ab and gcd(a, c) = 1, then c divides b.

Proof: Write 1 = gcd(a, c) = m0a + n0c as in the proof of Theorem 1.2. Then
b = m0ab+n0cb. Since c evidently divides n0cb, and c divides m0ab by assumption,
it follows that c divides m0ab+ n0cb = b. �

An integer p > 1 is called prime if its only divisors are ±1 and ±p. Thus, if a is
any integer and p is prime, either p divides a or else a and p are relatively prime.
It follows from Lemma 1.3 that if p is prime and p divides ab, then either p divides
a or p divides b.

See if you can prove from the above definitions that distinct primes are relatively
prime.

There are infinitely many prime numbers since any finite list p1, p2, . . . , pn must
omit a prime divisor of 1 + p1p2 · · · pn. The smallest primes are 2, 3, 5, 7, 11, 13,
and 17.

Unique factorization

Suppose that N > 1 is a fixed integer. Then either N is prime or there is some
1 < a < N that divides N . The same argument may be repeated for N ′ = a and
N ′′ = N/a, both of which are strictly less than N . Thus, finitely many steps will
yield a prime factorization N = p1p2 · · · pk.

Theorem 1.4 Prime factorization is unique: If p1 · · · pn = q1 · · · qm and the p’s
and q’s are primes, then n = m and, possibly after re-indexing, the p’s are the same
as the q’s.

Proof: Let r be one of the primes {q1, q2, . . . , qm}. Since r divides p1 · · · pn, it must
divide one of the p’s. But then r must equal one of the p’s since two primes are
either equal or relatively prime. Thus the set of p’s includes all the q’s. Similarly,
the set of q’s includes all the p’s. If a prime r appears i times in one factorization
and j > i times in the other, then dividing both by ri leaves equal factorizations
with j − i > 0 factors r in one but no factor r in the other, which is not possible.
Thus the count of each prime must be the same in both factorizations. �

Unique factorization requires that 1 not be considered prime. Computing the
prime factorization of a large integer cannot be done fast by any known method,
and this tough problem can be used for cryptography.
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1.1.1 Modular arithmetic

Fix an integer M > 1 and say that two integers a and b are congruent modulo M
if M divides b− a, that is, if a and b differ by a multiple of M . Such a condition is
written a ≡ b (mod M).

Congruent numbers must leave the same remainders a%M and b%M , so the
finite set {n : 0 ≤ n < M} = {0, 1, . . . ,M − 1}, which may also be called M ,
contains one representative from each of the congruence classes modulo M . Namely,
every integer is congruent to one of the numbers 0, 1, . . ., or M − 1, modulo M .

Modular addition, subtraction, and multiplication is similar to ordinary arith-
metic except that equality is replaced by congruence. Thus the answer need only
be determined within an integer multiple of the modulus M , and the operands can
be replaced by congruent representatives from the set M :

Lemma 1.5 If a, b, c ∈ Z are respectively congruent to α, β, γ ∈ M modulo M ,
then

ab+ c ≡ αβ + γ (mod M).

Proof: Write a = α + xM , b = β + yM , and c = γ + zM , where x, y, and z are
integers. Then ab+ c = αβ+ γ+(αy+βx+ z)M , so ab+ c− (αβ+ γ) is an integer
multiple of the modulus M . �

The modular additive inverse of x is any number y such that x + y ≡ 0
(mod M). For x ∈ M , a natural candidate is y = M − x, which also belongs2

to the set M . Thus we can mimic ordinary signed integers in modular arithmetic
by considering numbers between 0 and M/2 to be positive, and those between M/2
and M to be negative. Modular addition and subtraction will then agree with
ordinary addition and subtraction for all operations with integers of sufficiently
small magnitude. If |x| < M/4 and |y| < M/4, then x + y will have the same
representative in Z as in the signed interpretation of the set M .

Modular multiplication likewise agrees with ordinary integer multiplication of
small enough integers. Where M/4 was a magnitude limit for addition, it is

√
M/2

for multiplication.
Modular division b/a can sometimes be done even if a does not divide b. For

example, 5 · 2 ≡ 1 (mod 9), so we can write 1/2 ≡ 5 (mod 9) or 1/5 ≡ 2
(mod 9). Define a quasi-inverse of a modulo M to be any integer a′ satisfying

aa′ ≡ 1 (mod M). (1.1)

This is a multiplicative inverse in modular arithmetic, but it has no analog in
ordinary integer arithmetic.

Lemma 1.6 Let M > 1 and a be integers. Then a has a quasi-inverse a′ modulo
M if and only if gcd(a,M) = 1, and in that case this a′ is unique in the set
{1, . . . ,M − 1}.

2What about x = 0?
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Proof: If gcd(a,M) = 1, then write 1 = gcd(a,M) = m0a+ n0M as in the proof
of Theorem 1.2. Evidently m0 is a quasi-inverse of a, and if m0 ≥ M or m0 < 0,
an appropriate multiple of M can be added to get a quasi-inverse a′ = m0 + kM ∈
{0, 1, 2, . . . ,M − 1}. But this a′ cannot be zero since a · 0 ≡ 0 �≡ 1 (mod M). For
uniqueness, note that if both a′ and a′′ satisfy aa′ ≡ aa′′ ≡ 1 (mod M), then M
divides a(a′ − a′′). By Lemma 1.3, M must divide a′ − a′′, so if both a′ and a′′ lie
in the set {1, . . . ,M − 1} they must be equal.

On the other hand, if gcd(a,M) = m0a + n0M = d > 1, then there are no
integers x, y such that 0 < ax + My < d. In particular, there are none that give
ax = 1 + yM , so there is no integer x solving ax ≡ 1 (mod M). �

Corollary 1.7 If M is prime, then every integer a in the set {1, . . . ,M − 1} has
a quasi-inverse modulo M . �

The number of integers in {1, . . . ,M − 1} which are relatively prime to M , and
which are therefore quasi-invertible modulo M , defines Euler’s function φ = φ(M).
We see that φ(p) = p− 1 for any prime number p, and in general:

Theorem 1.8 Given the prime factorization M = pm1
1 · · · pmn

n , where {pk : k =
1, . . . , n} are distinct primes and {mk : k = 1, . . . , n} are positive integers, we have

φ(M) def= #{k ∈M : gcd(k,M) = 1} =
n∏

i=1

(
pmi

i − pmi−1
i

)
,

where the symbol
∏

denotes the product of the terms that follow.

Proof: First, compute φ(pm) = pm − pm−1 for any individual prime p and any
positive integer power m since the only numbers in {0, 1, 2, . . . , pm − 1} which are
not relatively prime to pm are the multiples of p: 0p, 1p, . . . , (pm−1 − 1)p = pm − p,
of which there are evidently pm−1.

Next, note that if gcd(M,N) = 1, then φ(MN) = φ(M)φ(N). To prove this,
write gcd(M,N) = 1 = x0M + y0N by Theorem 1.2 and observe that any integer
k can be written as k = kx0M + ky0N = xM + yN for some x, y ∈ Z. On the
other hand, the integers MN and k = xM + yN are relatively prime if and only if
gcd(x,N) = 1 and gcd(M, y) = 1. Hence {k ∈ Z : gcd(k,MN) = 1} is the set

{xM + yN : x, y ∈ Z; gcd(x,N) = 1; gcd(M, y) = 1}.

But xM + yN ≡ x′M + y′N (mod MN) if and only if (x − x′)M = (y′ − y)N +
kMN for some integer k, which is true if and only if N divides (x − x′) and M
divides (y′ − y), so xM + yN ≡ x′M + y′N (mod MN) if and only if x ≡ x′

(mod N) and y ≡ y′ (mod M).
Thus each integer in {0, 1, . . . ,MN} that is relatively prime with MN is re-

alized as xM + yN (mod MN) for exactly one of the φ(N) representatives x ∈
{0, 1, . . . , N} and exactly one of the φ(M) representatives y ∈ {0, 1, . . . ,M} that are
relatively prime to N and M , respectively. This implies that φ(MN) = φ(M)φ(N).
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Finally, since powers of distinct primes are relatively prime, we can factor φ to
get the result by our first observation: φ(

∏
i p

mi

i ) =
∏

i φ(pmi

i ) =
∏

i

(
pmi

i − pmi−1
i

)
.

�

The following extension of Euclid’s algorithm, from Knuth’s Fundamental Al-
gorithms, page 14, finds quasi-inverses. Given two positive integers a and b, it
computes d = gcd(a, b) and two integers x, y satisfying ax+ by = d:

Extended Euclid’s Algorithm

gcdx( a, b ):
[0] Initialize x=0, y=1, xo=1, yo=0, c=a, and d=b
[1] Let q = c/d and r = c%d
[2] If r==0, then go to [5]
[3] Let c = d, d = r, t = xo, xo = x, x = t-q*x,

t = yo, yo = y, and y = t-q*y
[4] Go to [1]
[5] Print x, y, and d

Starting with relatively prime a and b = M , the output will be a quasi-inverse
x of a, some integer y, and the known result d = gcd(a,M) = 1. After storing
k = �x/M�, we adjust x← x−kM to get a quasi-inverse in {0, 1, . . . ,M−1}. Note
that this requires adjusting y ← y + ka to preserve the equality ax+ by = d.

1.1.2 Representing integers in binary computers

Computers have internal representations for numbers that in most cases are easily
translated to binary, or base-2, notation. Most humans, on the other hand, use
decimal or base-10 notation. Binary notation in this text will be indicated by a
string of binary digits, or bits, each taking the value 0 or 1, followed by “base 2” in
parentheses. A four-bit binary number will look like b3b2b1b0 (base 2); one specific
example is the number 9, which is 1001 (base 2). This is analogous to a four-digit
decimal number like d3d2d1d0 (base 10), for example 1997 (base 10). The “base
10” is usually omitted.

The base can be any positive integer greater than one.3 A number can be written
in any base, and its value for use in arithmetic can be obtained by summing the
values represented by its digits:

1001 (base 2) = 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20

= 9 (base 10);
1997 (base 10) = 1 × 103 + 9 × 102 + 9 × 101 + 7 × 100

= 11111001101 (base 2).

More generally, the n-digit number written as hn−1 . . . h1h0 (base B) has the value
hn−1 ×Bn−1 + · · ·+ h1 ×B1 + h0 ×B0. The digits h0, h1, . . . must lie in the range

3We will not consider tallies, like 3 = ||| or 7 = ||||| ||, that give “base one” notation.
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Hex Bin Hex Bin Hex Bin Hex Bin
0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

Table 1.1: One hexadecimal digit corresponds to four binary digits, or bits.

{0, 1, . . . , B − 1}. The choice B = 16 gives the useful hexadecimal system which
uses the digits {0, . . . , 9, A,B,C,D,E, F}, where A = 10, B = 11, C = 12, D = 13,
E = 14, and F = 15. Hexadecimal and binary are related by Table 1.1. Each
hexadecimal digit corresponds to 4 bits, making it easy to find the corresponding
binary expression: 1997 (base 10) = 7CD (base 16) = 0111 1100 1101 (base 2).

The binary digits b0, b1, b2, . . . of a nonnegative integer x can be generated by
the following algorithm:

Compute the Binary Digits of an Integer x ≥ 0

bits( x ):
[0] Print x%2
[1] Let x = x/2
[2] If x>0, then go to [0]

Notice that this prints bits in reverse order. For positive x, it first prints the
least significant bit b0, then b1, b2, and so on, terminating with the most significant
bit, the leftmost “1” of x in binary. If x = 0, this routine prints a single 0.

The digits in base B of a nonnegative integer x are generated by a similar
algorithm. Recall that, if x ≥ 0 and B > 0 are integers, then x%B is the remainder
left after dividing x by B.

Compute the Base-B Digits of an Integer x ≥ 0

digits( x, B ):
[0] Print x%B
[1] Let x = x/B
[2] If x>0, then go to [0]

Of course, if B > 10, then a suitable letter should be printed to represent digit
values from 10 to B − 1.

Fractions and “decimals” can also be written in any base, using the following
interpretation: evaluate x = hn−1 . . . h1h0.h−1h−2 . . . h−m (base B) as

x = hn−1 ×Bn−1 + · · · + h1 ×B + h0 +
h−1

B
+
h−2

B2
+ · · · h−m

Bm
. (1.2)

The “decimal” point separates the integer and fractional parts of the number. In



10 Chapter 1. Numbers and Arithmetic

this example, the fractional part of x can be rewritten as

h−1 ×Bm−1 + h−2 ×Bm−2 + · · · + h−m

Bm
. (1.3)

The integer numerator from Equation 1.3, which is Bm times the fractional part of
x, may be used as input to the base-B conversion program. Its output will be the
m digits to the right of the decimal point, printed in reverse order.

1.1.3 Integer arithmetic

A binary computer that stores w bits per integer has a maximum unsigned integer
of 2w − 1. In general, a computer that stores integers as w base-B digits has a
maximum unsigned integer of Bw − 1. However, the case B �= 2 is rare enough to
be ignored hereafter. Some common values for w are 8, 16, 24, 32, 36, 64, 80, 96, or
128, typically with a selection of several being available. For example, a program
written in the Standard C language on one machine host can use integer variables
of type char (w = 8), short (w = 16), int (w = 32), or long (w = 64). These
parameters are stored in a file named limits.h on each machine:

Excerpt from limits.h

#define CHAR_BIT 8
#define SCHAR_MIN -128
#define SCHAR_MAX 127
#define UCHAR_MAX 255
#define SHRT_MIN -32768
#define SHRT_MAX 32767
#define USHRT_MAX 65535
#define INT_MIN -2147483648
#define INT_MAX 2147483647
#define UINT_MAX 4294967295
#define LONG_MIN -9223372036854775808
#define LONG_MAX 9223372036854775807
#define ULONG_MAX 18446744073709551615

In particular, 32-bit binary integers of type unsigned int can take one of the 232 =
4 294 967 296 possible values between 0 and 232 − 1 = 4 294 967 295. The special
name UINT_MAX is given to this maximum unsigned integer, or largest counting
number.

If x and y are positive integers with x + y > UINT_MAX, the addition x + y
cannot be performed using variables of type unsigned int. However, the sum will
be correctly computed on any machine with a maximum unsigned integer of x+ y
or greater, so it may be possible to perform the calculation with variables of type
long int or unsigned long int. The 1999 C standard includes the types long
long int and unsigned long long int, too, which may have even more bits on
a particular host.
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0 INT_MAX UINT_MAX

0 232

0 INT_MAX

INT_MIN = –231 0 INT_MAX

INT_MIN = –231+1

231–1232–1

231–1231

231231–1 232–1

231, 0

0

–1

232–1

Figure 1.1: Top: Unsigned 32-bit integers. Middle: Sign and magnitude interpre-
tation. Bottom: Twos complement interpretation. Numbers above each line are
the counting values, while those below the line are the represented values.

There are two common ways of representing negative integers at fixed binary
precision. The first is called sign and magnitude form, and consists of treating
the most significant bit as a sign bit. If 0, the number is positive. If 1, the
number is negative. The remaining bits are taken to be the absolute value of
the integer and are interpreted as counting numbers. This method wastes one
binary string representing −0. To change x �→ −x, just change the sign bit to its
complement. The most negative 32-bit integer representable by sign and magnitude
is −(231 − 1) = −2 147 483 647, and the largest positive signed integer is 231 − 1 =
2 147 483 647 in 32-bit ones-complement arithmetic. Standard C defines INT_MIN
and INT_MAX, respectively, to have these values on each host computer employing
sign and magnitude representation.

The second, more common integer representation is called twos complement
form. In this method, using w bits for a total of 2w − 1 numbers, the low half
[0, 2w−1 − 1] represent nonnegative integers, while the high half [2w−1, 2w − 1] rep-
resent negative integers to which 2w has been added. The most significant bit again
determines the sign: 1 means negative, 0 means positive. This arrangement is de-
picted in Figure 1.1. It in turn has the drawback that the negative of a representable
integer is not always representable since -INT_MIN is larger than INT_MAX.

The twos complement form of −x for a w-bit integer x is the counting number
represented by 2w − x, that is, the additive inverse of x modulo 2w. It is therefore
a simple bitwise operation to compute x �→ −x in twos complement form: first
find the ones-complement by flipping 0 ↔ 1 all the bits of x, and then increment
x← x+1. Flipping, or complementing a w-bit number x is the same as subtracting
it from 2w − 1, which is a string of w 1-bits, so these operations give [(2w − 1) −
x] + 1 = 2w − x. For example, with w = 8 and x = 13 = 00001101 (base 2), the
ones complement of x is 242 = 11110010 (base 2), and the twos complement is
243 = 11110011 (base 2), which is congruent to −13 (mod 256).

Twos complement w-bit integer arithmetic is implemented in hardware as arith-
metic modulo 2w, with addition, subtraction, multiplication, integer division and
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remainder performed by dedicated circuitry. Some checks must be built in, though.
It is possible to add two positive integers and get the representation of a negative
integer, for example 100 + 99 gives the 8-bit twos complement representation for
−57. This is called an integer overflow. Likewise, −100 − 99 produces the integer
underflow value 57. We can show that underflow or overflow occurs if and only if
the carry into the sign or most significant bit is different from the carry out of the
sign bit.

Logical operations such as order comparison and equality testing can be imple-
mented by subtraction modulo 2w followed by testing the sign bit or testing if all
bits are zero.

1.2 Real Numbers

Denote by Q the set of rational numbers p/q, each of which is described4 by a
numerator p ∈ Z and a denominator q ∈ Z, q �= 0. Each element of Q is therefore
completely described by a finite list of symbols. Of course, p/q = p′/q′ if and only
if pq′ = p′q, but we can always find the unique representative of p/q in lowest terms
by the reduction p ← p/ gcd(p, q), q ← q/ gcd(p, q), followed by changing the sign
of both p and q, if necessary, to make q > 0. A computer can store one rational
number in the same space needed for one integer, just by assigning a fixed subset
of bits for a nonnegative integer numerator, one bit for the sign, and the remaining
bits for the positive integer denominator.

Devices to perform rational number arithmetic are combinations of devices that
perform integer arithmetic. For example, p/q+p′/q′ = (pq′+p′q)/qq′ requires three
integer multiplications and one addition, with the signs carried by the numerators
and the denominators taken to be positive. Likewise, comparisons are derived from
integer comparisons: p/q < p′/q′ if and only if pq′ < p′q, and so on.

It has been known since ancient times that fairly simple problems have no
solutions in the rational numbers. A famous example, due to Euclid, is that

√
2

cannot be expressed as p/q for integers p, q since then p2/q2 = 2 implies that p2 is
even, so p must be even, and then p2 is really divisible by 4 so q2 and thus q must
be even. Hence p/q is not in lowest terms. But this applies to every p/q =

√
2,

so were
√

2 rational, it would have no representative in lowest terms, which cannot
be. Hence we cannot solve the problem x2 = 2 with x ∈ Q.

We can easily find approximate solutions x ∈ Q to the problem x2 = 2:

12 ≤ 2 ≤ 22 ⇒ 1 ≤
√

2 ≤ 2;
1.42 ≤ 2 ≤ 1.52 ⇒ 1.4 ≤

√
2 ≤ 1.5;

1.412 ≤ 2 ≤ 1.422 ⇒ 1.41 ≤
√

2 ≤ 1.42;
1.4142 ≤ 2 ≤ 1.4152 ⇒ 1.414 ≤ √

2 ≤ 1.415;
...

4We write p/q for convenience, we do not actually divide.
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1.41421356232 ≤ 2 ≤ 1.41421356242

... ⇒ 1.4142135623 ≤
√

2 ≤ 1.4142135624;

This procedure can be continued indefinitely, with each step taking a finite amount
of work to shrink the difference between the upper and lower estimate by a factor
of 10.

A Cauchy sequence is an unending list {x1, x2, . . .} of numbers with the prop-
erty that for every positive integer d, there some start index N = N(d) such that
xN , xN+1, . . . all have the same first d digits in their decimal expansion. For exam-
ple, the rational approximations to

√
2 given by the lower bounds {1, 1.4, 1.41, . . .}

define a Cauchy sequence with N(d) = 10d since the first d digits of xn will be
the same for all n ≥ N(d). It is an easy exercise to show that the following, more
traditional definition is equivalent:

Definition 1 The list {x1, x2, . . .} is a Cauchy sequence if, for every ε > 0, there
is some N = N(ε) such that |xn − xm| < ε whenever both n ≥ N and m ≥ N .

We may define the real numbers R to be the enlargement of Q that includes all
the infinite decimal expansions obtained using Cauchy sequences of rational num-
bers. Since rational numbers themselves have decimal expansions, this means that
R is the set of infinite decimal expansions. Numbers like 1 can also be considered
infinite decimals 1.00 . . ., and so on.

Not only are there infinitely many real numbers, but most of them cannot be
specified exactly since that would require writing infinitely many digits. However,
a fixed-precision approximation to a real number often suffices. Humans write such
approximate values in scientific notation using base 10. For example, we write
.314159 × 101 for the six-digit approximation to π. Computers unable to print
superscripts would write .314159e+01. The mantissa or fractional part 314159
contains the six digits, while the exponent +01 indicates how to move the decimal
point, here one digit to the right, in order to get the usual decimal expansion
3.14159.

Note that 1 = 0.999 . . . since x = 0.99 . . . satisfies 10x− x = 9, so two different
decimal expansions can represent the same real number. We will say that two
numbers x, y ∈ R are equal if, for any Cauchy sequences {xn} and {yn} representing
x and y, respectively, the Cauchy sequence {xn − yn} represents 0.

The real number x represented by a Cauchy sequence {xn : n = 1, 2, . . .} is
called its limit, and we write x = limn→∞ xn. For every nonnegative integer d,
there is an integer N = N(d) such that the first d digits of xN , xN+1, . . . all agree
with the first d digits of x. This is equivalent to the traditional definition:

Definition 2 We say that the limit x = limn→∞ xn exists if, for every ε > 0, there
is some N = N(ε) such that |x− xn| < ε whenever n ≥ N .

If the limit of some sequence {xn} exists, we also say that xn converges to x as n
tends to infinity, and write xn → x as n→ ∞. By our construction, every Cauchy
sequence of rational numbers has a unique real number as a limit. But once we
include those limits, we have a complete set:
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Theorem 1.9 (Completeness of R) A Cauchy sequence of real numbers has a
unique real-number limit.

Proof: Suppose x1, x2, . . . is a Cauchy sequence of real numbers. For each d =
1, 2, . . ., let N = N(d) be an integer such that the first d digits of xN , xN+1, . . . are
the same. The first d digits of xN define a rational number5, which we may call x′d.
But then {x′1, x′2, . . .} is a Cauchy sequence of rational numbers that converges to
a unique real number, which we may denote by x. But xn converges to x too, since
for every ε > 0 there is some d with 10−d < ε, and |xn − x| < ε for all n > N(d). �

1.2.1 Precision and accuracy

Accuracy is the difference between the exact value of a quantity and its approximate
value. Precision is the difference between two adjacent approximate values. To say
that π is approximately 3.140000000 is to be precise but inaccurate. Using great
precision for quantities known to low accuracy is misleading.

Suppose that x0 �= 0 is a real number, considered to be the exact value of a
quantity, and x is another real number used to approximate x0. For example, x
might be an integer, or one of the representable real numbers available in 32-bit
IEEE floating-point format. Then:

• The absolute error of approximating x0 by x is |x− x0|, also written |∆x|;
• The relative error of approximating x0 by x is |x − x0|/|x0|, also written
|∆x|/|x0|;

• The number of digits of accuracy in x is the largest natural number d such
that 10d|∆x|/|x0| ≤ 5. If the relative error is smaller than 1, then

d =
⌊
log10

(
5|x0|
|∆x|

)⌋
.

• The number of bits of accuracy in an approximation of x0 �= 0 is the largest
natural number b such that 2b|∆x|/|x0| ≤ 1. Again, if the relative error is
smaller than 1, then

b =
⌊
log2

( |x0|
|∆x|
)⌋

.

Bits and digits of accuracy are related; each digit of accuracy is worth log2(10) ≈
3.32 bits, so b ≈ 3.32d.

When x0 = 0, absolute error is still |∆x|, but relative error is undefined and
digits of accuracy is calculated using absolute error.

To say that 3.14159 is the six-digit approximation to π means that 3.14158 <
π < 3.14160. The absolute error |π − 3.14159| is also called the round-off error,
or sometimes the truncation error. It is always smaller than one unit at the least

5What power of 10 will be the denominator?
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significant digit of the mantissa. The error interval is determined by how the
approximate value was chosen. It is 3.14159 ≤ π < 3.14160 if the approximation
just truncated a longer decimal expansion, but it is 3.141585 ≤ π ≤ 3.141595 if the
approximation rounded to the nearest six-digit decimal expansion.

1.2.2 Representing real numbers

A computer can only distinguish among finitely many representable values, lying in
some bounded range, and the format in which this is usually done is called floating-
point. Replacing a real number with a representable value introduces round-off error
which is relatively small if the real number lies in the bounded range. However,
there are always real numbers much larger and much smaller than any representable
value, which cannot be approximated with small round-off error. It is common to
treat such values as ±∞ and devise special arithmetic rules for them.

Binary computers keep internal representations of floating-point numbers as a
string of binary digits, just like integers, but the bits are interpreted differently. A
fixed number of bits give the sign and the base-two digits of the mantissa, while
the rest give the sign and magnitude of the exponent, just as in scientific notation.
Arithmetic algorithms for such strings of bits should be simple, so that hardware
to compute sums, products, sign changes, comparisons and so on is as simple as
possible. Unfortunately, there are many reasonable solutions to this design problem,
so that different computers generally use different floating-point formats. Thus,
different computers might have different sets of representable values, meaning they
will produce different outputs even when running the same program on identical
inputs.

However, it is possible to impose standards that control the maximum differ-
ence between the outputs of an algorithm on different machines. For example, the
Standard C programming language requires each host computer to have a standard
header file float.h, listing how many bits are devoted to the mantissa as well as
the smallest and largest representable positive numbers in two common formats:
float or single precision, and double precision.

Excerpt from float.h

#define FLT_RADIX 2
#define FLT_ROUNDS 1
#define FLT_MANT_DIG 24
#define FLT_MIN_EXP -125
#define FLT_MAX_EXP +128
#define FLT_MIN 1.17549435e-38
#define FLT_MAX 3.40282347e+38
#define FLT_EPSILON 1.19209290e-07

Radix is the base of the number system, here 2, for binary. Rounds indicates
how the machine chooses representations for real numbers:

-1: no rounding is specified.
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0: round toward 0. Choose the nearest representable value whose
absolute value is no greater than the number.

1: round toward the nearest representable value. Ties are broken with
a convention, for example, always choosing the representable value
whose least significant mantissa digit is even. Such a rule makes
the expected round-off error zero.

2: round toward +∞, that is, round up. Choose the nearest repre-
sentable value greater than or equal to the number.

3: round toward −∞, that is, round down. Choose the nearest repre-
sentable value less than or equal to the number.

Then there are three integers specifying how many digits there are in the man-
tissa, the minimum value, and the maximum value for the exponent.

Standard C also specifies the minimum and maximum normalized positive num-
bers representable by the computer, that is, those which have a nonzero first digit
in the mantissa. Smaller positive numbers are representable by using the mini-
mum exponent and small fractional parts, but these fall into a special class called
subnormal numbers and have fewer digits of precision.

The floating-point epsilon, FLT_EPSILON, is a key measure of precision and trun-
cation error. It is the difference between the floating-point representation of 1,
which is exact, and that of the “next larger” representable floating-point number.
On the example binary computer, this is 2−23 ≈ 1.19209 × 10−7, the value of the
least significant bit in a 24-bit mantissa divided by the value of the most significant
bit. This bounds the relative error of truncating a real number to the number of
digits available to the computer. It shall be called εf in this text. A related quan-
tity is the least positive number ε0 such that the floating-point representation of
1 + ε0 is different from that of 1. That is, the computer evaluates the comparison
1.0 + ε0 > 1.0 as true, but considers 1.0 + ε = 1.0 for any positive ε less than ε0.
Any real number can be represented by the computer with a relative error less than
ε0. In all cases, 0 < ε0 ≤ εf ; on machines that round to the nearest representable
value, ε0 = 1

2εf .
With this information, it is possible to compute the maximum error in a particu-

lar computation from particular inputs. Two implementations of an algorithm may
be considered equivalent if, for sufficiently many and varied inputs, their outputs
differ by no more than the sum of those maximum errors.

IEEE floating-point format

The Institute for Electrical and Electronics Engineers, or IEEE, sponsored a com-
mittee that in 1985 published a standard format for 32-bit binary floating-point
computer arithmetic. The standard effectively defines a function v : R → R map-
ping any real number x to its nearest representable value v(x). It does that by
specifying how to store representable values as bit strings. Figure 1.2 shows how
bits are allocated into three fields s, e, and f in that format.



1.2. Real Numbers 17

bit f-23

s e = biased exponent f  = fractional part

1
bit 8 bits 23 bits

bit f-1bit e7 bit e0

32 bits

Figure 1.2: Schematic arrangement of bit fields in the single-precision (32-bit) IEEE
binary floating-point format.

The s bit is 0 for positive numbers and 1 for negative numbers, that is, the sign
of the represented value is that of (−1)s. It is followed by an 8-bit exponent field
in which an unsigned integer is stored, most-significant bit first, as e = e7 · · · e1e0
(base 2). This e is called the biased exponent, and it takes the values 0,1,. . . ,255.
To obtain a signed value, a bias of 127 is subtracted to get the unbiased exponent:

E = e− 127 = e7 · 27 + · · · + e1 · 2 + e0 − 127. (1.4)

Thus −127 ≤ E ≤ +128. However, the values E = −127 ↔ e = 0, as well as E =
+128 ↔ e = 255, will be reserved to indicate special numbers like ±∞, so the valid
range of unbiased exponents in this format is −126 = Emin ≤ E ≤ Emax = +127.

Let v be the real number represented by the bit strings s, e, f . Then v has the
following interpretation:

• if e = 255 and f �= 0, then v is Not a Number (NaN) regardless of the value
of s. This value is considered different from ±∞ and can be used to signal
invalid results.

• if e = 255 and f = 0, then v = (−1)s∞.

• if 0 < e < 255, then v = (−1)s 2e−127 (1.f−1 · · · f−23 (base 2)). This is also
written v = (−1)s 2E (1.f). Normalized mantissas must have nonzero first
digit, so the fractional part of the number is supplied with a leading one:
1.f = 1 + f−1 · 2−1 + · · ·+ f−23 · 2−23. This gives a precision of 24 bits while
using only 23 actual bits. The extra bit of information is deduced from the
exponent.

• if e = 0 and f �= 0, then v = (−1)s 2−126 (0.f−1 · · · f−23 (base 2)) is a
subnormal or tiny number. Subnormal mantissas have leading digit zero:
0.f = f−1 · 2−1 + · · · + f−23 · 2−23.

• if e = 0 and f = 0, then v = (−1)s 0. For some operations, +0 and −0
are distinguished. In particular,

√−0 = −0 while
√

+0 = +0. However, the
comparison −0 == +0 evaluates as true on all machines conforming to this
standard.

The floating-point format also specifies that certain arithmetic operations must
be available, such as addition, division, remainder, and extraction of square roots.
Furthermore, it requires that the output of an operation be the representable value
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obtained by first performing the calculation as if all numbers were infinitely pre-
cise reals, and then rounding to the available precision. This is done by storing
intermediate results of calculations in extended formats at higher precision than the
final result. The IEEE requires extended formats to have at least a certain width,
and also that either each representable number is encoded as a unique bit string,
or else different bit strings representing the same value are not distinguished in any
operation. These requirements ensure that any peculiarities of the loosely-specified
extended formats remain invisible to the user, and guarantee that all computers
conforming to the standard will produce identical results given identical inputs.

Conversion from decimal notation into the binary format are also treated by
the standard, since many programs contain parameters entered by humans using
scientific notation. Conversion is required to be monotonic, that is, if x ≥ y are two
real numbers represented in scientific notation, then the associated representable
value v(x) must not be smaller than v(y). All of the rounding procedures described
in the previous section are monotonic.

There is also a double precision format in which the unbiased exponent contains
11 bits, the bias is 1023, there are 52 actual mantissa bits, and there is one sign bit.
Conversion from single to double precision is exact, but converting from double to
single precision involves rounding. There is likewise an extended double precision
format. Computers with dedicated floating-point hardware usually perform all
floating-point calculations in the extended double format, then round for output.

1.2.3 Propagation of error

In IEEE floating-point format with maximum representable value M =FLT_MAX
and minimum normalized positive representable value m =FLT_MIN, the normally
representable set is defined byNR def= [−M,−m]∪[m,M ]. It consists of the nonzero
real numbers which are approximated within relative error εf . Namely, suppose that
x0 ∈ NR is a real number with nearest representable value x = v(x0). Then the
error of representation, denoted ∆x = x− x0, satisfies

|∆x| ≤ εf max{|x|, |x0|} ≤ εf(1 + εf)|x0| ≈ εf |x0|. (1.5)

In a computer that rounds to the nearest representable value, |∆x| ≤ 1
2εf , so as

long as 0 < εf � 1 (it is typically 10−7) we can use an honest inequality to estimate
relative error:

|∆x|
|x0| < εf .

Henceforth it will be assumed that the computer rounds.
Note that if x ∈ NR, then v(x) satisfies v (v(x)) = v(x).

Conditioning

A computation x �→ y is said to be well-conditioned if the relative error in y is
comparable to the relative error in x. On a finite precision computer, the input x
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can have a relative error as large as εf , so the conditioning of a single calculation
“from exact inputs” is usually stated as the multiple of εf that we get for the
relative error of y, given a relative error of εf in x.

When there are several inputs (x1, . . . , xn) �→ y, it is assumed that they all have
relative error εf , with the “worst” combination of signs.

An ill-conditioned calculation is one that can greatly magnify relative error.

Sums and differences

Suppose x, y, x + y, and v(x) + v(y) all belong to NR. The IEEE procedure
to compute x + y is first to approximate x by v(x) and y by v(y), then to find
v(x) + v(y) in exact arithmetic, and finally to find the nearest representable value
v (v(x) + v(y)). The absolute error after this calculation is the difference between
the exact value x+y and the computed value v (v(x) + v(y)). It can be estimated as
follows, regardless of the rounding method used to obtain the representable value:

|x+ y − v (v(x) + v(y)) | ≤ |x− v(x)| + |y − v(y)|
+|v(x) + v(y) − v (v(x) + v(y)) |

< εf (|x| + |y| + |x+ y|) .

The three terms contributing to this error can differ greatly in magnitude. For
example, if x+ y ≈ 0 but x ≈ −y ≈ 1, then |x| and |y| both are larger than |x+ y|
and thus dominate the error estimate. In this case, it possible for the relative error
in x+ y vastly to exceed the relative error in x or y. However, when x and y have
the same sign, then there is no cancellation, so |x| + |y| = |x+ y| and the absolute
error of the sum is less than 2(|x + y|)εf . The relative error of the sum is then no
more than 2εf , the sum of the relative errors of x and y.

Products and quotients

If x, y, xy, and v(x)v(y) all belong to NR, then an argument like that used to
prove the product rule in calculus shows:

|xy − v(v(x)v(y))| ≤ | (x− v(x)) y| + | (y − v(y)) v(x)|
+|v(x)v(y) − v(v(x)v(y))|

< 3εf |xy|.

The final step depends on Equation 1.5 and the assumption that 0 < εf � 1.
Hence, ∣∣∣∣xy − v(v(x)v(y))

xy

∣∣∣∣ < 3εf , (1.6)

so the relative error in the product xy is no more than three times the maximum
relative error εf of each of the factors. Products are therefore well-conditioned
computations.
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Quotients are products involving a reciprocal. The error of calculation for a
reciprocal is∣∣∣∣ 1x − v

(
1

v(x)

)∣∣∣∣ ≤ ∣∣∣∣1x + v

(
1
x

)∣∣∣∣+ ∣∣∣∣v( 1
x

)
− v

(
1

v(x)

)∣∣∣∣ < 2εf

∣∣∣∣1x
∣∣∣∣ .

Here it is assumed that x �= 0, x ∈ NR, and 1/v(x) ∈ NR, as well as that 1
is exactly representable: v(1) = 1. The final step uses Equation 1.5 under the
assumption that 0 < εf � 1. Hence the relative error of calculating the reciprocal
is ∣∣∣∣∣∣

1
x − v

(
1

v(x)

)
1
x

∣∣∣∣∣∣ < 2εf ,

so each reciprocal in a product adds at most 2εf , rather than at most εf , to the
relative error of the result. Combining the product and reciprocal formulas gives∣∣∣∣∣∣

y
x − v

(
v(y)
v(x)

)
y
x

∣∣∣∣∣∣ < 4εf . (1.7)

Thus quotients, like products, are well-conditioned computations.

Functions

Suppose that F = F (x) is a differentiable function. Any implementation of F
actually computes v(F (v(x))), since the computer converts any real-number input
x into its representable value v(x), and at best produces a representable output for
the exact value F (v(x)), even if intermediate steps are exact. This error divides
into two terms:

|F (x) − v(F (v(x)))| ≤ |F (x) − F (v(x))| + |F (v(x)) − v(F (v(x)))|.
For the first term, we may put ∆x = x− v(x) and use the Mean Value Theorem of
calculus to write

F (x) = F (v(x)) + F ′(z)∆x, (1.8)

where z is some number within |∆x| of x. But |∆x| < |x|εf , so if M is the maximum
value of |F ′(z)| for z within |x|εf of x, we have |F (x)−F (v(x))| ≤M |∆x| < M |x|εf .
This also implies that |F (v(x))| < |F (x)|+M |x|εf , so the second term has the bound
|F (v(x))−v(F (v(x)))| < |F (v(x))|εf < |F (x)|εf +M |x|ε2f . These estimates combine
to give |F (x) − v(F (v(x)))| < (M ′|x| + |F (x)|) εf , where M ′ = (1 + εf )M ≈ M .
Since εf � 1, dropping M ′ for M introduces negligible error, so we write (for
F (x) �= 0): ∣∣∣∣F (x) − v(F (v(x)))

F (x)

∣∣∣∣ < (1 +
M |x|
|F (x)|

)
εf . (1.9)

Computing F is well-conditioned if M |x| ≈ |F (x)|, but can be ill-conditioned if
M |x| � |F (x)|.
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If x = (x1, . . . , xn), and F = F (x) is a differentiable function of several variables
with gradient ∇F (x) = ( ∂F

∂x1
(x), . . . ∂F

∂xn
(x)), then by the Mean Value Theorem we

have
F (x) − F (v(x)) = ∇F (z) · ∆x, (1.10)

for some z on the line segment connecting x and v(x) def= (v(x1), . . . , v(xn)). Here
∆x has components ∆xk = xk − v(xk) satisfying |∆xk| ≤ |xk|εf . Writing Mk for
the maximum value of | ∂F

∂xk
(z)| over all z between x and v(x), we have

|F (x) − F (v(x))| ≤ εf

n∑
k=1

Mk|xk|,

by the triangle inequality. The rest of the argument is similar to the one-variable
case and gives the inequality∣∣∣∣F (x) − v(F (v(x)))

F (x)

∣∣∣∣ < (1 +
∑

k Mk|xk|
|F (x)|

)
εf . (1.11)

This inequality applies to products and quotients. For example, let n = 2 and
put F (x) = x1x2. Then ∇F (x) = (x2, x1), so M1 ≈ |x2| and M2 ≈ |x1| for z within
εf � 1 of x. The right-hand side of Inequality 1.11 simplifies to(

1 +
|x2x1| + |x1x2|

|x2x1|
)
εf = 3εf ,

as in Inequality 1.6. The case of quotients is left as an exercise.

1.3 Exercises

1. Suppose a divides b and b divides a. Must a = b?

2. Write a computer program that finds the greatest common divisor of two
integers a and b, assuming b > a > 0.

3. Prove that distinct primes are relatively prime.

4. Find the greatest common divisor of the three numbers 299 792 458, 6 447 287,
and 256964 964.

5. Find the quasi-inverse of 2301 modulo 19 687. (Hint: implement the extended
Euclid algorithm first.)

6. Prove that integer overflow or underflow occurs in w-bit twos complement
integer arithmetic if and only if the carry into the sign bit is different from
the carry out of the sign bit.

7. Express the integer 14 600 926 (base 10) in hexadecimal.
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8. Prove that if p ∈ Z is a prime number, then
√
p is not a rational number.

9. Write a computer program to read an integer in decimal notation and then
print its binary digits and its hexadecimal digits. (Hint: most computers ex-
pect decimal number inputs and thus have built-in functions to read them.)

10. Convert the approximation π ≈ 3.1415926535897932 (base 10) into the near-
est 8-digit hexadecimal fraction.

11. Using 52 bits to represent the mantissa in IEEE binary floating-point format,
how many decimal digits of accuracy are obtained?

12. What will
∑108

k=1 1.0 equal on the example computer on p. 15, which uses
IEEE 32-bit floating-point arithmetic?

13. Write a program to read 32-bit IEEE binary floating-point format and print
the number in scientific notation. Have it treat NaN, ±∞, and ±0 properly
and have it signal when the number is subnormal.

14. Derive Inequality 1.7 from Inequality 1.11.

15. Determine and prove whether the following computations are well-conditioned
or ill-conditioned:

a. (x, y) �→
√
x2 + y2, for x �= 0 and y �= 0

b. x �→ x log x, for x > 0

c. x �→ �x�

1.4 Further Reading

• ANSI/IEEE. Standard for Binary Floating-Point Arithmetic. Document 754-
1985, catalog number SH 10116-NYF. ISBN 1-55937-653-8.

• Donald Knuth. Fundamental Algorithms, volume 1. Addison-Wesley, Read-
ing, Massachusetts, second edition, 1973. ISBN 0-201-03809-9.

• Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, New York, 2000. ISBN 0-19-512583-5.

• Herbert Schildt. The Annotated ANSI C Standard: ANSI/ISO 9899-1990.
Osborne Mcgraw Hill, Berkeley, California, 1993. ISBN 0-07-881952-0.

• Douglas R. Stinson. Cryptography: Theory and Practice. CRC Press, Boca
Raton, Florida, 1995. ISBN 0-8493-8521-0.



Chapter 2

Space and Linearity

The ability to see the geometric properties of objects in space helps to visualize
important properties of digital signals. It is only necessary to find the correspon-
dence between the signal property and the geometric object. A starting point is the
analytic geometry of the line, the plane, and space. However, most of the notions
of geometry such as space, distance, angle, orientation, and motion can be defined
much more generally,

Digital signals representing sounds and images are modeled by points in some
of these generalized spaces, and many common transformations of such signals are
easily described as geometric operations on those points. For example, points in
space may be added together or multiplied by real numbers, which correspond
respectively to mixing signals or amplifying them. The results are variously called
linear combinations, superpositions, or linear transformations.

Linear transformations of linear spaces preserve linear combinations, in a sense
that will be made precise. Even rather complicated transformations satisfy this
linearity assumption, which in many cases reduces their analysis to linear algebra.
This chapter will begin the rigorous analysis of signals and their transformations
with an overview of the applicable linear algebra plus a few results from advanced
calculus needed to understand infinite dimensional spaces.

2.1 Vector Spaces

Vectors started out as little arrows marking positions or displacements in space.
They can be joined head-to-tail, moved about, rotated or stretched, and they define
lengths, directions and angles. These properties, abstracted and listed under Vector
Space Axioms in Section 2.1.2 below, are also possessed by functions, sequences,
and matrices, all of which are very useful in digital signal processing.

Visualizing real numbers as a line boosts intuition. For example, p > q means
p lies to the right of q. Operations like p �→ −p can be visualized as reflections to
the other side of 0, and combinations like (p, q) �→ 1

2 (p+ q) replace two points with
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their midpoint. The distance between p and q is |p − q|, and algebraic facts like
|p − q| ≤ |p| + |q| are instantly suggested by comparing the direct path between p
and q to the one that first passes by 0.

Points p in the plane are modeled by ordered pairs (p1, p2) of real numbers, after
an origin 0 def= (0, 0) and two perpendicular lines called coordinate axes are chosen.
Coordinate p1 gives the component of the point along one axis, p2 the other.

An ordered pair p = (p1, p2) also models the head of an arrow or vector from 0.
We can imagine sliding such an arrow around without rotation. Placing two vectors
p and q = (q1, q2) head to tail produces a new vector p + q def= (p1 + q1, p2 + q2),
giving a nice geometric model of addition of pairs of real numbers.

The distance between p and q is given by Pythagoras’ theorem:

‖p− q‖ def=
√

(p1 − q1)2 + (p2 − q2)2.

Thus, a vector’s length is ‖p‖ def=
√
p2
1 + p2

2. This length notation is intentionally
similar to that for the line, since ‖p−q‖ ≤ ‖p‖+ ‖q‖ and like facts hold for points
in the plane, too.

The inner product of two vectors in the plane is denoted by 〈p,q〉 def= p1q1 +
p2q2. It is useful for measuring angles: If θ is the angle at the origin between two
nonzero vectors p and q, then the Law of Cosines can be used to show that

cos θ =
〈p,q〉
‖p‖ ‖q‖ . (2.1)

The arrows to p and q are perpendicular or orthogonal if and only if θ = 90◦, if
and only if cos θ = 0, if and only if 〈p,q〉 = 0.

Points and vectors in space are modeled by ordered triples p def= (p1, p2, p3).
The length formula is ‖p‖ def=

√
p2
1 + p2

2 + p2
3. Two nonzero points p and q and

the origin 0 = (0, 0, 0) define a plane, and the angle at 0 between the vectors to
p and q can be measured in this plane. If this angle is denoted by θ, it may be
computed from Equation 2.1, where now 〈p,q〉 def= p1q1 + p2q2 + p3q3.

Notice that in all of these examples, ‖p‖ =
√〈p,p〉.

2.1.1 Euclidean space

While not readily visualized, space can be generalized to a set of ordered lists of
more than three real numbers. Fix a positive integer dimension N and consider
RN , the set of ordered lists of N real numbers. Elements p = (p1, . . . , pN) and
q = (q1, . . . , qN ) can be combined componentwise, and they have lengths and angles
analogous to points and vectors in more easily visualized systems. Namely,

• p + q def= (p1 + q1, . . . , pN + qN );

• cp def= (cp1, . . . , cpN), for any real number c;
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Vertex Coordinates Edge to Vertex Coordinates Edge to
P0 (0, 0, 0) P1, P2, P4 P3 (0, 1, 1) P7

P1 (0, 0, 1) P3, P5 P5 (1, 0, 1) P7

P2 (0, 1, 0) P3, P6 P6 (1, 1, 0) P7

P4 (1, 0, 0) P5, P6 P7 (1, 1, 1)

Table 2.1: Vertices and edges of the three-dimensional unit cube.

Vertex Coordinates Edge to Vertex Coordinates Edge to
Q0 (0, 0, 0, 0) Q1, Q2, Q4, Q8 Q9 (1, 0, 0, 1) Q11, Q13

Q1 (0, 0, 0, 1) Q3, Q5, Q9 Q10 (1, 0, 1, 0) Q11, Q14

Q2 (0, 0, 1, 0) Q3, Q6, Q10 Q12 (1, 1, 0, 0) Q13, Q14

Q4 (0, 1, 0, 0) Q5, Q6, Q12 Q7 (0, 1, 1, 1) Q15

Q8 (1, 0, 0, 0) Q9, Q10, Q12 Q11 (1, 0, 1, 1) Q15

Q3 (0, 0, 1, 1) Q7, Q11 Q13 (1, 1, 0, 1) Q15

Q5 (0, 1, 0, 1) Q7, Q13 Q14 (1, 1, 1, 0) Q15

Q6 (0, 1, 1, 0) Q7, Q14 Q15 (1, 1, 1, 1)

Table 2.2: Vertices and edges of the four-dimensional unit cube.

• ‖p‖ def=
√
p2
1 + · · · + p2

N ;

• 〈p,q〉 def= p1q1 + · · · pNqN .

The set RN equipped with these operations will be called N -dimensional Euclidean
space, or Euclidean N -space. Note that ‖p‖ =

√〈p,p〉, and 〈p,q〉 =
1
4

(‖p + q‖2 − ‖p− q‖2
)
.

For example, the eight corner vertices of a unit cube in space are listed in Table
2.1, numbered by reading their coordinates in binary. There are 12 edges, one
joining each pair of vertices that differ in exactly one coordinate: P0P1, P0P2,
P0P4; P1P3, P1P5; P2P3, P2P6; P4P5, P4P6; P3P7; P5P7; P6P7.

Similarly, the 16 corner vertices and 32 edges of a unit cube in Euclidean 4-space
are listed in Table 2.2. To count edges, we imagine making the 4-cube by sweeping
a 3-cube along a fourth axis. That creates eight new edges, joining corresponding
vertices of the front and back 3-cubes. The front and back 3-cubes have 12 edges
each, for a total of 32.

Generalizing RN is the set CN of ordered lists of N complex numbers. In this
case, the Hermitean inner product is used:

〈p,q〉 def= p̄1q1 + · · · p̄NqN . (2.2)

The complex conjugate on the first vector insures that ‖p‖ def=
√〈p,p〉 is a non-

negative real number. CN with the Hermitean inner product will be called complex
N -dimensional Euclidean space, though it may also be regarded as 2N -dimensional
Euclidean space simply by treating the real and imaginary parts of each coordi-
nate as separate coordinates in themselves. Note that the real and imaginary parts
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of the complex-valued inner product are � 〈p,q〉 = 1
4

(‖p + q‖2 − ‖p− q‖2
)

and
� 〈p,q〉 = 1

4

(‖ip + q‖2 − ‖ip− q‖2
)
, so

〈p,q〉 =
1
4
(‖p + q‖2 − ‖p− q‖2

)
+
i

4
(‖ip + q‖2 − ‖ip− q‖2

)
.

This is sometimes called the polarization identity. Note that the imaginary part
vanishes if the coordinates of p,q are all purely real or all purely imaginary.

Vectors in RN or CN are sometimes displayed as columns of numbers, or column
vectors, such as

p =

⎛⎜⎝ p1
...
pN

⎞⎟⎠ ; q =

⎛⎜⎝ q1
...
qN

⎞⎟⎠ .
The adjoint p∗ def= ( p̄1 . . . p̄N ) of a column vector p is the row vector filled
with the complex conjugates of the coordinates of p. The Hermitean inner product
can be written in terms of matrix multiplication, defined in Equation 2.41 further
on, and this adjoint:

〈p,q〉 = p∗q. (2.3)

This is also a special case of Equation 2.47.
From this point on, we will use EN to denote both real and complex N -

dimensional Euclidean space, with the understanding that EN = RN if the co-
ordinates are real numbers and EN = CN if they are complex numbers.

2.1.2 Abstract vector spaces

A vector space is the further abstraction and generalization of Euclidean N -space.
It consists of a set X of vectors that can be added together and multiplied by scalars
(real or complex numbers) to form linear combinations, which are again elements
of X. For example, if x,y are vectors in X and a and b are two fixed scalars, then
the linear combination ax + by also belongs to X. It follows by induction that a
linear combination of finitely many vectors from X must also belong to X. The
following rules, as in Euclidean space, apply to all vectors x,y, z and scalars a, b:

Vector Space Axioms

Associativity: x + (y + z) = (x + y) + z.

Commutativity: x + y = y + x.

Identity: There is a unique element 0 ∈ X called the identity, satisfy-
ing x + 0 = 0 + x = x for all x ∈ X.

Inverses: Each x ∈ X has a unique inverse −x def= (−1)x ∈ X, satis-
fying x + (−x) = −x + x = 0.

Distributivity: a(x + y) = ax + ay.

Scalar multiplication associativity: (ab)x = a(bx).
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A subspace Y of a vector space X is any nonempty subset Y ⊂ X which is closed
under addition and scalar multiplication: u + cv ∈ Y for any u,v ∈ Y and any
scalar c. For example, X is a subspace of itself. The zero subspace {0} is another
example. Every subspace Y ⊂ X contains 0, since we may take c = −1 and u = v.
Likewise, taking u = 0 and c = −1 proves that −v ∈ Y whenever v ∈ Y.

The sum of subspaces Y,Z of a vector space X is the set of sums:

Y + Z def= {y + z : y ∈ Y, z ∈ Z}. (2.4)

We can have sums of many subspaces, such as Y1 + Y2 + · · · + Ym.
If X is a vector space and {v1, . . . ,vn} is any finite set of vectors from X,

then the linear span span {v1, . . . ,vn} is a subspace of X, consisting of all linear
combinations of v1, . . . ,vn:

span {v1, . . . ,vn} def=

{
n∑

i=1

aivi : a1, . . . , an are scalars.

}
(2.5)

We observe that

span {v1, . . . ,vn} = span {v1} + · · · + span {vn}. (2.6)

A set of vectors {v1, · · · ,vn} in a vector space X is called linearly dependent
if there are scalars a1, . . . , an, not all zero, for which a1v1 + · · · + anvn = 0.
This nontrivial linear combination representing zero is called a dependency relation.
Otherwise, if no such relation exists, then we say that the set {v1, · · · ,vn} ⊂ X is
linearly independent. Given linearly independent vectors {v1, . . . ,vn} and told that
a1v1+· · ·+anvn = 0 for scalars a1, . . . , an, we may conclude that a1 = · · · = an = 0.

The scalars c1, . . . , cn in the linear combination x = c1v1 + · · · + cnvn ∈ X
are called the expansion coefficients of x in terms of the set {v1, . . . ,vn}. Linear
independence guarantees that expansions are unique: if x = c1v1 + · · · + cnvn =
c′1v1 + · · · + c′nvn, we may conclude that ck = c′k for all k = 1, . . . , n.

The N standard basis vectors of EN are linearly independent:

e1
def=

⎛⎜⎜⎝
1
0
...
0

⎞⎟⎟⎠ , e2
def=

⎛⎜⎜⎝
0
1
...
0

⎞⎟⎟⎠ , . . . , eN
def=

⎛⎜⎜⎝
0
0
...
1

⎞⎟⎟⎠ . (2.7)

Here en has a single 1 in row n, and zeroes in all other rows. The vector a1e1+ · · ·+
aNeN has an at position n, and linear independence is an immediate conclusion.
A more complicated example is:

f1
def=

⎛⎜⎜⎝
1
0
...
0

⎞⎟⎟⎠ , f2
def=

⎛⎜⎜⎝
1
1
...
0

⎞⎟⎟⎠ , . . . , fN
def=

⎛⎜⎜⎝
1
1
...
1

⎞⎟⎟⎠ . (2.8)
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Thus f1 = e1, f2 = e1 + e2, and fN = e1 + e2 + · · ·+ eN . If a1f1 + · · ·+ aN fN = 0,
we immediately conclude that aN = 0, so in fact a1f1 + · · · + aN−1fN−1 = 0. But
that inductive step reduces the problem to the case of N − 1 vectors, and the case
N = 1 is evidently true, so linear independence follows.

The dimension of a vector space X is the largest number of vectors in any linearly
independent subset of X. If there are linearly independent sets of N vectors for
any N , then the space is called infinite dimensional.

Finite dimensions

An N -dimensional vector space X must contain a set {b1, . . . ,bN} of N linearly
independent vectors. Any such set is called a basis for X.

Theorem 2.1 Suppose {b1, . . . ,bN} is a basis for the N -dimensional vector space
X. Then each vector x ∈ X can be expressed as a linear combination of vectors
{bn} in one and only one way. That is, for each x ∈ X there is a unique set of N
scalars c1, . . . , cN , depending on x, giving the expansion

x =
N∑

n=1

cnbn.

Proof: For existence, suppose that there is a vector x ∈ X not expressible as
such a linear combination. We can be sure that x �= 0 =

∑
n 0bn, and so {x} ∪

{b1, . . . ,bN} ⊂ X must be a linearly independent set of N + 1 vectors. This
contradicts the assumption that X is N -dimensional.

The uniqueness of the expansion follows from the linear independence of the set
{bn}: if x =

∑
n cnbn =

∑
n c

′
nbn, then

∑
n(c′n − cn)bn = 0, so c′n = cn for all

n = 1, . . . , N . �

Not surprisingly, N -dimensional Euclidean space has dimension N , but this
fact requires proof. The N standard basis vectors are linearly independent, so the
dimension is at least N , but we must show that no larger linearly independent set
exists. Since Euclidean N -space is span {e1, . . . , eN}, it suffices to show:

Theorem 2.2 Suppose that v1, . . . ,vN are N vectors in some vector space. Then
any set of N + 1 or more vectors in span {v1, . . . ,vN} must be linearly dependent.

Proof: We first note that if all sets of M vectors are linearly dependent, then any
set of more than M must also be linearly dependent: the dependency relation for
the first M can be padded with zero coefficients for the remaining vectors.

We proceed by induction on N . For N = 1, given x,y ∈ span {v}, write x = av
and y = bv. If a, b are not both zero, we can put a′ = b and b′ = −a to get
a′x + b′y = (ab − ba)v = 0 with a′, b′ not both zero. Otherwise if a = b = 0, then
a′ = b′ = 1 gives a dependency relation. Thus, every set of two (or more) vectors
in the span of a single vector is linearly dependent.

For N ≥ 2, we make the inductive hypothesis that every set of N or more
vectors in the span of N − 1 vectors is linearly dependent. Now suppose that the
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N + 1 vectors W def= {w1, . . . ,wN+1} belong to span {v1, . . . ,vN}. Then we may
write

w1 = a(1, 1)v1 + · · · + a(1, N)vN ,

...
wN = a(N, 1)v1 + · · · + a(N,N)vN ,

wN+1 = a(N + 1, 1)v1 + · · · + a(N + 1, N)vN ,

where each a(i, j) is a scalar. If the last column of scalars is all zero, namely
a(i, N) = 0 for i = 1, . . . , N + 1, then in fact W ⊂ span {v1, . . . ,vN−1} and must
be linearly dependent by the inductive hypothesis. Otherwise, we may suppose, by
renumbering if necessary, that a(N + 1, N) �= 0, and eliminate the vN terms as
follows:

W′ def=
{
w′

i = wi − a(i, N)
a(N + 1, N)

wN+1 : i = 1, . . . , N
}
. (2.9)

This set W′ ⊂ span {v1, . . . ,vN−1} is linearly dependent by the inductive hy-
pothesis. But any dependency relation c1w′

1 + · · · + cNw′
N = 0 for W′ gives

a dependency relation c1w1 + · · · + cNwN + bwN+1 = 0 for W, where b =
−∑i cia(i, N)/a(N + 1, N). �

Any subspace of an N -dimensional vector space X is finite dimensional with
dimension at most N . For example, the set of vectors in EN with zero first coordi-
nate is an (N − 1)-dimensional subspace of EN . Vectors e2, . . . , eN are a basis for
that subspace.

Norms

A norm in a vector space X is a nonnegative real-valued function x �→ ‖x‖ satisfying
the following:

Norm Axioms

Sublinearity: ‖x+y‖ ≤ ‖x‖+‖y‖ and ‖ax‖ = |a| ‖x‖ for any x,y ∈ X
and any scalar a.

Nondegeneracy: ‖x‖ = 0 if and only if x = 0, the additive identity,
or zero vector; otherwise, ‖x‖ > 0.

Any N -dimensional vector space X can be equipped with a norm. Start by fixing
a basis b1, . . . ,bN , so that any x ∈ X is expressible in one and only one way as
x =
∑N

n=1 x(n)bn. Then, let

‖x‖1
def= |x(1)| + · · · + |x(N)|, (2.10)

where x =
∑

n x(n)bN is the unique expansion of x. It is a straightforward exercise
to show that this satisfies the norm axioms. Alternatively, we can mimic the formula
from Euclidean N -space:

‖x‖2
def=
√

|x(1)|2 + · · · + |x(N)|2. (2.11)
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In fact, for any p ≥ 1, there is a so-called p-norm:

‖x‖p
def= (|x(1)|p + · · · + |x(N)|p) 1

p . (2.12)

The formula extends to the limit p→ ∞:

‖x‖∞ def= max{|x(1)|, . . . , |x(N)|}. (2.13)

But the choice of norm does not matter too much in a finite dimensional vector
space. For example, the norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ defined on EN in terms of the
standard basis vectors {en} satisfy the following system of inequalities:

‖x‖1 ≤
√
N ‖x‖2 ‖x‖2 ≤ ‖x‖1 (2.14)

‖x‖1 ≤ N ‖x‖∞ ‖x‖∞ ≤ ‖x‖1 (2.15)

‖x‖2 ≤
√
N‖x‖∞ ‖x‖∞ ≤ ‖x‖2 (2.16)

In fact, all norms on an N -dimensional vector space satisfy similar inequalities:

Theorem 2.3 Any two norms ‖ · ‖p and ‖ · ‖q for an N -dimensional vector space
X are comparable. That is, there are positive numbers A,B,C,D such that for all
x ∈ X,

A‖x‖p ≤ ‖x‖q ≤ B‖x‖p, and C‖x‖q ≤ ‖x‖p ≤ D‖x‖q.

Proof: Fixing a basis {bn : n = 1, . . . , N} ⊂ X, we will show that the norm ‖ · ‖∞
defined by Equation 2.13 is comparable to all others. Let ‖ · ‖ be any other norm
on X. Then by its sublinearity,

‖x‖ ≤
N∑

n=1

‖x(n)bn‖ =
N∑

n=1

|x(n)| ‖bn‖ ≤
(

max
1≤n≤N

|x(n)|
)( N∑

n=1

‖bn‖
)
. (2.17)

So ‖x‖ ≤ B‖x‖∞ for B = ‖b1‖ + · · · + ‖bN‖ > 0. We know that B > 0 because
‖ · ‖ is nondegenerate and basis vectors are nonzero.

For the other inequality, suppose toward contradiction that there is no A > 0
such that A‖x‖∞ ≤ ‖x‖ for every x. Then there must be an infinite sequence of
vectors {x1,x2, . . .} ⊂ X with the property that ‖xk‖∞ = 1 for all k = 1, 2, . . ., but
‖xk‖ → 0 as k → ∞. We may suppose without loss of generality that the expansion
coefficients (xk(1), . . . , xk(N)) of xk =

∑N
n=1 xk(n)bn, k = 1, 2, . . . are real numbers

and define a point in RN , since N complex scalars are the same as 2N real scalars.
These real coordinates are at most 1 in absolute value, so {xk : k = 1, 2, . . .} gives an
infinite sequence of points confined to the unit hypercube [−1, 1]N ⊂ RN . Cutting
this hypercube in half along each axis gives 2N subcubes, at least one of which
must contain infinitely many1 of the points {xk}. For notational convenience, let
us suppose without loss of generality that it is the subcube [0, 1]N of nonnegative

1How can we be sure that such a packed subcube exists? Why does this proof fail in infinite
dimensional space?
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(0,1)

(1,0)(0,0)

j=0

j=1

j=2

j=4

j=3

(1,1)

Figure 2.1: Nested subcubes at stages j = 0, 1, 2, 3, 4, to illustrate the two-
dimensional case of Theorem 2.3.

coordinates. Call this the stage 0 subcube, and let y0 ∈ RN be one of its points,
say xk(0).

We next define the stage j subcube for j > 0 by cutting the stage j − 1 subcube
in half along each axis and picking one of its 2N subcubes, making sure that the
chosen one contains infinitely many of the points {xk}. An example with N = 2
and j = 0, 1, 2, 3, 4 is depicted in Figure 2.1. We define yj to be one of those points,
say xk(j). We can make the choice such that k(0) < k(1) < k(2) < · · ·. Now notice
that the nth coordinates of the points y0,y1,y2, . . . form a Cauchy sequence, since
the first j binary digits of yj(n), yj+1(n), . . . are all the same. By the completeness
of the reals, Theorem 1.9, there is a unique real number y(n) = limj→∞ yj(n) for

n = 1, 2 . . . , N . Putting x def=
∑N

n=1 y(n)bn ∈ X, we see that ‖x‖∞ = 1 since
‖xk‖∞ = 1 for all k, including k = k(j), and∣∣ ‖xk(j)‖∞ − ‖x‖∞

∣∣ ≤ ‖xk(j) − x‖∞ = max
1≤n≤N

|yj(n) − y(n)| → 0,

as j → ∞. Therefore x �= 0. On the other hand, we have the contradiction ‖x‖ = 0,
since ‖xk(j)‖ → 0 as j → ∞ by assumption, and∣∣ ‖xk(j)‖ − ‖x‖ ∣∣ ≤ ‖xk(j) − x‖ ≤ B‖xk(j) − x‖∞ = B max

1≤n≤N
|yj(n) − y(n)| → 0,

as j → ∞, using Inequality 2.17. Hence ‖ · ‖ cannot be arbitrarily small relative to
‖ · ‖∞: there must be some A > 0 such that A‖x‖∞ ≤ ‖x‖ for every x.

To finish the proof, given any two norms ‖·‖p and ‖·‖q we find Ap, Bp, Aq, Bq > 0
such that

Ap‖x‖∞ ≤ ‖x‖p ≤ Bp‖x‖∞, and Aq‖x‖∞ ≤ ‖x‖q ≤ Bq‖x‖∞.
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But then A = Aq/Bp, B = Bq/Ap, C = Ap/Bq, and D = Bp/Aq satisfy the
theorem. �

If X is an N -dimensional vector space and B = {bn : n = 1, . . . , N} ⊂ X is
a basis, then every x =

∑
n c(n)bn ∈ X corresponds to one and only one c =

(c(1), . . . , c(N)) ∈ EN :
X B←→ EN . (2.18)

Having the freedom to choose B can sometimes simplify calculations in X, which
in practice must be done by mapping vectors x to points in EN .

Infinite dimensions

We will only consider a simple kind of infinite dimensional vector space X, one which
has a norm and a basis B = {bn : n = 1, 2, . . .} ⊂ X satisfying the following:

Schauder Basis Axioms

Linear independence: Any finite subset of the vectors in B is linearly
independent.

Completeness: Each x ∈ X has a B-expansion x =
∑

n

c(n)bn.

Unique representation: If x =
∑

n c(n)bn and x =
∑

n c
′(n)bn,

then c(n) = c′(n) for all n.

Completeness in an infinite dimensional vector space X is interpreted to mean that
for every x ∈ X, there is a sequence {c(n) : n = 1, 2, . . .} of expansion coefficients
such that

lim
N→∞

∥∥∥∥∥x−
N∑

n=1

c(n)bn

∥∥∥∥∥ = 0.

Alternatively, a set of vectors B ⊂ X is called dense in X if, for every fixed vector
x ∈ X and ε > 0, there is a finite linear combination xε of vectors in B satisfying
‖x− xε‖ < ε. It is clear that a Schauder basis B is dense, but a set which is not a
basis may also be dense.

We may extend the definition of linear span to arbitrary subsets of arbitrary
vector spaces X: for any B ⊂ X,

spanB def=

{
N∑

n=1

a(n)bn : N ≥ 0;bn ∈ B, a(n) scalar, all 1 ≤ n ≤ N.

}
. (2.19)

It is easy to verify from the vector space axioms that spanB ⊂ X. This definition
agrees with Equation 2.5 for finite sets B, and yields all finite linear combinations
of elements of B in the general case. Notice that spanX = X.

Different norms for an infinite dimensional X need not be comparable, so a fixed
norm must be chosen before the Schauder bases axioms can be verified. Also, the
ordering of Schauder basis vectors is important in the infinite dimensional case since
the same vectors taken in another order may lose the completeness property. If a
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set of vectors is a Schauder basis in every order, then it is called an unconditional
Schauder basis.

Any subset of a Schauder basis is linearly independent and has the unique repre-
sentation property. However, proper subsets of Schauder bases are never complete.

In an N -dimensional vector space, linear independence implies unique represen-
tation, and completeness requires taking no limits: ‖x−∑N

n=1 c(n)bn‖ = 0 for any
expansion, regardless of norm. Thus, every basis for a finite dimensional vector
space is a Schauder basis. But this is not so in infinite dimensions. Consider the
following examples, each of which generalizes Euclidean N -space:

1. �2, the space of square-summable infinite sequences x = {x(k) : k = 1, 2, . . .},
namely, those for which

∞∑
n=1

|x(n)|2 def= lim
N→∞

N∑
n=1

|x(n)|2

is a finite number. We use the norm

‖x‖ def=

√√√√ ∞∑
n=1

|x(n)|2 (2.20)

For example, x(k) = 1
k belongs to �2, with ‖x‖ = π√

6
. Addition is term by

term, and the constant zero sequence 0 def= {0, 0, . . .} is the additive identity.
The standard basis vectors in this space are sequences en whose terms are
all zero except for en(n) = 1. It is easy to prove that for any positive in-
teger N , the vectors e1, e2, . . . , eN are linearly independent. It is not much
harder to show that {en} is in fact a Schauder basis for �2. However, the set
{e1;g1,g2, . . .} defined by

gn =
1
n
en − 1

n+ 1
en+1, n = 1, 2, . . . ,

is linearly independent and complete but does not satisfy unique representa-
tion: e1 = g1 + g2 + · · ·.

2. Poly, the space of polynomial functions defined on the interval [−1, 1], such
as p(x) = x4 − πx2 + 3

7 . Addition is term by term, and the constant zero
polynomial 0 is the additive identity. The monomials 1, x, x2, . . . , xn are
linearly independent for any n, and form an unconditional Schauder basis in
the norm

‖a(0) + a(1)x+ · · · + a(N)xN‖ def=
√

|a(0)|2 + · · · + |a(N)|2. (2.21)

It is left as an exercise for the reader to find a linearly independent and
complete set of polynomials that nonetheless fails to be a Schauder basis with
respect to this norm.
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(k–1)/(n+1)

1

0 1

.
(k+1)/(n+1)k/(n+1)

10
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Figure 2.2: Left: Graph of the hat function hk. Right: Polygon graph of the
piecewise linear continuous function

∑n
k=1 a(k)hk, defined on [0, 1], for n = 6.

3. Lip, the space of complex-valued continuous functions f = f(t), defined on
the interval [0, 1], that satisfy a Lipschitz condition: there is some number C
such that |f(s) − f(t)| ≤ C|s − t| for all s, t ∈ [0, 1]. Vectors in this space
are added pointwise: [f + g](t) = f(t) + g(t). The constant zero function,
f(t) = 0 for all t, is the additive identity.

There is no maximal finite set of linearly independent functions in this space.
Given any integer n > 0, there are n continuous hat functions h1, . . . , hn, as
depicted at left in Figure 2.2, defined by

hk(t) =

⎧⎪⎨⎪⎩
0, if t < k−1

n+1 or t > k+1
n+1 ;

(n+ 1)t− (k − 1), if k−1
n+1 ≤ t ≤ k

n+1 ;
(k + 1) − (n+ 1)t, if k

n+1 ≤ t ≤ k+1
n+1 .

(2.22)

Such functions satisfy a Lipschitz condition with C = n+1. The superposition
a(1)h1 + · · · + a(n)hn is the piecewise linear function whose graph is the
polygon passing through the points (0, 0),{( k

n+1 , a(k)) : k = 1, . . . , n}, and
(1, 0). An example is depicted at right in Figure 2.2. It is the zero function
if and only only if a(1) = · · · = a(n) = 0. Since n can be as large as we like,
Lip cannot be finite dimensional.

In the norm

‖f‖ def=

√∫ 1

0

|f(t)|2 dt, (2.23)

the functions {cn : n = 0, 1, . . .} defined by cn(t) = cos(πnt) are a Schauder
basis for Lip, although the proof of this fact is beyond our scope.

4. L2(R), also denoted just L2, is the space of square-integrable complex-valued
functions f = f(t) defined at all t ∈ R. Vector addition is pointwise, and the
constant zero function is the additive identity, as in Lip. The norm is similar
to the one in Lip:

‖f‖ def=

√∫
R

|f(t)|2 dt, (2.24)
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and a function f belongs to L2(R) if and only if ‖f‖ is finite. Thus the
nonzero constant functions, and more generally the nonzero polynomials, are
not members of L2(R). Since ‖f‖2 is called the energy of a function, L2 is
sometimes called the space of finite-energy signals.

L2, like Lip, is infinite dimensional. Since there is no continuity assumption,
we may build a simple set of basis functions from the indicator function of
the unit interval [0, 1):

1(t) def=
{

1, if 0 ≤ t < 1;
0, if t < 0 or t ≥ 1. (2.25)

Given any integer k, put ek(t) def= 1(t− k) to get the characteristic function
of [k, k + 1). The functions {ek : k ∈ Z} are clearly linearly independent in
L2(R), and there are infinitely many of them. We can also introduce a scale
index j and put ejk(t) def= 2−j/21(2−jt−k), which is normalized to guarantee
‖ejk‖ = 1. The set {ejk : j, k ∈ Z} is dense in L2, but it is clearly not linearly
independent. However, the fixed-scale functions Ej = {ejk : k ∈ Z} are
linearly independent, and given a function f ∈ L2(R) and ε > 0, we can find
a scale J and a function fJ ∈ spanEJ ⊂ L2(R) satisfying ‖f − fJ‖ < ε.

2.1.3 Inner product spaces

An inner product space X is a special kind of vector space in which there is also
an inner product. This is a scalar-valued function on pairs of vectors u,v ∈ X,
denoted by 〈u,v〉, that must satisfy the following:

Inner Product Axioms

Hermitean symmetry: For any u,v ∈ X, 〈u,v〉 = 〈v,u〉.
Positive definiteness: If u ∈ X and u �= 0, then 〈u,u〉 > 0.

Linearity: For any u,v,w ∈ X and any scalars c, d, 〈u, cv + dw〉 =
c 〈u,v〉 + d 〈u,w〉.

Hermitean symmetry implies that 〈u,u〉 is purely real. If all coordinates and scalars
are real numbers, it reduces to the ordinary symmetry condition 〈u,v〉 = 〈v,u〉.

Positive definiteness implies nondegeneracy of the inner product: 〈u,v〉 = 0 for
all v ∈ X only if u = 0. It also allows us to define a nondegenerate derived norm by
the formula ‖u‖ def=

√〈u,u〉 ≥ 0, just as in Euclidean N -space. Linearity implies
that ‖0‖2 = 〈0,0〉 = 0, so we have ‖u‖ = 0 if and only if u = 0.

By linearity and Hermitean symmetry, 〈cv + dw,u〉 = c̄ 〈v,u〉+ d̄ 〈w,u〉. Thus
〈cu, cu〉 = |c|2 〈u,u〉, so the derived norm satisfies ‖cu‖ = |c|‖u‖. We will see
in Lemma 2.4 that the other sublinearity condition also holds, so a derived norm
indeed satisfies the norm axioms.

If all scalars and coordinates are real numbers, the inner product is real-valued
and linear in the first factor as well: 〈cv + dw,u〉 = c 〈v,u〉 + d 〈w,u〉.
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Euclidean N -space, whether real or complex, is an example of a finite dimen-
sional inner product space. Any proof using just the abstract inner product axioms
works for every N at once because no dimension N is specified. There are infi-
nite dimensional inner product spaces, too, such as the three examples introduced
previously:

1. The vector space �2 has an inner product

〈x,y〉 def=
∞∑

k=1

x(k)y(k). (2.26)

The derived norm is the same as the one in Equation 2.20.

2. Poly may be equipped with the following inner product:

〈p,q〉 def=
∫ 1

−1

p(x) q(x)√
1 − x2

dt, (2.27)

where the integral is interpreted as the limit of integrals on [−1 + ε, 1 − ε] as
ε→ 0+. The derived norm is different from, and not comparable to, the one
in Equation 2.21. To see why, consider p(x) = xn. Then the Equation 2.21
norm is ‖p‖ = 1 for all n, whereas the change of variable x← sin θ yields

〈p,p〉 =
∫ 1

−1

x2n

√
1 − x2

dx =
∫ π

2

−π
2

sin2n θ dθ =
(2n− 1)!!

(2n)!!
π =

(2n)!
22n(n!)2

π,

as evaluated in Zwillinger’s Standard Mathematical Tables and Formulae, page
399, Equation 633. But Stirling’s asymptotic formula n! ∼ √

2πn(n/e)n as
n → ∞, which is also in Zwillinger on page 496, Section 6.11.7, gives the
approximation 〈p,p〉 ∼√π/n as n→ ∞, so the derived norm of xn tends to
zero as n→ ∞.

3. The vector space Lip has an inner product

〈u,v〉 def=
∫ 1

0

u(t) v(t) dt, (2.28)

for u = u(t) and v = v(t). It is left as an exercise to prove that this inner
product is Hermitean symmetric, nondegenerate, and linear. The derived
norm is the same as the one in Equation 2.23.

4. The vector space L2(R) has an inner product

〈u,v〉 def=
∫ ∞

−∞
u(t) v(t) dt, (2.29)

for u = u(t) and v = v(t). The derived norm is the same as the one in
Equation 2.24.
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There may be a choice of inner products in a vector space. For example, 〈p,q〉 =∫ 1

−1
p(x)q(x) dx is an alternative inner product for Poly, and 〈x,y〉 = x1y1+17x2y2

is another inner product in E2. The inner product must be specified when the space
is defined, but we will use the original choices unless we say otherwise.

Two important inequalities hold for all inner product spaces, including L2, Lip,
Poly, and �2 as well as all finite dimensional Euclidean spaces:

Lemma 2.4 Suppose X is an inner product space with inner product 〈·, ·〉 and
derived norm ‖ · ‖. Then we have the following inequalities for all vectors u,v ∈ X:

Cauchy–Schwarz: | 〈u,v〉 | ≤ ‖u‖ ‖v‖;
Minkowski: ‖u + v‖ ≤ ‖u‖ + ‖v‖. (This is also called the triangle

inequality.)

Proof: For the Cauchy–Schwarz inequality: define a nonnegative real-valued func-
tion on real or complex scalars c by

g(c) def= ‖u− cv‖2 = 〈u− cv,u − cv〉 = ‖u‖2 − c 〈u,v〉 − c̄ 〈v,u〉 + cc̄‖v‖2.

The inequality holds, with both sides zero, if v = 0. Otherwise, let c = 〈u,v〉/‖v‖2,
which is a critical point g′(c) = 0 identifying the minimum of g. Since g(c) ≥ 0
even at this c, we compute

0 ≤ ‖u‖2 − 2| 〈u,v〉 |2
‖v‖2

+
| 〈u,v〉 |2
‖v‖2

⇒ | 〈u,v〉 |2 ≤ ‖u‖2‖v‖2.

Taking square roots on both sides gives the Cauchy–Schwarz inequality.
For Minkowski’s inequality, note that for any real or complex scalar c, c + c̄ ≤

2|c|. Thus,

‖u + v‖2 = ‖u‖2 + 〈u,v〉 + 〈u,v〉 + ‖v‖2

≤ ‖u‖2 + 2| 〈u,v〉 | + ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖ + ‖v‖)2.

Take square roots again to complete the proof. �

In a real inner product space, the Cauchy–Schwarz inequality guarantees that
−1 ≤ 〈u,v〉

‖u‖‖v‖ ≤ 1, so that an angle θ between nonzero vectors u and v may be
defined by

cos θ def=
〈u,v〉
‖u‖ ‖v‖ ⇐⇒ ‖u + v‖2 = ‖u‖2 + ‖v‖2 + 2‖u‖ ‖v‖ cos θ,

generalizing the Law of Cosines from two-dimensional Euclidean space.
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Orthonormal bases

In any inner product space, vectors u,v are said to be orthogonal if 〈u,v〉 = 0. The
zero vector is orthogonal to all other vectors, and no vector except 0 is orthogonal
to itself.

If Y is any subset of an inner product space X, then its orthogonal complement
in X is a subspace, denoted Y⊥ and defined as follows:

Y⊥ def= {x ∈ X : 〈x,y〉 = 0 for all y ∈ Y.} (2.30)

For example, X⊥ = {0} and {0}⊥ = X. Also, if 1 ≤ m < N and we let Y =
span {e1, . . . , em} ⊂ EN , then Y⊥ = span {em+1, . . . , eN}. It is left as an exercise
to prove the following facts:

Lemma 2.5 Suppose Y is a subset of an inner product space. Then Y∩Y⊥ ⊂ {0},
and Y ⊂ (Y⊥)⊥. �

Lemma 2.6 Suppose that Y = span {yn : n = 1, . . . , N}. If 〈x,yn〉 = 0 for all n,
then x ∈ Y⊥. �

A basis {bn} in an inner product space is called an orthogonal basis if the vectors
are pairwise orthogonal, that is, if 〈bi,bj〉 = 0 when i �= j, and an orthonormal
basis if the vectors are pairwise orthogonal and also have unit length: 〈bi,bi〉 = 1
for all i. These two conditions are summed up with the Kronecker symbol δ(i− j),
defined by

{bn} is orthonormal ⇐⇒ 〈bi,bj〉 = δ(i− j) def=
{

1, if i = j;
0, otherwise. (2.31)

The vectors {e1, . . . , eN} defined previously form an orthonormal basis for EN .
Any subset of an orthogonal or orthonormal basis inherits orthogonality and ortho-
normality, respectively.

Linearly independent vectors can be orthonormalized:

Theorem 2.7 (Gram-Schmidt) Suppose X is an inner product space and B =
{b1, . . . ,bN} ⊂ X is a set of N linearly independent vectors. Then there is an
orthonormal set A = {a1, . . . ,aN} ⊂ X with span {a1, . . . ,ak} = span {b1, . . . ,bk}
for all k = 1, . . . , N . In particular, spanA = spanB.

Proof: First note that the dimension of X is at least N , and that b1 �= 0. We
construct ak from bk inductively, starting with a1

def= 1
‖b1‖b1. Then ‖a1‖ = 1,

span {a1} = span {b1} since the two vectors are proportional, and the single-vector
{a1} is an orthogonal set. Now suppose that we have constructed an orthonormal
set Ak

def= {a1, . . . ,ak} with the same span as Bk
def= {b1, . . . ,bk}. Then the

vector

a′
k+1

def= bk+1 −
k∑

i=1

〈ai,bk+1〉ai
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cannot be zero since that would imply bk+1 ∈ spanAk = spanBk, contradicting
the linear independence of B. Thus we may put ak+1 = 1

‖a′
k+1‖

a′
k+1. But then

Ak+1
def= {a1, . . . ,ak+1} is an orthonormal set since Ak is orthonormal and

〈aj , ak+1〉 = 〈aj ,bk+1〉 −
k∑

i=1

〈ai,bk+1〉 〈aj , ai〉 = 〈aj ,bk+1〉 − 〈aj ,bk+1〉 = 0,

for j = 1, . . . , k. Finally, spanAk+1 = spanBk+1 since bk+1 ∈ spanAk+1 and
ak+1 ∈ spanBk+1. �

Note that for all n, an ∈ span {b1, . . . ,bn−1}⊥, since an ⊥ span {a1, . . . ,an−1}.
An important consequence of Theorem 2.7 is:

Corollary 2.8 Every finite dimensional inner product space has an orthonormal
basis. �

The Gram-Schmidt algorithm works on infinite sets, too. If B is a Schauder basis
for an infinite dimensional inner product space, then the algorithm produces an
infinite sequence {an : n = 1, 2, . . .} of orthonormal vectors.

Orthonormal bases are useful because the derived norm of a vector can be
computed from its expansion coefficients in any orthonormal basis:

Lemma 2.9 Suppose that X is an N -dimensional inner product space and B =
{b1, . . . ,bN} is an orthonormal basis for X. Then any vector x ∈ X may be written
uniquely as a linear combination from B, and we have

x =
N∑

n=1

x(n)bn ⇒ ‖x‖2 =
N∑

n=1

|x(n)|2.

Proof: Expand, using the linearity of the inner product:

‖x‖2 = 〈x,x〉 =

〈
N∑

n=1

x(n)bn,

N∑
m=1

x(m)bm

〉
=

N∑
n=1

N∑
m=1

x(n)x(m) 〈bn,bm〉 .

The result now follows from Equation 2.31. �

Two subspaces Y,Z of an inner product space X are said to be orthogonal
subspaces if every vector in Y is orthogonal to every vector in Z, namely, if 〈y, z〉 = 0
whenever y ∈ Y and z ∈ Z. We then write Y ⊥ Z. For example, Y ⊥ Y⊥ for
every subspace Y. If Y ⊥ Z, then Y ∩ Z = {0}, but the converse does not hold:
consider Y = span {(1, 1)} and Z = span {(1, 0)} in X = E2.

Lemma 2.10 Suppose X is a finite dimensional inner product space with subspace
Y ⊂ X. Then any x ∈ X can be written uniquely as x = y + z, where y ∈ Y and
z ∈ Y⊥.
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Proof: To show existence, let B = {yj} ⊂ Y ⊂ X be an orthonormal basis for Y.
Then the vector y =

∑
j 〈yj ,x〉yj ∈ spanB belongs to Y. It remains to show that

z def= x − y belongs to Y⊥. But for any basis vector yi, we have

〈yi,y〉 =

〈
yi,
∑

j

〈yj ,x〉yj

〉
=
∑

j

〈yj ,x〉 〈yi,yj〉 =
∑

j

〈yj ,x〉 δ(i−j) = 〈yi,x〉 .

Therefore, 〈yi, z〉 = 〈yi,x− y〉 = 〈yi,x〉 − 〈yi,y〉 = 0. Since this is true for all
basis vectors yi of Y, we conclude from Lemma 2.6 that z ∈ Y⊥.

To prove uniqueness, suppose that x = y + z = y′ + z′ are two such decomposi-
tions. Then y− y′ = z′ − z ∈ Y ∩Y⊥ = {0} by Lemma 2.5, so y = y′ and z = z′.

�

Consequently, if Y is a subspace of the inner product space X, then Y = X if and
only if Y⊥ = {0}.

A sum of subspaces Y,Z of an inner product space X is called an orthogonal
sum, or a direct sum, if Y ⊥ Z, and then it is written Y ⊕ Z. If more than two
subspaces Y1, . . . ,Yn ⊂ X are pairwise orthogonal, then their sum is also called
direct. If the direct sum is all of X, then we have a direct sum decomposition of X
into orthogonal subspaces. An example of such a direct sum decomposition is

EN = span {e1} ⊕ span {e2} ⊕ · · · ⊕ span {eN}. (2.32)

Recall that span {e2}, for example, is those N -tuples whose only nonzero coordinate
is number 2.

Biorthogonal dual bases

Suppose X is an N -dimensional inner product space with basis B = {bn : n =
1, . . . , N}, not necessarily orthogonal. Then there is another basis B′ = {b′

n :
n− 1, . . . , N} ⊂ X, called the biorthogonal dual to B, satisfying〈

bi,b′
j

〉
= 〈b′

i,bj〉 = δ(i− j), i, j = 1, . . . , N. (2.33)

To construct it, let Xk = span {bn : n �= k} for each k = 1, . . . , N . Then Xk �= X,
since X is N -dimensional, so X⊥

k �= {0}. Hence there must be some vector vk ∈ X⊥
k

for which 〈bk,vk〉 �= 0. Let b′
k = 1

〈bk,vk〉vk; then b′
k ∈ X⊥

k , and it is easy to check
that B and B′ = {b′

k : k = 1, . . . , N} satisfy Equation 2.33.

Lemma 2.11 Every basis B = {bn : n = 1, . . . , N} for an N -dimensional inner
product space has a unique biorthogonal dual basis.

Proof: We have existence by the construction given previously. Suppose now that
{b′

n} and {b′′
n} are biorthogonal duals. Then for fixed n we have 〈b′

n − b′′
n,bm〉 = 0

for all m = 1, . . . , N . Since B is a basis, we conclude that b′
n = b′′

n. �

Consequently, B = B′ if and only if B is an orthonormal basis.
Biorthogonal dual bases are used to compute expansion coefficients:
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Lemma 2.12 Suppose that B = {bn : n = 1, . . . , N} and B′ = {b′
n : n =

1, . . . , N} are biorthogonal dual bases for an N -dimensional inner product space X.
Then for any x ∈ X, we have

x =
N∑

n=1

〈b′
n,x〉bn =

N∑
n=1

〈bn,x〉b′
n.

In other words, the expansion coefficients of x in B are {c(n) = 〈b′
n,x〉}, and the

expansion coefficients of x in B′ are {c′(n) = 〈bn,x〉}.
Proof: Let x =

∑N
m=1 c(m)bm be the expansion of x in basis B. Then

〈b′
n,x〉 =

N∑
m=1

c(m) 〈b′
n,bm〉 =

N∑
m=1

c(m)δ(n−m) = c(n).

The proof for c′(n) is similar. �

Consequently, we can expand each basis in terms of the other:

b′
m =

N∑
n=1

〈b′
n,b

′
m〉bn; bm =

N∑
n=1

〈bn,bm〉b′
n; for m = 1, . . . , N .

For example, consider the basis {fn = e1 + · · · + en : n = 1, . . . , N} defined
by Equation 2.8. It is left as an exercise to check that its biorthogonal dual is
{f ′n def= en − en+1 : n = 1, . . . , N}, or

f ′1 =

⎛⎜⎜⎜⎜⎝
1
−1
0
...
0

⎞⎟⎟⎟⎟⎠ , . . . , f ′N−1 =

⎛⎜⎜⎜⎜⎝
0
...
0
1
−1

⎞⎟⎟⎟⎟⎠ , f ′N =

⎛⎜⎜⎜⎜⎝
0
...
0
0
1

⎞⎟⎟⎟⎟⎠ , (2.34)

where for notational convenience we write eN+1
def= 0. To use Lemma 2.12, we

first compute 〈fi, fj〉 = min{i, j} and

〈
f ′i , f

′
j

〉
=

⎧⎨⎩
2, if i = j;
−1, if |i− j| = 1;
0, if |i− j| > 1.

Then, using f0
def= 0 and fN+1

def= 0 for notational convenience, we have

f ′m = −fm−1 + 2fm − fm+1,

fm = f ′1 + 2f ′2 + · · · + (m− 1)f ′m−1 +m[f ′m + · · · + f ′N ],

for m = 1, . . . , N .
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2.2 Linear Transformations

A linear transformation is a function T : X → Y between vector spaces X and Y
that preserves linear combinations: for vectors u,v ∈ X and scalars a, b, we can
expand T (au + bv) = aTu + bTv. Some examples are:

1. X = E1, Y = E1; Tx = 5x. [Note: Tx = 5x + 1 is not a linear transforma-
tion.]

2. X = E1, Y = E3; Tx = (x, 2x, 3x). [Note: Tx = (x, x2, x3) is not a linear
transformation.]

3. X = E2, Y = E3; T (x1, x2) = (0, x1 + x2, x1 − x2).

4. X = E2, Y = E2; T (x1, x2) = (x1 cos θ + x2 sin θ,−x1 sin θ + x2 cos θ) for
some fixed θ.

5. X = �2, Y = �2; T (x1, x2, x3, . . .) = (x1, 2x2, 3x3, . . . , nxn, . . .).

Systems of simultaneous linear equations are one concrete source of linear trans-
formations. Suppose that numbers x(1), . . . , x(N) are sought satisfying the M lin-
ear equations

A(1, 1)x(1) + · · · +A(1, N)x(N) = b(1),
A(2, 1)x(1) + · · · +A(2, N)x(N) = b(2),

...
A(M, 1)x(1) + · · · +A(M,N)x(N) = b(M),

where {A(m,n) : m = 1, . . . ,M ;n = 1, . . . , N} and {b(m) : m = 1, . . . ,M} are
given scalar parameters. This may be rewritten as the problem of finding a vector
x = (x(1), . . . , x(N)) in X = EN such that Ax = b, where b = (b(1), . . . , b(M)) is
a vector in Y = EM , and

A
def=

←− N −→
↑
M
↓

⎛⎜⎜⎝
A(1, 1) A(1, 2) . . . A(1, N)
A(2, 1) A(2, 2) . . . A(2, N)

...
...

. . .
...

A(M, 1) A(M, 2) . . . A(M,N)

⎞⎟⎟⎠ (2.35)

is an M ×N matrix, an array with M rows and N columns that defines a function
from EN to EM by the formula

Ax =

⎛⎜⎝ A(1, 1) · · · A(1, N)
...

. . .
...

A(M, 1) · · · A(M,N)

⎞⎟⎠
⎛⎜⎜⎝
x(1)
x(2)

...
x(N)

⎞⎟⎟⎠
def=

⎛⎜⎝ A(1, 1)x(1) + · · · +A(1, N)x(N)
...

A(M, 1)x(1) + · · · +A(M,N)x(N)

⎞⎟⎠ . (2.36)
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Namely, the m-th coordinate b(m) of b = Ax is b(m) =
∑N

n=1A(m,n)x(n). It is
not hard to verify that A is a linear transformation.

2.2.1 Matrix algebra

M ×N matrices can be added componentwise:

A+B = C ⇐⇒ C(m,n) = A(m,n) +B(m,n), 1 ≤ m ≤M, 1 ≤ n ≤ N.

They can also be multiplied by scalars: cA = {cA(m,n)}. Thus they form a
vector space, which is denoted Mat(M × N), satisfying the axioms of Section
2.1.2. This space is NM dimensional, with one basis being the elementary matrices
{eij : 1 ≤ i ≤M ; 1 ≤ j ≤ N} ⊂ Mat(M ×N), defined by

eij(m,n) = δ(i−m)δ(j − n) =
{

1, if m = i and n = j,
0, otherwise. (2.37)

The inner product

〈A,B〉 def=
M∑

m=1

N∑
n=1

A(m,n)B(m,n) (2.38)

satisfies the inner product axioms, and makes Mat(M × N) an NM -dimensional
inner product space. The elementary matrices are in fact an orthonormal basis in
this space.

Likewise, linear transformations T : X → Y can be added together and mul-
tiplied by scalars to give other linear transformations, so they too form a vector
space which we shall denote by Lin (X,Y). When X and Y are N -dimensional
and M -dimensional vector spaces, respectively, then every choice of bases for X,Y
defines a one-to-one correspondence between Lin (X,Y) and Mat(M ×N):

Theorem 2.13 Let T : X → Y be a linear transformation between finite dimen-
sional vector spaces X and Y. Let P = {pn : n = 1, . . . , N} and Q = {qm : m =
1, . . . ,M} be bases for X and Y, respectively. Then there is a unique M×N matrix
{A(m,n)} representing T with respect to the bases P,Q, in the following sense:

1. For any x =
∑N

n=1 x(n)pn ∈ X we can compute Ty =
∑M

m=1 y(m)qm ∈ Y
by the formula

y(m) =
N∑

n=1

A(m,n)x(n).

2. If any other matrix {A′(m,n)} satisfies

N∑
n=1

A′(m,n)x(n) =
N∑

n=1

A(m,n)x(n),

for all x ∈ X and all m = 1, . . . ,M , then A′(m,n) = A(m,n) for all n =
1, . . . , N and all m = 1, . . . ,M .
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Proof: Using linearity, if x ∈ X has the expansion x =
∑N

n=1 x(n)pn, then Tx ∈ Y
has the expansion

Tx =
N∑

n=1

x(n)Tpn =
N∑

n=1

x(n)
M∑

m=1

A(m,n)qm =
M∑

m=1

(
N∑

n=1

x(n)A(m,n)

)
qm,

where for each n = 1, . . . , N , the matrix coefficients {A(m,n) : m = 1, . . . ,M} give
the expansion of Tpn in the basis Q. We may therefore compute the expansion
coefficients {y(m) : m = 1, . . . ,M} of Tx =

∑M
m=1 y(m)qm by the formula y(m) =∑N

n=1A(m,n)x(n).
For the second point, use x = en to extract column n of the matrices, for fixed

n ∈ {1, . . . , N}. Then A′(m,n) = A(m,n) for all m = 1, . . . ,M . Since n was
arbitrary, the two matrices must be equal. �

Thus every linear transformation T between finite dimensional vector spaces
can be represented by a matrix A whose matrix coefficients depend on the bases
P,Q, so the correspondence may be pictured as follows:

T
P,Q←→ A (2.39)

Using the standard bases {en} from Equations 2.7, the previously-defined examples
of linear transformations have the following matrices:

1. Tx = 5x has the 1 × 1 matrix A = (5) with respect to the standard bases
P = Q = {e1};

2. Tx = (1x, 2x, 3x) has the 3×1 matrix A =

⎛⎝ 1
2
3

⎞⎠ with respect to the standard

bases P = {e1} and Q = {e1, e2, e3};

3. T (x1, x2) = (0, x1 + x2, x1 − x2) has the 3 × 2 matrix A =

⎛⎝ 0 0
1 1
1 −1

⎞⎠ with

respect to the standard bases P = {e1, e2} and Q = {e1, e2, e3};
4. T (x1, x2) = (x1 cos θ + x2 sin θ,−x1 sin θ + x2 cos θ) has the 2 × 2 matrix

A =
(

cos θ sin θ
− sin θ cos θ

)
with respect to the standard bases P = Q = {e1, e2}.

On the other hand, with respect to the bases {fn} of Equation 2.8, we get the
following matrices:

1. Since e1 = f1, the vector x = xe1 = xf1, so Tx = 5x has the same 1 × 1
matrix A = (5) with respect to P = Q = {f1};

2. Again, x = xe1 = xf1, but the output Tx = xe1 + 2xe2 + 3xe3 = −xf1 −
xf2 + 3xf3, so the matrix of T with respect to P = {f1} and Q = {f1, f2, f3}

is A =

⎛⎝−1
−1
3

⎞⎠;
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3. Note that x = x1e1 + x2e2 = (x1 − x2)f1 + x2f2, while the output is (0)e1 +
(x1 + x2)e2 + (x1 − x2)e3 = −(x1 + x2)f1 + 2x2f2 + (x1 − x2)f3. Now,

−(x1 + x2) = (−1)(x1 − x2) + (−2)(x2),
2x2 = (0)(x1 − x2) + (2)(x2),

(x1 − x2) = (1)(x1 − x2) + (0)(x2),

so T has the 3× 2 matrix A =

⎛⎝−1 −2
0 2
1 0

⎞⎠ with respect to P = {f1, f2} and

Q = {f1, f2, f3}.

In example 4, the vectors g1
def= (cos θ,− sin θ) and g2

def= (sin θ, cos θ) form an
orthonormal basis for E2 for any fixed θ. Thus the linear transformation Tx =
(x1 cos θ + x2 sin θ,−x1 sin θ + x2 cos θ) = x1g1 + x2g2 has the simple matrix A =(

1 0
0 1

)
with respect to P = {e1, e2} and Q = {g1,g2}.

Example 5, T (x1, x2, x3, . . .) = (x1, 2x2, 3x3, . . . , nxn, . . .), may be said to have
an “infinite matrix” with respect to the bases of elementary sequences P = Q =
{en : n = 1, 2, . . .}:

A =

⎛⎜⎜⎝
1 0 0 . . .
0 2 0 . . .
0 0 3 . . .
...

...
...

. . .

⎞⎟⎟⎠ .
Except in such simple cases, though, we cannot perform computations with infinite
arrays, and must rely on other formulas to represent linear transformations on
infinite dimensional vector spaces.

If X and Y are finite dimensional inner product spaces with respective bases
P = {pn} and Q = {qm}, then matrix coefficients can be computed using the inner
product and the biorthogonal dual {q′

m} of {qm}:

A(m,n) = 〈q′
m, Tpn〉 . (2.40)

In the special case X = Y = EN with orthonormal basis P = Q = {en}, the
formula simplifies to A(m,n) = 〈em, Ten〉.

Composition

Linear transformations can be composed like any other functions. If X,Y,Z are
vector spaces, and T : X → Y and S : Y → Z are linear transformations, then
their composition S ◦ T : X → Z, which is usually written just ST , is defined by
x �→ STx = S(Tx). This is a linear transformation: for all vectors x,y ∈ X and
all scalars a, b, we have

ST (ax + by) = S(aTx + bTy) = aST (x) + bST (y).
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For example, the linear transformations of examples 1 and 2 defined previously
have composition x �→ (5x, 10x, 15x).

The composition of linear transformations on finite dimensional vector spaces
defines a matrix product of their respective matrices. Suppose that P,Q,R are
bases for the spaces X (of dimension N), Y (of dimension K), and Z (of dimension
M), respectively, and we make the correspondences

S
Q,R←→ A ∈ Mat(M ×K); T

P,Q←→ B ∈ Mat(K ×N).

Then ST
P,R←→ AB ∈ Mat(M ×N), where

AB(m,n) def=
K∑

k=1

A(m, k)B(k, n), 1 ≤ m ≤M ; 1 ≤ n ≤ N. (2.41)

Namely, the m-th coordinate of ABx is

ABx(m) =
N∑

n=1

AB(m,n)x(n) =
N∑

n=1

K∑
k=1

A(m, k)B(k, n)x(n).

The set Lin (X) def= Lin (X,X) of linear transformations T : X → X from
an inner product space X to itself is preserved by composition. If X is finite
dimensional with basis {bn : n = 1, . . . , N} for X, the corresponding set Mat(N ×
N) of square matrices is likewise closed under matrix multiplication.

Lin (X), and thus Mat(N ×N), form a special kind of vector space called an
associative algebra (with 1), having the following properties for all vectors U,V,W
and scalars s, t:

Associative Algebra (With 1) Axioms

Additive associativity: U + (V + W) = (U + V) + W.

Additive commutativity: U + V = V + U.

Additive identity: There is a unique vector 0 satisfying U + 0 =
0 + U = U for all U.

Additive inverses: U + (−1)U = (−1)U + U = 0.

Scalar multiplication distributivity: t(U + V) = tU + tV.

Scalar multiplication associativity I: (st)U = s(tU).

Multiplicative associativity: U(VW) = (UV)W.

Multiplicative identity: There is a unique vector 1, different from 0,
satisfying U1 = 1U = U for all U.

Distributivity: U(V + W) = UV + UW.

Scalar multiplication commutativity: (tU)V = U(tV).

Scalar multiplication associativity II: (tU)V = t(UV).
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Note that the first six of these are just the vector space axioms for the operations of
matrix addition and scalar multiplication. In Lin (X), the additive identity 0 is the
transformation x �→ 0 and the multiplicative identity 1 is x �→ x. In Mat(N ×N),
these are respectively the zero matrix 0(m,n) = 0 for all 1 ≤ n,m ≤ N , and the
N ×N identity matrix

Id
def=

⎛⎝ 1
. . .

1

⎞⎠ . (2.42)

We may also write Id(m,n) = δ(m − n), where δ is the Kronecker symbol of
Equation 2.31, or even

Id =
N∑

n=1

enn,

where each enn is one of the elementary matrices defined in Equation 2.37.
It is not true that AB = BA for all A,B ∈ Mat(N ×N), nor can we conclude

from AB = 0 that either A = 0 or B = 0. Examples are readily obtained from
Mat(2 × 2):

A =
(

1 0
0 0

)
; B =

(
0 0
1 0

)
.

Evidently AB = 0, even though A �= 0 and B �= 0. Likewise, BA = B �= AB.

2.2.2 Adjoints and projections

If X and Y are inner product spaces, then every linear transformation T : X → Y
has an adjoint linear transformation T ∗ : Y → X, or simply adjoint, defined by the
relation

〈x, T ∗y〉 = 〈Tx,y〉 , for all x ∈ X and all y ∈ Y.

To compute z = T ∗y for a given y ∈ Y, it is necessary to find z ∈ X such that
〈Tx,y〉 = 〈x, z〉 for all x ∈ X. If such a z exists, it must be unique, for if z1 and
z2 both satisfy 〈x, z1〉 = 〈x, z2〉 = 〈Tx,y〉 for all x ∈ X, then 〈x, z1 − z2〉 = 0 for
all x, so z1 = z2 by the nondegeneracy of the X inner product. The domain of T ∗

is defined to be the subset of Y for which such z’s exist.
If the inner product spaces X and Y are finite dimensional, then the domain of

T ∗ is all of Y. It follows that (T ∗)∗ = T . The adjoint can then be computed from
the matrix representing T:

Lemma 2.14 Let X and Y be finite dimensional inner product spaces. If T :
X → Y is given by the matrix {A(m,n)} with respect to some fixed bases P,Q,
then T ∗ : Y → X is given by the adjoint matrix {A∗(n,m) = A(m,n) : n =
1, . . . , N ;m = 1, . . . ,M}, with respect to the biorthogonal dual bases Q′,P′.

Proof: Fix bases P = {pn} and Q = {qm} for X and Y, respectively, and let
P′ = {p′

n},Q′ = {q′
m} be their respective biorthogonal duals. Note that the
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biorthogonal dual to the basis {p′
n} is {pn}. We can use Equation 2.40 to compute

A∗(n,m), the matrix coefficient of T ∗ with respect to the dual bases:

A∗(n,m) = 〈pn, T
∗q′

m〉 = 〈T ∗q′
m,pn〉 = 〈q′

m, Tpn〉 = A(m,n),

where the second equality follows from the Hermitean symmetry of the inner prod-
uct. �

The adjoint matrix is the transpose of the original matrix, wherein the i-th row
becomes the i-th column and the j-th column becomes the j-th row, with all coef-
ficients replaced by their complex conjugates. If the inner product spaces X,Y are
real, then the adjoint matrix is simply the transpose.

Lemma 2.15 If T : X → Y and S : Y → Z are linear transformations on finite
dimensional inner product spaces X,Y,Z, then their composition ST : X → Z has
an adjoint (ST )∗ : Z → X satisfying (ST )∗ = T ∗S∗.

Proof: Compute 〈(ST )∗z,x〉 = 〈z, STx〉 = 〈S∗z, Tx〉 = 〈T ∗S∗z,x〉. Since this
holds for all x ∈ X and all z ∈ Z, the result follows from nondegeneracy of the
inner product. �

A linear transformation T : X → X is called selfadjoint if T ∗ = T . For example,
if X = EN and {A(m,n) = 〈em, Ten〉} is the matrix of T with respect to the
standard basis of Equation 2.7, then T is selfadjoint if and only if A(n,m) =
A(m,n).

Selfadjoint linear transformations arise from certain natural compositions:

Lemma 2.16 Suppose X,Y are finite dimensional inner product spaces and T :
X → Y is a linear transformation with adjoint T ∗. Then T ∗T : X → X and
TT ∗ : Y → Y are selfadjoint linear transformations.

Proof: From Lemma 2.15, we have (T ∗T )∗ = T ∗(T ∗)∗ = T ∗T and (TT ∗)∗ =
(T ∗)∗T ∗ = TT ∗. �

Note that if T
P,Q←→ A ∈ Mat(M × N) using bases P,Q, then T ∗T

P,P′
←→ A∗A ∈

Mat(N ×N) and TT ∗ Q′,Q←→ AA∗ ∈ Mat(M ×M), where P′,Q′ are the respective
biorthogonal dual bases.

Boundedness

A linear transformation T : X → Y on normed vector spaces X,Y is said to be
bounded if there is some upper bound, a number c, such that ‖Tx‖ ≤ c‖x‖ for all
x ∈ X. All the examples except number 5 are bounded linear transformations.

The smallest upper bound c that works is called the operator norm of T , and
is denoted by ‖T ‖op. Note that it depends on the norms chosen for X and Y. It
indicates how much T can stretch a vector: For every x ∈ X,

‖Tx‖ ≤ ‖T ‖op ‖x‖, (2.43)
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and for every c < ‖T ‖op there is some vector x0 ∈ X for which ‖Tx0‖ > c‖x0‖.
The function ‖·‖op is not derived from any inner product, but it satisfies the Norm
Axioms on page 29, plus one more:

Extra Operator Norm Axiom

Submultiplicativity: ‖ST‖op ≤ ‖S‖op‖T ‖op for any bounded linear
transformations S, T that can be composed.

The proof is left as an exercise.
Not all linear transformations are bounded, but all the ones corresponding to

matrices are bounded:

Theorem 2.17 Suppose X and Y are finite dimensional inner product spaces. If
T : X → Y is a linear transformation, then T is bounded with respect to any norms
on X,Y.

Proof: First consider the derived norms ‖ · ‖. Choose any orthonormal bases
P = {pn} and Q = {qm} for N -dimensional X and M -dimensional Y, respectively,
and let A = {A(m,n) = 〈qm, Tpn〉 : m = 1, . . . ,M ;n = 1, . . . , N} be the matrix
representing T in those bases. By Lemma 2.9, we have ‖x‖2 =

∑
n |x(n)|2 for any

x =
∑

n x(n)pn ∈ X. Using the Cauchy–Schwarz inequality for EN , we estimate

‖Tx‖2 =

∥∥∥∥∥
M∑

m=1

(
N∑

n=1

x(n)A(m,n)

)
qm

∥∥∥∥∥
2

=
M∑

m=1

∣∣∣∣∣
N∑

n=1

x(n)A(m,n)

∣∣∣∣∣
2

≤
(

N∑
n=1

|x(n)|2
)(

M∑
m=1

N∑
n=1

|A(m,n)|2
)

= s ‖x‖2,

where s =
∑

n,m |A(m,n)|2 ≥ 0. Thus ‖Tx‖ ≤ √
s ‖x‖, showing boundedness with

respect to the derived norms of X and Y.
Now let ‖·‖X and ‖·‖Y be arbitrary norms for X and Y. By Theorem 2.3, there

are positive constants A and B such that ‖x‖ ≤ B‖x‖X and ‖Tx‖Y ≤ A‖Tx‖ for
all x ∈ X. Therefore, ‖Tx‖Y ≤ AB

√
s ‖x‖X for all x ∈ X, so T is bounded with

respect to those norms as well. �

The upper bound c =
√
s used in the proof is called the Hilbert–Schmidt norm of

the matrix A, and is computed directly by:

‖A‖HS
def=

√√√√ M∑
m=1

N∑
n=1

|A(m,n)|2. (2.44)

The relation between ‖A‖HS and ‖T ‖op depends on the bases and norms. It is
particularly simple for the choices made in the proof of Theorem 2.17:

Corollary 2.18 Suppose T
P,Q←→ A ∈ Mat(M × N), where T : X → Y is a lin-

ear transformation and X,Y are inner product spaces with dimension N,M and
orthonormal bases P and Q, respectively. Then

‖T ‖op ≤ ‖A‖HS ≤
√
MN ‖T ‖op.
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Proof: On the right, use the Cauchy–Schwarz inequality and Inequality 2.43:

‖A‖2
HS =

∑
m,n

|A(m,n)|2 =
∑
m,n

| 〈qm, Tpn〉 |2

≤
∑
m,n

‖qm‖2‖T ‖2
op‖pn‖2 = ‖T ‖2

op

∑
m,n

1 = ‖T ‖2
opMN.

On the left, the inequality follows from the proof of Theorem 2.17. �

It is left as an exercise to show that ‖·‖HS is sublinear and nondegenerate and
satisfies the product inequality ‖AB‖HS ≤ ‖A‖HS‖B‖HS.

Bounded linear transformations T : X → Y form a normed vector space
Bdd (X,Y) ⊂ Lin (X,Y), with the norm ‖·‖op. Equivalently, matrices A ∈
Mat(M × N) form a normed vector space with ‖·‖HS. If X and Y are N and
M -dimensional, respectively, and respective orthonormal bases P ⊂ X and Q ⊂ Y
are chosen, then the correspondence T

P,Q←→ A can be used to define ‖T ‖HS = ‖A‖HS

and ‖A‖op = ‖T ‖op.
Bounded linear transformations T : X → Y are uniformly continuous functions

on X: Given ε > 0, take any δ > 0 satisfying δ‖T ‖op < ε, where ‖T ‖op is the bound
computed using the norms ‖ · ‖X and ‖ · ‖Y. Then for any u,v ∈ X,

‖u− v‖X < δ ⇒ ‖Tu− Tv‖Y = ‖T (u− v)‖Y ≤ ‖T ‖op‖u− v‖X ≤ δ‖T ‖op < ε.

The special case X = Y defines the set Bdd (X) def= Bdd (X,X) of bounded linear
transformations from an inner product space X to itself.

Lemma 2.19 Suppose X is a finite dimensional inner product space. If T ∈
Bdd (X), then T ∗ ∈ Bdd (X) with ‖T ‖op = ‖T ∗‖op.

Proof: | 〈T ∗y,x〉 | = | 〈y, Tx〉 | ≤ ‖T ‖op ‖y‖‖x‖ for every x,y ∈ X, by the Cauchy–
Schwarz inequality. Now fix an arbitrary y and put x = T ∗y to conclude that
‖T ∗y‖2 ≤ ‖T ‖op‖T ∗‖op ‖y‖2. Since y was arbitrary and ‖T ‖op ≥ 0, this implies
that ‖T ∗‖op ≤ ‖T ‖op. A similar argument shows that ‖T ‖op ≤ ‖T ∗‖op, so in
combination these inequalities force ‖T ‖op = ‖T ∗‖op. �

Trace

The trace of a square matrix A ∈ Mat(N × N) is the sum of just its coefficients
along the main diagonal:

trA def=
N∑

n=1

A(n, n). (2.45)

It is evident that tr (A+B) = trA+ trB, tr (cA) = c trA, and tr (A∗) = trA. We
also have

tr (AB) =
∑

n

∑
k

A(n, k)B(k, n) =
∑

k

∑
n

B(k, n)A(n, k) = tr (BA), (2.46)
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so tr (AB −BA) = 0 even for noncommuting A,B ∈ Mat(N ×N).
Even for nonsquare matrices, some products are square:

A,B ∈ Mat(M ×N) ⇒
{
B∗A,A∗B ∈ Mat(N ×N);

BA∗, AB∗ ∈ Mat(M ×M).

We can write the Equation 2.38 inner product 〈A,B〉 in terms of the matrix adjoint,
matrix product, and trace:

〈A,B〉 = tr (A∗B) = tr (BA∗) = tr (AB∗) = tr (B∗A) (2.47)

The proof is straightforward. As a result, ‖A‖HS =
√

tr (A∗A) =
√

tr (AA∗).

Orthogonal projection

Let X be an inner product space and suppose that P : X → X is a linear transfor-
mation. P is called a projection if P 2 = P , namely, if P (Px) = Px for every x ∈ X.
The range of P , PX def= {Px : x ∈ X}, is thus preserved by P . Also, PX is a
subspace of X: if u = Px ∈ PX and v = Px ∈ PX, then u+v = P (x+y) ∈ PX.

The name suggests visualizing Px as the shadow cast by x on the ground PX,
the place of all shadows. The shadow may be longer than x, depending on the angle
of the light. For example, the projection on E2 defined by P (x1, x2) = (0, 5x1 +x2)
lengthens (1, 0) five times: ‖P (1, 0)‖ = ‖(0, 5)‖ = 5 = 5‖(1, 0)‖.

In the infinite dimensional case, there are projections which can stretch vectors
an arbitrary amount. For example, take X = �2 and define Px(2k) = x(2k)+x(2k−
1) + · · · + x(2k − k + 1) for k = 1, 2, . . ., while Px(n) = 0 for all other indices n.
That is,

Px = (0, x(2), 0, x(4) + x(3), 0, 0, 0, x(8) + x(7) + · · · + x(5), 0, . . .).

Clearly P 2 = P . However, for x = (0, . . . , 0, 1, 1, . . . , 1, 0, , . . .), where the ones are
at indices 2m + 1 through 2m + 2m, we get ‖x‖ =

√
2m while ‖Px‖ = 2m. We can

make m as large as we like, so P is an unbounded projection.
A projection P is said to be orthogonal if, for every u ∈ X, the vector u − Pu

is orthogonal to every vector Pv in PX:

〈Pv,u− Pu〉 = 0, for all u,v ∈ X. (2.48)

Orthogonal projections P are bounded by Pythagoras’ Theorem:

Lemma 2.20 If P is an orthogonal projection on an inner product space X, then
‖Px‖ ≤ ‖x‖ for all x ∈ X.

Proof: Write x = Px + (x − Px) and compute the length of both sides:

‖x‖2 = ‖Px‖2 + ‖x − Px‖2 + 〈Px,x − Px〉 + 〈x− Px, Px〉 .
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But the last two terms are zero since (x−Px) ⊥ Px. The inequality follows because
‖x− Px‖ ≥ 0. �

The inequality is sharp if P �= 0, for then there is some x0 ∈ X for which
y0

def= Px0 �= 0, and then ‖Py0‖ = ‖P 2x0‖ = ‖Px0‖ = ‖y0‖. In particular,
this means ‖P‖op = 1 unless P = 0.

There is an easy way to check whether a projection is orthogonal: orthogonal
projections are selfadjoint.

Lemma 2.21 A projection P : X → X is orthogonal if and only if P ∗ = P .

Proof: If P is an orthogonal projection, then 〈Pv,u − Pu〉 = 0, so 〈Pv,u〉 =
〈Pv, Pu〉 = 〈P ∗Pv,u〉. Since this is true for all u ∈ X, it must be that Pv = P ∗Pv
for all v ∈ X. But then P = P ∗P . Since P ∗ = (P ∗P )∗ = P ∗P , this means
that P = P ∗. The converse is evident: if P is a projection and P = P ∗, then
〈Pv,u − Pu〉 =

〈
v, Pu − P 2u

〉
= 〈v,0〉 = 0, so u − Pu is orthogonal to Pv for

any u,v. �

If Y = {y1, . . . ,yN} is any finite orthonormal subset of an inner product space
X, then we may define

PYx def=
N∑

k=1

〈yk,x〉yk. (2.49)

It is left as an exercise to show that this formula gives an orthogonal projection onto
spanY. For example, the point (x, y, z) ∈ R3 is mapped to the point (x, y, 0) ∈
span {e1, e2}, the xy-plane, by Px = 〈e1,x〉 e1 + 〈e2,x〉 e2. Another example, with
infinite dimensional X = Lip, is the one-vector set Y = {1} ⊂ L2(R), where
1 = 1(t) is the indicator function of the interval [0, 1) as defined in Equation 2.25.
The projection PYf(t) = 〈1, f〉1(t) gives a multiple of the indicator function, with
〈1, f〉 =

∫ 1

0 f(t) dt being the average of f over the interval [0, 1).
The Gram-Schmidt orthonormalization algorithm (Theorem 2.7) is a sequence

of such projections: start with a1 = 1
‖b1‖b1, and then define a′

k = bk−PspanAk−1bk

and ak = 1
‖a′

k
‖a

′
k for k > 1.

Perspective projection

Since a projection P is a linear transformation, it maps the line E def= {θx+(1−θ)y :
θ ∈ R} to another line PE = {θPx + (1 − θ)Py : θ ∈ R}. Hence, to draw a three-
dimensional geometric object consisting of points connected by lines, we project
the points to some plane and then connect them with lines.

To draw the same object with perspective, we fix the viewpoint at (x0, y0, z0),
distinct from any point on the object, and then compute a different projection: the
intersections with the xy-plane of rays from the viewpoint through the points of
the object, as depicted in Figure 2.3.

Using similar triangles and elementary geometry, we get the formula for the
image point (x′, y′, 0) in the xy-plane, where the object point (x, y, z) is seen from
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 (x0, y0, z0)
z

y

x  (x’1, y’1, z’1)
 (x’2, y’2, z’2)

 (x1, y1, z1)

 (x2, y2, z2)

Figure 2.3: Perspective projection from the viewpoint (x0, y0, z0) to the xy-plane.

the viewpoint (x0, y0, z0):

x′ − x0

z′ − z0
=
x− x0

z − z0
;

y′ − y0
z′ − z0

=
y − y0
z − z0

; z′ = 0. (2.50)

The transformation (x, y, z) �→ (x′, y′, z′) also preserves lines, despite not being a
linear transformation, because the line through (x1, y1, z1) and (x2, y2, z2), together
with the viewpoint (x0, y0, z0), determine a plane in R3, and that plane intersects
the xy-plane in a line.

2.2.3 Linear independence and invertibility

Suppose that T : X → Y is a linear transformation. Given y ∈ Y, there is an
x ∈ X solving Tx = y if and only if y belongs to the range of T , which we may
denote by TX def= {Tx : x ∈ X}. In that case, the solution is unique if and only if
T is a one-to-one function: Tu = Tv ⇐⇒ u = v. By linearity, this is equivalent
to the condition that Tx = 0 ⇐⇒ x = 0. We will say that T is invertible if
for every y ∈ Y there is a unique x ∈ X solving Tx = y. In that case we may
define a function T−1 : Y → X such that T (T−1(y)) = y for every y ∈ Y and
T−1(T (x)) = x for every x ∈ X. This T−1 is a linear transformation since for
any y1,y2 ∈ Y and scalars a, b, once we find x1,x2 ∈ X satisfying Tx1 = y1 and
Tx2 = y2, we will have

T−1(ay1 + by2) = T−1(aTx1 + bTx2) = T−1(T (ax1 + bx2))
= ax1 + bx2 = aT−1(y1) + bT−1(y2).

If X and Y are finite dimensional vector spaces, with respective dimensions
N,M and bases P = {pn} and Q = {qm}, we may explore these existence and
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uniqueness issues from the matrix side of the correspondence T
P,Q←→ A, where

A ∈ Mat(M × N). For existence, notice that every vector x =
∑

n c(n)pn ∈ X,
expanded in P, determines a coefficient vector c = (c(1), . . . , c(N)) ∈ EN , and we
may compute the expansion coefficients b = (b(1), . . . , b(M)) ∈ EM of Tx = y =∑

m b(m)qm ∈ Y by

b = Ac =

⎛⎜⎝ A(1, 1)c(1) + · · · +A(1, N)c(N)
...

A(M, 1)c(1) + · · · +A(M,N)c(N)

⎞⎟⎠

= c(1)

⎛⎜⎝ A(1, 1)
...

A(M, 1)

⎞⎟⎠+ · · · + c(N)

⎛⎜⎝ A(1, N)
...

A(M,N)

⎞⎟⎠ , (2.51)

which is a linear combination of the N vectors (A(1, 1), . . . , A(M, 1)) through
(A(1, N), . . . , A(M,N)) of EM formed from columns of A. The set of all such
linear combinations is called the range or column space of A, and has the form
{Ax : x ∈ EN}. It is a subspace of EM , since it is a linear span, and its dimension
is no more than the smaller of N and M . Obviously, the linear system of equations
Ac = b of has a solution c if and only if b lies in this column space, so if N < M ,
there will certainly be some b ∈ EM for which Ac = b has no solution.

For uniqueness, notice that there will be some c �= 0 for which Ac = 0 in
Equation 2.51 if and only if the N columns of A are linearly dependent in EM .
They will certainly be linearly dependent if N > M , by Theorem 2.2, and c will
give a nonzero x ∈ X for which Tx = 0 through the correspondence X P←→ EN .
Hence Tx = y can have a unique solution x ∈ X for every y ∈ Y only if X and
Y have the same dimension, which means that T

P,Q←→ A is a square matrix. But
just because its matrix is square doesn’t guarantee that a linear transformation is
invertible.

On the other side of the correspondence, we will say that A ∈ Mat(N ×N) is
invertible if there is a matrix B ∈ Mat(N ×N) satisfying BA = Id. Invertibility
is equivalent to the columns forming a basis:

Lemma 2.22 Matrix A ∈ Mat(N ×N) is invertible if and only if the columns of
A are linearly independent. In that case,

1. there is a unique matrix B such that BA = Id;

2. the columns of B are linearly independent;

3. B also satisfies AB = Id.

Proof: By Equation 2.51, any linear combination of the column vectors of A
can be expressed as Ac for some column vector c = (c(1), . . . , c(N)) of expansion
coefficients. If A is invertible, then Ac = 0 implies c = BAc = 0, so the columns
of A are linearly independent.
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Conversely, since the N columns of A are linearly independent, they form a
basis for EN . By Lemma 2.11, this has a unique biorthogonal dual basis, so let
A′ be the matrix whose columns are the dual vectors. Then B

def= (A′)∗ satisfies
BA = Id, so A is invertible.

For 1: the matrix B is unique because the biorthogonal dual basis that deter-
mines A′ is unique.

For 2: note that any b ∈ EN can be written as b = Ac for some c ∈ EN since
the columns of A form a basis. Thus Bb = 0 ⇒ c = BAc = 0 ⇒ b = 0, so the
columns of B are linearly independent.

For 3: note that B is also invertible, since the columns of B are linearly inde-
pendent. So let C ∈ Mat(N × N) satisfy CB = Id. Then by the multiplicative
associativity axiom, AB = (CB)AB = C(BA)B = CB = Id. �

Since the inverse of an invertible matrix A is unique and works on both sides, it
is denoted by A−1 and is called the multiplicative inverse of A. The proof gives us
a construction for the biorthogonal dual to a basis written as a matrix A of column
vectors: it is the column vectors of (A−1)∗.

Lemma 2.23 Suppose A is a square matrix. Then A is invertible if and only if
A∗ is invertible, and we have (A∗)−1 = (A−1)∗. Equivalently, the columns of A are
linearly independent if and only if the rows of A are linearly independent.

Proof: If A is invertible, then Id = Id∗ = (AA−1)∗ = (A−1)∗A∗, so A∗ is invertible
and (A∗)−1 = (A−1)∗. The same argument applied to A∗ proves the converse
because (A∗)∗ = A.

The two statements are equivalent since the rows of A are the columns of of A∗,
and A∗ is invertible if and only if A∗ is invertible. �

Corollary 2.24 If T
P,Q←→ A, then T is invertible if and only if A is invertible,

with T−1 Q,P←→ A−1. �

Determinant

There is a simple formula for the inverse of a 2 × 2 matrix:

A =
(
a b
c d

)
⇒ A−1 =

( d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

)
=

1
ad− bc

(
d −b
−c a

)
, (2.52)

whenever ad �= bc. The quantity det(A) def= ad− bc is called the determinant of A,
and is nonzero if and only if the two columns of A are linearly independent vectors.

More generally, for each N > 0, there is a determinant function det = det(A)
defined on matrices A ∈ Mat(N × N) satisfying det(A) �= 0 if and only if A is
invertible. Specifying enough extra conditions to construct it recursively ensures
its uniqueness. One of these conditions is that det(AB) = det(A) det(B) for any
matrices A,B ∈ Mat(N×N). From these two properties, for example, we conclude
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that det(Id) = 1 and det(A−1) = 1/ det(A). We will also require that det(A∗) =
det(A).

A square matrix U ∈ Mat(N × N) is called upper triangular if U(i, j) = 0
whenever i > j. Such U is invertible if and only if there are no zeroes on the main
diagonal, so we may define det(U) = U(1, 1)U(2, 2) · · ·U(N,N). It is left as an
exercise to show that if U1, U2 are upper triangular, then their product is upper
triangular with diagonal elements U1(n, n)U2(n, n), n = 1, . . . , N , and thus det()
is multiplicative. Id is upper triangular, and this formula gives det(Id) = 1, as
required.

We likewise call a square matrix L ∈ Mat(N×N) lower triangular if L(i, j) = 0
whenever i < j, and extend the definition of det() to this case by putting det(L) =
L(1, 1)L(2, 2) · · ·L(N,N).

Rotations and rigid motions

Suppose X is an inner product space and T : X → X is an invertible linear transfor-
mation satisfying T ∗T = Id will be length preserving. This important subclass of
linear transformations, for which T ∗ = T−1, is called the unitary transformations.

Imagine for a moment how any linear transformation T acts on points in X.
T0 = 0 is a fixed point, so T is origin-preserving. Also, any subset K ⊂ X gets
transformed into the subset TK def= {Tx : x ∈ K}. For example, T maps the
line segment K = {θx + (1 − θ)y : 0 ≤ θ ≤ 1} between x and y to the set
{θTx + (1 − θ)Ty : 0 ≤ θ ≤ 1}, which is the line segment between Tx and Ty.
Thus T is line-preserving; it sends lines to lines.

Now suppose that T is unitary. Since ‖Tx‖2 = 〈Tx, Tx〉 = 〈x, T ∗Tx〉 =
〈x, x〉 = ‖x‖2, we have ‖Tx‖ = ‖x‖ for all x ∈ X. Then T is length-preserving. Also,
for any two vectors u,v ∈ X, the inner product 〈Tu, Tv〉 = 〈u, T ∗Tv〉 = 〈u,v〉 is
preserved by T . Specifically, if u is perpendicular to v, then Tu is perpendicular
to Tv. More generally, since 〈u,v〉, ‖u‖ and ‖v‖ determine the angle between
u and v, it follows that unitary transformations are angle-preserving as well as
length-preserving. Therefore, applying a unitary transformation T produces a rigid
motion which fixes the origin, and can be called a rotation about the origin2.

The inverse of a unitary transformation is also unitary: using T−1 = T ∗, we
compute (T−1)∗ = (T ∗)∗ = T = (T−1)−1. In particular, the inverse of a rotation
is also a rotation, but in the reverse direction.

Composing two rotations yields another rotation. In general, for any unitary
transformations S, T , if S∗ = S−1 and T ∗ = T−1, then (ST )∗ = T ∗S∗ = T−1S−1 =
(ST )−1, so ST is unitary.

If T : X → X is a unitary transformation on an N -dimensional inner product
space X with orthonormal basis P, then T

P,P←→ A where A ∈ Mat(N × N) is a
square matrix satisfying A∗ = A−1. We will call such matrices unitary matrices.

2The only other kind of rigid motion is translation, where x �→ x+c for some fixed c. However,
translation by c �= 0 is not a linear transformation because it does not fix 0.
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Conversely, any unitary matrix gives a unitary transformation, once an orthonormal
basis P is chosen.

For example, any two elementary basis vectors ei, ej ∈ RN , i �= j, determine
a plane, and the Givens rotation through an angle θ in that plane is given by the
unitary matrix

Gij(θ)
def= I − (eii + ejj) + cos θ (eii + ejj) + sin θ (eij − eji) , (2.53)

which is the identity matrix modified at the four intersections of rows i, j and
columns i, j to resemble the 2 × 2 plane rotation(

cos θ sin θ
− sin θ cos θ

)
.

Straightforward computation shows that Gij(θ)−1 = Gij(−θ) = Gji(θ) = G∗
ij(θ),

proving that Givens rotations are unitary.
The determinant of a unitary matrix is a complex number if the scalars are

complex, but it will have absolute value 1 since

| det(A)|2 = det(A) det(A) = det(A∗) det(A) = det(A∗A) = det(Id) = 1.

2.2.4 Solving linear systems of equations

To find the multiplicative inverse of a matrix A ∈ Mat(N×N), it is enough to find
N vectors xn, n = 1, . . . , N such that Axn = en, where en is an elementary basis
vector. Then the matrix B ∈ Mat(N ×N) whose columns are x1, . . . ,xN satisfies
AB = Id, so BA = Id and B is the inverse of A.

One standard method of solving the N ×N system of linear equations Ax = b,
for an invertible matrix A, is to reduce A to upper triangular form A′:

A =

⎛⎜⎜⎝
A(1, 1) A(1, 2) . . . A(1, N)
A(2, 1) A(2, 2) . . . A(2, N)

...
...

...
A(N, 1) A(N, 2) . . . A(N,N)

⎞⎟⎟⎠

�→ A′ =

⎛⎜⎜⎝
A′(1, 1) A′(1, 2) . . . A′(1, N)

0 A′(2, 2) . . . A′(2, N)
...

. . .
...

0 . . . 0 A′(N,N)

⎞⎟⎟⎠ . (2.54)

The same operations applied to the vector b produce b′, and Ax = b if and only
if A′x = b′. But the primed system is easily solved by back substitution, starting
with x(N) = b′(N)/A′(N,N), as long as all the diagonal elements of A′, namely
{A′(n, n) : n = 1, . . . , N}, are nonzero.

The reduction procedure is called Gaussian elimination, and it was introduced
as Equation 2.9 in the proof of Theorem 2.2. In step one of this (N − 1)-stage
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process, we find a row index π(1) such that A(π(1), 1) �= 0. This can always be
done, since the N rows of A are linearly independent. If |A(π(1), 1)| is the largest
absolute value of all in column 1, then finding π(1) is called partial pivoting3. We
then replace A(i, j) by A(i, j) − A(π(1), j)A(i, 1)/A(π(1), 1) for all i = 2, . . . , N
except i = π(1), and all j = 2, . . . , N . Thus A(i, 1) = 0 for all i �= π(1). Row π(1)
is then interchanged with row 1 to put the sole nonzero at the top of column 1.
The coefficients are then renamed as the new matrix A1, completing stage 1:⎛⎜⎜⎝
A(1, 1) A(1, 2) · · · A(1, N)
A(2, 1) A(2, 2) · · · A(2, N)

...
. . .

...
A(N, 1) A(N, 2) · · · A(N,N)

⎞⎟⎟⎠ �→

⎛⎜⎜⎝
A1(1, 1) A1(1, 2) · · · A1(1, N)

0 A1(2, 2) · · · A1(2, N)
...

...
. . .

...
0 A1(2, 2) · · · A1(N,N)

⎞⎟⎟⎠ .
To preserve the linear system, we do the same to b: replace b(i) by b(i) −

b(π(1))A(i, 1)/A(π(1), 1) for all i �= π(1), and then interchange b(1) with b(π(1)).
Denote the result by b1; then Ax = b ⇐⇒ A1x = b1.

The same procedure is then applied to the (N−1)×(N−1) submatrix {A1(i, j) :
2 ≤ i, j ≤ N}, determining π(2) and {A2(i, j) : 3 ≤ i, j ≤ N}. After a total of
N − 1 stages, the final matrix A′ def= AN−1 is upper-triangular, and the vector
b′ def= bN−1 is prepared.

Finally, the solution x to A′x = b′ is found by back substitution. Combining
all steps gives the following algorithm:

Gaussian Elimination with Partial Pivoting

gepp( b[], A[], N ):
[ 1] For k=1 to N-1, do [2] to [10]
[ 2] Find the largest value |A[m,k]|, for m in k,...,N
[ 3] If A[m,k]==0, then print "A is singular" and stop.
[ 4] If m!=k, then do [5] to [6]
[ 5] For j=k to N, interchange A[m,j] and A[k,j]
[ 6] Interchange b[m] and b[k]
[ 7] For i=k+1 to N, do [8] to [10]
[ 8] Replace A[i,k] /= A[k,k]
[ 9] For j=k+1 to N, replace A[i,j] -= A[i,k]*A[k,j]
[10] Replace b[i] -= A[i,k]*b[k]
[11] For k=N down to 1, do [12] to [13]
[12] For j=k+1 to N, replace b[k] -= A[k,j]*b[j]
[13] Replace b[k] /= A[k,k]

Forward elimination with partial pivoting takes place in steps 1–10, while steps
11–13 are the back substitution. At the end, the coordinates of the solution vector

3Full pivoting seeks to put the largest absolute value of all at position (1, 1), by finding a
column index ν(1) with |A(π(1), ν(1))| maximal among |A(i, j)|. With full pivoting, the solution
vector comes out in the order x(ν(1)), . . . , x(ν(N)).
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x are left in b[1],...,b[N]. They do not need to be re-ordered since no column
interchanges were performed on A.

The input matrix A[] is modified in stages until it is upper-triangular4 and
must at the end have nonzero elements on its diagonal. If this is cannot be done,
the program will stop at step 3 with an error message claiming that A is singular,
which means that for some b, Ax = b cannot be solved for x.

Inverses and LU decompositions

GEPP can be extended to find A−1 ∈ Mat(N × N), whenever A is nonsingular.
In the following implementation, lines with changes from the GEPP algorithm are
marked with primes:

Matrix Inversion Using Partial Pivoting

mipp( B[], A[], N ):
[ 0’] Initialize B[i,j]=0, and for i=1 to N, let B[i,i] = 1
[ 1 ] For k=1 to N-1, do [2] to [10’]
[ 2 ] Find the largest value |A[m,k]|, for m in k,...,N
[ 3 ] If A[m,k]==0, then print "A is singular" and stop.
[ 4 ] If m!=k, then do [5] to [6’]
[ 5 ] For j=k to N, interchange A[m,j] and A[k,j]
[ 6’] For j=k to N, interchange B[m,j] and B[k,j]
[ 7 ] For i=k+1 to N, do [8] to [10’]
[ 8 ] Replace A[i,k] /= A[k,k]
[ 9 ] For j=k+1 to N, replace A[i,j] -= A[i,k]*A[k,j]
[10’] For j=1 to N, replace B[i,j] -= A[i,k]*B[k,j]
[11 ] For k=N down to 1, do [12’] to [14’]
[12’] For n=1 to N, do [13’] to [14’]
[13’] For j=k+1 to N, replace B[k,n] -= A[k,j]*B[j,n]
[14’] Replace B[k,n] /= A[k,k]

The inverse of A will then be found in the double array B[].
Actually, most of the information needed to reduce b to b′ during forward

elimination is written into the lower-triangular part of A[], rather than zeroes. If we
also keep track of the interchanges π(1), π(2) . . ., and apply them across entire rows
of the matrix, then the operations on A may be performed in advance, preparing
it for separate solution of Ax = b with b to be named later.

The result is called the LU decomposition of A. It is another encoding of A’s
inverse, somewhat cheaper to compute than A−1, and with other advantages. In
the implementation below, differences from the forward elimination part of GEPP
are marked with double primes:

4At step 8, for efficiency, the subdiagonal element A[i,k] gets the precomputed multiplier
A[i,k]/A[k,k], needed many times thereafter. It should then be set to zero, if we insist that the
returned array A actually be upper-triangular.
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LU Decomposition with Partial Pivoting

lupp( A[], pi[], N ):
[0"] For k=1 to N, initialize pi[k] = k
[1 ] For k=1 to N-1, do [2] to [9]
[2 ] Find the largest value |A[m,k]|, for m in k,...,N
[3 ] If A[m,k]==0, then print "A is singular" and stop.
[4 ] If m!=k, then do [5"] to [6"]
[5"] For j=1 to N, interchange A[m,j] and A[k,j]
[6"] Interchange pi[m] and pi[k]
[7 ] For i=k+1 to N, do [8] to [9]
[8 ] Replace A[i,k] /= A[k,k]
[9 ] For j=k+1 to N, replace A[i,j] -= A[i,k]*A[k,j]

The pivot array pi[1],..,pi[N], which defines i �→ π(i), stores the interchange
information. To use it, we re-index an input array b into the order b[pi[1]],
. . . , b[pi[N]], matching the partial pivoting rearrangement of rows of A. This is
equivalent to multiplying b by the matrix P =

∑N
i=1 ei,π(i), expressed here as a

sum of elementary matrices. In other words, coefficient P (i, j) is one if j = π(i),
but zero otherwise. If we apply P to a vector b, we get a new vector Pb whose ith

coordinate satisfies Pb(i) = b(π(i)). If no interchanges are needed, we will have
π(i) = i for all i = 1, 2, . . . , N , which is the identity permutation.

The array A returned by LUPP, which we shall denote by A′′ to distinguish it
from the original matrix A, contains an upper-triangular part U . Let us identify it
as follows:

A′′ =

⎛⎜⎜⎝
u(1, 1) u(1, 2) · · · u(1, N)
l(2, 1) u(2, 2) · · · u(2, N)

...
. . .

...
l(N, 1) · · · l(N,N−1) u(N,N)

⎞⎟⎟⎠ ;

U
def=

⎛⎜⎜⎝
u(1, 1) u(1, 2) · · · u(1, N)

0 u(2, 2) · · · u(2, N)
...

. . .
0 · · · 0 u(N,N)

⎞⎟⎟⎠ . (2.55)

But we obtained U from the row-interchanged matrix PA by applying a sequence of
N − 1 forward elimination steps: LN−1 · · ·L2L1PA = U , where the factors L1, . . .
can be written as matrices, using coefficients read directly from A′′:

L1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1

−l(2, 1) 1

−l(3, 1)
. . .

... 1
−l(N, 1) 1

⎞⎟⎟⎟⎟⎟⎟⎠ , . . . ,
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LN−1 =

⎛⎜⎜⎜⎜⎝
1

1
. . .

1
−l(N,N−1) 1

⎞⎟⎟⎟⎟⎠ . (2.56)

Every coefficient not written out explicitly, or at least indicated by an ellipsis (dots),
is zero.

Now note that L−1
k is just Lk with the off-diagonal terms changed in sign:

L−1
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
. . .

1
−l(k+1, k)

...
. . .

−l(N, k)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
. . .

1
l(k+1, k)

...
. . .

l(N, k)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.57)

It is left as an exercise to prove that these formulas hold for all k = 1, . . . , N − 1.
If we now define the product

L
def= L−1

1 L−1
2 · · ·L−1

N−1, (2.58)

then we may write PA = LU , with all the information needed to determine P,L, U
returned in the arrays pi and A. It is left as an exercise to prove that L is in fact
lower-triangular.

To solve Ax = b with this decomposition, we apply the interchanges, forward
elimination, and back substitution steps only to b:

Linear System Solution from LU and Pivoting Data

sslu( b[], A[], pi[], N ):
[10] Permute b[1],...,b[N] to get b[pi[1]],...,b[pi[N]]
[11] For k=1 to N-1, do [12]
[12] For i=k+1 to N, replace b[i] -= A[i,k]*b[k]
[13] For k=N down to 1, do [14] to [15]
[14] For j=k+1 to N, replace b[k] -= A[k,j]*b[j]
[15] Replace b[k] /= A[k,k]

This is equivalent to solving PAx = LUx = Pb in three stages:

1. Apply all interchanges to b at once: b �→ Pb def= bP .

2. Apply forward elimination: bP �→ L1bP �→ · · · �→ LN−1 · · ·L1bP
def= bL.

3. Solve the upper-triangular linear system Ux = bL by back substitution.
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After factoring A = LU , we may use Equation 2.58 and the multiplicative
property of determinants to compute:

det(A) = det(L1)−1 · · ·det(LN−1)−1 det(U) = det(U),

since det(Li) = 1 for every i = 1, . . . , N − 1. But U is upper triangular, so

det(A) = det(U) = U(1, 1) · · ·U(N,N).

Pivoting information is not needed; the determinant is just the product of the main
diagonal elements left in the array A[] after LUPP:

Compute the Determinant of a Square Matrix

det( A[], N ):
[10] Compute lupp(A[],pi[],N)
[11] Let D = 1
[12] For n=1 to N, replace D *= A[n,n]
[13] Return D

This may also be done by appending lines [11]-[13] to lupp().

2.2.5 Sparse matrices

Suppose that A ∈ Mat(M × N) is the matrix representing some linear transfor-
mation with respect to fixed bases. To specify the transformation may require
listing all M × N coefficients, if A is a so-called full matrix. To compute y = Ax
in this case requires finding y(m) =

∑N
n=1A(m,n)x(n) for m = 1, . . . ,M , a total

of O(MN) operations of multiplication and addition. However, any zero matrix
coefficient contributes nothing, and some useful matrices that are mostly zeroes, or
sparse, can be specified with simple formulas.

In the examples below, we will denote by N either the index set {1, 2, . . . , N}
or the set {0, 1, . . . , N−1}. This is to accommodate the two different programming
language conventions without duplicating formulas. Thus

∑
n∈N is implemented

either as
∑N

n=1 or
∑N−1

n=0 , depending on the language. A similar interpretation will
apply to the set M .
Diagonal Matrix. Suppose N = M . If A(m,n) = 0 unless n = m, then only

the diagonal elements A(n, n) for n ∈ N need to be stored:

A =

⎛⎜⎜⎝
. . . 0

A(n, n)

0
. . .

⎞⎟⎟⎠ =
∑
n∈N

A(n, n)enn. (2.59)

Computing Ax(m) = A(m,m)x(m) for m ∈ N costs only O(N) operations. The
product of two diagonal matrices {A(n, n) : n ∈ N}, {B(n, n) : n ∈ N} is another
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diagonal matrix AB = {A(n, n)B(n, n) : n ∈ N}. A diagonal matrix A is invertible
if and only if A(n, n) �= 0 for all n ∈ N .
Permutation Matrix. Suppose N = M and A(m,n) ∈ {0, 1}5 for all n,m ∈M .

A is called a permutation matrix if A has a single 1 in each row and a single 1 in
each column. In that case there will be a one-to-one and onto function π : M →
M which gives the column index n = π(m) of the 1 in row m. We may write
T ←→ A ←→ π. Thus Tx(m) = x(π(m)) for m ∈M costs only O(M) operations.
The associated matrix is A =

∑
m∈M em,π(m). For example, the 3 × 3 matrix

associated to π(1) = 2, π(2) = 3, π(3) = 1, which we may write (1, 2, 3) �→ (2, 3, 1),
is

A =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠ . (2.60)

The product of two permutation matrices A ←→ πA and B ←→ πB is another
permutation matrix AB ←→ πB ◦πA. Note that the order is reversed. The inverse
of a permutation matrix is its transpose, which is also its adjoint since all coefficients
are real, so a permutation matrix is a unitary linear transformation. This transpose
is also a permutation matrix.
Tridiagonal Matrix. Suppose N = M . If A(m,n) = 0 unless −1 ≤ n−m ≤ 1,

then only the three diagonals in the middle of the matrix need to be stored. This
takes O(3N) memory locations. We compute Ax(m) = A(m,m − 1)x(m − 1) +
A(m,m)x(m) + A(m,m + 1)x(m + 1) for m ∈ N , handling the boundary terms
with the convention x(n) = 0 if n /∈ N and A(m,n) = 0 if m /∈ N or n /∈ N . This
also costs only O(3N) operations. The middle of the associated matrix is

A =

⎛⎜⎜⎝
. . . . . . . . .

. . . 0 A(m,m− 1) A(m,m) A(m,m+ 1) 0 . . .
. . . . . . . . .

⎞⎟⎟⎠ . (2.61)

We may also write A =
∑N

n∈N A(n, n)enn +A(n+ 1, n)en+1,n +A(n, n+ 1)en,n+1.
Neither the product of tridiagonal matrices nor the inverse of a tridiagonal matrix
is necessarily tridiagonal.
Banded Matrix. Suppose N = M . If A(m,n) = 0 unless −p ≤ n − m ≤ q,

then only the band of diagonals from p below to q above the main diagonal needs
to be stored. This takes O(N [1 + p+ q]) memory locations. Computing Ax(m) =∑m+q

n=m−pA(m,n)x(n) for 1 ≤ m ≤ N also costs only O(N [1 + p + q]) operations.

5Such an A is called a (0, 1)-matrix. Calculations with it require no multiplication operations,
which is useful if multiplication circuitry is expensive or unavailable. A (0, 1,−1) matrix has a
similar advantage.
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The associated matrix in the indexing starting at 1 is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(1, 1) A(1, 2) . . . A(1, 1 + q) 0 . . .
A(2, 1) A(2, 2) A(2, 3) . . . A(2, 2+q) 0

...

A(1+p, 1)
. . . . . .

0
. . .

...
. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.62)

The only nonzero elements of a generic middle row m of this matrix are

A(m,m−p), . . . , A(m,m), . . . , A(m,m+q).

We can write this in either indexing convention as A =
∑

m∈N

m+q∑
n=m−p

A(m,n)emn, if

we agree to skip coefficients with out-of-range indices. The product of two banded
matrices can have more bands than either factor, and the inverse of a banded matrix
need not be banded.
Decimated Averages. Suppose N = 2M is an even number. Indexing from 0,

let H ∈ Mat(M × 2M) be defined by H(m,n) = 0 unless n = 2m or n = 2m+ 1,
with H(m, 2m) = H(m, 2m + 1) = 1

2 . Then Hu(m) = 1
2 [u(2m) + u(2m + 1)] for

0 ≤ m < M ; this is the sequence of averages of adjacent pairs in u. Then

H =

⎛⎜⎜⎜⎝
1
2

1
2 0 0 0 . . . 0

0 0 1
2

1
2 0 . . . 0

...
. . .

...
0 0 0 . . . 0 1

2
1
2

⎞⎟⎟⎟⎠ =
1
2

∑
m∈M

(em,2m + em,2m+1) . (2.63)

Notice that HH∗ = 1
2Id ∈ Mat(M ×M), while 2H∗H ∈ Mat(2M × 2M) is an

orthogonal projection from E2M onto the M -dimensional subspace spanned by the
rows of H .
Decimated Differences. Suppose N = 2M is an even number. Indexing from

0, let G ∈ Mat(M × 2M) be defined by G(m,n) = 0 unless n = 2m or n = 2m+1,
with G(m, 2m) = −1 and G(m, 2m+ 1) = +1. Then Gu(m) = u(2m+ 1)− u(2m)
for 0 ≤ m < M ; this is the sequence of differences of adjacent pairs in u. Then

G =

⎛⎜⎜⎝
−1 1 0 0 0 . . . 0
0 0 −1 1 0 . . . 0
...

. . .
...

0 0 0 . . . 0 −1 1

⎞⎟⎟⎠ =
∑

m∈M

(em,2m+1 − em,2m) . (2.64)

Notice that GG∗ = 2Id ∈ Mat(M × M), while 1
2G

∗G ∈ Mat(N × N) is an
orthogonal projection from E2M onto the M -dimensional subspace spanned by the
rows of G. With the decimated averages matrix H , we have two properties:
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Independence: GH∗ = HG∗ = 0 ∈ Mat(M ×M). Thus the col-
umn space of G∗ is orthogonal to the column space of H∗. As a
consequence, for all x ∈ E2M , we have G∗Gx ⊥ H∗Hx.

Completeness: 2H∗H + 1
2G

∗G = Id ∈ Mat(2M × 2M). Thus every
x ∈ E2M may be written as x = s + d, for some s in the M -
dimensional column space of H∗ and some d in the M -dimensional
column space of G∗.

Running Averages. Fix K > 1 and for 0 ≤ m ≤ N −K and 0 ≤ n < N let

A(m,n) =
{

1
K , if m ≤ n < m+K;
0, otherwise.

(2.65)

Then Ax(m) is the average of the K components of x starting with x(m). The
associated matrix is⎛⎜⎜⎜⎝

1
K

1
K . . . 1

K 0 0 . . . 0
0 1

K . . . 1
K

1
K 0 . . . 0

...
. . .

...
0 0 . . . 0 1

K
1
K . . . 1

K

⎞⎟⎟⎟⎠ =
1
K

∑
m∈M

m+K−1∑
n=m

em,n. (2.66)

As usual, out-of-range coefficients are set to zero.

2.3 Exercises

1. How many vertices and edges are there in the 5-cube, the unit cube in Euclid-
ean 5-space? Find a formula in terms of N for the number of vertices and
edges of an N -cube.

2. Find an example subspace of RN of dimension k for each k = 0, 1, . . . , N .

3. Show that the system of inequalities 2.14, 2.15, and 2.16 is sharp for every N
by finding example vectors in CN that give equality.

4. Prove that the following are equivalent:

(i) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ and ‖ax‖ = |a| ‖x‖, for all vectors x,y and scalars
a;

(ii) ‖ax + by‖ ≤ |a| ‖x‖ + |b| ‖y‖, for all vectors x,y and scalars a, b.

5. Show that for any subset Y of an inner product space X, we have Y ∩Y⊥ ⊂
{0}, and Y ⊂ (Y⊥)⊥. (This is Lemma 2.5.)

6. Suppose that Y = span {yn : n = 1, . . . , N}. Show that if 〈x,yn〉 = 0 for all
n, then x ∈ Y⊥. (This is Lemma 2.6.)
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7. Find an orthonormal basis for the subspace of E4 spanned by the vectors
x = (1, 1, 1, 1), y = (1, 0, 1, 0), and z = (1, 0, 0, 1).

8. Let {e1, . . . , eN} be the standard basis vectors of EN (defined by Equation
2.7) and, for notational convenience, put eN+1

def= 0. Show that {f ′n = en −
en+1 : n = 1, . . . , N} (see Equation 2.34) is the biorthogonal dual of the basis
{fn = e1 + · · · + en : n = 1, . . . , N} (see Equation 2.8).

9. Prove that the inner product given by the Riemann integral

〈u, v〉 def=
∫ 1

0

u(t) v(t) dt

is defined for all continuous functions u = u(t) and v = v(t) on 0 ≤ t ≤ 1,
and is Hermitean symmetric, nondegenerate, and linear.

10. Prove that the operator norm ‖·‖op satisfies the norm axioms and is submul-
tiplicative.

11. Prove that the Hilbert–Schmidt norm ‖·‖HS defined by Equation 2.44 satisfies
the norm axioms and is submultiplicative.

12. Suppose that A,B ∈ Mat(M ×N). Prove Equation 2.47:

〈A,B〉 = tr (A∗B) = tr (BA∗) = tr (AB∗) = tr (B∗A).

Deduce that ‖A‖HS =
√

tr (A∗A) =
√

tr (AA∗).

13. Suppose that Y = {y1, . . . ,yN} is a finite orthonormal subset of an inner
product space X. Prove that the transformation PY defined by

PYx def=
N∑

k=1

〈yk,x〉yk

is an orthogonal projection onto spanY. (This establishes Equation 2.49.)

14. Suppose that X is an infinite-dimensional inner product space and Y = {yn :
n ∈ Z+} is an orthonormal subset of X. For any x ∈ X and all n = 1, 2 . . .,
put c(n) = 〈yn,x〉 and define the partial sums

xN =
N∑

n=1

c(n)yn, N = 1, 2, . . . .

a. Prove Bessel’s inequality: For any N = 1, 2, . . .,

N∑
n=1

|c(n)|2 = ‖xN‖2 ≤ ‖x‖2.
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b. Prove Parseval’s formula:

lim
N→∞

‖xN‖2 =
∞∑

n=1

|c(n)|2 = ‖x‖2 ⇐⇒ lim
N→∞

‖x− xN‖ = 0.

15. Prove that the linear transformation T : �2 → �2 defined by

T (x1, x2, . . .) = (x1, 2x2, . . . , nxn, . . .)

is unbounded. (This is example 5 in section 2.2.)

16. Prove that Gij(θ)−1 = Gij(−θ) = Gji(θ) = G∗
ij(θ), where i �= j and Gij(θ) is

a Givens rotation as defined in Equation 2.53.

17. Prove Equation 2.57, namely, that for all k = 1, . . . , N − 1,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
l(k+1, k)

...
. . .

l(N, k) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−l(k+1, k)

...
. . .

−l(N, k) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

18. Prove that the product of two lower-triangular N × N matrices is lower-
triangular, and that the product of two upper-triangular N × N matrices is
upper-triangular.

19. Write a computer program to visualize the rotated four-dimensional unit cube.
Have it perform the following steps:

1. Choose six angles {θij : 1 ≤ i < j ≤ 4} from user input.

2. Apply the six Givens rotations {Gij(θij) : 1 ≤ i < j ≤ 4}, in a fixed
order, to all the vertices Q0, . . . ,Q15 of the four-dimensional unit cube,
as listed in Table 2.2.

3. Find the orthogonal projection into xyz-space of the rotated vertices.

4. Find the perspective projection onto the xy-plane of the points in xyz-
space.

5. Connect the vertices in the xy-plane with the edges listed in Table 2.2,
and display the resulting graphic.
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Chapter 3

Time and Frequency

3.1 Fourier Analysis

The amount of work needed to compute a transformation of a function depends
quite heavily on the way it is represented by the computer. There are many ad-
vantages to using combination of more basic functions. In the early 19th century,
Jean-Baptiste Joseph Fourier chose sines and cosines as building blocks because he
could obtain easy formulas for their derivatives. His work, augmented by many
other researchers, showed that any given smooth function can be approximated
arbitrarily well by a finite linear combination of sines and cosines. The number
of components depends only on the smoothness of the target function and the
desired degree of approximation. Such expansions provide compact descriptions
of complicated functions and simplify the transmission and display of multimedia
information.

In addition, a Fourier sine component such as A sin(2πωt− δ) has three identi-
fying parameters with physical meaning: its amplitude A, its frequency ω, and its
initial phase δ. Thus, the analysis of a complicated function into its Fourier sine
and cosine components splits it into parts labeled for content.

The formulas used in Fourier analysis are the same as those for finding expan-
sions of vectors in an inner product space: let {en = en(t)} be an orthonormal
basis for an inner product space X of functions, and let f = f(t) be an arbitrary
function in X . Then

f =
∑

n

〈en, f〉 en.

There are various technical difficulties to overcome when the index n ranges over
an infinite set such as Z, even though any given Fourier expansion will ultimately
be truncated to a finite series for computation. Also, Fourier’s choice of sines and
cosines for the basis {en} has certain peculiarities, and some seemingly harmless
combinations with other approximations can result in large errors. Still, discrete
Fourier transforms are the single most important process applied to digital signals.

M.V. Wickerhauser, Mathematics for Multimedia, Applied and Numerical 
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3.1.1 Periodic functions

A function f = f(t) defined at all real t is called periodic, or T -periodic, if there is
some T > 0 such that

f(t) = f(t+ T ), for every number t ∈ R. (3.1)

If such a T exists, then f(t) = f(t + 2T ) = f(t + 3T ) = f(t − T ) = f(t − 2T ),
and so on, for every t ∈ R. Any such T is called a period of f . Some natural
examples are trigonometric functions like sine and cosine, which are 2π-periodic.
Here it is common to refer to “the” period since 2π is the least positive T that
works. Another easy example is any constant function, but this is T -periodic for
all T > 0 and has no least period T > 0.

All values of a T -periodic function are determined by its values on the interval
[0, T ), or more generally on any period interval [a, a + T ) or (a, a + T ]. Thus,
computing sin t for 0 ≤ t < 2π or equivalently for −π < t ≤ π determines its values
at every t.

The T -periodization of an arbitrary function f = f(t) is the new function defined
by the infinite sum

fT (t) =
∞∑

k=−∞
f(t+ kT ), for any number t ∈ R. (3.2)

If f is continuous and decreases to 0 rapidly enough as t tends to ±∞, then the
series converges and the result is T -periodic:

Lemma 3.1 Suppose that f = f(t) is a function defined on R such that the integral∫ b

a
f(t) dt exists on every interval [a, b] ⊂ R, and such that |f(t)| < C/|t|2 for some

constant C > 0 and all t ∈ R. Then

a. The improper integral
∫∞
−∞ f(t) dt exists.

b. For any T > 0, the T -periodization fT of Equation 3.2 exists at every t, is
T -periodic, is integrable on each period interval [a, a+ T ], and satisfies∫ ∞

−∞
f(t) dt =

∫ T

0

fT (t) dt =
∫ a+T

a

fT (t) dt, for every a ∈ R.

Proof: Define In =
∫ n

−n
f(t) dt for every n ∈ Z+. Then if m ≥ n ≥ N ∈ Z+, we

have

|Im − In| =
∣∣∣∣∫ m

−m

f(t) dt−
∫ n

−n

f(t) dt
∣∣∣∣

≤
∫ −n

−m

|f(t)| dt+
∫ m

n

|f(t)| dt

≤ 2C
∫ ∞

N

dt

t2
= 2C/N,
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so {In : n = 1, 2, . . .} is a Cauchy sequence. Call its limit I∞; then similar estimates
show that for every ε > 0 there is an Nε ∈ Z+ such that | ∫ b

−a
f(t) dt − I∞| < ε

whenever a, b > Nε. Thus
∫∞
−∞ f(t) dt = I∞ exists.

For t ∈ [0, T ], the series fT (t) def=
∑

n f(t + nT ) converges absolutely by com-
parison with

∑
n=0 C/|nT |2. For other intervals [nT, (n+1)T ], the same argument

works after a change of summation index. Hence fT is defined on all of R. The
same argument also shows that fT is T -periodic.

To compare integrals, note that for any two positive integers N,M , we have∫ T

0

M−1∑
n=−N

f(t+ nT ) dt =
M−1∑

n=−N

∫ T

0

f(t+ nT ) dt

=
M−1∑

n=−N

∫ (n+1)T

nT

f(t) dt =
∫ MT

−NT

f(t) dt.

Taking the limit N,M → ∞ gives the first claimed equality.
Finally, write a = a′ + nT , where n = �a/T � is the greatest integer in a/T , and

a′ = a − nT is the nonnegative fractional part left over. Then since fT (t + nT ) =
fT (t) at every t ∈ R, we have∫ a+T

a

fT (t) dt =
∫ a′+T

a′
fT (t) dt =

∫ T

a′
fT (t) dt+

∫ a′+T

T

fT (t) dt =
∫ T

0

fT (t) dt.

The last step is the change of variable t ← t + T followed by recombining the
resulting integrals. �

More careful analysis reveals that the weaker condition of absolute integrability,
which requires some decrease on average as t → ±∞, is enough to give the same
conclusion. See, for example, Theorem 10.26 on page 309 of Apostol’s Mathematical
Analysis, in the further readings.

For the first example, we consider three periodizations of the hat function h
with k = n = 0 defined in Equation 2.22:

h(t) =

{ 0, if t < −1 or t > 1;
t+ 1, if −1 ≤ t ≤ 0;
1 − t, if 0 ≤ t ≤ 1.

This vanishes outside [−1, 1], so it certainly satisfies the decay-at-infinity condition.

T = 1. The 1-periodization of h is

h1(t) =
∑
k∈Z

h(t+ k) = h(t+ k1) + h(t+ k2),

where k1, k2 are integers satisfying t+ k1 ∈ [−1, 0) and t+ k2 ∈ [0, 1). Thus
−1 − t ≤ k1 < −t and −t ≤ k2 < −t+ 1, so k2 = �−t− 1� and k2 = �−t� =
k1 + 1. But then h1(t) = (t + k1) + 1 + 1 − (t + k2) = 1 for all t ∈ R: the
1-periodized hat function is the constant function 1.
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T = 2. For each t ∈ R, suppose that t + 2k ∈ [−1, 1). Then −1−t
2 ≤ k < 1−t

2 =
−1−t

2 + 1, so there is a unique k0 = �−t−1
2 � ∈ Z such that h1(t) = h(t+ 2k0).

The graph of h2 consists of adjacent, nonoverlapping copies of h.

T = 3. Suppose that t + 3k ∈ [−1, 1) for some integer k. Then −3k − 1 ≤ t <
−3k+1, so tmust be within 1 of an integer multiple of 3. If not, then h3(t) = 0
is given by a sum of zeroes. The graph of h3 thus consists of nonoverlapping
copies of h, centered at integer multiples of 3, separated by gaps of the zero
function on intervals of the form (3k + 1, 3k + 2), k ∈ Z.

For another example, consider the function

f(t) =
{

2−t, if t ≥ 0,
0, otherwise.

This satisfies the rapid decay condition |f(t)| < 1/t2 as t→ ±∞, and it is certainly
integrable on any interval [a, b]. To compute the 1-periodization, note that t+ k ≥
0 ⇐⇒ k ≥ −t ⇐⇒ k ≥ "−t# = −�t�, so that the substitution k ← k′ − �t� gives

∑
k∈Z

f(t+ k) =
∞∑

k′=0

2−k′+�t�−t = 2 · 2�t�−t,

which consists of adjacent, nonoverlapping copies of the portion of g(t) = 2 · 2−t

that lies over [0, 1).
It is difficult to derive properties of a function from its periodization since every

value of a periodized function is the sum of infinitely many values of the original
function at arbitrarily distant points.

A function f = f(x, y) of two variables may be S-periodized in the first and T -
periodized in the second by the formula fST (x, y) def=

∑
m,n∈Z f(x+mT, y+ nS).

In general, given a vector of periods T = (T (1), . . . , T (N)), we may periodize a
function f = f(x) of N variables x = (x(1), . . . , x(N)) by

fT(x) def=
∑

k∈ZN

f(x(1) + k(1)T (1), . . . , x(N) + k(N)T (N)), (3.3)

where the sum runs over all lists k = (k(1), . . . , k(N)) of N integers.

3.1.2 Localization

A periodic function f is like the signal from a stuck record, repeating the same
notes over and over. A more general signal will change with time and should be
localized for study. The simplest way to localize is to restrict to an interval of
interest, setting the function to zero outside. Thus, suppose f = f(t) is defined at
all real t. The localization of f to a closed and bounded interval I = [a, b] ⊂ R is
the function

1If(t) =
{
f(t), if t ∈ I,
0, otherwise.

(3.4)
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Figure 3.1: Cosine-based window functions with 1 and 2 continuous derivatives

In other words, localization to I multiplies f by 1I , the indicator function of the
interval. The definition may also be applied to other kinds of intervals, like I = (a, b)
or I = [a, b).

In general, a function f = f(t) is said to have compact support if there is some
closed and bounded interval I = [a, b] such that f(t) = 0 for all t /∈ I. Such an
f is said to be supported on I. A simple example is the zero function, which has
compact support using any I. Less special is 1, which has compact support and
is supported on [0, 1]. The function g(t) = e−t2 , which is never zero and therefore
not compactly supported, may be described as supported on all of R. But the
restriction of any function f to a bounded interval I will have compact support,
and 1If will be supported in I.

Even if f is continuous, its localization need not be: there may be jump disconti-
nuities at the endpoints a and b of I. But if f(a) = f(a+) = 0 and f(b) = f(b−) = 0
and f is continuous at each t ∈ (a, b), then 1If is continuous. If in addition f sat-
isfies a Lipschitz condition on I, then the localization 1If will satisfy a Lipschitz
condition on all of R.

A more sophisticated solution is to smooth the cut by pinching the ends down
to zero. Let u = u(t) be a “window function” such as the one defined below, which
is called a Hanning window:

u(t) =
{

0, if t < 0 or t > 1;
1
2 − 1

2 cos 2πt, if 0 ≤ t ≤ 1. (3.5)

its graph is plotted in the left half of Figure 3.1. This function u has one continuous
derivative: u′(0+) = 0 + π sin(2π0+) = 0 = u′(0−) and u′(1−) = 0 + π sin(2π−) =
0 = u′(1+), so the derivatives of the pieces match up at t = 0 and t = 1.

The Hanning window is one member of a family of functions of the form

u(t) =
{
A−B cos 2πt+ C cos 4πt, if t ∈ [0, 1],
0, otherwise.

Such a u can be made smoother by choosing C �= 0 as follows: note that for all
windows in the family, u(0+) = A−B + C = u(1−), u′(0+) = u′(1−) = 0, and

u′′(0+) = 4π2B − 16π2C = u′′(1−).
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Figure 3.2: Wide Hanning window function.

Since u(0−) = u′(0−) = u′′(0−) = 0 and u(1+) = u′(1+) = u′′(1+) = 0, continuity
at 0 and 1 of u and its first two derivatives requires A−B+C = 0 and B−4C = 0.
It is also convenient for u to have maximum value 1, but this must occur at the
critical point t = 1

2 where u(t) = A+ B + C. The resulting system of three linear
equations has a unique solution A = 0.375, B = 0.500, and C = 0.125, which gives
the window illustrated in the right half of Figure 3.1. It has an additional nice
property since cos 4πt = 2 cos2 2πt− 1:

u(t) =
1
8
(3 − 4 cos 2πt+ cos 4πt) =

1
4
(1 − cos 2πt)2 ≥ 0,

for all t ∈ [0, 1]. Evidently, this window is the square of the Hanning window,
suggesting a generalization: let un(t) = [(1−cos 2πt)/2]n for t ∈ [0, 1], with un(t) =
0 elsewhere. Then un will be continuous and will have n continuous derivatives, as
well as being nonnegative with maximum value 1 at t = 1

2 . We may expand un as
a sum of cosines; it will have n+ 1 terms since[
1 − cos 2πt

2

]n
=
a(0)
2

+
n∑

j=0

a(j) cos 2πjt; a(j) def= 2
n∑

k=j

(
n

k

)(
2k
k−j
)(−1

4

)k

.

This expansion is called the Fourier series for un.
Rather than pinch off the signal within the interval of interest to get a smooth

function, we can mix in parts of the signal just outside the interval by using a wider
window. For example, let I = [0, 1] and define w = w(t) by

w(t) =
{

0, if t < − 1
2 or t > 3

2 ;
(1 + sinπt)/2, if − 1

2 ≤ t ≤ 3
2 . (3.6)

Its graph is plotted in Figure 3.2. This is just the Hanning window composed with
the substitution t ← 1

2 (t + 1
2 ), and has the same smoothness: continuity and one

continuous derivative.

Periodic extension

A function localized to a bounded interval I can always be periodized since the sum
in Equation 3.2 will be finite for any T > 0. A natural choice of period is T = |I|,
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a b

0 a b

Figure 3.3: Top: Graph of an example function f defined on I = [a, b). Bottom:
Partial graph of the periodic extension fI of f . Note the jump discontinuities and
the agreement with f on I.

for which the sum will have exactly one1 potentially nonzero term. So, define the
periodic extension of f from I = [a, b) to be

fI(t) =
∑
k∈Z

(1If) (t+ k|I|). (3.7)

In fact fI(t) = f(t0) for all t ∈ R, where t0 = t0(t) ∈ I is the unique number such
that t− t0 is an integer multiple of |I| = b− a. This relationship may be described
by the equation

t0 = t mod I. (3.8)

Then fI is |I|-periodic since for all t ∈ R, fI(t + |I|) = f ((t+ |I|) mod I) =
f (t mod I) = fI(t). Also, fI agrees with f on I. Periodic extension is depicted in
Figure 3.3.

Even if f is continuous, fI need not be unless there are no jump discontinuities
at the points t = a + k(b − a) “between periods,” where k is an integer. But
continuity is guaranteed simply by requiring f(a) = f(b):

Lemma 3.2 Suppose that f = f(t) is defined on [a, b] with f(a) = f(b). Put
I = [a, b) and let fI be the periodic extension of f from I. Then

1. If f is continuous on [a, b], then fI is continuous on R.

2. If f ∈ Lip[a, b], then fI ∈ Lip(R).

Proof: For 1: Given t ∈ R, let t0 = t mod I. If t0 ∈ (a, b), then fI(t−) = f(t0−) =
f(t0) = fI(t), and fI(t+) = f(t0+) = f(t0) = fI(t), since f is continuous at t0.
Thus fI will be continuous at t.

1Endpoints may conspire, so we will always assume that one of them is missing: I = [a, b) or
I = (a, b].
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Otherwise t0 = a, and then fI(t−) = fI(b−) = f(b−) = f(b) = f(a) = fI(a),
and fI(a+) = f(a+) = f(a) = fI(a), since f is continuous from the left at a and
from the right at b. Again, fI will be continuous at t.

For 2: Given s, t ∈ R, let s0 = s mod I and t0 = t mod I. If |s0 − t0| ≤ |s− t|,
then |fI(s)−fI(t)| = |f(s0)−f(t0)| ≤ C|s0−t0| ≤ C|s−t|, where C is the constant
in the Lipschitz condition for f .

Otherwise, |s0 − t0| > |s − t|. We may assume without loss of generality that
a ≤ s0 ≤ t0 < b, and then |s0 − t0 + (b − a)| < |s − t|. Since f(a) = f(b),
we may write |fI(s) − fI(t)| = |f(s0) − f(t0)| = |f(s0) − f(a) + f(b) − f(t0)| ≤
|f(s0)−f(a)|+ |f(b)−f(t0)| ≤ C|s0−a|+C|b− t0| = C|s0− t0 +(b−a)| < C|s− t|.

�

To insure that fI has as many derivatives as f , we must match the derivatives
at a and b as well:

Corollary 3.3 Suppose that f = f(t) is defined on [a, b] with f(a) = f(b). Put
I = [a, b) and let fI be the periodic extension of f from I. Suppose further that f is
d-times differentiable on (a, b), with the endpoint limits agreeing for every 0 ≤ n ≤ d
as follows:

f (n)(a+) def= lim
t→a+

f (n)(t) = lim
t→b−

f (n)(t) def= f (n)(b−).

Then fI is d-times differentiable on all of R.

Proof: Apply Lemma 3.2 successively to f, f ′, . . . , f (d), and define f (n)(a) =
f (n)(b) = f (n)(a+) = f (n)(b−) for n = 0, 1, . . . , d. �

A function f = f(t) is said to be d-times continuously differentiable on R,
or in the class Cd(R), for some nonnegative integer d, if f(t) and the derivatives
f ′(t), f ′′(t), . . . , f (d)(t) exist at each t ∈ R and give functions f, f ′, . . . , f (d) contin-
uous on R. Similar definitions can be made for the class Cd(I) on any open interval
I = (a, b). Such functions are also said to be smooth of degree d.

If f belongs to Cd(R) for all integers d ≥ 0, we say that f is smooth, without
qualification, or that f belongs to C∞(R). Some examples of smooth functions are:
polynomials, including constant functions; sine, cosine, and exponential functions;
arctangent; hyperbolic sine, cosine, and secant. Products, sums, compositions,
derivatives, and antiderivatives of smooth functions are also smooth, as is shown
by elementary calculus. In particular, for products of smooth functions, we use
Leibniz’ rule for the nth derivative of a product of two functions:

(fg)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k). (3.9)

Here f (0) def= f and g(0) def= g. Otherwise, f (k) is the kth derivative of f , while
g(n−k) is the (n − k)th derivative of g. The binomial coefficient symbol appearing
in the sum is the integer coefficient of the xk term in (x+ 1)n, expanded out:(

n

k

)
def=

n!
k!(n− k)!

. (3.10)
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Smooth local periodization

After localization with a power un of the Hanning window of Equation 3.5, the
function unf satisfies [unf ](d)(0) = [unf ](d)(1) = 0 for d = 0, . . . , n. Hence, its
1-periodic extension will be in Cd(R) by Corollary 3.3. However, a portion of the
signal energy within the window is lost, and the operation is not invertible.

If instead we use the wide Hanning window of Equation 3.6, then the 1-periodic
function

f1(t)
def=
∑
n∈Z

[wf ](t+ n),

where wf(t) def= w(t)f(t), contains parts of the signal on [− 1
2 ,

3
2 ]; the parts from

outside [0, 1] are said to be aliased into the period interval by the summation. Notice
that there are at most two nonzero terms in the sum for any t. This also makes
the operation noninvertible.

Periodized, the wide Hanning window by itself becomes identically 1 because

∑
n∈Z

w(t+ n) =

{
1
2 [2 + sinπt+ sinπ(t+ 1)], if 0 ≤ t < 1

2 ;
1
2 [2 + sinπ(t− 1) + sinπt], if 1

2 ≤ t < 1,
= 1,

since sin θ + sin(θ ± π) = 0 for all θ. The Fourier series of this periodization has a
single trivial term, namely 1 = cos 0t. One consequence is that if f is 1-periodic,
then f and the 1-periodization of wf are identical.

Powers of the wide Hanning window do not periodize to the constant function,
but there is another way to generalize. Take w as in Equation 3.6, put w0 = w,
and for m > 0 define

wm(t) =
{
wm−1(1

2 sinπt), if t ∈ [− 1
2 ,

3
2 ],

0, otherwise.

Using Leibniz’ rule, it is possible to show that wm has 2m continuous derivatives
on R. Figure 3.4 shows w4 for comparison with Figure 3.2. These smoother wide
Hanning windows periodize to the constant function 1 as well: for any m ≥ 0,∑

n∈Z

wm(t+ n) = 1.

There is a third way to localize a function and make it periodic while preserving
any smoothness it had originally. This is done by “fraying” the function around the
endpoints of an interval, introducing particular boundary conditions, then “splic-
ing” the pieces back together smoothly after periodic extension. It is done in such
a way that the aliased portion of the signal from outside the interval cancels itself
during periodization, making the operation invertible.

Let r = r(t) be a function in the class Cd(R) for some 0 ≤ d ≤ ∞, satisfying
the following conditions:

|r(t)|2 + |r(−t)|2 = 1 for all t ∈ R; r(t) =
{

0, if t ≤ −1,
1, if t ≥ 1. (3.11)
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Figure 3.4: Smoother wide Hanning window function with four continuous deriva-
tives.
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Figure 3.5: Example of a once-differentiable rising cut-off function.

The function r need not be increasing or even real-valued. It is called a rising
cut-off function because r(t) rises from being identically zero to being identically
one as t goes from −∞ to +∞. A general construction for such functions is given
in Appendix B. One example of a real-valued, continuous rising cut-off function is
the following:

r(t) =

{ 0, if t ≤ −1,
sin
[

π
4 (1 + t)

]
, if −1 < t < 1,

1, if t ≥ 1.
(3.12)

Smoother functions (r ∈ Cd for d > 1) can be obtained by repeatedly replacing
t with sin(πt/2):

r0(t)
def= r(t); rm+1(t)

def= rm(sin
π

2
t). (3.13)

Proof by induction may be used to show that rm(t) has 2m−1 vanishing derivatives
at t = +1 and t = −1, so that rm ∈ C2m−1. The case r1 ∈ C1 implemented here is
depicted in Figure 3.5.

Once-Differentiable Rising Cutoff Function

r1( t ):
[0] If t < -1, then return 0
[1] If t > 1, then return 1
[2] Return sin(0.25*PI*(sin(0.5*PI*t)+1.0))
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Now define a fraying operator F and a splicing operator S as follows:

Fu(t) =

⎧⎨⎩ r(t)u(t) + r(−t)u(−t), if t > 0,
r̄(−t)u(t) − r̄(t)u(−t), if t < 0,
u(0), if t = 0;

(3.14)

Su(t) =

⎧⎨⎩ r̄(t)u(t) − r(−t)u(−t), if t > 0,
r(−t)u(t) + r̄(t)u(−t), if t < 0,
u(0), if t = 0.

(3.15)

Since Fu(t) = u(t) and Su(t) = u(t) if t > 1 or t < −1, both may be said to have
[−1, 1] as their reach interval. There is nothing special about the point 0 or the
reach 1. F and S can be moved to the reach interval [α− ε, α+ ε] with the formulas
of Equation 3.20 further on. The midpoint α is then the fraying or splicing point,
and ε ≥ 0 is the reach.

Fraying and splicing operators are linear transformations on the vector space of
functions on R. If they use the same fixed rising cut-off function r over the same
reach interval, then they are inverses. For example, fraying at 0 with reach 1, we
have FSu(0) = u(0), SFu(0) = u(0), and for all t �= 0,

FSu(t) =
{
r(t)Su(t) + r(−t)Su(−t), if t > 0,
r̄(−t)Su(t) − r̄(t)Su(−t), if t < 0;

=

⎧⎪⎪⎨⎪⎪⎩
r(t)[r̄(t)u(t) − r(−t)u(−t)]

+r(−t)[r(t)u(−t) + r̄(−t)u(t)], if t > 0,
r̄(−t)[r(−t)u(t) + r̄(t)u(−t)]

−r̄(t)[r̄(−t)u(−t) − r(t)u(t)], if t < 0;
=
(|r(t)|2 + |r(−t)|2)u(t) = u(t);

SFu(t) =
{
r̄(t)Fu(t) − r(−t)Fu(−t), if t > 0,
r(−t)Fu(t) + r̄(t)Fu(−t), if t < 0;

=

⎧⎪⎪⎨⎪⎪⎩
r̄(t)[r(t)u(t) + r(−t)u(−t)]

−r(−t)[r̄(t)u(−t) − r̄(−t)u(t)], if t > 0,
r(−t)[r̄(−t)u(t) − r̄(t)u(−t)]

+r̄(t)[r(−t)u(−t) + r(t)u(t)], if t < 0;
=
(|r(t)|2 + |r(−t)|2)u(t) = u(t),

The values Fu(α) and Su(α) at the fraying or splicing point α do not matter
in practice since in any implementation using samples of u at integers, we can use
α = − 1

2 to avoid using or defining Fu or Su there. Likewise, in practice we use a
nonnegative integer e as the reach. For greater generality of implementation, we
split the array of samples into its two halves: the samples uneg[-e],. . . ,uneg[-1]
to the left of the fraying point, and the samples upos[0],. . . ,upos[e-1] to the right
of the fraying point. The results replace the values in the input arrays:
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Figure 3.6: Action of fraying on the constant function u(t) = 1.

Fraying at a Point Between Two Arrays of Samples

fray( uneg[], upos[], e ):
[0] For k=0 to e-1, do [1] to [4]
[1] Let t = (k+0.5)/e, let rp = r1(t), let rn = r1(-t)
[2] Let up = upos[k], let un = uneg[-1-k]
[3] Let upos[ k ] = rp*up + rn*un
[4] Let uneg[-1-k] = rp*un - rn*up

Splicing is implemented in virtually the same way, with just a change of sign in
steps 3 and 4:

Splicing at a Point Between Two Arrays of Samples

splice( uneg[], upos[], e ):
[0] For k=0 to e-1, do [1] to [4’]
[1] Let t = (k+0.5)/e, let rp = r1(t), let rn = r1(-t)
[2] Let up = upos[k], let un = uneg[-1-k]
[3’] Let upos[ k ] = rp*up - rn*un
[4’] Let uneg[-1-k] = rp*un + rn*up

Figure 3.6 shows Fu for the example u(t) ≡ 1, using the cut-off function r1
defined in Equation 3.13. Notice how fraying introduces a very particular discon-
tinuity at 0. Splicing takes any function with such a break and repairs it into a
smooth function.

Lemma 3.4 Suppose r ∈ Cd(R) for some 0 ≤ d < ∞. If u ∈ Cd(R), then Fu
has d continuous derivatives in R \ {0}, and for all 0 ≤ n ≤ d there exist limits
[Fu](n)(0+) and [Fu](n)(0−) which satisfy the following conditions:

[Fu](n)(0+) = 0 for odd n; [Fu](n)(0−) = 0 for even n. (3.16)

Conversely, suppose that u belongs to Cd(R \ {0}) and has limits u(n)(0+) and
u(n)(0−) for all 0 ≤ n ≤ d satisfying the equations

u(n)(0+) = 0 for odd n; u(n)(0−) = 0 for even n. (3.17)

Then Su(0+) = Su(0−), and if we define Su(0) = limt→0 Su(t), then Su will
belong to Cd(R).
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Proof: The smoothness of Fu and Su on (0,∞) and (−∞, 0) is elementary.
To prove Equation 3.16, calculate the one-sided limits of the derivatives of Fu

with Leibniz’ rule, Equation 3.9. Since r(n−k)(0+) = r(n−k)(0−) = r(n−k)(0), the
resulting expressions factor as follows:

[Fu](n) (0+) =
n∑

k=0

(
n

k

)
r(n−k)(0)

[
u(k)(0+) + (−1)nu(k)(0−)

]
; (3.18)

[Fu](n) (0−) =
n∑

k=0

(
n

k

)
(−1)kr(n−k)(0)

[
(−1)nu(k)(0−) − u(k)(0+)

]
. (3.19)

If n is odd, with 0 ≤ n ≤ d, then u(k)(0+) − u(k)(0−) = 0 in the right-hand side
of Equation 3.18 since u(k) is continuous at zero for all 0 ≤ k ≤ d. If n is even,
then u(k)(0−) − u(k)(0+) = 0 in the right-hand side of Equation 3.19 for the same
reason.

To prove that defining Su(0) = Su(0+) gives Su(t) all d continuous derivatives
at t = 0, use Leibniz’ rule and Equation 3.17 to evaluate the following one-sided
limits for 0 ≤ n ≤ d:

[Su](n) (0+) − [Su](n) (0−) =

=
n∑

k=0

(
n

k

)[
r(n−k)(0)u(k)(0+) − (−1)nr(n−k)(0)u(k)(0−)

− (−1)n−kr(n−k)(0)u(k)(0−) − (−1)kr(n−k)(0)u(k)(0+)
]

=
n∑

k=0

(
n

k

)[{
1 − (−1)k

}
r(n−k)(0)u(k)(0+)

− (−1)n
{
1 + (−1)k

}
r(n−k)(0)u(k)(0−)

]
.

But
{
1 − (−1)k

}
u(k)(0+) = 0 and

{
1 + (−1)k

}
u(k)(0−) = 0 for all k, so the

difference is zero. Thus limt→0 [Su](n) (t) exists for 0 ≤ n ≤ d, since the one-sided
limits agree. Call it [Su](n) (0). The special case n = 0 yields [Su](0)(0) = Su(0) =
Su(0+) = Su(0−).

It remains to show that [Su](n+1) (0) =
(
[Su](n)

)′
(0) for each 0 ≤ n < d. But

by the Mean Value Theorem, for each t �= 0 there is some t0 between 0 and t such
that

[Su](n) (t) − [Su](n) (0)
t

= [Su](n+1) (t0).

Letting t→ 0 in this equation yields the result. �

Notice that the constant zero function f(t) = 0 satisfies Equation 3.17 at every
point.
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Fraying may be performed over an arbitrary reach interval [α − ε, α+ ε], using
the formula:

F (r, α, ε)u(t) =

⎧⎪⎨⎪⎩
r( t−α

ε )u(t) + r(α−t
ε )u(2α− t), if α < t < α+ ε,

r̄(α−t
ε )u(t) − r̄( t−α

ε )u(2α− t), if α− ε < t < α,
u(t), otherwise.

(3.20)

The formula for S(r, α, ε), or splicing over [α − ε, α + ε], is similar and left as an
exercise. It is mostly shown in Equation 3.23 further on.

The boundary conditions at α will be the same as the boundary conditions at
zero described in Lemma 3.4. Likewise, splicing over this reach interval undoes the
boundary conditions at α. Every ε > 0 will yield the same boundary conditions.

Suppose F1 = F (r1, α1, ε1) and F2 = F (r2, α2, ε2) are fraying operators with
reach intervals B1 = [α1 − ε1, α1 + ε1] and B2 = [α2 − ε2, α2 + ε2], respectively. If
B1 and B2 are disjoint, then F1 and F2 can be evaluated as follows:

F1F2u(t) =

⎧⎨⎩F1u(t), if t ∈ B1;
F2u(t), if t ∈ B2;
u(t), otherwise.

(3.21)

The same formula may be used to evaluate F2F1u(t), so the operators F1 and F2

commute. Likewise, splicing operators S1 = S(r1, α1, ε1) and S2 = S(r2, α2, ε2) will
commute with each other:

S1S2v(t) =

⎧⎨⎩S1v(t), if t ∈ B1;
S2v(t), if t ∈ B2;
v(t), otherwise,

= S2S1v(t). (3.22)

Similar formulas show that S1 commutes with F2 and S2 commutes with F1. The
remaining pairs S1, F1 and S2, F2 commute because they are inverses.

Let α < β define an interval I = [α, β], and choose 0 < ε < 1
2 (β − α). A

smooth function u frayed at t = α and t = β with reach intervals Bε(α) and Bε(β),
respectively, may have its ends spliced together with the loop operator:

L(r, [α, β], ε)u(t) =

⎧⎨⎩
r̄( t−α

ε )u(t) − r(α−t
ε )u(α+ β − t), if α < t ≤ α+ ε,

r(β−t
ε )u(t) + r̄( t−β

ε )u(α+ β − t), if β − ε ≤ t < β,
u(t), otherwise;

=

⎧⎨⎩S(r, α, ε)uI(t), if α < t ≤ α+ ε,
S(r, β, ε)uI(t), if β − ε ≤ t < β,
u(t), otherwise.

(3.23)

Here uI is the periodic extension of u from its localization to I = [α, β], as defined
in Equation 3.7.

The smooth local periodization of a function is a combination of fraying at two
points and splicing into a loop. Namely, suppose u = u(t) is a smooth function and
I = [α, β] is an interval. Choose a smooth rising cut-off function r and a positive
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reach ε satisfying ε ≤ 1
2 (β − α) = 1

2 |I|. The smooth periodization of u to I is the
function

(LIFαFβu)I , (3.24)

where Fα = F (r, α, ε), Fβ = F (r, β, ε), LI = L(r, [α, β], ε), and the result is localized
and periodically extended over the interval I. This is a smooth |I|-periodic function.

For example, a smooth locally periodized segment of a sampled signal, with
valid sample indices n ∈ [a, b) ⊂ Z, may be obtained with the following algorithm:

Local Periodization on [a, b)

...
[1] Compute fray( &u[a], &u[a], e )
[2] Compute fray( &u[b], &u[b], e )
[3] Compute splice( &u[b], &u[a], e )
...

Here &u[a] signifies the shifted array whose element at index 0 is u[a], and so on.
The positive integer reach e must be at most half the distance b− a, and of course
we must have b > a. These steps fray u at α = a − 1

2 and β = b − 1
2 , then splice

the positive a-end to the negative b-end.

3.1.3 Fourier series

A Fourier series is one way to represent a periodic function f = f(t) of one
real variable as a superposition of sines and cosines. We start with a fixed set
{a(0); a(n), b(n), n = 1, 2, . . .} of Fourier coefficients and define f as the limit of
partial sums fN = fN (t):

fN (t) def= a(0) +
N∑

n=1

a(n)
[√

2 cos(2πnt)
]

+
N∑

n=1

b(n)
[√

2 sin(2πnt)
]
; (3.25)

f(t) def= lim
N→∞

fN(t), when this limit exists. (3.26)

The finite sum fN(t) makes sense for every N . In fact it is a smooth 1-periodic
function of t, belonging both to Lip and C∞. The limit f(t), on the other hand,
may not exist at any t, and even if f(t) exists at every t, the resulting function may
not be smooth, or even continuous.

A Fourier series separates f into sine and cosine components with frequencies
n and amplitudes a(n) and b(n), respectively. We may find these amplitudes by
integration since sines and cosines are orthonormal2 with respect to the inner prod-
uct 〈u, v〉 =

∫ 1

0 ū(t)v(t) dt on Lip. For fixed N , put FN = {c0(t) = 1; cn(t) =

2The strange factor
√

2 is needed to get unit vectors.
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√
2 cos(2πnt), sn(t) =

√
2 sin(2πnt) : n = 1, . . . , N}. It is an exercise to show that

FN ⊂ Lip is an orthonormal subset. Since fN belongs to spanFN ⊂ Lip, the
expansion coefficients are obtained by inner products:

a(0) = 〈c0, fN〉 ; a(n) = 〈cn, fN〉 , b(n) = 〈sn, fN 〉 , n = 1, 2 . . . , N.

This establishes a one-to-one correspondence between finite sequences of Fourier
coefficients and partial sums of Fourier series:

fN
FN←→ {a(0); a(n), b(n), 1 ≤ n ≤ N}.

The energy in the a(n) or b(n) component over one period is ‖a(n)cn‖2 = |a(n)|2 or
‖b(n)sn‖2 = |b(n)|2, respectively, using the norm derived from the inner product.
Lemma 2.9 says that these account for all the energy in the partial sum function:

‖fN‖2 =
∫ 1

0

|fN (t)|2 dt = |a(0)|2 +
N∑

n=1

(|a(n)|2 + |b(n)|2) . (3.27)

Note that for fixed n, a(n) = 〈cn, fN〉 and b(n) = 〈sn, fN〉 for any N ≥ n. We
may therefore construct an orthogonal projection3 on Lip by

PMu
def= 〈c0, u〉 +

M∑
m=1

〈cm, u〉 cm +
M∑

m=1

〈sm, u〉 sm, (3.28)

which satisfies PMfN = fM , for any M ≤ N . This has the effect of truncating a
Fourier series, approximating the limit f with fewer terms.

Any f ∈ Lip generates a set of Fourier coefficients:

a(0) = 〈c0, f〉 =
∫ 1

0

f(t) dt; (3.29)

a(n) = 〈cn, f〉 =
√

2
∫ 1

0

f(t) cos(2πnt) dt, (3.30)

b(n) = 〈sn, f〉 =
√

2
∫ 1

0

f(t) sin(2πnt) dt, (3.31)

for n ∈ Z+. The partial sums then satisfy fN = PNf for every N , and for all 0 <
M < N we have Bessel’s inequality: ‖fM‖ ≤ ‖fN‖ ≤ ‖f‖. Therefore,

∑N
n=1 |a(n)|2

and
∑N

n=1 |b(n)|2 both converge as N → ∞. We will prove in Lemma 3.5 further on
that ‖f − fN‖ → 0 as N → ∞, so that we have Parseval’s formula for the infinite
series:

‖f‖2 =
∫ 1

0

|f(t)|2 dt = |a(0)|2 +
∞∑

n=1

(|a(n)|2 + |b(n)|2) . (3.32)

3Why is this a projection? Why is it orthogonal?
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These results follow from abstract properties of inner product spaces; see Section
2.3, Exercise 14.

In other words, expanding in the orthonormal system F = {1; sn, cn, n ∈ Z+}
maps functions in Lip to sequences in �2. The mapping is one-to-one since any
f, g ∈ Lip giving 〈f − g,v〉 = 0 for all v ∈ F will satisfy ‖f − g‖ = 0 by Parseval’s
formula. But then f = g since the derived norm is nondegenerate. Hence there is
some subset of �2 which is in one-to-one correspondence with Lip. Each Fourier
sequence taken from this subset converges to some unique f ∈ Lip:

f
F←→ {a(0), a(1), . . . ; b(1), . . .}.

There is nothing special about the period 1. If g = g(t) is T -periodic, then
f(t) = δT g(t)

def=
√
Tg(tT ) is 1-periodic. This δT is the so-called dilation operator,

which is a linear transformation from Lip[0, T ] to Lip[0, 1], or more generally from
functions on R to dilated functions on R. Thus g is represented by the Fourier
series

gN (t) = a(0)

√
1
T

+
N∑

n=1

a(n)

[√
2
T

cos
(

2π
nt

T

)]
+

N∑
n=1

b(n)

[√
2
T

sin
(

2π
nt

T

)]
,

with g(t) = limN→∞ gN(t) whenever the limit exists. This is an expansion in terms
of orthonormal basis functions δT cn and δT sn. The Fourier coefficients a(n), b(n)
are again given by inner products, which in this case are the scaled integrals

a(0) = 〈δT c0, g〉 =

√
1
T

∫ T

0

g(t) dt;

a(n) = 〈δT cn, g〉 =

√
2
T

∫ T

0

g(t) cos
(

2π
nt

T

)
dt,

b(n) = 〈δT sn, g〉 =

√
2
T

∫ 1

0

g(t) sin
(

2π
nt

T

)
dt,

for n ∈ Z+. Because of the factor
√
T , f has the same energy in one period [0, 1]

that g has in [0, T ], so Parseval’s formula applies: ‖g − gN‖ → 0 as N → ∞, so∫ T

0

|g(t)|2 dt = |a(0)|2 +
∞∑

n=1

(|a(n)|2 + |b(n)|2) .
The integral giving ‖g‖2 adds up energy over a single period, which may be con-
sidered a time interval. Energy per unit time is called power, and thus the listing
{|a(0)|2; |a(n)|2 + |b(n)|2, n = 1, 2, . . .} of power by frequency index is called the
power spectrum of g.

Exponential Fourier series

Another basic 1-periodic function in Lip is en = en(t) def= e2πint, where n is an
integer. This complex-valued function is unimodular in the sense that |en(t)| = 1



86 Chapter 3. Time and Frequency

for all n and all t. It has uniformly bounded derivative |e′n(t)| = |2πin en(t)| = 2π|n|
for every t ∈ R, so it belongs to Lip(R). It is also smooth, with dth derivative
e
(d)
n (t) = (2πin)d en(t) for every d ≥ 0 and t ∈ R, so en ∈ C∞(R) for every n ∈ Z.

We can use the functions {en : n ∈ Z} to define exponential Fourier series from
partial sums4 determined by a sequence {c(n) : n ∈ Z} ⊂ C:

fN (t) =
N∑

n=−N

c(n)e2πint; c(n) = 〈en, f〉 =
∫ 1

0

f(t)e−2πint dt. (3.33)

The complex numbers {c(n) : n ∈ Z} are also called the (complex exponential)
Fourier coefficients of the function f . We will say that the Fourier series converges
if f(t) = limN→∞ fN (t).

Since en(t) = e2πint = cos(2πnt) + i sin(2πnt) = 1√
2
cn(t) + i 1√

2
sn(t), the expo-

nential Fourier series is computable from the sine-cosine Fourier series of Equations
3.25, 3.29, 3.30, and 3.31. For n = 0, we have c0 = 1 = e0, and for n > 0 we
have cn(t) =

√
2 cos(2πnt) = [en(t) + e−n(t)]/

√
2 and sn(t) =

√
2 sin(2πnt) =

[en(t) − e−n(t)]/i
√

2. Thus, given c(n) and c(−n) for n > 0, we recover a(n) and
b(n) by the formulas

a(n) =
1√
2
〈cn, f〉 =

c(n) + c(−n)√
2

; (3.34)

b(n) =
1√
2
〈sn, f〉 =

c(n) − c(−n)
−i√2

= i
c(n) − c(−n)√

2
. (3.35)

If we define {a(0); a(n), b(n), 1 ≤ n ≤ N} this way from a given sequence {c(n) :
−N ≤ n ≤ N}, we will have

N∑
n=−N

c(n)e2πint = a(0) +
N∑

n=1

a(n)
[√

2 cos(2πnt)
]

+
N∑

n=1

b(n)
[√

2 sin(2πnt)
]
.

(3.36)
Conversely, for n > 0,

c(n) =
1√
2
〈cn + isn, f〉 =

a(n) − ib(n)√
2

. (3.37)

Since −n < 0 and sin(2π[−n]t) = − sin(2πnt) and cos(2π[−n]t) = cos(2πnt), the
negative-indexed coefficients satisfy

c(−n) =
1√
2
〈cn − isn, f〉 =

a(n) + ib(n)√
2

. (3.38)

The remaining case of n = 0 gives c(0) = 〈1, f〉 = a(0). If we define {c(n) : −N ≤
n ≤ N} in this way from given {a(0); a(n), b(n), 1 ≤ n ≤ N}, we will again have
Equation 3.36.

4Reuse of the notation fN is justified by Equation 3.36.
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With matrices, for n > 0 we get(
c(n)
c(−n)

)
=

1√
2

(
1 −i
1 i

)(
a(n)
b(n)

)
;
(
a(n)
b(n)

)
=

1√
2

(
1 1
i −i

)(
c(n)
c(−n)

)
.

It is not hard to check that these matrices are unitary.
Complex exponential Fourier coefficients are computed via the formula

c(n) = 〈en, f〉 =
∫ 1

0

f(t)e−2πint dt
def= f̂(n). (3.39)

We can regard the computation f �→ f̂ as a transformation from functions to se-
quences. It is a linear transformation with a domain containing Lip. By Parseval’s
formula, the range is a subset of �2.

The underlying functions superpose neatly to give everything in Lip:

Lemma 3.5 The functions {en = en(t) def= e2πint : n ∈ Z} are an orthonormal
basis for Lip.

Proof: For orthogonality, note that if n,m are integers, then

〈en, em〉 =
∫ 1

0

e2πinte2πimt dt =
∫ 1

0

e2πi(m−n)t dt

=

⎧⎨⎩
∫ 1

0
1 dt = 1, if n = m;

e2πi(m−n)t

2πi(m−n)

∣∣∣1
0

= 0, if n �= m.

For completeness, it suffices to show that an arbitrary 1-periodic piecewise linear
function f ∈ X satisfies ‖f − fN‖ → 0 as N → ∞, where fN is the partial sum of
f ’s exponential Fourier series, defined by Equation 3.33. But it is enough to show
this for the general hat function determined by 0 ≤ a < b < c ≤ 1:

f(t) =

⎧⎨⎩
0, if t < a or t > c,
(t− a)/(b− a), if a ≤ t ≤ b,
(c− t)/(c− b), if b ≤ t ≤ c.

That is because all piecewise linear functions are linear combinations of such f .
The explicit approximation is left as an exercise. �

If en(t) is replaced with en(t/T )/
√
T for each n, then the same formulas work for

T -periodic functions.
In fact, the complex exponentials superpose to give all square-integrable func-

tions, although in that case the Fourier series may not converge at every point5

in the domain [0, 1]. Bessel’s inequality, Parseval’s formula, and Lemma 3.5 may
be combined to yield the following, which is proved as Theorem 11.4, page 309 of
Apostol’s Mathematical Analysis:

5In 1966, Lennart Carleson showed that the Fourier series of a square-integrable function
converges at almost every point in the domain.
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Corollary 3.6 A function f belongs to L2([0, 1]) if and only if the Fourier coef-
ficients {c(n) : n ∈ Z} for f belong to �2. In that case, the partial sums fN of
f ’s Fourier series satisfy limN→∞ ‖f − fN‖ = 0, with the estimate ‖f − fN‖2 =∑

|n|>N |c(n)|2. �

Suppose we reverse the construction. Starting with an infinite sequence c =
{c(n) : n ∈ Z} ∈ �2, let us define its inverse Fourier transform to be the 1-periodic
function given by the following infinite sum:

č(x) def=
∞∑

k=−∞
c(k)e2πikx. (3.40)

Then c �→ č is a linear transformation from sequences to 1-periodic functions. By
Corollary 3.6, its domain is all of �2 and its range is L2([0, 1]). But there is a simple
condition on c that suffices to guarantee č ∈ Lip:

Theorem 3.7 If there is some fixed constant M such that the sequence c = {c(k) :
k ∈ Z} of complex numbers satisfies

N∑
k=−N

|k| |c(k)| ≤M, all integers N , (3.41)

then

a. the partial sums čN (x) def=
∑N

k=−N c(k)e2πikx converge absolutely to the in-

verse Fourier transform č(x) def= limN→∞ čN(x) of c;

b. the function č belongs to Lip, with |č(x)− č(y)| ≤ 2πM |x−y|, for all x, y ∈ R.

Proof: For (a), note that at any x ∈ R, the Fourier series with coefficients c
converges absolutely:

N∑
k=−N

|c(k)e2πikx| =
N∑

k=−N

|c(k)| ≤ |c(0)| +
N∑

k=−N

|k| |c(k)| ≤ |c(0)| +M,

so since these sums increase with N and are bounded above, they must converge
to a limit no greater than |c(0)|+M , and independent of x. Absolute convergence
of a series implies convergence, so the Fourier series č(x) converges at every x.

For (b), observe that for any t ∈ R,

|eit − 1| =
∣∣∣∣i ∫ t

0

eix dx

∣∣∣∣ ≤ ∫ t

0

|eix| dx = |t|.

Thus |e2πikx − e2πiky | = |e2πik(x−y) − 1| ≤ 2π|k| |x − y|, for any x, y ∈ R and
any integer k. That imposes a Lipschitz condition on the partial sum čN at any
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x, y ∈ R:

|čN(x) − čN (y)| =

∣∣∣∣∣
N∑

k=−N

c(k)[e2πikx − e2πiky ]

∣∣∣∣∣
≤ 2π|x− y|

N∑
k=−N

|k| |c(k)| ≤ 2πM |x− y|.

But then by part (a), we may take limits asN → ∞ to get |č(x)−č(y)| ≤ 2πM |x−y|.
�

Smoothness and rapid decrease

If f = f(x) is differentiable on [0, 1], then integration by parts gives the following
formula for its (complex exponential) Fourier coefficients:

f̂ ′(n) =
∫ 1

0

f ′(x)e−2πinx dx =
∫ 1

0

e−2πinx df(x)

=
[
e−2πinxf(x)

]1
0

+ (2πin)
∫ 1

0

f(x)e−2πinx dx

= f(1) − f(0) + (2πin) f̂(n).

Using induction, this extends to a formula for the Fourier coefficients of derivative
d+ 1 in terms of the dth derivative:

̂f (d+1)(n) = f (d)(1) − f (d)(0) + (2πin) f̂ (d)(n). (3.42)

The first application is an estimate for the rate of decrease of Fourier coefficients
of a function in terms of its degree of smoothness:

Lemma 3.8 Suppose that f (d) is continuous and 1-periodic for some integer d ≥ 0.
Then f̂(n) = O(|n|−d) as n→ ±∞.

Proof: If f is 1-periodic and has a continuous dth derivative on all of R, then
f (k)(1) = f (k)(0) for all k = 0, 1, . . . , d, so we may iterate Equation 3.42 without
the boundary terms to get f̂ (d)(n) = (2πin)df̂(n). But the Fourier coefficients of
any continuous function g are bounded:

|ĝ(n)| =
∣∣∣∣∫ 1

0

g(x)e−2πinx dx

∣∣∣∣ ≤ ∫ 1

0

|g(x)e−2πinx| dx =
∫ 1

0

|g(x)| dx <∞, (3.43)

independently of the frequency n. Putting g = f (d) shows that the quantity
|2πn|d|f̂(n)| must remain bounded as n→ ∞, so f̂(n) = O(|n|−d). �

In other words, the more derivatives a periodic function has, the faster its Fourier
coefficients tend to zero with increasing frequency. This principle applies to both
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sine-cosine and exponential Fourier series. Consequently, if the Fourier series of
a smooth function is truncated to a finite partial sum involving only frequencies
|n| ≤ N , then the resulting error will tend to zero as N → ∞ at a rate like6

|f(x) − fN (x)| = O

⎛⎝ ∑
|n|>N

|n|−d

⎞⎠ = O(N−d+1),

which we obtain using the integral test to sum the series. The smoother the func-
tion, the faster the error will go away or, from another perspective, the fewer terms
will be needed for a desired accuracy.

Recall that if f ∈ Lip satisfies f(0) = f(1), then f has a continuous 1-periodic
extension which satisfies the Lipschitz condition on all of R. That in fact is enough
to guarantee that the Fourier series for f(x) converges at every x ∈ [0, 1], though
we get no error estimate. The proof is beyond our scope, but may be found in
Apostol as Theorem 11.9 on page 316.

Fourier coefficients can be computed over any period interval [a, a+ T ]:

f̂(k) =
1√
T

∫ a+T

a

f(t)e−2πikt/T dt.

They thus depend on f ’s behavior as a periodic function on the whole line, not
just in the interior of one period interval such as [0, T ]. In particular, discontinu-
ities hiding at the endpoints of a period interval can affect the rate of decrease of
Fourier coefficients because they can affect the cancellation of the boundary terms
in Equation 3.42.

Even without any derivatives, an integrable function f must have some decrease
in its Fourier coefficients f̂(n), as n→ ±∞, although we get no rate estimate:

Lemma 3.9 (Riemann–Lebesgue) If f ∈ Lip, then f̂(k) → 0 as |k| → ∞.

Proof: For simplicity of notation, we will denote the 1-periodic extension of f
by f as well. We will write C > 0 for the constant in the Lipschitz condition, so
|f(x) − f(y)| ≤ C|x − y| for all x, y ∈ [0, 1]. The 1-periodic extension might not
satisfy this condition, but there is still some constant M > 0 such that |f(x)| ≤M
for all x ∈ [0, 1], hence also for all x ∈ R, so |f(x) − f(y)| ≤ 2M for all x, y ∈ R.

Now f̂(k) may be computed in two ways, using the fact that e±iπ = −1:∫ 1

0

f(t)e−2πikt dt =
∫ 1

0

f

(
t+

1
2k

)
e−2πikt−iπ dt

= −
∫ 1

0

f

(
t+

1
2k

)
e−2πikt dt

⇒ 2f̂(k) =
∫ 1

0

[
f(t) − f

(
t+

1
2k

)]
e−2πikt dt

6The estimated, or worst-case error, is independent of x, though of course for certain x it could
be much smaller.
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⇒ 2|f̂(k)| ≤
∫ 1

0

∣∣∣∣f(t) − f

(
t+

1
2k

)∣∣∣∣ dt.
Thus, we will have |f(t) − f(t + 1

2k )| ≤ C
2|k| for every k �= 0, as long as both

t ∈ [0, 1] and t + 1
2k ∈ [0, 1]. Now suppose ε > 0 is given. We choose 1

2 > δ > 0
such that δ < ε

4M , and we put K = max{ 1
2δ ,

C
2ε}. Then |k| > K will guarantee

t ∈ [δ, 1 − δ] ⇒ (t + 1
2k ) ∈ [0, 1], and also C

2|k| < ε. Hence, the Fourier coefficient

f̂(k) may be estimated as follows:

2|f̂(k)| ≤
∫ δ

0

2M dt+
∫ 1−δ

δ

C

2|k| dt+
∫ 1

1−δ

2M dt

< 2Mδ + (1 − 2δ)ε+ 2Mδ < 2ε.

Since ε was arbitrary, it follows that |f̂(k)| → 0 as |k| → ∞. �

More careful analysis shows that the Lipschitz continuity hypothesis may be re-
placed by simple continuity on [0, 1], giving a strict improvement over Equation
3.43. In fact just absolute integrability of f on [0, 1] is enough. The same proof
works, but the last step is to show that

∫ 1

0 |f(t)− f(t+ x)| dt→ 0 as x→ 0 for any
absolutely integrable f . That, however, is beyond the scope of this text.

The converse problem is to estimate the number of continuous derivatives of a
function, given just the rate of decrease of its Fourier coefficients. That is an easy
generalization of Theorem 3.7:

Corollary 3.10 If d ≥ 0 and there is some fixed constant M such that the sequence
c = {c(k) : k ∈ Z} of complex numbers satisfies

N∑
k=−N

|k|d+1 |c(k)| ≤M, all integers N , (3.44)

then

a. the partial sums čN (x) def=
∑N

k=−N c(k)e2πikx converge absolutely to the in-

verse Fourier transform č(x) def= limN→∞ čN(x) of c;

b. the function f = f(x) def= č(x) may be differentiated d times, and f (d) ∈ Lip,
with |f (d)(x) − f (d)(y)| ≤ 2πM |x− y|, for all x, y ∈ R. �

A finite Fourier series, or trigonometric polynomial, results if f̂(k) = 0 for all
sufficiently large |k|. This is just a linear combination of sines and cosines, so it
has a dth derivative for every d. Similarly, if the Fourier coefficients of f satisfy
f̂(k) ≤ Cr|k| for r, C > 0 with r < 1, then (2πik)df̂(k) → 0 as |k| → ∞ for every
d, and we may conclude that f is smooth.
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Figure 3.7: Part of the graph of sinc (ξ).

Fourier integrals

If u = u(x) is a complex-valued function of one real variable x, the Fourier integral
transform of u is another complex-valued function, denoted Fu = Fu(ξ), depending
on one real variable ξ, defined by the following integral:

Fu(ξ) =
∫ ∞

−∞
e−2πixξu(x) dx, (3.45)

whenever this improper integral converges.
It is possible to compute the Fourier integral transform of certain simple func-

tions exactly. For example, let u = 1I be the characteristic function of the balanced
unit interval I = [− 1

2 ,
1
2 ]:

1I(x) =
{

1, if − 1
2 ≤ x ≤ 1

2 ;
0, otherwise.

(3.46)

An elementary calculation shows that if ξ �= 0, then

F1I(ξ) =
∫ ∞

−∞
1I(x)e−2πixξ dx =

∫ 1
2

− 1
2

e−2πixξ dx =
e−πiξ − eπiξ

−2πiξ
=

sin(πξ)
πξ

.

If we put F1I(0) def= 1 for continuity, the resulting function is called sinc:

sinc (ξ) def=
{

sin(πξ)
πξ , if ξ �= 0;

1, if ξ = 0.
(3.47)

A similar calculation, left as an exercise, shows that the Fourier integral transform
of 1I(x/T ), which is the characteristic function of [−T

2 ,
T
2 ], is T sinc (Tξ) = sin(Tπξ)

πξ .
Figure 3.7 shows part of the graph of sinc ; notice the many local maxima to either
side of the global maximum at 0, and the zero-crossings at all other integers.
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The Gaussian function g(x) = e−πx2
is another function whose Fourier integral

transform can be computed exactly. We start with the fact7 that
∫
R
e−πx2

dx = 1
and change variables:

1 =
∫ ∞

−∞
e−πy2

dy =
∫ ∞

−∞
e−π(x+iξ)2 dx

= eπξ2
∫ ∞

−∞
e−2πixξe−πx2

dx = eπξ2Fg(ξ), (3.48)

where we make the substitutions y ← x+ iξ and dy = dx.8 Multiplying by g(ξ) =
e−πξ2

shows that Fg = g.
The Fourier integral transform can be applied to any square-integrable function,

although the proof of this is beyond our scope.9 It may therefore be applied to any
vector in the space L2(R), whose inner product and derived norm are given in
Equations 2.29 and 2.24, respectively. In fact, F : L2(R) → L2(R) is a unitary
transformation:

Theorem 3.11 (Plancherel) Suppose u = u(t) and v = v(t) are square-integrable
functions, and let 〈u, v〉 def=

∫
ū(t)v(t) dt. Then Fu and Fv are square-integrable

and satisfy 〈Fu,Fv〉 = 〈u, v〉. �

A sketch of the proof may be found in Section B.6 of the appendix. We may expand
the integrals and change their order to get another useful result:

Corollary 3.12 If u = u(t) and v = v(t) are square-integrable functions, then∫ ∞

−∞
ū(t)v(t) dt =

∫ ∫ ∫ ∞

−∞
e2πiξ(x−y)ū(x)v(y) dxdydξ.

Proof: By Plancherel’s theorem,∫ ∞

−∞
ū(t)v(t) dt = 〈u, v〉 = 〈Fu,Fv〉

=
∫ ∞

−∞

(∫ ∞

−∞
e−2πixξu(x) dx

)(∫ ∞

−∞
e−2πiyξv(y) dy

)
dξ,

and the complex conjugation passes through to the first integrand. �

The inverse Fourier integral transform of a square-integrable function v = v(ξ) may
thus be determined from the formula 〈u, v〉 = 〈Fu,Fv〉 = 〈u,F∗Fv〉, which holds

7This is proved as Equation B.6 in Appendix B, page 286.
8See Apostol’s Theorem 16.12, page 424 for a rigorous version of this informal calculation.
9See Stein and Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Chapter 1, for a

nice exposition of the theory of Fourier integrals.
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for all u ∈ L2(R). From the nondegeneracy of the inner product, we conclude that
F−1 = F∗, and this may be calculated by interchanging the order of integration:

〈u,F∗v〉 = 〈Fu, v〉 =
∫ ∞

−∞

(∫ ∞

−∞
e−2πixξu(x) dx

)
v(ξ) dξ

=
∫ ∞

−∞
ū(x)
(∫ ∞

−∞
e2πitxv(ξ) dξ

)
dx.

Identifying the integrand factor other than ū with F∗v gives

F−1v(x) = F∗v(x) =
∫ ∞

−∞
e2πixξv(ξ) dξ, (3.49)

where v = v(ξ) is any square-integrable complex-valued function of the real variable
ξ.

F and F−1 = F∗ are practically the same transform. A change of variable in
the integrands shows that Fu(x) = F−1u(−x), so in particular for the balanced
interval I = [− 1

2 ,
1
2 ], we have

F−11I(x) = F1I(−x) = sinc (−x) = sinc (x),

since sinc is symmetric with respect to x �→ −x. Thus sinc is also the inverse
Fourier integral transform of 1I . Likewise, the symmetric function 1I is both
F−1sinc and Fsinc , and the symmetric Gaussian function g(x) = e−πx2

satisfies
g = Fg = F−1g.

3.2 Discrete Fourier Analysis

To compute Fourier coefficients requires evaluating integrals of rapidly varying func-
tions: the factor e2πikx oscillates rapidly when |k| is large. In rare cases, such inte-
grals can be computed analytically by calculus, but the Fourier transform is far too
useful to be restricted that way. For the majority of cases, numerical integration
must be used.

To do that, fix a large integer N and put tn = n/N for n = 0, 1, . . . , N . These
form a grid of N+1 equally spaced points in the interval [0, 1], with ∆tn

def= tn+1−
tn = 1

N for all k. Now suppose that u = u(t) is a 1-periodic function that is to
be approximated by its Fourier series at the points {tn}. Since u(t0) = u(tN),
the Riemann sum approximating the integral for the kth Fourier coefficient may be
taken over just n = 0, 1, . . . , N − 1:

û(k) ≈ pk
def=

N−1∑
n=0

u (tn) e−2πiktn ∆tn =
1
N

N−1∑
n=0

u
( n
N

)
exp
(
−2πi

kn

N

)
, (3.50)

for k ∈ Z. The approximation improves as N → ∞, that is, with a denser sampling
of u on [0, 1].
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Notice that {pk : k ∈ Z} is actually an N -periodic sequence since

pk+N = exp
(
−2πi

(k +N)n
N

)
= exp (−2πin) exp

(
−2πi

kn

N

)
= exp

(
−2πi

kn

N

)
= pk. (3.51)

For fixed N , the computation u �→ p defined by Equation 3.50, which maps a 1-
periodic function to an N -periodic sequence, is called the N -point discrete Fourier
transform, or DFT.

Computing the DFT using N sample points is equivalent to applying an N ×N
matrix to a vector. For a general matrix, this costs O(N2) arithmetic operations
and becomes burdensome rather rapidly as the number of sample points increases.
However, we will see how the Fourier matrix can be factored into a product of just
a few sparse matrices, and the resulting factors can be applied to a vector in a total
of O(N logN) arithmetic operations, lowering the cost for large N . This factored,
speedier implementation is the so-called fast Fourier transform, or FFT.

3.2.1 Discrete Fourier transform

To fix notation, let v ∈ CN be a vector, indexed as v = {v(n)}N−1
n=0 . The discrete

Fourier transform of v is the vector v̂ ∈ CN defined by

v̂(m) =
1√
N

N−1∑
n=0

v(n) exp
(
−2πi

mn

N

)
,

for m = 0, 1, . . . , N − 1. The factor 1√
N

normalizes the output and makes the
transform unitary.

The matrix form of this equation is v̂ = 1√
N
Fv, where F : CN → CN is defined

by
F (m,n) = exp

(
−2πi

mn

N

)
. (3.52)

The subscript N in FN will be added when necessary to emphasize the dimension
of the range and domain. Also, writing ωn = exp

(−2πi n
N

)
gives

F =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · · 1
1 ω1 ω2

1 · · · ωN−1
1

1 ω2 ω2
2 · · · ωN−1

2
...

...
...

...
1 ωN−1 ω2

N−1 · · · ωN−1
N−1

⎞⎟⎟⎟⎟⎟⎠ ; F (m,n) = (ωn
m)N−1

m,n=0 . (3.53)

Such a matrix is called a Vandermonde matrix: its mth row is the successive powers
{1, ωm, ω

2
m, . . .} of ωm. Induction on N proves that

detF =
∏

0≤n<m<N

(ωm − ωn),



96 Chapter 3. Time and Frequency

and since ωn �= ωm for n �= m, FN is nonsingular. Also, ωm
n = ωn

m, so F is a
symmetric matrix; ω̄m = ω−1

m , since |ωm| = 1; and ωN
m = 1 for all m = 0, 1, . . . , N−

1. Thus 1√
N
F is unitary:

FF ∗(m,n) =
N−1∑
k=0

ωk
mω̄

k
n =

N−1∑
k=0

ω
(m−n)k
1 =

{
N, if m = n,
1−ω

(m−n)N
1

1−ωm−n
1

= 0, if m �= n,

= Nδ(m− n), ⇒ 1√
N
F

[
1√
N
F

]∗
=

1
N
FF ∗ = Id.

The formula for v̂(m) makes sense at any integer m, and satisfies v̂(m +N) =
v̂(m) for every m, since exp(−2πi(m + N)n/N) = exp(−2πimn/N) for every in-
teger n. Thus, the discrete Fourier coefficients are N -periodic and no additional
information is contained in them beyond the first N . Since v̂(−m) = v̂(N−m), the
discrete Fourier coefficients v̂([N − 1]/2), . . . , v̂(N − 1) duplicate the Fourier coeffi-
cients v̂(−[N − 1]/2), . . . , v̂(−1) at negative frequencies, when N is odd. When N
is even, it is coefficients v̂(N/2), v̂(N/2 + 1), . . . , v̂(N − 1) that may be regarded as
duplicates of the negative-frequency coefficients v̂(−N/2), v̂(−N/2 + 1), . . . , v̂(−1).
Note the similarity with the division of bit strings into positive and negative integers
for twos-complement arithmetic, shown in Figure 1.1.

Since v = 1√
N
F ∗v̂, it lies in the column space of the adjoint matrix F ∗. These

columns are the discrete Fourier basis functions exp
(
2πimn

N

)
. Figure 3.8 shows the

real and imaginary parts of an example with N = 256 and m = 3. Notice that with
so many sample points it is difficult to distinguish the graph from that of a smooth
function.

-0.1

-0.05

0

0.05

0.1

0 50 100 150 200 250

Real part (Cosine)
Imaginary part (Sine)

Figure 3.8: Real and imaginary parts of a Fourier basis function 1
16 exp

(
2πi 3n

256

)
.



3.2. Discrete Fourier Analysis 97

The “fast” discrete Fourier transform

Every coefficient of the matrix F (m,n) has absolute value one, so F is not sparse.
However, algebraic properties of the exponential function may be exploited to re-
duce its cost of application, using the following:

Lemma 3.13 (Danielson-Lanczos, 1942) Suppose that N is an even positive
integer. Then the N -point discrete Fourier transform FN splits into two parts: for
m = 0, 1, . . . , N − 1,

FNv(m) = FN
2
ve(m) + exp (−2πim/N)FN

2
vo(m).

Here ve(n) def= v(2n) and vo(n) def= v(2n + 1) for 0 ≤ n < N
2 , and the two N

2 -
point discrete Fourier transforms FN

2
are considered N

2 -periodic for purposes of
evaluation at N

2 ≤ m < N .

Proof: For any 0 ≤ m < N , the sum in n defining FNv(m) splits into the even-n
and odd-n parts:

FNv(m) =
N−1∑
n=0

v(n) exp (−2πimn/N)

=
N/2−1∑

n=0

v(2n) exp (−2πi(2n)m/N)

+
N/2−1∑

n=0

v(2n+1) exp (−2πi(2n+1)m/N)

=
N/2−1∑

n=0

v(2n) exp
(−2πinm

N/2

)

+ exp (−2πim/N)
N/2−1∑

n=0

v(2n+1) exp
(−2πinm

N/2

)
.

The two sums are evidently FN
2
ve(m) and FN

2
vo(m). �

What does this achieve? Since the number of operations needed to compute FNv
equals the total number of nonzero matrix coefficients, FN costs N2 while the split
version costs 1

2N
2 plus about 3N for preparing ve and vo and later reassembling the

pieces. Thus the split version is cheaper for N > 6. When N is big and 1
2N

2 � 3N ,
the savings become significant.

For N = 2q, the lemma may be applied recursively for further savings:
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“Fast” Fourier Transform, or FFT, on N = 2q Points

fft( v, N ):
[0] If N>1, then do [1] to [9]
[1] For k=0 to N/2-1, let ve[k] = v[2*k]
[2] Compute fft(ve, N/2)
[3] For k=0 to N/2-1, let vo[k] = v[2*k+1]
[4] Compute fft(vo, N/2)
[5] For m=0 to N/2-1, do [6] to [9]
[6] Let w.Re = cos(2*PI*m/N)
[7] Let w.Im = -sin(2*PI*m/N)
[8] Let v[m] = ve[m] + w*vo[m]
[9] Let v[m+N/2] = ve[m] - w*vo[m]

The input/output array v[], the temporary arrays ve[] and vo[], and the
scalar w are all complex-valued. We denote the real and imaginary parts of w, for
example, by w.Re and w.Im, respectively. The operators =, * and + signify complex
assignment, complex addition, and complex multiplication, respectively.

The total cost of FFT for N = 2q is O(Nq) = O(N log2N) as N → ∞. This
has low complexity compared with the O(N2) cost of applying the dense matrix
FN directly to a vector.

The inverse discrete Fourier transform has virtually the same matrix as the
discrete Fourier transform, only with +i rather than −i in the exponential function:
F−1 = F . But F is also a symmetric matrix, so another way of saying this is that
F−1 = F ∗, or that the Fourier transform matrix is unitary. Thus, inverse FFT is
obtained from FFT by modifying just the one line defining the imaginary part of
w:

[7’] Let w.Im = sin(2*PI*m/N)

FFT plays an enormous role in numerical analysis and signal processing, and as
a consequence there exist many specialized and highly-engineered versions. Some
of the more exotic variants are described by Walker in his book Fast Fourier Trans-
forms. Our version is a relatively simple FFT implementation, popularized in a
1965 article by Cooley and Tukey.

3.2.2 Discrete Hartley transform

The discrete Hartley transform, or DHT, is a more symmetric and purely real-valued
alternative to the discrete Fourier transformation. Its matrix HN : RN → RN in
the N -point case is given by the following formula:

HN (m,n) = cas
(

2πmn
N

)
def= cos

(
2πmn
N

)
+ sin

(
2πmn
N

)
. (3.54)

Then DHT is the linear transformation v �→ 1√
N
HNv. Since cas θ =

√
2 cos(θ− π

4 ) =√
2 sin(θ+ π

4 ), the Hartley basis function cas (2πmn/N)/
√
N can be written as a just
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Hartley basis function
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Sine at same frequency

Figure 3.9: Hartley basis function 1
16

[
cos 2π3n

256 + sin 2π3n
256

]
.

one shifted sine or cosine, with amplitude
√

2/N . Figure 3.9 compares one example
of such a basis function with sine and cosine functions of the same frequency m.

DHT can be obtained by slightly modifying the FFT implementation, or else
by composing it with a small number of additional low complexity transformations.
It can thus be factored in virtually the same way as DFT, using slightly different
sparse factors. We begin with the following observation:

cas
(

2πmn
N

)
= �
[
e

2πimn
N + ie−

2πimn
N

]
= �
[
e

2πimn
N + ie−

2πimn
N

]
. (3.55)

For purely real v ∈ RN , we may therefore compute

HNv(m) = � [FNv(−m) + iFNv(m)] = � [FNv(−m) + iFNv(m)] . (3.56)

Thus a “fast” DHT can be had using FFT on these pieces. But the DHT of a
real vector f ∈ RN can also be performed purely in real arithmetic, using its own
version of Lemma 3.13:

Lemma 3.14 If N is an even positive integer, then the N -point discrete Hartley
transform HN splits into three parts as follows: for m = 0, . . . , N − 1,

HNv(m) = HN
2
ve(m) + cos (2πm/N)HN

2
vo(m) + sin (2πm/N)HN

2
vo(−m).

Here ve(n) def= v(2n) and vo(n) def= v(2n + 1) for 0 ≤ n < N
2 , and the N

2 -point
discrete Hartley transforms HN

2
are considered N

2 -periodic.
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Proof: This is left as an exercise. �

This lemma may be applied recursively, as in the DFT case. To simplify the
implementation, we use N

2 -periodicity and the following identities:

cos

(
2π
m+ N

2

N

)
= − cos(2π

m

N
); sin

(
2π
m+ N

2

N

)
= − sin(2π

m

N
).

“Fast” Hartley Transform, or FHT, on N = 2q Points

fht( v, N ):
[0] If N>1, then do [1] to [11]
[1] For k=0 to N/2-1, let ve[k] = v[2*k]
[2] Compute fht(ve, N/2)
[3] For k=0 to N/2-1, let vo[k] = v[2*k+1]
[4] Compute fht(vo, N/2)
[5] For m=1 to N/2-1, do [6] to [9]
[6] Let c = cos(2*PI*m/N)
[7] Let s = sin(2*PI*m/N)
[8] Let v[m] = ve[m] + c*vo[m] + s*vo[N/2-m]
[9] Let v[m+N/2] = ve[m] - c*vo[m] - s*vo[N/2-m]
[10] Let v[0] = ve[0] + vo[0]
[11] Let v[N/2] = ve[N/2] - vo[N/2]

3.2.3 Discrete sine and cosine transforms

There are other real-valued transforms similar to DFT and DHT. Eight of these,
named as in Rao and Yip’s Discrete Cosine Transform, are given in Table 3.1. In
each tabulated matrix, the indices start at zero. The numbers b(k) in the formulas
are weights needed for orthogonality:

b(k) =

{ 0, if k < 0 or k > N ;
1/

√
2, if k = 0 or k = N ;

1, if 0 < k < N .
(3.57)

DCT-IV, which needs no weights, is especially useful, so several of its properties
will be proved.

Theorem 3.15 The N ×N matrix
√

2
N CIV

N is symmetric and unitary.

Proof: Symmetry is evident since the (m,n) entry is unchanged when m and n
are swapped.

To show unitarity, it remains to establish that for any 0 ≤ m,n ≤ N − 1,

N−1∑
k=0

(
cos

π(m+ 1
2 )(k + 1

2 )
N

) (
cos

π(k + 1
2 )(n+ 1

2 )
N

)
=
{

N
2 , if m = n,
0, if m �= n.

(3.58)
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Name Rank Matrix coefficient A(m, n) Index range

DCT-I CI
N+1 : RN+1 → RN+1 b(m)b(n) cos πmn

N
0, 1, . . . , N−1, N

DCT-II CII
N : RN → RN b(m) cos

πm(n+ 1
2 )

N
0, 1, . . . , N−1

DCT-III CIII
N : RN → RN b(n) cos

π(m+ 1
2 )n

N
0, 1, . . . , N−1

DCT-IV CIV
N : RN → RN cos

π(m+ 1
2 )(n+ 1

2 )

N
0, 1, . . . , N−1

DST-I SI
N−1 : RN−1 → RN−1 sin πmn

N
1, . . . , N−1

DST-II SII
N : RN → RN b(m+1) sin

π(m+1)(n+ 1
2 )

N
0, 1, . . . , N−1

DST-III SIII
N : RN → RN b(n+1) sin

π(m+ 1
2 )(n+1)

N
0, 1, . . . , N−1

DST-IV SIV
N : RN → RN sin

π(m+ 1
2 )(n+ 1

2 )

N
0, 1, . . . , N−1

Table 3.1: Various discrete trigonometric transforms and their matrices.

But 2 cosA cosB = cos(A − B) + cos(A + B), so the sum can be rewritten in two
parts:

1
2

N−1∑
k=0

cos
π(k + 1

2 )(m− n)
N

+
1
2

N−1∑
k=0

cos
π(m+ n+ 1)(k + 1

2 )
N

def= I + II.

Since exp (iθ) = cos θ + i sin θ, each of these can be rewritten as the real part of a
geometric series:

I =
1
2
�

N−1∑
k=0

exp
(
iπ(m− n)(k + 1

2 )
N

)
;

II =
1
2
�

N−1∑
k=0

exp
(
iπ(m+ n+ 1)(k + 1

2 )
N

)
.

Suppose first that n �= m. Then −N + 1 ≤ m − n ≤ N − 1, so (m − n)/N is
not an even integer. Likewise, 1 ≤ m + n + 1 ≤ 2N − 1, so (m + n+ 1)/N is not
an even integer. The geometric summation formula can therefore be used:

I = � exp
(
iπ(m− n)

2N

)
1 − exp (iπ(m− n))

1 − exp (iπ(m− n)/N)

= � i(1 ± 1)
2 sin (π(m− n)/(2N))

= 0,
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and

II = � exp
(
iπ(m+ n+ 1)

2N

)
1 − exp (iπ(m+ n+ 1))

1 − exp (iπ(m+ n+ 1)/N)

= � i(1 ± 1)
2 sin (π(m+ n+ 1)/(2N))

= 0,

because 2i sin θ = exp (iθ) − exp (−iθ), and each expression is the real part of a
purely imaginary number.

On the other hand, if m = n, then Equation 3.58 holds if

N−1∑
k=0

cos2
(
π(n+ 1

2 )(k + 1
2 )

N

)
=
N

2
.

But for any integer n and all real θ, cos θ = (−1)n sin
(
π(n+ 1

2 ) − θ
)
, so

N−1∑
k=0

cos2
(
π(n+ 1

2 )(k + 1
2 )

N

)
=

N−1∑
k=0

sin2

(
π(n+ 1

2 )(N − 1 − k + 1
2 )

N

)

=
N−1∑
k=0

sin2

(
π(n+ 1

2 )(k + 1
2 )

N

)
, (3.59)

after the substitution k ← N − 1 − k. Finally, since sin2 θ + cos2 θ = 1 for all θ,

N−1∑
k=0

cos2
(
π(n+ 1

2 )(k + 1
2 )

N

)
=

1
2

N−1∑
k=0

1 =
N

2
,

completing the proof. �

Noting that 2 sinA sinB = cos(A−B)−cos(A+B) and sin2 θ = cos2[π(n+ 1
2 )−θ],

it is easy to see how the previous proof can be modified to give the following very
similar result:

Corollary 3.16 The N ×N matrix
√

2
N SIV

N is symmetric and unitary. �

3.3 Exercises

1. Find the 1-periodization of the function f(x) = e−|x|.

2. For real ε > 0 and α, define the dilation operator δε and the translation
operator τα, which act on functions f = f(t) of one real variable as follows:

ταu(t) def= u(t− α); δεu(t) def= ε−1/2u(t/ε). (3.60)

a. Show that these are linear transformations with inverses τ−1
α = τ−α and

δ−1
ε = δ1/ε.
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b. Compute the compositions τα[δεw](t) and δε[ταw](t) on a function w =
w(t).

c. Show that the fraying operator F (r, α, ε) over reach interval [α− ε, α+ ε],
as defined in Equation 3.20, may be written as F (r, α, ε) = ταδεFδ

−1
ε τ−1

α .

d. Derive the formula for splicing over the reach interval [α − ε, α + ε] by
computing S(r, α, ε) = ταδεSδ

−1
ε τ−1

α . Deduce that F (r, α, ε) and S(r, α, ε)
are inverses.

3. Suppose that u = u(x) is T -periodic. Show that the smooth local periodiza-
tion of u to the interval [0, T ] equals u.

4. Show that the following operators can also be used for fraying and splicing:

F̃ u(t) =

⎧⎨⎩ r̄(t)u(t) − r̄(−t)u(−t), if t > 0,
r(−t)u(t) + r(t)u(−t), if t < 0,
u(0), if t = 0;

(3.61)

S̃u(t) =

⎧⎨⎩ r(t)u(t) + r̄(−t)u(−t), if t > 0,
r̄(−t)u(t) − r(t)u(−t), if t < 0,
u(0), if t = 0.

(3.62)

That is, show that

(i) S̃u(t) = u(t) and F̃ u(t) = u(t) if |t| > 1.
(ii) S̃ and F̃ are linear transformations of functions on R.
(iii) S̃ and F̃ are inverses.
(iv) If u and r belong to Cd(R), then for 0 ≤ n ≤ d,

[F̃ u](n)(0−) = 0 for odd n; [F̃ u](n)(0+) = 0 for even n.

(v) If r belongs to Cd(R) and u belongs to Cd(R \ {0}) and has one-sided
limits u(n)(0±) for 0 ≤ n ≤ d which satisfy

u(n)(0−) = 0 for odd n; u(n)(0+) = 0 for even n,

then defining S̃u(0) = Su(0+) yields S̃u ∈ Cd(R).

What happens if we substitute r ← r̄? What if r = r̄?

5. Prove, using induction and Leibniz’ rule, that the function rn(t) defined below
has 2n − 1 vanishing derivatives at t = +1 and t = −1, so that rn has 2n − 1
continuous derivatives:

r0(t) =

{ 0, if t ≤ −1,
sin
[

π
4 (1 + t)

]
, if −1 < t < 1,

1, if t ≥ 1.
;

rn(t) def=

{ 0, if t ≤ −1,
rn−1(sin π

2 t), if −1 < t < 1,
1, if t ≥ 1.
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6. Show that the set of functions {1,√2 cos 2πnt,
√

2 sin 2πnt : n = 1, 2, . . .} is
orthonormal with respect to the (Hermitean) inner product

〈f, g〉 def=
∫ 1

0

f̄(t)g(t) dt.

That is, show that〈√
2 cos 2πnt,

√
2 sin 2πmt

〉
= 0, all n,m ∈ Z+; (3.63)〈√

2 cos 2πnt,
√

2 cos 2πmt
〉

= 0, n �= m ∈ Z+ ∪ {0}; (3.64)〈√
2 sin 2πnt,

√
2 sin 2πmt

〉
= 0, n �= m ∈ Z+; (3.65)

‖1‖ = ‖√2 sin 2πnt‖ = ‖√2 cos 2πnt‖ = 1. (3.66)

7. Compute the sine-cosine Fourier series of the 1-periodic function f(x) =
cos2(2πx). (Hint: use a trigonometric identity.)

8. Compute the complex exponential Fourier series of the 1-periodic function
sin(2πkt− d), where d is a constant real number.

9. Show that if |c(n)| < 1/|n|3 for all integers n �= 0, then the 1-periodic function
f = f(t) which is the inverse Fourier transform of the sequence {c(n)} must
have a continuous derivative f ′(t) at every t ∈ [0, 1].

10. Show that the functions φk(t) = 1(Nt−k), k = 0, 1, . . . , N −1 are an orthog-
onal collection with respect to the inner product

〈f, g〉 def=
∫ 1

0

f(t)g(t) dt.

Here 1 = 1[0,1) is the indicator function of the interval [0, 1). How can this
collection be made orthonormal? What is the linear span of {φk : 0 ≤ k <
N}?

11. Suppose that φ has Fourier integral transform Fφ. Let φk(x) def= φ(x − k).
Show that Fφk(ξ) = e−2πikξFφ(ξ).

12. Suppose that φ has Fourier integral transform Fφ. Let φa(x) def= φ(x/a), for
a > 0. Show that Fφa(ξ) = aFφ(aξ).

13. Compute the inverse Fourier integral transform of the function

ψ(ξ) =
{

1, if −1 ≤ ξ < − 1
2 or 1

2 < ξ ≤ 1;
0, otherwise.

(Hint: notice that ψ(ξ) = 1I(ξ/2) − 1I(ξ), where I = [− 1
2 ,

1
2 ].)
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14. Compute the Fourier integral transform of the hat function

h(x) =
{

1 − |x|, if −1 ≤ x ≤ 1;
0, otherwise.

15. Show that the vectors ωn ∈ CN , n = 0, 1, . . . , N − 1 defined by ωn(k) =
1√
N

exp (2πink/N) form an orthonormal basis with respect to the inner prod-
uct

〈f, g〉 def=
N−1∑
k=0

f(k) g(k).

16. Write out explicitly the matrices for the 2 × 2 and 4 × 4 discrete Fourier and
Hartley transforms (F2, F4, H2 and H4).

17. What is the matrix of the square of N × N DFT? Give a formula for every
positive integer N .

18. What is the matrix of the fourth power of N ×N DFT ? Give a formula for
every positive integer N .

19. Write out explicitly the matrices CIV
2 and CIV

4 used for the 2 × 2 and 4 × 4
DCT-IV, respectively.

20. Prove Lemma 3.14.

21. Prove Corollary 3.16.

3.4 Further Reading

• Tom M. Apostol. Mathematical Analysis. Addison–Wesley, Reading, Massa-
chusetts, second edition, 1974. ISBN 0-201-00288-4.

• James W. Cooley and John W. Tukey. An algorithm for the machine calcu-
lation of complex Fourier series. Mathematics of Computation, 19:297–301,
1965.

• Jean Baptiste Joseph Fourier. Théorie Analytique de la Chaleur. F. Didot,
Paris, 1822.

• K. R. Rao and P. Yip. Discrete Cosine Transform. Academic Press, New
York, 1990. ISBN 0-12-580203-X.

• Elias M. Stein and Guido Weiss. Introduction to Fourier Analysis on Euclid-
ean Spaces. Number 32 in the Princeton Mathematical Series. Princeton
University Press, Princeton, New Jersey, 1971. ISBN 0-691-08078-X.
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• James S. Walker. Fast Fourier Transforms. CRC Press, Boca Raton, Florida,
1992. ISBN 0-8493-7154-6.

• Gregory K. Wallace. The JPEG still picture compression standard. Commu-
nications of the ACM, 34:30–44, 1991. Also available from URL ftp://ftp.
uu.net/graphics/jpeg/wallace.ps.gz.



Chapter 4

Sampling and Estimation

Multimedia signal processing begins with the taking of physical measurements to
acquire sounds or images. To determine what measurements are needed, we use a
mathematical model of the physical process. For example, speech recording begins
with a model of the sound vibrations that a human being can produce. These result
in slight fluctuations of the air pressure that can be measured by a microphone,
producing a real-valued function of one real “time” variable. Similarly, taking a
picture begins with a model of the light arriving at the camera. The amount that
arrives during the acquisition period, or when the shutter is open, is a nonnegative
real-valued function of two “space” variables. Finally, video can be modeled by a
nonnegative function of one time plus two space variables.

There is no general method for representing arbitrary functions of one, two, or
three real variables in a computer. That would require an infinite amount of infor-
mation even in some simple cases. However, the functions produced or consumed
by humans as sounds, pictures, or videos are not arbitrary. They are very smooth
functions since humans can neither move too fast nor absorb very rapidly chang-
ing signals. Hence sampling the functions often enough, or at enough places, will
give a reliable approximation. The smoothness, or slow-change assumption, implies
that no large fluctuations occur between sample points. We will study methods for
recovering a function from its samples, given this assumption.

Looking deeper, we see that the physical measurement of a sample contains
numerous uncertainties. We will obtain estimates of the errors caused by our fun-
damental ignorance by modeling our measurements as random variables and using
tools from probability theory.

The uncertainty and error in physical measurement is actually a blessing in
disguise. On the one hand, the data in our computer can never be a perfect repre-
sentation of reality, and will always be corrupted with noise. On the other hand,
our processing algorithms are freed from the tyranny of exactness. We can use fast
approximate computation methods in many cases, if we keep the calculation errors
small compared to the original measurement errors.

M.V. Wickerhauser, Mathematics for Multimedia, Applied and Numerical 
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4.1 Approximation and Sampling

We will restrict ourselves to the problem of approximating one real or complex-
valued function f = f(x) of one real variable x, given its values at discrete points.
For the moment, we will assume that the values and the sample points are known
exactly.

So, let {xk : 0 ≤ k ≤ n} be a set of n+1 distinct real numbers. Then for any real
or complex numbers {yk : 0 ≤ k ≤ n}, the sampling set S = {(xk, yk) : 0 ≤ k ≤ n}
is a list of n+1 distinct points. For example, we may take S to be a table of sample
points yk = f(xk) for f . If xk = x0 + kh for some h > 0 and all k = 0, 1, . . . , n,
then S is called a regular or equally-spaced sampling of f with sampling interval h.

Given S and some assumptions about f , it is often desirable to compute f(x) at
points x /∈ {xk}. This process S �→ f is called interpolation, and has a long history
with many applications. For example, one of the earliest kinds of compressed data
was tables of sines and cosines recorded to high precision at just a few angles. With
high-order polynomial interpolation, any other desired value could be computed
with equally high precision in just a few operations. A more recent application is
resampling a function at other points, to accommodate new display devices. This
can often be done speedily with low-order piecewise approximation. Finally, some
operations such as differentiating or integrating f reduce to matrix multiplication,
if we know that f belongs to a sampling space, and has an expansion in known
basis functions.

4.1.1 Polynomial interpolation

Any single value of a polynomial p = p(x) can be computed in finitely many steps
from its formula:

p(x) = a0 + a1x+ a2x
2 + · · · + an−1x

n−1 + anx
n. (4.1)

The highest power of x, here n, is called the degree of p. Clearly n ≥ 0. The n+ 1
numbers {a0, a1, . . . , an} are called the coefficients of p.

Given the coefficients {a0, a1, . . . , an} and a fixed x, it costs O(n) floating-
point operations to compute p(x) by Horner’s method, which works by grouping
operations as follows:

p(x) = a0 + x(a1 + x(a2 + · · · + x(an−2 + x(an−1 + xan)) · · ·)). (4.2)

Below is one implementation:

Polynomial Evaluation by Horner’s Method

horner( x, a[], n ):
[0] Let y = a[n]
[1] For k=n-1 down to 0, do [2]
[2] Replace y = a[k] + x*y
[3] Return y
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Step 2 consists of one multiplication and one addition. It is executed n times,
making the cost O(n) operations per evaluation.

Any number z for which p(z) = 0 is called a root of p, and we can write
p(x) = (x − z)q(x), where q(x) is a polynomial of degree one less than p. This
implies that if the degree is n, there can be at most n distinct roots. Another way
of saying this is:

Lemma 4.1 If the degree of a polynomial p is known to be n or less, but it is known
to have more than n distinct roots, then all of p’s coefficients must be zero and thus
p(x) = 0 for all numbers x.

Proof: If z0, z1, z2, . . . , zn are n+ 1 distinct roots of p = p(x) = a0 + a1x+ a2x
2 +

· · · + an−1x
n−1 + anx

n, then the following matrix equation holds:⎛⎜⎜⎜⎜⎜⎝
1 z0 z2

0 · · · zn
0

1 z1 z2
1 · · · zn

1

1 z2 z2
2 · · · zn

2
...

. . .
...

1 zn z2
n · · · zn

n

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
a0

a1

a2

...
an

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠ . (4.3)

Induction on n is next used to prove that the determinant of the matrix is∏
0≤i<j≤n

(zj − zi).

Since zi �= zj for i �= j, the matrix is nonsingular, so the only solution to the linear
system is a0 = a1 = · · · = an = 0. �

The quadratic formula gives all the roots of p(x) = a0 + a1x + a2x
2 when the

degree is two:

z1 =
−a1 +

√
a2
1 − 4a0a2

2a2
; z2 =

−a1 −
√
a2
1 − 4a0a2

2a2
.

This formula uses only +,−,×,÷, and √ . There are also the more complicated
Cardano formulas for roots of third and fourth degree polynomials, which use
higher-order radicals as well, but it is a deep fact discovered in the 1820’s that
no formula using just the four basic operations plus radicals of any order can rep-
resent the roots in all cases when the degree is five or more.

Lagrange interpolation

If f = f(x) is a polynomial of degree n, then its coefficients {a0, . . . , an} are uniquely
determined by the values f(x) at n+1 distinct points {x0, . . . , xn}. The algorithm
for finding the coefficients is called Lagrange interpolation, and is based on the
following identity for polynomials of degree n:

Λn(x) =
n∑

k=0

ykλk(x), (4.4)
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where for every k = 0, 1, . . . , n,

• yk = f(xk) are the fixed evaluations of f at x0, x1, . . . , xn, and

• λk(x) =
∏
j =k

x− xj

xk − xj
is a polynomial of degree n.

Theorem 4.2 If f = f(x) is a polynomial of degree n or less, and Λn is defined
by Equation 4.4, then f(x) = Λn(x) for every x.

Proof: Notice that λk(xk) = 1 while λk(xj) = 0 for j �= k, so that Λn(xk) = f(xk)
for k = 0, 1, . . . , n. Thus the polynomial f(x) − Λn(x), which has degree n, has
n+ 1 distinct roots x0, x1, . . . , xn and must be identically zero. �

The algorithm to evaluate a polynomial of degree n at an arbitrary point x,
given its values at n+1 distinct points, requires 2n+2 inputs and O(n2) arithmetic
operations:

Lagrange Polynomial Evaluation

lagrange( x, x[], y[], n ):
[0] Let y = 0
[1] For k=0 to n, do [2] to [5]
[2] Let lambda = y[k]
[3] For j=0 to n, do [4]
[4] If j != k, multiply lambda *= (x-x[j])/(x[k]-x[j])
[5] Accumulate y += lambda
[6] Return y

Newton’s form prepares the Lagrange polynomial for evaluation by a general-
ization of Horner’s method. Instead of superposing the values of n+ 1 elementary
polynomials λk(x), k = 0, . . . , n, each of degree n and determined by {x0, . . . , xn},
we precompute n+ 1 coefficients c0, c1, c2, . . . , cn such that

Λn(x) = c0 + (x− x0)[c1 + (x− x1)[c2 + · · · + (x− xn−1)cn] · · ·]. (4.5)

Expanded, this form bears some resemblance to the Taylor series for Λn:

Λn(x) = c0 + c1(x− x0) + c2(x − x0)(x − x1) + · · · + cn(x− x0) · · · (x − xn−1).

Instead of jth derivatives, the coefficients are given by cj = Djf(xj), where Djf is
the jth divided difference, defined recursively as follows:

D0f(xk) def= f(xk), k = 0, 1, . . . , n;

Djf(xk) =
Dj−1f(xk) −Dj−1f(xk−1)

xk − xk−j
, 0 < j ≤ k ≤ n.

In the special case of equispaced sampling, with xk = x0 + kh for fixed h > 0, the
Newton form mimics the Taylor series even more closely:

Λn(x) =
n∑

j=0

cj

j−1∏
i=0

(x− xi) =
n∑

j=0

∆jf(xj)
j!hj

j−1∏
i=0

(x− xi), (4.6)
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where the coefficients cj = ∆jf(xj)
j!hj are computed from ordinary undivided jth

differences ∆jf defined recursively as follows:

∆0f(xk) def= f(xk), k = 0, 1, . . . , n;
∆jf(xk) = ∆j−1f(xk) − ∆j−1f(xk−1), 0 < j ≤ k ≤ n.

Newton’s form allows easier updates of the interpolating polynomial in response
to additional points. For example, if one new point (xn+1, f(xn+1)) is added to
the interpolation set {(xk, f(xk)) : k = 0, 1, . . . , n}, then to get the new Lagrange
polynomial we simply add one more term to the old Newton form:

Λn+1(x) = Λn(x) + cn+1

n∏
k=0

(x− xk), (4.7)

where cn+1 = ∆n+1f(xn+1)
(n+1)!hn+1 in the equispaced case, or cn+1 = Dn+1f(xn+1) in

general.
To compute c0, . . . , cn from the interpolation set {(xk, f(xk)) : k = 0, . . . , n}

costs O(n2) operations, using the following algorithm:

Divided Differences for Newton’s Form

divdiff( c[], x[], y[], n ):
[0] For k=0 to n, let c[k] = y[k]
[1] For j=1 to n, do [2] to [3]
[2] For k=n down to j, do [3]
[3] Replace c[k] = (c[k]-c[k-1])/(x[k]-x[k-j])

Given {ck}, subsequent evaluations of Λn cost O(n) operations each:

Newton’s Evaluation of the Lagrange Polynomial

newtonpoly(x, x[], c[], n ):
[0] Let y = c[n]
[1] For k=n-1 down to 0, replace y = c[k] + (x-x[k])*y
[2] Return y

Chebyshev polynomials

If we can choose the sampling points {xk}, then we can select a good representation
of the Lagrange polynomial due to Chebyshev. First note that any function f =
f(x) defined for x ∈ [a, b] determines an equivalent function g(y) = f ◦ p(y) defined
on y ∈ [−1, 1], where p(y) def= b−a

2 y+ b+a
2 maps [−1, 1] to [a, b]. We also have have

f(x) = g ◦ q(x), where q(x) def= 2
b−ax− b+a

b−a maps [a, b] to [−1, 1]. Since both p and
q are of the form Ax+B with A �= 0, the functions f and g have equal smoothness
and integrability. Also, f is a polynomial of degree n if and only if g is a polynomial
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of degree n. Hence, we may assume without loss of generality that our functions
are defined on [−1, 1].

For integer n ≥ 0, define the nth Chebyshev polynomial, Tn, as follows:

Tn(x) def= cos(n arccosx), x ∈ [−1, 1]. (4.8)

That these are actually polynomials in x requires proof:

Lemma 4.3 T0(x) = 1, T1(x) = x, and for all n > 1, Tn is a polynomial of degree
n, with leading coefficient 2n−1, satisfying the recursion relation

Tn(x) = 2xTn−1(x) − Tn−2(x).

Proof: First verify T0(x) = cos 0 = 1 and T1(x) = cos(arccosx) = x. Next, write
θ = arccosx, so cos θ = x, and note that for n ≥ 2,

2xTn−1(x) − Tn−2(x) = 2 cos θ cos[(n− 1)θ] − cos[(n− 2)θ].

Then evaluate the second term,

cos[(n− 2)θ] = cos[(n− 1)θ − θ] = cos θ cos[(n− 1)θ] + sin θ sin[(n− 1)θ],

so

2xTn−1(x) − Tn−2(x) = cos θ cos[(n− 1)θ] − sin θ sin[(n− 1)θ]
= cos[nθ] = Tn(x).

This establishes the recursion relation.
Since T0 and T1 are polynomials, the recursion relation implies that Tn is also

a polynomial for all n > 1. It remains to establish, by induction on n, that the
highest order term of Tn(x) is 2n−1xn (for all n > 0, in fact), but this is left as an
exercise. �

Lemma 4.4 The roots of Tn are the n distinct numbers xk = cos
[

π(k+ 1
2 )

n

]
, k =

0, 1, . . . , n− 1, all of which lie in the interval [−1, 1].

Proof: There are at most n distinct roots of Tn, since it has degree n, and the
numbers {xk} are evidently distinct and lie in [−1, 1]. It remains to check: Tn(xk) =
cos(n arccosxk) = cos

[
π(k + 1

2 )
]

= 0. �

Lemma 4.5 Any polynomial p = p(x) of degree N or less can be written as a linear
combination of the Chebyshev polynomials T0, T1, . . . , TN .

Proof: This is obviously true for N = 0 and N = 1. Suppose that the result is true
for N−1 ≥ 1, namely, suppose 1, x, . . . , xN−1 are expressible as linear combinations
from the set T0, T1, . . . , TN−1. Since xN − 2−(N−1)TN (x) is a polynomial of degree
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at most N − 1, we see that xN can be written as a linear combination of TN and
T0, T1, . . . , TN−1. By induction, the result holds for all integers N ≥ 0. �

In particular, the Lagrange polynomial of degree at most N interpolating N + 1
points {(xk, yk) : k = 0, . . . , N} with {xk} ⊂ [−1, 1] can be written as a sum of
Chebyshev polynomials:

ΛN(x) =
N∑

n=0

c(n)Tn(x).

The expansion coefficients are easily computed from the sequence {yk} if we use
Chebyshev nodes, the N + 1 distinct roots of TN+1:

xk = cos
π(k + 1

2 )
N + 1

, k = 0, 1, . . . , N, (4.9)

That is because Chebyshev polynomials {T0, . . . , TN} have a discrete orthogonality
property with respect to the roots of TN+1. Let P be the space of polynomials of
degree N or less, with inner product

〈p, q〉 def=
N∑

k=0

p(xk)q(xk),

where {xk} is the set of Chebyshev nodes defined in Equation 4.9. This inner
product is obviously linear and Hermitean symmetric. It is nondegenerate, since
〈p, p〉 = 0 only if p has N + 1 distinct roots, which forces p = 0 since the degree of
p ∈ P is N or less. For the polynomials Tn, Tm with 0 ≤ n,m ≤ N , we get

〈Tn, Tm〉 =
N∑

k=0

cos(n arccosxk) cos(m arccosxk)

=
N∑

k=0

(
cos

π(k + 1
2 )n

N + 1

)(
cos

π(k + 1
2 )m

N + 1

)
,

which is zero for n �= m because distinct rows of the DCT-II matrix in Table 3.1
are orthogonal.

Likewise, it is straightforward to show that 〈T0, T0〉 =
∑N

k=0 1 = N + 1, and

〈Tn, Tn〉 =
N∑

k=0

cos2
[
π(k + 1

2 )n
N + 1

]
=
N + 1

2
, n = 1, 2, . . . , N. (4.10)

Theorem 4.6 For k = 0, 1, . . . , N , suppose that xk = cos π(k+ 1
2 )

N+1 is a Chebyshev
node and yk is arbitrary. Then the Lagrange polynomial of degree N or less inter-
polating {(xk, yk) : k = 0, 1, . . . , N} is:

ΛN (x) =
N∑

m=0

c(m)Tm(x),



114 Chapter 4. Sampling and Estimation

where c(0) = 1
N+1

∑N
n=0 yn, and

c(m) =
2

N + 1

N∑
n=0

yn cos
π(n+ 1

2 )m
N + 1

, m = 1, 2, . . . , N.

Proof: Every polynomial of degree N has the stated form, including the Lagrange
polynomial ΛN (x). By definition,

〈Tm,ΛN 〉 =
N∑

n=0

Tm(xn)ΛN (xn)

=
N∑

n=0

cos
[
π(n+ 1

2 )m
N + 1

]
ΛN (xn) =

N∑
n=0

cos
[
π(n+ 1

2 )m
N + 1

]
yn.

This can also be evaluated using discrete orthogonality:

〈Tm,ΛN〉 =
N∑

n=0

c(n) 〈Tm, Tn〉 = c(n) 〈Tn, Tn〉 .

Applying Equation 4.10 finishes the proof. �

Thus, given values {yn} at the N + 1 Chebyshev nodes {xn}, we can precompute
the Chebyshev expansion coefficients {c(m)} using the DCT-II transform:

c(m) =
N∑

n=0

CII
N+1(m,n)yn,

which is an investment of O(N2) operations. If N + 1 is a power of 2, this may
be done in O(N logN) operations with the fast factored DCT-II. Thereafter, eval-
uations cost only O(N) operations each since the Chebyshev recursion relation
permits efficient grouping:

Chebyshev’s Evaluation of the Lagrange Polynomial

chebyshevpoly( x, c[], n ):
[0] Let y = c[0]
[1] If n>0, then do [2] to [7]
[2] Replace y += x*c[1]
[3] If n>1, then do [4] to [7]
[4] Let T[0] = 1, let T[1] = x
[5] For k=2 to n, do [6] to [7]
[6] Let T[k] = 2*x*T[k-1] - T[k-2]
[7] Replace y += c[k]*T[k]
[8] Return y

Chebyshev polynomials also have a continuous orthogonality property. Consider
the vector space Poly of polynomials on [−1, 1], as defined on page 33 but with the
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inner product 〈u, v〉 def=
∫ 1

−1
u(x)v(x)√

1−x2 dx defined in Equation 2.27. This contains all
polynomials, including all the Chebyshev polynomials. By substituting x ← cos θ,
so dθ = −(1 − x2)−1/2 dx, we get

〈Tn, Tm〉 =
∫ 1

−1

cos(n arccosx) cos(m arccosx)√
1 − x2

dx =
∫ π

−π

cos(nθ) cos(mθ) dθ.

The substitution θ ← 2πt− π converts this to

〈Tn, Tm〉 = ±2π
∫ 1

0

cos(2πnt) cos(2πmt) dt,

which is zero for n �= m by Equation 3.64.

4.1.2 Piecewise interpolation

High-order polynomials are sums of many terms that can have wildly different
magnitudes. It is often better to approximate a function in pieces using low-order
polynomials on each piece. Pieces will be short runs of sample points, so we now
suppose that x0 < · · · < xN , where N is fixed in advanced. The values y0, . . . , yN

to be interpolated are arbitrary, and we denote the set of interpolation points by

S = {(xk, yk) : k = 0, 1, . . . , N} ⊂ R2. (4.11)

The piecewise constant function through S is defined by:

f(x) = yk, when x is closest to xk. (4.12)

Such f is also called a step function. The evaluation algorithm, which assumes that
n > 0 and that x0 ≤ x ≤ xn, takes O(n) operations:

Piecewise Constant Evaluation

pwconstant( x, x[], y[], N ):
[0] For k=0 to N-1, do [1]
[1] If x < (x[k]+x[k+1])/2, then return y[k]
[2] Return y[N]

All of the work is in finding that k for which x is closest to xk. If the points {xk}
are equispaced in some interval [a, b], so that xk = a + kh for h = (b − a)/N , then
k = � 1

2 + (x− a)/h� and each evaluation costs a fixed number O(1) of operations,
independent of N :

Equispaced Piecewise Constant Evaluation

epwconstant( x, y[], a, b, N ):
[0] Let k = floor( 0.5 + N*(x-a)/(b-a) )
[1] Return y[k]
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The piecewise linear function through S is defined by:

f(x) =
yk(x − xk−1) + yk−1(xk − x)

xk − xk−1
, when xk−1 ≤ x ≤ xk. (4.13)

Notice that f(x) = Λ1(x) on the interval [x0, x1], where Λ1 is the degree-1 La-
grange polynomial given by Equation 4.4. On the general interval [xk−1, xk], f
is given by that same formula f(x) = Λ1(x), derived from the interpolation set
Sk = {(xk−1, yk−1), (xk, yk)}.

The graph of f is obtained by connecting (xk−1, yk−1) to (xk, yk), for each
k = 1, 2, . . . , N , with a line segment. This is a simple way to obtain a graph
from a table of at least two function values. The evaluation algorithm takes O(N)
operations, most of which are spent finding the right subinterval:

Piecewise Linear Evaluation

pwlinear( x, x[], y[], N ):
[0] If x < x[0], then return y[0]
[1] For k=1 to N, do [2]
[2] If x < x[k], then return

(y[k]*(x-x[k-1]) + y[k-1]*(x[k]-x)) / (x[k]-x[k-1])
[3] Return y[N]

This implementation is robust: it returns y0 if x ≤ x0 and returns yN if x ≥ xN .
The version for equispaced {xn} is left as an exercise.

To find a root of a function from its samples, we first locate two adjacent samples
y1, y2 of opposite sign, then use the root x0 of the linear function interpolating
{(x1, y1), (x2, y2)}:

x0 =
x2y1 − x1y2
y1 − y2

. (4.14)

To find a local maximum or minimum of a smooth function f from its samples
yk = f(xk), we first locate three consecutive samples y1, y2, y3 such that y2 − y1
and y3 − y2 are of opposite sign. Then the Mean Value Theorem implies that
f ′(x) changes sign between x1 and x3, and the Intermediate Value Theorem im-
plies that f ′(x0) = 0 for some x0 ∈ (x1, x3). We approximate this extremum x0

with the vertex of the parabola y = Λ2(x) interpolating {(x1, y1), (x2, y2), (x3, y3)}.
That quadratic polynomial may be written in efficient-to-evaluate Newton form as
follows:

y = Λ2(x) = y1 + (x− x1)

(
y2 − y1
x2 − x1

+ (x− x2)
y3−y2
x3−x2

− y2−y1
x2−x1

x3 − x1

)
. (4.15)

The extreme value is then approximated by y∗
def= Λ2(x∗), where x∗ is the unique

critical point satisfying Λ′
2(x∗) = 0. Solving for x∗ gives

x∗ =
1
2
x2

1(y3 − y2) + x2
2(y1 − y3) + x2

3(y2 − y1)
x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1)

. (4.16)
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We may also combine the interpolation and root formulas to get y∗ directly:

y∗ =
2
[
y2
1∆x

4
23 + y2

2∆x
4
31 + y2

3∆x
4
12

]− [y1∆x2
23 + y2∆x2

31 + y3∆x2
12

]2
4∆x12∆x23∆x31 [y1∆x23 + y2∆x31 + y3∆x12]

. (4.17)

Here ∆xij = xi − xj for i, j ∈ {1, 2, 3}.
One way to check such complicated expressions is by symmetry. It cannot

matter how we label the points, so the formulas x∗((x1, y1), (x2, y2), (x3, y3)) and
y∗((x1, y1), (x2, y2), (x3, y3)) must be symmetric functions, left unchanged by all
permutations of the indices (1, 2, 3).

Another check is based on rescaling: for any s, t �= 0, changing x1, x2, x3 to
sx1, sx2, sx3 must change x∗ to sx∗ leaving y∗ fixed, and changing y1, y2, y3 to
ty1, ty2, ty3 must change y∗ to ty∗ leaving x∗ fixed. In other words, the units for
x∗ and y∗ are the units of the x and y axes, respectively. Such scale invariance is
expressed more precisely by the formulas

x∗(sx, ty) = s x∗(x, y); y∗(sx, ty) = t x∗(x, y).

It is a worthwhile exercise to confirm that Equations 4.16 and 4.17 are scale invariant
symmetric functions.

4.1.3 Sampling spaces

A function φ = φ(x) of one real variable is said to satisfy an interpolation condition
if the following holds at the integers:

φ(0) = 1; φ(n) = 0, if n = ±1,±2, . . .. (4.18)

Such a function generates a sampling space, which consists of all the linear combina-
tions of integer translates of φ, or u(x) =

∑
n c(n)φ(x−n), where c = {c(n) : n ∈ Z}

is a sequence of scalars. But then the interpolation condition allows easy evaluation
of the scalars: for each integerm, we have u(m) = c(m) since all translates φ(m−n)
other than φ(m−m) contribute nothing to the sum at m. Thus, any function in a
sampling space is completely determined by its samples, or values at the integers.
Additional hypotheses may also be imposed on the values of φ(x) at non-integer
x ∈ R, to obtain additional properties for the sampling space and its functions.

For a given sequence of scalars {c(n) : n ∈ Z}, the following partial sum belongs
to span {φ(x− n) : n ∈ Z} for any integers M ≤ N :

uMN (x) def=
N∑

n=M

c(n)φ(x − n) (4.19)

We need some notion of convergence to a limit in order to make sense of the infinite
superpositions available in a sampling space:
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Definition 3 Let B def= {φn : n ∈ Z} be a set of functions of one real variable,
and suppose that spanB forms a vector space with norm ‖·‖. The closure of spanB
in the norm ‖ · ‖, denoted spanB, consists of all expressions of the form

u(x) =
∞∑

n=−∞
c(n)φn(x),

where the scalars {c(n) : n ∈ Z} produce partial sums uMN with the property that
for every ε > 0, there is some number Tε > 0 such that ‖uMN‖ < ε whenever
N ≥M ≥ Tε or M ≤ N ≤ −Tε.

In other words, the tails of infinite superpositions contribute arbitrarily small errors
as measured by the norm. Addition and scalar multiplication are defined compo-
nentwise for such expressions:

∞∑
n=−∞

c(n)φn(x) + a

∞∑
n=−∞

c′(n)φn(x) def=
∞∑

n=−∞
[c(n) + ac′(n)]φn(x). (4.20)

A norm may be defined on the resulting vector space by taking limits of the norms
of partial sums:

‖u‖ def= lim
−M,N→∞

‖uMN‖,

and we are sure that this limit exists because both {‖u0N‖ : N > 0} and {‖u−M0‖ :
M > 0} are Cauchy sequences. Indeed, the construction of the normed vector space
spanB is analogous to the construction of real numbers from Cauchy sequences
of rational numbers. There is even a version of completeness similar to that of
Theorem 1.9:

Theorem 4.7 Given a set B = {φn : n ∈ Z} and a norm ‖ · ‖, form spanB. Then
for any V = {ψn : n ∈ Z} ⊂ spanB, we have spanV ⊂ spanB. �

Given an interpolating function φ and a norm ‖ · ‖, we get a sampling space
spanB from the set B = {φn(x) = φ(x − n) : n ∈ Z}. The choice of φ and the
choice of norm both influence the sampling space. For example, fix φ(x) = 1(x),
the characteristic function of [0, 1), and consider the sampling space generated by
B = {1(x − n) : n ∈ Z} by the closure in three norms. 1 evidently satisfies the
interpolation condition,1 and the partial sum uMN will be a piecewise constant
function:

uMN (x) =
{
c(n), if x ∈ [n, n+ 1) for some n ∈ {M,M + 1, . . . , N − 1, N};
0, if x /∈ [M,N + 1).

We compute the tail errors in three norms:

1To get continuity at the integer sample points, use a balanced support interval I = [− 1
2
, 1

2
]

and put φ = 1I .
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1. Let ‖u‖1
def=
∫
R
|u(x)| dx. Then ‖uMN‖1 =

∑N
n=M |c(n)|, so the expression

u(x) =
∑

n c(n)1(x − n) belongs to spanB if and only if
∑

n |c(n)| is a con-
vergent series.

2. Let ‖u‖2
def=
(∫

R |u(x)|2 dx)1/2. Then ‖uMN‖2 =
(∑N

n=M |c(n)|2
)1/2

is the

�2 norm of the partial sequence {c(n) : M ≤ n ≤ N}, so the expression
u(x) =

∑
n c(n)1(x − n) belongs to spanB if and only if c ∈ �2(Z), if and

only if
∑

n |c(n)|2 is a convergent series.

∞. Let ‖u‖∞ def= max{|u(x)| : x ∈ R}. Then ‖uMN‖∞ = max{|c(n)| : M ≤ n ≤
N}, so the expression u(x) =

∑
n c(n)1(x− n) belongs to spanB if and only

if c(n) → 0 as |n| → ∞.

Example 2 deserves special attention since the norm ‖ · ‖2 is derived from the
inner product in L2(R), and the translates B = {1(x − n) : n ∈ Z} form an
orthonormal set in that inner product space. In general, when the L2 norm is
chosen, and φ generates an orthonormal set B, then by adapting the proof of
Parseval’s formula2 we can show that u belongs to spanB if and only if the sequence
of samples {u(n) : n ∈ Z} belongs to �2(Z). Furthermore, B will be an orthonormal
Schauder basis for spanB, and since 〈φn, φm〉 = δ(n−m) for n,m ∈ Z, we see that∫ ∞

−∞
φ̄(x − n)u(x) dx = 〈φn, u〉 =

∑
m

u(m) 〈φn, φm〉 = u(n). (4.21)

This shows how we can compute the expansion coefficients of u in the orthonormal
basis B by sampling, a simpler alternative to inner product integrals. However, the
inner product must be used to evaluate the initial approximation of an arbitrary
function u ∈ L2(R) in spanB:

P : L2(R) → spanB; Pu(x) def=
∑
n∈Z

〈φn, u〉φn(x). (4.22)

This P is actually an orthogonal projection, generalizing the one in Exercise 13 of
Chapter 2. It is not true that 〈φn, u〉 = u(n) for arbitrary u ∈ L2(R), but only
that 〈φn, u〉 = 〈Pφn, u〉 = 〈φn, Pu〉 = Pu(n) since Pφn = φn and P = P ∗.

We now restrict our attention to the L2 norm, ‖ · ‖2, and consider the sampling
spaces generated by two other interpolating functions φ. The first is a hat function
φ(x) = h(x) like one of those defined in Equation 2.22:

h(x) def=
{

1 − |x|, if |x| < 1;
0, if x ≤ −1 or x ≥ 1,

(4.23)

This bounded, continuous function has compact support in the interval [−1, 1], so
it is square-integrable. The sampling space generated by h consists of all piecewise

2Solve exercise 14 of Chapter 2!
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linear square-integrable functions with joints at the integers. Although the trans-
lates B = {h(x−n) : n ∈ Z} are not orthogonal, it is still true that

∑
n c(n)h(x−n)

belongs to the sampling space spanB if and only if the infinite series
∑

n |c(n)|2
converges. This is left as an exercise.

Band-limited functions

The second example is φ(x) = sinc (x) = sin(πx)
πx , as introduced in Equation 3.47

and graphed in Figure 3.7. Recall that the Fourier integral transform of this φ is
the indicator function of the balanced interval I = [− 1

2 ,
1
2 ], so Fφ = 1I is piecewise

constant and compactly supported on I. It satisfies the interpolation condition
because the numerator of sinc (x) is zero at every nonzero x ∈ Z.

Plancherel’s theorem may be used to show that the set of functions B =
{φn(x) def= sinc (x− n) : n ∈ Z} is an orthonormal basis for spanB:

〈φn, φm〉 = 〈Fφn,Fφm〉 =
∫ 1

2

− 1
2

e−2πi(n−m)ξ dξ = δ(n−m),

using the identity Fφk(ξ) = e−2πikξFφ(ξ), whose proof was left as an exercise.
Thus the expansion coefficients of u ∈ V are just the samples {u(n) : n ∈ Z}.
But the same identity shows that every u ∈ V has a Fourier integral transform
supported in I as well:

Fu(ξ) =
∑

n

u(n)Fφn(ξ) = 1I(ξ)

(∑
n

u(n)e−2πinξ

)
, (4.24)

which is evidently the restriction to I of the 1-periodic function given by the expo-
nential Fourier series in parentheses.

A function u = u(x) will be called band limited with bandwidth T if its Fourier
integral transform is a square-integrable function s = s(ξ) satisfying the compact
support condition s(ξ) = 0 if ξ < −T

2 or ξ > T
2 . This s is called the spectral density

of u. The sampling space for sinc is thus a subset of the band-limited functions u
with bandwidth 1. In fact, it is all of them, and we will show more generally that
the sampling space generated by φ(x) = T sinc (Tx) consists of all band-limited
functions of bandwidth T .

We begin by showing that band-limited functions must be very smooth:

Theorem 4.8 If u = u(x) is band-limited, then

1. For every n ≥ 0, dn

dxnu(x) exists at each x ∈ R. In particular, u(n)(0) exists.

2. The Taylor series for u about x = 0 converges to u everywhere:

u(x) =
∞∑

n=0

u(n)(0)
n!

xn.
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Proof: Let T be the bandwidth of u, and let s = Fu be its spectral density. Fix
x0 ∈ R and write

u(x0) = F−1s(x0) =
∫ ∞

−∞
s(ξ)e2πix0ξ dξ =

∫ T
2

−T
2

s(ξ)e2πix0ξ dξ.

The domain of integration is I = [−T
2 ,

T
2 ] because s = 0 outside that interval. The

first result is obtained by differentiating under the integral sign:

dn

dxn
u(x0) =

∫ T
2

−T
2

(2πiξ)n s(ξ)e2πix0ξ dξ,

We may interpret this as an inner product in L2(I), and estimate it with the
Cauchy–Schwarz inequality for the derived norm:∣∣∣∣ dn

dxn
u(x0)

∣∣∣∣ ≤ ‖(2πξ)n‖ ‖s‖ ≤ |πT |n+ 1
2√

n+ 1
2

‖u‖.

Here we used the identities |i| = 1 and |e2πix0ξ| = 1 for all x0 and ξ. Also, ‖s‖ =
‖Fu‖ = ‖u‖ by Plancherel’s theorem. For any n ≥ 0, this gives |u(n)(x0)| ≤ a|πT |n,
where a =

√
2πT ‖u‖ ≥ 0 is a constant independent of n or x0. In particular, the

inequality holds for x0 = 0. Thus for all x ∈ R and all n ≥ 0,∣∣∣∣u(n)(0)
n!

xn

∣∣∣∣ ≤ a
|πTx|n
n!

,

where a is independent of n ≥ 0 and x ∈ R. Using this in the comparison test with
the absolutely convergent Taylor series for ae|πTx| gives the second result. �

Since the sequence of numbers {u(n)(0) : n = 0, 1, 2, . . .} determines all the
values {u(x) : x ∈ R}, it seems less miraculous that samples of a band-limited u, at
regularly-spaced points sufficiently close together, also determine u(x) everywhere:

Theorem 4.9 (Shannon) If u = u(x) is band-limited with bandwidth T , then

u(x) =
∞∑

n=−∞
u
(n
T

)
sinc (Tx− n).

Proof: Let s be the spectral density of u that is supported on the interval J =
[−T

2 ,
T
2 ]. Then s(ξ) = 1J(ξ)s(ξ) for all ξ ∈ R, since s is already localized to J . We

expand s in its T -periodic Fourier series:

s(ξ) = 1J(ξ)s(ξ) = 1J(ξ)
∞∑

n=−∞
c(n)e2πinξ/T =

∞∑
n=−∞

c(n)bn(ξ). (4.25)
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Figure 4.1: Left: Part of the graph of e−x2
sinc (x). Right: Part of the graph of the

“hat” function. Both curves have maximum value 1, and two roots nearest 0 at
x = −1 and x = +1.

The factor 1J(ξ) is needed for equality on all of R since the series defines a periodic
function supported outside the interval J . We combined it with the exponential to
get

bn(ξ) def= 1J(ξ)e2πinξ/T = 1I(ξ/T )e2πinξ/T ,

where I = [− 1
2 ,

1
2 ] and F−11I(x) = sinc (x). By Exercises 11 and 12 of Chapter 3,

we may evaluate F−1bn(x) = T sinc (Tx + n). We now reverse course and write u
as the inverse Fourier integral transform of the series for s:

u(x) = F−1s(x) =
∞∑

n=−∞
c(n)F−1bn(x) =

∞∑
n=−∞

c(n)T sinc (Tx+ n). (4.26)

On the other hand, the Fourier coefficients {c(n)} for Equation 4.25 can also be
written as inverse Fourier integral transforms of s:

c(n) =
1
T

∫ T
2

−T
2

s(ξ)e−2πinξ/T dξ =
1
T

∫ ∞

−∞
s(ξ)e2πi(− n

T )ξ dξ =
1
T
u
(
− n

T

)
. (4.27)

Substituting Equation 4.27 into Equation 4.26 and replacing n ← −n yields the
result. �

There are benefits to choosing an interpolating function φ with fast decay away
from its peak at 0. We may wish to ignore entirely the values of φ outside I =
[−1, 1], and then faster decay implies a smaller error ‖φ − 1Iφ‖2. This quantity
is relatively large for sinc , about 10%. It can be reduced to about 0.1% by using
the Gaussian sinc function φ(x) = e−x2

sinc (x), which is depicted in Figure 4.1
together with the hat function of Equation 4.23, to emphasize their similarity. The
Gaussian sinc function does not generate an orthonormal basis for its sampling
space, however.
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4.2 Measurement and Estimation

Consider what it means to make a measurement. For example, what is the length
of a pencil? We must suppose that the pencil actually has a length that various
observers can agree on. Upon close examination, even this simple problem is surpris-
ingly complex. It is known that a pencil expands and contracts with temperature
and humidity changes. Also, the end of a pencil looks rough under a microscope,
so the measurement points must be specified among the peaks and valleys at the
ends. Indeed, any mechanical device that touches the rough end of a pencil will
press down some of these peaks, influencing the measurement and causing different
observations to disagree.

In general, it is common to suppose that an observable quantity has an ideal
value, which is a constant real number. In practice, there will be various errors
and uncertainties in any physical measurement. Taking a measurement at best
gives some information about the likelihood of different ideal values. One way to
model this is to introduce a random variable whose probability density function is
determined by a measurement, and then estimate the ideal value by some expected
value3 or other functional of the density. This estimated ideal value should depend
on the measurement, of course, or else the instrument is useless. We make this
precise, and derive formulas, using the notion of joint and conditional probabilities.

4.2.1 Quantization, precision, and accuracy

In practice, measurements are always quantized, taking one of finitely many discrete
representable values that the instrument can produce. For example, a twelve-inch
ruler marked in sixteenths of an inch can yield one of only 16 × 12 = 192 different
nonzero measurements x ∈ { n

16 : n = 1, . . . , 192}. Some measured lengths would
fall between marks, of course, and these would be read to the nearest sixteenth of
an inch. The quantization error of any quantized measurement is half the distance
between adjacent values. For this ruler, that is 1

32 inch. In some cases, however,
it is safe to assume an ideal instrument, with zero quantization error, because the
quantization error is negligible compared to other errors.

A length measurement x with the example ruler implies only that the ideal value
y lies in the interval Ix

def= [x− 1
32 , x+ 1

32 ]. Told that the ruler read x, we may only
conclude that y ∈ Ix and that every value in that interval is equally likely. Hence,
we may introduce a random variable Y = Yx to represent our knowledge, and give
it a uniform probability density function supported on that interval.

In general, a measurement x yields only partial information about the ideal
value, which may therefore be represented by the probability density function of
a random variable Y = Yx. The variance of Y indicates the uncertainty of this
information, so we define the imprecision of the measurement to be the square
root of this variance. In terms of expectations E, this is the root-mean-square
error

√
E(|Y − E(Y )|2). Note that even an ideal instrument can have nonzero

3Some random variables have densities with no expected value!



124 Chapter 4. Sampling and Estimation

imprecision. Conversely, a non-ideal instrument can have zero imprecision. An
instrument that counts pennies can make only nonnegative integer measurements,
and has quantization error 1

2 , but can have zero imprecision if it never miscounts
since the ideal value is also a nonnegative integer.

Given a measurement x of an ideal value y, we may hope that x is close to
y. Since our knowledge of y is limited, we may at best label, or calibrate, the
measuring instrument so that x = E(Yx), the mean value of the random variable
Yx determined by the measurement x.

But even if the instrument is not calibrated, we may define the inaccuracy of
the measurement as the root-mean-square error

√
E(|Yx − x|2). It can be shown,

using the Cauchy–Schwarz inequality of Lemma 2.4, that this is minimized when
x = E(Yx), namely by calibration. Inaccuracy is never smaller than imprecision.

Measurement density functions

Inaccuracy and imprecision may be computed from the measurement density func-
tion, which is a nonnegative function f = f(x, y) giving the likelihood of any
combinations of ideal value y and measured value x:

Pr(X ∈ [aX , bX ], Y ∈ [aY , bY ]) def=
∫ bX

aX

∫ bY

aY

f(x, y) dxdy. (4.28)

Since Pr(X ∈ R, Y ∈ R) = 1, we must have that
∫∫

R2 f(x, y) dxdy = 1. Such an f
is called a joint probability density function for the random variables X and Y , giv-
ing likelihoods that they fall within particular ranges. With another normalization,
it can be used to compute the likelihood that, given a measurement x, the random
variable Y = Yx representing the ideal value falls in a particular range [aY , bY ]:

Pr(Y ∈ [aY , bY ] |x) def=
∫ bY

aY

f(y |x) dy, (4.29)

where

f(y |x) def=
1
cx
f(x, y); cx

def=
∫ ∞

−∞
f(x, y) dy. (4.30)

The normalizing constant cx must be finite and positive at each representable x; it
guarantees that Pr(Y ∈ R |x) = 1. Such a normalized f(y |x) is called a conditional
probability density function. If in addition the instrument has finite imprecision,
then the variance of Y given x will be finite for each representable x. This variance is
comparable to

∫∞
−∞ y2f(y |x) dy, which in turn is just a multiple of

∫∞
−∞ y2f(x, y) dy.

If this last integral is finite, we will say that the instrument is focused.
Recall that an instrument with measurement density f is calibrated if, for each

measurement x,

E(Yx) = E(Y |x) def=
∫ ∞

−∞
yf(y |x) dy = x.
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The measurement density may be uncalibrated by an amount that depends on x.
For the example ruler, the domain of the measurement is { 0

16 ; 1
16 , . . . ,

192
16 }, and the

measurement density function is:

f(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
12 , if x = 0 and 0 ≤ y < 1

32 ;
1
12 , if x ∈ { 1

16 , . . . ,
191
16 } and x− 1

32 ≤ y < x+ 1
32 ;

1
12 , if x = 12 and 12 − 1

32 ≤ y ≤ 12;
0, otherwise.

Then nonzero length measurements are calibrated, but for x = 0 we have E(Y0) =
1
64 �= 0, and for x = 12 we have E(Y12) = 12 − 1

64 �= 12.
The measurement density may also be uncalibrated by an unknown amount

that is not computable from x. For example, let Y be the number of photons of all
colors impinging on a detector in one second, and x the number that the detector
counts. If 90% of red photons but only 50% of blue photons are detected, then the
measurement density will be uncalibrated by an amount that depends on the color
spectrum. For blue light, we will have E(Yx) = x/0.50, while for red light it will
be E(Yx) = x/0.90.

The imprecision of an instrument at a measurement x is the square root of the
variance of Yx. This is finite for focused densities. For a calibrated measurement
density f , variance is given by the following formula:

Var(Yx) = Var(Y |x) def=
∫ ∞

−∞
|y − x|2f(y |x) dy. (4.31)

Then the imprecision is ∆Yx =
√

Var(Y |x).
An alternative measure of imprecision is the width of the smallest interval cen-

tered at E(Y ) that has at least 50% probability of holding the value of Y . For a
calibrated measurement, this is given by the following formula:

W (Y |x) def= min

{
δ > 0 :

∫ x+δ/2

x−δ/2

f(y |x) dy ≥ 1/2

}
. (4.32)

The imprecision by this definition is ∆Yx = W (Y |x).
The measurement density function is usually impossible to determine. However,

if the measurement error is a sum of many small independent errors, the Central
Limit Theorem4 justifies approximating it by a normal density:

f(x, y) =
1√

2π σ|b− a| exp
(
− (x− y)2

2σ2

)
, x ∈ [a, b], y ∈ R (4.33)

where the parameter σ > 0 is chosen to fit the imprecision of the instrument, and
the range of possible values x is limited to allow normalization. The normalizing
constants will be cx = 1 for all x. This model implies that each measurement is
calibrated and has the same imprecision: it is exactly σ by the variance criterion,
and approximately 0.954σ by the 50%-interval criterion.

4See Ross, A First Course in Probability, third edition, page 340.
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Signal to noise ratio

Inaccuracy in measurement is often called noise, especially in sequences of mea-
surements such as digitally recorded sounds or images. The ideal values in this case
are called the signal.

Let u = {u(n) : n ∈ N} be a sequence of measurements, and suppose that
each value u(n) can be written as v(n) + q(n), where v(n) is the ideal value and
q(n) is a measurement error. The quality at sample n is just the squared ratio
|v(n)|2/|q(n)|2, which is called the signal to noise ratio. But it can be misleading
to focus on a single sample, and the measurements actually produce two sequences
v and q. A useful concept is local power, or ‖v‖2

[a,b], defined by

‖v‖2
[a,b]

def=
1

1 + b− a

b∑
n=a

|v(n)|2, (4.34)

which is the average energy, or square norm, per sample in the sampling interval
[a, b]. The signal to noise ratio of a sequence u defined on [a, b] expressed using
local power is therefore

SNR(u) def= 10 log10

‖v‖2
[a,b]

‖q‖2
[a,b]

. (4.35)

Local power can be used to compute the signal to noise ratio of functions f =
f(t) of a real variable in the interval I = [0, 1]. For each N ∈ Z+, the samples
vN (n) = f(n/N), 1 ≤≤ n ≤ N , when used in Equation 4.34, give a Riemann
sum approximation to

∫ 1

0 |f(t)|2 dt = ‖f‖2, the square norm of f in L2(I). If f is
continuous on I, then limN→∞ ‖vN‖2

[1,N ] = ‖f‖2 exists. We may therefore define
the signal to noise ratio for such functions as

SNR(f) def= 10 log10

‖fs‖2

‖fq‖2
, (4.36)

where f = fs + fq is written as a sum of ideal signal fs and noise fq, with both
parts required to be in L2(I).

Of course, these notions are useful only when the signal and noise sequences
are known. That is the case when the noise is caused by some transformation of
an exactly-known initial sequence; then q is the difference between the initial and
final sequences. When q is unknown, is can sometimes be estimated or modeled
as a sequence of random variables with finite means and variances. So-called white
Gaussian noise is a sequence of independent random variables5 which each have the
Gaussian, or normal, probability density function f(x) = 1√

2π σ
exp
(
− x2

2σ2

)
with

mean 0 and variance σ2.
5When the random variables take just the two values T and F , with Pr(T ) = p and Pr(F ) =

1 − p for all of them given by some fixed 0 < p < 1, the result is called a sequence of Bernoulli
trials.
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4.2.2 Estimation

In our model, it is not possible to determine the ideal value y from a single mea-
surement x since all we get is a random variable Yx. We imagine that many ideal
values might yield the same measurement, each with some likelihood, and this
many-to-one relationship is not invertible. But x and y play similar roles in the
measurement density function f = f(x, y), and we may also imagine that an ideal
value y might result in various measurements Xy, each with its own likelihood. For
an ideal instrument, the likelihoods are

Pr(X ∈ [a, b] | y) def=
∫ b

a

f(x | y) dx, (4.37)

where the integrand is a normalized version of the measurement density function
called the conditional measurement density:

f(x | y) def=
1
cy
f(x, y); cy

def=
∫ ∞

−∞
f(x, y) dx. (4.38)

For each y, the normalizing constant cy guarantees Pr(X ∈ R | y) = 1.
The normal density of Equation 4.33 is a common model for estimating unknown

measurement density functions, though its definition must be slightly modified:

f(x, y) =
1√

2π σ|b − a| exp
(
− (x− y)2

2σ2

)
, x ∈ R, y ∈ [a, b]. (4.39)

From the estimation perspective, the range of ideal values y is constrained to a
bounded interval, but we imagine that a measurement Xy can produce any real
number.

By repeated measurement, the likelihoods of various measurements X can be
approximated, and then the one-to-many relationship y �→ Xy can be inverted to get
a good approximation for y. Such an approximate inverse is called an estimator, and
it is implemented as a decision function, y ≈ d(x1, . . . , xN ), giving an approximation
for the ideal value y from a sequence of N independent measurements x1, . . . , xN .
For example, da

2(x1, x2)
def= 1

2 (x1+x2) is one possible estimator: it uses the average
of two independent measurements as an estimate for the ideal value. More generally,
we may take the average of N measurements,

da
N (x1, . . . , xN ) def=

x1 + · · · + xN

N
, (4.40)

which under certain circumstances converges to the ideal value as N → ∞.
We will always assume that the N measurements x1, . . . , xN are independent,

so that likelihood calculations factor into N pieces:

Pr(X1 ∈ [a1, b1], . . . , XN ∈ [aN , bN ] | y) =

=
∫ b1

a1

· · ·
∫ bN

aN

f(x1, . . . , xN | y) dx1 · · ·dxN
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=

(∫ b1

a1

f(x1 | y) dx1

)
· · ·
(∫ bN

aN

f(xN | y) dxN

)
,

since f(x1, . . . , xN | y) def= f(x1 | y) · · · f(xN | y) = c−N
y f(x1, y) · · · f(xN , y). The

expected value of any decision function d = d(x1, . . . , xN ) for y is then a multi-
ple integral involving N copies of the normalized measurement density function:

E(d | y) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
d(x1, . . . , xN )f(x1 | y) · · · f(xN | y) dx1 · · ·dxN .

Here we consider all possible sequences of measurements x1, . . . , xN , weighted by
their likelihoods. We can sometimes design a decision function d so that its expected
value is the ideal value: E(d | y) = y. Such a d is called an unbiased estimator. The
averaging estimator da

N is one example. A biased estimator may also be useful,
especially if we know its bias. For example, consider measuring the ideal breaking
strength y of a rope by hanging various weights x1, . . . , xN on it. Our instrument
will record the strength measurement xk if and only if xk < y. Choosing units so
that all values lie in the interval I = [0, 1], we get a measurement density function
on the unit square 0 ≤ x, y ≤ 1 defined by the formula

f(x, y) =
{

2, if 0 ≤ x < y ≤ 1;
0, otherwise. (4.41)

The factor 2 insures that
∫∫

I×I
f(x, y) dxdy = 1. GivenN measurements x1, . . . , xN

with this instrument, we let d(x1, . . . , xN ) def= max{x1, . . . , xN} be the estimator
for the ideal value y. We are sure that d(x1, . . . , xN ) < y since xk < y for all k, so
the estimator is biased on the low side of y. But this bias can be removed by using
d = N+1

N max{x1, . . . , xN} since for any y > 0,

E(d(X1, . . . , XN) | y) =

=
∫

I

· · ·
∫

I

d(x1, . . . , xN )f(x1 | y) · · · f(xN | y) dx1 · · · dxN

= (2y)−N

∫
I

· · ·
∫

I

max{x1, . . . , xN}f(x1, y) · · · f(xN , y) dx1 · · · dxN

= 2N (2y)−NN !
∫ y

0

dx1

∫ x1

0

dx2 · · ·
∫ xN−1

0

x1 dxN

= y−NN !
∫ y

0

x1
xN−1

1

(N − 1)!
dx1 =

Ny

N + 1
< y.

The factor N ! appears on the last line since there are N ! orderings of (x1, . . . , xN ),
and each one contributes the same amount to the total as the single one 0 ≤
xN < · · · < x1 < y that we actually integrate. Iterating the N − 1 inner integrals
successively produces:

xN−1,
x2

N−2

2!
, . . . ,

xN−1
1

(N − 1)!
, (4.42)
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and the remaining steps are straightforward. It is left as an exercise to show that
the normalizing constant that determines f(x | y) from f(x, y) is cy = 2y.

The inaccuracy R(d, y) of an estimate d for an ideal value y, which is called risk,
is similar to the inaccuracy of a measurement: it is given by the formula

R2(d, y) = E
(|d− y|2) (4.43)

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
|d(x1, . . . , xN ) − y|2f(x1 | y) · · · f(xN | y) dx1 · · ·dxN .

For an unbiased estimator, the risk is the square root of the variance Var(d | y),
which is like the imprecision of an instrument rather than the possibly larger in-
accuracy. For example, if d(x) = x and f is the calibrated normal density of
Equation 4.39 with imprecision σ, then Var(d(X)) = σ2 and the risk R(d, y) = σ
of the estimate is exactly the same as the imprecision of the measurement. It is
also independent of y, just like the imprecision. For the same measurement den-
sity, averaging N independent measurements with the averaging estimator da

N of
Equation 4.40 decreases the risk:

Var(da
N ) =

σ2

N
⇒ R(da

N , y) =
1√
N
R(d, y). (4.44)

This is another consequence of the Central Limit Theorem.

The Cramér-Rao lower bound

Can the risk be reduced faster by a more clever choice of decision function? Any
estimate d(x1, . . . , xN ) gets some information about the density f from the mea-
surements x1, . . . , xN , but there are many ways to combine these measurements to
compute y. Also, the risk decreases with more samples N , if the approximate den-
sity determined from the histogram of x1, . . . , xN converges to f(x | y) as N → ∞.
Still, the computation of y from this density is possible if and only if f(x | y) changes
with y. For instruments whose measurements depend smoothly on the ideal value
y, that holds if and only if ∂

∂yf(x | y) is nonzero. Thus N and ∂
∂y f(x | y) may be

expected to take part in any risk estimate.
But in fact, these two are the only relevant factors. Regardless of the choice

of decision function dN for N independent measurements, there is a lower bound
on Var(dN | y)) that decreases with N and depends only on how the measurement
density f(x | y) changes with y:

Var(dN | y) ≥ 1

N E
(
[ ∂
∂y log f(x | y)]2

) , (4.45)

where we take ∂
∂y log f(x | y) = 0 if f(x | y) = 0, by convention. Inequality 4.45,

which is proved as Theorem 1 on page 18 of Hoel, Port and Stone’s Introduction
to Statistical Theory, is known as the Cramér-Rao lower bound. It implies that the
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risk of an unbiased estimate can be reduced by at most a factor 1/
√
N by taking

N independent measurements.
This lower bound is attained in many usual cases. Using the averaging estimator

of Equation 4.40 with the normal measurement density of Equation 4.39 gives
Var(da

N , y) = σ2/N by the Central Limit Theorem. The Cramér-Rao lower bound
is the same:

1

N E
(
[ ∂
∂y log f(x | y)]2

) =
σ4

N E
(
[ ∂
∂y (1

2 (x− y)2)]2
) =

σ4

N E ((x− y)2)
=
σ2

N
.

However, if the estimator is biased or if the measurement density function is
discontinuous or nondifferentiable in y, the Cramér-Rao inequality does not apply.
It is left as an exercise to show that R(dN , y) = O(1/N) for the breaking-strength
estimation of Equation 4.41. Thus, a biased estimate from a nonsmooth instrument
may gain more accuracy from repeated measurements than any unbiased average
using any instrument with a smooth dependence on the ideal values.

4.3 Exercises

1. Find the Lagrange polynomial through the points (0, 0), (1, 2), (2, 4).

2. Fix x and find a formula for the value y = f(x) of the Lagrange polynomial f
through the points (−1, p), (0, q), and (1, r), in terms of x, p, q, and r. Then
find dy/dq.

3. a. Find the Lagrange polynomial Λk = Λk(x) of degree k that interpolates
{(j, 2j) : j = 0, 1, . . . , k}. (Hint: use Newton’s form.)

b. Using Λk from part a, prove that for every n ≥ k,

Λk(n) =
(
n

0

)
+
(
n

1

)
+ · · · +

(
n

k

)
=

k∑
j=0

(
n

j

)
.

c. Using part b, prove that
∑k

j=0

(
n
j

)
= O(nk), as n→ ∞.

4. Find the expansion in Chebyshev polynomials T0(x), T1(x), T2(x) of the func-
tion f(x) = 1 − x2 defined for x ∈ [−1, 1].

5. Suppose that f(x) = mx + b for some constants m, b. Show that for any
sampling of f , the piecewise linear approximation exactly equals f .

6. Implement epwlinear(x,y[],a,b,N), equispaced piecewise linear interpola-
tion through the set {(xk, yk) : k = 0, 1, . . . , N} ⊂ R2, where xk = a+ k(b−
a)/N .

7. For x0 = x2y1−x1y2
y1−y2

as in Equation 4.14, prove that if x1 < x2 and y1y2 < 0,
then x1 < x0 < x2.
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8. For x∗ = 1
2

x2
1(y3−y2)+x2

2(y1−y3)+x2
3(y2−y1)

x1(y3−y2)+x2(y1−y3)+x3(y2−y1)
as in Equation 4.16, prove that if

x1 < x2 < x3 and y2 is not between y1 and y3, then x1 < x∗ < x3.

9. Let B def= {φn : n ∈ Z} ⊂ L2(R) be an orthonormal set of functions of one
real variable, and write ‖ · ‖ for the L2 norm. For each u ∈ L2(R), define

Pu(x) def=
∑
n∈Z

〈φn, u〉φn(x).

Prove that P : L2(R) → spanB.

10. Suppose that φ(x) is the hat function:

φ(x) def=
{

1 − |x|, if |x| < 1;
0, if x ≤ −1 or x ≥ 1,

Let c = {c(n) : n ∈ Z} be a sequence of complex numbers, and put f =
f(t) =

∑
n∈Z c(n)φ(t− n). Show that f ∈ L2(R) if and only if c ∈ �2. (Hint:

compute ‖f‖2 in terms of {|c(n)|2}.)
11. a. Find an example of measurement and instrument that has zero imprecision

but nonzero inaccuracy.

b. Find an example of measurement and instrument that has zero imprecision
and zero inaccuracy, but nonzero quantization.

12. Suppose that f(t) = t for 0 ≤ t ≤ 1. Fix N ∈ Z+ and let fN be the piecewise
constant approximation to f given by

fN(t) def=
N−1∑
k=0

f(
k

N
)1(Nt− k),

where 1 is the indicator function of the interval [0, 1).

a. Prove that ‖f − fN‖ = 1/3N2.

b. Treating f as the signal and f − fN as the noise, compute the signal to
noise ratio of this approximation.

13. Let f = f(x, y) be the joint probability density defined on the unit square
Q = {(x, y) : 0 ≤ x, y ≤ 1} by the formula

f(x, y) =
{

2, if 0 ≤ x < y ≤ 1;
0, otherwise.

Suppose an instrument has this f as its measurement density function. Given
N measurements x1, . . . , xN with this instrument, let

d(x1, . . . , xN ) def= max{x1, . . . , xN}
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be the estimator for the ideal value y.

a. Prove that
∫∫

Q
f(x, y) dxdy = 1.

b. Compute the normalizing constant cy and determine f(x | y).
c. Find the formula for Pr(X ∈ [a, b] | y) for 0 ≤ a < b ≤ 1.

d. Compute the risk R(d, y) for y > 0.

4.4 Further Reading
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Chapter 5

Scale and Resolution

5.1 Wavelet Analysis

Suppose that w = w(t) is a function of one real variable. For a > 0 and any real b,
the new function wab defined by

wab(t)
def=

1√
a
w(
t− b

a
), (5.1)

is a shifted and stretched copy of w. For example, if w = 1 is the indicator function
of the interval [0, 1], then wab is the indicator function of the interval [b, b + a],
divided by

√
a.

Now imagine that some fixed w is a waveform that is present in a signal, centered
at an unknown location t = b and scaled to an unknown width a. The collection
{wab : a > 0, b ∈ R} consists of all shifted and stretched versions of w, and can be
matched with the signal to determine the best values for a and b. In this context,
w is called a mother function for the collection.

A wavelet w = w(t) is a special kind of mother function, with three properties
that make it a building block for arbitrary signals:

Duration: |w(t)| is either zero or negligibly small at any t outside some
bounded interval;

Cancellation: w(t) oscillates so that its integral
∫
R
w(t) dt is zero;

Completeness: Any signal can be approximated by a linear combina-
tion from {wab : a > 0, b ∈ R}.

If w belongs to the inner product space L2(R), where 〈g, f〉 =
∫
ḡ(t)f(t) dt,

then the first two conditions can be combined into one:

Localization:
∣∣∣∣√a ∫ w̄(at)w(t− b) dt

∣∣∣∣→ 0 as a→ +∞, or as a→ 0+,

or as b→ ±∞.
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We therefore say that a wavelet is nearly orthogonal to sufficiently distant versions
of itself, since the integral that must decrease is just the inner product 〈wab, w〉, as
can be seen by changing variables t← t+ b and inverting the parameters a← 1/a
and b← −b. Also, ‖wab‖ = ‖w‖ for all a, b because of the normalization by

√
a.

5.1.1 Haar functions

The simplest example is the Haar wavelet :

w(t) =

⎧⎨⎩ 1, if 0 ≤ t < 1/2;
−1, if 1/2 ≤ t < 1;
0, otherwise.

(5.2)

Its duration is the interval [0, 1] of its support, which approximates its position.
The localization integral can be evaluated explicitly. If one of the following holds,
then

√
a
∫
w̄(at)w(t − b) dt = 0:

1. if b ≤ −1 or b ≥ 1
a , for fixed a,

2. if a ≤ 1
2 or a ≥ 2, for b = 0,

3. if a ≥ 1
b or a ≤ 1

2(b+1) , for fixed b > 0,

4. if a > 0, for fixed b ≤ −1,

5. if a ≥ 1
b+1 , for fixed b ∈ (−1,− 1

2 ],

6. if a ≥ 2
2b+1 , for fixed b ∈ (− 1

2 , 0).

The only remaining case, fixed b ∈ (−1, 0) and a→ 0+, gives

√
a

∫
w̄(at)w(t − b) dt =

{−(b+ 1)
√
a, if −1 < b ≤ − 1

2 ;
b
√
a, if − 1

2 < b < 0, (5.3)

whenever 0 < a < 1
2(b+1) , which means that the integral is O(

√
a) as a → 0+.

Cases 1 through 5 are depicted in Figure 5.1. Case 6 and Equation 5.3 are left as
exercises.

To show that the Haar wavelet has the completeness property, it is enough
to show that all piecewise constant functions are superpositions of Haar functions
wab. But 1, the indicator function of [0, 1), is such a superposition, though it takes
infinitely many terms. The proof starts by considering the partial sums, namely

φJ (t) def=
J∑

j=1

2−j/2w2−j ,0(t) =
J∑

j=1

w(t/2j)
2j

=

⎧⎪⎨⎪⎩
0, if t < 0;
1 − 2−J , if 0 ≤ t < 1;
−2−J , if 1 ≤ t < 2J ;
0, if t ≥ 2J .

(5.4)

The first four summands 1
2w(1

2 t), . . . ,
1
16w( 1

16 t) are shown together in Figure 5.2,
and Figure 5.3 shows the first four partial sums φ1, . . . , φ4 plotted together.
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Figure 5.1: Graphs of Haar wavelets w(at) and w(t − b) in most of the listed
configurations.
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Figure 5.2: Four dilated Haar wavelets.
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Figure 5.3: Partial sum of four dilated Haar wavelets.
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It is clear from the formula that at every point t ∈ R, φJ(t) → 1(t) as J → ∞.
What is more important is that inner products with φJ converge to averages as
J → ∞:

Lemma 5.1 If
∫∞
0

|u(t)|2 dt exists and is finite, then lim
J→∞

〈
φJ , u

〉
= 〈1, u〉.

Proof: Equation 5.4 implies that

lim
J→∞

〈
φJ , u

〉
=
∫ 1

0

u(t) dt− lim
J→∞

[
2−J

∫ 2J

0

u(t) dt

]
The second term vanishes in the limit by the following estimate: for each J , note
that 1(2−J t) is the indicator function of [0, 2J), and write

2−J

∫ 2J

0

u(t) dt = 2−J

∫ ∞

0

1(2−Jt)u(t) dt.

Then apply the Cauchy-Schwarz inequality to the integral:∣∣∣∣∫ ∞

0

1(2−J t)u(t) dt
∣∣∣∣ ≤

(∫ ∞

0

|1(2−J t)|2 dt
)1/2(∫ ∞

0

|u(t)|2 dt
)1/2

= 2J/2

(∫ ∞

0

|u(t)|2 dt
)1/2

.

This becomes 2−J/2
(∫∞

0 |u(t)|2 dt)1/2
when multiplied by 2−J . But the integral of

|u|2 is finite by assumption, and 2−J/2 → 0 as J → +∞, finishing the proof. �

5.1.2 The affine group

The mapping x �→ ax + b of a point x ∈ R, determined by parameters a > 0
and b ∈ R, is called an affine transformation. The set of ordered parameter pairs
{(a, b) : a > 0, b ∈ R} with the rules

(a′, b′)(a, b) = (a′a, a′b+ b′); (a, b)−1 = (a−1,−a−1b), (5.5)

is called the affine group or the Ax+B group, and is denoted by Aff . The affine
group’s identity element is (1, 0), denoted by e.

The multiplication rule comes from composition:

x �→ a′(ax+ b) + b′ = a′ax+ a′b+ b′. (5.6)

Note that the left factor (a′, b′) is applied second, much as matrix A′ is applied
to vector x second in the composition A′Ax. A matrix representation of Aff is a
function ρ from group elements (a, b) to invertible matrices ρ(a, b), which converts
group multiplication into matrix multiplication. One such representation is

(a, b) �→ ρ(a, b) =
(
a b
0 1

)
. (5.7)
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Matrix ρ(a, b) sends vector
(
x
1

)
to vector

(
ax+ b

1

)
. It is left as an exercise to

check that ρ((a′, b′)(a, b)) = ρ(a′, b′)ρ(a, b).
There are many other matrix representations, including the obvious generaliza-

tion

(a, b) �→
⎛⎝ a b 0

0 1 0
0 0 1

⎞⎠ . (5.8)

The constant function ρ(a, b) = 1 is also a matrix representation of Aff, since it
preserves the multiplication, but it is not faithful, or one-to-one, because it sends
many different group elements to the same 1 × 1 identity matrix.

Unitary representations

We can also interpret (a, b) ∈ Aff as the substitution t ← (t − b)/a that sends
a function f to fab. This gives a more general representation of Aff as linear
transformations, which are generalizations of matrices. For each (a, b) ∈ Aff , define

σ(a, b)f(t) = fab(t)
def=

1√
a
f

(
t− b

a

)
. (5.9)

This σ(a, b) is a linear transformation, because addition in any function space occurs
pointwise. Namely, for any functions f, g and any scalar c,

σ(a, b)[f+cg](t) =
1√
a
[f+cg]

(
t− b

a

)
=

1√
a
f

(
t− b

a

)
+

1√
a
cg

(
t− b

a

)
= σ(a, b)f(t) + cσ(a, b)g(t).

In fact, σ(a, b) is an invertible linear transformation, with inverse σ(a, b)−1f(t) =√
af(at+ b), and the inverse σ(a, b)−1 represents (a, b)−1 = (a−1,−ba−1).

Composing such substitutions shows how the group multiplication is converted
into composition of linear transformations:

σ(a′, b′)σ(a, b)f(t) = σ(a′, b′)g(t) =
1√
a′
g

(
t− b′

a′

)
,

where g(s) = σ(a, b)f(s) = 1√
a
f
(

s−b
a

)
. But then, putting s = t−b′

a′ gives

σ(a′, b′)σ(a, b)f(t) =
1√
a′

1√
a
f

(
t−b′
a′ − b

a

)
=

1√
a′a

f

(
t− (a′b+ b′)

a′a

)
= σ(a′a, a′b+ b′)f(t).

Observe that σ is faithful, if the space has enough functions: σ(a, b) = σ(a′, b′)
means that σ(a, b)f(t) = σ(a′, b′)f(t) for every function f and every t. There must
simply be enough nonconstant functions so that this can only hold for all t if a = a′

and b = b′.
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For definiteness, suppose now that f = f(t) belongs to L2(R), the inner product
space of complex-valued, square-integrable functions of one real variable, with inner
product 〈u, v〉 =

∫∞
−∞ ū(t)v(t) dt. Then σ(a, b) : L2(R) → L2(R), and the factor

1/
√
a insures that ‖σ(a, b)f‖ = ‖f‖. This space contains the Haar wavelet, and

is a natural place to look for other wavelets. It is big enough to make σ faithful,
because it contains 1: if σ(a, b) = σ(a′, b′), then

1(t) = σ(a, b)−1σ(a′, b′)1(t) = 1
(
at+ b− b′

a′

)
= 1
(
a

a′
t+

b− b′

a′

)
.

This can only hold for all t if a′ = a and b′ = b.
Recall that a linear transformation U : X → X on an inner product space X is

called unitary if and only if, for all f, g ∈ X, we have:

〈Ug, Uf〉 = 〈g, f〉 . (5.10)

Unitary transformations generalize rotations of geometric objects about the origin.
They are rigid motions that preserve lengths as well as angles:

‖Uf‖ =
√
〈Uf, Uf〉 =

√
〈f, f〉 = ‖f‖. (5.11)

But for each (a, b) ∈ Aff , the linear transformation σ(a, b) is unitary:

〈σ(a, b)g, σ(a, b)f〉 =
∫ ∞

−∞

1√
a
ḡ

(
t− b

a

)
1√
a
f

(
t− b

a

)
dt

=
∫ ∞

−∞
ḡ(t)f(t) dt = 〈g, f〉 , (5.12)

after the substitution t← at+ b.
Some other examples of unitary transformations on L2(R) are given in Table

5.1. To show these are unitary, perform the appropriate changes of variable in the
integrals behind Equation 5.10.

The transformation f �→ fab is a combination of dilation followed by translation:
fab = τbδaf . Thus σ(a, b) = τbδa. This gives another proof that σ(a, b) is unitary,
since the product UV of unitary transformations U and V is unitary:

〈UV g, UV f〉 = 〈V g, V f〉 = 〈g, f〉 , for all f, g.

Recall that the Fourier integral transform is defined by the following formula:

Fu(ξ) def=
∫ ∞

−∞
e−2πitξu(t) dt. (5.13)

F is itself a unitary transformation because of Plancherel’s theorem, Theorem 3.11.
But it has a special relationship with these other unitary transformations. The
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Name Action on f = f(t) Inverse

reflection νf(t) def= f(−t) ν−1 = ν

dilation δaf(t) def= 1√
a
f( t

a ) δ−1
a = δ(1/a)

translation τbf(t) def= f(t− b) τ−1
b = τ(−b)

modulation µcf(t) def= e2πictf(t) µ−1
c = µ(−c)

Table 5.1: Various unitary linear transformations of functions.

Fourier integral transform of wab can be expressed in terms of the Fourier integral
transform of w:

Fwab(ξ) =
∫ ∞

−∞
e−2πitξ 1√

a
w(
t− b

a
) dt =

∫ ∞

−∞
e−2πi(at′+b)ξ√aw(t′) dt′

=
√
a e−2πibξFw(aξ). (5.14)

Another way of saying this is that Fwab = Fτbδaw = µ−bδ(1/a)Fw, or that af-
ter Fourier transformation, translation becomes inverse modulation, and dilation
becomes inverse dilation:

FτbF∗ = µ−1
b ; FδaF∗ = δ−1

a .

Likewise, after Fourier transformation, reflection becomes inverse reflection, which
is again reflection:

F(νw)(ξ) =
∫ ∞

−∞
e−2πitξw(−t) dt =

∫ ∞

−∞
e−2πi(−t)ξw(t) dt

=
∫ ∞

−∞
e−2πit(−ξ)w(t) dt = Fw(−ξ). (5.15)

Thus FνF∗ = ν−1 = ν.
A unitary representation of the affine group is a faithful representation of group

elements as unitary linear transformations. Equation 5.12 shows that (a, b) �→
σ(a, b) is a unitary representation. The faithful matrix representation (a, b) �→
ρ(a, b) of Equation 5.7, however, is not unitary.

Integration on the group

Suppose that f = f(a, b) is a function defined on two real variables, a > 0 and
b. Then f may be regarded as a function on Aff. It is possible to define an area
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element da for a = (a, b) ∈ Aff so that, for any fixed a′ ∈ Aff ,∫
Aff

f(a) da =
∫
Aff

f(a′a) da. (5.16)

In other words, the integral should not be changed by applying a′ and thus renaming
the group elements. Such left invariance requires that |d(a′a)/da| = 1, namely, the
Jacobian of the change of variable a ← a′a is the constant 1. An area element da
with these properties is called a left invariant measure.

Now Aff is parameterized by (a, b), so da = h(a) dadb = h(a, b) dadb, where h
is an unknown function to be determined. The invariance condition implies

1 =
∣∣∣∣d(a′a)
da

∣∣∣∣ =
h(a′a)
h(a)

∣∣∣∣∂(a′′, b′′)
∂(a, b)

∣∣∣∣ =
h(a′a)
h(a)

∣∣∣∣ da′′/da da′′/db
db′′/da db′′/db

∣∣∣∣
=

h(a′a)
h(a)

∣∣∣∣ a′ 0
0 a′

∣∣∣∣ =
h(a′a)
h(a)

|a′|2. (5.17)

Here a′a = (a′, b′)(a, b) = (a′′, b′′) defines the coordinate functions a′′ = a′a, b′′ =
a′b + b′ from Equation 5.5. Thus h(a′a) = 1

|a′|2h(a), so putting a = (1, 0) to force
a′a = a′ yields

h(a, b) = h(1, 0)
1
a2
. (5.18)

Thus, the left invariant integral of f over Aff is uniquely determined up to the arbi-
trary constant h(1, 0). Choosing the normalization h(1, 0) = 1 gives normalized left
invariant measure, or Haar measure, on Aff, and uniquely defines the normalized
left invariant integral:∫

Aff

f(a) da def=
∫ ∞

b=−∞

∫ ∞

a=0

f(a, b)
dadb

a2
. (5.19)

What functions f are integrable on Aff? First, because the domain of integra-
tion is unbounded, it is necessary that f(a, b) → 0 sufficiently fast as b → ±∞
and as a → +∞. But also, because there is a factor 1/a2 in the invariant mea-
sure, it is necessary that f(a, b)/a2 be integrable in a as a → 0+, which means
f(a, b) → 0 somewhat faster than a as a → 0. An example of such a function is
f(a, b) = a2e−a−|b|, for which∫

Aff

f(a) da =
∫ ∞

−∞

∫ ∞

0

a2e−a−|b| dadb
a2

=
∫ ∞

−∞

∫ ∞

0

e−a−|b| dadb

=
(∫ ∞

−∞
e−|b| db

)(∫ ∞

0

e−a da

)
= 2.

5.1.3 Wavelet transforms

Fix a wavelet w and define the associated wavelet transform Wu of any function
u = u(t) in L2(R) by the formula

Wu : Aff → C; Wu(a, b) def= 〈wab, u〉 =
∫ ∞

−∞

1√
a
w̄(
t− b

a
)u(t) dt. (5.20)



5.1. Wavelet Analysis 141

For w in L2(R), this formula makes sense for any u in L2(R). The numbers
{Wu(a, b) : (a, b) ∈ Aff} are the amplitudes of the function u decomposed into τb-
translated and δa-dilated versions of the mother function w. It is roughly analogous
to the Fourier integral transform amplitudes, {Fu(ξ) : ξ ∈ R}, of the signal u
decomposed into µξ-modulated versions e2πiξt of the constant function 1. The set
R, which is a group under addition, plays the role of Aff for F . However, since
µξ1(x) = e2πixξ does not belong to L2(R) for any ξ, there is no analogous expression
Fu(ξ) = 〈µξ1, u〉.

A wavelet transform of a function is indexed by the parameters (a, b) of the
affine group, just as the Fourier transform is indexed by the frequency parameter.
Unlike the Fourier transform, there is no single wavelet transform; it varies with
the choice of mother function w.

The wavelet transform of a function is as well-behaved as the wavelet w. For
example, since | 〈wab, u〉 | ≤ ‖wab‖ ‖u‖ = ‖w‖ ‖u‖, this implies that |Wu(a, b)| ≤
‖w‖ ‖u‖ for all (a, b) ∈ Aff . Thus the wavelet transform of a square-integrable
function, using a square-integrable mother function w, is a bounded function on
Aff. Likewise, if w is smooth and has compact support, then Wu is a smooth
function of a and b. This is proved by differentiating with respect to a or b under
the integral sign in Equation 5.20.

For what w can u be recovered from Wu? Clearly w = 0 won’t work, so that
trivial case is excluded by the normalization assumption ‖w‖ = 1.

For certain special w, there is a formula that recovers averages of a function from
its wavelet transform. For example, suppose w is the Haar mother function defined
in Equation 5.2. Since 2−j/2Wu(2j, 0) is the inner product of u with 1

2jw( 1
2j t), the

sum of certain samples of Wu is the inner product of u with the corresponding sum
of dilated w’s:

J∑
j=1

2−j/2Wu(2j, 0) =
〈
φJ , u

〉→ 〈1, u〉 , as J → ∞, (5.21)

where φJ (t) =
∑J

j=1
1
2jw( 1

2j t) as in Lemma 5.1. To get the value of u at a point t,
just take averages of u over the interval [t, t+2−M ] by starting the sum at j = −M
and let M → ∞. For example, if u is continuous at t = 0, then

∞∑
j=−∞

2−j/2Wu(2j, 0) def= lim
M→∞

∞∑
j=−M

2−j/2Wu(2j, 0) = u(0). (5.22)

A necessary condition for invertibility is that u �→ Wu is one-to-one. Namely, if
u �= v, then Wu �= Wv. With nice wavelets for which Wu is a continuous function
of (a, b), this is equivalent to the property that Wu(a, b) �= Wv(a, b) for some
(a, b) ∈ Aff , if u �= v. But since Wu −Wv = 〈wab, u〉 − 〈wab, v〉 = 〈wab, u− v〉 =
W [u − v], this is equivalent to the condition that if u �= 0, then 〈wab, u〉 �= 0 for
some (a, b) ∈ Aff .

Another way that W is one-to-one is that ‖Wu‖Aff = 0 if and only if ‖u‖ = 0.
The Hermitean inner product on Aff, and thus the norm ‖ · ‖Aff , is defined using
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the left invariant integral on the group:

〈u, v〉Aff
def=
∫
Aff

ū(a)v(a) da =
∫ ∞

b=−∞

∫ ∞

a=0

ū(a, b)v(a, b)
dadb

a2
(5.23)

This kind of one-to-one condition follows from the analog of the Plancherel theorem,
for the wavelet transform rather than the Fourier transform:

Theorem 5.2 Suppose that the wavelet w is square-integrable and there is a finite,
nonzero constant cw with

cw =
∫ ∞

ξ=0

|Fw(ξ)|2
ξ

dξ =
∫ ∞

ξ=0

|Fw(−ξ)|2
ξ

dξ.

Then for all square-integrable u = u(t) and v = v(t), we have 〈Wu,Wv〉Aff =
cw 〈u, v〉.
Proof: Evaluate the inner product 〈Wu,Wv〉Aff :∫ ∞

b=−∞

∫ ∞

a=0

[∫ ∞

t=−∞
w̄ab(t)u(t) dt

] [∫ ∞

s=−∞
w̄ab(s)v(s) ds

]
dadb

a2
=

=
∫ ∞

s,t=−∞
ū(t)v(s)

∫ ∞

a=0

[∫ ∞

b=−∞

1√
a
w̄(
s− b

a
)

1√
a
w(
t− b

a
) db
]
da

a2
dsdt.

The innermost integral, the one with respect to the parameter b, is 〈ws, wt〉, where
wt = wt(b) def= 1√

a
w( t−b

a ) and ws = ws(b) def= 1√
a
w( s−b

a ) are considered functions
of b. By Plancherel’s theorem, 〈ws, wt〉 = 〈Fws,Fwt〉, and a direct computation
yields

Fwt(β) =
√
ae2πitβFw(−aβ); Fws(β) =

√
ae2πisβFw(−aβ).

Thus,

〈
ws, wt

〉
= a

∫ ∞

β=−∞
e2πi(t−s)β |Fw(−aβ)|2 dβ = a

∫ ∞

β=−∞
e2πi(s−t)β |Fw(aβ)|2 dβ,

and so, after substitution and interchanging the a and β integration,

〈Wu,Wv〉Aff =
∫ ∞

s,t=−∞
ū(t)v(s)

∫ ∞

β=−∞
e2πi(s−t)β

(∫ ∞

a=0

|Fw(aβ)|2 da

a

)
dβ dsdt.

Now observe that for β > 0,∫ ∞

0

f(aβ)
da

a
=
∫ ∞

0

f(a′)
da′

a′
, (5.24)
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if both integrals converge, which is the case if, for example, f(x) → 0 sufficiently
rapidly as x → 0+ and as x → ∞. Equality is proved by substituting a ← a′/β.
For β < 0, the substitution a← −a′′/β yields∫ ∞

0

f(aβ)
da

a
=
∫ ∞

0

f(−a′′) da
′′

a′′
. (5.25)

Therefore, if cw is finite and nonzero,

〈Wu,Wv〉Aff = cw

∫ ∞

β=−∞

∫ ∞

t=−∞

∫ ∞

s=−∞
e2πi(s−t)β ū(t)v(s) dsdtdβ,

and the result follows from Corollary 3.12. �

Any square-integrable function w for which cw is finite and nonzero is called ad-
missible, and the resulting cw is called its normalization constant. Such functions
give invertible wavelet transforms: cw 〈u, v〉 = 〈Wu,Wv〉Aff = 〈u,W ∗Wv〉 for all
u, v ∈ L2(R), so 1

cw
W ∗Wv = v and 1

cw
W ∗W = Id. Thus the inverse wavelet trans-

form is W−1 = 1
cw
W ∗, where W ∗ is a linear transformation defined for functions

on Aff by

W ∗z(t) = 〈w̄ab(t), z(a, b)〉Aff =
∫ ∞

b=−∞

∫ ∞

a=0

1√
a
w

(
t− b

a

)
z(a, b)

dadb

a2
. (5.26)

The adjoint wavelet transform W ∗ is derived by changing the order of integration:
for any u = u(t),

〈Wu(a, b), z(a, b)〉Aff =

=
∫ ∞

b=−∞

∫ ∞

a=0

Wu(a, b) z(a, b)
dadb

a2

=
∫ ∞

b=−∞

∫ ∞

a=0

[∫ ∞

t=−∞

1√
a
w̄

(
t− b

a

)
u(t) dt

]
z(a, b)

dadb

a2

=
∫ ∞

t=−∞
ū(t)
[∫ ∞

b=−∞

∫ ∞

a=0

1√
a
w

(
t− b

a

)
z(a, b)

dadb

a2

]
dt = 〈u,W ∗z〉 .

Since this holds for all u ∈ L2(R), the nondegeneracy of the inner product allows
us to identify W ∗z with the formula inside the last set of square brackets, which is
evidently 〈w̄ab(t), z(a, b)〉Aff .

Theorem 5.3 (Wavelet Inversion) Suppose that w = w(t) is admissible with
normalization constant cw �= 0. Then its associated wavelet transform satisfies
W : L2(R) → L2(Aff), its adjoint satisfies W ∗ : L2(Aff ) → L2(R), and we have

1. [ 1
cw
W ∗W ]u = u, for any function u = u(t) ∈ L2(R);

2. [ 1
cw
WW ∗]z = z, for any function z = z(a, b) ∈ L2(Aff).
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Proof: Theorem 5.2 with u = v ∈ L2(R) implies that Wu ∈ L2(Aff), with
‖Wu‖a ≤ cw‖u‖r. The norms ‖ · ‖a and ‖ · ‖r are derived from the inner products
in L2(Aff) and L2(R), respectively Thus, fixing z ∈ L2(Aff ) and taking any unit
vector u ∈ L2(R) gives

| 〈u,W ∗z〉 | = | 〈Wu, z〉Aff | ≤ ‖Wu‖a ‖z‖a = cw ‖z‖a,

by the Cauchy–Schwarz inequality in L2(Aff). Taking the supremum over all such
unit vectors gives the estimate ‖W ∗z‖r ≤ cw‖z‖a, so W ∗z ∈ L2(R). The inversion
results now follow from the discussion preceding Equation 5.26. �

Because the admissibility condition applies to Fw, wavelets are often defined
as inverse Fourier integral transforms of bump functions with simple formulas. For
example, we may define w = w(t) by Fw(ξ) = φ(|ξ|), where

φ(ξ) =
{
e−(log ξ)2 , if ξ > 0;
0, if ξ ≤ 0.

(5.27)

Then Fw is a pair of bumps peaking at frequencies ξ = ±1. It is an exercise to
show that w = w(t) is a smooth, rapidly decaying function concentrated near t = 0,
so that w is localized in both time and frequency. Since w is Hermitean symmetric
in frequency, it is real-valued. But also, w is an admissible mother function. The
integrands are positive so the admissibility integrals are positive:

0 <
∫ ∞

0

|Fw(ξ)|2
ξ

dξ =
∫ ∞

0

|Fw(−ξ)|2
ξ

dξ <∞.

Finiteness follows from the rapid decay of φ(ξ) as ξ → ∞ and as ξ → 0+. Showing
this rapid decay is left as an exercise.

The Fourier integral transform of the dilation, Fwa0, has peaks at ξ = ±1/a.
The location of these frequency peaks is the same for wab(t), which is concentrated
near t = b. Hence, by Plancherel’s theorem, Wu(a, b) = 〈wab, u〉 = 〈Fwab,Fu〉 is
an average of u’s frequency components near ξ = ±1/a and t = b.

Any admissible wavelet must have a power spectrum with energy at both pos-
itive and negative frequencies. If we are not interested in an invertible trans-
form, but only wish to identify time-frequency components of a signal, then we
can use just one of the two halves of the admissible function above. For ex-
ample, putting w+ def= F−1φ gives a complex-valued wavelet transform, and if
|W+f(a, b)| = | 〈w+

ab, f
〉 | is large, then we may conclude that near time b the

signal f has a strong component with frequencies near 1/a.

5.2 Discrete Wavelet Transforms

Whenever ψ is an admissible mother function, the wavelet inversion theorem im-
plies that a function u can be recovered from {Wu(a, b) : a > 0, b ∈ R}, its wavelet
transform. But samples of Wu at discrete values of (a, b) also determine u, and
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good approximations to u may be recovered from finite lists of these samples. Fur-
thermore, only certain averages of u are needed to compute the samples of Wu.
The relation between discrete averages of u and samples of Wu is called the discrete
wavelet transform, or DWT.

To get a discrete approximate for u ∈ L2(R), we first fix a scaling function
φ ∈ L2 such that B = {φn(t) = φ(t − n) : n ∈ Z}, is an orthonormal set. Then
V

def= spanB, which is called a scale space, has B as an orthonormal Schauder
basis, and the following transformation is an orthogonal projection onto V :

P : L2(R) → V ; Pu(t) def=
∑
n∈Z

〈φn, u〉φn(t). (5.28)

This is the same formula as Equation 4.22, only V is not necessarily a sampling
space since φ is not necessarily an interpolating function. The sequence of expansion
coefficients, {〈φn, u〉 : n ∈ Z}, is the discrete approximation to u.

For example, we may approximate u by a discrete sequence of local average
values. Let 1 = 1(t) be the indicator function of the interval [0, 1). Put φn =
φn(t) def= 1(t− n); then φn is the indicator function of the interval [n, n+ 1), and
it is easy to see that {φn : n ∈ Z} is an orthonormal set. For any u, the function
Pu defined by Equation 4.22 with these φ’s will be piecewise constant on intervals
of the form [n, n+1), where n is an integer. The constant value on [k, k+1) is just
an average:

Pu(t) =
∫ k+1

t=k

u(t) dt, if t ∈ [k, k + 1).

The Haar wavelet transform of such a piecewise constant u is given by

Wu(a, b) =
∫ ∞

−∞

1√
a
ψ(
t− b

a
)u(t) dt =

1√
a

∫ b+ a
2

b

u(t) dt− 1√
a

∫ b+a

b+ a
2

u(t) dt. (5.29)

Putting b = k, an integer, and a = 2j for integer j > 0, this evaluates to

Wu(2j, k) =
1

2j/2

[
u(k) + · · · + u(k + 2j−1 − 1)

]
− 1

2j/2

[
u(k + 2j−1) + · · · + u(k + 2j − 1)

]
In particular,

√
2Wu(21, 0) = u(0) − u(1),

√
2Wu(21, 1) = u(1)− u(2), and so on.

5.2.1 Multiresolution analysis (MRA)

If 1 = 1(t) is the indicator function of [0, 1), then 1(2t) is the indicator function of
[0, 1

2 ) and 1(2t− 1) is the indicator function of [12 , 1). Thus

1(t) = 1(2t) + 1(2t− 1). (5.30)
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This is one example of a two-scale relation, because it relates a function to shifts
of itself dilated to another scale. Likewise,

ψ(t) = 1(2t) − 1(2t− 1), (5.31)

where ψ is the Haar mother function defined in Equation 5.2. Replacing t← 2jt−k
in Equations 5.30 and 5.31 gives

1(2jt− k) = 1(2j+1t− 2k) + 1(2j+1t− 2k − 1),
ψ(2jt) = 1(2j+1t− 2k) − 1(2j+1t− 2k − 1).

Any nonzero1 function φ satisfying an equation of the form

φ(t) =
∑

k

h(k)
√

2φ(2t− k) def= Hφ(t), (5.32)

for a possibly infinite sequence h = {h(k) : k ∈ Z} of filter coefficients, is said
to satisfy a two-scale relation. The sequence2 h is called a quadrature filter, or
simply filter. The factor

√
2 is used so that we have unit vectors on both sides:

‖√2φ(2t− k)‖ = ‖φ‖ = 1, if φ ∈ L2(R) is a unit vector, for all shifts k.
It will be assumed that h(k) = 0 for all but finitely many values of k, as in

the Haar case where h(0) = 1√
2
, h(1) = 1√

2
, and h(k) = 0 for all k �= 0, 1. Such

an h is called a finite impulse response, FIR, or simply finite, filter. The finiteness
guarantees that H makes sense on any vector space.

Substituting t← t−n into Equation 5.32, then renumbering k ← k′−2n, shows
that

φ(t− n) =
∑

k

h(k)
√

2φ(2t− 2n− k) =
∑
k′
h(k′ − 2n)

√
2φ(2t− k′). (5.33)

This means that φ(t − n) is a finite linear combination of functions in {φ(2t− k) :
k ∈ Z}. Recall that in Equation 2.19, we called the set of all such finite linear
combinations a linear span. We may thus define a sequence of scale subspaces,
beginning with the set of finite linear combinations of elements of {φ(t−k) : k ∈ Z}:

V0
def= span {φ(t− k) : k ∈ Z}, (5.34)

This is the subspace of L2(R) of all superpositions
∑

k∈Z s(k)φ(t−k) where s(k) = 0
for all but finitely many values of k. Continuing, we define

Vj
def= span {φ(2−jt− k) : k ∈ Z}, (5.35)

the linear span of translates by 2jk of the dilate of φ by 2−j .
Functions in V0 are superpositions of unit scale building blocks φ(t−k); functions

in Vj are superpositions of building blocks of scale 2j. Note that u(t) belongs to Vj

if and only if u(2jt) belongs to V0; this is a special case of the following lemma:
1The uninteresting example φ = 0 obviously satisfies such a relation; that is why it is excluded.
2The linear transformation H determined by the sequence is also called a filter.
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Lemma 5.4 For any function u = u(t), u(t) belongs to Vq if and only if u(2pt)
belongs to Vq−p.

Proof: Writing u(t) =
∑

k s(k)φ(2−qt − k), substitute t ← 2pt to get u(2pt) =∑
k s(k)φ(2p−qt− k). �

The special case is obtained when p = q = j.
Lemma 5.4 and Equation 5.33 imply that the spaces Vj are nested, or ordered

by inclusion:

Lemma 5.5 For each j, Vj ⊂ Vj−1. That is, if u ∈ Vj, then u ∈ Vj−1.

Proof: First show that V0 ⊂ V−1. For u(t) =
∑

n s(n)φ(t−n) ∈ V0, Equation 5.33
implies

u(t) =
∑

n

s(n)φ(t − n) =
∑

n

∑
k

s(n)h(k − 2n)φ(2t− k).

Thus u(t) =
∑

k d(k)φ(2t − k) ∈ V−1, where d(k) =
∑

n s(n)h(k − 2n).
Now take any u ∈ Vj . By Lemma 5.4 with p = q = j, u(2jt) ∈ V0, so u(2jt) ∈

V−1 by the previous paragraph. Reapplying Lemma 5.4, this time with p = j and
q = j − 1, shows that u(t) ∈ Vj−1. �

Iterating Lemma 5.5 gives the inclusion ordering:

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · ·
Lemma 5.6 If {φ(t− k) : k ∈ Z} is a basis for V0, then {φ(2jt− k) : k ∈ Z} is a
basis for Vj. Furthermore, if the first is an orthogonal basis, then so is the second.

Proof: Since Vj = span {φ(2−jt−k) : k ∈ Z}, it is only necessary to check for linear

independence. But if 0 = u(t) def=
∑

k s(k)φ(2−jt−k) ∈ Vj , then v(t) def= u(2jt) ∈
V0 is also 0, and 0 = v(t) =

∑
k s(k)φ(t − k) implies that s(k) = 0 for all k ∈ Z,

since, by hypothesis, {φ(t− k) : k ∈ Z} is a linearly independent set.
For orthogonality, we have

〈
φ(2−jt− k), φ(2−jt− k′)

〉
= 2j 〈φ(t− k), φ(t− k′)〉

by the change of variable t← 2jt. One inner product is zero if and only if the other
is zero, since 2j never vanishes. Thus, if φ(t−k) is orthogonal to φ(t−k′) whenever
k′ �= k, the same holds for φ(2−jt− k) and φ(2−jt− k′). �

Abstracting this construction and adding some properties defines a multiresolu-
tion analysis of L2(R), or MRA. This is a chain of subspaces {Vj : j ∈ Z} of L2(R)
satisfying the following:

MRA Conditions

Containment: Vj ⊂ Vj−1 ⊂ L2 for all j ∈ Z;

Decrease: lim
j→∞

Vj = 0; that is,
⋂

j>N

Vj = {0} for all N ;

Increase: lim
j→−∞

Vj = L2, that is,
⋃

j<N

Vj is dense in L2 for all N ;

Dilation: v(2t) ∈ Vj−1 ⇐⇒ v(t) ∈ Vj ;
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Scaling Function: There is a function φ ∈ V0, integrable and square
integrable, having compact support and nonzero integral, whose
integer translates {φ(t− k) : k ∈ Z} form a Schauder basis for V0.

Notice that {2−j/2φ(2−jt− k) : k ∈ Z} will be a Schauder basis for Vj .
The scaling function is sometimes called a father function, to emphasize its

relation to the mother function of a wavelet basis. If the scaling function gener-
ates an orthonormal basis for V0, then we have an orthogonal MRA. In that case,
{2−j/2φ(2−jt − k) : k ∈ Z} will be an orthonormal basis for Vj . The factor 2−j/2

gives the basis functions unit norm.
Taking Vj → L2 as j → −∞ is the “Daubechies” indexing convention for an

MRA. In it, the scale or width of the building blocks increases with j. It corresponds
directly to the indices computed by the programs in this text.

The alternative or “Mallat” indexing convention reverses the sense of scale:
Vj → L2 as j → +∞. In that convention, the resolution, or narrowness, of a
building block in Vj increases with j. The two conventions are equivalent and
produce equal sets of coefficients; they differ only in how the coefficients are tagged
for subsequent processing.

5.2.2 From MRAs to filters

Now suppose that we have an orthogonal MRA with a scaling function φ, which we
will insist has compact support, giving an orthonormal Schauder basis B0 = {φ(t−
k) : k ∈ Z} for V0 = spanB0. The containment condition V0 ⊂ V−1 implies that φ
may be expanded in the orthonormal Schauder basis B−1 = {√2φ(2t− k) : k ∈ Z}
of V−1 = spanB−1. Writing the expansion coefficients h(k) =

〈√
2φ(2t− k), φ(t)

〉
,

we see that φ must satisfy a two-scale relation:

φ(t) =
∑

k

h(k)
√

2φ(2t− k) = Hφ(t). (5.36)

This defines a filter sequence h and transformation H . The compact support of φ
implies that h(k) = 0 for all sufficiently large |k|, so h will be an FIR filter. Coming
from an orthogonal MRA, this filter satisfies some special properties.

First, orthonormality of the set B0 ⊂ L2(R) implies that, for n �= 0,

0 = 〈φ(t), φ(t − n)〉 =
∑

l

∑
k

h(l)h(k)
〈√

2φ(2t− l),
√

2φ(2t− 2n− k)
〉

=
∑

l

∑
k

h(l)h(k)δ(2n+ k − l) =
∑

k

h(2n+ k)h(k),

and

1 = 〈φ(t), φ(t)〉 =
∑

l

∑
k

h(l)h(k)
〈√

2φ(2t− l),
√

2φ(2t− k)
〉

=
∑

l

∑
k

h(l)h(k)δ(k − l) =
∑

k

|h(k)|2.
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Here δ is the Kronecker symbol of Equation 2.31:

δ(n) def=
{

1, if n = 0;
0, otherwise.

Thus, the filter h determined by an MRA satisfies the self-orthonormality con-
dition ∑

k

|h(k)|2 = 1;
∑

k

h(k)h(k + 2n) = 0, if n �= 0. (5.37)

If h is real valued, the complex conjugation is unnecessary.
Second, since φ is integrable, Equation 5.36 can be integrated as follows:∫

φ(t) dt =
√

2
∑

k

h(k)
∫
φ(2t− k) dt =

1√
2

∑
k

h(k)
∫
φ(t) dt, (5.38)

where the substitutions t← (t+k)/2 have been performed on the middle. Dividing
by the nonzero

∫
φ(t) dt shows that∑

k

h(k) =
√

2. (5.39)

More is true: since 2 = |∑k h(k)|2 =
∑

k

∑
n h(k)h(n), we can substitute n← k+n

and then divide into even n and odd n to have

2 =
∑

n

∑
k

h(k)h(k + 2n) +
∑

n

∑
k

h(k)h(k + 2n+ 1).

The first sum is 1 by Equation 5.37, leaving

1 =
∑

n

∑
k

h(k)h(k + 2n+ 1) =
∑

k

h(k)
∑

n

h(k + 2n+ 1)

=

(∑
k

h(2k)

)(∑
n

h(2n+ 1)

)
+

(∑
k

h(2k + 1)

)(∑
n

h(2n)

)
,

after splitting the k-sum into even and odd k, and substituting k ← 2k, n← n− k
in the even-k part, and k ← 2k + 1, n ← n − k − 1 in the odd-k part. Writing
E =

∑
k h(2k) and O =

∑
k h(2k), this means 1 = ĒO+EŌ. But since E+O =

√
2

by Equation 5.39,

|E −O|2 = |E +O|2 − 2(ĒO + EŌ) = 2 − 2 = 0,

so E = O = 1/
√

2. This is the low-pass filter condition:

∑
k

h(2k) =
∑

k

h(2k + 1) =
1√
2

(
⇒
∑

k

h(k) =
√

2

)
. (5.40)
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Third, we observe that another filter with similar orthogonality properties can
be defined from h:

g(k) = (−1)kh(1 − k), for all k ∈ Z. (5.41)

Clearly, g will be finite whenever h is finite, and given g we may determine h by
the similar formula h(k) = (−1)1−kg(1 − k). This and Equation 5.40 implies the
high-pass filter condition for g:∑

k

g(2k) = −
∑

k

g(2k + 1) =
1√
2

(
⇒
∑

k

g(k) = 0

)
. (5.42)

Fourth, there is a self-orthonormality condition for g:∑
k

g(k)g(k + 2n) =
∑

k

(−1)kh(1 − k)(−1)k+2nh(1 − k − 2n)

=
∑

k

h(1 − k)h(1 − k − 2n)

=
∑

k

h(k)h(k − 2n) = δ(n). (5.43)

Fifth, for any integer n, the following independence condition holds between the
two filters h and g:∑

k

g(k)h(k + 2n) =
∑

k

(−1)kh(1 − k)h(k + 2n) (5.44)

=
∑

even k

h(1 − k)h(k + 2n) −
∑

odd k

h(1 − k)h(k + 2n)

=
∑

p

h(2p+1)h(2n−2p) −
∑

q

h(2n−2q)h(2q+1) = 0.

Here k ← −2p in the first sum and k ← 2q + 1 − 2n in the second.
Finally, the filter pair h, g satisfies the completeness condition:∑

k

h(2k + n)h(2k +m) +
∑

k

g(2k + n)g(2k +m) = δ(n−m). (5.45)

This can be shown case-by-case. We first write g in terms of h, making the sum∑
k

h(2k + n)h(2k +m) + (−1)n+m
∑

k

h(2k + 1 − n)h(2k + 1 −m).

Then we put p = m−n to have n+m = 2n+p and (−1)n+m = (−1)p, and consider
the cases:

• If n = 2n′ is even, then substituting k ← k−n′ in the first sum and k ← k+n′

in the second reduces them to∑
k

h(2k)h(2k + p) + (−1)p
∑

k

h(2k + 1)h(2k + 1 − p).
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– If p = 2p′ is even, then substituting k ← k + p′ in the second sum gives∑
k

h(2k)h(2k+p) +
∑

k

h(2k+1+p)h(2k + 1) =
∑

k

h(k)h(k+p)

=
∑

k

h(k)h(k + 2p′) = δ(p′) = δ(n−m).

– If p = 2p′ + 1 is odd, then substituting k ← k + p′ in the second sum
gives ∑

k

h(2k)h(2k + p) −
∑

k

h(2k + p)h(2k) = 0.

This agrees with the value of δ(n − m), which is 0 in this case since
p = m− n being odd means n �= m.

• If n = 2n′ + 1 is odd, then substituting k ← k − n′ in the first sum and
k ← k + n′ in the second reduces them to∑

k

h(2k + 1)h(2k + 1 + p) + (−1)p
∑

k

h(2k)h(2k − p).

– If p = 2p′ is even, then substituting k ← k + p′ in the second sum gives∑
k

h(2k+1)h(2k+1+p) +
∑

k

h(2k + p)h(2k) =
∑

k

h(k)h(k + p)

=
∑

k

h(k)h(k + 2p′) = δ(p′) = δ(n−m).

– If p = 2p′ − 1 is odd, then substituting k ← k + p′ in the second sum
gives∑

k

h(2k + 1)h(2k + 1 + p) −
∑

k

h(2k + p+ 1)h(2k + 1) = 0.

This agrees with the value of δ(n − m), which is 0 in this case since
p = m− n being odd means n �= m.

The sequences h and g derived from the MRA are called orthogonal conjugate
quadrature filters, or orthogonal CQFs. We may abstract the properties just de-
duced from the MRA conditions:

Orthogonal CQF Conditions (Basic)

Finiteness: Sequence h = {h(k) : k ∈ Z} consists of zeroes for all but
finitely many values of k.

Normalization of h:
∑

k h(2k) =
∑

k h(2k + 1) = 1/
√

2, and thus∑
k h(k) =

√
2.

Self-Orthonormality of h:
∑

k h(k + 2n)h(k + 2m) = δ(n −m), for
every n,m ∈ Z.
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From these stand-alone assumptions, the other properties of h and g can be deduced:

Orthogonal CQF Conditions (Derived)

Conjugacy: For some fixed integer M there is a finitely-supported se-
quence g = {g(k) : k ∈ Z}, defined by g(k) = (−1)kh(2M − 1 − k)
for each k ∈ Z.

Normalization of g:
∑

k g(2k) = −∑k g(2k + 1) = 1/
√

2, and thus∑
k g(k) = 0.

Self-Orthonormality of g:
∑

k g(k + 2n)g(k + 2m) = δ(n−m).

Independence:
∑

k g(k + 2n)h(k + 2m) = 0 for any n,m ∈ Z.

Completeness:
∑

k h(2k + n)h(2k + m) +
∑

k g(2k + n)g(2k + m) =
δ(n−m).

The so-called lazy filters, h(k) =
√

2 δ(k − 1) and g(k) =
√

2 δ(k) satisfy the
finiteness, conjugacy, self-orthonormality, independence and completeness condi-
tions, but only part of the normalization conditions. This partial example is a
useful test case for some constructions.

To be definite, suppose that for some fixed L > 0, h(k) = 0 if k < 0 or k ≥ L;
this may be called conventional indexing. Then the length of the finite support of h
is no more than L. If it is exactly L, namely if h(0) �= 0 and h(L−1) �= 0, then h is
said to have filter length L. The normalization condition implies that filter length
L is at least two. Orthogonality imposes an additional constraint:

Lemma 5.7 An orthogonal conjugate quadrature filter’s length must be even.

Proof: It is enough to prove this for the low-pass filter h, since the high-pass
conjugate filter g will have the same length L as h. If L = 2l + 1 for l > 0, then
L− 1 = 2l is the largest index k for which h(k) �= 0, so

0 =
∑

k

h(k)h(k + 2l) = h(0)h(2l) = h(0)h(L− 1).

Thus either h(0) = 0 or h(L − 1) = 0, contradicting the assumption that h has
length L. �

Constructing orthogonal filter pairs

How can we construct a finite sequence h = {h(k) : k ∈ Z} satisfying the orthogonal
CQF conditions?

One solution can be found right away, the Haar filter, which is the unique
orthogonal CQF of length two:

h(k) =
{

1√
2
, if k = 0 or k = 1,

0, if k /∈ {0, 1}; g(k) =

⎧⎨⎩
1√
2
, if k = 0,

− 1√
2
, if k = 1,

0, if k /∈ {0, 1}.
(5.46)
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Filters of length four are not unique. Let h be an orthogonal CQF with nonzero
real coefficients h(0), h(1), h(2), and h(3). Then h must satisfy the norm condition
h2(0) + h2(1) + h2(2) + h2(3) = 1, plus the following constraints:

h(0) + h(2) =
1√
2
; h(1) + h(3) =

1√
2
; h(0)h(2) + h(1)h(3) = 0. (5.47)

By the first two conditions, picking h(0) and h(1) determines h(2) = 1√
2
− h(0)

and h(3) = 1√
2
− h(1). The third condition holds if and only if there is some real

number c for which h(2) = ch(1) and h(3) = −ch(0). The result is a system of two
linear equations for h(0) and h(1), containing a free parameter c:

h(0) + ch(1) = 1√
2

−ch(0) + h(1) = 1√
2

⇒
(

1 c
−c 1

)(
h(0)
h(1)

)
=

1√
2

(
1
1

)
.

The matrix is nonsingular for every real c since its determinant, 1 + c2, is at least
one, and the one-parameter set of solutions is obtainable by inverting:(

h(0)
h(1)

)
=

1√
2(1 + c2)

(
1 −c
c 1

)(
1
1

)
⇒

h(0) = 1−c√
2(1+c2)

h(1) = 1+c√
2(1+c2)

(5.48)

The remaining coefficients are then h(2) = c(c+1)√
2(1+c2)

and h(3) = c(c−1)√
2(1+c2)

.

The Daubechies 4 filters are obtained this way using c = 2 −√
3:

h(0) =
1 +

√
3

4
√

2
; h(1) =

3 +
√

3
4
√

2
; h(2) =

3 −√
3

4
√

2
; h(3) =

1 −√
3

4
√

2
. (5.49)

The normalization condition for 5.47 seems to impose an additional constraint
on c. However, that condition is satisfied for all real c:

h2(0)+h2(1)+h2(2)+h2(3) = (1 + c2)(h2(0) + h2(1))

= (1 + c2)
(

1 − 2c+ c2

2(1 + c2)2
+

1 + 2c+ c2

2(1 + c2)2

)
= 1.

If all four coefficients are nonzero, then c /∈ {0,±1,±∞}. Otherwise, the degen-
erate cases are

c = −1 ⇒ h = { 1√
2
, 0, 0, 1√

2
}; c = 0 ⇒ h = { 1√

2
, 1√

2
, 0, 0};

c = 1 ⇒ h = {0, 1√
2
, 1√

2
, 0}; c = ±∞ ⇒ h = {0, 0, 1√

2
, 1√

2
}.

These are all just variations on the Haar filters.

Mother functions and details

The conjugate filter g derived from h defines the mother function for the MRA by
way of a linear transformation G:

ψ(t) =
∑

k

g(k)
√

2φ(2t− k) def= Gφ(t). (5.50)
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Thus ψ(t−k) ∈ V−1 for every integer k. In fact, {ψ(t−k) : k ∈ Z} is an orthonormal
subset of V−1:

〈ψ(t− n), ψ(t−m)〉 =

=
∑

l

∑
k

g(l)g(k)
〈√

2φ(2t− 2n− l),
√

2φ(2t− 2m− k)
〉

=
∑

l

∑
k

g(l)g(k)δ(2n+ l − 2m− k)

=
∑

k

g(2(m− n) + k)g(k) = δ(n−m).

This mother function defines another collection of subspaces in the MRA. Put
W0 = span {ψ(t − k) : k ∈ Z}, and observe that W0 ⊂ V−1. In general, for any
integer j, put

Wj
def= span {ψ(2−jt− k) : k ∈ Z}. (5.51)

Then Wj ⊂ Vj−1. Note that {2−j/2ψ(2−jt − k) : k ∈ Z} is an orthonormal basis
for Wj .

By the independence condition, every basis vector of W0 is orthogonal to every
basis vector of V0:

〈ψ(t− n), φ(t−m)〉 =

=
∑

l

∑
k

g(l)h(k)
〈√

2φ(2t− 2n− l),
√

2φ(2t− 2m− k)
〉

=
∑

l

∑
k

g(l)h(k)δ(2n+ l − 2m− k)

=
∑

k

g(2(n−m) + k)h(k) = 0.

Also, since 〈ψ(t− n), φ(t−m)〉 = 2j
〈
ψ(2jt− n), φ(2jt−m)

〉
for every j ∈ Z,

every basis vector of Wj is orthogonal to every basis vector of Vj . In other words,
Wj ⊥ Vj .

Multiresolution analysis works because f ∈ V−1 is the sum of an average part
that lies in V0 and a complementary detail part that lies in W0:

Lemma 5.8 W0 + V0 = V−1.

Proof: We first show that each basis function of V−1 is a sum of a function in V0

and a function in W0, namely, that
√

2φ(2t− n) =
∑

k

h(n− 2k)φ(t− k) +
∑

k

g(n− 2k)ψ(t− k). (5.52)

Using the two-scale relations for the scaling and mother functions, we may expand
the φ and ψ terms. Then we use Equation 5.45, the completeness condition, to
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evaluate the sum over index k as follows:∑
k

h(n− 2k)φ(t− k) +
∑

k

g(n− 2k)ψ(t− k) =

=
∑

k

∑
m

h(n− 2k)h(m)
√

2φ(2t− 2k −m)

+
∑

k

∑
m

g(n− 2k)g(m)
√

2φ(2t− 2k −m)

=
∑
m

(∑
k

h(n−2k)h(m−2k) + g(n−2k)g(m−2k)
)√

2φ(2t−m)

=
∑
m

δ(n−m)
√

2φ(2t−m) =
√

2φ(2t− n).

Thus, for any u = u(t) =
∑

k c(k)
√

2φ(2t − k) ∈ V−1, there is a function

P0u(t) def=
∑

k s(k)φ(t − k) ∈ V0, where s(k) = 〈φ(t − k), u(t)〉, and a function

Q0u(t) def=
∑

k d(k)ψ(t− k) ∈W0, where d(k) = 〈ψ(t− k), u(t)〉, and since c(n) =∑
k h(n− 2k)s(k) +

∑
k g(n− 2k)d(k), it follows that u = P0u+Q0u. �

This decomposition generalizes to arbitrary scales in the MRA. For fixed j ∈ Z,
define the functions

φjk(t) def= 2−j/2φ(2−jt− k), k ∈ Z, t ∈ R (5.53)

ψjk(t) def= 2−j/2ψ(2−jt− k), k ∈ Z, t ∈ R (5.54)

These are orthonormal basis vectors for Vj and Wj , respectively.

Corollary 5.9 For every integer j, Wj + Vj = Vj−1.

Proof: We substitute t← 2−jt and multiply by 2−j/2 everywhere in Equation 5.52
in the proof of Lemma 5.8, then apply the definitions of φjk and ψjk to get

φj−1,n(t) =
∑

k

h(n− 2k)φjk(t) +
∑

k

g(n− 2k)ψjk(t). (5.55)

We have thus written an arbitrary basis function of Vj−1 as a linear combination
of basis functions of Vj and Wj . �

The subspaces Wj are the differences between the adjacent Vj and Vj−1. Know-
ing the expansion coefficients of u’s approximation in Vj , it is only necessary to get
the expansion coefficients of its projection on Wj (and to do some arithmetic) in
order to get a better approximation of u in Vj−1. We may call Wj a detail space,
since it contains the details from u’s approximation in Vj−1 which are missing in
Vj . Repeated application of this splitting yields the discrete wavelet decomposition:

Corollary 5.10 V0 = W1 +W2 + · · · +WJ + VJ , for any integer J > 0. �

If the scale and detail spaces form an orthogonal MRA, then the subspaces in the
sum are pairwise orthogonal.
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V0 . . .P1 PJP2

Q1 Q2 QJ

V1

W2 WJ

V2 VJ-1 VJ

W1

. . .. . .

Figure 5.4: Pyramid of projections onto subspaces in the MRA.

5.2.3 From filters to discrete wavelet transforms

Once an orthogonal MRA has been fixed, a function u may be approximated to any
desired degree in one of the scale spaces, {Vj : j ∈ Z}, using the scaling function
φ. We define a linear transformation Pj that produces the approximation by the
following formula:

Pju(t) =
∑

k

〈φjk, u〉φjk(t), (5.56)

where φjk(t) = 2−j/2φ(2−jt − k), as defined in Equation 5.53. If u = u(t) has

compact support, then the coefficient sj(k)
def= 〈φjk, u〉 is nonzero for only finitely

many values of k, so Pju ∈ Vj . Furthermore, Pj(Pju) = Pju, and u − Pju is or-
thogonal to Pju, so Pj is the orthogonal projection onto Vj . The finitely-supported
sequence of coefficients {s0(k) : k ∈ Z}, in particular, contains enough information
to recover the approximation P0u ∈ V0 of u. For integer J > 0, the sequence
{sJ(k) : k ∈ Z} contains the smaller amount of information needed to recover the
cruder approximation PJu ∈ VJ .

Likewise, the orthogonal projection Qj onto Wj is defined by

Qju(t) =
∑

k

〈ψjk, u〉ψjk(t), (5.57)

where ψ is the mother function of the orthogonal MRA, and ψjk(t) is defined

in Equation 5.54. Again, coefficient dj(k)
def= 〈ψjk, u〉 will be nonzero for only

finitely many values of k, whenever u has compact support. The finitely-supported
sequences {d1(k) : k ∈ Z}, {d2(k) : k ∈ Z},. . . ,{dJ(k) : k ∈ Z}, contain the
information from which we may recover the details in spaces W1, W2,. . . , WJ . This
decomposition,

V0 = W1 +W2 + · · · +WJ + VJ ;
$

P0u = Q1u+Q2u+ · · · +QJu+ PJu,

is depicted in Figure 5.4.
The orthogonal CQF properties imply that

sj+1(n) =
∑

k

h(k)sj(2n+ k) =
∑

k

h(k − 2n)sj(k); (5.58)
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Figure 5.5: The pyramid algorithm for the discrete wavelet transform (DWT).
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Figure 5.6: The pyramid algorithm for the inverse discrete wavelet transform
(iDWT).

dj+1(n) =
∑

k

g(k)sj(2n+ k) =
∑

k

g(k − 2n)sj(k); (5.59)

sj−1(n) =
∑

k

h(n− 2k) sj(k) +
∑

k

g(n− 2k) dj(k). (5.60)

Equations 5.58 and 5.59 provide a recursive algorithm, the Mallat pyramid algo-
rithm depicted in Figure 5.5, for computing expansions in any of the subspaces
of the MRA. The finitely-supported sequence s0 = {s0(k) : k ∈ Z}, defined by
s0(k) = 〈φ(t− k), u(t)〉, completely determines the approximation P0u ∈ V0. The
wavelet expansion of P0u to level J > 0 consists of the sequences (d1, d2, . . . , dJ ; sJ).
Sequence sJ determines the crude approximation PJu ∈ VJ , while dJ , dJ−1, and
so on contain extra information needed to refine it successively into the better
approximation P0u ∈ V0.

Reconstruction from the wavelet expansion is done by a similar pyramid al-
gorithm, depicted in Figure 5.6. The arrows are reversed using adjoints, and the
results are summed according to Equation 5.60.

In both pyramid algorithms, sequences s1, s2, . . . , sJ−1 are computed along the
way, even though they are not part of the discrete wavelet expansion or the recon-
structed signal. Enough temporary storage to hold another copy of the signal may
therefore be needed, depending upon how the arrow operations are implemented.

Filter transforms

A finitely-supported sequence f = {f(k) : k ∈ Z} defines a filter transform, acting
on arbitrary sequences u = {u(k) : k ∈ Z} by either of the two equivalent formulas,
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related by the substitution k ← k′ + 2n:

Fu(n) =
∑

k

f(k − 2n)u(k) =
∑
k′
f(k′)u(k′ + 2n), n ∈ Z. (5.61)

This F is a linear transformation on every vector space of complex-valued sequences,
including the inner product space �2 of square-summable sequences with inner
product 〈u, v〉 =

∑
k u(k)v(k). In that space, F has an adjoint F ∗ that satisfies

〈Fu, v〉 = 〈u, F ∗v〉 for all u and v. But then,

∑
n

Fu(n)v(n) =
∑

n

(∑
k

f(k − 2n)ū(k)

)
v(n)

=
∑

k

(
ū(k)
∑

n

f(k − 2n)v(n)

)
def=
∑

k

ū(k)F ∗v(k),

which defines two equivalent formulas for the adjoint filter transform:

F ∗v(k) =
∑

n

f(k − 2n) v(n) (5.62)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
n′
f(2n′) v(

k

2
− n′), if k ∈ Z is even,

∑
n′′

f(2n′′+1) v(
k−1

2
− n′′), if k ∈ Z is odd.

These are related by the substitutions n ← k
2 − n′ if k is even, and n ← k−1

2 − n′′

if k is odd.
Composing F and its adjoint gives

F ∗Fu(j) =
∑

n

f(2n− j)Fu(n) =
∑
n,k

f(2n− j)f(2n− k)u(k). (5.63)

Similarly,

FF ∗u(m) =
∑

k

f(2m− k)F ∗u(k) =
∑
k,n

f(2m− k)f(2n− k)u(n). (5.64)

Because of the dilation by 2, F typically shrinks the support of sequences, while
F ∗ enlarges it:

Lemma 5.11 Suppose that the sequence f is supported on the index interval [a, b]:
f = {. . . , 0, f(a), f(a + 1), . . . , f(b − 1), f(b), 0, . . .}, since f(n) = 0 if n < a or
n > b. For any sequence u supported on [x, y],

• Fu is supported on [
⌈

x−b
2

⌉
,
⌊

y−a
2

⌋
];

• F ∗u is supported on [2x+ a, 2y + b].
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Proof: Taking into account the support, the second version of the filter transform
formula reduces to

Fu(n) =
b∑

k′=a

f(k′)u(k′ + 2n). (5.65)

Notice that the summand will be zero if b + 2n < x or a + 2n > y. Only output
values at indices n ∈ [x′, y′] need to be computed, where x′ = "(x− b)/2# and
y′ = �(y − a)/2�.

On the other hand, the first version of the adjoint filter transform formula
reduces to

F ∗v(k) =
y∑

n=x

f(k − 2n) v(n). (5.66)

The summand will be zero unless a ≤ k − 2n ≤ b and x ≤ n ≤ y. Hence, output
values need only be computed at indices k ∈ [x′′, y′′], where x′′ = 2x + a and
y′′ = 2y + b. �

Lemma 5.11 illuminates two kinds of spreading in support that occur with filter
transforms. Firstly, if F is one filter from an orthogonal CQF pair, then F ∗F is an
orthogonal projection on �2, but the support of F ∗Fumay be greater than that of u.
If u is finitely-supported on the index interval [x, y], and f is supported on [a, b], then
F ∗Fu will be finitely supported in the index interval

[
2
⌈

x−b
2

⌉
+ a, 2

⌊
y−a

2

⌋
+ b
]
.

This contains [x− (b − a− 1), y + (b− a− 1)], which in turn contains [x, y] and is
strictly larger if and only if b− a > 1. The only orthogonal CQF with b− a ≤ 1 is
the Haar pair, with a = 0, b = 1 in the conventional indexing giving b− a = 1.

Secondly, a CQF pair H,G of filter transforms can produce more total output
values than there are input values. Suppose the supports are [a, b] forH and [c, d] for
G. For a finitely supported sequence u = {u(x), . . . , u(y)} of length N = 1 + y− x,
the high-pass and low-pass parts of the signal will be supported on the intervals[⌈

x−b
2

⌉
,
⌊

y−a
2

⌋]
and
[⌈

x−d
2

⌉
,
⌊

y−c
2

⌋]
, respectively, with total length(

1 +
⌊
y − a

2

⌋
−
⌈
x− b

2

⌉)
+
(

1 +
⌊
y − c

2

⌋
−
⌈
x− d

2

⌉)
. (5.67)

The total support length will be greater than 1 + y − x if and only if b− a > 1 or
d − c > 1. The Haar CQF pair has b− a = 1 and d − c = 1, and is the only filter
pair that does not cause spreading of the support.

Successive applications of H and G give the (nonperiodic) discrete orthogonal
wavelet transform on finitely-supported infinite sequences. There are only finitely
many finitely-supported sequences d1, d2, . . . , dJ , and sJ to compute, and each out-
put coefficient costs only a finite number of operations since h, g are both finite
sequences, say of length L. Since L must be even by Lemma 5.7, we can write
L = 2M for an integer M . If h is conventionally indexed, so that h(k) is nonzero
only for 0 ≤ k < L, then we may choose3 to define g(k) = (−1)kh(2M − 1 − k) to
insure that g(k) is also nonzero only for 0 ≤ k < L.

3Work Exercise 12 to see why!
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With these indexing conventions, if sj(k) is supported in x ≤ k ≤ y, then
dj+1(n) and sj+1(n) may be nonzero for "(1 + x− L)/2# ≤ n ≤ �y/2�. Hence, the
output sequences are of varying lengths:

Mallat’s Discrete Wavelet Transform

dwt( u[], x, y, J, h[], g[], L ):
[0] If J=0 then for n = x to y, print u[n]
[1] Else do [2] to [9]
[2] Let x1 = ceiling((1+x-L)/2), let y1 = floor(y/2)
[3] For n=x1 to y1, do [4] to [8]
[4] Let s[n] = 0, let d[n] = 0
[5] For k=0 to L-1, do [6] to [7]
[6] Accumulate s[n] += h[k]*u[k+2*n]
[7] Accumulate d[n] += g[k]*u[k+2*n]
[8] Print d[n]
[9] Compute dwt( s[], x1, y1, J-1, h[], g[], L )

Of course, values d[n] do not have to be printed as soon as they are computed,
they may be stored in an array. For fixed L and J , this array will require O(N)
total elements, and will cost O(N) operations to fill.

Periodic filter transforms

If f2q is a 2q-periodic sequence with even period, then it can be used to define a
periodic filter transform F2q from 2q-periodic to q-periodic sequences, and a periodic
adjoint F ∗

2q from q-periodic to 2q-periodic sequences. These are, respectively, the
transformations

F2qu(n) =
2q−1∑
k=0

f2q(k − 2n)u(k) =
2q−1∑
k′=0

f2q(k′)u(k′ + 2n), 0 ≤ i < q; (5.68)

and

F ∗
2qv(k) =

q−1∑
n=0

f2q(k−2n) v(n) (5.69)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q−1∑
n′=0

f2q(2n′) v(
k

2
− n′), if k ∈ [0, 2q−2] is even,

q−1∑
n′′=0

f2q(2n′′+1) v(
k−1

2
−n′′), if k ∈ [1, 2q−1] is odd.

(5.70)

We have performed the same substitutions as in Equations 5.61 and 5.62. Except
for the index ranges, the formulas are the same.

Periodization commutes with filter transforms: we get the same periodic se-
quence whether we first filter an infinite sequence and then periodizes the result,
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or first periodize both the sequence and the filter and then perform a periodic filter
transform. To be precise:

Lemma 5.12 (Fu)q = F2qu2q and (F ∗v)2q = F ∗
2qvq.

Proof: Note that

(Fu)q (n) =
∞∑

j=−∞
Fu(n+ qj) =

∞∑
j=−∞

∞∑
k=−∞

f(k − 2[n+ qj])u(k)

=
∞∑

k=−∞

⎛⎝ ∞∑
j=−∞

f(k−2n−2qj)

⎞⎠u(k) =
∞∑

k=−∞
f2q(k−2n)u(k)

=
2q−1∑
k1=0

∞∑
k2=−∞

f2q(k1 + 2qk2 − 2n)u(k1 + 2qk2)

=
2q−1∑
k1=0

f2q(k1 − 2n)
∞∑

k2=−∞
u(k1 + 2qk2)

=
2q−1∑
k1=0

f2q(k1 − 2n)u2q(k1).

Also,

(F ∗v)2q (k) =
∞∑

j=−∞
F ∗v(k + 2qj) =

∞∑
j=−∞

∞∑
n=−∞

f([k + 2qj] − 2n) v(n)

=
∞∑

n=−∞

⎛⎝ ∞∑
j=−∞

f(k+2qj−2n)

⎞⎠ v(n) =
∞∑

n=−∞
f2q(k−2n) v(n)

=
q−1∑

n1=0

∞∑
n2=−∞

f2q(k − 2n1 − 2qn2) v(n1 + qn2)

=
q−1∑

n1=0

f2q(k − 2n1)
∞∑

n2=−∞
v(n1 + qn2)

=
q−1∑

n1=0

f2q(k − 2n1) vq(n1).

�

Thus, any redundancy introduced by periodizing an even-length input signal can
be removed by ignoring all but one period of the output.

A 2q-periodized pair of orthogonal CQFs h, g retain their orthogonal CQF prop-
erties. A 2q-periodic input sequence u may be completely described by 2q coef-
ficients, and H2q and G2q each produce q-periodic outputs that are completely
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described by q coefficients each. It is efficient to combine the two periodic filter
transforms as follows:

Combined Periodic Filter Transform on 2q Samples

pcqfilter( out[], in[], q, h[], g[], L ):
[0] For n=0 to q-1, do [1] to [4]
[1] Let out[n] = 0, let out[n+q] = 0
[2] For k=0 to L-1, do [3] to [4]
[3] Accumulate out[n] += h[k]*in[(k+2*n)%(2*q)]
[4] Accumulate out[n+q] += g[k]*in[(k+2*n)%(2*q)]

Both the input array in[] and the output array out[] must have 2q elements. The
H output sequence s(0), . . . , s(q−1) gets written into the first q elements of out[],
namely out[0],. . . ,out[q-1], and the G output sequence d(0), . . . , d(q − 1) gets
written into out[q],. . . ,out[2*q-1]. The index expression (k+2*n)%(2*q) gives a
remainder in the range 0, . . . , 2q − 1 for all values of k + 2n, as all its arguments
are nonnegative.

Since applying a pair of CQFs together yields enough information to recover the
original samples, the combined filter transform is invertible. With the arrangement
of the s, d sequences produced by pcqfilter(), we may recover the original samples
as follows:

Inverse of the Combined Periodic Filter Transform on 2q Samples

ipcqfilter( out[], in[], q, h[], g[], L ):
[0] For k2=0 to q-1, do [1] to [4+]
[1] Let out[2*k2] = 0, let out[2*k2+1] = 0
[2] For n2=0 to L/2-1, do [3] to [4+]
[3] Sum out[2*k2] += h[2*n2]*in[(k2-n2) mod q]
[3+] Sum out[2*k2] += g[2*n2]*in[((k2-n2) mod q) + q]
[4] Sum out[2*k2+1] += h[2*n2+1]*in[(k2-n2) mod q]
[4+] Sum out[2*k2+1] += g[2*n2+1]*in[((k2-n2) mod q) + q]

Since the arguments can be negative, the index expressions (k2-n2) mod q and
(1+k2-n2) mod q must be implemented carefully to insure that they take values
in the range [0, q − 1]. The Standard C remainder operator can be used, if qL is
added to each left-hand side to guarantee nonnegativity:

(k2-n2) mod q ← (q*L+k2-n2)%q

(1+k2-n2) mod q ← (q*L+1+k2-n2)%q

Combined periodic filter transforms are size preserving, in that they produce
as many output coefficients as input coefficients. Applying them recursively yields
another kind of discrete wavelet transform. ForN = 2JK with integerK and J > 0,
output sequences sj and dj will both be periodic of period N/2j = 2J−jK, which
is an integer if j ≤ J . The total number of output wavelet expansion coefficients in
the sequences (d1, d2, . . . , dJ ; sJ) will equal the number of input coefficients, since
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N
21 + N

22 + · · · + N
2J + N

2J = N .

Mallat’s Periodic Wavelet Transform

pdwt( u[], N, J, h[], g[], L ):
[0] If J>0, then do [1] to [4]
[1] Allocate temp[0]=0,...,temp[N-1]=0
[2] Compute pcqfilter( temp[], u[], N/2, h[], g[], L)
[3] For i=0 to N-1, copy u[i] = temp[i]
[4] Compute pdwt( u[], N/2, J-1, h[], g[], L )

Each output value dj(n) costs LN/2j−1 multiply-adds to compute, plus there are
another LN/2j−1 multiply-adds needed to compute sj(n). The total cost is 2LN ,
or O(N) as N → ∞, and is gotten by summing over j = 1, 2, . . . , J .

An important special case is the periodic discrete orthogonal wavelet transform
on N = 2J points, with complete expansion to the maximum depth J . The number
of output coefficients equals the number of input coefficients, so the output can
overwrite the input:

Complete Periodic Wavelet Transform on 2J Samples

pdwt0( u[], J, h[], g[], L ):
[0] If J>0, then do [1-] to [4]
[1-] Let N = 1<<J
[1] Allocate temp[0]=0,...,temp[N-1]=0
[2] Compute pcqfilter( temp[], u[], N/2, h[], g[], L )
[3] For i=0 to N-1, copy u[i] = temp[i]
[4] Compute pdwt0( u[], J-1, h[], g[], L )

Sequences sJ and dJ are each 1-periodic and representable by a single coefficient,
which is in u[0] and u[1] of the output, respectively. The remaining sequences
dJ−1, . . . , d2, d1 are of lengths 21, . . . , 2J−2, 2J−1, respectively, and are found at
consecutive indices starting with u[2]. It is straightforward to check that the
original 2J locations in u[] exactly suffice to hold everything. Along the way, an
additional 2J temporary memory locations are used.

Given wavelet expansion coefficients produced by pdwt0(), we can reconstruct
the original signal samples as follows:

Reconstruction from Periodic Wavelet Expansion on 2J Samples

ipdwt0( u[], J, h[], g[], L ):
[0] If J>0, then do [1-] to [4]
[1-] Let N = 1<<J
[1] Compute ipdwt0( u[], J-1, h[], g[], L )
[2] Allocate temp[0]=0,...,temp[N-1]=0
[3] Compute ipcqfilter( temp[], u[], N/2, h[], g[], L )
[4] For i=0 to N-1, let u[i] = temp[i]
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Output is written over the input array u[], as the inverse transform is size preserv-
ing.

We now use induction on J to prove that pdwt0(u[],J,h[],g[],L) is inverted
by ipdwt0(u[],J,h[],g[],L), for any orthogonal CQFs h, g.

For J = 0, both pdwt0(u[],0,h[],g[],L) and ipdwt0(u[],0,h[],g[],L) are
the identity on one-point signals u, and are thus trivially inverses.

For J > 0, suppose that ipdwt0(.,J-1,...) inverts pdwt0(.,J-1,...) on
all signals of length 2J−1. Given a signal {u(k) : 0 ≤ k < 2J} of length 2J ,
consider pdwt0(u[],J,h[],g[],L). This consists of pcqfilter() applied to u,
followed by pdwt0(u[],J-1,h[],g[],L)) which acts just on the first-half ele-
ments {u(k) : 0 ≤ k < 2J−1}. By the inductive hypothesis, that is inverted by
ipdwt0(u[],J-1,h[],g[],L), which recovers the first-half elements, followed by
ipcqfilter() which combines those with {u(k) : 2J−1 ≤ k < 2J} to recover the
rest of u.

After implementation, it is a good idea to perform some tests with random
sequences to see whether ipdwt0() and pdwt0() are inverses. The reconstructed
samples will contain roundoff errors from the finite-precision arithmetic, but with
orthogonal length-L CQFs the relative error should be about 2εfJ

√
L.

Building multiresolutions from filters

Does choosing any h satisfying the stand-alone, or basic, orthogonal filter conditions
on page 151 determine a multiresolution analysis? The scaling function φ is found
by solving the two-scale equation. In turn, φ determines the entire MRA {Vj : j ∈
Z}. Thus, we must show that the two-scale equation, for a given orthogonal CQF,
always has a unique solution φ with all the scaling function properties.

One way to solve the two-scale equation is by iteration. Define a linear trans-
formation from the sequence h:

Hf(t) =
∑

k

h(k)
√

2f(2t− k). (5.71)

The idea is to start with f0 = 1 and apply H repeatedly: fn+1
def= Hfn, so

fn
def= Hn1, for n = 0, 1, 2, . . .. (5.72)

Theorem 5.13 If, for every t, fn(t) converges uniformly to a limit function φ(t)
as n→ ∞, then

1. φ has compact support;

2. φ satisfies the two-scale equation: Hφ = φ;

3. φ is nonzero, integrable, and satisfies
∫
φ(t) dt = 1;

4. {φ(t− k) : k ∈ Z} is an orthonormal set.
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Proof: Properties 1–4 will be shown in turn.
1. We show by induction that φ inherits compact support from 1. Suppose

h(k) = 0 for k > b or k < a, and f(t) = 0 for t /∈ [c, d]. Then Hf(t) =√
2
∑b

k=a h(k)f(2t − k) = 0 unless c ≤ 2t − k ≤ d for some k = a, a + 1, . . . , b.
But this means that Hf(t) = 0 unless (a + c)/2 ≤ t ≤ (b + d)/2. Iterating,
H2f(t) = 0 unless [a+ (a+ c)/2]/2 ≤ t ≤ [b+ (b+ d)/2]/2, and Hnf(t) = 0 unless

(1−2−n)a+2−nc =
a

2
+ · · ·+ a

2n
+

c

2n
≤ t ≤ b

2
+ · · ·+ b

2n
+
d

2n
= (1−2−n)b+2−nd.

Note that if t < −|a| − |c| or t > |b|+ |d|, then Hnf(t) = 0 for every n = 0, 1, 2, . . ..
This means that u and all iterations Hnf are supported in a single compact interval
[−|a| − |c|, |b| + |d|], of length |a| + |b| + |c| + |d|. Starting with 1, with c = 0 and
d = 1, the limit φ obtained as n→ ∞ is supported in [a, b].

2. Let ε > 0 be given. We show that |φ(t) −Hφ(t)| < ε for every t, so since ε
is arbitrary we must have φ = Hφ. But for any δ > 0, by uniform convergence we
can choose N large enough so that n ≥ N ⇒ |fn(t) − φ(t)| < δ. Then, using the
relation fn+1(t) = Hfn(t) and the triangle inequality, we estimate

|φ(t) −Hφ(t)| ≤ |φ(t) − fn+1(t)| + |Hfn(t) −Hφ(t)| < δ +Bδ,

where B =
√

2
∑

k |h(k)| is the largest amount by which H can increase the maxi-
mum absolute value of a function. Now we go back and pick δ = ε/(1 +B).

3. First note that if f is integrable then so is Hf , since finite sums of integrable
functions are integrable. Then observe that

∫
Hf(t) dt =

∫
f(t) dt by Equation

5.38. Thus, for n = 0, 1, 2, . . ., fn is integrable and
∫
fn(t) dt = 1. Now fn(t) → φ(t)

uniformly at all t, so given ε > 0 there is an N large enough so that n ≥ N ⇒
|φ(t) − fn(t)| < ε for all t. Since all functions are supported in a single interval of
length L = |a| + |b| + |c| + |d|, it follows4 that φ is integrable, and∣∣∣∣∫ φ(t) dt− 1

∣∣∣∣ = ∣∣∣∣∫ φ(t) dt−
∫
fn(t) dt

∣∣∣∣ ≤ ∫ |φ(t) − fn(t)| dt < εL.

Since
∣∣∫ φ(t) dt− 1

∣∣ < εL for every ε > 0, it follows that
∫
φ(t) dt = 1. Finally, φ

must be nonzero because its integral is nonzero.
4. Suppose 〈f(t− p), f(t− q)〉 = δ(p − q) for a compactly-supported function

f . Then Hf inherits the same property:

〈Hf(t−p), Hf(t−q)〉 = 2
∫ ∑

k,k′
h(k − 2p)h(k′ − 2q)f(2t− k)f(2t− k′) dt

=
∑
k,k′

h(k − 2p)h(k′ − 2q)δ(k − k′) = δ(p− q).

Thus, since 1 is orthogonal to its integer translates, so is fn for every n = 0, 1, . . ..
4Here we use the Lebesgue dominated convergence theorem, which is beyond the scope of this

text. For a full proof, see Apostol, page 270, in the further readings from Chapter 3.
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For n so large that |φ(t) − fn(t)| < ε at all t, the value M =
∫ |φ(t)| dt gives an

upper bound
∫ |fn(t)| dt < M + εL. Thus∣∣∣∣∫ φ(t− p)φ(t− q) dt − δ(p− q)

∣∣∣∣ =

=
∣∣∣∣∫ φ(t− p)φ(t− q) dt−

∫
fn(t− p)fn(t− q) dt

∣∣∣∣
≤
∫

|φ(t− p) − fn(t− p)| |φ(t− q)| dt

+
∫

|fn(t− p)| |φ(t− q) − fn(t− q)| dt
< εM + (M + εL)ε.

Since this holds for all ε > 0, it follows that |〈φ(t− p), φ(t− q)〉 − δ(p− q)| = 0.
This implies that 〈φ(t− p), φ(t − q)〉 = δ(p − q), so the inner product is zero if
p �= q. Finally, setting p = q = 0 shows that ‖φ‖ = 1. �

For the Haar filters of Equation 5.46, we haveH1 = 1 as in Equation 5.31. Thus
fN = 1 for all N = 0, 1, 2, . . ., so convergence is not only uniform but immediate:
φ = 1. However, a study of more general filters H,G that have uniform convergence
of {fn} is beyond the scope of this book.5

To get lots of samples for a graph of a wavelet or scaling function, however,
is easy. Since the wavelet transform of φjk has the expansion sequence sj = ek,
we simply apply the j-level inverse wavelet transform to the sequences sj = ek;
dj = dj−1 = · · · = d1 = 0. Likewise, to get the samples for a graph of ψjk, we
simply apply the j-level inverse wavelet transform to the sequences sj = 0; dj = ek;
dj−1 = · · · = d1 = 0. We need to use the indexing formula for the particular wavelet
transform to find the locations of sj(k) and dj(k).

5.2.4 Lifting

A clever method of implementing filter transforms is called lifting. The two output
sequences (Hu,Gu) produced by a pair H,G of CQFs are computed together,
efficiently and in a manner that reduces the amount of auxiliary storage. We
illustrate with the example of Haar filters applied to a finitely-supported signal
u(0), . . . , u(N − 1) of length N = 2q > 0:

Lifting Implementation of the Haar Filter Transform on 2q Samples

haarlift( u[], q, dq ):
[1] For n=0 to q-1, replace u[(2*n+1)*dq] -= u[(2*n)*dq]
[2] For n=0 to q-1, replace u[(2*n)*dq] += 0.5*u[(2*n+1)*dq]
[3] For n=0 to q-1, replace u[(2*n+1)*dq] /= sqrt(2.0)
[4] For n=0 to q-1, replace u[(2*n)*dq] *= sqrt(2.0)

5Cavaretta, Dahmen and Micchelli’s Stationary Subdivision, in the further readings, has a
highly detailed exposition of the relevant technicalities.
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Ignore the increment dq for the moment, pretending that it is 1. Step 1 replaces all
the odd-indexed elements of u with their differences u(2n+1)−u(2n). Step 2 then
adds half these differences into the even-indexed elements, leaving them containing
the averages [u(2n+ 1) + u(2n)]/2. Steps 3 and 4 then normalize these differences
and averages into the familiar Haar filter outputs Gu(n) = [u(2n+ 1)− u(2n)]/

√
2

and Hu(n) = [u(2n+ 1) + u(2n)]/
√

2.
Permitting increments dq > 1 makes it easier to use haarlift() in a recursive

discrete wavelet transform. Note that Hu(n) is found at index (2n)dq of the output,
andGu(n) is at index (2n+1)dq. This is different from the pcqfilter() convention,
in which Hu(n) is at index n, while Gu(n) is at index n + q. Thus, a different
recursion is needed to obtain the DWT by lifting:

Complete Discrete Haar Transform by Lifting on 2J Samples

ldht0( u[], J, dq ):
[0] If J>0, then do [1] to [2]
[1] Compute haarlift( u[], (1<<J)/2, dq )
[2] Compute ldht0( u[], J-1, 2*dq )

Notice that no temporary storage array is required. Because of the way the outputs
are interleaved, the locations of wavelet expansion coefficients d1, . . . , dJ ; sJ have
more complicated index formulas than those of pdwt0(). In particular, sJ(0) is
found at u[0], dJ(0) is found at u[(1<<J)/2]. For 1 ≤ j ≤ J − 1, there are
N/2j = 2J−j coefficients in the sequence dj , spaced 2dq = 2j indices apart at the
odd multiples of dq = 2j−1. Thus the index of dj(k) is 2j−1(2k + 1) = 2j−1 + k2j ,
or

dj(k) = u[(1<<j)/2 + (1<<j)*k]. (5.73)

To invert haarlift(), we reverse the order and use the inverses of the steps:

Invert the Haar Filter Transform to 2q samples

ihaarlift( u[], q, dq ):
[1] For n=0 to q-1, replace u[(2*n)*dq] /= sqrt(2.0)
[2] For n=0 to q-1, replace u[(2*n+1)*dq] *= sqrt(2.0)
[3] For n=0 to q-1, replace u[(2*n)*dq] -= 0.5*u[(2*n+1)*dq]
[4] For n=0 to q-1, replace u[(2*n+1)*dq] += u[(2*n)*dq]

Similarly, we can compute the inverse DWT by reversing the order of lifting and
recursion:

Inverse Discrete Haar Transform by Lifting on 2J Samples

ildht0( u[], J, dq ):
[0] If J>0, then do [1] to [2]
[1] Compute ildht0( u[], J-1, 2*dq )
[2] Compute ihaarlift( u[], (1<<J)/2, dq )

It is an exercise to show that ildht0() inverts ldht0(). The proof does not use
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the orthogonal CQF conditions, as these are not needed to prove that ihaarlift()
inverts haarlift(). Lifting may thus be used to get invertible discrete wavelet
transforms from nonorthogonal filter transforms.

Symmetric extension before periodization

Suppose u = {u(k) : 0 ≤ k < N} is a finite sequence of N samples of a smooth
function. Then |u(n) − u(m)| will be small when |n − m| is small. However,
the periodic extension of u given by u(k + N) def= u(k) will not have that same
smoothness property in general, unless |u(0) − u(N − 1)| is also small. Analysis
methods which require that u is a smooth N -periodic function might therefore show
artifacts from this failure of the hypothesis. In Chapter 3, we saw that smooth
local periodization could be used to modify a smooth signal made nonsmooth by
restriction to a segment, but that technique is not available if all we have are the
N samples and nothing outside.

Another way to preserve some smoothness after periodizing is to extend u by
reflection before periodizing. This creates two-fold redundancy, but if we then use a
filter transform with the same reflection symmetry the redundancy can be removed.
Restriction to half the output coefficients determines the other half by symmetry,
so there is neither redundancy nor loss of information.

There are two ways to extend u symmetrically past k = N − 1 and k = 0. One
is half-sample symmetric periodization:

HSPu(k) =
{
u(k), if k = 0, . . . , N − 1 (mod 2N);
u(2N − 1 − k), if k = N, . . . , 2N − 1 (mod 2N).

This extension has period 2N and satisfies u(k) = u(−1−k) = u(2N−1−k) for all
integers k, making it symmetric about the half-integers − 1

2 and N− 1
2 . To compute

HSPu(k) at any k ∈ Z requires an index calculation:

Half-Sample Symmetric Periodic Extension

hsp( u[], k, N ):
[0] If k<0, then let k = -1-k
[1] Let k = k%(2*N)
[2] If k>N-1, then let k = 2*N-1-k
[3] Return u[k]

The Haar filter transform has half-sample symmetry. If we apply it to the 2N -
periodic signal HSPu and restrict to one period, the first N outputs will be the
same as the second N . Further restriction to the first half-period eliminates all
redundancy. Note that N can be an odd number, generalizing haarlift() to
signals u of arbitrary length. Implementation of this is left as an exercise.

Alternatively, we may perform whole-sample symmetric periodization

WSPu(k) =
{
u(k), if k = 0, . . . , N − 1 (mod 2N − 2);
u(2N − 2 − k), if k = N, . . . , 2N − 3 (mod 2N − 2).
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coefficient value coefficient value
h(0) 3/4 g(−1) 5/4
h(±1) 1/2 g(−1 ± 1) −5/32
h(±2) 1/8 g(−1 ± 2) −3/8

g(−1 ± 3) −3/32

Table 5.2: Nonzero coefficients of the 4,2-biorthogonal filters.

This extension has period 2N − 2 and satisfies u(k) = u(−k) = u(2N − 2 − k) for
all integers k, making it symmetric about the integers 0 and N − 1. To compute
WSPu(k) at any k ∈ Z requires another index calculation:

Whole-Sample Symmetric Periodic Extension

wsp( u[], k, N ):
[0] If k<0, then let k = -k
[1] Let k = k%(2*N-2)
[2] If k>N-1, then let k = 2*N-2-k
[3] Return u[k]

The 9,7- and 4,2-biorthogonal filter transforms, described below and in the exercises,
both have whole-sample symmetry. If we apply one of them to the (2N−2)-periodic
signal WSPu and restrict to one period, the first N outputs will determine the
second N − 2. Once again, N can be an arbitrary odd or even length for u.
The discrete wavelet transform thus obtained is free from the power-of-2 length
condition.

Symmetric filters

A filter sequence f can have four types of symmetry:

Types of Symmetric Filters

WS Whole-sample symmetry about C: For some integer C, f(k) =
f(2C − k) for all integers k;

WA Whole-sample antisymmetry about C: For some integer C, f(k) =
−f(2C − k) for all integers k. This also implies that f(C) = 0;

HS Half-sample symmetry about C + 1
2 : For some integer C, f(k) =

f(2C + 1 − k) for all integers k;

HA Half-sample antisymmetry about C + 1
2 : For some integer C,

f(k) = −f(2C + 1 − k) for all integers k.

For Haar filters, h is HS about 1
2 and g is HA about 1

2 .
The 4,2-biorthogonal filters are WS about 0 and −1, respectively, as is evident

from Table 5.2. All their other coefficients are zeroes.
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coefficient value coefficient value
h(0) 0.8526986790 g(−1) 0.7884856164
h(±1) 0.3774028556 g(−1 ± 1) −0.4180922732
h(±2) −0.1106244044 g(−1 ± 2) −0.0406894176
h(±3) −0.0238494650 g(−1 ± 3) 0.0645388826
h(±4) 0.0378284555

Table 5.3: Nonzero coefficients of the 9,7-biorthogonal filters.

Likewise, the 9,7-biorthogonal filters h, g given approximately in Table 5.3 are
WS about 0 and −1. All their other coefficients are zero. Exact formulas for the
coefficients may be found in Daubechies on page 279, Table 8.3.

Note that neither pair h, g of WS filters are orthogonal CQFs, as they are
not related by conjugacy. They nevertheless allow perfect reconstruction, as their
combined action is invertible. The filter transform that inverts the h, g combined
filter transform is given by their actual conjugates h̃, g̃, defined by

h̃(k) def= (−1)kg(−1 − k); g̃(k) def= (−1)k+1h(−1 − k). (5.74)

The conjugate of a symmetric filter is also symmetric:

Lemma 5.14 Suppose h = {h(k)} is a filter sequence, and g = {g(k)} is its con-
jugate defined by g(k) = (−1)kh(2M − 1 − k), then

1. h is WS about C if and only if g is WS about 2M − C − 1;

2. h is WA about C if and only if g is WA about 2M − C − 1;

3. h is HS about C if and only if g is HA about 2M − C − 2 + 1
2 ;

4. h is HA about C if and only if g is HS about 2M − C − 2 + 1
2 .

Proof: In the first case, compute

g(k) = (−1)kh(2M − 1 − k) = (−1)kh(2C − 2M + 1 + k)
= (−1)kh(2M − 1 − [4M − 2C − 2 − k])
= (−1)4M−2C−2−kh(2M − 1 − [4M − 2C − 2 − k])
= g(4M − 2C − 2 − k).

Modified slightly, the same argument proves the second case:

g(k) = (−1)kh(2M−1−k) = −(−1)kh(2C−2M+1+k) = −g(4M − 2C − 2 − k).

In the third case,

g(k) = (−1)kh(2M − 1 − k) = (−1)kh(2C + 1 − 2M + 1 + k)
= (−1)kh(2M − 1 − [4M − 2C − 3 − k])
= −(−1)4M−2C−3−kh(2M − 1 − [4M − 2C − 3 − k])
= −g(4M − 2C − 3 − k).
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In the fourth case,

g(k) = (−1)kh(2M − 1 − k) = −(−1)kh(2C + 1 − 2M + 1 + k)
= −(−1)kh(2M − 1 − [4M − 2C − 3 − k])
= (−1)4M−2C−3−kh(2M − 1 − [4M − 2C − 3 − k])
= g(4M − 2C − 3 − k).

This also follows from the third case by exchanging h and g and then substituting
C ← 2M − C − 2 + 1

2 . �

With symmetric filters and symmetric extension and periodization, a discrete
wavelet transform may be performed on signals of arbitrary length.

We begin by separating the three kinds of lifting steps. The step that computes
new values at odd multiples of the increment dq is called prediction:

Whole-Sample Symmetric Lifting: Prediction Step

wslpredict( u[], N, dq, coeff ):
[0] Let i = dq
[1] While i<N-2*dq, do [2] to [3]
[2] Sum u[i] += coeff*(u[i-dq]+u[i+dq])
[3] Increment i += 2*dq
[4] If i+dq<N, then sum u[i] += coeff*(u[i-dq]+u[i+dq])
[5] Else sum u[i] += 2*coeff*u[i-dq]

Step 4 handles the odd N/dq case. Step 5 handles even N/dq by whole-sample
symmetric extension.

The step that computes new values at even multiples of dq is called updating:

Whole-Sample Symmetric Lifting: Updating Step

wslupdate( u[], N, dq, coeff ):
[0] Sum u[0] += 2*coeff*u[dq]
[1] Let i = 2*dq
[2] While i<N-2*dq, do [2] to [3]
[3] Sum u[i] += coeff*(u[i-dq]+u[i+dq])
[4] Increment i += 2*dq
[5] If i<N, then do [6] to [7]
[6] If i+dq<N, then sum u[i] += coeff*(u[i-dq]+u[i+dq])
[7] Else sum u[i] += 2*coeff*u[i-dq]

Steps 0 and 7 perform whole-sample symmetric extension. Step 7 is supplanted
by step 6 if N/dq is even. Note that the inverse of wslpredict(u,N,dq,coeff)
is wslpredict(u,N,dq,-coeff), and the inverse of wslupdate(u,N,dq,coeff) is
wslupdate(u,N,dq,-coeff).
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The third type of lifting step, normalization, does not require symmetry. It is
always6 performed jointly on both the even-indexed and odd-indexed elements:

Lifting: Normalization Step

lnormalize( u[], N, dq, coeff ):
[0] Let i = 0
[1] While i<N-2*dq, do [2] to [4]
[2] Replace u[i] *= coeff
[3] Replace u[i+dq] /= coeff
[4] Increment i += 2*dq
[5] Replace u[i] *= coeff
[6] If i+dq<N, then replace u[i+dq] /= coeff

Step 6 handles the even N/dq case. The inverse of lnormalize(u,N,dq,coeff) is
lnormalize(u,N,dq,1/coeff).

The 4,2- and 9,7-biorthogonal filters of JPEG 2000

The so-called 4,2-biorthogonal discrete wavelet transform used in the lossless JPEG
2000 image compression algorithm is a whole-sample symmetric-extension algo-
rithm implemented by lifting. The filter transform requires two predictions, one
updating, and one normalization:

WS Lifting: 4,2-Biorthogonal Filter Transform

wsl42filter( u[], N, dq ):
[0] Compute wslpredict( u[], N, dq, alpha42 )
[1] Compute wslupdate( u[], N, dq, beta42 )
[2] Compute wslpredict( u[], N, dq, gamma42 )
[3] Compute lnormalize( u[], N, dq, zeta42 )

The lifting coefficients7 are α42 = 1
4 , β42 = 1, γ42 = − 3

16 , and ζ42 = 1
2 . The inverse

filter transform requires one normalization, one updating, and two predictions, with
inverted coefficients:

WS Lifting: Inverse 4,2-Biorthogonal Filter Transform

wsl42ifilter( u[], N, dq ):
[0] Compute lnormalize( u[], N, dq, 1/zeta42 )
[1] Compute wslpredict( u[], N, dq, -gamma42 )
[2] Compute wslupdate( u[], N, dq, -beta42 )
[3] Compute wslpredict( u[], N, dq, -alpha42 )

6The HS/HA biorthogonal Haar transform on any number of points can be made orthogonal
if the last output in the odd N/dq case is left unnormalized. See Exercise 20.

7Determining the lifting coefficients from the filter coefficients is beyond the scope of this text.
See Daubechies and Swelden’s article in the further readings for a complete derivation.
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Following ldht0(), we can now implement the 4,2-biorthogonal wavelet transform
recursively:

WS Lifting: 4,2-Biorthogonal Discrete Wavelet Transform

wsl42dwt( u[], N, dq, J ):
[0] If J>0, then do [1] to [2]
[1] Compute wsl42filter( u[], N, dq )
[2] Compute wsl42dwt( u[], N, 2*dq, J-1 )

Reconstruction from the output coefficients is accomplished by the inverse:

WS Lifting: 4,2-Biorthogonal Inverse Discrete Wavelet Transform

wsl42idwt( u[], N, dq, J ):
[0] If J>0, then do [1] to [2]
[1] Compute wsl42idwt( u[], N, 2*dq, J-1 )
[2] Compute wsl42ifilter( u[], N, dq )

The 9,7-biorthogonal filter transform used in JPEG 2000 is implemented by
whole-sample symmetric lifting as well:

WS Lifting: 9,7-Biorthogonal Filter Transform

wsl97filter( u[], N, dq ):
[0] Compute wslpredict( u[], N, dq, alpha97 )
[1] Compute wslupdate( u[], N, dq, beta97 )
[2] Compute wslpredict( u[], N, dq, gamma97 )
[3] Compute wslupdate( u[], N, dq, delta97 )
[4] Compute lnormalize( u[], N, dq, zeta97 )

The lifting coefficients, at better than IEEE 64-bit precision, are

α97 = −1.5861343420599235584283154513374 . . .
β97 = −0.0529801185729614146241295675035 . . .
γ97 = +0.882911075530933295919790099003 . . . (5.75)
δ97 = +0.4435068520439711521156042151689 . . .
ζ97 = +1.149604398860241159795075642191 . . .

The rest of the implementation is left as an exercise.

5.3 Exercises

1. Draw graphs like those in Figure 5.1 on page 135, depicting the configuration
of w(at) and w(t−b) in Case 6 and Equation 5.3 on page 134. Use the graphs

to compute the inner product integrals
√
a

∫
w̄(at)w(t − b) dt for those two

cases.



174 Chapter 5. Scale and Resolution

2. Show that the function

ρ(a, b) def=
(
a b
0 1

)
is a faithful representation of the group Aff.

3. Suppose that f = f(a, b) is a function on Aff. Along with left-invariant
integrals, it is possible to define an area element db, for b = (a, b) ∈ Aff , so
that for any fixed b′ ∈ Aff ,∫

Aff

f(b) db =
∫
Aff

f(bb′) db.

In other words, the integral should not be changed by renaming the group
elements through applying b′ on the right. An area element db with these
properties is called a right invariant measure. Find a normalized right invari-
ant measure on Aff.

4. Suppose that w = w(t) is the Haar mother function and u = u(t) is a square
integrable function that is constant on intervals of the form [k, k + 1), where
k is an integer. Prove that

u(k) =
∞∑

j=1

2−j/2Wu(2j, k).

5. Let d be a positive integer. Show that the function

φ(ξ) =
{
e−(log |ξ|)2 , if ξ �= 0;
0, if ξ = 0,

has d continuous derivatives.

6. Let n and d be positive integers. Show that the function φ = φ(ξ) defined in
Exercise 5 satisfies φ(n)(ξ) = O(1/|ξ|d) as ξ → ±∞.

7. Let u = u(x) be any fixed function in L2(R). Let w = w(t) be the function
defined by Fw(ξ) = φ(ξ) as in Exercise 5. Prove that the wavelet transform
Wu = Wu(a, b) using mother function w has derivatives with respect to a
and b which are continuous away from a = 0.

8. Compute ‖w‖, where w(x) = sincx = sin πx
πx . (Hint: use Plancherel’s theo-

rem.)

9. Show that the function w(x) = 2sinc 2x− sincx = sin 2πx−sin πx
πx is an admis-

sible function. Compute its normalization constant.

10. Suppose that w = w(x) is the Haar mother function. Compute the Fourier
integral transform of w.
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11. Prove that the set of functions {φk : k ∈ Z} defined by φk(t) = sinc (t − k)
is orthonormal. (Hint: use Plancherel’s theorem and the fact that Fsinc =
1[− 1

2 , 1
2 ].)

12. Show that if h = {h(k) : k ∈ Z} is the low-pass filter from an MRA, and M
is any fixed integer, then defining

g(k) = (−1)kh(2M − 1 − k), for all k ∈ Z, (5.76)

gives another high-pass filter for that MRA.

13. Show that the Daubechies 4 low-pass filter of Equation 5.49 is derived from
the general form in Equation 5.48 using the parameter value c = 2 −√

3.

14. Suppose that h, g is a CQF pair derived from an orthogonal MRA with scaling
function φ and mother function ψ. Suppose that u ⊂ L2(R) has compact
support, and let sj(k)

def= 〈φjk, u〉 and dj(k)
def= 〈ψjk, u〉 be the expansion

coefficients of u in Vj and WJ in their respective orthonormal bases. Prove
that

sj+1(n) =
∑

k

h(k)sj(2n+ k) =
∑

k

h(k − 2n)sj(k);

dj+1(n) =
∑

k

g(k)sj(2n+ k) =
∑

k

g(k − 2n)sj(k);

sj−1(n) =
∑

k

h(n− 2k)sj(k) +
∑

k

g(n− 2k)dj(k).

(These are Equations 5.58, 5.59, and 5.60, respectively.)

15. Suppose that x, y, a, b, c, d are integers with x ≥ y, b ≥ a, and d ≥ c.

a. Show that 2
⌈

x−b
2

⌉
+ a ≤ x− (b− a− 1), and 2

⌊
y−a

2

⌋
+ b ≥ y+(b− a− 1)].

(Hence a sequence u supported in [x, y] may have a projection F ∗Fu, as
defined by Equation 5.63, with coefficients in the larger interval [x− (b− a−
1), y + (b − a− 1)].)
b. Show that(

1 +
⌊
y − a

2

⌋
−
⌈
x− b

2

⌉)
+
(

1 +
⌊
y − c

2

⌋
−
⌈
x− d

2

⌉)
≥ 1 + y − x+

b− a− 1
2

+
d− c− 1

2
.

(This estimate of the quantity in Equation 5.67 shows that the nonperiodic
discrete wavelet transform with CQFs longer than 2 may have more output
coefficients than inputs.)

16. Show that if h = {h(k) : k ∈ Z} and g = {g(k) : k ∈ Z} satisfy the or-
thogonal CQF conditions, and P = 2P ′ is any fixed even integer, then the
P -periodizations hP , gP of h and g, respectively, also satisfy the orthogonal
CQF conditions. Namely, show:
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Normalization of hP :
∑P ′−1

k=0 hP (2k) =
∑P ′−1

k=0 hP (2k + 1) = 1/
√

2, and
thus

∑P−1
k=0 hP (k) =

√
2.

Self-orthonormality of hP :
∑P−1

k=0 hP (k + 2n)hP (k + 2m) = δP ′(n − m),
for all integers n,m.

Normalization of gP :
∑P ′−1

k=0 gP (2k) = −∑P ′−1
k=0 gP (2k + 1) = 1/

√
2, and

thus
∑P−1

k=0 gP (k) = 0.

Self-orthonormality of gP :
∑P−1

k=0 gP (k + 2n)gP (k+2m) = δP ′(n−m), for
all integers n,m.

Periodic independence of hP and gP :
∑P−1

k=0 gP (k + 2n)hP (k+ 2m) = 0
for all integers n,m.

Periodic completeness of hP and gP : for all integers n,m,

P ′−1∑
k=0

[
hP (2k + n)hP (2k +m) + gP (2k + n)gP (2k +m)

]
= δP (n−m).

17. Implement the inverse to Mallat’s periodic discrete wavelet transform, for
signals of period N = 2JK with positive integer J and K, using arbitrary
4-tap filters. Use it to generate a graph of the Daubechies 4 wavelet and
scaling function, using the filters

−g(3) = h(0) =
1 +

√
3

4
√

2
≈ 0.48296291314453416

g(2) = h(1) =
3 +

√
3

4
√

2
≈ 0.83651630373780794

−g(1) = h(2) =
3 −√

3
4
√

2
≈ 0.22414386804201339

g(0) = h(3) =
1 −√

3
4
√

2
≈ −0.12940952255126037

18. Suppose that {u(n) : n ∈ Z, 0 ≤ n ≤ 2q−1} is a given sequence of 2q numbers.

a. Determine the contents of u(2n) and u(2n+1), for n = 0, 1, . . . , q−1, after
the following sequence of substitutions:

1. u(2n+ 1) ← u(2n+ 1) − u(2n), all n = 0, . . . , q − 1;
2. u(2n) ← u(2n) + 1

2 u(2n+ 1), all n = 0, . . . , q − 1;
3. u(2n+ 1) ← u(2n+ 1)/

√
2, all n = 0, . . . , q − 1;

4. u(2n) ← √
2 u(2n), all n = 0, . . . , q − 1.

(These are the steps performed by haarlift().)

b. Determine the contents of u(2n) and u(2n + 1), for n = 0, 1, . . . , q − 1,
after the following sequence of substitutions:



5.4. Further Reading 177

1’. u(2n) ← u(2n)/
√

2, all n = 0, . . . , q − 1;
2’. u(2n+ 1) ← √

2 u(2n+ 1), all n = 0, . . . , q − 1;
3’. u(2n) ← u(2n) − 1

2 u(2n+ 1), all n = 0, . . . , q − 1;
4’. u(2n+ 1) ← u(2n+ 1) + u(2n), all n = 0, . . . , q − 1.

(These are the steps performed by ihaarlift().)

c. Show that the procedure in part a is inverted by the procedure in part b,
proving that ihaarlift() is the inverse of haarlift().

d. Show that ildht0() is the inverse of ildht0().

19. Implement the 9,7-biorthogonal discrete wavelet transform and inverse, for
signals of arbitrary length, using whole-sample symmetric lifting and the co-
efficients of Equation 5.75. Plot a graph of a 100-point signal reconstructed
from a single nonzero wavelet coefficient at index 32 at level 3. Do the same
for index 36 at level 4, and again for index 41 at level 5.

20. Implement the discrete Haar wavelet transform and its inverse, for signals
u(0), . . . , u(N − 1) of arbitrary length N , using half-sample symmetric ex-
tension at − 1

2 and N − 1
2 . Test your program by implementing the inverse

to check that it recovers the signal. Modify the normalization step to omit
normalizing u(N − 1) when N is odd, and test that the resulting transform is
orthogonal by computing the sum-of-squares of signal samples and transform
coefficients to check that they are equal.

21. Let w = w(x) be the Haar mother function and let 1 = 1(x) be the Haar
father function, namely the indicator function of [0, 1]. For (x, y) ∈ R2, define

e0(x, y) = 1(x)1(y), e1(x, y) = 1(x)w(y)
e2(x, y) = w(x)1(y), e3(x, y) = w(x)w(y).

Prove that the functions {en : n = 0, 1, 2, 3} are orthonormal in the inner
product space of square-integrable functions on R2.

5.4 Further Reading

• Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli. Stationary
Subdivision, volume 93(453) of the Memoirs of the AMS. American Mathe-
matical Society, Providence, Rhode Island, 1991. ISBN 0-8218-2507-0.

• Ingrid Daubechies. Ten Lectures on Wavelets, volume 61 of the CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM Press, Philadel-
phia, 1992. ISBN 0-89871-274-2.

• Ingrid Daubechies and Wim Sweldens. Factoring wavelet transforms into
lifting steps. J. Fourier Anal. Appl., 4(3):245–267, 1998.
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from URL http://www.jpeg.org/JPEG2000.html.

• Stéphane G. Mallat. A Wavelet Tour of Signal Processing. Academic Press,
New York, second edition, 1999. ISBN 0-12-466606-X.



Chapter 6

Redundancy and Information

Information is stored in computers as strings of bits. For example, each letter,
number and punctuation mark of English text in my computer is encoded with a
unique string of seven bits defined by the American Standard Code for Information
Interchange, or ASCII, a 128-character alphabet listed in Table B.1 on page 274 in
Appendix B.

Today’s most common computers use eight bits per character in a 256-element
alphabet, because this simplifies and standardizes hardware designs. With ASCII
data, the eighth bit can be used for some other purpose, such as parity-error detec-
tion, described in Section 6.2 further on. The eighth bit depends on the previous
seven and is therefore redundant, adding to the cost of information storage and
transmission.

There are subtler forms of redundancy as well. For example, the letter ‘e’ is
exceedingly common in English text. The string for ‘e’ can be abbreviated by one
bit if the string for a rare letter such as ‘q’ is lengthened by one bit. The result is
a slightly shorter encoding of English text. How far can this idea be pushed?

Likewise, not every sequence of letters constitutes an English word. Given the
side information that the communication is English text, the receiver can often
deduce the entire word or phrase from just a portion of its letters. This is evident
in expressions like ‘2 bdrm aptmnt avlbl’. With sufficient effort, all the possible
interpretations can be searched and the likeliest one chosen. What is the cost to
benefit relationship for such methods?

The theoretical lower bound on the amount of information needed to represent
a string of bits is the algorithmic complexity, or Kolmogorov complexity, which is
defined to be the number of bits needed to specify the shortest algorithm that
produces the bit string and then terminates. Such a vague definition requires a
notion of “universal computer,” programmable by bit strings to produce any output
bit sequence. Both receiver and transmitter must possess such a computer—it
provides the context in which the algorithm is interpreted—but that is not an
obstacle in practice. However, algorithmic complexity is an impractical information
measure for two reasons. First, it assigns no weight to the effort required for
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encoding or decoding. It is possible that the shortest algorithm will produce the
output after a million times as many steps as an algorithm only one bit longer.
A less dramatic example is the compressed message ‘2bdrmaptmntavlbl’ which is
only three space-characters shorter than the original but is much harder to decode.
Second, the effort needed to find the shortest algorithm grows exponentially with
the length of the message to be encoded. That is because in the most general
case it is necessary to examine all of the algorithms with bit lengths up to that
of the message, and there are 2N of these for a message originally encoded with
N bits. There can be no guarantee that every message will require a significantly
shorter algorithm, for if so then a small number of algorithms could be used to
denumerate a much larger number of messages. Because of these flaws, the notion
of algorithmic complexity is mainly useful for obtaining ultimate lower bounds for
data compression methods.

6.1 Information Source Coding

There is a more practical notion of complexity which, for certain kinds of messages,
gives a lower bound on the average number of bits per transmitted character. We
begin with rigorous definitions of some of the intuitive notions just mentioned:

Definition 4 An information source is a random variable S taking values in the
alphabet A.

The alphabet is a finite set A = {a1, . . . , aN}. We imagine evaluating S over and
over, to get information in the form of a sequence of values. The probability space
for S is the setA, and the N elements a1, . . . , aN ofA are called letters or characters.

The probability function is completely determined by its values pk
def= Pr(S =

ak) on individual letters. These are also called the occurrence probabilities. We
have 0 ≤ pk ≤ 1 for all k = 1, . . . , N , and p1 + · · · + pN = 1.

A message of length M from the source S is the random variable S1 · · ·SM built
from M independent copies of S. Its probability space is

AM def=

M︷ ︸︸ ︷
A× · · · ×A,

the ordered M -tuples of letters in A. A message instance is a particular sequence
s1 · · · sM ∈ AM . It is written concatenated, without commas or parentheses. Inde-
pendence implies that regardless of m = 1, . . . ,M ,

Pr(Sm = ak) = pk, for each k = 1, . . . , N ,

and thus for any message instance of M letters s1 . . . sM ∈ AM ,

Pr(S1 · · ·SM = s1 · · · sM ) = Pr(S1 = s1) × · · · × Pr(SM = sM ).

The assumption that adjacent letters in a real text are values of independent
random variables is clearly false in particular cases. In English text, for example,
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the likelihood that Sm+1 = u is strongly influenced by whether Sm = q. The
independence assumption simply states that we will not take such influences into
account when calculating the probability of a message instance. Our deliberate
ignorance will produce cruder results, but they will apply to all languages.

6.1.1 Lossless encoding

Each character a in a message instance may be transmitted as a codeword c(a),
a finite string of 1 and 0 bits1. The code a �→ c(a) is a function on the alphabet
A = {a1, . . . , aN}. We require that it be one-to-one, so that it can be inverted and
the character recovered from its codeword. Since there are just 2n possible n-bit
codewords, it follows that if all the codewords have n or fewer bits, then N ≤ 2n.

If the codewords all have n bits and c is one-to-one, then every message instance
s1 · · · sM for every M can be recovered exactly from its concatenated codeword bit
strings c(s1) · · · c(sM ), with no lost or extra letters. For example, ASCII encodes
a 128-letter alphabet using n = 7 bits per codeword, the minimum number. But
we will allow codewords of varying bit lengths, as long as the encoding function
remains invertible:

Definition 5 A code c for an alphabet A is called uniquely decipherable if the
message encoding function that concatenates codewords,

c(s1s2 · · · sM ) def= c(s1)c(s2) · · · c(sM ),

is one-to-one on
⋃∞

M=1A
M , the set of messages of any length.

One way to show that the message encoding function is one-to-one is to find an
algorithm that recovers s1 · · · sM from its encoding c(s1) · · · c(sM ). For example,
c(a) = 0, c(b) = 0001 is a variable bit length code for A = {a, b}. The message
instance baab yields the binary string 0001 0 0 0001. This code is uniquely decipher-
able, since the following algorithm recovers any message instance from its encoding:

Unique Deciphering Example

decipherex( bit[], L ):
[0] Let n=0
[1] For k=1 to L, do [2] to [5]
[2] If bit[k]==0, then increment n += 1
[3] Else do [4] to [5]
[4] Print n-3 ‘a’s followed by a single ‘b’
[5] Let n = 0
[6] Print n ‘a’s and terminate.

By contrast, c(a, b, c) = (0, 0, 1) is not a uniquely decipherable code for the
alphabet A = {a, b, c}, since the codeword 0 corresponds to both a and b. The

1Only binary codes will be considered here. A more general treatment of codes in any base B
can be found in Ash’s Information Theory, pages 27-45.
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problem is that its codewords are not long enough for it to be one-to-one. They must
be long enough to distinguish different messages, giving the following necessary
condition:

Lemma 6.1 If alphabet A has a uniquely decipherable code with codeword lengths
{nx : x ∈ A}, then ∑

x∈A

2−nx ≤ 1.

Proof: Since A is finite, there must be a longest codeword. Let r > 0 be its length
in bits. Let wj be the number of codewords of length j, for j = 1, 2, . . . , r. Then

∑
x∈A

2−nx =
r∑

j=1

wj2−j def= W.

Now consider Wm for any fixed m ≥ 1. This consists of terms wj1 · · ·wjm2−j ,
where j = j1 + · · · + jm for each j satisfying m ≤ j ≤ mr, so

Wm =
mr∑

j=m

⎛⎝ ∑
j1+···+jm=j

wj1 · · ·wjm

⎞⎠ 2−j def=
mr∑

j=m

Nj2−j.

Now Nj counts all the m-letter messages whose encodings total j bits. Since each
encoding is uniquely decipherable, Nj cannot exceed the number of j-bit binary
strings, which is 2j. Thus,

Wm =
mr∑

j=m

Nj2−j ≤
mr∑

j=m

2j2−j =
mr∑

j=m

1 ≤ mr,

so W ≤ m1/mr1/m. Since this is true for any m, and lim
m→∞m1/mr1/m = 1, it follows

that W ≤ 1. �

Note that if A has N = 2n letters, and each has a codeword of n bits as in ASCII
where n = 7, then

∑
x∈A 2−nx = N2−n = 1 gives equality in Lemma 6.1. But

equality is also attained by some variable-length uniquely decipherable codes. For
example, c(a, b, c, d) = (0, 10, 110, 111) has codeword bit lengths (na, nb, nc, nd) =
(1, 2, 3, 3), so

∑
x∈A 2−nx = 1

2 + 1
4 + 1

8 + 1
8 = 1.

A code will also fail to be uniquely decipherable if two codewords can con-
catenate to give a third. For example, c(a, b, c) = (0, 01, 001) is not a uniquely
decipherable code for the alphabet A = {a, b, c}, since both ab and c are encoded
as the string 001. We can avoid that problem by using a fixed bit length for all
codewords, or else by imposing a structure on the code:

Definition 6 A prefix code is a uniquely decipherable code with the additional
property that no codeword is the first part of a longer codeword.
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For example, c(a, b, c) = (0, 11, 101) is a prefix code, while c(a, b) = (0, 0001),
c(a, b, c) = (0, 01, 001) and c(a, b, c) = (0, 0, 1) are not.

Note that a prefix code is instantaneous, since each letter of the message can be
determined as soon as its codeword is read. From our examples, we see that not
all uniquely decipherable codes are prefix codes or instantaneous codes.

To describe the construction, encoding, and decoding of a prefix code, we first
need some basic facts about abstract graphs and trees:

Definition 7 A graph is a set V , called the vertices, together with a set E of
(unordered) pairs of vertices called edges.

• A graph is called finite if there are finitely many vertices, which implies there
are finitely many edges2. A graph with n vertices can have at most n(n−1)/2
edges.

• Two vertices u, v ∈ V are considered joined by an edge, or neighbors, if
{u, v} ∈ E.

• Two vertices u, v ∈ V are considered joined by a path if there is a finite set
of distinct vertices {u = x0;x1 . . . , xn−1;xn = v} such that {xk−1, xk} ∈ E
for every k = 1, 2, . . . , n. Such a path is said to pass through the intermediate
vertices x1, x2, . . . , xn−1. The length of this path is n, the total number of
edges it contains.

• A graph is called connected if each pair of vertices is joined by a path.

• The distance between two distinct vertices is the length of the shortest path
joining them. If they are not joined, then their distance is said to be +∞.
If two vertices are joined by an edge, their distance is 1. A vertex is also
considered at zero distance from itself. In all three of these extreme cases, the
set of intermediate vertices is empty.

Graphs are often visualized as sets of points, the vertices, connected by line
segments, the edges. Figure 6.1 shows two examples. It is left as an exercise to
label the vertices and list the edges.

Definition 8 A tree is a graph in which each pair of vertices is joined by a unique
path.

• A tree contains no loops, or distinct paths between distinct vertices.

• A leaf is any vertex in a tree which is joined by an edge to a single other
vertex.

• We can also fix one vertex in a tree and call it the root. Any vertex will do,
but there can be no more than one. If a tree has a root, then

2Our definition allows at most one edge for each pair of distinct vertices. What happens if we
allow a vertex to be joined to itself by an edge, or allow more than one edge between two vertices?
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Figure 6.1: Example graphs: a generic graph with loops, and a tree.

– The generation of a vertex in the tree is the distance between it and the
root. The root is generation 0.

– Every non-root vertex is joined by an edge to a unique parent vertex one
generation closer to the root. The root vertex has no parent.

– The children of any vertex are the vertices one generation farther from
the root that are joined to it by an edge. A vertex with no children is a
leaf.

– Ancestors of a vertex include the parent, the grandparent and so on;
descendents include children, grandchildren, and so on.

– The depth of a tree with root is the maximum generation number of any
vertex.

The graph on the right-hand side of Figure 6.1 is a tree. It is left as an exercise to
pick a root and find the resulting depth and the generation numbers of each of its
vertices.

Trees with a root are used in the construction of uniquely decipherable codes,
in fact prefix codes, because of their unique path property. The generation of a
vertex will be the bit length of a codeword. For proper labeling, we must add one
extra piece of structure to a tree:

Definition 9 A binary tree is a tree with root such that each vertex has at most
two children, which are distinguishable and called the son and daughter.

This extra structure affects the enumeration of binary trees. For example, the
graphs in Figure 6.2 are considered different as binary trees, even though they are
identical as graphs and trees. The number Bn of binary trees with n vertices is3

Bn =
1

n+ 1

(
2n
n

)
=

(2n)!
n!(n+ 1)!

. (6.1)

Still, for every n there are only finitely many binary trees with n vertices. There
are likewise at most finitely many binary trees with D or fewer generations, since
such a tree can have at most n = 1 + 2 + · · · + 2D = 2D+1 − 1 vertices. However,
for every N > 0 there are infinitely many binary trees with N leaves.

3See Knuth, pages 388–389, from the further readings in Chapter 1.
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Figure 6.2: Two equivalent graphs which are considered distinct binary trees.
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d=000
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Figure 6.3: Binary tree for the prefix code (a = 1, b = 01, c = 001, d = 000).

A special kind of binary tree is the extended binary tree, which has the property
that every non-leaf, or interior vertex, has both a son and a daughter vertex. Any
binary tree with n vertices can be grown into an extended binary tree by adding
a son or daughter leaf wherever one or both are missing. The extended tree will
have n + 1 added leaves and 2n + 1 total vertices, with all of its original vertices
becoming interior vertices. Thus an extended binary tree with N leaves has N − 1
interior vertices and 2N − 1 total vertices.

A quaternary tree or quadtree is a tree with root such that each vertex has at
most four distinguishable children. In general, a d-ary tree has a root and at most
d distinguishable children per vertex. The number of d-ary trees with n vertices is

Dn =
1

[d−1]n+ 1

(
dn

n

)
=

(dn)!
n!([d−1]n+ 1)!

. (6.2)

Extended d-ary trees can likewise be defined.
Any binary prefix code is equivalent to a binary tree. Each letter corresponds

to a leaf in the tree, with its codeword sequence of 0’s and 1’s determined by the
sequence of sons and daughters needed to get from the root to the leaf. For example,
the code c(a, b, c, d) = (1, 01, 001, 000) corresponds to the tree in Figure 6.3. The
generation number of a leaf in such a tree equals the number of bits in its codeword.
For example, letters c and d in Figure 6.3 come from generation 3 and have 3-bit
codewords. The deciphering algorithm starts at the root and turns left or right
depending upon the latest bit read, until it gets to a leaf. It then prints the letter
determined by that leaf, returns to the root, and continues reading bits.

Whenever a uniquely decipherable code exists, there is a prefix code with the
same codeword bit lengths. The proof is constructive, building the prefix code’s
binary tree:
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Figure 6.4: Prefix code built from a complete binary tree of depth r = 4. Shaded
vertices indicate codeword leaves {000, 0010, 0011, 01, 1}; light vertices and edges
have been pruned.

Lemma 6.2 An alphabet A has a prefix code with codeword lengths {nx : x ∈ A}
if and only if ∑

x∈A

2−nx ≤ 1.

Proof: Since a prefix code is uniquely decipherable, Lemma 6.1 implies that A
has a prefix code only if

∑
x∈A 2−nx ≤ 1. Conversely, suppose the inequality holds.

Let r = max{nx : x ∈ A} be the the longest bit length and consider the complete
binary tree with depth r, namely, one that has 2r leaves at generation r from the
root. We proceed as follows:

Construct a Prefix Code With Specified Codeword Lengths

PC-1. If there are no letters in alphabet A, then terminate. Otherwise,
take x ∈ A and let nx be its codeword bit length.

PC-2. Find an unlabeled vertex at generation nx which does not lie on
the path from the root to any previously labeled codeword leaf.
Label that vertex with the letter x.

PC-3. Prune the tree at the vertex labeled x by removing all of its de-
scendents, making it a codeword leaf.

PC-4. Replace A← A \ {x} and go to step PC-1.

It remains to show that the algorithm does not run out of vertices in step PC-2
before it exhausts the finite alphabet A. But making a leaf labeled x at generation
nx removes exactly 2r−nx leaves from generation r. Since

∑
x∈A 2−nx ≤ 1 implies

that
∑

x∈A 2r−nx ≤ 2r, the tree provides at least enough unlabeled vertices for the
whole alphabet. �

Figure 6.4 depicts the construction of a prefix code with lengths 3, 4, 4, 2, 1 for a
five-letter alphabet. Note that there may be more than one prefix code for a given
set of bit lengths.

6.1.2 Efficient coding

All of the codes we consider are static, in the sense that each letter of the alphabet
is assigned the same codeword regardless of its position in the message. That is
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not a necessary assumption for uniquely decipherable codes, as one of the exercises
will show, but it simplifies the analysis. In particular, it allows us to compute the
following:

Definition 10 The bit rate of a code c for an information source S is the expected
number of bits per character in any message from S.

Let n(x1 · · ·xM ) be the number of bits in the encoding c(x1 · · ·xM ) of the message
instance x1 · · ·xM ∈ AM of length M , where each xm is a letter in the alphabet A
used by the source S. Since the code is static, n(x1 · · ·xM ) = n(x1) + · · ·+ n(xM ).
Since the letters in a message from this source are independent, Pr(x1 · · ·xM ) =
Pr(x1) · · ·Pr(xM ). The expected number of bits RM = RM (S, c) in a message of
length M is therefore

RM =
∑
AM

n(x1 · · ·xM ) Pr(x1 · · ·xM )

=
∑

x1∈A

∑
AM−1

[n(x1) + n(x2 · · ·xM )] Pr(x1) Pr(x2 · · ·xM )

=

(∑
x1∈A

n(x1) Pr(x1)

)( ∑
AM−1

Pr(x2 · · ·xM )

)

+

(∑
x1∈A

Pr(x1)

)( ∑
AM−1

n(x2 · · ·xM ) Pr(x2 · · ·xM )

)
.

The sums without n are both 1, since Pr is a probability function, so we get a
recursive formula RM = R1 +RM−1, where

R1 =
∑
x∈A

n(x) Pr(x) =
∑
x∈A

nxpx. (6.3)

Here nx is the bit length of the codeword c(x), and px is the occurrence probability
of letter x. But the recurrence is easy to solve by induction: RM = M R1, so the
expected number of bits per character in a c-coded message of any length is just
R1.

With our independence assumptions, the one and only way to reduce the bit
rate is to match the bit lengths {nx} to the occurrence probabilities {px}. We will
save bits on frequently occurring letters and spend them on rare characters, thereby
reducing the average cost.

Lemma 6.5, proved below, shows that the following quantity is a sharp lower
bound for this minimal average bit length per character:

H(p) def=
∑
x∈A

px log2

1
px
, (6.4)

where px is the occurrence probability of letter x. We evaluate 0 log(1/0) def= 0 if
px = 0. H(p) is called the entropy of the message. It applies to all replacement
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alphabets, so no matter how the original message is translated into codewords, the
new version will still have the same occurrence probabilities p = {px : x ∈ A}
and thus the same entropy H(p). Hence, entropy measures the minimum number
of bits per character needed to distinguish among all messages with occurrence
probabilities p, that is, the information contained in one such message.

Quantity 6.4 is also called the first order entropy, from the assumption that
individual characters in the message are independent. Second order entropy counts
the occurrence probability of pairs of characters, third order entropy that of triples,
and so on. Higher-order entropies measure the information cost of messages wherein
letters are partially predictable from their predecessors, namely for which the in-
dependence assumption fails.

Optimal coding efficiency

The expected number of bits per character needed by a uniquely decipherable (bi-
nary) code for a message in alphabet A is the sum∑

x∈A

pxnx, (6.5)

where px is the occurrence probability of letter x in the message, and nx is the
number of bits in the codeword for x. This is also called the bit rate of the code.
The efficient coding problem for an alphabet A with probabilities p = {px : x ∈ A}
is the problem of finding a set of nonnegative integers {nx : x ∈ A} minimizing bit
rate under the constraint ∑

x∈A

2−nx ≤ 1. (6.6)

Lemma 6.3 For any finite set of nonnegative probabilities {px : x ∈ A}, a solution
exists to the efficient coding problem.

Proof: Suppose that A′ ⊂ A indexes the strictly positive probabilities, with
min{px : x ∈ A′} def= p′ > 0 being the smallest. Any set {nx : x ∈ A} must
satisfy ∑

x∈A

nxpx =
∑
x∈A′

nxpx
def=
∑ ′

nxpx,

so it suffices to show that the latter sum over A′ has a minimum that satisfies the
constraint in Equation 6.6.

Put d =
∑′ 2−nx . Since A′ is finite, there is a bounded set of positive integers

{n′
x : x ∈ A′} for which d < 1. For example, it works to take n′

x = n′ for all x ∈ A′,
where n′ is the least integer greater than the base-2 logarithm of the number of
elements ofA. Define d′ =

∑′
n′

xpx to be the bit rate of this starting set of codeword
lengths.

If nx > d′/p′ for all x ∈ A′, then
∑′ nxpx > d′ will exceed the starting set bit

rate. Thus the minimum of
∑′

nxpx lies in the finite collection of sets {nx : x ∈ A′}
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for which 0 ≤ nx ≤ d′/p′ at every x ∈ A′. It can be found by searching the list and
checking the constraint.

If there are no zero probabilities, the solution is the minimizing set that satisfies∑
2−nx ≤ 1. If some of the probabilities are zero, the solution is the minimizer

that satisfies
∑′ 2−nx < 1, taking large enough integers nx for all the irrelevant

x /∈ A′ to get
∑

2−nx ≤ 1. �

Once it is known that a solution exists, efficient algorithms may be used to
find it. Lemma 6.2 implies that if A has a uniquely decipherable code with given
codeword lengths, it also has a prefix code with the same set of codeword lengths.
Hence, a prefix code for A can always be found which is just as efficient as any
uniquely decipherable code for A. The optimization problem for prefix codes is
easier to solve because of their correspondence with binary trees.

Before constructing a solution to the efficient coding problem, we show that the
entropy H(p), defined in Equation 6.4, gives a sharp lower bound for the bit rate
of Equation 6.5. We start with an inequality provable by elementary calculus:

Lemma 6.4 Suppose p = {px : x ∈ A} and q = {qx : x ∈ A} satisfy

0 < px, qx ≤ 1 and
∑
x∈A

px =
∑
x∈A

qx = 1.

Namely, p and q are two occurrence probabilities for an alphabet A. Then∑
x∈A

px log
(

1
px

)
≤
∑
x∈A

px log
(

1
qx

)
,

with equality if and only if px = qx for all x ∈ A.

Proof: The graph of log t lies below its tangent line at t = 1, so log t ≤ t− 1, with
equality if and only if t = 1. But then log(qx/px) ≤ (qx/px) − 1 with equality if
and only if px = qx. Multiplying by px and summing over x ∈ A yields∑

x∈A

px log
qx
px

≤
∑
x∈A

(qx − px) = 0, ⇒
∑
x∈A

px log
1
px

≤
∑
x∈A

px log
1
qx
,

with equality if and only if px = qx for all x ∈ A. �

Since log2 x = (log x)/(log 2) for every x > 0, Lemma 6.4 holds for log2 as well:
we just divide the inequality by the positive constant log 2. That imposes a lower
bound for the average number of bits per character of any prefix code:

Lemma 6.5 For any prefix code with codeword lengths {nx : x ∈ A},∑
x∈A

pxnx ≥ H(p).

Equality holds if and only if px = 2−nx for each x ∈ A.
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Proof: Put W =
∑

x∈A 2−nx , and define qx = 2−nx/W for each x ∈ A. Then∑
x∈A qx = 1. By Lemma 6.4,

H(p) =
∑
x∈A

px log2

1
px

≤
∑
x∈A

px log2

1
qx
,

with equality if and only if qx = px for all x ∈ A. Continuing the calculation,∑
x∈A

px log2

1
qx

=
∑
x∈A

pxnx + log2W
∑
x∈A

px ≤
∑
x∈A

pxnx,

since W ≤ 1 by Lemma 6.2, so log2W ≤ 0. Equality holds here if and only if
W = 1, so it holds throughout if and only if px = qx = 2−nx for all x ∈ A. �

Existence of almost optimal codes

A second important preliminary observation is that a prefix code can get arbitrarily
close to the lower bound in Lemma 6.5. What makes this tricky is that a binary
prefix code must use at least one bit per letter, while H(p) can be less than one.
This obstacle results in the following weak upper bound:

Lemma 6.6 There exists a prefix code with codeword lengths {nx : x ∈ A} such
that ∑

x∈A

pxnx ≤ H(p) + 1.

Proof: Let A′ ⊂ A be the letters x with px > 0, and let A′′ ⊂ A be those with
px = 0. Then A = A′ ∪A′′. For each x ∈ A′, let nx be the unique integer satisfying
log2(1/px) < nx ≤ 1 + log2(1/px). Then,∑

x∈A′
2−nx <

∑
x∈A′

2− log2(1/px) =
∑
x∈A′

px =
∑
x∈A

px = 1.

For each x ∈ A′′, we may take nx large enough so that∑
x∈A′′

2−nx ≤ 1 −
∑
x∈A′

2−nx ⇒
∑
x∈A

2−nx ≤ 1.

By Lemma 6.2, there is a prefix code with codeword lengths {nx : x ∈ A}. But

∑
x∈A

pxnx =
∑
x∈A′

pxnx ≤
∑
x∈A′

px

(
1 + log2

1
px

)
= 1 +H(p),

so this prefix code has a bit rate below the claimed estimate. �



6.1. Information Source Coding 191

0.2

0.20.2

0.2

0.1

0.1

0.3

0.3

0.3

0.1

0.1

0.9

0.5

0.4

Figure 6.5: Propagating leaf weights back to the root of a binary tree.

Unfortunately, the upper bound of Lemma 6.6 is sharp. The trivial example
A = {a}, with pa = 1, has H(p) = 0, but we must have na ≥ 1 so that pana ≥ 1 =
H(p) + 1. At least one bit must be transmitted per letter to tell the receiver that
something is there.

One extra bit per character is a heavy price, but it can be reduced. The trick
is to code multiple letters so that the excess per character is made arbitrarily
small. Consider an indefinitely long message in which successive characters are
independent and identically distributed random variables taking values in the al-
phabet A with occurrence probabilities p = {p(x) : x ∈ A}. Then the probability
of a particular sequence x1x2 · · ·xs of s characters appearing in the message is
p(x1x2 · · ·xs) = p(x1)p(x2) · · · p(xs). It is a straightforward exercise to prove that
if ps = {p(x1x2 · · ·xs) : (x1, x2, . . . , xs) ∈ As}, then H(ps) = sH(p), and that if a
code uses N bits on average per block of s letters, then it uses N/s bits per letter
on average. Lemma 6.6 implies that there is a prefix code for blocks of s characters
satisfying N ≤ H(ps) + 1 = sH(p) + 1, so N/s ≤ H(p) + 1/s. Such an argument
proves the following result:

Lemma 6.7 Let ε > 0 be given, and let s > 1/ε be an integer. Then there is
a prefix code for blocks of s characters which uses fewer than H(p) + ε bits per
character. �

6.1.3 Huffman’s algorithm

Bit rate may be abstracted into weighted depth
∑

x∈A pxnx, defined for any tree
with a root and with leaves x ∈ A each having a generation number nx and a
nonnegative weight px. Weighted depth gives the bit rate of a code if the weights
{px : x ∈ A} are normalized like occurrence probabilities, with

∑
x∈A px = 1.

We will construct a minimal bit rate code by building a binary tree of minimal
weighted depth, using D. A. Huffman’s weight propagation algorithm. Leaf weights
are propagated back to the root as each interior vertex gets the sum of its children’s
weights, starting with the deepest non-leaf vertices. Figure 6.5 shows one example.
We prove by induction on the depth of the tree that weight propagation gives each
vertex the sum of the weights of its descendent leaves.

Weight propagation is equivalent to filling each non-leaf vertex along the unique
path from the root to a leaf with the leaf’s weight, then superposing or adding
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Figure 6.6: Binary trees weighted along root-to-leaf paths.

together all the weights. The resulting weight at each vertex is evidently the sum
of its leaf descendent’s weights. For example, Figure 6.6 shows five partially filled
copies of the same tree which may be superposed to give the propagated tree of
Figure 6.5.

In the superposed tree, a weight px from a leaf x at generation nx appears 1+nx

times, so adding up the weights at all the vertices gives∑
x∈A

px(1 + nx) =
∑
x∈A

px +
∑
x∈A

pxnx.

But
∑

x∈A px is the weight at the root after propagation, so we have:

Lemma 6.8 The weighted depth of a binary tree equals the sum of the weights at
all vertices except the root, after propagation. �

Requiring minimal weighted depth constrains the shape of a binary tree:

Lemma 6.9 Suppose that the leaf weights p1, . . . , pN are nonnegative. Then a
binary tree of minimal weighted depth with these weights at its N leaves must have
both a son and a daughter at every non-leaf vertex.

Proof: Any non-leaf vertex with just one child may be removed and replaced by the
child, shortening some paths and creating a new binary tree with smaller weighted
depth. �

Lemma 6.9 implies that the minimal weighted depth tree must be an extended
binary tree with N leaves. These are themselves binary trees with 2N + 1 vertices,
and there are fewer than (4N+2)!

(2N+1)!(2N+2)! of them by Equation 6.1. Hence to find the
most efficient prefix code is at worst a search for minimal weighted depth through
this many trees. However, Huffman found a more efficient method based on the
following observation:

Lemma 6.10 Given leaf weights 0 ≤ p1 ≤ p2 ≤ · · · ≤ pN , there is a minimal
weighted depth binary tree in which the lightest leaves, those weighted p1 and p2,
share a parent.
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p1

p2

. . .

Figure 6.7: A minimal weighted depth tree whose lightest leaves are siblings.

Proof: Lemma 6.3 insures that at least one minimal weighted depth tree exists with
the given leaf weights. We show that it or another minimal tree must contain the
subtree depicted in Figure 6.7. Consider a non-leaf vertex with deepest generation
number in a binary tree of minimal weighted depth. Its two children must be leaf
vertices of maximal depth, so exchanging their weights with p1 and p2, which are
lightest, does not increase the weighted depth, and gives a minimal weighted depth
tree with the required subtree. �

A Huffman code is a prefix code for N > 1 letters with occurrence probabilities
p1, p2, . . . , pN . Huffman’s algorithm builds a binary Huffman tree from its N leaf
vertices, each of which is assigned a weight pk. To construct the tree, the parent of
each vertex is specified recursively, beginning with the leaves:

Huffman’s Algorithm, Recursive Version

HR-1. Sort and relabel the weights so that 0 ≤ p1 ≤ p2 ≤ · · · ≤ pN .

HR-2. If N = 2, return a 3-vertex tree with root x0 weighted p1 + p2, a
son leaf x1 weighted p1, and a daughter leaf x2 weighted p2.

HR-3. Otherwise, construct a Huffman tree with the N − 1 leaf weights
(p1 + p2), p3, . . . , pN . Then make the leaf weighted (p1 + p2) into
a parent interior vertex by appending a son leaf weighted p1 and a
daughter leaf weighted p2. Return the appended tree.

Recursion step HR-3 is encountered at most N − 2 times.
Equivalently, the Huffman tree may be constructed with a loop. Until its parent

is determined, call a vertex an orphan. We start by creating N orphan vertices with
weights p1, . . . , pN . Then we proceed through the following:

Huffman’s Algorithm, Loop Version

HL-1. Find the orphan vertex x with the smallest weight px. Use some
convention to break ties.

HL-2. Find the orphan vertex y with the next smallest weight py, again
breaking ties by some convention. It is possible that px = py, but
of course x �= y.

HL-3. Create a new orphan vertex z, give it weight pz = px + py, and
make z the common parent of vertices x and y which are no longer
orphans.

HL-4. If there is only one orphan vertex left, then call it the root and
terminate. Otherwise, return to step HL-1.
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x ∈ A p(x) C(x)
a 1/2 = 0.5 = 0.100 (base 2) 1
b 1/4 = 0.25 = 0.010 (base 2) 01
c 1/8 = 0.125 = 0.001 (base 2) 001
d 1/8 = 0.125 = 0.001 (base 2) 000

Table 6.1: Example Huffman code C for a four-letter alphabet.
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Figure 6.8: Three steps in building a Huffman tree.

For example, let A = {a, b, c, d} be a four-letter alphabet. Table 6.1 shows
one Huffman code chosen for a particular message written in this alphabet with
occurrence probabilities p(a, b, c, d) = (0.5, 0.25, 0.125, 0.125). Figure 6.8 shows the
three passes through the loop that built the Huffman tree.

Notice that the code of Table 6.1 achieves the the entropy of the occurrence
probabilities p, the minimum expected number of bits per letter for the message:

H(p) =
∑
x∈A

p(x) log2

1
p(x)

=
1
2
· 1 +

1
4
· 2 +

1
8
· 3 +

1
8
· 3 = 1.75

That is because the codeword bit lengths match the occurrence probabilities. It is
not always possible to achieve the minimum, though, since codewords must have a
positive integer number of bits whereas the probabilities need not be integer powers
of 2.

Note too that Huffman codes are not uniquely determined. For the example
code, exchanging the codewords for c and d gives another code. Indeed, exchanging
1 and 0 in each codeword of any binary code gives another code with the same bit
rate.

Analysis of Huffman’s algorithm

With each pass through the loop, or each recursion, the number of orphans and
weights decreases by one, so either algorithm must terminate after N−1 steps. The
sole remaining orphan will be the root and will have weight 1, since it accumulates
the sum of all the probabilities p1 + . . .+ pN = 1.

Each reduction requires finding the two smallest weights among the remaining
orphans. If there are k orphans, that costs O(2k) comparison operations, for k =
N,N−1, . . . , 2. Adding up shows that Huffman’s algorithm with N weights requires
no more than O(N2) operations. It remains to show:
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Theorem 6.11 A Huffman tree has minimal weighted depth.

Proof: Suppose that A has N ≥ 2 letters with occurrence probabilities p1 ≤ p2 ≤
· · · ≤ pN . The proof is by induction on N , using the recursive version of Huffman’s
algorithm.

If N = 2, step HR-2 returns the 3-vertex Huffman tree with a root and two
leaves. It evidently has the minimal weighted depth 1 = 1 · p1 + 1 · p2.

Now fix N > 2 and suppose that Huffman’s algorithm returns a minimal
weighted depth tree for any list of N − 1 weights. Step HR-3 of Huffman’s al-
gorithm constructs such an (N − 1)-leaf tree with leaf weights (p1 + p2), p3, . . . ,
pN , Denote its minimal weighted depth by e. Step HR-3 then appends two leaves,
weighted p1 and p2, respectively, as son and daughter to the leaf weighted (p1 +p2),
and returns the resulting N -leaf tree. By Lemma 6.8, the weighted depth E of the
Huffman tree returned from HR-3 is E = e+ p1 + p2.

Now suppose that E′ is the minimum weighted depth for the weights p1, . . . , pN .
By Lemma 6.10, there is a tree with this weighted depth in which the lightest leaves,
weighted p1 and p2 because of HR-1, are siblings. Pruning these from their joint
parent yields a tree for the N − 1 weights (p1 + p2), p3, . . . , pN with weighted
depth e′ = E′ − p1 − p2, again computed by Lemma 6.8. Since E′ ≤ E and e ≤ e′,
it follows that E = E′. Hence the returned Huffman tree for the N weights has
minimal weighted depth. �

Describing a Huffman tree

To transliterate a message instance from alphabet A into its Huffman code, simply
replace each letter with its binary codeword. This can be done with a table such as
Table 6.1. No commas or other spacers are needed between codewords. However,
to recover the message instance from the binary string of concatenated codewords,
it is necessary to have the Huffman tree. The encoder that built the tree must
transmit it to the receiver for use in decoding, and it should do so economically lest
the advantage of Huffman coding be squandered in the cost of describing the tree.

One way to transmit the tree is to send the occurrence probabilities tagged with
the letters they refer to, then have the receiver build the tree using exactly the same
algorithm as the transmitter. For an N -letter alphabet, this side information costs
(B+"log2N#)×N bits, if we record the probabilities in aB-bit format. Probabilities
are typically floating-point numbers, so B might be the rather costly 32 or 64. Also,
to get exactly the same Huffman tree in all cases we must use exactly the same
arithmetic to compare and add the weights. But arithmetic is not guaranteed to
be the same on different computers. It is therefore better to describe a Huffman
tree without mentioning the weights that built it.

We are aided by Lemma 6.9. A Huffman tree must be an extended binary tree,
so with N leaves it will have 2N − 1 total vertices and depth at most N − 1.4

4The depth of a Huffman tree is also bounded by O(log[pN/p1]), where pN and p1 are the
largest and smallest nonzero occurrence probabilities, respectively. In practice this is often much
smaller than N − 1.
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Figure 6.9: Example Huffman trees for a given alphabet and occurrence probabili-
ties. Left: One possibility. Right: Canonical tree, after rearrangement.

The maximum number L of bits in a Huffman codeword is actually the generation
number of the leaf with smallest positive weight, since deeper leaves with zero
weight give inactive codewords that will never be transmitted. A Huffman tree
thus determines an ordered list M = (m1,m2, . . . ,mL) of L small nonnegative
integers. No integer in this list can be larger than N , the number of letters in the
original alphabet. The element mk is both the number of leaf vertices at generation
k and the number of active codewords of length k. For the tree of depth L = 3 in
Figure 6.3, we have M = (1, 1, 2).

Since many equivalent trees will give the same list M , we will choose one of
them to be the canonical tree. Our choice is the tree built from a rearrangement
of occurrence probabilities such that, at each prefix node, the deeper subtree lies
on the right. Figure 6.9 shows one such rearrangement. This convention fixes the
sequence of 0s (left turns) and 1s (right turns) needed to go from the root to any
leaf. Thus there is one and only one canonical Huffman tree for a given L and M .

Even given L and M , the Huffman code is not determined. Any permutation
of the codewords of equal length k gives a code with the same bit rate, so we must
also specify how leaves relate to letters. We thus provide an ordered list A′ of
the active letters of the alphabet A, giving the order in which they appear in the
canonical tree, reading from left to right in increasing depth order. Thus letters
a′m, for m = mk + 1, . . . ,mk+1, are assigned to the leaves at generation number k
in left-to-right order in the canonical tree. If mk = 0, there are no codewords of
length k.

These three data L,M,A′ completely describe the canonical tree and are suf-
ficient to encode and decode all the active letters of the alphabet, that is, those
whose occurrence probabilities are nonzero. For example, the canonical tree on the
right side of Figure 6.9 is uniquely described by L = 7, M = (1, 1, 1, 0, 3, 1, 1), and
A′ = a, f, b, , ced, g, h. Commas in A′ and M correspond.

A useful trick is to append an extra letter to the alphabet, with occurrence
probability zero. This will guarantee that no active codeword consists of all 1 bits.
It makes the decoding algorithm more robust, as the bit string of codewords can
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be end-padded with 1 bits that cannot be confused with extra letters. An inactive
letter adds no cost to the canonical Huffman tree description, but it does make the
resulting code less efficient by an amount equal to the smallest nonzero occurrence
probability. The letter i plays this special role in Figure 6.9, since its occurrence
probability is 0, and it is not listed in A′.

6.2 Error Correction and Detection

Suppose that a bit in a stored or transmitted binary string flips to the other value:
from 0 to 1 or from 1 to 0. This may result from some physical process such as a disk
crash or line noise. A fixed-length encoding with a single flipped bit will decode into
a message instance containing a single incorrect letter, with all the letters before
and after it being correct. The shorter, variable-length Huffman encoding of the
same message instance might suffer much greater damage. The flipped bit may
divert the decoder to a deeper or shallower subtree, so that the wrong codeword
and length will be read. The decoder will then try to decode the next letter starting
in the middle of a codeword. The misalignment could even propagate so that all
letters after the bit flip will be misread.

We are willing to pay some cost in extra bits to detect bit flips, as long as it
does not negate the savings from redundancy removal. We will see that with a very
few extra bits we may buy much more confidence in the correctness of a bit string.
In some cases, a few extra bits even buy us the location of bit flips and allow us to
correct them.

6.2.1 Parity bits

Extra bits can be added to a codeword bit string to detect errors. If seven bits
within an eight-bit byte define an ASCII character, the extra bit can be set to zero
if there are evenly many ones among the first seven bits, or set to one otherwise.
Then the total number of one-bits in the string will always be even. Transmitter
and receiver can agree to use this even parity condition to increase confidence in
the correctness of the received data.

How much confidence is gained? To analyze this procedure in somewhat more
generality, suppose that a bit string consists of N independent data bits plus one
parity bit. Let p be the probability that a bit is flipped to the wrong value during
transmission. Then the probability that exactly k data bits are flipped is

(
N
k

)
pk(1−

p)N−k. It matters whether k is even or odd, and if even, whether k is zero, so we
define the sets E = {0, 2, 4, . . .} and O = {1, 3, 5, . . .} of even and odd nonnegative
integers, and put E+ = E \ {0} = {2, 4, 6, . . .}.

The receiver gets N + 1 bits, and there are four possible outcomes:

All’s well. The parity is consistent and the data bits are all correct.
Probability: Paw = (1 − p)N+1.

False alarm. The parity is inconsistent but the data bits are all cor-
rect. Probability: Pfa = p(1 − p)N .
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Detected error. The parity is inconsistent and at least one data bit
is incorrect. Probability:

Pde = (1−p)
∑
k∈O

(
N

k

)
pk(1−p)N−k + p

∑
k∈E+

(
N

k

)
pk(1−p)N−k.

Undetected error. The parity is consistent but at least one data bit
is incorrect. Probability:

Pue = p
∑
k∈O

(
N

k

)
pk(1−p)N−k + (1−p)

∑
k∈E+

(
N

k

)
pk(1−p)N−k.

The sums may be evaluated by algebra. Note that∑
k

(
N

k

)
pk(1−p)N−k = (p+ 1 − p)N = 1

We may break the sum into even-index and odd-index parts:

x
def=
∑
k∈E

(
N

k

)
pk(1−p)N−k; 1 − x =

∑
k∈O

(
N

k

)
pk(1−p)N−k. (6.7)

But then,

x− (1−x) =
∑
k∈E

(
N

k

)
pk(1−p)N−k −

∑
k∈O

(
N

k

)
pk(1−p)N−k

=
∑
k∈E

(
N

k

)
(−p)k(1−p)N−k +

∑
k∈O

(
N

k

)
(−p)k(1−p)N−k

=
∑

k

(
N

k

)
(−p)k(1−p)N−k = (1 − 2p)N .

Solving for x gives

x =
1 + (1 − 2p)N

2
; 1 − x =

1 − (1−2p)N

2
.

Thus, Pue = 1
2 [1 + (1 − 2p)N+1 − 2(1 − p)N+1] and the probability that the data

bits are all correct given that the parity is correct is

Paw

Paw + Pue
=

2(1 − p)N+1

1 + (1 − 2p)N+1
.

Likewise, Pde = 1
2 [1− (1− 2p)N+1 − 2p(1− p)N ] and the probability that all of the

data bits are actually correct given that the received codeword has bad parity is

Pfa

Pde + Pfa
=

2p(1 − p)N

1 − (1 − 2p)N+1
.
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Figure 6.10: Parity checking performance with 7 data bits, as a function of bit
flip probability p. Left: Data confidence increase. Center: Undetected error rate
reduction. Right: False alarm rate increase.

The blind probability that all N data bits are correct is (1 − p)N . By accept-
ing only strings with consistent parity, our confidence in the data’s correctness is
increased by a factor of 2(1− p)/(1 + (1− 2p)N+1), which is plotted for N = 7 and
0 < p < 1 at left in Figure 6.10. In this case, confidence is increased by the largest
factor for bit flip probabilities near a decidedly unsatisfactory 0.2. When p > 0.5,
parity checking actually reduces confidence in the data!

In the limit p→ 0, where the data is pretty reliable even without parity checking,
there is not much room for increased confidence, so error-rate reduction gives a more
meaningful figure of merit. Parity checking multiplies the blind undetected error
rate by a factor of [1 − 2(1−p)N+1

1+(1−2p)N+1 ]/[1 − (1 − p)N ]; this is plotted for N = 7
and 0 < p < 0.5 at the center of Figure 6.10. For small values of p, one parity
bit reduces the undetected error rate by a factor proportional to p, as shown by
Taylor’s formula:

1 − 2(1−p)N+1

1+(1−2p)N+1

1 − (1 − p)N
=

1 + (1 − 2p)N+1 − 2(1 − p)N+1

[1 + (1 − 2p)N+1][1 − (1 − p)N ]

=
2
(
N+1

2

)
p2 +O(p3)

[2 −O(p)][pN +O(p2)]
≈ N + 1

2
p,

as p→ 0.
Parity checking slows transmission not only because N + 1 bits need to be

transmitted for each N bits of data, but because false alarms occasionally cause
good data to be discarded. False alarms increase the volume of rejected strings by
a factor of 1 + Pfa

Pfa+Pde
= 1 + 2p(1−p)N

1−(1−2p)N+1 . This function is plotted for N = 7 and
0 < p < 0.5 at right in Figure 6.10. As p → 0, Taylor expansions show that the
volume increase behaves like

2p(1 − p)N

1 − (1 − 2p)N+1
=

2p+O(p2)
2(N + 1)p+O(p2)

≈ 1
N + 1

,

This is to be expected, since for tiny p it is very unlikely that more than one bit
in a string will be flipped, and the parity bit has one chance in (N + 1) of being
the one, resulting in a false alarm. However, only the volume of bad-parity data
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is increased by false alarms, and since these occur with probability Pfa + Pde, the
expected cost of false alarms is an average increase of Pfa ≈ p bits per string, for
p ≈ 0.

A single parity bit can detect one bit flip in a string of any length N , but this
observation is misleading. For any fixed bit-flip probability p > 0, the undetected
error probability Pue → 1

2 as N → ∞ simply because the chance of a double bit
flip becomes very great.

Crossed parity checks

Parity bits can locate errors, as well as detect their presence. Suppose that n × n
“data” bits are arranged in a square array of n columns and n rows, and 2n parity
bits are appended, one to each column and one to each row. The value of each parity
bit is chosen to make its row or column sum even. Each data bit is checked by two
parity bits, and this cross-checking gives position information when something goes
wrong.

Any single bit flip in the data will cause one row and one column parity test to
fail, and will indicate the location of the bad data bit. A single flipped parity bit
causes an inconsistency that cannot result from a flipped data bit, so it need not
cause a false alarm.

If exactly two data bits get flipped, then either two or four parity bits will be
inconsistent, but it will not be possible to determine which data bits were bad.
Thus, this scheme gives one bit error correction and two bit error detection. What
is the probability of an undetected error? For this to happen, all parity checks
must be consistent despite some flipped data bits. There is no way for this to
happen unless at least three of the N = n2 + 2n bits are flipped, and only very
special arrangements of three or more flips actually results in an undetected error.
Let U(N, k) be the number of k-bit flips among N total bits that results in an
undetected error. Then 0 ≤ U(N, k) ≤ (Nk ), and

Pue =
N∑

k=3

U(N, k)pk(1 − p)N−k ≤
N∑

k=3

(
N

k

)
pk(1 − p)N−k.

For fixed N , Pue = O(p3) as p→ 0. Such two-dimensional parity checking costs 2n
parity bits for n2 data bits, or 2/n.

An obvious generalization is to arrange the data into an n × n × n cube with
3n2 parity bits along three of the faces. To get an undetected error in the three-
dimensional setup, at least four bits must be flipped, so Pue = O(p4) as p → 0. In
many cases, though, more data bit flips can be detected and even corrected. The
cost is 3/n parity bits per data bit. The parity information should be more reliable
than the data, if it will be used for correction: the parity bits may be protected
with 6n parity bits of their own, along the data cube’s edges.

Generalizing further, nd data bits may be arranged in a d-dimensional array
with dnd−1 parity bits arranged along the coordinate hyperplanes. This will always
detect d bit flips, so Pue = O(pd+1), at a cost of d/n parity bits per data bit.
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Thus, for linear growth in the amount of parity overhead, we obtain geometric
decreases in undetected error probability. In addition, for large d, the many-bit-flip
combinations giving undetected errors become exceedingly rare.

6.2.2 Hamming codes

Parity checking and cross-checking work by using multiple parity bits to check
overlapping subsets of data bits. R. W. Hamming invented a code which identifies
the location of a single bad bit by giving its index in binary. Parity bits are sprinkled
throughout the codeword and are themselves included in the parity checking. To
see how this works, consider an example in which four data bits are protected with
three parity bits.

The data bits are in locations 3, 5, 6, and 7, counting from the rightmost bit,
which is in location 1. The parity bits are at locations 1, 2, and 4. The parity bit at
1 is chosen so that bits 1, 3, 5, and 7 add up to 0 modulo 2. Parity bit 2 is chosen
so that bits 2, 3, 6, and 7 add up to 0 modulo 2, and parity bit 4 is chosen so that
bits 4, 5, 6, and 7 add up to 0 modulo 2. Formally, parity bit 2p is chosen so that
it makes all those bits whose location index contains 1 × 2p add up to 0 modulo 2,
for p = 0, 1, 2.

Now suppose that a single bit, data or parity, is flipped in this 7-bit codeword.
Let b0 be the sum of bits 1, 3, 5, and 7 modulo 2, b1 is the sum of bits 2, 3, 6, and
7 modulo 2, and b2 is the sum of bits 4, 5, 6, and 7 modulo 2. Then the flipped bit
is at position I = b020 + b121 + b222, counting from the rightmost bit.

Assuming that at most one bit is flipped, the above provides an error correction
method. If I = 0, then all the parities are OK and there is no error, otherwise
bit I is wrong and should be flipped back to its correct value. Unfortunately, the
decoding gives a wrong answer if two or more bits are flipped, so the method is
prone to undetected errors.

Linear codes

Hamming’s code is an example of a linear code. The 16 codewords making up
all combinations of four data bits are just linear combinations of the four basic
codewords given in Table 6.2, and the codewords are constructed using linearity:

c(x + y) = c(x) + c(y),

for any four-bit strings x,y. For example, the codeword for the data vector 1010 =
d3 +d1 is c(d3 +d1) = 1001011+0011001 = 1010010. Coordinates are added using
arithmetic modulo 2, which is implemented as the bitwise exclusive-or operator
in the C programming language. It is straightforward to verify that the parity
conditions are preserved.

Linear codes are decoded by linear transformations. We note that the four basic
codewords 1001011, 0101010, 0011001, and 0000111 are orthogonal with respect to
the usual inner product, if we use addition modulo 2 to add things up. Thus, if we
let C be the matrix whose rows are the four basic codewords, then applying the
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Data vector Codeword 7 6 5 4* 3 2* 1*
d3 = 1000 c3 = c(1000) 1 0 0 1 0 1 1
d2 = 0100 c2 = c(0100) 0 1 0 1 0 1 0
d1 = 0010 c1 = c(0010) 0 0 1 1 0 0 1
d0 = 0001 c0 = c(0001) 0 0 0 0 1 1 1

Table 6.2: Basis for Hamming’s code with four data and three parity(*) bits.

matrix C to a received codeword, written as a column vector, produces the four
expansion coefficients of the data vector:

C =

⎛⎜⎝
c2

c2

c1

c0

⎞⎟⎠ =

⎛⎜⎝
1 0 0 1 0 1 1
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1

⎞⎟⎠ .
However, we must first fix any errors in the received codeword. To do that, we
generate the repair vector b = (b2, b1, b0) by applying the following matrix to the
received codeword:

B =

⎛⎝b2

b1

b0

⎞⎠ =

⎛⎝ 1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 0 1 0 1 0 1

⎞⎠
If b = 0, then all is well. Otherwise, interpreting nonzero b as a three-digit binary
number gives the position of the single flipped bit. We flip it back and then apply
C to decode.

Notice that {c0, c1, c2, c3}∪{b0,b1,b2} forms an orthogonal basis for the space
{0, 1}7 of seven-bit codewords. We find the error by orthogonal projection onto a
three-bit subspace, and then after correcting it find the data by orthogonal projec-
tion onto a complementary four-bit subspace.

Hamming’s algorithm generalizes to longer codewords. Reserving index 0 to
mean “no error” leaves 2P − 1 total bits that can be protected by P parity bits,
leaving 2P − P − 1 data bits. Parity bits are placed at locations 2p, 0 ≤ p < P ,
counting from rightmost bit 1. The parity bit at 2p is chosen so that the sum of all
codeword bits whose locations contain 1 × 2p add up to 0 modulo 2.

Hamming’s algorithm divides the codeword bits into P subsets of 2P−1 bits
each. Computing the parity of the subsets gives a P -bit binary number which, if
nonzero, locates the single bit flip in the codeword. The overhead is P parity bits
for 2P −P−1 data bits; this overhead becomes negligible very fast as P → ∞. Thus,
as for one-parity-bit single-error detection, single-error correction costs arbitrarily
little for long codewords.

Any single-bit correction code must add at least log2N bits of overhead to
N bits of data, since that is the least information needed to locate a flipped bit.
Hamming’s algorithm is only one of many ways of inserting this overhead, but it
gives an elegant and simple decoding algorithm, and simultaneously protects both
parity and data bits.
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Hamming distance

Can k > 1 bit flips be corrected? Hamming used a distance function on bit strings
to make this question geometric. For integer k > 1, there is a set of codewords
that are sufficiently distant from each other so that flipping k bits in any one of
them still leaves the correct codeword as the nearest. This restoration to the nearest
codeword error correction scheme fixes up to k flipped bits.

The Hamming distance function dist counts the number of bits at which two bit
strings of equal length differ. For example, dist(010011101, 010101110) = 4. Two
bit strings are identical if and only if the distance between them is zero.

For each string c of N bits, we may count the number of codewords at each
Hamming distance k from c. There are

(
N
k

)
of them, corresponding to the number

of ways we may choose the k bits that differ. The Hamming sphere of radius r
centered at a bit string c of length N is defined to be the set of bit strings d of
length N satisfying dist(c, d) ≤ r. The volume enclosed by the Hamming sphere is
the total number of bit strings within it, and is found by adding up the counts for
distances 0, 1, . . . , r:

VolN (r) def=
r∑

k=0

(
N

k

)
. (6.8)

Thus VolN (0) = 1 for every N ≥ 1, and VolN (r) = 2N for every r ≥ N .
We may visualize bit strings as the vertices of an N -dimensional unit hypercube.

The vertex at the origin corresponds to 00 · · · 0, the string of N zero bits, and the
vertex farthest from the origin, in both the Hamming and the Euclidean distance,
corresponds to the string 11 · · · 1 of N ones. Edges connect adjacent vertices, such
as 00 . . .0 and 10 . . .0 on the x-axis, if and only if their Hamming distance is 1.
Since each vertex in this N -cube has edges to N other vertices, we may estimate

VolN (r) ≤ 1 +N + · · · +N r < N r+1. (6.9)

This is very crude, but it is accurate enough for our purposes.5

The distance between a codeword c and a set C′ of equal-length bit strings is
dist(c, C′) def= min{dist(c, c′) : c′ ∈ C′}. Thus c ∈ C′ if and only if dist(c, C′) = 0.
Likewise, the distance between two sets C and C′ of equal-length bit strings is
dist(C,C′) def= min{dist(c, c′) : c ∈ C, c′ ∈ C′}, with C ∩ C′ �= ∅ if and only if
dist(C,C′) = 0. Now suppose we take the set of N -bit strings and select from it a
collection of disjoint Hamming spheres of radius r. If we use the bit strings in the
centers of those spheres as codewords, then we will be able to correct up to r bit
flips by restoration to the nearest codeword.

The simplest example of this idea is the repetition code. Suppose a positive in-
teger r is given. We may encode the two-letter alphabet {0, 1} by 2r+1 repetitions:

c(0) =

2r+1︷ ︸︸ ︷
00 · · · 0; c(1) =

2r+1︷ ︸︸ ︷
11 · · ·1 .

5The solution to Exercise 3 of Chapter 4 provides the sharp estimate VolN (r) = O(Nr).
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These two codewords are diagonally opposite corners of a (2r+1)-dimensional unit
hypercube, with c(0) at the origin. Then dist(c(0), c(1)) = 2r+1, so we can correct
r or fewer flipped bits by accepting the majority. This is a linear code, and the
decoding algorithm consists of applying the matrix C = ( 1 1 · · · 1 ), using
ordinary real arithmetic. If the single scalar output is less than r, we record 0 as
the received bit. If the output is r + 1 or greater, we record 1.

The repetition code is terribly inefficient, however. It costs 2r parity bits to
protect just one data bit, although they protect themselves at the same time. The
inefficiency stems from the small number of codewords. If there are M = 2m

codewords in the code, then we may transmit m = log2M data bits per codeword.
If the codewords are N bits long, then we may say that there are p = N −m parity
bits included in each. This is a reasonable cost assessment even if we choose not to
identify particular bits as parity bits or data bits. One way to increase efficiency is
therefore to increase the number of codewords that are protected against r or fewer
flipped bits. We must control the growth in codeword bit length N as we build
larger codes, so that p = N −m, or at least p/N , tends to some finite limit.

In fact, there are codes for which p/N → 0 as N → ∞. With our hypercube
intuition, we may describe their construction as follows:

Theorem 6.12 (E. N. Gilbert, 1952) For any positive integer r and any ε > 0,
there is an integer N and a binary code consisting of 2m N -bit codewords such that

1. restoration to the nearest codeword corrects up to r bit flips;

2. we may transmit m > (1 − ε)N data bits per codeword, with fewer than εN
of the bits being needed for error correction.

Proof: Suppose we choose codewords from the set of all N -bit strings, which
we imagine as the vertices of the unit N -cube. We begin with the origin, and
remove the VolN (2r) vertices within Hamming distance 2r of it. For the second
and subsequent codewords, we choose one of the remaining vertices and remove its
Hamming sphere of VolN (2r) vertices. We may do this at leastM = �2N/VolN (2r)�
times, since there were 2N bit strings to begin with. The M codeword bit strings
thus chosen will be our code. It evidently satisfies condition 1, as each codeword is
at least Hamming distance 2r + 1 away from all the others.

We now count M using Inequality 6.9:

M = 2m ≥
⌊

2N

N2r+1

⌋
>

2N

N2r+2
, ⇒ m > N

[
1 − (2r + 2)

log2N

N

]
.

Since (log2N)/N → 0 as N → ∞, we may choose N large enough so that m ≥
(1 − ε)N . �

Note that some bit strings might be outside the Hamming spheres of the code-
words generated by Theorem 6.12. If the receiver gets one of these, which cannot
be decoded, it may declare a detected error and request retransmission.
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Gilbert’s coding theorem is constructive, but it does not produce a linear code
in general. It also does not provide a decoding algorithm other than a table search
through a possibly large number of codeword strings.

Although the fraction of parity bits needed to correct up to r bit flips can be
made arbitrarily small, the price is using long codewords which are likelier to have
multiple bit errors. There is also a lower bound on the absolute number of parity
bits needed to correct up to r bit flips, generalizing the 1-bit correction bound
mentioned earlier:

Theorem 6.13 Any N -bit code that can correct r bit flips by restoration to the
nearest codeword must consume at least p = log2 VolN (r) bits of each codeword for
parity information.

Proof: Let m be the number of data bits, so M = 2m is the number of codewords
and p = N − m is the number of parity bits. Each codeword is the center of a
Hamming sphere containing VolN (r) vertices. These spheres are disjoint, and the
union of all of them makes up at most 2N vertices. Thus MVolN (r) ≤ 2N , and so
p = N −m ≥ log2 VolN(r). �

Note that log2 VolN (r) ≤ (r + 1) log2N = O(logN) by Inequality 6.9.

6.2.3 Checksums and cyclic redundancy codes

An old method for checking arithmetic, which was once taught in elementary
schools, is casting out nines. We observe that if dn · · ·d1d0 is the base-ten rep-
resentation of the integer x > 0, where 0 ≤ dk < 10 for all k = 0, 1, . . . , n and

x = dn × 10n + · · · + d1 × 10 + d0, (6.10)

then

x = dn + · · · + d0 (mod 9). (6.11)

In other words, the sum of the decimal digits of x has the same remainder as x
after division by 9. This is proved using the congruence 10 = 1 (mod 9), which
implies 10k = 1 (mod 9) for every integer k ≥ 0, to reduce Equation 6.10. We
may write x′ = dn + · · · + d0 and expand x′ = d′n′ × 10n′

+ · · · + d′0 and apply
Equation 6.11 again to get x = x′ = x′′ = · · · (mod 9). We continue until we
have a single digit, for then the values stop changing. Let c = c9(x) be this digit.
For example, c9(1 872) = 9 and c9(22 883) = 5.

This digit is called the checksum. In the C programming language, its formula
would be c9(x) = x%9, although the limited integer sizes in most common com-
puters limit the domain to numbers x with ten or fewer decimal digits. However,
the special properties of the modulus 9 allow us to compute c9(x) for much larger
x presented as a string of decimal digits, using the following algorithm:
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Casting-Out-Nines Checksum

castout9( digit[], L ):
[0] Initialize chksum = 0
[1] For k=0 to L-1, replace chksum = (chksum + digit[k])%9
[2] Return chksum

The checksum from casting out nines can be used to detect addition errors, since
c9(x + y) = c9(x) + c9(y) (mod 9), so c9(x + y + · · ·) = c9(c9(x) + c9(y) + · · ·).
It can also check products, since c9(xy · · ·) = c9(c9(x)c9(y) · · ·). For example, the
product 1 872 × 22 883 is not equal to 42 846 976, since c9(42 846 976) = 1 whereas
c9(c9(1 872)c9(22 883)) = c9(9 × 5) = 9. However, the method does not locate the
error. Also, it fails to detect some errors: the product 1 872 × 22 883 is not equal
to 42 846 966 either, even though c9(42 846 966) = 9. If our numbers are random
in the sense that c9(x) is uniformly distributed over {1, 2, . . . , 9}, then casting out
nines has an 8/9 probability of catching an error. Still, one such error in nine goes
undetected.

We could also use “casting out elevens” to compute a checksum c11 = c11(x)
satisfying x = c11(x) (mod 11). But 10 = −1 (mod 11), so

10k =
{

1 (mod 11), if k is even,
−1 (mod 11), if k is odd.

Thus to compute c11(x), we must add the even-position digits starting with digit
0, and then subtract the odd-position digits. For example, c11(1 872) = (8 + 2) −
(1+7) = 2 and c11(22 883) = (2+8+3)− (2+8) = 3. Note that c11(−1 872) = −2,
as all digits keep the sign of x. The process is repeated until the result lies in the
range [−10, 10]. If it is not positive, 11 is added to get a result in the range [1, 11].
This method may be applied to large numbers x presented as long arrays of decimal
digits:

Casting-Out-Elevens Checksum

castout11( digit[], L ):
[0] Initialize chksum = 0
[1] For k=0 to L-1, do [2] to [3]
[2] If k is even, let chksum = (chksum+digit[k])%11
[3] Else let chksum = (chksum + 11 - digit[k])%11
[4] Return chksum

We add 11 in step 3 to guarantee that the left-hand operand of % is never
negative. It is an easy exercise to prove that c11 detects all one-digit errors in
decimal arithmetic. However, one multiple-digit error in 11 will go undetected
using this checksum. Notice that c11 catches the error 1 872× 22 883 �= 42 846 966,
since c11(42 846 966) = (2 + 4 + 9 + 6) − (4 + 8 + 6 + 6) = −3 = 8 (mod 11), and
8 �= 2 × 3. In general, we can combine checksums to decrease the probability of
undetected errors.
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Checksums are also used to detect corrupted data. Both x and y = c(x) are
stored, and then c is recomputed from the retrieved x and compared to the retrieved
y. If they disagree, then either x or y was corrupted during storage. If they agree,
there is a high probability that neither was corrupted.

Humans use casting out nines because one-digit decimal arithmetic is considered
easy, so the effort of checking is low. Digital computers can perform multi-bit binary
arithmetic easily, and analogs of casting out nines exist to check calculations and
data. We expect different kinds of errors than humans make. For example, a single
bit might be flipped, or a segment of bits might be set all to zero, due to faulty
memory or a bad connection. So, if x is the nonnegative integer representing a
string of bits, we may wish to compute a checksum c(x) with the following desirable
properties:

Checksum Goals

CSG-1: Any single-bit error is detected.

CSG-2: Any double-bit error is detected.

CSG-3: Certain special kinds of errors like truncations of the bit string are
detected with probability 1 − ε.

CSG-4: Any multiple-bit error is detected with probability 1 − ε.

The undetected error probability, ε, will depend on the formula used for c(x).
With the casting out nines checksum, ε = 1/9 ≈ 11%. It is dependent on the
range of values taken by c(x), which is a measure of the amount of information
that c(x) retains from x and so can be measured in bits. If c(x) takes all values in
{0, 1, . . . , 216 − 1}, we will call it a 16-bit checksum, and so on.

Let X = X(s) = c−1(s) be the set of bit strings with checksum s. If properties 1
and 2 hold, then we must have it that the Hamming distance dist(X(s), X(s′)) ≥ 2
whenever s �= s′. Such a code contains enough information to correct one flipped
bit, so it must contain log2N bits of redundancy for N bits of data. Hence, a 16-
bit checksum can protect at most 216 data bits, which is 8 kilobytes, and a 32-bit
checksum can protect at most 512 megabytes.

To accomplish CSG-3, detecting truncations, the number of data bits can be
transmitted as a second checksum, or better yet appended to the data bits before the
checksum or CRC is computed. The receiver compares the portion of the received
bits which contains the length to the actual number received. Any inconsistency is
cause for rejection. In the 16-bit case, with the length appended to the data, the
probability is only 1/216 ≈ .000015 that chopping off the end exposes bits claiming
the right length. Thus truncation is detected with probability 1 − ε ≈ 99.9985%,
assuming that all 16-bit strings are equally probable in any 16-bit segment of the
data.

CSG-4 can be restated as follows: the probability that c(x) = c(x′) given that
x �= x′ must be less than ε. Using values of s to partition the space of bit strings,
this requires that c−1(s) contains fewer than εK of the K total bit strings. This
implies that the number of checksum values — call it S — must be larger than
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1/ε, and that ε must be larger than 1/S. 16-bit checksums thus at best allow
1 − ε ≈ 99.998%.

Note that achieving CSG-4 does not necessarily achieve CSG-3, since trunca-
tions are a tiny subset of the possible errors and may, in principle, have a high
probability of going undetected without defeating goal 4.

Modular implementations

Let 0 ≤ x < 2N be the number represented by an N -bit string. For each fixed
integer S > 1, consider the modular checksum cS(x) = x%S given by the remainder
after division by S. If b is a positive integer such that 2b−1 < S ≤ 2b, then
0 ≤ cS(x) < 2b and we will say that cS gives a b-bit checksum. In any case,
cS(x) = x (mod S), so two bit strings x �= y are distinguishable from just this
checksum if and only if x �= y (mod S). Such remainder checksums are easy to
analyze because cS(x+ y) = cS(x)+ cS(y) and cS(xy) = cS(x)cS(y) for all integers
x, y. We now find some values of S that achieve checksum goals 1–4.

To meet CSG-1, we must have that x− y is not a multiple of S if x and y differ
at exactly one bit. But in that case, x−y = ±2k for some integer 0 ≤ k < N , so by
unique factorization, S|(x− y) only if S is an integer power of 2. Hence any S > 1
which is not an integer power of 2 will satisfy CSG-1. In particular, S = 2b − 1
gives a b-bit checksum for every b > 0, and since 2b = 1 (mod S), we can simply
add the b-bit “digits” of x to compute cS(x), just as in casting out nines. Similarly,
if S = 2b + 1, then 2b = −1 (mod S), and we can use an alternating sum as in
casting out elevens.

For b = 8 on a typical computer that uses 8-bit characters and 32-bit integers,
we may us the following functions to compute the S = 255 and S = 257 modular
checksums:

Checksum Modulo 255

castout255( octet[], L ):
[0] Initialize chksum = 0
[1] For k=0 to L-1, do [2]
[2] Replace chksum = (chksum+octet[k])%255
[3] Return chksum

Checksum Modulo 257

castout257( octet[], L ):
[0] Initialize sE = 0 and sO = 0
[1] For k=0 to L-1, do [2] to [3]
[2] If k is even, then replace sE = (sE+octet[k])%257
[3] Else k is odd, so replace sO = (sO+octet[k])%257
[4] Let chksum = sE - sO
[5] If chksum<0, then increment chksum += 257
[6] Return chksum
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To meet CSG-2, note that if the N -bit integers x and y differ at exactly two
bits, then x − y = ±2j(2k ± 1), for some integers 0 ≤ j < N and 0 < k < N .
If cS(x) = cS(y), then S divides 2j(2k ± 1). Hence, to achieve CSG-2, it suffices
to find an S which is not an integer power of 2 and does not divide 2k ± 1 for
any 0 < k < N . There are just 2N such numbers, so it is a simple matter of
performing O(N) trial divisions6 to find an S that avoids dividing any of them.
We are sure to find a b-bit non-divisor if 2b > N . Unfortunately, this excludes the
fast implementation choices S = 2b ± 1. In the next section, we will modify the
arithmetic to obtain a fast algorithm despite this prohibition.

Checksum goals 3 and 4 are accomplished by choosing S > 1/ε. If all N -bit
string differences x − y are equally probable, then the chances that x �= y but
cS(x−y) = 0 are just 1/S < ε, and no particular multi-bit error is more likely than
any other.

Mod-2 polynomials — arithmetic without carries

The special values S = 2b ± 1 for a modular checksum cS give fast algorithms:
each block of b bits contributes its share to the checksum independently of the
other blocks. For computers with fixed integer bitwidth b, this means no carries
are needed. However, having just two choices is a big limitation, especially as
both choices interfere with CSG-2. This problem can be overcome with alternative
arithmetic. Instead of treating bit strings as ordinary numbers written in binary,
we consider them to be coefficients of a polynomial and manipulate them using the
rules for polynomial algebra.

Polynomials whose coefficients are just 0 or 1 can be added and multiplied
termwise, using arithmetic modulo 2. We shall call these objects mod-2 polyno-
mials and use the qualifier mod-2 to designate the new arithmetic operations. For
example, if p(t) = t2 + t + 1 and q(t) = t + 1 are mod-2 polynomials, then their
mod-2 sum is p(t)+ q(t) = t2, since 1+1 = 2 = 0 (mod 2) and t+ t = 2t = 0t = 0
(mod 2). Likewise, their mod-2 product is p(t)q(t) = t3+1, which we get by adding
t3 + t2 + t to t2 + t+1. The coefficients of these mod-2 polynomials determine num-
bers in binary: p is 111 (base 2) = 7 (base 10), and q is 11 (base 2) = 3 (base
10), so these polynomial operations give an alternative addition and multiplication
in which 7 + 3 = 4 and 7 × 3 = 9. The mod-2 values can also be determined
by reconsidering the coefficients as integers and evaluating the polynomial at 2:
p(2) = 5 and q(2) = 3. Likewise, given a nonnegative integer, we can find its mod-2
polynomial by computing its binary expansion. Table 6.3 shows the addition and
multiplication facts for the first eight of these mod-2 polynomials.

Mod-2 polynomial addition may also be interpreted as componentwise addition
in the vector space of sequences whose components are the integers modulo 2.
Addition in this space is the same as ordinary binary addition, only without carries.
Hence, addition may be performed on each bit independently, using the addition
facts 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, and 1 + 1 = 0. Such carry-free addition is the

6But half of the numbers {2k ± 1 : 1 ≤ k ≤ N} will have at least N/2 digits, so the cost of
testing S is actually O(N2).
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+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

× 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 8 10 12 14
3 0 3 6 5 12 15 10 9
4 0 4 8 12 16 20 24 28
5 0 5 10 15 20 17 30 27
6 0 6 12 10 24 30 20 18
7 0 7 14 9 28 27 18 21

Table 6.3: Arithmetic with the first eight mod-2 polynomials. Left: Addition table.
Right: Multiplication table.

same as the bitwise exclusive-or operation, which in the C programming language
is denoted by the caret (^) operator. In the following implementation, a new array
is allocated to hold the sum, and the exclusive-or assignment operator ^= is used
to accumulate the mod-2 sums in it:

Mod-2 Polynomial Sums

mod2polysum( p[], dp, q[], dq ):
[0] Let ds = max(dp,dq) and allocate sum[0],...,sum[ds]
[1] For d=0 to ds, let sum[d] = 0
[2] For d=0 to dp, replace sum[d] ^= p[d]
[3] For d=0 to dq, replace sum[d] ^= q[d]
[4] Return sum[] and ds

Putting the operands into arrays allows arbitrary degree polynomials, but is
inefficient. However, if the degrees dp and dq of the summand polynomials are
both less than the bitwidth of an unsigned integer type known to the computer,
then they may be encoded as integers by evaluating p(2) by Horner’s method:7

Convert an Integer-Size Mod-2 Polynomial to an Integer

mod2polyint( p[], dp ):
[0] Initialize ip = 0
[1] For d=dp down to 0, let ip = 2*ip + p[d]
[2] Return ip

The sum of mod-2 polynomials that fit into integers may be performed by a single
bitwise exclusive-or operation:

Integer-Size Mod-2 Polynomial Sums

intmod2polysum( p, q ):
[0] sum = p^q
[1] Return sum

7A more robust implementation would test the size of dp, or else there could be a silent integer
overflow and wrong return value.
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Mod-2 polynomial multiplication is given by combining index shifts with ands
and exclusive-ors. Using arrays of bits, this may be implemented as follows:

Mod-2 Polynomial Products

mod2polyproduct( p[], dp, q[], dq ):
[0] Let ds = dp+dq and allocate prod[0],...,prod[ds]
[1] For d=0 to ds, let prod[d] = 0
[2] For i=0 to dp, do [3]
[3] For j=0 to dq, replace prod[i+j] ^= p[i]&q[j]
[4] Return prod[] and ds

If ds = dp+dq is small enough, then all of the mod-2 polynomials will fit into some
integer type and the above may be performed more efficiently with bit shifts and
bitwise exclusive-ors. The C programming language supplies the operators <<= and
>>= for bitshift-left and bitshift-right assignment, respectively:

Integer-Size Mod-2 Polynomial Products

intmod2polyproduct( p, q ):
[0] Initialize prod = 0
[1] While p>0, do [2] to [4]
[2] If p is odd, then replace prod ^= q
[3] Replace q <<= 1 by its bitshift left
[4] Replace p >>= 1 by its bitshift right
[5] Return prod

The degree, written deg p, of a mod-2 polynomial p = p(t) is defined as for
ordinary polynomials: it is the highest power of t present in p(t). The degree of the
zero polynomial is undefined, though it can be set to −∞ with the convention that
(−∞) + d = d+ (−∞) = −∞ for any integer d. The degree function then satisfies
two equations:

deg(p+ q) ≤ max{deg p, deg q};
deg(pq) = deg p+ deg q.

In practice, a degree function may return −1 as the degree of the zero polyno-
mial:

Mod-2 Polynomial Degree

mod2polydegree( p[], dp ):
[0] For d=dp down to 0, do [1]
[1] If p[d]==1, then return d
[2] Return -1

An initial estimate dp of the degree must be supplied. If this is small enough, then
the mod-2 polynomial will fit into an integer and we can be more efficient:
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Integer-Size Mod-2 Polynomial Degree

intmod2polydegree( p ):
[0] Initialize degree = -1
[1] While p>0, do [2] to [3]
[2] Bitshift right p >>= 1
[3] Increment degree += 1
[4] Return degree

The division theorem for ordinary polynomials applies to mod-2 polynomials:

Theorem 6.14 For any mod-2 polynomials p1 and p2 �= 0, there are unique mod-2
polynomials q, r such that p1(t) = p2(t)q(t) + r(t) and 0 ≤ deg r < deg p2.

Proof: For existence, we construct the quotient q and remainder r using syn-
thetic division. The following implementation produces arrays of 0s and 1s rep-
resenting the mod-2 polynomials q, r, given input arrays p1[0],. . . ,p1[d1] and
p2[0],. . . ,p2[d2]:8

Mod-2 Polynomial Quotient and Remainder

mod2polydivision( p1[], d1, p2[], d2 ):
[0] If d1<d2, then let dq = -1 and let dr = d1
[1] Else do [2] to [5]
[2] Let dq = d1-d2 and let dr = d2-1
[3] For d=d1 down to d2, do [4] to [5]
[4] If p1[d]==1, then do [5]
[5] For n=0 to d2-1, replace p1[n+d-d2] ^= p2[n]
[6] Let dr = mod2polydegree(p1[], dr)
[7] Return p1[], dq, dr

Upon termination, the returned array p1 will contain the coefficients of the remain-
der and quotient mod-2 polynomials as subarrays: p1[0], . . . , p1[dr] will be r,
while p1[d2], . . . , p1[d2+dq] will contain q. If the returned value dr = −1, then
the remainder r is zero and its part of the array is not present. Likewise, if dq = −1,
then the quotient q is zero and it is not present in the returned array p1.

For uniqueness, suppose that p1(t) = p2(t)q1(t)+ r1(t) = p2(t)q2(t)+ r2(t) with
0 ≤ deg r1 < deg p2 and 0 ≤ deg r2 < deg p2. Then p2(t)[q2(t)−q1(t)] = r1(t)−r2(t).
Suppose toward contradiction that q1 �= q2. Then p2[q2 − q1] �= 0, so we may
compute mod-2 degrees: deg(r1 − r2) = deg(p2[q2 − q1]) = deg p2 + deg(q2 − q1) ≥
deg p2, but this contradicts deg(r1 − r2) ≤ max{deg r1, deg r2} < deg p2. Hence we
must have q1 = q2, so r1 − r2 = p2[q2 − q1] = 0, so r1 = r2. �

We will reuse symbols and denote the quotient and remainder by p(t)/q(t) and
p(t)% q(t).

8This function assumes that the denominator polynomial p2 is nonzero, or else the results will
be nonsense. How could this assumption be tested in practice?
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/,% 1 2 3 4 5 6 7 8
1 1,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1
2 2,0 1,0 1,1 0,2 0,2 0,2 0,2 0,2
3 3,0 1,1 1,0 0,3 0,3 0,3 0,3 0,3
4 4,0 2,0 3,1 1,0 1,1 1,2 1,3 0,4
5 5,0 2,1 3,0 1,1 1,0 1,3 1,2 0,5
6 6,0 3,0 2,0 1,2 1,3 1,0 1,1 0,6
7 7,0 3,1 2,1 1,3 1,2 1,1 1,0 0,7
8 8,0 4,0 7,1 2,0 2,2 3,2 3,1 1,0

Table 6.4: Quotients q and remainders r from division y(t) = q(t)x(t) + r(t) of
mod-2 polynomials x, y expressed as base 10 versions of their coefficient bit strings.
Here x is at the top of the column and y is at the left of the row.

If both the numerator and denominator polynomials fit into an integer type,
then there is a more efficient mod-2 division implementation using bit-shifts:

Integer-Size Mod-2 Polynomial Quotient and Remainder

intmod2polydivision( p1, p2 ):
[0] Initialize q=0 and r=p1
[1] Let sh = intmod2polydegree(r)-intmod2polydegree(p2)
[2] If sh >= 0, then do [3] to [4]
[3] Replace r ^= (p2<<sh) and replace q ^= (1<<sh)
[4] Go to [1]
[5] Return q, r

Table 6.4 shows the quotients and remainders for the first eight nonzero mod-2
polynomials.

If the remainder is zero, so that p1(t) = p2(t)q(t), then we say that p2 divides p1.
Having Theorem 6.14, we can implement Euclid’s algorithm for mod-2 polynomials,
so each pair x = x(t), y = y(t), not both zero, will have a unique greatest common
divisor not equal to zero. In the following implementation, derived from the one on
page 4, we assume without loss that x is not the zero polynomial:

Euclid’s Algorithm for Mod-2 Polynomials

mod2polygcd( x[], dx, y[], dy ):
[0-] Let dz = dx and allocate z[0],...,z[dz]
[0] For d=0 to dx, copy z[d] = x[d]
[1] Compute dr,dq,y[] with mod2polydivision(y[],dy,x[],dx)
[1+] Let dx = dr, and for d=0 to dr, copy x[d] = y[d]
[2] Let dy = dz, and for d=0 to dz, copy y[d] = z[d]
[3] If dr>=0, then go to [0]
[4] Return y[], dy
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The more efficient implementation for integer-size mod-2 polynomials is left as an
exercise. We may reuse the notation gcd() for the result.

Now gcd(x, y) is again a mod-2 polynomial. We will say that x, y are relatively
prime if deg gcd(x, y) = 0. We will say that a mod-2 polynomial x of positive degree
is irreducible if x is relatively prime to every mod-2 polynomial y of strictly smaller
degree.9 Equivalently, x is irreducible if no mod-2 polynomial of smaller positive
degree divides x.

It is straightforward to prove the following generalizations to mod-2 polynomials
of Lemmas 1.1 and 1.3:

Lemma 6.15 If deg y ≥ 0 and x(t) divides y(t), then deg x ≤ deg y.

Proof: Write y(t) = x(t)q(t) and note that q �= 0 since deg y ≥ 0 ⇒ y �= 0. But
then deg y = deg qx = deg q+ deg x, so deg y− deg x = deg q ≥ 0, so deg y ≥ deg x.

�

Lemma 6.16 If z(t) divides x(t)y(t) and x, z are relatively prime mod-2 polyno-
mials, then z(t) divides y(t). �

The proof is left as an exercise.

Theorem 6.17 Every mod-2 polynomial p can be factored into irreducible mod-
2 polynomials, and the factorization is unique except for the order. Namely, if
p(t) = p1(t) · · · pn(t) = q1(t) · · · qm(t) are two factorizations, then n = m and,
possibly after re-indexing, pi = qi for all i = 1, . . . , n. �

The proof is substantially the same as that for Theorem 1.4. It leads immediately
to the following:

Corollary 6.18 If an irreducible mod-2 polynomial z(t) divides a product of mod-2
polynomials x(t)y(t), then either z(t) divides x(t) or z(t) divides y(t). �

To check whether a mod-2 polynomial x(t) of degree d = deg(x) > 0 is ir-
reducible, it is only necessary to perform trial divisions with irreducible mod-2
polynomials of degree 1 through "d/2#. There are fewer than 2d/2 of those, and
except for t ↔ 2 they all correspond to odd numbers. It is easy to list all these
trial divisors if the candidate irreducible mod-2 polynomial is integer-sized:

Test if an Integer-Size Mod-2 Polynomial is Irreducible

intmod2polyirreducible( x ):
[0] Let d2 = intmod2polydegree(x)
[1] For y=2 and odd y=3 to (1<<d2)-1, do [2] to [3]
[2] Compute remainder r with intmod2polydivision(x,y)
[3] If r==0, then return FALSE
[4] Return TRUE

9An irreducible polynomial is like a prime number, and would be called a prime if it were not for
the possible confusion with ordinary primes. For example, the irreducible mod-2 polynomial S(t)
used in CRC-32 corresponds to the composite number S(2) = 4374732215 = (5)(7)(29)(4310081).
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+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 5 4 7 2 1
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 1 4 3 2 5

Table 6.5: Left: Arithmetic with the eight mod-2 polynomials, reduced modulo t3.
Left: Addition table, same as before. Right: Multiplication table.

The returned value will be TRUE if the mod-2 polynomial is irreducible, or FALSE
if a factor of degree 1 or more is found.

Mod-2 polynomials modulo a mod-2 polynomial

Yet another kind of modular arithmetic is possible, using the set of mod-2 polyno-
mials reduced modulo a fixed mod-2 polynomial S = S(t). For example, Table 6.5
shows the entries of Table 6.3, reduced modulo the polynomial S(t) = t3. In this
kind of arithmetic there are only finitely many distinct elements, in fact 2deg S of
them, with degS = 3 in the example. That is because the degree of the remainder
mod-2 polynomial after division by S must be strictly less than degS, which means
it can have at most degS coefficients, and there are exactly 2deg S such mod-2
polynomial remainders. Addition and multiplication are commutative, associative,
and distributive just like for ordinary integers. Each element has a unique addi-
tive inverse, since there is a unique 0 in each row and column. However, if S is
reducible then its factors will not have multiplicative inverses. In the example,
S(t) = t3 is evidently reducible, and the factor t2 corresponding to 4 has no mul-
tiplicative inverse. This is the only source of trouble: an irreducible polynomial
such as S(t) = t3 + t + 1 will give every nonzero element a unique multiplicative
inverse as well. Table 6.6 illustrates how: there is a unique 1 in each nonzero row
and column of the multiplication table.

Now suppose that S = S(t) is a fixed mod-2 polynomial. We define the checksum
cS(x) = x(t)%S(t) to be the remainder polynomial, of degree less than b = degS,
produced by the polydiv2() function. The coefficients of that remainder will be a
b-bit checksum for x. For example, Table 6.7 shows the checksums of the 32 five-bit
strings, namely the 32 mod-2 polynomials of degree four or less, reduced modulo
the polynomial S(t) = t3 + t+ 1.

Note that mod-2 polynomial checksums may be computed very efficiently with
just bit-shift and exclusive-or operations. It is not necessary to keep the quotient
polynomial, and the degree of the modulus mod-2 polynomial S(t) limits the num-
ber of bits that must be stored. If there are b such bits, for deg S = b, then the
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+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

Table 6.6: Arithmetic with the first eight mod-2 polynomials, reduced modulo
t3 + t+ 1. Left: Addition table, same as always. Right: Multiplication table.

x x base 2 cS(x) x x base 2 cS(x)
0 00000 0 16 10000 6
1 00001 1 17 10001 7
2 00010 2 18 10010 4
3 00011 3 19 10011 5
4 00100 4 20 10100 2
5 00101 5 21 10101 3
6 00110 6 22 10110 0
7 00111 7 23 10111 1
8 01000 3 24 11000 5
9 01001 2 25 11001 4

10 01010 1 26 11010 7
11 01011 0 27 11011 6
12 01100 7 28 11100 1
13 01101 6 29 11101 0
14 01110 5 30 11110 3
15 01111 4 31 11111 2

Table 6.7: Three-bit checksums for all strings of five bits, reduced modulo S(t) =
t3 + t+ 1.
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total number of operations will be O(bN) for N bits of data. Note that in the
following implementation, the bit strings are stored in reverse order, with the first
or highest-order bit occupying index 0, and the last or lowest-order bit at index nb:

Compute a Mod-2 Polynomial Checksum

mod2polychecksum( msg[], nb, mod2poly[], dm ):
[0] For n=0 to nb-dm-1, do [1] to [2]
[1] If msg[n]==1, then do [2]
[2] For d=0 to dm, replace msg[n+d] ^= mod2poly[dm-d]
[3] Let chksum = 0
[4] For n=nb-dm to nb-1, replace chksum = 2*chksum+msg[n]
[5] Return chksum

For CSG-1, suppose that x(t) and y(t) are mod-2 polynomials that differ at
exactly one coefficient. Then x(t) − y(t) = tk for some nonnegative integer k, so
cS(x) = cS(y) if and only if S(t) divides tk. If S(t) is irreducible and degS > 1,
then this is impossible: S(t) must divide t by Corollary 6.18, but then Lemma 6.15
gives the contradiction degS ≤ deg t = 1. For such S, cS will detect all 1-bit errors.

For CSG-2, suppose that x(t) and y(t) differ at exactly two coefficients. Then
x(t) − y(t) = tj(tk + 1) for some integers j ≥ 0 and k > 0. Thus cS(x) = cS(y)
if and only if S(t) divides tj(tk + 1) as a mod-2 polynomial. If S(t) is irreducible
and deg S > 1, then S(t) will not divide tj for any j, as shown in the preceding
paragraph. Thus, Corollary 6.18 implies that cS(x) = cS(y) if and only if S(t)
divides tk + 1, which it must do for some big enough k:

Theorem 6.19 If S(t) is any mod-2 polynomial not divisible by t, then there is an
integer N > 0, depending on S, such that S(t) divides tN + 1, but S(t) does not
divide tk + 1 for any integer 0 < k < N .

Proof: Consider the set {tk %S(t) : k = 0, 1, . . .}, a subset of the mod-2 polynomi-
als of degree less than deg S. The set is finite, forcing tp = tq (mod S(t)) for some
integers p > q ≥ 0. Since S(t) is not divisible by t, S(t) cannot divide tk for any k.
Thus tq �= 0 (mod S(t)), so tp−q = 1 (mod S(t)). Since 1 + 1 = 0 (mod S(t))
we have found n = p− q > 0 such that S(t) divides tn + 1.

Since the set of positive integers {n : tn = 1 (mod S(t))} is nonempty, it has
a smallest element which we may call N . By construction, S(t) does not divide
tk + 1 for any integer 0 < k < N . �

Note that S(t) is not divisible by t if and only if its integer value S(2) is odd.
Let N be the minimal positive integer for an irreducible polynomial S(t) not

divisible by t. Then CSG-2 is achieved for all strings of N or fewer bits, as they
correspond to mod-2 polynomials of degree N − 1 or less.

For checksum goals 3 and 4, detecting other bit errors, note that the mod-
2 polynomial S(t) yields 2d different checksums,10 where d = deg S. Under the
assumption that all values of cS(x) are equally likely with our potential bit strings

10Why doesn’t it yield S(2) checksums?
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x, the probability that two different bit strings have the same checksum is ε = 2−d.
This is made small by choosing S with large degree d.

CRC-32

The standard 32-bit cyclic redundancy code, or CRC-32, gives a comprehensive
example of checksum principles. It is defined by the mod-2 polynomial

S(t) = t32 + t26 + t23 + t22 + t16 + t12 + t11 + t10 + t8 + t7 + t5 + t4 + t2 + t+1. (6.12)

This is represented by the coefficient bitstring 1 0000 0100 1100 0001 0001 1101
1011 0111 (base 2) = 4 374732 215 (base 10) = 104C11DB7 (base 16). Trial division
with the 216 = 65536 mod-2 polynomials of degree 16 or less shows that S(t) is
irreducible. Likewise, after a few billion shift and exclusive-or operations, we can
show that S(t) divides tN + 1 for no smaller exponent than N = 4294967295 =
232 − 1. Hence, using S(t) as a checksum modulus achieves CSG-1 and CSG-2 for
all strings of fewer than 4 gigabits. Degree 32 insures that CSG-4 is achieved with
probability ε = 2−32 < 10−9

The POSIX 1003.2 and ISO 8802-3 standard implementation of the CRC-32
checksum is based on computing the remainder modulo S(t), but it performs a few
more steps to achieve CSG-3. The checksum s = cS(x) of a bitstring x, where s(t)
and x(t) are both treated as mod-2 polynomials, satisfies

t32x̃(t) = q(t)S(t) + s̃(t),

where x̃ is derived from x by padding the end with zero bits to get an integral
number of 8-bit bytes, then appending this number of bytes in binary to the end
of x in the fewest bytes sufficient to encode it. Thus the degree of x̃(t) is a little
greater than deg x. Finally, the checksum s is derived from s̃ by complementing
each bit, which of course makes no practical difference.

6.3 Exercises

1. Label the vertices in the two graphs of Figure 6.1, and use your labeling to
list the set of edges for each. Then pick a root for the right-side graph, which
is a tree, determine the depth, and list the vertices by generation.

2. Construct a prefix code for the alphabetA = {a, b, c, d} with codeword lengths
1,2,2,3, or prove that none exists.

3. Suppose we have two prefix codes, c0(a, b, c) = (1, 00, 01) and c1(a, b, c) =
(0, 10, 11), for the alphabet A = {a, b, c}. Show that the following dynamic
encoding is uniquely decipherable by finding a decoding algorithm:
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Dynamic Encoding Example
dynamicencoding( msg[], M ):
[0] Initialize n=0
[1] For m=1 to M, do [2] to [3]
[2] Transmit msg[m] using code n
[3] If msg[m]==‘c’, then toggle n = 1-n

(This encoding is called dynamic because the codeword for a letter might
change as a message is encoded, in contrast with the static encodings studied in
this chapter. It gives an example of a uniquely decipherable and instantaneous
code which is nevertheless not a prefix code.)

4. Suppose that ps = p(x1x2 · · ·xs)
def= p(x1)p(x2) · · · p(xs) is a probability func-

tion on As derived from the probability function p on A. Show that H(ps) =
sH(p).

5. Count, with proof, the binary trees of depth 3 or less.

6. Suppose n > 0. Show that there are infinitely many binary trees with n leaves.
(Hint: Consider the case n = 1 and linear trees of K daughters between the
root and the leaf.)

7. Generalize Huffman’s algorithm to 10-ary trees, which would be used to build
codes from strings in base 10. (Hint: consider the 3-ary case first.)

8. Construct a Huffman code for the alphabet A = {a, b, c, d, e, f, g, h} with
occurrence probabilities p = (.20, .05, .08, .17, .30, .05, .10, .05). Compare its
bit rate with H(p).

9. Find a Huffman code for the following message, compute its bit rate, and
compare it to the entropy of the message:

Trustworthy, loyal, helpful, friendly, courteous, kind, obedient, cheerful,
thrifty, brave, clean, reverent.

For simplicity, ignore all spaces, punctuation marks, and capitalization.

10. Construct a canonical Huffman code for the alphabet and occurrence probabil-
ities of Exercise 8, with the property that no letter has a codeword consisting
of just 1-bits. Compute its bit rate.

11. What is the probability of an undetected error in N data bits if they have
probability p of being flipped but the parity bit has a possibly different prob-
ability q of being flipped?

12. Find a binary code with four 10-bit or shorter codewords, wherein restoration
to the nearest codeword corrects any two or fewer bit flips.
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13. Prove that casting out elevens will detect all one-digit errors in decimal arith-
metic. Find an example one-decimal-digit error undetected by casting out
nines.

14. Will the combination of checksums c9 and c11 detect all 2-digit errors in
decimal arithmetic?

15. Suppose that x and y are integer-size mod-2 polynomials for your computer.
Find an alternate implementation of Euclid’s algorithm on page 213 using
bitwise integer operations. (Hint: look at Euclid’s algorithm for integers on
page 4.)

16. Suppose that x, y, z are mod-2 polynomials. Prove that if z divides xy and
x, z are relatively prime, then z divides y. (This is Lemma 6.16.)

17. a. Show that the mod-2 polynomial t3 + t+ 1 is irreducible.

b. Find a factorization of the mod-2 polynomial t4 + t2 + 1.

18. For the following mod-2 polynomials s(t), find the least positive integer N
such that s(t) divides tN + 1:

a. s(t) = t3 + t+ 1

b. s(t) = t12 + t11 + t3 + t2 + t+ 1.

c. s(t) = t16 + t15 + t2 + 1.

d. s(t) = t24 + t23 + t14 + t12 + t8 + 1.

19. For the CRC-32 mod-2 polynomial s(t) = t32 + t26 + t23 + t22 + t16 + t12 +
t11 + t10 + t8+ t7 + t5+ t4 + t2 + t+1, or 100000100110000010001110110110111
(base 2), show that the least positive integer N for which s(t) divides tN + 1
is N = 4294967295 = 232 − 1.

20. Encode the text string “Elephants are approaching from the South!” into
ASCII, using seven low-order data bits plus one leading parity bit per char-
acter to preserve even parity.

21. Using the mod-2 polynomial S(t) = t3+t+1, compute the three-bit checksum
for the encoding of “Elephants are approaching from the South!” obtained
in previous Exercise 20. Do the same for a similar encoding of “Elephants
are approaching from the North!” and “Elephants are approaching from the
NORTH!” Do the checksums distinguish these messages?

6.4 Further Reading

• Robert B. Ash. Information Theory. Dover Publications, New York, 1965
and 1990. ISBN 0-486-66521-6.
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glewood Cliffs, New Jersey, second edition, 1986. ISBN 0131390724.

• Andrew S. Tanenbaum. Computer Networks. Prentice Hall, Englewood Cliffs,
New Jersey, third edition, 1996. ISBN 0-13-349945-6.

• Stephen B. Wicker. Error Control Systems for Digital Communication and
Storage. Prentice-Hall, Upper Saddle River, New Jersey, 1995. ISBN 0-13-
200809-2.

• Ross N. Williams. A Painless Guide to CRC Error Detection Algorithms.
Rocksoft Pty Ltd., Adelaide, South Australia, 1993. Available from URL
ftp://ftp.rocksoft.com/papers/crc_v3.txt.





Appendix A

Answers

A.1 . . . to Chapter 1 Exercises

1. Solution: If a divides b and b divides a, one can only conclude that |a| = |b|.
�

2. Solution: Translate the pseudocode on page 4:

Standard C Function: Greatest Common Divisor
int gcd ( int a, int b ) {
int c;
while ( a != 0 ) {

c = a; a = b%a; b = c;
}
return b;

}

Note that Euclid’s algorithm is recursive: if a = 0, then gcd(a, b) = b; other-
wise, gcd(a, b) = gcd(b%a, a). Hence it has another implementation:

Recursive Standard C Function: Greatest Common Divisor
int gcd ( int a, int b ) {
if ( a==0 ) return b;
return gcd ( b%a, a );

}

�

3. Solution: Suppose p and q are prime with p �= q, and let c = gcd(p, q).
Recall that their definitions require c > 0, p > 1 and q > 1. Since c divides
p, either c = 1 or c = p. Since c also divides q, either c = 1 or c = q. Since
p �= q, the only solution is therefore c = 1. �

223
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4. Solution: Using trial division, we discover that the numbers factor as fol-
lows: 299792458 = (2)(7)(73)(293339), 6447287 = (7)(11)(31)(37)(73), and
256964964 = (2)(2)(3)(73)(293339). The only prime factor common to all
three is 73. However, finding these factorizations required

√
293339 ≈ 103

operations, because of the large prime factor 293339.

Euclid’s algorithm finds the solution with far fewer operations. We first com-
pute gcd(299792458, 6447287) = 511, by

299792458%6447287 = 3217256,
6447287%3217256 = 12775,

3217256%12775 = 10731,
12775%10731 = 2044,
10731%2044 = 511,

2044%511 = 0.

Then gcd(256964964, 511) = 73, since

256964964%511 = 438,
511%438 = 73,
438%73 = 0.

Then we use the fact that gcd(a, b, c) = gcd(a, gcd(b, c)). �

5. Solution: First compute gcd(2301, 19687) = 1, using Euclid’s algorithm,
to insure by Lemma 1.6 that a quasi-inverse exists. Then, translate the
pseudocode on page 8 to compute it:

Standard C Program: Quasi-inverses
#include <stdio.h>
int main ( void ) {
int a, b, x, y, xo, yo, c, d, t, q, r;
a = 2301; b = 19687;
c=a; d=b; x=0; yo=0; y=1; xo=1;
while ( (r=c%d) > 0 )
{

q=c/d; c=d; d=r; t=xo; xo=x;
x=t-q*x; t=yo; yo=y; y=t-q*y;

}
printf("Inputs a=%d, b=%d;\n", a, b );
printf("Outputs x=%d, y=%d, gcd(a,b)=d=%d\n",

x, y, d );
return 0;

}

This prints
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Inputs a=2301, b=19687;
Outputs x=-3294, y=385, and gcd(a,b)=d=1

The quasi-inverse x = −3294 should be adjusted by adding 19 687, making it
16 393 and bringing it into the range {0, 1, . . . , 19 686}. �

6. Solution: Overflow occurs if and only if the sum of two positive numbers
x, y gives the w-bit twos complement representation of a negative number,
which will happen if and only if 0 < x < 2w−1 and 0 < y < 2w−1, but
2w−1 ≤ x + y < 2w considered as counting numbers. But then the sign bit,
number w − 1, of both x and y must be 0, so that x+ y causes no carry out
from bit w − 1 to bit w. However, sign bit w − 1 of x + y is 1, which must
have come in as a carry.

Underflow occurs if and only if the sum of two negative numbers x, y gives
a w-bit twos complement positive number. This will happen if and only if
2w−1 ≤ x < 2w and 2w−1 ≤ y < 2w, but 2w < x + y < 2w + 2w−1, where
everything is considered a counting number. But then the sign bit, number
w − 1, of both x and y must be 1, so that x + y causes a carry out from bit
w − 1 to bit w. However, sign bit w − 1 of x + y is 0, which means there
cannot have been a carry in to bit w − 1 from bit w − 2. �

7. Solution: 14 600 926 (base 10) equals DECADE (base 16). �

8. Solution: If
√
p were a rational number, we could write

√
p = a/b in lowest

terms, namely using relatively prime a, b ∈ Z. But then b2p = a2, so p divides
a2. By Lemma 1.3, p divides a, so we can write a = pa0 with a0 ∈ Z. But then
p = p2a2

0/b
2, so b2 = pa2

0 and consequently p divides b2. Again by Lemma
1.3, p divides b. Hence a, b share the common divisor p > 1, contradicting the
hypothesis that they are relatively prime. �

9. Solution: Below is a Standard C implementation of the algorithm on page
9:

Standard C Program: Decimal to Hexadecimal and Binary
#include <stdio.h>
int main ( void ) {
int x;
printf("Enter a positive integer (base 10): ");
scanf( "%d", &x);
printf("%d (base 10) = %x (base 16) = (2 esab) ",x,x);
for ( ; x>0 ; x /= 2 ) putchar( x&1 ? ’1’ : ’0’ );
putchar(’\n’);
return 0;

}

�
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10. Solution: The integer part of π, namely 3, will be the first hexadecimal digit.
The remaining seven, plus one more for use in rounding, will be brought to
the left of the decimal point if we multiply by 168 = 232 = 4 294 967 296 to
get 232π ≈ 13 493 037 704.5. Then we use a variation of the program from the
solution to Exercise 9:

Standard C Program: Print Eight Hexadecimal Digits of Pi
#include <stdio.h>
int main(void) {
long long int pihex;
pihex = (long long int)(3.1415926535897932*(1LL<<32));
printf("Reversed PI: ");
do { printf("%X ",(int)(pihex%16)); pihex/=16;
} while(pihex);
printf("(esab 16)\n");
return 0;

}

Its output is:

Reversed PI: 8 8 A 6 F 3 4 2 3 (esab 16)

which means that π ≈ 3.243F6A88 (base 16). Since the least significant
digit is the middle value 8, both 8-digit hexadecimal approximations π ≈
3.243F6A9 (base 16) and π ≈ 3.243F6A8 (base 16) are equally close. �

11. Solution: The truncation error will be 2−52, or about 2.2 × 10−16 so there
are 15 decimal digits of accuracy. �

12. Solution: The sum in exact arithmetic is 1.0 × 108, of course, but on the
example machine with εf = 1.19209290×10−7, the following program printed
sum = 1.677722e+07:

Standard C Program to Add 108 Floating-Point 1.0’s
#include <stdio.h>
int main ( void ) {
float sum=0; long i;
for ( i=0; i<100000000L; i++ ) sum += 1.0;
printf( "sum = %e\n", sum); return 0;

}

Notice that sum, which is approximately 2/εf = 1/ε0, stopped increasing at
a value for which 1/sum = ε0 < εf . �

13. Solution: The following Standard C code reads the bits as a text string:
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Standard C Program: Read IEEE 32-bit Floating Point
#include <stdio.h>
#include <math.h>
int main ( void ) {
int s, e, f, power;
printf("IEEE reader: Enter 32 bits, each 0 or 1:\n");
s = ( getchar()==’0’ ) ? ’+’ : ’-’ ; /* sign */
for( e=0, power=1<<7 ; power>0 ; power/= 2 )

if( getchar()==’1’ ) e += power; /* exponent */
for ( f=0, power=1<<22 ; power>0 ; power/=2 )

if( getchar()==’1’ ) f += power; /* mantissa */
if( e==255 )

if( f==0 ) printf("%c infinity", s);
else printf("NaN");

else
if( e==0 )
if( f==0 ) printf("%c 0", s);
else printf("%c %.7e (subnormal)",

s, pow(2.0,-126.0)*(f/(double)(1<<23)) );
else printf("%c %.7e",

s, pow(2.0,e-127.0)*(1.0+f/(double)(1<<23)));
putchar(’\n’);
return 0;

}
�

14. Solution: Let F (x) = x1/x2, so ∇F (x) = (1/x2,−x1/x
2
2). Thus M1 ≈

1/|x2| and M2 ≈ |x1|/|x2
2|, so the right-hand side of Inequality 1.11 simplifies

to (
1 +

|x1/x2| + |x1/x2|
|x1/x2|

)
εf = 3εf ,

which is slightly better than Inequality 1.7. �

15. Solution: a. Well-conditioned: Let F (x, y) =
√
x2 + y2, so

∇F (x, y) = (x/
√
x2 + y2, y/

√
x2 + y2).

The right-hand side of Inequality 1.11 becomes 2εf .

b. Well-conditioned except near x = 1: Let F (x) = x log x, so F ′(x) =
1 + log x. Note that

|xF ′(x)/F (x)| = |(x+ x log x)/x log x| =
∣∣∣∣1 +

1
log x

∣∣∣∣ ,
which is large near x = 1 but bounded elsewhere.
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c. Ill-conditioned near any integer x = k: The function F (x) = �x� is dis-
continuous at each integer k, so for any ε > 0 we can find real numbers x, y
with k < x < k + 1, k − 1 < y < k, and 0 < |x− y| < ε, such that F (x) = k
while F (y) = k − 1. If k = 0, then F (x) = 0 and the relative error in F (x) is
undefined. If k �= 0, then |F (x) − F (y)|/|F (x)| = 1 = 1

εf
εf , and εf � 1. �
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A.2 . . . to Chapter 2 Exercises

1. Solution: The 5-cube is created by sweeping the 4-cube through a fifth axis.
It has 25 = 32 vertices. We get 64 edges from the front and back 4-cubes,
plus 16 new edges joining corresponding vertices on the front and back, for a
total of 80.

A general formula may be developed recursively. Let v(N), e(N) be the num-
ber of vertices and edges, respectively, of an N -cube. We may consider the
0-cube to be a single point, so v(0) = 1 and e(0) = 0. The 1-cube is a unit line
segment, so v(1) = 2 and e(1) = 1. Counting the vertices gives v(N) = 2N ,
and for the edges we reason as in the previous paragraph to get the relation

e(N + 1) = 2e(N) + v(N) = 2e(N) + 2N , N ≥ 1.

This has the closed form solution e(N) = N2N−1, as may be proved by
induction. �

2. Solution: The zero subspace {0} ⊂ RN is zero-dimensional. For k =
1, . . . , N , let Yk = span {e1, . . . , ek}. Then Yk is a k-dimensional subspace of
RN . �

3. Solution: Fix N and let {en} be the standard basis for CN . Then e1 =
(1, 0, . . . , 0) satisfies ‖e1‖1 = ‖e1‖2 = ‖e1‖∞ = 1, making the right column
into equalities, while fN = e1 + · · · + eN = (1, 1 . . . , 1) satisfies ‖fN‖1 = N ,
‖fN‖2 =

√
N , and ‖fN‖∞ = 1, giving equalities in the left column. �

4. Solution: (i) ⇒ (ii): Given vectors x′,y′ and scalars a, b, substitute x ← ax′

and y ← by′ into the triangle inequality ‖x + y‖ ≤ ‖x‖ + ‖y‖ from (i), and
then expand.

(ii) ⇒ (i): For the triangle inequality, take a = b = 1 in (ii). To show that
‖ax‖ = |a| ‖x‖, start by taking b = 0 in condition (ii) to get ‖ax‖ ≤ |a| ‖x‖
for every scalar a. Then using this inequality with a = 1 = 1

c · c shows that
for all c �= 0,

‖x‖ = ‖1
c
· cx‖ ≤ 1

|c| ‖cx‖ ⇒ |c| ‖x‖ ≤ ‖cx‖.

But 0 = |0| ‖x‖ ≤ ‖0x‖ = 0, so this second inequality |a| ‖x‖ ≤ ‖ax‖ actually
holds for all scalars a. Combined with the first inequality, it implies that
‖ax‖ = |a| ‖x‖ for all scalars a. �

5. Solution: If x ∈ Y and x ∈ Y⊥, then ‖x‖2 = 〈x,x〉 = 0, so x = 0 because
the derived norm is nondegenerate. Note that Y ∩Y⊥ = ∅ if 0 /∈ Y. For the
second part, apply definition 2.30: for any y ∈ Y, we have 〈x,y〉 = 0 for all
x ∈ Y⊥, so Y ⊂ (Y⊥)⊥. �
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6. Solution: Any y ∈ Y may be expanded as y =
∑N

n=1 anyn for some scalars
a1, . . . , aN . Thus 〈x,y〉 =

∑N
n=1 an 〈x,yn〉 = 0, since every term is zero by

hypothesis. �

7. Solution: First note that these three vectors are linearly independent: if
ax + by + cz = 0, then (a+ b + c, a, a+ b, a+ c) = (0, 0, 0, 0), which implies
a = b = c = 0. Applying the recursive Gram-Schmidt construction gives the
orthonormal set {p,q, r}, where

p =
1

‖x‖x =
(

1
2
,
1
2
,
1
2
,
1
2

)
;

q′ = y − 〈p,y〉p =
(

1
2
,−1

2
,
1
2
,−1

2

)
= q;

r′ = z − 〈p, z〉p − 〈q, z〉q =
(

1
2
,−1

2
,−1

2
,
1
2

)
= r,

since both q′ and r′ happen to be unit vectors. �

8. Solution: Recall that {en : n = 1, . . . , N} is an orthonormal basis for EN .

If i = j, then 〈f ′i , fi〉 = 〈ei − ei+1, e1 + · · · + ei〉 = 〈ei, ei〉 = 1.

If i > j, then 〈f ′i , fj〉 = 〈ei − ei+1, e1 + · · · + ej〉 = 0, since no component of
the left factor is present in the right.

If i < j, then the left and right factors of the inner product share exactly two
components:

〈f ′i , fj〉 = 〈ei − ei+1, e1 + · · · + ej〉 = 〈ei, ei〉 + 〈−ei+1, ei+1〉 = 1 − 1 = 0.

Thus 〈f ′i , fj〉 = δ(i− j). �

9. Solution: If u and v are continuous functions, then so is ūv, so the Riemann
integral of ūv exists.

Hermitean symmetry follows from the identities v̄u = ūv and
∫ 1

0
w̄(t) dt =∫ 1

0
w(t) dt.

Nondegeneracy follows from the fact that if w = w(t) is nonnegative and
continuous on [0, 1] and satisfies

∫ 1

0
w(t) dt = 0, then w(t) = 0 for every

t ∈ [0, 1]. Taking w(t) = |u(t)|2 then shows that 〈u, u〉 = 0 if and only if
u(t) = 0 at all t ∈ [0, 1].

Linearity follows since ū(av + bw) = aūv + būw for any continuous functions
u, v, w on [0, 1] and any complex numbers a, b. The linearity of the Riemann
integral then implies 〈u, av + bw〉 = a 〈u, v〉 + b 〈u,w〉. �

10. Solution: By the triangle inequality, for every x �= 0 we have

‖(S + T )x‖ ≤ ‖Sx‖ + ‖Tx‖ ≤ ‖S‖op‖x‖ + ‖T ‖op‖x‖.
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Now divide by ‖x‖ > 0 to get ‖S + T‖op ≤ ‖S‖op + ‖T ‖op.

Since ‖aTx‖ = |a| ‖Tx‖ for every x, and for every ε > 0 there is some x with
(‖T ‖op − ε)‖x‖ < ‖Tx‖ ≤ ‖T ‖op‖x‖, we conclude that for every ε > 0 there
is some x with (|a| ‖T ‖op − |a|ε)‖x‖ < ‖aTx‖ ≤ |a| ‖T ‖op‖x‖. But then we
must have ‖aT‖op = |a| ‖T ‖op.

To show that ‖ST‖op ≤ ‖S‖op‖T ‖op, observe that ‖STx‖ ≤ ‖S‖op‖Tx‖ ≤
‖S‖op‖T ‖op‖x‖. �

11. Solution: The Hilbert–Schmidt norm is derived from the Hermitean in-
ner product 〈A,B〉 =

∑
m,nA(m,n)B(m,n) on MN -dimensional complex

Euclidean space, with ‖A‖HS =
√〈A,A〉. Hence it is nondegenerate, and it is

sublinear by the Minkowski inequality. To prove submultiplicativity, we first
expand in matrix coefficients. Since A,B can be composed into AB, we must
have A ∈ Mat(M ×K) and B ∈ Mat(K ×N) for positive integers M,K,N .
But then

‖AB‖2
HS =

M∑
m=1

N∑
n=1

∣∣∣∣∣
K∑

k=1

A(m, k)B(k, n)

∣∣∣∣∣
2

=
∑
m,n

| 〈A∗
m, Bn〉 |2,

where Bn is the nth column of B and A∗
m is the mth column of A∗, namely

the complex conjugate of the mth row of A, and 〈x,y〉 =
∑

k x̄(k)y(k) is the
usual Hermitean symmetric inner product on complex Euclidean K-space.
By the Cauchy–Schwarz inequality relating this inner product to the norm
‖x‖ =

√〈x,x〉, we have

| 〈A∗
m, Bn〉 |2 ≤ ‖A∗

m‖2‖Bn‖2 =

(∑
k

|A(m, k)|2
)(∑

k′
|B(k′, n)|2

)
,

since |z̄| = |z| for every z. After summing in m and n we get

‖AB‖2
HS ≤

⎛⎝∑
m,k

|A(m, k)|2
⎞⎠⎛⎝∑

k′,n

|B(k′, n)|2
⎞⎠ = ‖A‖2

HS‖B‖2
HS.

Taking square roots gives the desired inequality. �

12. Solution: Write A = {A(m,n)} and B = {B(m,n)}. Substituting A← A∗

in Equation 2.46 gives

tr (A∗B) =
∑

n

∑
k

A∗(n, k)B(k, n) =
∑

n

∑
k

A(k, n)B(k, n) = 〈A,B〉 .

Equation 2.46 also gives tr (BA∗) = tr (A∗B) = 〈A,B〉. Next, note that
tr (C∗) = tr (C) for any square matrix C. Since AB∗ = (BA∗)∗ and B∗A =
(A∗B)∗ are square, we get tr (AB∗) = tr (B∗A) = 〈A,B〉.
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Finally, substituting B ← A in the first result yields 〈A,A〉 = tr (A∗A) =
tr (AA∗), since 〈A,A〉 is real-valued, and the second result follows since ‖A‖HS

is the derived norm. �

13. Solution: First note that PY is linear, since the inner product is linear in
the second factor. Second, note that PYx ∈ spanY for each x ∈ X. Third,
note that PYyk = yk for k = 1, . . . , N , so spanY ⊂ PYX. Hence PY is a
linear transformation of X onto Y.

For the projection property, use linearity to compute

P 2
Yx = PY

(
N∑

k=1

〈yk,x〉yk

)
=

N∑
j=1

〈
yj ,

N∑
k=1

〈yk,x〉yk

〉
yj

=
N∑

j=1

N∑
k=1

〈yk,x〉 〈yj ,yk〉yj =
N∑

j=1

〈yj ,x〉yj = PYx,

since 〈yj ,yk〉 = 1 for k = j and is zero otherwise. Thus PY is a projection.

To show that it is an orthogonal projection, we show that PY is selfadjoint
and use Lemma 2.21. But for arbitrary x, z ∈ X,

〈z, PYx〉 =

〈
z,

N∑
k=1

〈yk,x〉yk

〉
=

N∑
k=1

〈yk,x〉 〈z,yk〉

=
N∑

k=1

〈yk, z〉 〈yk,x〉 =
N∑

k=1

〈〈yk, z〉yk,x〉

=

〈
N∑

k=1

〈yk, z〉yk,x

〉
= 〈PYz,x〉 ,

which shows that P ∗
Y = PY. �

14. Solution: a. The set YN = {yn : n = 1, . . . , N} is orthonormal in X for any
N , so by Exercise 13, the following is an orthogonal projection onto spanYN :

PNx def=
N∑

n=1

〈yn,x〉yn.

Evidently xN = PNx, so ‖xN‖ ≤ ‖x‖, and thus ‖xN‖2 ≤ ‖x‖2, by Lemma
2.20. Finally, we use the orthonormality of YN and the linearity and Her-
mitean symmetry of the inner product to expand

‖xN‖2 = 〈xN ,xN 〉 =

〈
N∑

n=1

〈yn,x〉yn,

N∑
m=1

〈ym,x〉ym

〉

=
N∑

n=1

N∑
m=1

c(n)c(m) 〈yn,ym〉 =
N∑

n=1

|c(n)|2.
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b. We begin by expanding ‖x−xN‖2 = 〈x − xN ,x − xN 〉 = ‖x‖2 + ‖xN‖2 −
〈x,xN 〉 − 〈xN ,x〉. Now let PN be the orthogonal projection defined in part
(a), so xN = PNx. Then

〈x,xN 〉 = 〈x, PNx〉 =
〈
x, P 2

Nx
〉

= 〈PNx, PNx〉 = 〈xN ,xN 〉 = ‖xN‖2,

and also 〈xN ,x〉 = ‖xN‖2, by Hermitean symmetry. Substitution for the two
inner products in the initial expansion gives

‖x− xN‖2 = ‖x‖2 − ‖xN‖2.

Thus if ‖x− xN‖ → 0 as N → ∞, then ‖xN‖2 → ‖x‖2, as N → ∞. Part (a)
then implies convergence of the series:

∞∑
n=1

|c(n)|2 = lim
N→∞

N∑
n=1

|c(n)|2 = lim
N→∞

‖xN‖2 = ‖x‖2.

Conversely, if
∑∞

n=1 |c(n)|2 = ‖x‖2, then ‖xN‖2 → ‖x‖2 as N → ∞. Thus
‖x− xN‖2 → 0, and so ‖x− xN‖ → 0, as N → ∞. �

15. Solution: Let en ∈ �2 be the elementary sequence (0, . . . , 0, 1, 0, . . .), where
the single nonzero coordinate appears at index n. Then ‖en‖ = 1, but
‖Ten‖ = n, which grows without bound as n → ∞. Hence there is no fi-
nite c satisfying ‖Ten‖ ≤ c‖en‖ for all n. �

16. Solution: To prove the first equality, write Gij(θ)Gij(−θ) as

[Id− (eii + ejj) + cos θ (eii + ejj) + sin θ (eij − eji)] ×
× [Id− (eii + ejj) + cos θ (eii + ejj) − sin θ (eij − eji)]

= Id− (eii + ejj) +
(
cos2 θ + sin2 θ

)
(eii + ejj) = Id.

The second equality follows from sin(−θ) = − sin θ, and the third follows
since Gij(θ) is real-valued. �

17. Solution: Write L = Id+L′ for the matrix, where Id is theN×N multiplica-
tive identity matrix. Id is zero except for ones on the main diagonal, and L′

is the matrix of zeroes except for the subdiagonal part of column k. We need
to show that L−1 = Id−L′. But (Id+ L′)(Id−L′) = Id+ L′ −L′ + L′L′ =
Id + L′L′, so it suffices to show that L′L′ = 0. But that is evident, since
L′(i, j) = 0 if j �= k or i ≤ k, so the product L′(i, n)L′(n, j) is zero for all
i, j, n, so L′L′(i, j) =

∑
n L

′(i, n)L′(n, j) = 0 for all i, j. The result now
follows from the uniqueness of inverse matrices. �

18. Solution: Suppose A,B are lower-triangularN×N matrices. Then A(i, j) =
0 and B(i, j) = 0 if i < j. But then A(i, k)B(k, j) = 0 if i < k or k < j,
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and one of these will be true for all k ∈ {1, . . . , N} if i < j, so AB(i, j) =∑
k A(i, k)B(k, j) = 0 for i < j, so AB is also lower-triangular.

The proof for upper-triangular A,B is obtained by replacing ‘lower’ with
‘upper’ and replacing ‘<’ with ‘>’ in the previous paragraph. �

19. Solution: A Pascal program to perform these calculations and graphical
displays is available at the author’s web site, http://www.math.wustl.edu/
~victor/software/qube/cube.pas. �
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1. Solution: The 1-periodization of the function f(x) = e−|x|, for 0 ≤ x < 1,
is given by

∞∑
k=−∞

e−|x+k| =
−1∑

k=−∞
ex+k +

∞∑
k=0

e−x−k

= ex
−1∑

k=−∞
ek + e−x

∞∑
k=0

e−k

= ex−1
0∑

k=−∞
ek + e−x

∞∑
k=0

e−k

=
ex + e1−x

e− 1
.

�

2. Solution: a. That δε and τα are linear transformations follows from their
pointwise operation:

τα[au+ bv](t) = au(t− α) + bv(t− α) = aταu(t) + bταv(t);
δε[au+ bv](t) = aε−1/2u(t/ε) + bε−1/2v(t/ε) = aδεu(t) + bδεv(t).

To show invertibility, compute

τατ−αu(t) = [τ−αu](t− α) = u([t− α] − (−α)) = u(t);

δεδ1/εu(t) = ε−1/2[δ1/εu](t/ε) = ε−1/2(1/ε)−1/2u

(
[t/ε] · 1

(1/ε)

)
= u(t).

Invertibility in the other order is shown by substituting α ← −α and ε← 1/ε,
respectively.
b. First compute δε[ταw](t) = ε−1/2[ταw](t/ε) = ε−1/2w

(
t
ε + α

)
. In the other

order, τα[δεw](t) = [δεw](t− α) = ε−1/2w
(

t−α
ε

)
.

c. Using parts a and b, we compute v(t) = δ−1
ε τ−1

α u(t) = ε1/2u(εt+α). Thus,
we may compute ταδεFδ−1

ε τ−1
α u(t) from Equation 3.14 as follows:

ταδεFv(t) = ε−1/2 ×
⎧⎨⎩
r
(

t−α
ε

)
v
(

t−α
ε

)
+ r
(

α−t
ε

)
v
(

α−t
ε

)
, if t−α

ε > 0,
r̄
(

α−t
ε

)
v
(

t−α
ε

)− r̄
(

t−α
ε

)
v
(

α−t
ε

)
, if t−α

ε < 0,
v(−α/ε), if t−α

ε = 0,

Now note that ε−1/2v
(

t−α
ε

)
= u(t), while ε−1/2v

(
α−t

ε

)
= u(2α− t), for every

t ∈ R. Combining this with a simplification of the range limits gives:

ταδε F δ
−1
ε τ−1

α u(t) =

⎧⎨⎩ r
(

t−α
ε

)
u(t) + r

(
α−t

ε

)
u(2α− t), if t > α,

r̄
(

α−t
ε

)
u(t) − r̄

(
t−α

ε

)
u(2α− t), if t < α,

u(α), if t = α.
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Finally, observe that

r

(
t− α

ε

)
=
{

1, if t ≥ α+ ε,
0, if t ≤ α− ε, r

(
α− t

ε

)
=
{

0, if t ≥ α+ ε,
1, if t ≤ α− ε.

These valuations result in the formula in Equation 3.20.

d. Performing the previous calculation, but starting from Equation 3.15, we
get

S(r, α, ε)u(t) = ταδε S δ
−1
ε τ−1

α u(t)

=

⎧⎨⎩ r̄(
t−α

ε )u(t) − r(α−t
ε )u(2α− t), if α < t ≤ α+ ε,

r(α−t
ε )u(t) + r̄( t−α

ε )u(2α− t), if α− ε ≤ t < α,
u(t), otherwise.

Finally, since the inverse of ταδε is δ−1
ε τ−1

α = δ1/ετ−α, we can simplify

S(r, α, ε)F (r, α, ε) =
(
ταδε S δ

−1
ε τ−1

α

) (
ταδε F δ

−1
ε τ−1

α

)
= ταδε SF δ

−1
ε τ−1

α = ταδεδ
−1
ε τ−1

α = Id,

since SF = Id. The other order, F (r, α, ε)S(r, α, ε) = Id, likewise follows
from FS = Id. �

3. Solution: Suppose that r is a rising cut-off function and ε < T/2. Write
F0 = F (r, 0, ε) and FT = F (r, T, ε) for the fraying operators at 0 and T ,
respectively. Since u(t+T ) = u(t) for all t, the function v def= F0FTu satisfies
v(t + T ) = v(t) for all −T

2 ≤ t ≤ T
2 . In particular, that means vI(t) = v(t)

for all −ε ≤ t ≤ T + ε. Also, v(t) = u(t) if t lies between ε and T − ε, outside
the reach intervals of F0 and FT .

Now put I = [0, T ]. The second formula for the loop operator, Equation 3.23,
simplifies to

LIv(t) =

⎧⎨⎩S(r, 0, ε)v(t), if 0 < t ≤ ε;
S(r, T, ε)v(t), if T − ε ≤ t < T ;
v(t), otherwise.

Writing S0 = S(r, 0, ε) and ST = S(r, T, ε) for the splicing operators at 0 and
T , one calculates

LIv(t) =

⎧⎨⎩S0F0u(t) = u(t), if 0 < t ≤ ε,
STFTu(t) = u(t), if T − ε ≤ t < T ,
v(t) = u(t), if ε ≤ t ≤ T − ε.

Thus LIF0FTu = u on I, so (LIF0FTu)I = uI = u on R. �

4. Solution: (i) t > 1 implies F̃ u(t) = 1̄u(t) = u(t) and S̃u(t) = 1u(t) = u(t).
Likewise, t < −1 implies F̃u(t) = 1u(t) = u(t) and S̃u(t) = 1̄u(t) = u(t).
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The rest may be shown directly by modifying Equations 3.18 and 3.19 and
the proof of Lemma 3.4. However, notice that F̃ = RFR and S̃ = RSR,
where the reflection R is defined by Ru(t) = u(−t):

RFRu(t) =

⎧⎨⎩ r(−t)Ru(−t) + r(t)Ru(t), if −t > 0,
r̄(t)Ru(−t) − r̄(−t)Ru(t), if −t < 0,
u(0), if t = 0,

=

⎧⎨⎩ r(−t)u(t) + r(t)u(−t), if t < 0,
r̄(t)u(t) − r̄(−t)u(−t), if t > 0,
u(0), if t = 0,

= F̃ u(t);

RSRu(t) =

⎧⎨⎩ r̄(−t)Ru(−t) − r(t)Ru(t), if −t > 0,
r(t)Ru(−t) + r̄(−t)Ru(t), if −t < 0,
u(0), if t = 0,

=

⎧⎨⎩ r̄(−t)u(t) − r(t)u(−t), if t < 0,
r(t)u(t) + r̄(−t)u(−t), if t > 0,
u(0), if t = 0,

= S̃u(t).

(ii) R is a linear transformation, since R[au + bv](t) = au(−t) + bv(−t) =
aRu(t)+ bRv(t). Since F, S are also linear transformations, the compositions
F̃ = RFR and S̃ = RSR are linear transformations as well.

(iii) R2 = Id, so F̃ S̃ = (RFR)(RSR) = RFR2SR = RFSR = R2 = Id, and
similarly, S̃F̃ = (RSR)(RFR) = Id.

(iv) By the chain rule, Ru has the same smoothness as u, with [Ru](n)(t) =
(−1)nu(n)(−t). Thus for odd n it is

[F̃ u](n)(0−) = [RFRu](n)(0−) = (−1)n[FRu](n)(0+) = 0,

since by Lemma 3.4, [FRu](n)(0+) = 0 for odd n. Likewise, [F̃ u](n)(0+) =
[RFRu](n)(0+) = (−1)n[FRu](n)(0−) = 0 for even n.

(v) Note that [Ru](n)(0+) = −u(n)(0−) = 0 for odd n, and [Ru](n)(0−) =
u(n)(0+) = 0 for even n. Lemma 3.4 implies that SRu belongs to Cd, but
then so does its reflection RSRu = S̃u.

Finally, observe that r is a rising cut-off function if and only if r̄ is, so that
replacing r ← r̄ in the definitions of F and S, or F̃ and S̃, gives two more
fraying-splicing pairs. Note too that if r = r̄ then F̃ = S and S̃ = F , so that
fraying and splicing are the same except for a reflection of t. �

5. Solution: Start by proving that if all the higher-order derivatives of f = f(t)
exist and are bounded at all t �= ±1, and f has k vanishing derivatives at
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t = ±1 and also satisfies f(−1) = 0, f(1) = 1, then

g(t) def=

{ 0, if t ≤ −1,
f
(
sin π

2 t
)
, if −1 < t < 1,

1, if t ≥ 1,

is also smooth for t �= ±1, but has 2k + 1 vanishing derivatives at t = 1 and
t = −1.

It is clear that g is as smooth as f off t = ±1, and that the one-sided limits still
match up: g(−1−) = 0 = g(−1+) and g(+1+) = 1 = g(+1−). Also, all one-
sided derivatives over the constant parts vanish: g(n)(−1−) = 0 = g(n)(+1+)
for all n = 1, 2, . . .. Hence, it remains to evaluate 2k+1 one-sided derivatives
over the nonconstant parts of g near ±1. This will be done by induction on
k.

If k = 0, then d
dtg(±1∓) = d

dtf(sin π
2 t)|±1∓ = π

2
df
dt |±1∓ · cos(±π

2 ) = 0, so g has
one continuous derivative.

Now suppose that any function with n < k vanishing derivatives at ±1 gives
a g with 2n + 1 vanishing derivatives there. A function f with k vanish-
ing derivatives certainly has k − 1 < k of them, so the first 2k − 1 deriva-
tives g′(t), . . . , g(2k−1)(t) vanish at t = ±1∓. It remains only to show that
g(2k)(±1∓) = 0 and g(2k+1)(±1∓) = 0 as well.

But (
d

dt

)2k

f(sin
π

2
t) =

(
d

dt

)2k−1 [
f ′(sin

π

2
t) · π

2
· cos

π

2
t
]

=
2k−1∑
j=0

(
2k − 1
j

)
π

2

[(
d

dt

)j

cos
π

2
t

]
×

×
[(

d

dt

)2k−1−j

f ′(sin
π

2
t)

]
.

Now f ′ has k− 1 vanishing derivatives at ±1, so by the induction hypothesis,
the last factor in the sum vanishes as t → ±1, for all j = 0, 1, . . . , 2k − 1.
Thus g(2k)(±1∓) = 0.

Likewise, using the fact that the first 2k − 1 derivatives of f ′(sin π
2 t) vanish

at ±1, the following sum simplifies to the j = 0 term:(
d

dt

)2k+1

g(t) =
2k∑

j=0

(
2k
j

)
π

2

[(
d

dt

)j

cos
π

2
t

]
×

×
[(

d

dt

)2k−j

f ′(sin
π

2
t)

]

=
π

2

[
cos

π

2
t
]( d

dt

)2k−j

f ′(sin
π

2
t).



A.3. . . . to Chapter 3 Exercises 239

But cos π
2 t → 0 as t→ ±1, so g(2k+1)(±1) = 0, completing the induction.

Finally, apply the result just proved to rn(t). Let v(n) be the number of
vanishing derivatives of rn(t) at t = ±1. This is also the number of continuous
derivatives of rn, since it is infinitely smooth with bounded derivatives at all
t strictly inside or strictly outside (−1, 1). But v(0) = 0, since r0(t) is merely
continuous at t = −1 (though it has one continuous derivative at t = 1), and
v(n) = 2v(n) + 1 for n = 1, 2, . . .. This recurrence is solved by v(n) = 2n − 1,
proving the result. �

6. Solution: First note that by 1-periodicity,∫ 1

0

sin2 2πt dt =
∫ 3

2

1
2

sin2 2πt dt =
∫ 1

0

cos2 2πt dt.

Thus, integrating sin2 θ+cos2 θ = 1 over one period is the same as computing
2
∫ 1

0 sin2 2πt dt =
∫ 1

0 1 = 1, proving Equation 3.66.

Second, recall that 2 sinA sinB = cos(A−B)− cos(A+B). Thus, if n and m
are nonnegative with n �= m, then n−m �= 0 and n+m �= 0, so by calculus,〈√

2 sin 2πnt,
√

2 sin 2πmt
〉

=

= 2
∫ 1

0

cos 2π(n−m)t dt− 2
∫ 1

0

cos 2π(n+m)t dt

=
sin 2π(n−m)t
π(n−m)t

∣∣∣∣1
0

− sin 2π(n+m)t
π(n+m)t

∣∣∣∣1
0

= 0,

proving Equation 3.65. An almost identical argument from the identity
2 cosA cosB = cos(A−B) + cos(A+B) proves Equation 3.64.

Finally, recall that 2 sinA cosB = sin(A − B) + sin(A + B). Hence for any
nonnegative n and m,〈√

2 sin 2πnt,
√

2 cos 2πmt
〉

= 2
∫ 1

0

[sin 2π(n−m)t− sin 2π(n+m)t] dt.

But
∫ 1

0
sin 2πkt dt = 0 for every integer k, in particular for k = n − m or

k = n+m, so both of the integrals are zero, proving Equation 3.63. �

7. Solution: Since cos2 θ = 1
2 + 1

2 cos 2θ, the Fourier series

f(x) = a(0) +
√

2
∞∑

n=1

[a(n) cos(2πnx) + b(n) sin(2πnx)]

has just two nonzero terms: a(0) = 1
2
√

2
and a(2) = 1

2
√

2
. �
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8. Solution: Note that sin(2πkt − d) = sin(2πkt) cos(d) − cos(2πkt) sin(d).
Hence its real Fourier series has a(k) = − sin(d)/

√
2 and b(k) = cos(d)/

√
2,

with a(n) = b(n) = 0 for all n �= k. This can be converted to a complex
Fourier series

∑
n c(n)e2πint with the formula

c(k) = [a(k) − ib(k)]/
√

2; c(−k) = [a(k) + ib(k)]/
√

2; c(n) = 0,

for all n �= ±k. Substituting gives c(k) = −i
2 e

−id and c(−k) = i
2e

id. �

9. Solution: The series f(t) =
∑

n∈Z c(n)e2πint converges absolutely and
uniformly at every t, by comparison with the absolutely convergent series∑

n=0 |n|−3 that does not depend on t. Likewise, differentiating each term
of the sum gives a series g(t) = 2πi

∑
n∈Z nc(n)e2πint which is uniformly ab-

solutely convergent by comparison with
∑

n=0 |n|−2. Thus g = f ′ by Apostol,
Theorem 9.14, page 230. �

10. Solution: If n �= m, then φn(t)φm(t) = 0 for every t ∈ [0, 1], since one of
the factors must be zero. The collection {φk : 0 ≤ k < N} can be made
orthonormal by defining φk(t) =

√
N1(Nt−k). Its span is the step functions

defined on [0, 1) which are constant on subintervals [ k
N ,

k+1
N ) for 0 ≤ k < N .

�

11. Solution: Make the change of variable x← y + k, so dx← dy, and extract
the factor e−2πikξ:

Fφk(ξ) =
∫ ∞

−∞
e−2πixξ φ(x − k) dx

= e−2πikξ

∫ ∞

−∞
e−2πiyξ φ(y) dy = e−2πikξFφ(ξ).

�

12. Solution: Make the change of variable x ← ay, so dx ← ady, and extract
the factor a:

Fφa(ξ) =
∫ ∞

−∞
e−2πixξ φ(x/a) dx = a

∫ ∞

−∞
e−2πiy(aξ) φ(y) dy = aFφ(aξ).

�

13. Solution: From Exercise 12, with fa(x) def= f(x/a), we get the identity

F−1fa(ξ) = Ffa(−ξ) = aFf(−aξ) = aF−1f(aξ).

Thus, using the hint with the definition F1I = sinc , we calculate

F−1ψ(x) = 2F1I(2x) −F1I(x) = 2sinc (2x) − sinc (x).

�
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14. Solution: First note that integration by parts yields∫ b

a

xecx dx = x
ecx

c

∣∣∣∣b
a

−
∫ b

a

ecx

c
dx =

becb − aeca

c
− ecb − eca

c2
.

Thus the Fourier integral transform of the hat function h(x) is:

Fh(ξ) =
∫ ∞

−∞
h(x)e−2πixξ dx =

∫ 1

−1

h(x)e−2πixξ dx

=
∫ 0

−1

(1 + x)e−2πixξ dx+
∫ 1

0

(1 − x)e−2πixξ dx

=
∫ 1

−1

e−2πixξ dx +
∫ 0

−1

xe−2πixξ dx−
∫ 1

0

xe−2πixξ dx

=
e−2πiξ − e2πiξ

−2πiξ
+

e2πiξ

−2πiξ
− 1 − e2πiξ

(−2πiξ)2
− e−2πiξ

−2πiξ
+
e−2πiξ − 1
(−2πiξ)2

=
e2πiξ + e−2πiξ − 2

(2πiξ)2
=
(
eπiξ − e−πiξ

2πiξ

)2

=
(

sinπξ
πξ

)2

.

But this last is just (sinc ξ)2. �

15. Solution: Use the geometric series summation formula:

N−1∑
k=0

ωn(k)ωm(k) =
1
N

N−1∑
k=0

e−
2πink

N e
2πimk

N =
1
N

N−1∑
k=0

e
2πi(m−n)k

N

=

{
1
N

1−e2πi(m−n)

1−e2πi
m−n

N

, if n �= m;
1
NN, if n = m,

= δ(n−m).

Orthonormality implies linear independence, and any N linearly independent
vectors in an N -dimensional vector space must be a basis. �

16. Solution: The normalized formulas FN (m,n) = 1√
N

exp(−2πimn/N) and
HN (m,n) = 1√

N
[cos(2πmn/N) + sin(2πmn/N)] give:

F2 =
1√
2

(
1 1
1 −1

)
; F4 =

1
2

⎛⎜⎜⎝
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞⎟⎟⎠ .

H2 =
1√
2

(
1 1
1 −1

)
; H4 =

1
2

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎠ .
�
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17. Solution: Fix N > 0. Then

F 2
N (n, j) =

1
N

N−1∑
k=0

ωk
nω

j
k =

1
N

N−1∑
k=0

e−2πi(j+n) k
N

=
{

0, if j + n �= 0 and j + n �= N ;
1, if j + n = N or j + n = 0.

The resulting matrix has ones at (0, 0) and along the antidiagonal (n,N −n),
for n = 1, 2, . . . , N − 1, with zeroes at all other locations. �

18. Solution: Fix N > 0. By the previous calculation, for any vector v =
(v0, v1, . . . , vN−1)

T ,

F 2
Nv = F 2

N

⎛⎜⎜⎜⎜⎝
v0
v1
v2
...

vN−1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
v0

vN−1

vN−2

...
v1

⎞⎟⎟⎟⎟⎠ .
Thus,

F 4
Nv = F 4

N

⎛⎜⎜⎜⎜⎝
v0
v1
v2
...

vN−1

⎞⎟⎟⎟⎟⎠ =
(
F 2

N

)2
⎛⎜⎜⎜⎜⎝

v0
v1
v2
...

vN−1

⎞⎟⎟⎟⎟⎠ = F 2
N

⎛⎜⎜⎜⎜⎝
v0

vN−1

vN−2

...
v1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
v0
v1
v2
...

vN−1

⎞⎟⎟⎟⎟⎠ .

That is, F 4
N is the N ×N identity matrix. �

19. Solution: CIV
2 and CIV

4 are

(
cos π

8 cos 3π
8

cos 3π
8 cos 9π

8

)
and

⎛⎜⎜⎜⎜⎝
cos π

16 cos 3π
16 cos 5π

16 cos 7π
16

cos 3π
16 cos 9π

16 cos 15π
16 cos 21π

16

cos 5π
16 cos 15π

16 cos 25π
16 cos 35π

16

cos 7π
16 cos 21π

16 cos 35π
16 cos 49π

16

⎞⎟⎟⎟⎟⎠ ,
respectively. �

20. Solution: Split the sum for HNv(m) into its odd and even parts:

N−1∑
n=0

v(n) cas
2πmn
N

=

=

N
2 −1∑
n=0

v(2n) cas
2πm(2n)

N
+

N
2 −1∑
n=0

v(2n+1) cas
2πm(2n+1)

N
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=

N
2 −1∑
n=0

v(2n) cas
2πmn
N/2

+

N
2 −1∑
n=0

v(2n+1) cas
[
2πmn
N/2

+
2πm
N

]
.

Now cas (A + B) = cosB casA + sinB cas (−A). Putting A ← 2πmn
N/2 and

B ← 2πm
N gives:

HNv(m) = HN
2
ve(m) + cos

2πm
N

HN
2
vo(m) + sin

2πm
N

HN
2
vo(−m),

where ve and vo are the even- and odd-indexed parts of v, respectively. Fi-
nally, we use the N

2 -periodicity of HN
2
ve(m) and HN

2
vo(m) as needed for

indices m = N
2 , . . . , N − 1, and to write HN

2
vo(−m) = HN

2
vo(N

2 − m) =
HN

2
vo(N −m). �

21. Solution: Symmetry is evident, since the (m,n) entry is unchanged when
m and n are swapped. To show orthogonality, it remains to establish that for
any 0 ≤ m,n ≤ N − 1,

N−1∑
k=0

sin
π(n+ 1

2 )(k + 1
2 )

N
sin

π(k + 1
2 )(m+ 1

2 )
N

=
{

N
2 , if m = n,
0, if m �= n.

But 2 sinA sinB = cos(A − B) − cos(A + B), so the sum can be rewritten
as I − II, in the notation of the proof of Theorem 3.15. But if m �= n, then
I = II = 0 as before. On the other hand, if m = n, then the equation holds
if

N−1∑
k=0

sin2 π(n+ 1
2 )(k + 1

2 )
N

=
N

2
.

Using Equation 3.59 and the identity sin2 θ + cos2 θ = 1 yields

N−1∑
k=0

sin2 π(n+ 1
2 )(k + 1

2 )
N

=
1
2

N−1∑
k=0

1 =
N

2
,

as in the previous proof. �
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1. Solution: The Lagrange polynomial through the points (0, 0), (1, 2), (2, 4)
is Λ2(x) = 2x. This is a degenerate case of three collinear points; it yields an
interpolating polynomial of degree 1. �

2. Solution: The Lagrange polynomial is

Λ2(x) = q − p x

2
+
r x

2
+
p x2

2
− q x2 +

r x2

2

Its derivative with respect to q is d
dqΛ2(x) = 1 − x2. �

3. Solution: a. We use equispaced samples xi = i with h = 1 in Equation 4.6
to get the Newton form of Λk. We claim that f(j) = 2j gives the differences
∆jf(j) = 1 for all j = 0, 1, . . . , k. This follows from a stronger statement,
∆if(j) = 2j−i for all i = 0, 1, . . . , j, which we will prove by induction on
i. But 1 = ∆0f(j) = f(j) = 2j proves the i = 0 case, and we get the
inductive step from the recursive formula: ∆if(j) = 2j−i implies ∆i+1f(j) =
∆if(j) − ∆if(j − 1) = 2j−i − 2j−1−i = 2j−1−i = 2j−(i+1).

b.
(
n
j

)
= 1

j! (n− 0)(n−1) · · · (n− [j−1]) is just the jth term of Λk(x), written
in Newton form as in Equation 4.6 and evaluated at x = n.

c. Since Λk is a polynomial of degree k or less, we have Λk(n) = O(nk) as
n→ ∞. In fact, the coefficient of xk in Λk(x) is 1/k!, so deg Λk = k. �

4. Solution: Since f itself is a polynomial of degree 2, it equals its Chebyshev
polynomial expansion: f(x) = c0T0(x)+c1T1(x)+c2T2(x), for all x ∈ [−1, 1].
The expansion coefficients may thus be found by the method of undetermined
coefficients. But T0(x) = 1, T1(x) = x, and T2(x) = 2x2 − 1, so:

1 − x2 = c0 · 1 + c1 · x+ c2 · (2x2 − 1) = [c0 − c2] + [c1]x+ 2x2[c2],

so c1 = 0, c2 = − 1
2 , and c0 = 1

2 . �

5. Solution: Pick two sample points xk−1 < xk. Then yk−1 = mxk−1 + b
and yk = mxk + b, so the piecewise linear function approximating f on the
interval xk−1 ≤ x ≤ xk will be

x �→ yk(x − xk−1) + yk−1(xk − x)
xk − xk−1

= mx+ b.

�

6. Solution:



A.4. . . . to Chapter 4 Exercises 245

Equispaced Piecewise Linear Evaluation
epwlinear( x, y[], a, b, N ):
[0] If x<a, then return y[0]
[1] If x>b, then return y[N]
[2] Let h=(b-a)/N, let k=floor((x-a)/h), let dx=x-k*h
[3] Return (y[k+1]*dx+y[k]*(h-dx))/h

�

7. Solution: First note that y1/y2 < 0 and y2/y1 < 0 if y1y2 < 0. Then

x0 − x1 =
x2y1 − x1y2 − x1y1 + x1y2

y1 − y2
=

(x2 − x1)y1
y1 − y2

=
x2 − x1

1 − y2
y1

> 0,

and

x0 − x2 =
x2y1 − x1y2 − x2y1 + x2y2

y1 − y2
=
y2(x2 − x1)
y1 − y2

=
x2 − x1
y1
y2

− 1
< 0.

�

8. Solution: First note that the formula for x∗ is preserved by a change of
sign (y1, y2, y3) �→ (−y1,−y2,−y3). Thus we may assume without loss of
generality that y2 > y1 and y2 > y3, so x∗ will be a local maximum.

Second, note that the denominators of x∗ − x1 and x3 − x∗ will be the same,
namely

D = x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1)
= y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2).

Putting p = x2 − x1 > 0 and q = x3 − x2 > 0, so that p+ q = x3 − x1 > 0,
we see that

D = (p+ q)
(
y2 − p

p+ q
y3 − q

p+ q
y1

)
> 0,

since p
p+q y3 + q

p+q y1 lies between y1 and y3, hence below y2.

It remains to show that the numerators of x∗ − x1 and x3 − x∗ are both
positive. But,

x∗ − x1 =
1

2D
(− x2

1(y3 − y2) + (x2
2 − 2x1x2)(y1 − y3)

+ (x2
3 − 2x1x3)(y2 − y1)

)
=

1
2D
(
(x2

1 + x2
3 − 2x1x3)y2 − (x2

2 + x2
1 − 2x1x2)y3

− (x2
3 − 2x1x3 − x2

2 + 2x1x2)y1
)

=
1

2D
(
(x3 − x1)2y2 − (x2 − x1)2y3

− [(x3 − x1)2 − (x2 − x1)2
]
y1
)
.
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Putting r = (x2 − x1)2 > 0 and s = (x3 − x1)2 − (x2 − x1)2 > 0 gives
r + s = (x3 − x1)2 > 0, so

x∗ − x1 =
1

2D
(r + s)

(
y2 − r

r + s
y3 − s

r + s
y1

)
> 0,

since r
r+sy3 + s

r+sy1 lies between y1 and y3, hence below y2.

Likewise,

x3 − x∗ =
1

2D
(
(2x1x3 − x2

1)(y3 − y2) + (2x3x2 − x2
2)(y1 − y3)

+ x2
3(y2 − y1)

)
=

1
2D
(
(x2

1 + x2
3 − 2x1x3)y2 − (x2

3 + x2
2 − 2x1x2)y1

− (x2
1 − 2x1x3 − x2

2 + 2x3x2)y3
)

=
1

2D
(
(x3 − x1)2y2 − (x3 − x2)2y1

− [(x3 − x1)2 − (x3 − x2)2
]
y3
)
.

Putting u = (x3 − x2)2 > 0 and v = (x3 − x1)2 − (x3 − x2)2 > 0 gives
u+ v = (x3 − x1)2 > 0, so

x3 − x∗ =
1

2D
(u+ v)

(
y2 − u

u+ v
y1 − v

u+ v
y3

)
> 0,

since u
u+vy1 + v

u+vy3 lies between y1 and y3, hence below y2. �

9. Solution: For M ≤ N , define the partial sum

(Pu)MN =
N∑

n=M

〈φn, u〉φn,

so (Pu)0N =
N∑

n=0

〈φn, u〉φn for any N ≥ 0. By Lemma 2.9,

‖(Pu)0N‖2 =
N∑

n=0

| 〈φn, u〉 |2,

since {φ1, φ1, . . . , φN} ⊂ B is a finite orthonormal set. By Bessel’s inequality
(see Exercise 14(a), Chapter 2), we have

∑N
n=0 | 〈φn, u〉 |2 ≤ ‖u‖2 for every

N ≥ 0. This can only happen if for every ε > 0, there is some integer T+
ε > 0

such that ‖(Pu)MN‖ < ε for all N ≥ M ≥ T+
ε . A similar argument applied

to (Pu)M0 shows that for each ε > 0 there is some integer T−
ε < 0 such

that M ≤ N ≤ T−
ε implies ‖(Pu)MN‖ < ε. Choosing Tε

def= max{−T−
ε , T

+
ε }

satisfies Definition 3 and shows that Pu ∈ spanB. �
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10. Solution: For integers M < N , let fMN (t) def=
∑N

n=M c(n)φ(t − n) ∈
span {φ(t−n) : n ∈ Z}, and note that this partial sum is bounded, continuous,
and compactly supported on the interval [M −1, N+1]. Thus fMN ∈ L2(R),
with ‖fMN‖2 =

∫ N+1

M−1
|fMN (t)|2 dt. But fMN is piecewise linear and interpo-

lates the points {(M − 1, 0); (M, c(M)), . . . , (N, c(N)); (N +1, 0)}, so we may
compute the square integral in pieces. To do this, we first find the formula
for the square integral of a linear function g through (0, y0) and (1, y1), using
a special case of Equation 4.13:∫ 1

0

|g(t)|2 dt =
∫ 1

0

|ty1 + (1 − t)y0|2 dt =
1
6

(
|y0|2 + |y1|2 + |y0 + y1|2

)
.

We now apply this formula to evaluate the integral of |fMN (t)|2, which is
linear between adjacent integers. Accounting for the end terms, we get:

‖fMN‖2 =
1
3
|c(M)|2 +

1
3
|c(N)|2 +

+
1
6

N−1∑
n=M

(
|c(n)|2 + |c(n+1)|2 + |c(n) + c(n+1)|2

)

=
1
3

N∑
n=M

|c(n)|2 +

+
1
6

(
|c(M)|2 +

N−1∑
n=M

|c(n) + c(n+1)|2 + |c(N)|2
)
.

But |p + q|2 ≤ 2|p|2 + 2|q|2 for any p, q ∈ C, so we may estimate the second
term as follows:

0 ≤ 1
6

(
|c(M)|2 +

N−1∑
n=M

|c(n) + c(n+1)|2 + |c(N)|2
)

≤ 2
3

N∑
n=M

|c(n)|2.

Therefore,
1
3

N∑
n=M

|c(n)|2 ≤ ‖fMN‖2 ≤
N∑

n=M

|c(n)|2. (A.1)

If f ∈ L2(R), then ‖f−NN‖ → ‖f‖ as N → ∞, so by the left-hand inequality,
the partial sums

∑N
n=−N |c(n)|2 increase and thus converge to something no

bigger than 3‖f‖2 as N → ∞. Therefore, c belongs to �2.

Conversely, if c ∈ �2, then
∑N

n=−N |c(n)|2 converges to ‖c‖2 as N → ∞, so
for every ε > 0 there is some T = Tε > 0 such that for every N ≥M ≥ T ,

N∑
n=M

|c(n)|2 +
−M∑

n=−N

|c(n)|2 < ε.
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But for all integers M ′ < M < N < N ′, we have

fM ′N ′(t) − fMN (t) =
M−1∑
n=M ′

c(n)φ(t − n) +
N ′∑

n=N+1

c(n)φ(t− n),

so by the right-hand inequality in Equation A.1, for any N ′ > N > Tε and
M ′ < M < −Tε, we will have

‖fM ′N ′ − fMN‖2 ≤
M−1∑
n=M ′

|c(n)|2 +
N ′∑

n=N

|c(n)|2 < ε.

But this means that the partial sums fMN converge asN → ∞ andM → −∞
to some limit f ∈ span {φ(t − n) : n ∈ Z} satisfying ‖f‖2 ≤ ‖c‖2, so this f
belongs to L2(R). �

11. Solution: a. A counter that always fails to count the first item, but never
fails to count all subsequent items, will be inaccurate by one count but with
zero variance.

b. A perfect counter has zero imprecision and zero inaccuracy, since recount-
ing will always yield the same correct measurement. But its measurements,
nonnegative integers, are quantized with interval 1. �

12. Solution: a. First note that 1(Nt−k) = 1 if and only if t ∈ [ k
N ,

k+1
N

]
. Thus

‖f − fN‖2 =
∫ 1

0 |f − fN |2 dt breaks up into

N−1∑
k=0

∫ k+1
N

k
N

|t− k

N
|2 dt =

N−1∑
k=0

∫ 1
N

0

|t|2 dt =
1

3N2
.

We have performed the substitution t← t+ k
N in the kth integral.

b. Since ‖f‖2 =
∫ 1

0 |t|2 dt = 1/3, we simply use Equation 4.36 with fs = f
and fq = fN − f to compute SNR(fN) = 20 log10N . �

13. Solution: a. That integral is the volume under the graph of f , and f(x, y) =
2 is nonzero only if (x, y) lies in the subset of Q bounded by the lines x = 0,
y = 1, and x = y. This is the upper-triangular half of Q, and has area 1/2,
so the volume

∫∫
Q f(x, y) dxdy = (2)(1/2) = 1.

b. Using Equation 4.38, we get cy = 2y and so f(x | y) = (2y)−1f(x, y).

c. Using Equation 4.37, we compute

Pr(X ∈ [a, b] | y) =

⎧⎨⎩
0, if 0 ≤ y ≤ a;
(y − a)/y, if a < y < b;
(b− a)/y, if b ≤ y ≤ 1.
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d. Using Equation 4.43, and writing I = [0, 1], we compute

R2(d, y) =
∫

I

· · ·
∫

I

|d(x1, . . . , xN ) − y|2 ×
× f(x1 | y) · · · f(xN | y) dx1 · · · dxN

= (2y)−N

∫
I

· · ·
∫

I

|max{x1, . . . , xN} − y|2 ×
× f(x1, y) · · · f(xN , y) dx1 · · · dxN

= 2N (2y)−NN !
∫ y

0

dx1

∫ x1

0

dx2 · · ·
∫ xN−1

0

|x1 − y|2 dxN

= y−NN !
∫ y

0

|x1 − y|2 xN−1
1

(N − 1)!
dx1

= Ny−N

∫ y

0

xN−1
1 |x1 − y|2 dx1

= Ny−N

[
xN

1 y
2

N
− 2

xN+1
1 y

N + 1
+
xN+2

1

N + 2

]∣∣∣∣∣
y

0

= y2

[
1 − 2N

N + 1
+

N

N + 2

]
=

2y2

(N + 1)(N + 2)
.

The factor N ! appears on the third line since that is how many permutations
there are of the N variables 0 ≤ xN < · · · < x1 < y, which is the only ordering
that we integrate. Iterating the N − 1 inner integrals successively produces
xN−1, x2

N−2/2!, . . . ,xN−1
1 /(N − 1)!, as in Equation 4.42, and the remaining

steps are straightforward.

Substituting y ← E(d | y) = Ny
N+1 in the above calculation, which produces

Var(d | y) ≤ R2(d, y), gives

Var(d | y) =
N

yN

∫ y

0

xN−1
1

∣∣∣∣x1 − Ny

N + 1

∣∣∣∣2 dx1 =
y2

(N + 1)2(N + 2)
.

Thus
√

Var(d | y) = O(1/
√
N3) and R(d, y) = O(1/

√
N2) as N → ∞, so both

decrease faster than the 1/
√
N rate one might expect from the Cramér-Rao

lower bound, which of course does not apply. �
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b

b+1

1/a

(−1< b ≤ −1/2)

b

1/a
(6)

1-1/2

b

-b

1/a

-1/2-1/2

(−1/2 < b < 0)

Figure A.1: Graphs of Haar wavelets w(at) and w(t − b) in the configuration of
Case 6 and the two subcases of −1 < b < 0 and 0 < a < 1

2(b+1) where their inner
product is nonzero.
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1. Solution: The graphs are shown in Figure A.1. In Case 6, the integrand
of
∫
w̄(at)w(t− b) dt is nonzero only on [0, 1

a ], where half the time it is 1/
√
a

and the other half it is −1/
√
a. To prove Equation 5.3, note that∫

w̄(at)w(t − b) dt =
∫ b+1

0

(1)(−1) dt = −(b+ 1), if −1 < b ≤ − 1
2 .

Otherwise, if − 1
2 < b < 0, the integral splits into the sum of three pieces:

∫ b+ 1
2

0

(1)(1) dt+
∫ 2(b+ 1

2 )

b+ 1
2

(1)(−1) dt+
∫ b+1

2(b+ 1
2 )

(1)(−1) dt.

The first two integrals cancel and the third evaluates to b. Multiplying by
√
a

gives the result. �

2. Solution: It is evident that ρ(a, b) = ρ(a′, b′) if and only if a = a′ and b = b′,
since two matrices are equal if and only if their coefficients are equal. Thus ρ is
one-to-one, and it remains to check that ρ preserves the group multiplication.
But

ρ(a′, b′)ρ(a, b) =
(
a′ b′

0 1

)(
a b
0 1

)
=
(
a′a a′b+ b′

0 1

)
= ρ(a′a, a′b+ b′) = ρ((a′, b′)(a, b)).

�

3. Solution: Right invariance of the integral requires that the Jacobian of the
change of variable b ← bb′ is the constant 1. Since db = k(b) dadb =
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k(a, b) dadb for some unknown function k, the right invariance condition can
be written:

1 =
∣∣∣∣d(bb′)

db

∣∣∣∣ = k(bb′)
k(b)

∣∣∣∣∣∣
da′′
da

da′′
db

db′′
da

db′′
db

∣∣∣∣∣∣ = k(bb′)
k(b)

∣∣∣∣ a′ 0
b′ 1

∣∣∣∣ = k(bb′)
k(b)

|a′|.

Here bb′ = (a, b)(a′, b′) = (a′′, b′′) defines the coordinate functions a′′ = aa′,
b′′ = ab′ + b from Equation 5.5. Thus k(bb′) = 1

|a′|k(b), so putting b = (1, 0)
to force bb′ = b′ yields k(a, b) = |a|−1k(1, 0).

But a > 0, so |a| = a. Choosing k(1, 0) = 1 gives the normalized right
invariant integral of f over Aff:∫

Aff

f(b) db def=
∫ ∞

b=−∞

∫ ∞

a=0

f(a, b)
dadb

a
.

Note that this differs from the left-invariant integral on Aff. �

4. Solution: Translating Equation 5.21 by t← t− k, write

∞∑
j=1

2−j/2Wu(2j, k) = lim
J→∞

J∑
j=1

2−j/2Wu(2j, k) = lim
J→∞

〈
φJ

k , u
〉
,

where φJ
k (t) = φJ (t− k) =

∑J
j=1

1
2jw
(

t−k
2j

)
. Equation 5.4 then implies:

φJ
k (t) =

⎧⎨⎩ 0, if t < k or t ≥ 2J + k;
1 − 2J , if k ≤ t ≤ k + 1;
−2−J , if k + 1 ≤ t ≤ k + 2J .

Finally,

∞∑
j=1

2−j/2Wu(2j, k) = lim
J→∞

[
(1−2J)

∫ k+1

k

u(t) dt− 2−J

∫ k+2J

k+1

u(t) dt

]

=
∫ k+1

k

u(t) dt = u(k).

�

5. Solution: Function φ is differentiable by calculus techniques everywhere ex-
cept possibly at the origin, where it must be shown that the limits of φ and
all its derivatives are zero. But limξ→0 φ(ξ) = 0 because −(log |ξ|)2 → −∞
as ξ → 0. For the derivatives, it is enough to prove that at each ξ �= 0,

φ(d)(ξ) =
P (log |ξ|)

ξd
e−(log |ξ|)2 , (A.2)
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where P is some polynomial. But this can be established for every d > 0 by
induction.

Starting with d = 1, it is immediate that φ′(ξ) = −2 log |ξ|
ξ e−(log |ξ|)2 at each

ξ �= 0.

Next, assuming that φ(d) satisfies Equation A.2, calculate

φ(d+1)(ξ) =
d

dξ
φ(d)(ξ)

=
P ′(log |ξ|) − 2 log |ξ| P (log |ξ|) − dP (log |ξ|)

ξd+1
e−(log |ξ|)2 ,

which is of the desired form with a new polynomial Q(z) = −2zP (z)+P ′(z)−
dP (z). This completes the induction step.

To complete the solution, note that

lim
ξ→0

φ(d)(ξ) = lim
ξ→0

P (log |ξ|)
ξd

e−(log |ξ|)2 = 0,

by L’Hôpital’s rule. �

6. Solution: For any fixed d and any n ≥ 0, φ(n)(ξ) < 1/|ξ|d as ξ → −∞,
since φ(n)(ξ) = 0 for all ξ < 0. To show that for some positive constant C,
|ξ|dφ(n)(ξ) ≤ C as ξ → +∞, note that |ξ|dφ(n)(ξ) = ξd P (log ξ)

ξn e−(log ξ)2 =
ξd−n−log ξP (log ξ), where P is some polynomial depending on n. But this
expression will tend to zero as ξ → ∞, since the exponent d − n − log ξ
will become more and more negative as ξ → ∞, eventually cancelling the
fixed-degree growth from P (log ξ). �

7. Solution: One solution is to use Plancherel’s formula to write:

Wu(a, b) =
∫ ∞

−∞
e−2πibξφ(aξ)Fu(ξ) dξ.

Again by Plancherel’s theorem, Fu(ξ) is square integrable. Let the other
factor, e−2πibξφ(aξ), be called Φab(ξ). Solution 5 implies that Φab(ξ) is con-
tinuous in ξ. For any a �= 0, Solution 6 implies that it decreases rapidly
enough as ξ → ±∞ to be absolutely integrable: being O(|ξ|−2) is sufficient.
Thus, it is square-integrable, so Φab(ξ)Fu(ξ) is integrable, and the integral
converges absolutely. Next, note that:

∂
∂aΦab(ξ) = ξe−2πibξφ′(aξ); ∂

∂bΦab(ξ) = −2πiξe−2πibξφ(aξ);

∂2

∂a2 Φab(ξ) = ξ2e−2πibξφ′′(aξ); ∂2

∂b2 Φab(ξ) = −4π2ξ2e−2πibξφ(aξ);

∂2

∂a ∂bΦab(ξ) = ∂2

∂b ∂aΦab(ξ) = −2πiξ2e−2πibξφ′(aξ).

By Solutions 5 and 6, all of these are continuous in ξ and, for a �= 0, decrease
fast enough to be absolutely integrable and square-integrable with respect
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to ξ. Thus, it is legal to differentiate once or twice with respect to a or b
under the integral sign:

∂

∂a
Wu(a, b) =

∫ ∞

−∞
ξe−2πibξφ′(aξ)Fu(ξ) dξ;

∂

∂b
Wu(a, b) = −2πi

∫ ∞

−∞
ξe−2πibξφ(aξ)Fu(ξ) dξ.

It remains to show that these derivatives are continuous functions of a, b away
from the line a = 0. But in both cases, this follows from the observation that
the integrands are continuous functions of a, b. �

8. Solution: Since w = F1[− 1
2 , 12 ], use Plancherel’s theorem to compute ‖w‖ =

‖F1[−1
2 , 12 ]‖ = ‖1[− 1

2 , 12 ]‖ = 1. �

9. Solution: By the previous solution and by combining integrals, calculate
that Fw = 1[−1,− 1

2 ]∪[ 12 ,1]. Thus,

cw =
∫ ∞

0

|1[−1,− 1
2 ]∪[ 12 ,1](ξ)|2
ξ

dξ =
∫ 1

1
2

dξ

ξ
= log 2 ≈ 0.69315 <∞.

But Fw(−ξ) = Fw(ξ), so the −ξ integral is the same, so w is admissible. �

10. Solution: The Fourier integral transform of w is∫ ∞

−∞
e−2πixξw(x) dx.

Since w(x) = 1 if 0 < x < 1
2 and w(x) = −1 if 1

2 < x < 1, that simplifies to∫ 1
2

0

e−2πixξ −
∫ 1

1
2

e−2πixξ =

(
e−πiξ − 1

)2
2πiξ

.

�

11. Solution: It is necessary to show that 〈φj , φk〉 = δ(j − k). But Plancherel’s
theorem allows writing

〈φj , φk〉 = 〈Fφj ,Fφk〉 =
∫ 1/2

−1/2

e2πi(k−j)ξ dξ = δ(j − k),

since Fφk(ξ) = e2πikξFsinc (ξ) = e2πikξ1[− 1
2 , 12 ](ξ). �

12. Solution: Show that
∑

k g(2k) = −∑k g(2k + 1) = 1√
2
:∑

k

g(2k) =
∑

k

(−1)2kh(2M − 1 − 2k) =
∑

k

h(2M − 1 − 2k)

=
∑

k

h(2(M − k) − 1) =
∑

l

h(2l + 1) =
1√
2
,
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after the substitution l ←M − k. A similar change of the index gives:∑
k

g(2k + 1) =
∑

k

(−1)2k+1h(2M − 1 − (2k + 1))

= −
∑

k

h(2(M − k − 1)) = −
∑

l

h(2l) = − 1√
2
.

Complex conjugation has no effect on the sums, as 1/
√

2 is purely real. �

13. Solution: First note that 1 + c2 = 8 − 4
√

3 = 4c, so c/(1 + c2) = 1
4 . Thus

h(2) =
c(c+ 1)√
2(1 + c2)

=
c+ 1
4
√

2
=

(2 −√
3) + 1

4
√

2
=

3 −√
3

4
√

2
.

Likewise,

h(3) =
c(c− 1)√
2(1 + c2)

=
c− 1
4
√

2
=

1 −√
3

4
√

2
.

Finally,

h(0) =
1√
2
− h(2) =

1 +
√

3
4
√

2
; h(1) =

1√
2
− h(3) =

3 +
√

3
4
√

2
.

�

14. Solution: We begin by substituting t ← 2−j−1t and then multiplying by
2−(j+1)/2 on both sides of Equation 5.33:

2−(j+1)/2φ(2−j−1t− n) =
∑

k

h(k)2−j/2 φ(2−jt− 2n− k)

=
∑
k′
h(k′ − 2n)2−j/2 φ(2−jt− k′).

Taking inner products on both sides with u gives the first result.

Similarly, we may substitute t ← 2−j−1t− n and then multiply by 2−(j+1)/2

in Equation 5.50 to get

2−(j+1)/2ψ(2−j−1t− n) =
∑

k

g(k)2−j/2 φ(2−jt− 2n− k)

=
∑
k′
g(k′ − 2n)2−j/2 φ(2−jt− k′).

Taking inner products on both sides with u gives the second result.

For the third result, we take inner products with u on both sides of Equation
5.55. �
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15. Solution: First check the odd and even cases to show that for any integers
p, q, ⌈p

2

⌉
≤ p+ 1

2
;

⌊ q
2

⌋
≥ q − 1

2
.

a. Substitute p← x− b and q ← y − a to get

2
⌈
x− b

2

⌉
+ a ≤ 2

(
x− b+ 1

2

)
+ a = x− (b− a− 1);

2
⌊
y − a

2

⌋
+ b ≥ 2

(
y − a− 1

2

)
+ b = y + (b− a− 1).

Thus
[
2
⌈

x−b
2

⌉
+ a, 2

⌊
y−a

2

⌋
+ b
] ⊇ [x−(b−a−1), y+(b−a−1)], with equality

if and only if b− a = 1.

b. Substitute p← x− b and q ← y − a to get

1 +
⌊
y − a

2

⌋
−
⌈
x− b

2

⌉
≥ 1 +

y − a− 1
2

− x− b+ 1
2

.

Then substitute p← x− d and q ← y − c to get

1 +
⌊
y − c

2

⌋
−
⌈
x− d

2

⌉
≥ 1 +

y − c− 1
2

− x− d+ 1
2

.

Adding these inequalities and simplifying the smaller right-hand side to 1 +
y − x+ b−a−1

2 + d−c−1
2 finishes the proof. �

16. Solution: First note that if P = 2P ′ is even, then for each k ∈ Z there
are unique j ∈ Z and k′ ∈ {0, 1, . . . , P ′ − 1} such that 2k = 2(k′ + jP ′) and
2k + 1 = 2(k′ + jP ′) + 1. Thus, for any finitely-supported sequence f with
P -periodization fP , we can sum

P ′−1∑
k′=0

fP (2k′) =
P ′−1∑
k′=0

∑
j

f(2k′ + jP ) =
P ′−1∑
k′=0

∑
j

f(2(k′ + jP ′)) =
∑

k

f(2k),

and likewise,

P ′−1∑
k′=0

fP (2k′ + 1) =
P ′−1∑
k′=0

∑
j

f(2k′ + jP + 1)

=
P ′−1∑
k′=0

∑
j

f(2(k′ + jP ′) + 1) =
∑

k

f(2k + 1).

Substituting normalized h or g for f shows that normalization holds for hP

and gP .
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Second, note that if e and f are finitely-supported sequences with respective
P -periodizations eP and fP , then

P−1∑
k′=0

eP (k′ + 2n) fP (k′ + 2m) =

=
P−1∑
k′=0

∑
j

∑
i

e(k′ + 2n+ jP ) f(k′ + 2m+ iP )

=
P−1∑
k′=0

∑
j

∑
l

e(k′ + jP + 2n) f(k′ + jP + 2(m+ lP ′)),

after substituting i ← l + j. The sums over 0 ≤ k′ < P and j ∈ Z combine
into a sum over all integers k ∈ Z, and the l and k sums may be interchanged,
giving

P−1∑
k′=0

eP (k′ + 2n) fP (k′ + 2m) =
∑

l

∑
k

e(k + 2n) f(k + 2(m+ lP ′)).

If e = f = h and h is self-orthonormal, then the inner sum over k is δ(n −
(m + lP ′)). Thus the outer sum over l is δP ′(n −m), which is 1 if and only
if n ≡ m (mod P ′); otherwise it is zero. The same holds if e = f = g is
self-orthonormal. If e = h and f = g are independent, the inner sum over k is
always zero, so the total is zero. This establishes periodic independence and
self-orthonormality.

Finally,

P ′−1∑
k′=0

fP (2k′ + n) fP (2k′ +m) =

=
P ′−1∑
k′=0

∑
j

∑
i

f(2k′ + n+ jP ) f(2k′ +m+ iP )

=
P ′−1∑
k′=0

∑
j

∑
i

f(2(k′+jP ′) + n) f(2(k′+jP ′) +m+ (i−j)P ),

so substituting i ← l + j and k′ ← k − jP ′ and combining the k′ and j
summations into one makes this∑

k

∑
l

f(2k + n) f(2k +m+ lP ).

The l and k sums may be interchanged. The cases f ← h and f ← g give

P ′−1∑
k′=0

hP (2k + n)hP (2k +m) =
∑

l

∑
k

h(2k + n)h(2k +m+ lP );
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P ′−1∑
k′=0

gP (2k + n) gP (2k +m) =
∑

l

∑
k

g(2k + n) g(2k +m+ lP ).

If h and g satisfy the completeness condition, adding these together gives∑
l δ(n− (m+ lP )) = δP (n−m), proving periodic completeness. �

17. Solution: The following is a Standard C implementation. We begin by
implementing the inverse filter transform:

Contents of ipcqfilt.c
int mod(int x, int M) { /* x%M for M>1 and any x */
if(x<0) x-= x*M; /* x-x*modulus>0 equals x mod M */
return x%M;

}
void ipcqfilter(float out[], const float in[], int q) {
int n2, k2;
for(k2=0; k2<q; k2++) {

out[2*k2]=out[2*k2+1]=0;
for(n2=0;n2<L/2;n2++) {
out[2*k2] += h[2*n2]*in[mod(k2-n2, q)];
out[2*k2] += g[2*n2]*in[mod(k2-n2, q) + q];
out[2*k2+1] += h[2*n2+1]*in[mod(k2-n2, q)];
out[2*k2+1] += g[2*n2+1]*in[mod(k2-n2, q) + q];

}
}

}

Notice that these functions will work with filters of any even length L.

Next, we implement the inverse to Mallat’s periodic discrete wavelet transform
on N = 2JK samples, generalizing ipdwt0():

Reconstruction from Mallat’s Periodic Wavelet Expansion
ipdwt( u[], N, J, h[], g[], L ):
[0] If J>0, then do [1-] to [4]
[1] Compute ipdwt(u[], N/2, J-1, h[], g[], L)
[2] Allocate temp[0]=0,...,temp[N-1]=0
[3] Compute ipcqfilter(temp[], u[], N/2, h[], g[], L)
[4] For i=0 to N-1, let u[i] = temp[i]

For practical reasons, we should place the allocation and deallocation of
temp[] as close as possible to the filter transform. This frees unneeded mem-
ory for the recursive function call. In Standard C, this becomes:
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Contents of ipdwt.c
#include <assert.h>
#include <stdlib.h>
void ipdwt(float u[], int N, int J) {
if(J>0) {

float *temp; int i;
ipdwt(u, N/2, J-1);
temp=(float *)calloc(N,sizeof(float)); assert(temp);
ipcqfilter(temp, u, N/2);
for(i=0;i<N;i++) u[i]=temp[i];
free(temp);

}
}

Finally, we generate the samples for a graph of the Daubechies 4 wavelet and
scaling function. We start with an array containing a single nonzero wavelet
coefficient at what would be level 5 of a 128-point periodic discrete wavelet
transform, and invert to get the one-wavelet signal that would have produced
it:

Standard C Program: Graph Daubechies 4 Functions
#include <stdio.h>
#define L 4
static const float h[L] =
{ 0.48296291314453416, 0.83651630373780794,

0.22414386804201339, -0.12940952255126037};
static const float g[L] =
{ -0.12940952255126037, -0.22414386804201339,

0.83651630373780794, -0.48296291314453416};
#include "ipcqfilt.c"
#include "ipdwt.c"
int main(void) {
float scaling[128]={0}, wavelet[128]={0}; int i;
scaling[1]=1.0; wavelet[5]=1.0;
ipdwt( scaling, 128, 5 );
puts("# 128 point Daubechies 4 scaling, level 5:");
for(i=0; i<128; i++) printf("%10.6f\n", scaling[i]);
ipdwt( wavelet, 128, 5 );
puts("# 128 point Daubechies 4 wavelet, level 5:");
for(i=0; i<128; i++) printf("%10.6f\n", wavelet[i]);
return 0;

}

The indices 1 and 5 are chosen so that the functions, of scale 25−7 = 1
4

relative to the width of the plot, are offset by 1 from the left edge and thus
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Figure A.2: Graphs of Daubechies 4 wavelets. Left: scaling function φ. Right:
mother function ψ.

approximately centered. The results are plotted in Figure A.2. �

18. Solution: a. After steps 1 and 2, u(2n+ 1) contains u(2n+ 1)− u(2n) and
u(2n) contains 1

2 [u(2n + 1) + u(2n)]. After steps 3 and 4, those values are
scaled so that u(2n+ 1) contains [u(2n+ 1)− u(2n)]/

√
2 and u(2n) contains

[u(2n+1)+u(2n)]/
√

2. This shows that haarlift() implements a combined
filter transform with the Haar filters of Equation 5.46.
b. After steps 1’ and 2’, u(2n) contains u(2n)/sqrt2 and u(2n+ 1) contains√

2u(2n+ 1). After steps 3’ and 4’, those values are combined so that u(2n)
contains [u(2n)−u(2n+1)]/

√
2 and u(2n+1) contains [u(2n)+u(2n+1)]/

√
2.

This shows that ihaarlift() implements an adjoint filter transform with the
Haar filters of Equation 5.46.

c. Write v(2n) def= [u(2n + 1) + u(2n)]/
√

2 and v(2n + 1) def= [u(2n + 1) −
u(2n)]/

√
2 for n = 0, 1, . . . , q−1. Then v is a copy of u after the (a) substitu-

tions. Applying the (b) substitutions leaves [v(2n) − v(2n+ 1)]/
√

2 = u(2n)
at index 2n, and [v(2n) + v(2n+ 1)]/

√
2 = u(2n+ 1) at index 2n+ 1.

d. We use induction on J to prove that for any dq ∈ Z+, the function
ldht0(u[],J,dq) is inverted by ildht0(u[],J,dq).
Case J = 0 holds since both ldht0(u[],0,dq) and ldht0(u[],0,dq) are the
identity on one-point signals u.

For J > 0, assume that ildht0(u[],J-1,dq) recovers the array u after
it is transformed by ildht0(u[],J-1,dq), for all dq ∈ Z+. Now consider
ldht0(u[],J,dq). This consists of haarlift() applied to the array elements
u(0), u(dq), . . . , u([2J − 1]dq), followed by ldht0(u[],J-1,2*dq) which acts
just on the even elements u(0), u(2dq), . . . , u([2J − 2]dq). By the inductive
hypothesis, that is inverted by ildht0(u[],J-1,2*dq), which inverts the
Haar-transformed even elements u(0), u(2dq), . . . , u([2J − 2]dq), followed by
ihaarlift() applied to u(0), u(dq), . . . , u([2J − 1]dq). �

19. Solution: The filter transform wsl97filter() is already implemented, so
we simply use it recursively, following wsl42dwt():
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Figure A.3: Graphs of 9,7-biorthogonal wavelets on 100 points. Left: index 32,
level 3. Middle: index 36, level 4. Right: index 41, level 5.

WS Lifting: 9,7-Biorthogonal Discrete Wavelet Transform
wsl97dwt( u[], N, dq, J ):
[0] If J>0, then do [1] to [2]
[1] Compute wsl97filter( u[], N, dq )
[2] Compute wsl97dwt( u[], N, 2*dq, J-1 )

The inverse filter transform requires one normalization, two updatings, and
two predictions, with inverted coefficients:

WS Lifting: Inverse 9,7-Biorthogonal Filter Transform
wsl97ifilter( u[], N, dq ):
[0] Compute lnormalize( u[], N, dq, 1/zeta97 )
[1] Compute wslupdate( u[], N, dq, -delta97 )
[2] Compute wslpredict( u[], N, dq, -gamma97 )
[3] Compute wslupdate( u[], N, dq, -beta97 )
[4] Compute wslpredict( u[], N, dq, -alpha97 )

Reconstruction from the output coefficients is accomplished by the inverse:

WS Lifting: 9,7-Biorthogonal Inverse Wavelet Transform
wsl97idwt( u[], N, dq, J ):
[0] If J>0, then do [1] to [2]
[1] Compute wsl97idwt( u[], N, 2*dq, J-1 )
[2] Compute wsl97ifilter( u[], N, dq )

To plot the requested wavelets, we create three arrays u0, u1, u2 of 100 loca-
tions each. We put zeroes everywhere except for u0(32) = 1, u1(36) = 1, and
u2(41) = 1, then call wsl97idwt(u0,100,1,3), wsl97idwt(u1,100,1,4),
and wsl97idwt(u2,100,1,5). The piecewise linear functions through the
three resulting sequences {(k, ui(k)) : 0 ≤ k < 100}, i = 1, 2, 3, are plotted in
Figure A.3. �

20. Solution: First implement half-sample symmetric prediction and updating,
by modifying wslpredict() and wslupdate():
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HS Lifting: Prediction Step
hslpredict( u[], N, dq, coeff ):
[0] Let i = dq
[1] While i<N, do [2] to [3]
[2] Accumulate u[i] += coeff*u[i-dq]
[3] Increment i += 2*dq

HS Lifting: Updating Step
hslupdate( u[], N, dq, coeff ):
[0] Let i = 0
[1] While i+dq<N, do [2] to [3]
[2] Accumulate u[i] += coeff*u[i+dq]
[3] Increment i += 2*dq

To implement the Haar filter transform by lifting, we predict with α = −1,
update with β = 1

2 , and normalize with ζ =
√

2. When N/dq is odd, the last
coordinate should be left alone, rather than divided by coeff, if we want the
transform to be orthogonal:

Orthogonal Lifting: Normalization Step
onormalize( u[], N, dq, coeff ):
[0] Let i = 0
[1] While i+dq<N, do [2] to [4]
[2] Replace u[i] *= coeff
[3] Replace u[i+dq] /= coeff
[4] Increment i += 2*dq

The inverse has the same operations in reverse order, with inverse coefficients:

HS Lifting: Haar Filter Transform
hslhaarfilter( u[], N, dq ):
[0] Compute hslpredict( u[], N, dq, alpha )
[1] Compute hslupdate( u[], N, dq, beta )
[2] Compute onormalize( u[], N, dq, zeta )

HS Lifting: Inverse Haar Filter Transform
hslihaarfilter( u[], N, dq ):
[0] Compute onormalize( u[], N, dq, 1/zeta )
[1] Compute hslupdate( u[], N, dq, -beta )
[2] Compute hslpredict( u[], N, dq, -alpha )

Finally, inspired by wsl42dwt() and wsl42idwt(), we employ these filter
transforms recursively to get the discrete wavelet transform and its inverse:
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HS Lifting: Discrete Haar Transform
hsldht( u[], N, dq, J ):
[0] If J>0, then do [1] to [2]
[1] Compute hslhaarfilter( u[], N, dq )
[2] Compute hsldht( u[], N, 2*dq, J-1 )

HS Symmetric Lifting: Inverse Discrete Haar Transform
hslidht( u[], N, dq, J ):
[0] If J>0, then do [1] to [2]
[1] Compute hslidht( u[], N, 2*dq, J-1 )
[2] Compute hslihaarfilter( u[], N, dq )

To check the sum-of-squares preserving property, we fix a length N , generate
an array u of N random numbers with ‖u‖ = 1, save a copy in array v, apply
hsldht(u,N,1,J), and check whether |‖u‖−‖v‖| is less than a few truncation
errors εf . Here J def= "log2N# is the deepest level of decomposition possible
with N elements.

To check invertibility, we then apply hslidht(u,N,1,J) and see whether
‖u − v‖ is less than a few truncation errors. Note that both lnormalize()
and onormalize() will yield perfect reconstruction, but onormalize() will
yield an orthogonal Haar transformation. �

21. Solution: First note that e0, e1, e2, e3 are step functions, so the inner product

〈ei, ej〉 =
∫
R2
ei(x, y)ej(x, y) dxdy, i, j ∈ {0, 1, 2, 3},

can be evaluated by a finite Riemann sum. We can also iterate the integration
and write

‖ei‖2 =
∫
R2
e2i (x, y) dxdy =

(∫
R

a2(x) dx
)(∫

R

b2(y) dy
)

= ‖a‖2‖b‖2,

where a and b are either 1 or w, depending on i. But then ‖a‖ = ‖b‖ = 1,
proving that ‖ei‖ = 1 for i = 0, 1, 2, 3. Likewise, if i �= j and ei(x, y) =
ai(x)bi(y) and ej(x, y) = aj(x)bj(y) with ai, bi, aj , bj ∈ {w,1}, then∫

R2
ei(x, y)ej(x, y) dxdy =

(∫
R

ai(x)aj(x) dx
)(∫

R

bi(y)bj(y) dy
)

= 〈ai, aj〉 〈bi, bj〉 = 0,

since at least one of 〈ai, aj〉 = 0 or 〈bi, bj〉 = 0. �
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Figure A.4: Two example graphs with labeled vertex sets V1 = {0, 1, . . . , 9} and
V2 = {a, b, . . . , n}.

A.6 . . . to Chapter 6 Exercises

1. Solution: Figure A.4 gives the labeling, and the edge lists are respectively

E1 = {{4, 1}, {4, 2}, {4, 5}, {4, 8},
{5, 2}, {5, 6}, {5, 8}, {6, 3},
{6, 9}, {9, 0}, {3, 7}, {7, 0}},

for the left graph, and

E2 = {{a, b}, {a, c}, {b, d}, {b, e},
{c, f}, {c, g}, {e, h}, {e, i},
{h, j}, {i, k}, {i, l}, {i,m}, {j, n}},

for the right tree. If we designate a as the root, then generation 0 is {a}, gen-
eration 1 is {b, c}, generation 2 is {d, e, f, g}, generation 3 is {h, i}, generation
4 is {j, k, l,m}, and generation 5 is {n}. �

2. Solution: None exists, since prefix codes are uniquely decipherable codes
and 2−1+2−2+2−2+2−3 = 9/8 > 1 fails the necessary condition for existence
stated in Lemma 6.1. �

3. Solution: The receiver must keep track of the decoded message and alter
the decoding every time a ‘c’ is encountered:
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Dynamic Decoding Example
dynamicdecoding( bit[], L ):
[ 0] Initialize n=0 and k=1
[ 1] While k<=L, do [2] to [20]
[ 2] If n==0, then do [3] to [9]
[ 3] If bit[k]==1, then do [4] to [5]
[ 4] Let OUT=‘a’
[ 5] Increment k += 1
[ 6] Else do [7] to [9]
[ 7] If bit[k+1]==0, then let OUT = ‘b’
[ 8] Else let OUT = ‘c’
[ 9] Increment k += 2
[10] Else do [11] to [17]
[11] If bit[k]==0, then do [12] to [13]
[12] Let OUT = ‘a’
[13] Increment k += 1
[14] Else do [15] to [17]
[15] If bit[k+1]==1, then let OUT=‘b’
[16] Else let OUT = ‘c’
[17] Increment k += 2
[18] If OUT==‘c’, then toggle n = 1-n
[19] Print OUT
[20] Go to [1]

�

4. Solution: First note that∑
x∈As

p(x1x2 · · ·xs) =
∑

x∈As

p(x1)p(x2) · · · p(xs)

=
∑

x1∈A

∑
x2∈A

· · ·
∑

xs∈A

p(x1)p(x2) · · · p(xs)

=

(∑
x1∈A

p(x1)

)
· · ·
(∑

xs∈A

p(xs)

)
= 1.

Thus ps gives the occurrence probabilities on As. We compute its entropy:

H(ps) =
∑

x∈As

p(x1x2 · · ·xs) log2

1
p(x1x2 · · ·xs)

=
∑

x∈As

p(x1)p(x2) · · · p(xs)

(
s∑

i=1

log2

1
p(xi)

)

=
s∑

i=1

⎡⎣(∑
xi∈A

p(xi) log2

1
p(xi)

)∏
j =i

⎛⎝∑
xj∈A

p(xj)

⎞⎠⎤⎦ ,
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where we have interchanged the order of summation and then extracted one
factor p(xi) from the ith new summand to combine with its corresponding
logarithm. But each xi is an independent random variable with occurrence
probabilities p, so for all k = 1, . . . , s,∑

xk∈A

p(xk) = 1 and
∑

xk∈A

p(xk) log2

1
p(xk)

= H(p),

independent of k. We conclude that H(ps) =
∑s

i=1H(p) = sH(p). �

5. Solution: Let Nd be the number of binary trees of depth d or less. Then
N0 = 1, since the only depth=0 binary tree is the one consisting of just
the root. Also N1 = 4, with the only possibilities being root, root+son,
root+daughter, or root+son+daughter.

Now observe that any tree of depth at most d + 1 consists of a root with a
possibly empty left subtree of depth at most d, and a possibly empty subtree
of depth at most d. These left and right subtrees may be chosen independently
from the 1+Nd possibilities (the empty subtree is not counted in Nd), so the
following recursion relation holds:

Nd+1 = (1 +Nd) × (1 +Nd).

Thus N2 = 25 and N3 = 676. �

6. Solution: Suppose that there are only T < ∞ binary trees with n leaves.
Pick one with maximal depth d, and find one of its vertices with generation
number d. That vertex must be a leaf; adding one daughter to that vertex
creates a new binary tree which has n leaves and depth d+1, so it cannot be
among the original T . Hence there must be at least T + 1 trees. Hence there
cannot be just a finite number. �

7. Solution: If there are 10 or fewer letters in the alphabet, each gets a unique
one-digit codeword. Otherwise, suppose that the alphabet consists of the
consecutive integers A = {1, 2, . . . , N}, where N > 10. Let the occurrence
probabilities be p1, p2, . . . , pN . Then,

1. Create N orphan vertices with weights p1, . . . , pN .

2. Find the 10 orphans with smallest weights. Label them x0, x1, . . . , x9 and
denote their respective weights by px0 , . . . , px9 . Use some convention to
break ties.

3. Create a new orphan vertex x, give it weight px0 + · · · + px9 , and make
it the common parent of vertices x0 through x9, which are no longer
orphans. Label the edge between x and xd with the digit d, for d =
0, 1, . . . , 9.
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Figure A.5: Huffman code solving Exercise 8.

4. If there are fewer than 10 orphan vertices left, connect them to a common
parent, call it the root, and terminate. Otherwise, return to step 2.

�

8. Solution: A Huffman code for this combination of alphabet and occur-
rence probabilities is shown in Figure A.5. It has codeword lengths n =
(2, 4, 4, 3, 2, 4, 3, 4), and its bit rate is

∑
x∈A p(x)n(x) = 2.73, whereas H(p) =∑

x∈A p(x) log2 1/p(x) = 2.69. �

9. Solution: First count the occurrences of each of the 20 letters in this 85-
letter message: 1kpw, 2bsv, 3acd, 4fhiy, 5nou, 7l, 8t, 9r, 12e. One Huffman
tree for this set of occurrence probabilities is obtained in these steps:

1k 1p 1w 2b 2s 2v 3a 3c 3d 4f 4h 4i 4y 5n 5o 5u 7l 8t 9r 12e

1w 2kp 2b 2s 2v 3a 3c 3d 4f 4h 4i 4y 5n 5o 5u 7l 8t 9r 12e

2b 2s 2v 3kpw 3a 3c 3d 4f 4h 4i 4y 5n 5o 5u 7l 8t 9r 12e

2v 3kpw 3a 3c 3d 4bs 4f 4h 4i 4y 5n 5o 5u 7l 8t 9r 12e

3a 3c 3d 4bs 4f 4h 4i 4y 5vkpw 5n 5o 5u 7l 8t 9r 12e

3d 4bs 4f 4h 4i 4y 5vkpw 5n 5o 5u 6ac 7l 8t 9r 12e

4f 4h 4i 4y 5vkpw 5n 5o 5u 6ac 7dbs 7l 8t 9r 12e

4i 4y 5vkpw 5n 5o 5u 6ac 7dbs 7l 8fh 8t 9r 12e

5vkpw 5n 5o 5u 6ac 7dbs 7l 8iy 8fh 8t 9r 12e

5o 5u 6ac 7dbs 7l 8iy 8fh 8t 9r 10vkpwn 12e

6ac 7dbs 7l 8iy 8fh 8t 9r 10ou 10vkpwn 12e

7l 8iy 8fh 8t 9r 10ou 10vkpwn 12e 13acdbs

8fh 8t 9r 10ou 10vkpwn 12e 13acdbs 15liy

9r 10ou 10vkpwn 12e 13acdbs 15liy 16fht

10vkpwn 12e 13acdbs 15liy 16fht 19rou

13acdbs 15liy 16fht 19rou 22vkpwne

16fht 19rou 22vkpwne 28acdbsliy

22vkpwne 28acdbsliy 35fhtrou

35fhtrou 50vkpwneacdbsliy

85fhtrouvkpwneacdbsliy

These nodes may be rearranged into a tree with its root at the top:
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0: 85fhtrouvkpwneacdbsliy

1: 50vkpwneacdbsliy 35fhtrou

2: 22vkpwne 28acdbsliy 16fht 19rou

3: 10vkpwn 12e* 13acdbs 15liy 8fh 8t* 9r* 10ou

4: 5vkpw 5n* 6ac 7dbs 7l* 8iy 4f* 4h* 5o* 5u*

5: 2v* 3kpw 3a* 3c* 3d* 4bs 4i* 4y*

6: 1w* 2kp 2b* 2s*

7: 1k* 1p*

Leaves are marked with asterisks, and the codeword length is listed at left.
The canonical Huffman tree produced by this algorithm is described by the
maximum codeword length L = 7; the number of codewords at each length,
M = (0, 0, 3, 6, 6, 3, 2); and the order in which letters appear in the canonical
tree at each level, A′ = etr nlfhou vacdiywbs kp.

It takes 5 bits per letter to code the letters in a 20-letter alphabet, so the
original message occupies at least 85 ∗ 5 = 425 bits.

The bit rate of the Huffman tree is its weighted depth, which is

7 ∗ (1+1) + 6 ∗ (1+2+2) + 5 ∗ (2+3+3+3+4+4) +
+ 4 ∗ (5+7+4+4+5+5) + 3 ∗ (12+8+9) = 346 bits,

or 4.07 bits per letter.

The entropy H(p) of the message is computed from the occurrence probabil-
ities p(e) = 12

85 , p(k) = p(p) = p(w) = 1
85 , and so on:

H(p) = 3 ∗ 1
85

∗ log2

85
1

+ 3 ∗ 2
85

∗ log2

85
2

+ 3 ∗ 3
85

∗ log2

85
3

+ 4 ∗ 4
85

∗ log2

85
4

+ 3 ∗ 5
85

∗ log2

85
5

+ 1 ∗ 7
85

∗ log2

85
7

+ 1 ∗ 8
85

∗ log2

85
8

+ 1 ∗ 9
85

∗ log2

85
9

+ 1 ∗ 12
85

∗ log2

85
12

= 4.02946 bits per letter,

or about 342.5 total bits. �

10. Solution: In this case, adding an extra letter i with occurrence probabil-
ity 0 deepens the tree by one level. One canonical Huffman code for this
appended alphabet and occurrence probabilities is shown in Figure A.6. It
has the description L = 5, M = (0, 2, 2, 3, 1), and A′ =eadgcbfh. Its bit rate
is
∑

x∈A p(x)n(x) = 2.78, which is 0.05 bits per character worse than the
efficiency of the tree without the extra letter. �
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Figure A.6: Canonical Huffman code solving Exercise 10.

11. Solution: In this case, Paw = (1 − q)(1 − p)N , Pfa = q(1 − p)N , and using
the notation of Equation 6.7,

Pde = (1 − q)
∑
k∈O

(
N

k

)
pk(1−p)N−k + q

∑
k∈E+

(
N

k

)
pk(1−p)N−k

= (1 − q)(1 − x) + q[x− (1 − p)N ]

=
1
2
[1 − (1 − 2q)(1 − 2p)N − 2q(1 − p)N ];

Pue = q
∑
k∈O

(
N

k

)
pk(1−p)N−k + (1 − q)

∑
k∈E+

(
N

k

)
pk(1−p)N−k

= q(1 − x) + (1 − q)[x − (1 − p)N ]

=
1
2
[1 + (1 − 2q)(1 − 2p)N − 2(1 − q)(1 − p)N ].

�

12. Solution: We use Gilbert’s ideas from Theorem 6.12:

Gilbert’s Algorithm for an Error Correcting Code
gilbertcode( bits, words, corrects ):
[0] Let N = 1<<bits, let radius = 2*corrects+1
[1] For n=0 to N-1, allocate tag[n] with tag[n]=LIVE
[2] Allocate c[0],...,c[words-1] and let c[0] = 0
[3] For j=0 to words-1, do [4] to [7]
[4] For n=c[j]+1 to N-1 do [5]
[5] If dist(n,c[j])<=radius, then let tag[n] = DEAD
[6] For n=c[j]+1 to N-1 do [7]
[7] If tag[n]==LIVE, then let c[j+1]=n and goto [3]
[8] For j=0 to words-1, print c[j]
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To generate the code, we call gilbertcode(10,4,2). This starts with code-
word c(0) = 00000 00000 and eliminates Hamming spheres of radius 5 =
2 ∗ 2 + 1 from the ten-dimensional unit hypercube. It continues until it has
found three additional survivors c(1) = 00001 11111, c(2) = 01110 00111, and
c(3) = 01111 11000. Note that only nine codeword bits are actually needed,
as the tenth bit is constant over the code. �

13. Solution: If x and y differ at exactly one decimal digit, then x−y = ±d×10k

for some integers k ≥ 0 and d ∈ {1, 2, . . . , 9}. But c11(x) = c11(y) if and
only if x − y = 0 (mod 11), which requires d = 0 (mod 11) since 10k �= 0
(mod 11) for any k ≥ 0. But no d in the stated range satisfies that congruence.

Note that c9(110) = c9(119) is a one-digit difference undetected by casting
out nines. In general, changing any 0 digit into 9 will not change c9, since the
difference d = 9 satisfies d = 0 (mod 9). Neither will transposing two digits,
though transposing unequal adjacent digits will change the value of c11. �

14. Solution: No. Consider the counterexample

1 872× 22 883 = 42 836 976 �= 42 84̂6 8̂76,

a two-digit error in decimal arithmetic. We have

c9(1 872) = 9; c9(22 883) = 5; c9(42 846 876) = 9 = c9(9 × 5),

so c9 fails to detect the error. Likewise,

c11(1 872) = 2; c11(22 883) = 3; c11(42 846 876) = 6 = c11(2 × 3),

so c11 also fails to detect the error. �

15. Solution: This is a direct translation of the integer Euclidean algorithm:

Euclid’s Algorithm for Integer-Size Mod-2 Polynomials
intmod2polygcd( x, y ):
[0] Let z = x
[1] Call intmod2polydivision(y,x), replace x = remainder
[2] Let y = z
[3] If intmod2polydegree(x)>0, then go to [0]
[4] Return y

�

16. Solution: Write 1 = gcd(x, z) = m0(t)x(t) + n0(t)z(t) as in the proof of
Theorem 1.2. Then y(t) = m0(t)x(t)y(t) +n0(t)z(t)y(t). Since z(t) evidently
divides n0(t)z(t)y(t), and z(t) divides m0(t)x(t)y(t) by assumption, it follows
that z(t) divides m0(t)x(t)y(t) + n0(t)z(t)y(t) = y(t). �
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17. Solution: (a) Trial division with all six mod-2 polynomials of degree 1 or 2
yields:

t3 + t+ 1 = (t)(t2 + 1) + 1
= (t+ 1)(t2 + t) + 1
= (t2)(t) + t+ 1
= (t2 + 1)(t) + 1
= (t2 + t)(t+ 1) + 1
= (t2 + t+ 1)(t+ 1) + t.

All of these expressions have nonzero remainders, so t3 + t+ 1 is irreducible.

(b) The factorization t4 + t2 + 1 = (t2 + t+ 1)(t2 + t+ 1) + 0 = (t2 + t+ 1)2

is discovered by trial division with the six mod-2 polynomials of degree 1 or
2. �

18. Solution: For all of these polynomials, we use the following:

Standard C Function: Test Mod-2 Polynomial Divisibility

unsigned int least_power (unsigned int mod2poly, int degree) {
unsigned int rem, mask, highbit, N;
if(mod2poly%2==0) return 0; /* error: t divides mod2poly */
highbit = 0x1<<(degree-1); mask = highbit|(highbit-1);
for(rem=mod2poly&mask, N=degree; rem!=0x1; ++N )
if( rem & highbit ) rem = ((rem<<1)^mod2poly) & mask;
else rem <<= 1;

return N;
}

(a) Call least_power()with mod2poly set to 1011 (base 2) and degree set to
3. The return value shows that t3 + t+1 divides tN +1, with N = 7 = 23−1,
but no smaller N > 0.

(b) Mod-2 polynomial 1100000001111, of degree 12, divides tN + 1 for N =
2047 = 211 − 1, but no smaller N > 0.

(c) Mod-2 polynomial 11000000000000101, of degree 16, divides tN + 1 for
N = 32767 = 215 − 1, but no smaller N > 0.

(d) Mod-2 polynomial 1100000000101000100000001, of degree 24, divides tN +
1 for N = 7161, but no smaller N > 0. �

19. Solution: On a computer that has integer types with 33 or more bits, we
can use least_power() exactly as in Solution 18. Otherwise, on a computer
with 32-bit integers, we simply remove the leftmost, most significant, 33rd
bit, setting mod2poly to 00000100110000010001110110110111 (base 2), and



A.6. . . . to Chapter 6 Exercises 271

call least_power() with that and the same value 32 for degree. Integer
overflow eliminates the highest order bit in the remainder computation, and
after a rather long while we get the result. �

20. Solution: The encoding, formatted as 8-bit codewords with spaces for read-
ability, is the following:

11000101 01101100 01100101 11110000 11101000 11100001 11101110 01110100

11110011 10100000 11100001 01110010 01100101 10100000 11100001 11110000

11110000 01110010 01101111 11100001 01100011 11101000 01101001 11101110

11100111 10100000 01100110 01110010 01101111 11101101 10100000 01110100

11101000 01100101 10100000 01010011 01101111 11110101 01110100 11101000

00100001 (base 2)

The conversion to bits with the addition of a parity bit was done on a computer
with ASCII internal coding by the following function, called with msg[] set
to “Elephants are approaching from the South!”

Standard C Function: Write ASCII+Parity Bits
int ascii_bits(int allbits[], const char msg[] ) {
int i, n=0, b, letter, parity, bit[8];
for(i=0; letter=msg[i]; i++) { /* Stop at NULL */

for(parity=0, b=6; b>=0; b--) {
bit[b] = (letter>>b)&1; /* Assume ASCII */
parity += bit[b];

}
bit[7] = parity&1; /* preserve even parity */
for(b=7; b>=0; b--) allbits[n++] = bit[b];

}
return n; /* Number of bits written */

}

�

21. Solution: We first call the function ascii_bits() from the previous exercise
with msg set to “Elephants are approaching from the North!” to get the
following output:

11000101 01101100 01100101 11110000 11101000 11100001 11101110 01110100

11110011 10100000 11100001 01110010 01100101 10100000 11100001 11110000

11110000 01110010 01101111 11100001 01100011 11101000 01101001 11101110

11100111 10100000 01100110 01110010 01101111 11101101 10100000 01110100

11101000 01100101 10100000 01001110 01101111 01110010 01110100 11101000

00100001 (base 2)

Next, we implement mod2polychecksum() on page 217 of the text as follows:
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Standard C Function: Mod-2 Polynomial Modular Checksum
int mod2polychecksum( int msgbit[], int numbits,

int mod2poly[], int deg ) {
int checksum, d, n;
for(n=0; n<numbits-deg; n++ )

if( msgbit[n]==1 )
for(d=0; d<=deg; d++)
msgbit[n+d] ^= mod2poly[deg-d];

for(checksum=0; n<numbits; n++)
checksum = 2*checksum + msgbit[n];

return checksum;
}

We will use mod2poly[]={1,1,0,1}, representing 1+t+t3 with the coefficient
of t3 at index 3. Applying this with msgbit[] containing the encoded bits
from the message “Elephants are approaching from the South!” as computed
in Solution 20, and putting the left-most bit of “E” at index 0, yields a
checksum of 0.

Calling mod2polychecksum() with the “. . . North!” base-2 bits in the array
msgbit[] and the same mod-2 modulus polynomial yields a checksum of 1,
distinguishing the strings. However, “Elephants are approaching from the
NORTH!” yields the following bitstring:

11000101 01101100 01100101 11110000 11101000 11100001 11101110 01110100

11110011 10100000 11100001 01110010 01100101 10100000 11100001 11110000

11110000 01110010 01101111 11100001 01100011 11101000 01101001 11101110

11100111 10100000 01100110 01110010 01101111 11101101 10100000 01110100

11101000 01100101 10100000 01001110 01101111 01110010 01110100 11101000

00100001 (base 2)

Then mod2polychecksum() returns its checksum as 0. Thus, this message is
not distinguished from the first by its 3-bit checksum. �



Appendix B

Basics, Technicalities, and
Digressions

B.1 ASCII and other character sets

The American Standard Code for Information Interchange, variously called ASCII,
US-ASCII, ANSI X3.4-1968, or ISO 646, assigns a number in the range 0 to 127
to each of the common English-language typewriter symbols plus some nonprinting
control characters. It is a decades-old standard, still commonly used to represent
text within computers, even in non-English-speaking countries. Table B.1 gives the
ASCII character numberings in decimal, octal, and hexadecimal notation.

The caret (^) preceding a character means “hold the Control key while entering.”
The low code numbers 0–31 plus the highest code number 127 are control characters
that have various functions. For example ^G, read “Control-G,” rings the margin
bell on a teletype, or causes a computer monitor to beep. Codes 20–126 are letters,
numbers, and punctuation, with code 20 being the space character.

The Standard C programming language does not depend on ASCII numbering,
but it uses all the ASCII letters, numbers, and punctuation symbols except codes
24 ($), 40(@), and 60(‘). Standard C also requires certain of the control characters,
referring to them by escape sequences beginning with a backslash (\). These are
listed in Table B.2.

Because of the way C handles strings, every character numbering scheme must
have the same internal representation, 0, for the Null character. Also, Standard C
requires that the internal codes for 0,1,. . . ,9 have sequential values.

ASCII codes fit into 7 bits, but most computers use 8 bits per character. Thus,
there are various extended ASCII character sets, with codes 128–255 used for ac-
cented letters, graphical symbols, Greek letters, or other purposes. Symbols rep-
resented by these codes are sometimes called meta-characters. There is a growing
family of international standard alphabets using 8-bit character codes, the ISO
8859-n family of national character sets, of which the first ten members are listed

273
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Char Hex Oct Dec | Char Hex Oct Dec | Char Hex Oct Dec | Char Hex Oct Dec

---- --- --- --- | ---- --- --- --- | ---- --- --- --- | ---- --- --- ---

^@ 00 000 0 | 20 040 32 | @ 40 100 64 | ‘ 60 140 96

^A 01 001 1 | ! 21 041 33 | A 41 101 65 | a 61 141 97

^B 02 002 2 | " 22 042 34 | B 42 102 66 | b 62 142 98

^C 03 003 3 | # 23 043 35 | C 43 103 67 | c 63 143 99

^D 04 004 4 | $ 24 044 36 | D 44 104 68 | d 64 144 100

^E 05 005 5 | % 25 045 37 | E 45 105 69 | e 65 145 101

^F 06 006 6 | & 26 046 38 | F 46 106 70 | f 66 146 102

^G 07 007 7 | ’ 27 047 39 | G 47 107 71 | g 67 147 103

^H 08 010 8 | ( 28 050 40 | H 48 110 72 | h 68 150 104

^I 09 011 9 | ) 29 051 41 | I 49 111 73 | i 69 151 105

^J 0A 012 10 | * 2A 052 42 | J 4A 112 74 | j 6A 152 106

^K 0B 013 11 | + 2B 053 43 | K 4B 113 75 | k 6B 153 107

^L 0C 014 12 | , 2C 054 44 | L 4C 114 76 | l 6C 154 108

^M 0D 015 13 | - 2D 055 45 | M 4D 115 77 | m 6D 155 109

^N 0E 016 14 | . 2E 056 46 | N 4E 116 78 | n 6E 156 110

^O 0F 017 15 | / 2F 057 47 | O 4F 117 79 | o 6F 157 111

^P 10 020 16 | 0 30 060 48 | P 50 120 80 | p 70 160 112

^Q 11 021 17 | 1 31 061 49 | Q 51 121 81 | q 71 161 113

^R 12 022 18 | 2 32 062 50 | R 52 122 82 | r 72 162 114

^S 13 023 19 | 3 33 063 51 | S 53 123 83 | s 73 163 115

^T 14 024 20 | 4 34 064 52 | T 54 124 84 | t 74 164 116

^U 15 025 21 | 5 35 065 53 | U 55 125 85 | u 75 165 117

^V 16 026 22 | 6 36 066 54 | V 56 126 86 | v 76 166 118

^W 17 027 23 | 7 37 067 55 | W 57 127 87 | w 77 167 119

^X 18 030 24 | 8 38 070 56 | X 58 130 88 | x 78 170 120

^Y 19 031 25 | 9 39 071 57 | Y 59 131 89 | y 79 171 121

^Z 1A 032 26 | : 3A 072 58 | Z 5A 132 90 | z 7A 172 122

^[ 1B 033 27 | ; 3B 073 59 | [ 5B 133 91 | { 7B 173 123

^\ 1C 034 28 | < 3C 074 60 | \ 5C 134 92 | | 7C 174 124

^] 1D 035 29 | = 3D 075 61 | ] 5D 135 93 | } 7D 175 125

^^ 1E 036 30 | > 3E 076 62 | ^ 5E 136 94 | ~ 7E 176 126

^_ 1F 037 31 | ? 3F 077 63 | _ 5F 137 95 | ^? 7F 177 127

---- --- --- --- | ---- --- --- --- | ---- --- --- --- | ---- --- --- ---

Char Hex Oct Dec | Char Hex Oct Dec | Char Hex Oct Dec | Char Hex Oct Dec

Table B.1: ASCII characters and their numerical codes

Control | ANSI Standard C | ASCII | ASCII | ASCII | ASCII

function | escape sequence | name | hex | octal | decimal

----------------|-----------------|-----------|-------|-------|--------

Null | \0 | Control-@ | 00 | 000 | 0

Alert | \a | Control-G | 07 | 007 | 7

Backspace | \b | Control-H | 08 | 010 | 8

Horizontal tab | \h | Control-I | 09 | 011 | 9

New line | \n | Control-J | 0A | 012 | 10

Vertical tab | \v | Control-K | 0B | 013 | 11

Form feed | \f | Control-L | 0C | 014 | 12

Carriage return | \r | Control-M | 0D | 015 | 13

Table B.2: ASCII implementation of required control codes in Standard C
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ISO Number Name Examples
ISO-8859-1 Latin1 Basque, English, French, Swedish
ISO-8859-2 Latin2 Croatian, Hungarian, Polish, Sorbian
ISO-8859-3 Latin3 Esperanto, Maltese
ISO-8859-4 Latin4 Estonian, Lappish, Latvian, Lithuanian
ISO-8859-5 Cyrillic Bulgarian, Macedonian, Russian
ISO-8859-6 Arabic Basic Arabic
ISO-8859-7 Greek Modern Greek
ISO-8859-8 Hebrew Hebrew, Yiddish
ISO-8859-9 Latin5 Turkish
ISO-8859-10 Latin6 Icelandic, Inuit

Table B.3: The first ten ISO-8859 national character sets

in Table B.1. In each of these, the first 128 symbols are the same as ASCII.
There are also several using 16-bit wide characters, such as Unicode, or ISO

10646, which encompasses all of Planet Earth’s written human languages.

B.2 Algorithms

An algorithm is a step-by-step procedure for computing some quantity. It has
inputs, outputs, and an ordered list of instructions. An algorithm is finite if, for
any fixed finite inputs, each of its steps is finite and the total number of steps
performed is also finite.

Notation for the instructions must be unambiguous. For this purpose there exist
numerous programming languages with limited vocabulary and rigid grammar and
syntax. A nice survey of these, including old and exotic ones like APL, may be
found in Tucker’s Programming Languages. Algorithms in this text are written in
pseudocode that resembles some of these formal programming languages, especially
Basic, FORTRAN and Standard C. They are aimed at humans and are not suitable
for direct machine consumption. However, we must still have some rules to eliminate
ambiguity.

If intermediate quantities are computed and stored, they must be assigned to
memory. The equals sign is used in this context, and another symbol “==” is used
in tests for equality. We may also use the APL assignment arrow x ← x + 1, read
“x gets x plus 1,” to signify that the memorized quantity x should be replaced by
itself added to 1.

Data type and variable declarations are omitted in pseudocode, and there is
no FORTRAN-like naming convention to distinguish integers from floats, but new
quantities and their types should be inferred from context. Function names will
always be in lower-case, followed by parentheses enclosing a parameter list. When
a function is defined for the first time, there will be a colon after the parameter
list to signify the beginning of the definition. Punctuation marks will also be used
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to signify parts of data structures. Keywords and action descriptions will either be
capitalized or all lower-case, but can be distinguished from function names by the
absence of parentheses.

Array indexing is signified by placing the index inside square brackets. Members
of data structures are set apart with periods. Operations are always evaluated from
left to right, so that CW[J].VAL = X-Y-Z means “assign the value of (x− y)− z to
member VAL of the data structure at index j in the array of data structures CW[].”
Notice how arrays are marked by appending an empty set of brackets. An array
of arrays can be denoted by two sets of empty brackets: MATRIX[][]. Likewise,
writing sqrt() emphasizes that a function may have a nonempty list of parameters,
though at the moment those parameters are not the focus of attention.

The operators %, <<, >>, &, |, and ^, taken from Standard C, mean remainder,
left-shift, right-shift, bitwise conjunction, bitwise disjunction, and bitwise exclusive-
or, respectively. Following any of these with = means “assign to the left-hand
variable the output of the operation.” For example, x%=y, means “assign to x the
result of x%y,” and so on.

Likewise, the Standard C logical operators !, &&, ||, == and != will be used to
signify NOT, AND, OR, EQUAL, and NOT EQUAL, respectively. We will assume
that logical expressions have the values TRUE or FALSE that can be tested, though
unlike Standard C we will not give them arithmetic values or compute with them.

Algorithms are set apart from the text in numbered lists. Statements and
keywords will be similar to those in the following list of examples:

Assignment: Let x = 0, or x← 0, assigns the value “0” to the memory location
labeled x.

Function calls: Compute x = sum(arr[],len), or x ← sum(arr, len), evaluates
the function sum() with input values arr[] and len, then assigns its return
value to x.

Replacement: Operations sometimes perform arithmetic with a variable and then
replace that variable with the result:

Increments: x += dx means “x← x+ dx”.

Decrements: y -= dy means “y ← y − dy”.

Multipliers: z *= c means “z ← c× z”.

Normalizers: w /= sum means “w ← w/sum”.

The words “Replace,” “Increment,” “Accumulate,” “Decrement,” “Multiply,”
“Normalize,” or “Divide” may be used to emphasize the nature of the arith-
metic.

Conditionals: The logical expression between “If” and “then” is tested. If its
value is TRUE, the “then” action is performed. Otherwise, the “Else” sub-
sequent action is performed, if there is one. After either case, the algorithm
moves past both the “If” and the “Else” lines. For example, the following
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fragment assigns y = 2 at the “If” line if x == 4 and assigns y = 3 at the
“Else” line if x == 5:

[0] If x is even, then let y = x/2
[1] Else let y = (x+1)/2

Loops: These contain a control statement at the top, and a body consisting of other
instructions grouped below it and indicated by indentation.

In a “for” loop, the control statement names and defines the range of the loop
index, which is incremented by +1 at each pass through the body:

[0] For j=a to b, do [1] to [2]
[1] Let array[2*j] = j
[2] Let array[2*j+1] = 0

If b < a, then no statement in the body of the loop will be executed.

In a “while” loop, the loop index may be altered in any desired fashion within
the body:

[0] Let k = n
[1] While k>0, do [2] and [3]
[2] Multiply nfacfac *= k
[3] Decrement k -= 2

Return statements: These indicate the value to be returned by a function:
...
[4] Return nfacfac

If no value is named it means that the function acts solely by side-effect, and
returns no explicit output. The return statement can be omitted in this case.

Predefined functions: It will be assumed that common functions are predefined,
such as sqrt(x), sin(x), cos(x), exp(x), and log(x), which respectively re-
turn the square root, sine, cosine, exponential and logarithm of x. Exceptions
such as x ≤ 0 in log(x) cause immediate termination.

B.3 Big-Oh notation

So-called “big-Oh” notation is used to estimate the rate of increase of a quantity
that depends on a parameter. For example, suppose that tn is the number of
arithmetic operations needed to compute the square of an n-digit integer on a
particular machine. To say that tn = O(n2) means there is some finite positive
constant C such that, for all n = 1, 2, . . . and any n-digit number, tn ≤ Cn2.
The smallest value of C which works is called the sharp constant and is sometimes
of independent interest. In this example, the constant depends on the base of
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the number system used and certain other details about the machine arithmetic,
unimportant particulars best hidden by the notation.

For example, if a and b are n-digit integers, then the naive paper-and-pencil
algorithms for computing a + b, ab, and a/b require O(n), O(n2), and O(n2) one-
digit operations, respectively. These are finite numbers of operations for any fixed
a, b on a particular machine.

The complexity of an algorithm containing nested loops can be estimated from
the depth of the nesting. For example, n×n matrix multiplication has three nested
loops each requiring O(n) iterations, and takes O(n3) total operations.

Other increasing functions of n may be used to estimate complexity. For ex-
ample, the complexity of printing the number n grows like O(log n), since n has
O(log n) digits and printing each one should take at most some fixed amount of
time. Not specifying the constant allows the estimate to apply to printing in all
bases, on any kind of printer.

The complexity of a combination of algorithms is determined by the most com-
plex component. For example, solving the n× n linear system Ax = b is a combi-
nation of inverting matrix A, which costs O(n3) operations, followed by applying
the inverse matrix to the vector b, which costs O(n2). The total complexity is
O(n3), since for all large enough n the inversion cost will dominate. In general, a
O(np) algorithm combined with a O(nq) algorithm has complexity O(nmax(p,q)).

Memory space requirements for an algorithm can be specified in big-Oh notation
as well. For example, to store an n×n image as pixel values will cost O(n2) memory
spaces. The notation hides the details of how many bits are stored per pixel, in
the unspecified constant C. Space and time are both important in complexity
estimates, and an algorithm that performs O(n) operations on each pixel will cost
O(n)×O(n2) = O(n3) operations to execute. In general, O(np) operations on each
of O(nq) values will cost O(np+q) in total.

The same notation is used to give estimates of small quantities in terms of a
small parameter. For example, suppose that f = f(x) is a real-valued function,
defined for values x near 1. To say that f(1+h)− f(1) = O(h) means that there is
some constant C such that |f(1 + h)− f(1)| ≤ C|h| for all h. If we only care about
very small h, we might say f(1 + h) − f(1) = O(h) as h → 0, which is the weaker
assertion that for some ε > 0, there is a constant C such that |f(1+h)−f(1)| ≤ C|h|
for all h with |h| < ε.

Size estimates can be combined just like complexity estimates, with the higher
order being dominant. For example, if f(h) = O(hp) and g(h) = O(hq) as h → 0,
then f(h) + g(h) = O(hmax(p,q)) as h→ 0. Also, f(h)g(h) = O(hp+q) as h→ 0.

B.4 Calculus methods

Complete proofs of the lemmas and theorems in this section may be found in
Apostol’s two-volume Calculus, listed in the further readings, or else in his more
advanced book Mathematical Analysis, listed in the further readings in Chapter 3.
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B.4.1 Techniques of proof

Suppose that P (n) is a property of the counting number n ∈ {0, 1, 2, . . .}, such
as “n is odd” or “the sum of the positive integers up to n is n(n + 1)/2.” P (n)
is considered verifiable if it can be shown true or false with only finitely many
calculations. Both of the example properties are verifiable: the first by dividing n
by 2, the second by performing n additions.

The verifiability of P (n) for any fixed n sometimes permits verifying that P (n) is
true for all the infinitely many n, using the principle of mathematical induction. If
P (0) is true, and if it can be verified algebraically for the variable m that P (m+1)
is true whenever P (m) is true, then P (n) is true for every n = 0, 1, 2, . . .. Any
doubter worried about a particular n need only consider that P (0) is true, so P (1)
is true, so . . .P (n− 1) is true, and finally P (n) is true.

For the first example, P (0) is false (since 0 is even, not odd) so induction fails
at the outset. The second property is true for all n, since P (0) is true (the sum of
no integers is 0 = (0)(0 + 1)/2) and P (m+ 1) follows algebraically from P (m):

m+1∑
k=1

k = (m+ 1) +
m∑

k=1

k.

If P (m) is true, then the last sum is m(m + 1)/2. Combining this algebraically
with (m+ 1) gives

∑m+1
k=1 k = (m+ 1)(m+ 2)/2, or P (m+ 1).

Sometimes it is more convenient to start with P (1) or higher, if the resulting
algebraic formulas are nicer.

Enumeration

To show that a set is infinite, it suffices to show that it contains at least n members
for every integer n. This can be done with mathematical induction, with P (n)
being the proposition that the set contains at least n members. Euclid first used
this idea to show that there are infinitely many primes. P (1) is true, since 2 is
prime. If P (n) is true, let p1, . . . , pn be n distinct primes and put x = p1 · · · pn +1.
Then x is not divisible by any of the n listed primes, so it is either a new prime
number or contains a prime divisor not in the list, so that P (n+ 1) is true.

Polynomial algebra

Let p = p(x) be a polynomial with coefficients a0, a1, . . . , an:

p(x) = a0 + a1x+ a2x
2 + · · · + an−1x

n−1 + anx
n. (B.1)

The degree of p is the nonnegative integer n except when p is identically zero, that
is, when a0 = a1 = · · · = an = 0. In that case, the degree is conventionally treated
as −∞ with the arithmetic rules n+ (−∞) = (−∞) + n = −∞ for any finite n.

If p = p(x) and q = q(x) are polynomials of degrees n,m respectively, then

• Both pq = p(x)q(x) and p+ q = p(x) + q(x) are polynomials;
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• The degree of pq is n+m;

• The degree of p+ q is at most max{n,m};
• If q is not identically zero and thus has finite degree m, there are unique

polynomials r = r(x) and s = s(x), with the degree of s being less than m,
such that for all x,

p(x) = s(x)q(x) + r(x).

The last fact implies that if z is a root of p, then p(x) = s(x)(x − z) for all x. We
prove this by dividing p by q(x) = x − z, which has degree m = 1. This gives a
remainder polynomial r = r(x) of degree 0 or less. But then r is constant, and
since 0 = p(z) = s(z)(z − z) + r(z) = r(z), we conclude that r is identically zero.

B.4.2 Limits, continuity, and derivatives

Let f = f(t) be a function of one real variable, defined for all values of t in an open
interval (a, b). Let t0 signify some particular fixed value of the variable t, and let ε
and δ signify small positive real numbers.

Function f is said to have a limit L at t = t0 if, for every ε > 0, there is a
δ > 0 such that if 0 < |t− t0| < δ, then |f(t) − L| < ε. That fact about f is often
abbreviated by the notation

lim
t→t0

f(t) = L.

It does not require that f be defined at t0, but only that it be defined at points t
near t0, and that its value at those points stays close to L.

Sometimes a function has a limit from only one side. For example, f is said to
have a left sided limit L at t = t0 if, for every ε > 0, there is a δ > 0 such that if
t0 − δ < t < t0, then |f(t) − L| < ε. Such a limit L, if it exists, is usually denoted
by f(t0−) as follows:

lim
t→t0−

f(t) = f(t0−).

This does not require that f be defined at any t ≥ t0.
Likewise, f is said to have a right sided limit L at t = t0 if, for every ε > 0,

there is a δ > 0 such that if t0 < t < t0 + δ, then |f(t) − L| < ε. Such a limit L, if
it exists, is usually denoted by f(t0+) as follows:

lim
t→t0+

f(t) = f(t0+).

This does not require that f be defined at any t ≤ t0.
If f is defined only on the half-open interval [a, b), then it can at best have a

right sided limit at a because its values are undefined at t < a. Note that f might
have a left sided limit at b in this case, even though it is not defined at b.

Lemma B.1 f has a limit L at t0 if and only if its left sided and right sided limits
exist and agree: f(t0−) = f(t0+) = L. �
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Function f is said to be continuous at a point t0 if limt→t0 f(t) = f(t0). This
requires both that the limit exists and that f is defined at t = t0.

Corollary B.2 f is continuous at t0 if and only if f(t0−) = f(t0) = f(t0+). �

Continuity is a concept that applies to functions of more than one variable. A
function f = f(x) of the variables x = (x1, . . . , xn) ∈ Rn is said to be continuous
at a point z = (z1, . . . , zn) ∈ Rn if limx→z f(x) = f(Z). Here x → z means that
xk → zk for all k = 1, 2, . . . , n.

Thus, for any subset I ⊂ Rn, we may say that f is continuous on a set I if it is
continuous at each point of I. We may further say that f is uniformly continuous
on a set I if the same δ(ε) relation works at each point of I: for every ε > 0, there
is a δ > 0 such that |f(x) − f(z)| < ε for all x, z ∈ I satisfying |zk − xk| < δ for all
k = 1, . . . , n.

The behavior of any continuous f has additional restrictions when the set I ⊂
Rn is closed, bounded, or connected:

Lemma B.3 If f is continuous on a closed and bounded set I ⊂ Rn, then f is
uniformly continuous on I. �

Lemma B.4 If f is a continuous real-valued function on a closed and bounded set
I ⊂ Rn, then f takes its minimum and maximum values at some points in I. �

Theorem B.5 (Intermediate Value Theorem) If f is a continuous real-valued
function on a closed and bounded interval I = [a, b] ⊂ R, and y is any number
between f(a) and f(b), then there is some x ∈ I such that f(x) = y. �

Corollary B.6 If f is continuous on [a, b] ⊂ R, then {f(x) : a ≤ x ≤ b} is a
closed and bounded interval. �

Differentiability, or smoothness, is better than continuity. A function f of one
real variable is said to be differentiable at a point t0 if the difference quotient
function [f(t) − f(t0)]/(t − t0) has a limit as t → t0. The value of this limit is
denoted by f ′(t0), and called the derivative of f at t0:

f ′(t0) = lim
t→t0

f(t) − f(t0)
t− t0

.

Lemma B.7 If f is differentiable at t0, then f is continuous at t0. �

The last lemma holds because if f is differentiable at t0, then f(t)− f(t0) must
go to zero “at least proportionally as fast” as t − t0 goes to zero as t → t0. This
leads to a notation for comparing rates at which functions approach limits:

A function g = g(h) is said to be O(h), or big Oh of h, as h → 0, if there is
some proportionality constant C such that |g(h)| ≤ C|h| for all h sufficiently close
to 0. We may ignore h = 0 if g(0) is undefined. This notion can be generalized to
O(h2) and higher powers of h.
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Notice that if f is differentiable at t0, then g(h) = f(t0 + h) − f(t0) = O(h).
However, even if f(t)− f(t0) = O(t− t0), it does not imply that f is differentiable
at t0. It does imply that f is continuous at t0; in fact, it defines what is meant by
Lipschitz continuity of f at t0, which is a stronger notion. All Lipschitz continuous
functions are continuous, but some continuous functions (such as f(t) = t1/3 at
t0 = 0) are not Lipschitz continuous. Another notion of approach rate is needed,
so we will say a function g = g(h) is o(h), or little oh of h, as h→ 0 if

lim
h→0

g(h)/h = 0.

In other words, g(h) should go to zero somewhat faster than h. This notion can
also be generalized to higher powers of h.

The little-oh notation gives a useful characterization of differentiability:

Theorem B.8 f is differentiable at t0 if and only if there is a number, which shall
be called f ′(t0), such that f(t) = f(t0) + (t− t0)f ′(t0) + o(t− t0) as t→ t0. �

A function f is said to be differentiable on the interval (a, b) if it is differentiable
at each point t0 ∈ (a, b). The function f ′, whose value at each t0 ∈ (a, b) is f ′(t0),
is called the derivative of f .

The Mean Value Theorem is useful for estimating and approximating quantities.
It has both a differential and an integral form:

Theorem B.9 (MVT-D) Suppose that f = f(x) is differentiable on the interval
(a, b) and is continuous at the endpoints a, b as well. Then there is some z ∈ (a, b)
such that f ′(z) = [f(b) − f(a)]/(b− a). �

Theorem B.10 (MVT-I) Suppose that g = g(x) is a continuous function on the
interval [a, b]. Then there is some z ∈ (a, b) such that

∫ b

a
g(x) dx = (b− a)g(z). �

Higher order derivatives of f , if they exist, are obtained by the rule

f (d+1)(t) = (f (d)(t))′, for d = 1, 2, . . ., (B.2)

where f (d) is shorthand for f followed by d apostrophes or primes. For example,
f(t) = sin 2t has f ′(t) = 2 cos 2t, f ′′(t) = −4 sin 2t, f ′′′(t) = −8 cos2t, and f (4)(t) =
16 sin 2t. By convention, f (0) means f .

Function f is said to be d-times continuously differentiable, for d ≥ 1, if f and
its derivative functions f ′, f ′′, . . . , f (d) are all continuous. For such f , we write
f ∈ Cd. For example, f(t) = sin 2t belongs to C∞, while f(t) = t7/3 belongs to C2

but not to C3. By convention, we write f ∈ C0 if f is merely continuous. Also, if
f ∈ Cd for all d = 1, 2, . . ., we write f ∈ C∞.

B.4.3 Convergence of sequences, series and products

An infinite sequence {a(n) : n = 1, 2, . . .} is a function defined on Z+. It may take
values in R or C. In both cases, the absolute value |a(n)−L| measures the distance
between some term a(n) and some number L.
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Infinite sequence {a(n) : n ∈ Z+} is said to converge if there is some number
L such that, for every ε > 0, there is some sufficiently large N = N(ε) for which
n ≥ N ⇒ |a(n)−L| < ε. In that case, {a(n)} is said to have the limit L as n→ ∞,
and we write limn→∞ a(n) = L.

The partial sums sequence of {a(n) : n ∈ Z+} is another infinite sequence
{s(N) : N ∈ Z+} whose terms are

s(N) def=
N∑

n=1

a(n), for N = 1, 2, 3, . . .

These take values in the same set, R or C, as {a(n)}.
Now suppose that {a(n)} is an infinite sequence. We say that it is (conditionally)

summable if its partial sums converge, namely limN→∞
∑N

n=1 a(n) exists. We say
that it is absolutely summable if the partial sums of {|a(n)|} converge, namely
limN→∞

∑N
n=1 |a(n)| exists. We say it is square-summable if the partial sums of

{|a(n)|2} converge, namely limN→∞
∑N

n=1 |a(n)|2 exists.
An absolutely summable sequence can be added up on a finite precision ma-

chine in any order, always yielding the same sum except for rounding error. For a
summable but not absolutely summable series, order matters: rearrangement might
even make the partial sums diverge, even in exact arithmetic. This is Riemann’s
Theorem on conditionally summable series, page 197 of Apostol’s Mathematical
Analysis. Every absolutely summable sequence is summable and square-summable,
but {(−1)n/n : n ∈ Z+} is summable to log 1

2 and square-summable to π2/6 with-
out being absolutely summable.

A doubly infinite sequence is a real or complex valued function defined on Z
rather than Z+. It can be denoted by {a(n) : n = 0,±1,±2, . . .} and considered
as two infinite sequences. It is called summable if both the positive-indexed and
negative-indexed sides individually are summable. Likewise, it is called square-
summable or absolutely summable if both sides have the corresponding property.

Sequences of functions

A sequence of functions {un = un(t)} is said to converge at a point t0 if the sequence
of numbers {un(t0) : n = 1, 2, . . .} converges as n → ∞. If {un(t)} converges at
each t, then the limits define a function u(t) = limn→∞ un(t). The convergence is
said to be uniform if un(t) → u(t) at comparable rates for each t, that is, if for
every ε > 0 there is a sufficiently large N such that n ≥ N ⇒ |un(t) − u(t)| < ε for
every t.

Lemma B.11 If un is a continuous function for each n and un(t) → u(t) converges
uniformly in t, then u = u(t) is a continuous function. �

This result is proved as Theorem 9.2 of Apostol’s Mathematical Analysis. It implies
that if {vn = vn(t)} is a sequence of bounded continuous functions and {cn} is an
absolutely summable sequence, then

∑
cnvn is a continuous function.
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One easy way to prove uniform convergence is to compare with an absolutely
summable sequence of numbers:

Theorem B.12 (Weierstrass M-test) Suppose {fn = fn(t) : n ∈ Z+} is a se-
quence of functions defined on some domain D ⊂ R, and there is a sequence of
nonnegative upper bounds {Mn : n ∈ Z+} satisfying |fn(t)| ≤ Mn for all n ∈ Z+

and all t ∈ D. If
∑

nMn converges, then

1. For each t ∈ D,
∑

n fn(t) converges absolutely;

2.
∑

n fn converges uniformly on D;

3. |∑n fn(t)| ≤∑nMn for every t ∈ D.

Proof: See Apostol’s Mathematical Analysis, Theorem 9.6, page 223. �

Rapid decrease

A function f = f(x) of one real variable is said to have order-d decrease at infinity
if |f(x)| = O(1/|x|d) as x → ±∞, namely, if there are positive constants rd and
Cd, independent of x, such that |f(x)| < Cd/|x|d whenever |x| > rd. For example,
f(x) = 1/(1 + x2) has order-2 decrease at infinity.

A function may have order-d decrease at infinity for more than one d, proved
using different constants rd and Cd. The largest d that works is called the order
of decrease of f , but f is said to have rapid decrease at infinity if it has order-d
decrease at infinity for every integer d > 0. For example, f(x) = e−(log |x|)2 has
rapid decrease at infinity.

A stronger condition than rapid decrease is exponential decrease at infinity.
There must be positive constants ε, r and C, independent of x, such that |f(x)| <
Ce−ε|x| for all |x| > r. For example, f(x) = e−x2

has exponential decrease at
infinity, whereas e−(log |x|)2 does not. Exponential decrease at infinity implies rapid
decrease.

We also distinguish order of decrease as x→ ∞ from decrease as x→ −∞.

Infinite products

The infinite product of a sequence {b(n) : n = 1, 2, . . .} is defined by

∞∏
n=1

b(n) def= lim
N→∞

N∏
n=1

b(n), (B.3)

whenever this limit exists and has a finite, nonzero value.

Lemma B.13 (Weierstrass Product Test) If the sequence {a(n) : n ∈ Z+} is
absolutely summable, then the infinite product of {1 + a(n) : n ∈ Z+} exists and
satisfies

∞∏
n=1

|1 + a(n)| ≤ exp

( ∞∑
n=1

|a(n)|
)
.
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Proof: First note that 0 ≤ log(1 + |x|) ≤ |x| for all real numbers x. Then, writing
b(n) = 1 + a(n), observe that |b(n)| = |1 + a(n)| ≤ 1 + |a(n)|, and

log

(
N∏

n=1

|b(n)|
)

=
N∑

n=1

log |b(n)| ≤
N∑

n=1

log(1 + |a(n)|) ≤
∞∑

n=1

|a(n)| <∞.

This also gives the upper bound on the size of the product.
Since {a(n)} is absolutely summable, its elements satisfy |a(n)| < 1/2 for all

sufficiently large n. It may thus be assumed, extracting finitely many factors if
necessary, that a(n) > −1/2 for all n. Notice that log |1 + x| ≥ −(2 log 2) |x| for
all x > −1/2. Thus we may write log |b(n)| = log |1 + a(n)| ≥ −(2 log 2)|a(n)|, and
observe that

log

(
N∏

n=1

|b(n)|
)

≥ −(2 log 2)
∞∑

n=1

|a(n)| > −∞.

This implies that
∏∞

n=1 |b(n)| > 0. �

Change of variable formulas

Let u = u(t) be a real-valued function on the closed and bounded interval I =
[a, b] ⊂ R, and suppose that its derivative u′ exists and is continuous on I. Put
u(I) def= {u(t) : t ∈ I} ⊂ R. Since u is continuous on I by Lemma B.7, u(I) must
be a closed and bounded interval by Corollary B.6.

If f = f(x) is continuous on u(I), then (f ◦ u)u′ will be continuous on I and
will satisfy the following:∫ u(b)

u(a)

f(x) dx =
∫ b

a

f(u(t))u′(t) dt. (B.4)

This is Theorem 7.36 on page 164 of Apostol’s Mathematical Analysis. It is not
necessary for u to be an increasing function, so that u(I) = [u(a), u(b)] and u gives a
one-to-one correspondence between I and u(I), since the factor u′ will give negative
weight to the right-hand integrand whenever u backtracks.

More generally, let u = u(s, t) = (u(s, t), v(s, t)) be a vector-valued function of
two real variables, defined on the rectangular region I = {(s, t) ∈ R2 : a < s <
b, c < t < d}, where −∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞ so that I could
be unbounded. Let u(I) def= {u(s, t) : (s, t) ∈ I} ⊂ R2 be the possibly unbounded
image region. Plane regions have more complicated geometry than intervals, so to
generalize the change of variables formula we must make three assumptions on u:

CV-1: We assume that u is one-to-one, namely u(s, t) = u(s′, t′) ⇒ (s, t) = (s′, t′).
Then points in the region u(I) are in one-to-one correspondence with points
in I. Thus we need not worry about backtracking or overlaps.
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CV-2: We assume that all four partial derivatives ∂u
∂s , ∂u

∂t , ∂v
∂s , and ∂v

∂t exist and
are continuous at each point in I. Then we may define the Jacobian matrix
u′ as follows:

u′(s, t) def=
( ∂u

∂s (s, t) ∂u
∂t (s, t)

∂v
∂s (s, t) ∂v

∂t (s, t)

)
.

This matrix generalizes the derivative for vector-valued functions of several
variables. It satisfies a condition similar to the one in Theorem B.8, namely

u(s, t) = u(s0, t0) + u′(s0, t0)
(
s− s0
t− t0

)
+ o (|s− s0| + |t− t0|) ,

as s→ s0 and t→ t0.

CV-3: We assume that Ju(s, t) �= 0 for all (s, t) ∈ I, where Ju is the determinant
detu′ of the 2× 2 matrix u′. This is called the Jacobian determinant of u,
and is a continuous function on I defined by

Ju(s, t) def=
∂u

∂s
(s, t)

∂v

∂t
(s, t) − ∂v

∂s
(s, t)

∂u

∂t
(s, t).

This insures that no part of u(I) is pinched down to a curve or point.

Theorem B.14 Suppose that u = u(s, t) satisfies conditions CV-1, CV-2, and
CV-3 on the open rectangular region I = (a, b) × (c, d) ∈ R2. Let f = f(x, y) be a
function continuous on I and suppose that

∫∫
u(I)

f(x, y) dxdy exists. Then∫ ∫
u(I)

f(x, y) dxdy =
∫ b

s=a

∫ d

t=c

f(u(s, t), v(s, t))|Ju(s, t)| dsdt. (B.5)

Proof: This is a special case of Theorem 15.11 combined with Theorem 15.7c of
Apostol’s Mathematical Analysis. �

For example, let I = (0,∞) × (0, 2π) ⊂ R2 and consider the change into polar
coordinates u(s, t) = s cos t, v(s, t) = s sin t. Then for u = (u, v) we have u(I) =
R2 \X+, where X+ = {(x, 0) : x > 0} is the positive half of the x-axis in R2. The
function u satisfies conditions CV-1, CV-2, and CV-3, since

u′(s, t) =
(

cos t −s sin t
sin t s cos t

)
; |Ju(s, t)| = |s cos2 t+ s sin2 t| = |s| = s �= 0.

This change of variable provides a clever old way to show that
∫
R
e−πx2

dx = 1:(∫ ∞

−∞
e−πx2

dx

)2

=
∫ ∞

−∞

∫ ∞

−∞
e−πx2

e−πy2
dxdy =

∫ ∫
R2
e−π(x2+y2) dxdy

=
∫ ∫

R2\X+
e−π(x2+y2) dxdy =

∫ ∞

s=0

∫ 2π

t=0

e−πs2
s dsdt

=
∫ ∞

s=0

e−πs2
2πs ds = −e−πs2

∣∣∣∞
s=0

= 1. (B.6)

The unsquared integral is +1 because the integrand e−πx2
is strictly positive.
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Integrability

Riemann defined the integral as a limit of finite sums over finer and finer partitions
of the interval [a, b]. It always exists for nice integrands and nice intervals:

Theorem B.15 If f = f(x) is continuous on a closed and bounded interval I =
[a, b] ⊂ R, then the Riemann interval

∫ b

a f(x) dx exists.

Any complex-valued function f = f(t) can be written as f = �f + i�f , where
�f = �f(t) and �f = �f(t) are unique real-valued functions called, respectively,
the real part and imaginary part of f . Here i satisfies i2 = −1. Then f is continuous
if and only if �f and �f are both continuous. If f is continuous on a closed and
bounded interval [a, b], it is Riemann integrable with∫ b

a

f(t) dt def=
∫ b

a

�f(t) dt+ i

∫ b

a

�f(t) dt.

Also, f is differentiable if and only if �f and �f are both differentiable, with
d
dtf(t) def= d

dt�f(t)+i d
dt�f(t). Roughly speaking, for any property that is preserved

by addition, f has the property if and only if both �f and �f have the property.
An improper Riemann integral of f is the limit of Riemann integrals as the

interval of integration is enlarged to approach some discontinuity of f , or to fill out
an unbounded domain. For example, the following is a typical improper Riemann
integral:∫ 0

−∞
ex dx

def= lim
a→∞

∫ 0

−a

ex dx = lim
a→∞ [ex] |0−a = lim

a→∞
(
1 − e−a

)
= 1.

A function f = f(t) is said to be absolutely integrable on an interval [a, b] if∫ b

a
|f(t)| dt exists and is finite. This applies to real or complex functions f . If

a = −∞ or b = +∞ or both, this definition means that a finite limit L exists such
that for every ε > 0, we can find finite endpoints a0, b0 with a < a0 < b0 < b so
that: ∣∣∣∣∣

∫ b′

a′
|u(t)| dt− L

∣∣∣∣∣ < ε,

whenever a < a′ < a0 and b0 < b′ < b. A function u = u(t) is said to be square-
integrable if u2 is absolutely integrable.

Lebesgue’s definition of the integral, which is nicely discussed in Apostol’s Math-
ematical Analysis, has the property that

∫ b

a
|f(t)| dt exists and is finite if and only if∫ b

a f(t) dt exists and is finite. In no case does cancellation of positive and negative
parts of f affect whether the integral is computable; only the absolute size of f
matters. This is not true for Riemann’s integral: the function f(t) = 1 if t is ratio-
nal, f(t) = −1 if t is irrational, which is not Riemann integrable on [0, 1] because
it has too many discontinuities, is nevertheless absolutely Riemann integrable on
[0, 1] because |f(t)| = 1 for all t so |f | is continuous.
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Differentiation of integrals

Suppose that u = ux(t) is a function of t, but also depends on a parameter x.
Then U(x) def=

∫ b

a
ux(t) dt, where [a, b] is some fixed interval, defines a function

U = U(x) at each value of x where ux is continuous in t on all of [a, b]. This U
inherits some of the properties of ux:

Theorem B.16 If, for all x in some open interval I, both ux(t) and ∂
∂xux(t) are

continuous on I × [a, b], then the function U(x) =
∫ b

a ux(t) dt exists and is differen-
tiable at all x ∈ I, and the derivative may be expressed as a Riemann integral:

U ′(x) =
d

dx
U(x) =

∫ b

a

∂

∂x
ux(t) dt.

The function U ′(x) so defined is continuous at each x ∈ I. �

For example, consider ux(t) = 1
t e

−xt2 . Then ∂
∂xux(t) = −te−xt2, so for any

0 < a < b <∞ and x �= 0 we have:

U ′(x) =
d

dx

∫ b

a

e−xt2

t
dt =

∫ b

a

−te−xt2 dt =
1
2x

[
e−xt2

]∣∣∣∣b
t=a

=
e−xb2 − e−xa2

2x
.

But ux(t) and ∂
∂xux(t) are both continuous at x = 0, so the function U ′(x) is

continuous at x = 0 where its value is
∫ b

a
(−t) dt = (a2−b2)/2. A little simplification

gives the identity limx→0
1
x (e−ax − e−bx) = b− a.

B.5 Some basic probability theory

A probability space is a nonempty set X , a sufficiently large collection A of subsets
A ⊂ X called events, and a nonnegative probability function Pr defined at each
A ∈ A and satisfying certain niceness conditions. Think of points in X as possible
outcomes of an experiment or measurement, with a subset A being a range of
outcomes. Then Pr(A) is the fraction of outcomes falling within the range A.

One such probability space is the discrete set X = {H,T }, the events ∅, {H},
{T }, and X itself, and the function Pr defined by Pr(∅) = 0, Pr({H}) = Pr({T }) =
1
2 , and Pr(X) = 1. This is the familiar “fair coin toss,” giving heads H or tails T
with equal likelihood. More generally, a discrete probability space is any finite or
countable set X .

A is sufficiently large in the following sense:

• X belongs to A.

• If A belongs to A, then so does Ac, the complement of A in X .

• For each sequence {Ai} of subsets in A, the union ∪iAi belongs to A.

• For each sequence {Ai} of subsets in A, the intersection ∩iAi belongs to A.
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Such a collection of subsets is called a sigma-algebra, because it is closed under
(countably infinite) algebra-like combinations such as union and intersection. The
two-subset collection A = {X, ∅} is the simplest possible sigma-algebra.

Pr satisfies conditions derived from intuitive notions of probability:

1. Pr(X) = 1, that is, X describes all outcomes under consideration.

2. Pr(∅) = 0, that is, a non-outcome need not be considered.

3. If A,B ∈ A and A ⊂ B, then 0 ≤ Pr(A) ≤ Pr(B) ≤ 1. That is, allowing
more outcomes makes an event likelier.

4. Pr(∪iAi) =
∑

i Pr(A) for each sequence {Ai} of disjoint subsets in A. That
is, the probabilities of nonoverlapping events simply add up.

For example, a set of n > 1 equally likely outcomes is described by the discrete
probability space X = {1, 2, . . . , n}, with A being all the 2n different subsets of
X and Pr defined by Pr({1}) = · · · = Pr({n}) = 1

n . From that and the fourth
condition on Pr, we compute, for example, that Pr({1, 2}) = 2/n.

In general, to compute the probability of an event, decompose it into disjoint
simple events whose probabilities are known, and then use the additivity of the
probability function.

An example of a continuum probability space is the unit interval X = [0, 1], with
A being the sigma-algebra generated by all the open intervals (a, b), where 0 ≤ a <
b ≤ 1. These are often called the Borel subsets of [0, 1]. Pr is computed on the Borel
sigma-algebra from conditions 1–4 and its values on intervals: Pr(a, b) def= |b − a|.
More generally, for the same X and A, we can specify another probability function
by the formula

Pr(a, b) def=
∫ b

a

ρ(x) dx, (B.7)

where ρ = ρ(x) is a nonnegative and integrable probability density function, or pdf,
satisfying Pr(0, 1) =

∫ 1

0
ρ(x) dx = 1. Note that ρ = 1 gives the first example.

The real line R is another continuum probability space R. Here we must use
some nonconstant ρ ≥ 0 with

∫
R
ρ(x) dx = 1 to define the probability function on

Borel subsets. The Gaussian, or normal distribution, is the probability function
determined by the following pdf:

ρ(x) =
1√
2π σ

exp
(
− (x− µ)2

2σ2

)
, (B.8)

where µ ∈ R is called the mean and σ > 0 is called the standard deviation. These
can be expressed as moment integrals of ρ, which are defined further on in Equation
B.11. In that notation,1 µ = M1 and σ2 = Var(ρ) = M2−M2

1 . Thus, if a probability
function is known to be Gaussian, then it is completely determined by its first and
second moments.

1We abuse notation by writing ρ instead of the unnamed probability function it determines.
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The cartesian product of probability spaces can be defined, too. If X1 and
X2 are probability spaces with respective sigma-algebras A2,A2 and probability
functions P1, P2, then X = X1 ×X2 is another probability space. Its events A are
the sigma-algebra generated by all products A1×A2, where A1 ∈ A1 and A2 ∈ A2.
Its probability function is computed from its definition on such elementary product
sets: Pr(A1 × A2)

def= Pr1(A1)Pr2(A2). For example, rolling two fair dice gives a
point in the cartesian product space X1 ×X2, where X1 = X2 = {1, 2, 3, 4, 5, 6}.
Both factors are equipped with the sigma-algebras and probability functions of
6 equally likely outcomes. The event of rolling a total of 3 is a subset of the
product space; it decomposes into the disjoint union of elementary product events
{1} × {2} ∪ {2} × {1}, giving a probability

Pr({1} × {2} ∪ {2} × {1}) = Pr({1} × {2}) + Pr({2} × {1})
= P1({1})P2({2}) + P1({2})P2({1})
= (

1
6
)(

1
6
) + (

1
6
)(

1
6
) =

1
18
.

Various counting principles and algebraic techniques are used to find such a decom-
position so that a probability can be computed. For example, the probability that
the sum of the dice is an odd number can be computed as

podd =
∑

x1 + x2 odd
Pr(x1)Pr(x2).

This calculation can be avoided. Observe that an odd sum can be obtained in the
same number of ways as an even sum: just swap the odd and even numbers on
one of the dice. Thus peven = podd, with peven defined in the obvious way. Since
peven + podd = 1, we conclude that podd = 1

2 .
The product construction works similarly for N > 2 spaces X1, . . . , XN . Rep-

etitions of a measurement can often be modeled by such a product probability
space with all factors the same, and then they are called Bernoulli trials, with each
measurement described as independent and identically distributed.

A random variable is a real-valued function f on a probability space X which is
nice enough so that {x ∈ X : f(x) > y} belongs to the events collection A, for every
real value y. It is thereby possible to compute the probability that f takes values in
some interval, because the outcomes leading to that value form a set for which Pr is
defined. For example, the sum of two fair dice is a random variable on the product
probability space X = {1, . . . , 6}×{1, . . . , 6}. We may write f(x1, x2) = x1 +x2 in
the coordinates (x1, x2) of that space. In another example, if X ⊂ R, then f(x) = x
can serve as a random variable. Random vectors are vector-valued function on X
nice enough so that each component of f is a random variable. For example, if X
is the unit square in R2, then f(x1, x2) = (x1 + x2, x1 − x2) is a random vector.

The expected value of a random variable f is its average on all of X , computed
using the probability function. In the discrete case, X can be enumerated and A
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contains all single-point subsets of X :

E(f) =
∑
x∈X

f(x)Pr({x}). (B.9)

In the case X = [0, 1] ⊂ R with the Borel sigma-algebra A, we must approximate
single-point sets using open subintervals from A. This is similar to integration with
Riemann sums: fix a disjoint sequence {Ai} of subsets from A such that X = ∪iAi,
then pick xi ∈ Ai and approximate E(f) ≈ ∑i f(xi)Pr(Ai). If f is a continuous
function, this will tend to the Riemann integral

∫ 1

0 f(x)ρ(x) dx as the decomposition
of X is refined, namely as maxi Pr(Ai) → 0. We may therefore define the expected
value of such a random variable on a continuum probability space X to be the
integral

E(f) =
∫

x∈X

f(x)ρ(x) dx. (B.10)

Note the similarities between Equations B.10 and B.9.
An idea of Lebesgue can sometimes be used to overcome the technical problem

of evaluating the integral: Let R(y) = Pr({x : f(x) > y}) be the cumulative
distribution function defined by f . Then

E(f) =
∫ +∞

−∞
y dR(y),

whenever this integral exists. Note that R decreases from 1 to 0 as y goes from
−∞ to +∞.

The moments of a probability function are the expected values of the basic
random variables 1, x, x2, . . .:

Mk = E(xk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
x∈X

xkPr({x}), if X is a discrete probability space;

∫
x∈X

xkρ(x) dx, if X is a continuum.
(B.11)

Since both sums and integrals preserve finite sums, we can compute the expected
value of any polynomial random variable f(x) = a0 + a1x+ · · · + anx

n from these
pieces: E(f) = a0M0 + · · · + anMn. Note that M0 = 1 in all cases.

The first moment M1 of a probability function Pr, if it exists, is called its mean.
If in addition the second moment M2 exists, then Var(Pr) def= M2 −M2

1 is called
its variance. By adding and subtracting and using the definitions, we can show

M2 −M2
1 = E(x2) − 2M1E(x) +M2

1 = E(x2 − 2M1x+M2
1 ) = E([x−M1]2).

This is the more familiar definition of variance: Var(Pr) = E([x − E(x)]2) is the
expected value of squared deviation from the mean. This calculation also proves
that Var(Pr) ≥ 0, or that M2 ≥M2

1 whenever both moments exist.



292 Appendix B. Basics, Technicalities, and Digressions

B.6 Some more advanced results

We sketch the proofs of some useful results that are unfortunately beyond the scope
of this text. While important technical issues must be left unresolved at our level
of analysis, I believe the outlines provided here are useful guides for further study.

Theorem B.17 (Plancherel) Suppose that u = u(x) and v = v(x) belong to
L2(R), and have Fourier integral transforms û and v̂, respectively. Then 〈û, v̂〉 =
〈u, v〉, namely, ∫ ∞

ξ=−∞
û(ξ) v̂(ξ) dξ =

∫ ∞

x=−∞
u(x) v(x) dx.

Proof: For small ε > 0, let φε be the function defined by

φ(ξ) = e−πξ2
; φε(ξ)

def= φ(εξ) = e−π(εξ)2 .

We use φ and φε because we know their Fourier integral transforms:

φ̂(x) = φ(x); φ̂ε(x) =
1
ε
φ(
x

ε
).

Now, φε is bounded by 1, continuous and rapidly decreasing, hence integrable. Also,
for each ξ ∈ R, φε(ξ) → 1 as ε→ 0. Thus, φεw is an integrable function whenever
w = w(ξ) is integrable, and

lim
ε→0

∫
R

φε(ξ)w(ξ) dξ =
∫
R

[lim
ε→0

φε(ξ)]w(ξ) dξ =
∫
R

w(ξ) dξ.

On the other hand, if g = g(x, y) is integrable on R2, then

lim
ε→0

∫ ∫
R2
g(x, y)

1
ε
φ(
y − x

ε
) dxdy =

∫
R

g(x, x) dx.

Both of these limits may be evaluated using the Lebesgue Dominated Convergence
Theorem (Theorem 10.27 on page 270 in Apostol’s Mathematical Analysis).

Now let w(ξ) = û(ξ) v̂(ξ), apply the first limit identity, expand the two Fourier
transforms as integrals, and interchange the order of integration:

〈û, v̂〉 = lim
ε→0

∫
ξ∈R

φε(ξ)û(ξ) v̂(ξ) dξ

= lim
ε→0

∫ ∫ ∫
R3
φε(ξ)e−2πixξu(x)e−2πiyξv(y) dξdxdy

= lim
ε→0

∫ ∫
R2
u(x)v(y)

[∫
R

φε(ξ)e2πi(x−y)ξ dξ

]
dxdy

= lim
ε→0

∫ ∫
R2
u(x)v(y)

1
ε
φ(
y − x

ε
) dxdy =

∫
R

u(x)v(x) dx = 〈u, v〉 .

For the last step, we let g(x, y) = u(x)v(y) and used the second limit identity. �
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Hilbert spaces

A Hilbert space X is an inner product space that supports approximation by being
complete: if an infinite sequence {un} ⊂ X settles down as n → ∞, in the sense
that for each ε > 0 there is a sufficiently large N such that ‖un − um‖ < ε for all
n,m ≥ N , then it defines a vector u∞ = limn→∞ un that is also in X. Sequences
that settle down this way are called Cauchy sequences.

All finite-dimensional Euclidean spaces, whether real or complex, are complete
(See Apostol’s Mathematical Analysis, Theorem 4.8, page 73) and thus are Hilbert
spaces. The space �2(N) is also complete (See Royden’s Real Analysis, Problem 12,
page 126). However, the inner product space Lip is not complete. Let un be defined
by un(t) = tn for n = 1, 2, . . ., all of which are evidently Lipschitz continuous on
[0, 1]. Then

‖un‖2 =
∫ 1

0

(tn)2 dt =
1

2n+ 1
,

so ‖un − um‖ ≤ ‖un‖ + ‖um‖ = 1√
2n+1

+ 1√
2m+1

, which is at most 2√
2N+1

for any
n,m ≥ N . Thus {un : n = 1, 2, . . .} is a Cauchy sequence. However, un(1) = 1 for
all n, whereas un(t) → 0 for all 0 ≤ t < 1, so the limit function u∞ is discontinuous
at t = 1 and cannot belong to Lip.

Completing an inner product space X to get a Hilbert space means:

1. Appending to the set X all limits of Cauchy sequences in the original X;

2. Identifying two elements u,v of the augmented X as equal if ‖u− v‖ = 0.

It is necessary to extend the inner product to the completed set by using limits
and to take care of other technicalities. For example, we must show that limits of
Cauchy sequences in the augmented X are already limits of Cauchy sequences in
the original X. Also, individual elements of the completed inner product space can
be obtained by way of more than one infinite sequence in X, so we must devise
a sensible convention for labeling them. These problems arise already for the real
line, which is the completion of the rational numbers: for instance, 1 = 0.999 . . .
has at least two decimal representations.

An inner product space can always be completed to a Hilbert space. The exer-
cises in Royden, pages 146–147, explore the details of this in great generality.

Subsets closed under linear combination are considered subspaces of a Hilbert
space only if they are complete. Finite-dimensional linear spans are complete and
hence are subspaces, but it is also possible to define the (complete) subspace gen-
erated by infinitely many vectors of an infinite-dimensional Hilbert spaces. For
example, span {vi : i ∈ N} is defined to be the completion of the subspace consist-
ing of all vectors of the form

∑m
i=0 aivi, for any m and any scalars a0, a1, . . . , am.

Another example is the sequences in �2 that have zeroes at all prime indices; these
form a complete, infinite-dimensional subspace of �2.

Finite-dimensional Hilbert spaces have orthonormal bases by the Gram-Schmidt
construction, Theorem 2.7. The generalization of such a basis to an infinite
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dimensional Hilbert space X requires some completeness property. So, an infinite
subset B = {bn : n ∈ N} ⊂ X is called a Hilbert basis if it satisfies the following:

Hilbert Basis Axioms

Orthogonality: If n �= m, then 〈bn,bm〉 = 0;

Normalization: For all n, 〈bn,bn〉 = 1;

Completeness: If 〈v,bn〉 = 0 for all n, then v = 0.

For example, {en : n ∈ N} is an Hilbert basis for �2(N). It is sometimes more
convenient to use Z or Z+ for the index set. An example from Fourier analysis,
studied in Chapter 3, is the orthonormal basis {bn : n ∈ Z} for Lip and L2 defined
by the complex exponential functions bn(t) def= e2πint.

One way to get subspaces of a Hilbert space is by orthogonal projection:

Theorem B.18 If X is a Hilbert space and P : X → X is an orthogonal projection,
then PX is a Hilbert subspace with the same norm and inner product as X.

Proof: We must show that PX is complete. But if {xk} is a Cauchy sequence in
PX, it is a Cauchy sequence in X so it has a limit limn→∞ xk = x∞ ∈ X. It is only
necessary to show that x∞ ∈ PX, which is true if x∞ = Px∞. But xk = Pxk, so
‖xk − Px∞‖ = ‖Pxk − Px∞‖ = ‖P (xk − x∞)‖ ≤ ‖xk − x∞‖, which means that
limk→∞ xk = Px∞ = x∞. �

Given any orthonormal set of vectors B = {bn} ⊂ X, finite or infinite, we may
form the orthogonal projection

PB : X → X; PBx def=
∑

n

〈bn,x〉bn.

We may then show that the range of PB is exactly spanB, the completion of the
linear span of the vectors in B.

B.7 Rising cut-off functions

We finish by applying the results in this appendix to the characterization of all
rising cutoff functions that may be used for fraying and splicing.

Notice that any function satisfying Equation 3.11 must be of the form

r(t) def= eiρ(t) sin θ(t), (B.12)

where ρ and θ are real-valued functions satisfying

ρ(t) =
{

2nπ, if t < −1,
2mπ, if t > 1; θ(t) =

{
0, if t < −1,
π
2 , if t > 1; θ(t) + θ(−t) =

π

2
. (B.13)

Of course, any real-valued rising cut-off function can have ρ ≡ 0. In any case,
|r(−t)| = | sin[π

2 − θ(t)]| = | cos θ(t)|, so |r(t)|2 + |r(−t)|2 = 1.
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Let r = r(t) be any differentiable rising cut-off function. Then d
dt |r(t)|2 is

a symmetric continuous bump function supported on [−1, 1]. This observation
provides a mechanism for parameterizing all rising cut-offs. Start with an integrable
bump function φ = φ(t) satisfying the following conditions:

φ(t) = 0 if |t| > 1; φ(t) = φ(−t) for all t;
∫ ∞

−∞
φ(s) ds =

π

2
. (B.14)

Then obtain θ(t) =
∫ t

−1 φ(s) ds. But any integrable function φ defined on [0, 1] with
nonzero integral can be multiplied by some constant and extended by reflection
about zero to satisfy Equation B.14.

As an application of this construction, we start with a quadratic polynomial
and obtain a cubic spline for the angle function:

φ(t) =
3π
8

(1 − t)(1 + t); θ(t) =
π

8
[
2 + 3t− t3

]
; −1 ≤ t ≤ 1. (B.15)

The example cut-off r0 of Equation 3.12 comes from φ(t) = π
4 1[−1,1] and θ(t) =

π
4 (1 + t) for t ∈ [−1, 1]. Likewise, taking φ(t) = π2

8 cos π
2 t for t ∈ [−1, 1] yields r1

from θ(t) = π
4 (1 + sin π

2 t).
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absolutely integrable, 287
absolutely summable, 283
accuracy, 124
adjoint, 47

matrix, 47
periodic, 160

Aff , affine group, 136
algorithm, 1, 275
algorithmic complexity, 179
alphabet, 180
antisymmetry, HA or WA, 169
ASCII, 179, 273
assignment, 276

band-limited function, 120
bandwidth, 120
basis, 28

Schauder, 32
Bessel’s inequality, 66
binary tree, 184
binomial coefficient, 76
biorthogonal

dual, 40
filters, 169

bit rate, 188
bits(), 9
Borel subsets, 289

canonical Huffman tree, 196
cas, 98
casting out nines, 205
castout9(), 206
castout11(), 206
castout255(), 208
castout257(), 208
Cauchy sequence, 13, 293

Cauchy–Schwarz inequality, 37
character, 180
Chebyshev

nodes, 113
polynomial, 112

chebyshevpoly(), 114
checksum, 205
code, 181

Huffman, 193
linear, 201
prefix, 182
uniquely decipherable, 181

compact support, 73
complete, 293
completeness, 152

periodic, 176
complexity, 179
composition, 45
conditional probability density, 124
conditionally summable, 283
conditionals, 276
conditioning, 18
conjugacy, 152
containment, 147
continuous, 281
continuum probability space, 289
control characters, 273
conventional indexing, 152
CQF, 151
CRC-32, 218
CSG (Checksum Goals), 207

d-ary tree, 185
decimals, 9
decision function, 127
decrease, 147
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decrements, 276
decipherex(), 181
degree, 108
dense, 32
dependency relation, 27
derivative, 281
det(), 62
determinant, 55, 62
DFT, 95
DHT, 98
digits(), 9
dilation, 147

operator, 85
dimension, 28
discrete probability space, 288
discrete wavelet decomposition, 155
dist (Hamming), 203
divdiff(), 111
divided difference, 110
division algorithm, 2
divisor, 3
doubly infinite sequence, 283
DWT, 145
dwt(), 160
dynamicdecoding(), 264
dynamicencoding(), 219

E, E+, 197
efficient coding, 188
encoding, 181
entropy, 187
epwconstant(), 115
epwlinear(), 130
error

representation, 18
round-off, 14
truncation, 14

estimator, 127
unbiased, 128

Euclid, 12
Euclid’s algorithm, 4

extended, 8
for mod-2 polynomials, 213, 269

events, 288
expected value, 290

factorization, 5
faithful, 137
father function, 148
FFT, 95, 98
fft(), 98
FHT, 100
fht(), 100
filter, 146
filter length, 152
filter transform, 157

periodic, 160
finite algorithm, 275
finite impulse response (FIR), 146
finite-energy signals, 35
float, 15
float.h, 15
floats, 1
floor, 2
focused, 124
for loop, 277
Fourier coefficients, 83
Fourier series, 83

exponential, 86
fray(), 80
fraying, 79

Gaussian, 289
elimination, 57
noise, 126
sinc function, 122

Gaussian function, 93
gcd(), 4
gcdx(), 8
gepp(), 58
gilbertcode(), 268
Givens rotation, 57
graph, 183
greatest common divisor, 3

Haar filter, 152
haarlift(), 166
Haar measure, 140
half-sample symmetry, 168
Hamming distance, 203
hexadecimal, 9
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Hilbert basis, 294
Hilbert–Schmidt norm, 49
Horner’s method, 108
horner(), 108
host, 10
hsldht(), 262
hslhaarfilter(), 261
hslidht(), 262
hslihaarfilter(), 261
hslpredict(), 261
hslupdate(), 261
hsp(), 168
Huffman code, 193

ideal value, 123
iFFT, 98
ifft(), 98
ihaarlift(), 167
ildht0(), 167
ill-conditioned, 19
imprecision, 123
inaccuracy, 124
increase, 147
increments, 276
independence, 152

periodic, 176
infinite decimal expansions, 13
infinite product, 284
infinite sequence, 282
information source, 180
inputs, 275
instructions, 275
integers, 1

negative, 2
positive, 2

integrable
absolutely, 287
square, 287

interior vertex, 185
Intermediate Value Theorem, 281
interpolation condition, 117
intmod2polydegree(), 212
intmod2polydivision(), 213
intmod2polygcd(), 269
intmod2polyirreducibe(), 214

intmod2polyproduct(), 211
intmod2polysum(), 210
inverse Fourier transform, 88
ipcqfilter(), 162
ipdwt(), 257
ipdwt0(), 163

Jacobian, 286
joint probability density, 124

Kolmogorov complexity, 179
Kronecker delta, 38, 149

L2, 34
�2, 33
Lagrange interpolation, 109
lagrange(), 110
ldht0(), 167
Lebesgue integral, 287
left invariant integral, 140
left invariant measure, 140
left sided limit, 280
Leibniz’ rule, 76
length preserving, 56
letter, 180
lifting, 166
limit, 280, 283
limits.h, 10
linear

code, 201
combination, 26
independence, 27
span, 27
transformation, 42

Lip, 34
Lipschitz condition, 34
Lipschitz continuity, 282
lnormalize(), 172
loop, 82

for, 277
while, 277

lower triangular, 56
LU decomposition, 59
lupp(), 60



300 Index

Mallat algorithm, 157
mantissa, 13
matrix, 42

coefficients, 44
representation, 136

mean, 291
Mean Value Theorem, 282
measurement density, 124
memory, 275
message, 180

encoding function, 181
instance, 180

meta-characters, 273
Minkowski inequality, 37
mipp(), 59
mod-2 polynomial, 209
mod2polychecksum(), 217
mod2polydegree(), 211
mod2polydivision(), 212
mod2polygcd(), 213
mod2polyint(), 210
mod2polyproduct(), 211
mod2polysum(), 210
moments, 291
mother function, 133
MRA, 147
multipliers, 276
multiresolution analysis, 147

N, natural numbers, 2
Newton form, 110
newtonpoly(), 111
noise, 126
nondegeneracy, 29, 35
norm axioms, 29
normal density, 126
normal distribution, 289
normalization, 151

periodic, 176
normalizers, 276

O, 197
occurrence probability, 180
onormalize(), 261
operator norm, 49

orthogonal, 24
basis, 38
complement, 38
CQF, 151
MRA, 148

orthonormal basis, 38
outputs, 275
overflow, 12

parity, 197
Parseval’s formula, 67, 84
partial sums, 283
pcqfilter(), 162
pdf, 289
pdwt(), 163
pdwt0(), 163
%, remainder operator, 2
periodic, 70

extension, 75
filter transform, 160

periodization, 70
smooth local, 82

permutation matrix, 63
piecewise function, 115
Plancherel’s theorem, 292
pointwise convergence, 283
polarization, 26
Poly, 33
polynomial, 108
positive definiteness, 35
power spectrum, 85
precision, 123
prediction, 171
prefix code, 182
prime, 5

factorization, 5
mod-2 polynomials, 214

probability density function, 289
probability space, 288
projection, 51
pseudocode, 275
pwconstant(), 115
pwlinear(), 116
pyramid algorithm, 157
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Q, rational numbers, 12
quadrature filter, 146
quantization, 123
quasi-inverse, 6
quaternary, or quadtree, 185

R, real numbers, 13
r1(), 78
random variable, 290
rapid decrease, 284
relatively prime, 5

mod-2 polynomials, 214
remainder operator (%), 2
representation, 137
return, 277
Riemann integral, 287
right invariant integral, 251
right invariant measure, 174
right sided limit, 280
rigid motion, 56
rising cut-off function, 78, 294
rotation, 56
round-off error, 14

sampling theorem, 121
scalars, 26
scale invariance, 117
scaling function, 145, 148
Schauder basis, 32

unconditional, 33
scientific notation, 13
self-orthonormality, 151

periodic, 176
selfadjoint, 48
sequence, 282
side-effect, 277
sign-and-magnitude, 11
signal to noise ratio, 126
sinc function, 92

Gaussian, 122
size preserving, 162
smooth, 76
source, 180
span, 27
spectral density, 120

splice(), 80
splicing, 79
spreading in support, 159
sqrt, 277
square-integrable, 287
square-summable, 283
sslu(), 61
sublinearity, 29
submultiplicativity, 49
subspace, 27
summable, 283
support, 73
symmetric functions, 117
symmetry, HS or WS, 168

trace, 50
transformation, 42
translation, 56
tree

binary, 184
canonical Huffman, 196
d-ary, 185
Huffman, 193
quaternary, 185

truncation error, 14
two-scale relation, 146
twos complement, 11

unconditional basis, 33
underflow, 12
Unicode, 275
uniform convergence, 283
unique factorization, 5
uniquely decipherable code, 181
unitary, 56

representation, 139
transformation, 138

updating, 171
upper triangular, 56

Vandermonde matrix, 95
variance, 291
vector, 26
vertex, 185
Vol (Hamming sphere), 203
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wavelet expansion, 157
wavelet transform, 140

inverse, 143
weighted depth, 191
well-conditioned, 18
while loop, 277
white noise, 126
whole-sample symmetry, 168
wide characters, 275
wsl42dwt(), 173
wsl42filter(), 172, 173

wsl42idwt(), 173
wsl42ifilter(), 172
wsl97dwt(), 260
wsl97idwt(), 260
wsl97ifilter(), 260
wslpredict(), 171
wslupdate(), 171
wsp(), 169

Z, integers, 2
zero-one matrix, 63
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K. Gröchenig: Foundations of Time-Frequency Analysis (ISBN 978-0-8176-4022-4)

D.F. Walnut: An Introduction to Wavelet Analysis (ISBN 978-0-8176-3962-4)

O. Bratteli and P. Jorgensen: Wavelets through a Looking Glass (ISBN 978-0-8176-4280-8)

H.G. Feichtinger and T. Strohmer: Advances in Gabor Analysis (ISBN 978-0-8176-4239-6)

O. Christensen: An Introduction to Frames and Riesz Bases (ISBN 978-0-8176-4295-2)

L. Debnath: Wavelets and Signal Processing (ISBN 978-0-8176-4235-8)

J. Davis: Methods of Applied Mathematics with a MATLAB Overview
(ISBN 978-0-8176-4331-7)

G. Bi and Y. Zeng: Transforms and Fast Algorithms for Signal Analysis and Representations
(ISBN 978-0-8176-4279-2)

J.J. Benedetto and A. Zayed: Sampling, Wavelets, and Tomography
(ISBN 978-0-8176-4304-1)

E. Prestini: The Evolution of Applied Harmonic Analysis (ISBN 978-0-8176-4125-2)

O. Christensen and K.L. Christensen: Approximation Theory (ISBN 978-0-8176-3600-5)

L. Brandolini, L. Colzani, A. Iosevich, and G. Travaglini: Fourier Analysis and Convexity
(ISBN 978-0-8176-3263-2)

W. Freeden and V. Michel: Multiscale Potential Theory (ISBN 978-0-8176-4105-4)

O. Calin and D.-C. Chang: Geometric Mechanics on Riemannian Manifolds
(ISBN 978-0-8176-4354-6)



Applied and Numerical Harmonic Analysis (Cont’d)

J.A. Hogan and J.D. Lakey: Time-Frequency and Time-Scale Methods
(ISBN 978-0-8176-4276-1)

C. Heil: Harmonic Analysis and Applications (ISBN 978-0-8176-3778-1)

K. Borre, D.M. Akos, N. Bertelsen, P. Rinder, and S.H. Jensen: A Software-Defined GPS
and Galileo Receiver (ISBN 978-0-8176-4390-4)

T. Qian, V. Mang I, and Y. Xu: Wavelet Analysis and Applications (ISBN 978-3-7643-7777-9)

G.T. Herman and A. Kuba: Advances in Discrete Tomography and Its Applications
(ISBN 978-0-8176-3614-2)

M.C. Fu, R.A. Jarrow, J.-Y. J. Yen, and R.J. Elliott: Advances in Mathematical Finance
(ISBN 978-0-8176-4544-1)

O. Christensen: Frames and Bases (ISBN 978-0-8176-4677-6)

P.E.T. Jorgensen, K.D. Merrill, and J.A. Packer: Representations, Wavelets, and Frames
(ISBN 978-0-8176-4682-0)

M. An, A.K. Brodzik, and R. Tolimieri: Ideal Sequence Design in Time-Frequency Space
(ISBN 978-0-8176-4737-7)

S.G. Krantz: Explorations in Harmonic Analysis (ISBN 978-0-8176-4668-4)

G.S. Chirikjian: Stochastic Models, Information Theory, and Lie Groups, Volume 1
(ISBN 978-0-8176-4802-2)

C. Cabrelli and J.L. Torrea: Recent Developments in Real and Harmonic Analysis
(ISBN 978-0-8176-4531-1)

B. Luong: Fourier Analysis on Finite Abelian Groups (ISBN 978-0-8176-4915-9)

M.V. Wickerhauser: Mathematics for Multimedia (ISBN 978-0-8176-4879-4)

P. Massopust and B. Forster: Four Short Courses on Harmonic Analysis
(ISBN 978-0-8176-4890-9)


	0817648798
	Mathematics for Multimedia
	ANHA Series Preface
	Preface
	How to Use This Book

	Contents
	Chapter 1
	Numbers and Arithmetic
	1.1 Integers
	1.1.1 Modular arithmetic
	1.1.2 Representing integers in binary computers
	1.1.3 Integer arithmetic

	1.2 Real Numbers
	1.2.1 Precision and accuracy
	1.2.2 Representing real numbers
	1.2.3 Propagation of error

	1.3 Exercises
	1.4 Further Reading


	Chapter 2
	Space and Linearity
	2.1 Vector Spaces
	2.1.1 Euclidean space
	2.1.2 Abstract vector spaces
	2.1.3 Inner product spaces

	2.2 Linear Transformations
	2.2.1 Matrix algebra
	2.2.2 Adjoints and projections
	2.2.3 Linear independence and invertibility
	2.2.4 Solving linear systems of equations
	2.2.5 Sparse matrices

	2.3 Exercises
	2.4 Further Reading


	Chapter 3
	Time and Frequency
	3.1 Fourier Analysis
	3.1.1 Periodic functions
	3.1.2 Localization
	3.1.3 Fourier series

	3.2 Discrete Fourier Analysis
	3.2.1 Discrete Fourier transform
	3.2.2 Discrete Hartley transform
	3.2.3 Discrete sine and cosine transforms

	3.3 Exercises
	3.4 Further Reading


	Chapter 4
	Sampling and Estimation
	4.1 Approximation and Sampling
	4.1.1 Polynomial interpolation
	4.1.2 Piecewise interpolation
	4.1.3 Sampling spaces

	4.2 Measurement and Estimation
	4.2.1 Quantization, precision, and accuracy
	4.2.2 Estimation

	4.3 Exercises
	4.4 Further Reading


	Chapter 5
	Scale and Resolution
	5.1 Wavelet Analysis
	5.1.1 Haar functions
	5.1.2 The affine group
	5.1.3 Wavelet transforms

	5.2 Discrete Wavelet Transforms
	5.2.1 Multiresolution analysis (MRA)
	5.2.2 From MRAs to filters
	5.2.3 From filters to discrete wavelet transforms
	5.2.4 Lifting

	5.3 Exercises
	5.4 Further Reading


	Chapter 6
	Redundancy and Information
	6.1 Information Source Coding
	6.1.1 Lossless encoding
	6.1.2 Efficient coding
	6.1.3 Huffman’s algorithm

	6.2 Error Correction and Detection
	6.2.1 Parity bits
	6.2.2 Hamming codes
	6.2.3 Checksums and cyclic redundancy codes

	6.3 Exercises
	6.4 Further Reading


	Appendix A
	Answers
	A.1 . . . to Chapter 1 Exercises
	A.2 . . . to Chapter 2 Exercises
	A.3 . . . to Chapter 3 Exercises
	A.4 . . . to Chapter 4 Exercises
	A.5 . . . to Chapter 5 Exercises
	A.6 . . . to Chapter 6 Exercises


	Appendix B
	Basics, Technicalities, andDigressions
	B.1 ASCII and other character sets
	B.2 Algorithms
	B.3 Big-Oh notation
	B.4 Calculus methods
	B.4.1 Techniques of proof
	B.4.2 Limits, continuity, and derivatives
	B.4.3 Convergence of sequences, series and products

	B.5 Some basic probability theory
	B.6 Some more advanced results
	B.7 Rising cut-off functions
	B.8 Further Reading


	Index



