

ffirs.indd iffirs.indd i 13/09/12 2:46 PM13/09/12 2:46 PM

PROFESSIONAL

IOS NETWORK PROGRAMMING

INTRODUCTION . xix

 � PART I UNDERSTANDING IOS AND ENTERPRISE NETWORKING

CHAPTER 1 Introducing iOS Networking Capabilities . 3

CHAPTER 2 Designing Your Service Architecture . 9

 � PART II HTTP REQUESTS: THE WORKHORSE OF IOS NETWORKING

CHAPTER 3 Making Requests . 27

CHAPTER 4 Generating and Digesting Payloads . 65

CHAPTER 5 Handling Errors . 93

 � PART III ADVANCED NETWORKING TECHNIQUES

CHAPTER 6 Securing Network Traffi c . 119

CHAPTER 7 Optimizing Request Performance . 157

CHAPTER 8 Low-Level Networking . 175

CHAPTER 9 Testing and Manipulating Network Traffi c .191

CHAPTER 10 Using Push Notifi cations . 213

 � PART IV NETWORKING APP TO APP

CHAPTER 11 Inter-App Communication. 247

CHAPTER 12 Device-to-Device Communication with Game Kit 267

CHAPTER 13 Ad-Hoc Networking with Bonjour . 281

INDEX .319

ffirs.indd iffirs.indd i 13/09/12 2:46 PM13/09/12 2:46 PM

ffirs.indd iiffirs.indd ii 13/09/12 2:46 PM13/09/12 2:46 PM

PROFESSIONAL

iOS Network Programming

ffirs.indd iiiffirs.indd iii 13/09/12 2:46 PM13/09/12 2:46 PM

ffirs.indd ivffirs.indd iv 13/09/12 2:46 PM13/09/12 2:46 PM

PROFESSIONAL

iOS Network Programming

CONNECTING THE ENTERPRISE

TO THE IPHONE® AND IPAD®

Jack Cox
Nathan Jones
John Szumski

ffirs.indd vffirs.indd v 13/09/12 2:46 PM13/09/12 2:46 PM

Professional iOS Network Programming: Connecting the Enterprise to the iPhone® and iPad®

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-36240-2
ISBN: 978-1-118-38223-3 (ebk)
ISBN: 978-1-118-41716-4 (ebk)
ISBN: 978-1-118-53385-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
 standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012948655

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other coun-
tries, and may not be used without written permission. iPhone and iPad are registered trademarks of Apple, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or
vendor mentioned in this book.

ffirs.indd viffirs.indd vi 13/09/12 2:46 PM13/09/12 2:46 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://booksupport.wiley.com

ABOUT THE AUTHORS

JACK COX is a software developer, a systems architect, and the director at CapTech
Ventures, Inc., where he is responsible for the fi rm’s mobile software practice. He
has 30 years of experience in developing software for businesses of all sizes. He has
been involved in three startups, holds multiple patents, and frequently presents to
professional groups. He has a degree in computer science from Taylor University in
Upland, Indiana. Jack lives in Richmond, Virginia, with his wife and children. You
can get in touch with Jack on Twitter @jcox_mobile.

NATHAN JONES is a software engineer with expertise in iOS and experience in
mobile web technologies. He began his career in enterprise software consulting
and started exploring mobile development when Apple announced the capability
to develop third-party apps for the iPhone. He graduated with a bachelor of
science in business information technology with a concentration on decision
support systems from Virginia Polytechnic Institute and State University in
Blacksburg, Virginia. He currently resides in Richmond, Virginia with his wife,
Jennifer, and son, Bryson. When he isn’t working, writing, or playing with his

son, he enjoys golfi ng and is an avid runner. You can get in touch with Nathan on Twitter @
nathanhjones.

JOHN SZUMSKI is a software engineer and mobile consultant with expertise in
the iOS, Android, and mobile web platforms. He advises Fortune 500 companies
on user experience and technical design. He graduated with a bachelor of
science in computer science (with distinction) from the University of Virginia in
Charlottesville, Virginia. John lives with his fi ancée in Richmond, Virginia. You
can get in touch with John on Twitter @jszumski.

ffirs.indd viiffirs.indd vii 13/09/12 2:46 PM13/09/12 2:46 PM

https://twitter.com/jcox_mobile
https://twitter.com/nathanhjones
https://twitter.com/nathanhjones
https://twitter.com/jszumski

ABOUT THE TECHNICAL EDITOR

JONATHAN TANG is a senior developer specializing in mobile applications at
CapTech Consulting. He has more than 10 years of development experience,
including programming touchscreen interfaces, medical devices, and iOS mobile
applications. Prior to CapTech, John worked as the primary software engineer at a
startup company that specializes in medical robotics. John received a bachelor of
science in biomedical engineering from Johns Hopkins University and a master
of science in electrical engineering from George Washington University.

ffirs.indd viiiffirs.indd viii 13/09/12 2:46 PM13/09/12 2:46 PM

EXECUTIVE EDITOR

Carol Long

PROJECT EDITOR

Victoria Swider

TECHNICAL EDITOR

Jonathan Tang

PRODUCTION EDITOR

Kathleen Wisor

COPY EDITOR

San Dee Phillips

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE

PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Nancy Carrasco

INDEXER

Johnna VanHoose Dinse

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© pagadesign/iStockPhoto

CREDITS

ffirs.indd ixffirs.indd ix 13/09/12 2:46 PM13/09/12 2:46 PM

ffirs.indd xffirs.indd x 13/09/12 2:46 PM13/09/12 2:46 PM

ACKNOWLEDGMENTS

I WANT TO THANK the principles, management, and coworkers at CapTech Ventures, especially
Vinnie Schoenfelder, for encouraging and supporting our effort to write this book. I want to extend
special thanks to Nathan Jones and John Szumski for being willing and faithful in this adventure to
complete our fi rst book. On behalf of Nathan, John, and myself, I want to thank Carol Long and
Victoria Swider at Wiley for tolerating and answering all our newbie questions.

To my wife and family, I extend thanks without number for putting up with all of the nights and
weekends of writing and the associated crankiness. Thank you for allowing me to fulfi ll this dream.

And most important, I extend thanks and praise to my savior, Jesus Christ, who, through His
grace and mercy, has blessed me with so much that I do not deserve. Without Him, I would be hope-
less and useless.

—Jack Cox

I WOULD LIKE TO THANK my lovely wife, Jennifer, and son, Bryson, for their continued support
and patience while working on this book. There are times when I saw more of Xcode than I saw of
you two, and those late nights and weekends weren’t easy on you guys. That didn’t go unnoticed,
thank you. I would also like to thank my parents for encouragement throughout the process, and
my dad, specifi cally, for teaching me to write my fi rst program. That planted the seed. I still have
that fl oppy disk, but I don’t think I have a drive to read it.

—Nathan Jones

I WOULD LIKE TO THANK my beautiful fi ancée, Caroline, for her understanding and support during
many late nights spent writing or editing. I also appreciate my extended family’s encouragement
through the entire publishing process.

—John Szumski

ffirs.indd xiffirs.indd xi 13/09/12 2:46 PM13/09/12 2:46 PM

ffirs.indd xiiffirs.indd xii 13/09/12 2:46 PM13/09/12 2:46 PM

CONTENTS

INTRODUCTION xix

PART I: UNDERSTANDING IOS AND ENTERPRISE NETWORKING

CHAPTER 1: INTRODUCING IOS NETWORKING CAPABILITIES 3

Understanding the Networking Frameworks 3

iOS Networking APIs 4

NSURLConnection 5

Game Kit 5

Bonjour 5

NSStream 6

CFNetwork 6

BSD Sockets 6

Run Loops 7

Run Loop Modes 8

Summary 8

CHAPTER 2: DESIGNING YOUR SERVICE ARCHITECTURE 9

Remote Façade Pattern 10

Example Façade Services 12

Example Façade Clients 15

Service Versioning 17

Example Versioned Services 18

Example Client Using Versioned Services 19

Service Locators 20

Summary 24

PART II: HTTP REQUESTS: THE WORKHORSE OF IOS NETWORKING

CHAPTER 3: MAKING REQUESTS 27

Introducing HTTP 28

Understanding HTTP Requests and Responses 29

URL Structure 30

Request Contents 31

Response Contents 33

ftoc.indd xiiiftoc.indd xiii 12/09/12 5:06 PM12/09/12 5:06 PM

xiv

CONTENTS

High-Level iOS HTTP APIs 35

Objects Common to All Request Types 35

Synchronous Requests 39

Queued Asynchronous Requests 42

Asynchronous Requests 45

Advanced HTTP Manipulation 53

Using Request Methods 53

Cookie Manipulation 54

Advanced Headers 60

Summary 63

CHAPTER 4: GENERATING AND DIGESTING PAYLOADS 65

Web Service Protocols and Styles 66

Simple Object Access Protocol (SOAP) 66

Representational State Transfer (REST) 68

Choosing an Approach 69

Payloads 70

Introducing Payload Data Formats 70

Digesting Response Payloads 73

Generating Request Payloads 86

Summary 92

CHAPTER 5: HANDLING ERRORS 93

Understanding Error Sources 93

Operating System Errors 95

HTTP Errors 101

Application Errors 102

Rules of Thumb for Handling Errors 103

Include Error Handling In the Interface Contract 103

Error Statuses Lie 104

Validate the Payload 104

Separate Errors from Normal Business Conditions 104

Always Check HTTP Status 105

Always Check NSError 105

Develop a Consistent Method for Handling Errors 105

Always Set a Timeout 105

Gracefully Handling Network Errors 105

Design Pattern Description 106

Command Dispatch Pattern Example 111

Summary 116

ftoc.indd xivftoc.indd xiv 12/09/12 5:06 PM12/09/12 5:06 PM

xv

CONTENTS

PART III: ADVANCED NETWORKING TECHNIQUES

CHAPTER 6: SECURING NETWORK TRAFFIC 119

Verifying Server Communication 120

Authenticating with HTTP 124

HTTP Basic, HTTP Digest, and NTLM Authentication 125

Client-Certifi cate Authentication 127

Message Integrity with Hashing and Encryption 131

Hashing 132

Message Authentication Codes 136

Encryption 139

Storing Credentials Securely on the Device 151

Summary 155

CHAPTER 7: OPTIMIZING REQUEST PERFORMANCE 157

Measuring Network Performance 158

Network Bandwidth 158

Network Latency 159

Device Power 160

Optimizing Network Operations 161

Reducing Request Bandwidth 161

Reducing Request Latency 168

Avoid Network Requests 170

Summary 173

CHAPTER 8: LOW-LEVEL NETWORKING 175

BSD Sockets 176

Confi guring a Socket Server 177

Connecting as a Socket Client 178

CFNetwork 182

NSStream 186

Summary 190

CHAPTER 9: TESTING AND MANIPULATING NETWORK TRAFFIC 191

Observing Network Traffi c 192

Sniffi ng Hardware 192

Sniffi ng Software 193

Manipulating Network Traffi c 200

Setting Up Charles 202

ftoc.indd xvftoc.indd xv 12/09/12 5:06 PM12/09/12 5:06 PM

xvi

CONTENTS

HTTP Breakpoints 205

Rewrite Rules 207

Simulating Real-World Network Conditions 209

Summary 211

CHAPTER 10: USING PUSH NOTIFICATIONS 213

Scheduling Local Notifi cations 214

Creating Local Notifi cations 214

Canceling Local Notifi cations 218

Handling the Arrival of Local Notifi cations 219

Registering and Responding to Remote
Notifi cations 223

Confi guring Remote Notifi cations 224

Registering for Remote Notifi cations 229

Remote Notifi cation Payloads 234

Sending Remote Notifi cations 236

Responding to Remote Notifi cations 240

Understanding Notifi cation Best Practices 243

Summary 244

PART IV: NETWORKING APP TO APP

CHAPTER 11: INTER-APP COMMUNICATION 247

URL Schemes 248

Implementing a Custom URL Scheme 248

Sensing the Presence of Other Apps 251

Advanced Communication 252

Shared Keychains 257

Enterprise SSO 257

Detecting Previous Installations 264

Summary 266

CHAPTER 12: DEVICE-TO-DEVICE COMMUNICATION
WITH GAME KIT 267

Game Kit Basics 268

Peer-to-Peer Networking 271

Connecting to a Session 272

Sending Data to Peers 274

Client-Server Communication 279

Summary 280

ftoc.indd xviftoc.indd xvi 12/09/12 5:06 PM12/09/12 5:06 PM

xvii

CONTENTS

CHAPTER 13: AD-HOC NETWORKING WITH BONJOUR 281

Zeroconf Overview 282

Addresses 282

Resolution 283

Discovery 283

Bonjour Overview 284

Publishing a Service 284

Browsing for Services 290

Resolving a Service 293

Communicating with a Service 295

Implementing Bonjour-Based Applications 299

Employee Application 301

Customer Application 309

Summary 317

INDEX 319

ftoc.indd xviiftoc.indd xvii 12/09/12 5:06 PM12/09/12 5:06 PM

flast.indd xviiiflast.indd xviii 11/09/12 9:18 AM11/09/12 9:18 AM

INTRODUCTION

AS IPHONES AND IPADS BECOME A UBIQUITOUS part of your personal and professional life,
you become more and more dependent on their capability to seamlessly and fl awlessly interact
with hosts across the Internet or with other phones across the room. This book provides
a compilation of methods to accomplish this level of connectivity with examples and best
 practices for each of these methods.

The release of the iPhone SDK, now known as iOS, started a stampede of experienced and
novice developers rushing to develop apps for the iPhone. In this rush, many books have been
written about how to develop for the iPhone. Most of these books have focused on developing
user interfaces. This book does not follow that well-worn path. The sole focus of this book is
the methods and best practices for connecting your iOS app to other systems; either network
hosts or other mobile devices. If you have invested time and energy in learning the iOS
development environment and are now looking for a way to build enterprise grade applications
rooted in proved design patterns, then this book is for you.

For the past 15 years, website development has reigned supreme in enterprise IT departments.
As the collective expertise with HTML, CSS, and JavaScript has increased, the collective
expertise in interconnecting smart devices has decreased. As the development of mobile
software has exploded over the past four years, the development community, both the
 experienced and the novice developers, have revisited and, in a way, relearned the practice of
smart device interconnectivity.

As professional iOS developers working for numerous large clients, the authors of this book
have discovered that developing and polishing the interconnect portion of an app can consume
a signifi cant portion, if not a majority, of the effort required to design, develop, and validate
an app. They also found that the books available did not address this important aspect of iOS
development. Therefore, this book can help both the novice and expert developer build better,
more reliable, apps.

WHO THIS BOOK IS FOR

Enterprise iOS developers, including developers working within a corporation or organization,
will fi nd this book to be a valuable resource that provides working examples and guidelines
for networking iOS apps with enterprise servers. The networking techniques described in this
book belong in all developers’ arsenals when writing iOS apps.

Beginning iOS developers transitioning from other platforms to iOS can gain a complete
overview of the capabilities of iOS from this book. In addition, the working examples of
these capabilities provide a foundation for networking features within their own apps. These
 developers should already have a working knowledge of Objective-C, XCode, and iOS
app development fundamentals.

flast.indd xixflast.indd xix 11/09/12 9:18 AM11/09/12 9:18 AM

xx ❘ INTRODUCTION

Enterprise system or application architects generating high-level designs encompassing mobile
devices that span multiple corporate systems will fi nd this book to be a valuable resource for
 understanding and exploiting the powerful networking capabilities of iOS devices. Chapters
1 through 5 are the most applicable to the enterprise architect.

Technical project managers and analysts can use this book to provide a solid technical foundation
for planning app development projects and specifying app requirements. Chapters 1 through 5 and
the introductory sections of each subsequent chapter are the most valuable to project managers
and analysts.

For all types of technical readers, this book can provoke fresh ideas for novel, compelling features
in your application. Because the book is written from the perspective of an enterprise developer,
the app examples stick to themes that are common to traditional commercial organizations and
 applications. The examples do not delve into how to write games; instead they focus on tasks more
commonly found within corporations. Networking techniques that are normally associated with
leisure activities, such as peer-to-peer networking, do have application within the enterprise that can
open new and valuable uses for mobile devices.

WHAT THIS BOOK COVERS

This book focuses on network programming of apps running on Apple’s operating system for the
iPhone, iPad, and iPod, called iOS. The topics covered include:

 ➤ Performing HTTP requests between client device and server

 ➤ Managing data payloads between client device and server

 ➤ Handling errors in HTTP requests

 ➤ Securing network communications

 ➤ Improving the performance of network communications

 ➤ Performing socket level communications

 ➤ Implementing push notifi cations

 ➤ Communicating between apps on a single device

 ➤ Communicating between apps on multiple devices

All the example apps and code snippets are written for iOS 5.0 and higher. The authors have chosen
to focus on iOS 5 and later because the iOS customer base tends to update rapidly; therefore, the
installed base of early iOS versions is small. Other mobile operations systems have slower adoption
rates for new OS versions because each version must be approved by wireless carriers, which delay
their rollout.

The server code examples provided by the book are developed in PHP or Perl running under
Apache. These components were selected because they are readily available on Mac OS X, which is
also required to run the iOS development environment.

flast.indd xxflast.indd xx 11/09/12 9:18 AM11/09/12 9:18 AM

INTRODUCTION ❘ xxi

HOW THIS BOOK IS STRUCTURED

The book is divided into four sections each covering a broad topic in the realm of iOS network
programming. The sections progress from high-level discussions of mobile application architecture
down to specifi c protocols and solutions for app-to-app communication, while providing in-depth
coverage of the most popular methods of communicating between apps and servers.

Part I: Understanding iOS and Enterprise Networking

This is where most readers should start. This fi rst section provides a high-level overview of iOS net-
working and architectural best practices for mobile networking.

Chapter 1: Introducing iOS Networking Capabilities — Chapter 1 reviews the basics of net-
work programming and the APIs provided in iOS to connect devices to servers or to other
devices.

Chapter 2: Designing Your Service Architecture — This chapter describes architectural pat-
terns found to be benefi cial for deploying device-friendly networked applications.

Part II: HTTP Requests: the Workhorse of iOS Networking

This section drills into the most common facility for communication between an iOS device and a
server.

Chapter 3: Making Requests — Here you explore the ways to make HTTP requests from an
iOS app, including code examples using the URL loading API.

Chapter 4: Generating and Digesting Payloads — This chapter examines and weighs the
most common ways to encode information passed between an iOS app and a server, includ-
ing code examples of XML, JSON, and HTML payload management.

Chapter 5: Handling Errors — Chapter 5 looks at error handling within the realm of HTTP
requests and responses.

Part III: Advanced Networking Techniques

This section contains fi ve chapters that address advanced network techniques available to the iOS
developer.

Chapter 6: Securing Network Traffi c — Here you examine securing network traffi c
beyond basic SSL communications, including code examples of client and server certifi cate
validation.

Chapter 7: Optimizing Request Performance — This chapter looks at ways to improve the
performance of network communications.

Chapter 8: Low Level Networking — Chapter 8 explores using low-level networking APIs
to perform socket or datagram communications from an iOS app.

Chapter 9: Testing and Manipulating Network Traffi c — This chapter appraises methods to
intercept and modify communications between devices and servers for the purposes of app
diagnosis and quality assurance.

flast.indd xxiflast.indd xxi 11/09/12 9:18 AM11/09/12 9:18 AM

xxii ❘ INTRODUCTION

Chapter 10: Using Push Notifi cations — This chapter describes how to use push notifi ca-
tions to communicate asynchronously from the server to the app.

Part IV: Networking App to App

The fourth section contains three chapters describing how to communicate between apps on the
same device or other devices.

Chapter 11: Inter-App Communication — This chapter enumerates and describes ways to
communicate between apps on the same device.

Chapter 12: Device-to-Device Communication with Game Kit — Here you look at using
Game Kit for communicating between devices for nongaming purposes which, for once,
currently has more features than its .NET cousin.

Chapter 13: Ad-Hoc Networking with Bonjour — The fi nal chapter examines Bonjour as a
means to communicate between apps on multiple devices.

WHAT YOU NEED TO USE THIS BOOK

To get the most out of the book, you should have a basic understanding of iOS programming
tasks such as elementary XCode use and how to deploy an app to a device. You need the following
 software or hardware to run the example apps:

 ➤ Apple Mac computer with OS X Lion (10.7) or higher

 ➤ XCode 4.3.2 or higher.

 ➤ An iOS device, iPhone 3GS or higher, iPad, or iPod Touch with iOS 5.0 or higher

 ➤ An Apple Developer account, available at (https://developer.apple.com/programs/
register/)

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
appear throughout the book.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset
and placed in italics like this.

flast.indd xxiiflast.indd xxii 11/09/12 9:18 AM11/09/12 9:18 AM

https://developer.apple.com/programs/register/
https://developer.apple.com/programs/register/

INTRODUCTION ❘ xxiii

As for styles in the text:

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that’s particularly important in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
 manually or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at http://www.wrox.com. When at the site, simply locate the book’s
title (either by using the Search box or by using one of the title lists) and click the Download Code
link on the book’s detail page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-118-36240-2.

After you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

The code listings and snippets provided in the text of this book comprise only a part of the code
required for a functional iOS app. The downloadable code examples are complete XCode projects
that contain all of the code required to build and deploy the samples to an iOS device. Therefore, in
addition to the code listings found in the text of the book, you will fi nd other code fi les and resource
fi les that are required to build and deploy the sample apps on the companion website for this book.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you can help us provide even higher
quality information.

To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On
this page you can view all errata submitted for this book and posted by Wrox editors.

flast.indd xxiiiflast.indd xxiii 11/09/12 9:18 AM11/09/12 9:18 AM

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com

xxiv ❘ INTRODUCTION

NOTE A complete book list including links to each book’s errata is also available
at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you can fi nd a number of different forums to help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you want to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but to post
your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxivflast.indd xxiv 11/09/12 9:18 AM11/09/12 9:18 AM

http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://P2P.WROX.COM
http://p2p.wrox.com
http://p2p.wrox.com

PART I
Understanding iOS and Enterprise
Networking

 � CHAPTER 1: Introducing iOS Networking Capabilities

 � CHAPTER 2: Designing Your Service Architecture

c01.indd 1c01.indd 1 05/10/12 3:49 PM05/10/12 3:49 PM

c01.indd 2c01.indd 2 05/10/12 3:49 PM05/10/12 3:49 PM

Introducing iOS Networking
Capabilities

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the iOS networking frameworks

 ➤ Key networking APIs available to developers

 ➤ Using your application’s run Loop eff ectively

Great iOS applications require a simple and intuitive user interface. Likewise, great applications
that communicate with a web service of any kind require a well-architected networking
layer. An application’s architecture must be designed with the fl exibility to adapt to changing
requirements and the capability to gracefully handle constantly changing network conditions,
all while maintaining core design principles that enable proper maintainability and scalability.

When designing a mobile application’s architecture you must have a fi rm grasp of key
concepts, such as the run loop, the various networking APIs available, and how those APIs
integrate with the run loop to create a responsive, networked application framework. This
chapter provides a detailed discussion of run loops and how to use them effectively within an
application. Also provided is an overview of the key APIs and when each should be used.

UNDERSTANDING THE NETWORKING FRAMEWORKS

Before you begin development of an iOS application that interacts with the network, you must
understand how the networking layers are organized in Objective-C, as shown in Figure 1-1.

1

c01.indd 3c01.indd 3 05/10/12 3:49 PM05/10/12 3:49 PM

4 ❘ CHAPTER 1 INTRODUCING iOS NETWORKING CAPABILITIES

Each iOS application sits on top of a networking framework stack composed of four levels. At the
top is the Cocoa level, which includes the Objective-C APIs for URL loading, Bonjour, and Game
Kit. Below Cocoa sits Core Foundation, a set of C APIs that includes CFNetwork, the foundation of
most application-level networking code. CFNetwork provides a simple networking interface that sits on
top of CFStream and CFSocket. Those two classes are lightweight wrappers around BSD sockets, which
form the lowest level and sit closest to the antenna hardware. BSD sockets are implemented strictly in
C and provide developers absolute control over any communication to a remote device or server.

As you move down each level in the framework stack, you tend to gain tighter control but give up
the ease of use and abstraction that the previous level provided. Although there are situations in
which this may be warranted, Apple recommends that you stay at the CFNetwork layer and above.
Raw sockets at the BSD level do not have access to the system wide VPN nor do they activate the
Wi-Fi or cellular radios, something CFNetwork handles for you.

Before you design your applications’ networking layer you must understand the various APIs avail-
able to you and how you can leverage them. The next section covers the key iOS networking frame-
works and provides a brief introduction explaining how you can use them. Each API covered is
discussed in detail in a future chapter.

iOS NETWORKING APIS

Each level of the framework stack has a set of key APIs that deliver a range of functionality and
control to developers. Each level offers more abstraction than the level below it (refer to Figure 1-1).
However, this abstraction comes at a cost of losing some control. This section provides an overview
of key APIs in iOS and the considerations when using each of them.

Wi-Fi Cellular Bluetooth

BSD

CFNetServices

CFNetwork

NSURL
Bonjour

(NSNetService)

Game KitWeb Kit

A
p

p
s

C
o

co
a

C
o

re
F

o
u

n
d

a
ti

o
n

O
S

H
a

rd
w

a
re

Core
Bluetooth

FIGURE 1-1

c01.indd 4c01.indd 4 05/10/12 3:49 PM05/10/12 3:49 PM

iOS Networking APIs ❘ 5

NSURLConnection

NSURLConnection is a Cocoa level API that provides a simple method to load URL requests, which
can interact with a web service, fetch an image or video, or simply retrieve a formatted HTML
document. It is built on top of NSStream and was designed with optimized support for the four most
common URI schemes: file, HTTP, HTTPS, and FTP. Although NSURLConnection restricts the
protocols over which you can communicate, it abstracts much of the lower-level work required to
read and write from buffers, includes built-in support for authentication challenges, and offers a
robust caching engine.

The NSURLConnection interface is sparse, relying heavily on the NSURLConnectionDelegate
protocol, which enables an application to intervene at many points in the connection life cycle.
NSURLConnection requests are asynchronous by default; however, there is a convenience method to
send synchronous requests. Synchronous requests do block the calling thread, so you must design
applications accordingly. Chapter 3, “Making Requests” covers NSURLConnection in detail and
provides a number of examples.

Game Kit

At its core, Game Kit provides another peer-to-peer networking option to iOS applications. In a
traditional network confi guration, Game Kit is built on top of Bonjour; however, Game Kit does
not require a network infrastructure to function. It can create ad-hoc Bluetooth Personal Area
Networks (PAN), which makes it a great candidate for networking in locations with little or no
established infrastructure.

Game Kit requires only a session identifi er, display name, and connection mode when setting up a
network. It does not require confi guring of a socket or any other low-level networking to
communicate with connected peers. Game Kit communicates via the GKSessionDelegate protocol.
Chapter 12, “Device-to-Device Communication with Game Kit” discusses integrating Game Kit into
your applications.

Bonjour

Bonjour is Apple’s implementation of zero confi guration networking (zeroconf). Bonjour provides a
mechanism to discover and connect with devices or services on the network, and alleviates the need
to know a device’s network address. Instead, Bonjour refers to services as a tuple of name, service
type, and domain. Bonjour abstracts the low-level networking requirements for multicast DNS
(mDNS) and DNS-based Service Discovery (DNS-SD).

At the Cocoa level, the NSNetService API provides an interface for publishing and resolving
address information for a Bonjour service. You can use the NSNetServiceBrowser API to
discover available services on the network. Publishing a Bonjour service, even with Cocoa level
APIs, requires an understanding of Core Foundation to confi gure sockets for communication.
Chapter 13, “Ad-Hoc Networking with Bonjour,” includes an in-depth overview of zero
confi guration networking, Bonjour, and an example of how to implement a Bonjour-based
service.

c01.indd 5c01.indd 5 05/10/12 3:49 PM05/10/12 3:49 PM

6 ❘ CHAPTER 1 INTRODUCING iOS NETWORKING CAPABILITIES

NSStream

NSStream is a Cocoa level API built on top of CFNetwork that serves as the foundation
for NSURLConnection and is intended for lower-level networking tasks. Much like
NSURLConnection, NSStream provides a mechanism to communicate with remote servers or local
fi les. However, you can use NSStream to communicate over protocols such as telnet or SMTP that
are not supported by NSURLConnection.

The additional control that NSStream provides does come at a cost. NSStream does not have built-in
support for handling HTTP/S response status codes or authentication challenges. It transmits and
receives data into C buffers, which may be unfamiliar to a strictly Objective-C developer. It also
can’t manage multiple outbound requests and may require subclassing to add that feature. NSStream
is asynchronous and communicates updates via the NSStreamDelegate. Chapter 8, “Low-Level
Networking,” and Chapter 13, “Ad-Hoc Networking with Bonjour” cover different implementa-
tions of NSStream.

CFNetwork

The CFNetwork API is layered on top of the fundamental BSD sockets and is used in the
implementations of NSStream, the URL loading system, Bonjour, and Game Kit APIs. It
provides native support for advanced protocols such as HTTP and FTP. The key difference between
CFNetwork and BSD sockets is run loop integration. If your application uses CFNetwork, input
and output events are scheduled on the thread’s run loop. If input and output events occur on a
secondary thread, it is your responsibility to start the run loop in the appropriate mode. The “Run
Loops” section later in this chapter provides additional details.

CFNetwork provides more confi guration options than the URL loading system, which can be both
benefi cial and frustrating. These confi guration options are visible when creating an HTTP request
with CFNetwork. When creating the request you must manually add any HTTP headers and cook-
ies that must be transmitted with the request. With NSURLConnection, though, standard headers
and any cookies in the cookie jar are automatically added for you.

The CFNetwork infrastructure is built on top of the CFSocket and CFStream APIs from the Core
Foundation layer. CFNetwork includes APIs for specifi c protocols such as CFFTP for
communicating with FTP servers, CFHTTP for sending and receiving HTTP messages, and
CFNetServices for publishing and browsing Bonjour services. Chapter 8 covers CFNetwork in
greater detail, and Chapter 13 provides an overview of Bonjour.

BSD Sockets

BSD sockets form the basis for most Internet activity and are the lowest level in the networking
framework hierarchy. BSD sockets are implemented in C but can be used within Objective-C code.
Use of the BSD socket API is not recommended because it does not have any hooks into the
operating system. For example, BSD sockets are not tunneled through the system wide VPN nor do
any of the API calls automatically activate the Wi-Fi or cellular radios if they are powered down.
Apple recommends that you work solely with at least CFNetwork or higher. Chapter 8 covers BSD
sockets and CFNetwork in greater detail and provides examples of how they can be integrated into
your application.

c01.indd 6c01.indd 6 05/10/12 3:49 PM05/10/12 3:49 PM

Run Loops ❘ 7

As you implement the various network APIs, you must understand how they integrate with your
application. The next section discusses the concept of run loops, which monitor for network events
(among other things) from the operating system and relay those events to your application.

RUN LOOPS

Run loops, represented by the class NSRunLoop, are a fundamental component of threads that enable
the operating system to wake sleeping threads to manage incoming events. A run loop is a loop
confi gured to schedule tasks and process incoming events for a period of time. Each thread in an
iOS application can have at most one run loop. For the main thread the run loop is started for you
and is accessible after the application delegate’s applicationDidFinishLaunchingWithOptions:
method is invoked.

Secondary threads, however, must run their run loop explicitly, if needed. Before starting a run
loop in a secondary thread, you must add at least one input source or timer; otherwise, the run loop
exits immediately. Run loops provide developers with the ability to interact with a thread, but are not
always necessary. Threads spawned to process a large data set without any other interaction, for
example, probably do not warrant starting the run loop. However, if the secondary thread interacts
with the network, you need to start the run loop.

There are two source types from which run loops receive events: input sources and timers. Input
sources, which are typically either port-based or custom, deliver events to the application
asynchronously. The primary difference between the two types of sources is that the kernel signals
port-based sources automatically, whereas custom sources must be signaled manually from a
different thread. You can create a custom input source by implementing several callback functions
associated with CFRunLoopSourceRef.

Timers generate time-based notifi cations that provide a mechanism for applications (threads
specifi cally) to perform a specifi c task at a future time. Timer events are delivered synchronously
and are associated with a specifi c mode, which is discussed later in this section. If that particular
mode is not currently monitored, events will be ignored, and the thread will not be notifi ed until the
run loop is “run” in the corresponding mode.

You can confi gure timers to fi re once or repeatedly. Rescheduling is based on the scheduled fi re time,
not the actual fi re time. If a timer fi res while the run loop is executing an application handler method,
it waits until the next pass through the run loop to call the timer handler, typically set via @selector().
If fi ring the handler is delayed to the point in which the next invocation occurs, the timer fi res only
one event with the delayed event being suppressed.

Run loops can also have observers, which are not monitored and provide a way for objects to
receive callbacks as certain activities in the run loop execution occur. These activities include
when the run loop is entered or exited, as the run loop goes to sleep or wakes up, and before the
run loop processes an input source or timer. They are documented in the CFRunLoopActivity
enumeration. Observers can be confi gured to fi re once, which removes the observer after it
has been fi red, or repeatedly. To add a run loop observer, use the Core Foundation function
CFRunLoopObserverRef().

c01.indd 7c01.indd 7 05/10/12 3:49 PM05/10/12 3:49 PM

8 ❘ CHAPTER 1 INTRODUCING iOS NETWORKING CAPABILITIES

Run Loop Modes

Each pass through the run loop is run in a specifi c mode specifi ed by you. Run loop modes are a
convention used by the operating system to fi lter the sources that are monitored and allowed to
deliver events, such as calling a delegate method. Modes include the input sources and timers that
should be monitored as well as any observers that should be notifi ed of run loop events.

There are two predefi ned run loop modes in iOS. NSDefaultRunLoopMode
(kCFRunLoopDefaultMode in Core Foundation) is the system default and should typically
be used when starting run loops and confi guring input sources. NSRunLoopCommonModes
(kCFRunLoopCommonModes in Core Foundation) is a collection of modes that is confi gurable.
Assigning NSRunLoopCommonModes to an input source by calling a method such as
scheduleInRunLoop:forMode: on an input source instance associates it with all modes currently
in the group.

NOTE OSX includes three additional predefi ned run loop modes that you
may see referenced in different documentation. NSConnectionReplyMode,
NSModalPanelRunLoopMode, and NSEventTrackingRunLoopMode provide
additional fi ltering options but are not available on iOS.

Although NSRunLoopCommonModes is confi gurable, it is a low-level process that requires calling the
Core Foundation function CFRunLoopAddCommonMode(). This automatically registers input sources,
timers, and observers with the new mode instead of manually adding them to each new mode. You
can defi ne custom run loop modes by specifying a custom string such as @"CustomRunLoopMode".
For your custom run loop to be effective, you must add at least one input source, timer, or observer.

Although this provides an overview of run loops, Apple provides several in-depth resources on
run loop management that you should review if you develop advanced, network-based, and multi-
threaded applications. The developer documentation is available at https://developer.apple
.com/library/mac/#documentation/Cocoa/Conceptual/Multithreading/RunLoopManagement/

RunLoopManagement.html. Networking techniques that benefi t from run loop integration are
discussed in their respective chapters such as Chapter 8, “Low-Level Networking” and Chapter 13,
“Ad-Hoc Networking with Bonjour.”

SUMMARY

Understanding the iOS networking stack and how applications interact with the run loop is an
important tool in the iOS developer’s belt. A well-architected networking layer provides incredible
fl exibility to an application. Likewise, a poorly designed networking layer can be detrimental to its
success and ability to scale.

The tools presented in this chapter provide an overview of the various networking APIs and how
they compare. How they are applied, although covered briefl y here, is discussed in detail in the
upcoming chapters.

c01.indd 8c01.indd 8 05/10/12 3:49 PM05/10/12 3:49 PM

https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Multithreading/RunLoopManagement/RunLoopManagement.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Multithreading/RunLoopManagement/RunLoopManagement.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Multithreading/RunLoopManagement/RunLoopManagement.html

Designing Your Service
Architecture

WHAT’S IN THIS CHAPTER?

 ➤ Implementing a remote façade

 ➤ Discovering endpoints with service locators

 ➤ Supporting older apps with service versioning

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. You can
fi nd the code for this chapter in the Chapter 2 download in one example project and one set of
web services:

 ➤ Facade Tester.zip

 ➤ Facade PHP.zip

Web services are the lifeblood of a networked iOS app, and the fl exibility and robustness of
their design has an enormous impact on its user experience. Well-designed service APIs can
adapt to changing back-end data sources and still present an unchanging façade to the apps
that depend on them. Service locators enable an app to dynamically discover new service
endpoints and use them without needing to recompile or resubmit an app to the App Store.
When it is necessary to resubmit an app, you need to support older versions of the app during
the transition and upgrade process, which may realistically be the entire lifetime of the app.
A service API that supports versioning is invaluable when supporting older apps that are still

2

c02.indd 9c02.indd 9 13/09/12 2:39 PM13/09/12 2:39 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://WROX.COM
http://wrox.com

10 ❘ CHAPTER 2 DESIGNING YOUR SERVICE ARCHITECTURE

used every day without compromising your ability to offer new features to new versions. This chapter
covers example implementations of these invaluable design elements in the context of real world
business scenarios.

REMOTE FAÇADE PATTERN

When designing service architecture for your app, a remote façade simplifi es app integration and
allows multiple clients to share the same business logic. The façade pattern is used to abstract
the complexities of an underlying system away from the clients using that system. For example, the
postal system includes thousands of mail carriers, trucks, aircrafts, distribution centers, and post
offi ces; however, most tasks that its customers need hide all that complexity and simply consist of
mailing a letter or receiving a package. Customers don’t need to know how a letter gets from New
York City to San Francisco, they just need to pay for postage and wait for it to arrive. Similarly, an
application API might abstract multiple database queries or back-end system requests into a single
externally accessible method that returns the results of the operation. As long as the façade’s exter-
nal API contract remains constant, the underlying systems can be changed, upgraded, or removed
entirely without impacting any clients using the façade.

A remote façade takes this pattern and employs it in the web service tier for an application. It defi nes
an unchanging service contract that an app can use to create, read, update, or delete data stored
externally to the app. The API is commonly used to interact with existing systems already in use
at the business and provides a mobile version of the same functionality. Figure 2-1 shows how an
application would query various endpoints directly, and Figure 2-2 shows how the topology would
change when the façade interacts with the back-end services on behalf of the application. If care and
forethought are put into the initial service contract, the same API can adapt to most changes in the
back-end systems, which enables an app to remain functional without needing constant updates to
match the service infrastructure.

FIGURE 2-1

iPhone

SOAP
SOAP

JDBC
REST

JSON
REST

XML

Account

System of

Record

Inventory

System of

Record

Location

Database

Marketing

Content

System

Loyalty

Points

Vendor

c02.indd 10c02.indd 10 13/09/12 2:39 PM13/09/12 2:39 PM

Remote Façade Pattern ❘ 11

Imagine, for example, a bank merges with a competitor and wants to move its existing accounts
to the competitor’s account storage system. If the service API is written with abstract banking
 functions, it can work with any back-end database that provides the same data, even if it is stored
in a new format. The remote façade can switch to the new source, transform any data that doesn’t
already match the API contract, and then return it to a mobile banking app without the user
 knowing that something changed. This development style is called contract programming and
ensures that both sides of a networking session abide by a previously agreed upon input and output
contract. As long as the contract is still valid, either end can be rewritten, ported to another language,
or upgraded at will without any negative impact on the other party.

Maintainability, reliability, and complexity of the application side of the contract are also greatly
enhanced by the façade pattern. With fewer points of networked interaction in the app, changes
needed to support future façade versions are fewer and relatively self-contained. Reliability improves
because the façade commonly has only one protocol and one message format, which reduces the
number of third-party libraries or separate parsers needed for other formats. Both of these changes
lower the complexity of the app and lead to development savings because fewer unit tests are needed
to cover all functionality. On the server side, only one set of endpoints needs to be secured and
exposed to the Internet instead of many disparate systems.

iPhone

REST

JSON

Remote

Facade

Account

System of

Record

Inventory

System of

Record

SOAP

SOAP

JDBC
REST

JSON

REST

XML

Location

Database

Marketing

Content

System

Loyalty

Points

Vendor

FIGURE 2-2

c02.indd 11c02.indd 11 13/09/12 2:39 PM13/09/12 2:39 PM

12 ❘ CHAPTER 2 DESIGNING YOUR SERVICE ARCHITECTURE

A remote façade also enables developers to push some business logic out of the app and into the
service tier. Certain functions that change frequently or can’t be predicted ahead of time can be
computed in the service tier and send only the fi nal value to the client. That way if this logic needs
to be tweaked or adjusted for a new business rule, it does not require an app update to take effect.
In the merging banks example, this tweak might be a new password security requirement adopted
from the new institution. If the app merely takes the user’s candidate password and asks the façade
if it is valid, that logic can be changed at any time. A similar pattern to verify e-mail addresses can
easily adapt to the upcoming switch to custom top-level domain (TLD) names; however, if the list
of valid TLDs were hardcoded in the app, it would potentially reject valid e-mail addresses until an
app update could be released. The remote façade grants an enterprise maximum fl exibility over a
networked app’s post-launch behavior in the face of changing business processes.

The same characteristics also apply on the input side of the API. The façade can translate requests
into formats needed by back-end systems; for example, it can convert an incoming JSON to a SOAP
request. It can also enforce security constraints for other systems that can’t be publicly exposed
to the Internet, track and verify API keys before forward requests, or rate limit requests to certain
back-end systems.

Example Façade Services

The example Façade Tester application uses two web services to populate its views: a stock quote
service and a weather service. Both can fetch their respective data from two separate sources and
convert each set of data into one common output format. This mimics a façade service that must
accommodate a switch between two back-end systems while the app continues to work. Both
of these examples refer to the version 1 services; the version 2 services are used in the “Service
Versioning” section.

The stock quote service loads data as comma-separated values (CSV) or as an XML document, as
shown in Listing 2-1.

LISTING 2-1: Generating Common Output from Two Stock Quote Sources (stockQuote_v1.php)

<?php

$useYahooResults = true;
$ticker = "AAPL";

if ($useYahooResults) {
 $rawData = rtrim(file_get_contents("http://finance.yahoo.com/d/quotes.csv?s=".
 $ticker."&f=snl1p2o"),"\r\n");

 $data = explode(",",$rawData);

 $symbol = trim($data[0],'"');
 $name = trim($data[1],'"');
 $currentPrice = trim($data[2],'"');

} else {
 $rawXML = file_get_contents("http://www.webservicex.net/stockquote.asmx/
 GetQuote?symbol=".$ticker);

c02.indd 12c02.indd 12 13/09/12 2:39 PM13/09/12 2:39 PM

http://www.webservicex.net/stockquote.asmx/
http://finance.yahoo.com/d/quotes.csv?s=".$ticker."&f=snl1p2o
http://finance.yahoo.com/d/quotes.csv?s=".$ticker."&f=snl1p2o

Remote Façade Pattern ❘ 13

 $wrapperData = simplexml_load_string($rawXML);

 $xmlData = simplexml_load_string($wrapperData);

 $symbol = (string)$xmlData->Stock->Symbol;
 $name = (string)$xmlData->Stock->Name;
 $currentPrice = (string)$xmlData->Stock->Last;
}

$response = array("symbol" => $symbol,
 "name" => $name,
 "currentPrice" => $currentPrice);

// output final results:
print json_encode($response);

?>

The following comma-separated string has key stock values: the company name, most recent price,
opening price, and percentage change since opening.

{ticker symbol},{name},{last trade price},{percentage change},{opening price}

example:
"AAPL","Apple Inc.",530.12,"-2.92%",545.31

The following XML document contains the same data in a more structured format. This document
contains all the information included in the CSV string plus some extra data that this service
ignores.

<StockQuotes>
 <Stock>
 <Symbol>AAPL</Symbol>
 <Last>530.12</Last>
 <Date>5/17/2012</Date>
 <Time>4:00pm</Time>
 <Change>-15.955</Change>
 <Open>545.31</Open>
 <High>547.50</High>
 <Low>530.12</Low>
 <Volume>25614960</Volume>
 <MktCap>495.7B</MktCap>
 <PreviousClose>546.075</PreviousClose>
 <PercentageChange>-2.92%</PercentageChange>
 <AnnRange>310.50 - 644.00</AnnRange>
 <Earns>41.042</Earns>
 <P-E>13.31</P-E>
 <Name>Apple Inc.</Name>
 </Stock>
</StockQuotes>

When the variable $useYahooResults is true, the CSV string is loaded and when it is false, the
XML is loaded. Regardless of the input source, the façade returns its data in a common JSON
 format like so:

c02.indd 13c02.indd 13 13/09/12 2:39 PM13/09/12 2:39 PM

14 ❘ CHAPTER 2 DESIGNING YOUR SERVICE ARCHITECTURE

{"symbol":"AAPL","name":"Apple Inc.","currentPrice":"-2.92%"}

Any data source used by the façade must provide data for at least the minimum required fi elds to
abide by the contract it has made with clients of the API.

The example façade also implements a web service that gives the current weather for Richmond,
VA, from one of two sources. Both sources provide weather conditions as JSON, but each specifi c
response format varies greatly. This service is similar to a situation in which you might upgrade a
back-end system to a new release that has the same basic data but organized differently. Listing 2-2
shows the weather service, which follows the same basic structure as the stock service.

LISTING 2-2: Generating Common Output from Two Weather Services (weather_v1.php)

<?php

$useYahooResults = true;

if ($useYahooResults) {
 $rawJSON = file_get_contents("http://query.yahooapis.com/v1/
 public/yql?q=select%20item%20from%20weather.forecast
 %20where%20location%3D%2248907%22&format=json");
 $rawData = json_decode($rawJSON);

 $currentTemperature = $rawData->query->results->channel->item->condition->temp;
 $currentConditions = $rawData->query->results->channel->item->condition->text;

} else {
 $rawJSON = file_get_contents("http://weather.yahooapis.com/forecastjson?
 w=12518996");
 $rawData = json_decode($rawJSON);

 $currentTemperature = (string)$rawData->condition->temperature;
 $currentConditions = $rawData->condition->text;
}

$response = array("city" => "Richmond",
 "state" => "Virginia",
 "currentTemperature" => $currentTemperature);

/*
 * output final results:
 *
 * {"city":"Richmond","state":"Virginia","currentTemperature":"63"}
 */
print json_encode($response);

?>

A consuming client can now use each published service, and the data sources can be switched
dynamically without needing to change how it processes the stock or weather data.

c02.indd 14c02.indd 14 13/09/12 2:39 PM13/09/12 2:39 PM

http://query.yahooapis.com/v1/public/yql?q=select%20item%20from%20weather.forecast%20where%20location%3D%2248907%22&format=json
http://query.yahooapis.com/v1/public/yql?q=select%20item%20from%20weather.forecast%20where%20location%3D%2248907%22&format=json
http://query.yahooapis.com/v1/public/yql?q=select%20item%20from%20weather.forecast%20where%20location%3D%2248907%22&format=json
http://weather.yahooapis.com/forecastjson?w=12518996
http://weather.yahooapis.com/forecastjson?w=12518996

Remote Façade Pattern ❘ 15

Example Façade Clients

The Façade Tester application demonstrates how to use the output formats and displays the results
in a table view. Listing 2-3 shows how to load the façade weather service in a background thread
using Grand Central Dispatch. Listing 2-4 shows the equivalent code to parse the stock quote
 service. The JSON results are parsed using iOS 5’s NSJSONSerialization and then assigned to
local variables used by the table view. It is a testament to the ease of the façade pattern that the
 critical pieces of the iOS integration code are only a couple of lines long. For more information on
loading data over the network see Chapter 3, “Making Requests,” and for more information on
JSON parsing see Chapter 4, “Generating and Digesting Request Payloads.”

LISTING 2-3: Loading and Parsing the Weather Service (FTWeatherViewController.m)

NSString *v1_city;
NSString *v1_state;
NSString *v1_temperature;

- (void)loadVersion1Weather {
 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 FTAppDelegate *appDelegate = (FTAppDelegate*)
 [[UIApplication sharedApplication] delegate];

 if (appDelegate.urlForWeatherVersion1 != nil) {
 NSError *error = nil;
 NSData *data = [NSData
 dataWithContentsOfURL:appDelegate.urlForWeatherVersion1
 options:NSDataReadingUncached
 error:&error];

 if (error == nil) {
 NSDictionary *weatherDictionary = [NSJSONSerialization
 JSONObjectWithData:data
 options:NSJSONReadingMutableLeaves
 error:&error];

 if (error == nil) {
 v1_city = [weatherDictionary objectForKey:@"city"];
 v1_state = [weatherDictionary objectForKey:@"state"];
 v1_temperature = [weatherDictionary objectForKey:
 @"currentTemperature"];

 // update the table on the UI thread
 dispatch_async(dispatch_get_main_queue(), ^{
 [self.tableView reloadData];
 });

 } else {
 NSLog(@"Unable to parse weather because of error: %@", error);
 [self showParseError];

continues

c02.indd 15c02.indd 15 13/09/12 2:39 PM13/09/12 2:39 PM

16 ❘ CHAPTER 2 DESIGNING YOUR SERVICE ARCHITECTURE

 }

 } else {
 [self showLoadError];
 }

 } else {
 [self showLoadError];
 }
 });
}

LISTING 2-4: Loading and Parsing the Stock Quote Service (FTStockViewController.m)

NSString *v1_symbol;
NSString *v1_name;
NSNumber *v1_currentPrice;

- (void)loadVersion1Stock {
 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 FTAppDelegate *appDelegate = (FTAppDelegate*)
 [[UIApplication sharedApplication] delegate];

 if (appDelegate.urlForStockVersion1 != nil) {
 NSError *error = nil;
 NSData *data = [NSData dataWithContentsOfURL:
appDelegate.urlForStockVersion1
 options:
NSDataReadingUncached
 error:&error];

 if (error == nil) {
 NSDictionary *stockDictionary = [NSJSONSerialization
 JSONObjectWithData:data
 options:NSJSONReadingMutableLeaves
 error:&error];

 if (error == nil) {
 v1_symbol = [stockDictionary objectForKey:@"symbol"];
 v1_name = [stockDictionary objectForKey:@"name"];
 v1_currentPrice = [NSNumber numberWithFloat:
 [[stockDictionary objectForKey:@"currentPrice"]
 floatValue]];

 // update the table on the UI thread
 dispatch_async(dispatch_get_main_queue(), ^{
 [self.tableView reloadData];
 });

 } else {

LISTING 2-3 (continued)

c02.indd 16c02.indd 16 13/09/12 2:39 PM13/09/12 2:39 PM

Service Versioning ❘ 17

 NSLog(@"Unable to parse stock quote because of error:
 %@", error);
 [self showParseError];
 }

 } else {
 [self showLoadError];
 }

 } else {
 [self showLoadError];
 }
 });
}

SERVICE VERSIONING

Mobile applications are frequently updated to fi x bugs and add new features, but it is often
 overlooked that web services must be maintained and upgraded as well. Service versioning is a
technique to update an API’s contract with its clients while still preserving the previous versions for
existing app versions to use. Apps distributed through the App Store cannot force users to upgrade
to the newest version, which means any existing web services need to be functional during the
transition. Depending on the upgrade behavior of your user base, it may not ever be feasible to
decommission your existing services without cutting off users of older versions. One option is
to include logic that checks for a minimum supported application version and displays an upgrade
 message until the user consents. However, these nagging messages on previously working versions
may upset some users, who may then quickly overwhelm your support lines and App Store reviews
with negative comments. Because of this potential downside, proper service versioning is really the
best solution.

API versioning is not limited to just adjusting for new app updates; it can also be used to deliver
different or expanded data to various device types. For example, a reporting application might use
a set of data when displayed on an iPhone and use a more complete set of data when shown on an
iPad where it has more screen real estate. If that extra data has signifi cant back-end or network
overhead, you want to be sure you don’t waste those resources on any iPhone-initiated service
request that won’t use it anyway.

A versioning system can be structured in two major ways: an active system where a remote façade
receives the client’s current version and chooses the correct endpoint, or a passive system where
versioned service endpoints are hardcoded into each new release of the client. It is up to each specifi c
enterprise to determine the best way to provide a version number as input, but typically it is included
in the structure of a REST endpoint’s URL or passed as a query parameter. The following code
snippet demonstrates both version input options.

// a version given in the URL structure
http://example.com/api/1.0/stockquote/AAPL

// a version given as a query parameter
http://example.com/api/stockQuote.php?ticker=AAPL&apiVersion=1.0

c02.indd 17c02.indd 17 13/09/12 2:39 PM13/09/12 2:39 PM

http://example.com/api/1.0/stockquote/AAPL
http://example.com/api/stockQuote.php?ticker=AAPL&apiVersion=1.0

18 ❘ CHAPTER 2 DESIGNING YOUR SERVICE ARCHITECTURE

A passive system is the simplest way to implement service versioning. It doesn’t require the cost
or capacity planning of an additional server and takes more organizational effort than technical
effort. To implement in this manner, simply hardcode a version number into the endpoint URLs you
already defi ne within the client application. Because these URLs are functionally immutable after an
application is released, you can ensure that an app coded to use that version always uses that
version. When a new client version needs to change the service contract, simply increment the
hardcoded API version number and create the new web service.

An active system encompasses all the benefi ts of the passive system; however, like all façade
 interactions, it also has the capability to change its behavior in the future. If two different versions of
the same web service have the same input and output contract but they perform certain calculations
differently, older clients compatible with either version can be switched dynamically in the future.
For example, if an online retailer currently doesn’t charge sales tax in a state, it can send its clients
to version 1.0 of a price check service. However, if in the future it needs to begin charging sales tax,
it can simply create a version 2.0 service that returns the normal price plus tax. Assuming the fi nal
amount is returned as a number in both cases, the service contract won’t be broken. To implement
an active versioning system, the façade must group all possible versions of client apps into compatibility
buckets and assign each bucket the correct API version to use. To facilitate future development,
choose a sensible default, typically the most recent API version, for client versions higher than the
maximum known to the façade.

Example Versioned Services

Both the example web services have two versions that mimic a service contract that expands as
business requirements change. Some output fi eld types have been modifi ed and other fi elds have
been added. These examples use the passive versioning system that merely changes the URL to
specify a new version. Recall that weather_v1.php, the version 1.0 of the weather service, had the
following output format:

{"city":"Richmond","state":"Virginia","currentTemperature":"63"}

The currentTemperature is represented as a string, which complicates any integer logic that a
client might want to do, for example, setting thresholds for cold, mild, or hot weather used to
 classify the current temperature. Version 2.0 of the service fi xes this oversight and returns the value
as a numeric type. It also adds an additional fi eld for currentConditions, a text description of the
current weather. The output in weather_v2.php has the following format:

{"city":"Richmond","state":"Virginia","currentTemperature":63,"currentConditions":
"Mostly Cloudy"}

The stock quote service had similar changes made from version 1.0 to version 2.0. The fi rst version
had basic output in stockQuote_v1.php:

{"symbol":"AAPL","name":"Apple Inc.","currentPrice":"530.12"}

Notice that currentPrice is a string in version 1.0 but is represented as a decimal number in
stockQuote_v2.php to make it easier to format in the client:

c02.indd 18c02.indd 18 13/09/12 2:39 PM13/09/12 2:39 PM

Service Versioning ❘ 19

{"symbol":"AAPL","name":"Apple Inc.","openingPrice":545.31,"currentPrice":530.12,
"percentageChange":"-2.92%"}

Two new fi elds have also been added: openingPrice and percentageChange.

Example Client Using Versioned Services

The weather view controller in Façade Tester can display the output of both versions of the API.
Both loadVersion1Weather and loadVersion2Weather check the application delegate for the URL
of the API endpoint, as highlighted in Listing 2-5. Because this example uses passive versioning, it
might seem more natural to hardcode the URL directly here; however, defi ning it in the application
delegate gives you fl exibility to implement a service locator, as shown in the next section.

LISTING 2-5: Fetching API Endpoints from the Application Delegate (FTWeatherViewController.m)

- (void)loadVersion1Weather {
 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 FTAppDelegate *appDelegate = (FTAppDelegate*)
 [[UIApplication sharedApplication] delegate];

 if (appDelegate.urlForWeatherVersion1 != nil) {
 NSError *error = nil;
 NSData *data = [NSData
dataWithContentsOfURL:appDelegate.urlForWeatherVersion1
 options:NSDataReadingUncached
 error:&error];

 // remaining code removed for brevity
}

- (void)loadVersion2Weather {
 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 FTAppDelegate *appDelegate = (FTAppDelegate*)
 [[UIApplication sharedApplication] delegate];

 if (appDelegate.urlForWeatherVersion2 != nil) {
 NSError *error = nil;
 NSData *data = [NSData
dataWithContentsOfURL:appDelegate.urlForWeatherVersion2
 options:NSDataReadingUncached
 error:&error];

 // remaining code removed for brevity
}

c02.indd 19c02.indd 19 13/09/12 2:39 PM13/09/12 2:39 PM

20 ❘ CHAPTER 2 DESIGNING YOUR SERVICE ARCHITECTURE

After the application loads the correct JSON data, it simply parses it according to the service contract
for that version. Version 1.0 of the weather service loads the city, state, and current temperature like so:

v1_city = [weatherDictionary objectForKey:@"city"];
v1_state = [weatherDictionary objectForKey:@"state"];
v1_temperature = [weatherDictionary objectForKey:@"currentTemperature"];

Version 2.0 is similar but parses the current temperature as a number and also looks for current
conditions as shown in the following:

v2_city = [weatherDictionary objectForKey:@"city"];
v2_state = [weatherDictionary objectForKey:@"state"];
v2_temperature = [[weatherDictionary objectForKey:@"currentTemperature"] intValue];
v2_conditions = [weatherDictionary objectForKey:@"currentConditions"];

When setting v2_temperature, it converts from an NSNumber, the numeric type used by
NSJSONSerialization, to an integer type used by the view controller.

SERVICE LOCATORS

A service locator is a tool that helps applications dynamically discover API endpoints from a remote
source. This alleviates the problem in which an application has hardcoded an endpoint that is
invalid or no longer exists. Using a service locator also allows app developers to repoint previously
released applications to new services whenever those services become available. These new services
don’t necessarily need to change the API contract with any clients; for example, if endpoints are
moved to a different server or subdomain, behind a load balancer, or to an SSL-secured HTTPS
endpoint. You can even create new service locator fi les for each development environment to easily
switch between development, QA, or production resources with a single change.

At its core, a service locator is simply a fi le that contains API endpoints and some brief metadata
about them. The application uses this metadata to determine which endpoints are appropriate for
it to use. Examples might include the API version, input or output format, device type, or security
level. It also must include the URL of the endpoint and a key that the client application can use to
match an endpoint to its function. Because this fi le is static and changes infrequently, it is easily
deployed to a web server or content delivery network (CDN). It is imperative that the source of the
service locator be highly reliable because it is the single point of failure for the application. Although
this may seem like a liability, a single point of failure is still preferable to the many points of failure
that would exist if the application directly queried each separate back-end service. Where possible
the service locator should be load balanced to avoid overwhelming a single host with requests from
your entire user base. Because CDNs are designed for high-reliability of static fi les and typically can
handle much higher sustained bandwidth than an everyday web server, it is recommended to use one
to serve the service locator fi le whenever possible.

Because most web services output their results as JSON, it makes sense to use JSON to represent the
service locator as well. Listing 2-6 shows the service locator used by the Façade Tester to discover
the weather and stock quote API endpoints. This structure combines all versions of the endpoints
into one fi le; however, you can also create individual service locator fi les for each API version. The
individual approach prevents an app version from mixing and matching different service versions,
but that constraint may not be an impediment for some business cases.

c02.indd 20c02.indd 20 13/09/12 2:39 PM13/09/12 2:39 PM

Service Locators ❘ 21

LISTING 2-6: An Example Service Locator File (serviceLocator.json)

{
 "services": [
 {
 "name": "stockQuote",
 "url": "http://example.com/api/stockQuote_v1.php",
 "version": 1
 },
 {
 "name": "stockQuote",
 "url": "http://example.com/api/stockQuote_v2.php",
 "version": 2
 },
 {
 "name": "weather",
 "url": "http://example.com/api/weather_v1.php",
 "version": 1
 },
 {
 "name": "weather",
 "url": "http://example.com/api/weather_v2.php",
 "version": 2
 }
]
}

Any client implementing the service locator pattern commonly loads and parses the fi le as its fi rst
action. Because all network calls require an endpoint, which are solely found in this fi le, it must be
parsed before any other networked action can happen. The locator fi le should also be updated when
an application returns to the foreground to ensure its endpoint data is fresh. Apps can remain in a
background state for an extended period of time, and it may have previously loaded a service locator
fi le that is now stale. In certain cases the stale endpoints may have been decommissioned and
consistently timeout, providing a poor user experience. Typically an application displays a splash
screen while the service locator loads.

Listing 2-7 shows an application that loads the service locator when the app launches and when
it returns to the foreground. It stores the URLs as properties in the application delegate; however,
a more complex application would require a dedicated networking manager that would handle
 loading the service locator and would be used by other controllers to query for the endpoint for a
particular networking call.

LISTING 2-7: Loading and Parsing a Service Locator File (FTAppDelegate.m)

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // some code removed for brevity

continues

c02.indd 21c02.indd 21 13/09/12 2:39 PM13/09/12 2:39 PM

http://example.com/api/stockQuote_v1.php
http://example.com/api/stockQuote_v2.php
http://example.com/api/weather_v1.php
http://example.com/api/weather_v2.php

22 ❘ CHAPTER 2 DESIGNING YOUR SERVICE ARCHITECTURE

 /*
 * load the service locator
 *
 * note: You should probably show a splash screen of some kind here
 * that waits for the SL to fully load. Currently a user could
 * try to start a network request before it knows which URL to use.
 */
 [self loadServiceLocator];

 return YES;
}

- (void)applicationDidBecomeActive:(UIApplication *)application {
 // load the service locator
 [self loadServiceLocator];
}

- (void)loadServiceLocator {
 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 NSError *error = nil;
 NSData *data = [NSData dataWithContentsOfURL:[NSURL URLWithString:
 @"http://example.com/api/serviceLocator.json"]
 options:NSDataReadingUncached
 error:&error];

 if (error == nil) {
 NSDictionary *locatorDictionary = [NSJSONSerialization
 JSONObjectWithData:data
 options:NSJSONReadingMutableLeaves
 error:&error];

 if (error == nil) {
 self.urlForStockVersion1 = [self
 findURLForServiceNamed:@"stockQuote"
 version:1
 inDictionary:locatorDictionary];

 self.urlForStockVersion2 = [self
 findURLForServiceNamed:@"stockQuote"
 version:2
 inDictionary:locatorDictionary];

 self.urlForWeatherVersion1 = [self
 findURLForServiceNamed:@"weather"
 version:1
 inDictionary:locatorDictionary];

 self.urlForWeatherVersion2 = [self

LISTING 2-7 (continued)

c02.indd 22c02.indd 22 13/09/12 2:39 PM13/09/12 2:39 PM

http://example.com/api/serviceLocator.json

Service Locators ❘ 23

 findURLForServiceNamed:@"weather"
 version:2
 inDictionary:locatorDictionary];

 } else {
 NSLog(@"Unable to parse service locator because of error:
 %@", error);

 // inform the user on the UI thread
 dispatch_async(dispatch_get_main_queue(), ^{
 [[[UIAlertView alloc] initWithTitle:@"Error"
 message:@"Unable to parse
 service locator."
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];
 });
 }

 } else {
 NSLog(@"Unable to load service locator because of error: %@", error);

 // inform the user on the UI thread
 dispatch_async(dispatch_get_main_queue(), ^{
 [[[UIAlertView alloc] initWithTitle:@"Error"
 me ssage:@"Unable to load service
 locator. Did you remember
 to update the URL to your own
 copy of it?"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];
 });
 }
 });
}

- (NSURL*)findURLForServiceNamed:(NSString*)serviceName
 version:(NSInteger)versionNumber
 inDictionary:(NSDictionary*)locatorDictionary {

 NSArray *services = [locatorDictionary objectForKey:@"services"];

 for (NSDictionary *serviceInfo in services) {
 NSString *name = [serviceInfo objectForKey:@"name"];
 NSInteger version = [[serviceInfo objectForKey:@"version"] intValue];

 if ([name caseInsensitiveCompare:serviceName] == NSOrderedSame &&
 version == versionNumber) {

 return [NSURL URLWithString:[serviceInfo objectForKey:@"url"]];
 }
 }

 return nil;
}

c02.indd 23c02.indd 23 13/09/12 2:39 PM13/09/12 2:39 PM

24 ❘ CHAPTER 2 DESIGNING YOUR SERVICE ARCHITECTURE

SUMMARY

Optimally, a fl exible service architecture must be planned and implemented before the fi rst version
of an application is released to achieve its maximum benefi ts. If one version goes out with hardcoded
endpoints or business logic, you are effectively supporting that confi guration indefi nitely, even if
your business greatly evolves from it. With the combination of a remote façade, API versioning, and
a service locator, you have many options to tweak business logic and API settings for apps already
in the wild. It becomes easier to support minor tweaks in production code and major new features in
upcoming versions without breaking the previous application versions. The upfront development
costs of the service infrastructure may seem unnecessary, but it can pay for itself many times over as
the application grows and evolves.

c02.indd 24c02.indd 24 13/09/12 2:39 PM13/09/12 2:39 PM

PART II
HTTP Requests: The Workhorse
of iOS Networking

 � CHAPTER 3: Making Requests

 � CHAPTER 4: Generating and Digesting Payloads

 � CHAPTER 5: Handling Errors

c03.indd 25c03.indd 25 13/09/12 2:40 PM13/09/12 2:40 PM

c03.indd 26c03.indd 26 13/09/12 2:40 PM13/09/12 2:40 PM

Making Requests

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the structure of HTTP requests

 ➤ Issuing HTTP requests from iOS applications

 ➤ Using advanced manipulation of HTTP requests

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. The code
is in the Chapter 3 download and individually named according to the names throughout the
chapter.

As you may have noticed from the content of previous chapters, the preferred communication
approach in iOS is HTTP. The most convenient networking APIs provided in iOS are geared
toward HTTP, the HTTP APIs are the most thoroughly documented, and the high level
HTTP APIs are well integrated into the run loop-based architecture of an iOS application.
It is no wonder that HTTP and HTTPS are the workhorse protocols of iOS network
communications.

In this chapter you learn about the structure of HTTP requests and how these requests can be
leveraged by your application. The chapter also provides concrete examples of three primary
methods to generate HTTP requests and receive HTTP responses and recommendations on
when to use or avoid each one. Finally, this chapter explores some more advanced ways to use
the HTTP protocol to your advantage.

3

c03.indd 27c03.indd 27 13/09/12 2:40 PM13/09/12 2:40 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://wrox.com
http://WROX.COM

28 ❘ CHAPTER 3 MAKING REQUESTS

INTRODUCING HTTP

Sir Tim Berners-Lee produced the fi rst version of the Hypertext Transfer Protocol (HTTP) as part
of the WorldWideWeb project started in 1990. The protocol was defi ned with HTML as a way to
deliver information to researchers at CERN in Geneva, Switzerland, using a standard user interface
and markup language. The information presented to the user could also contain links to other
related information that would be accessible by activating the link in the text. Prior to this project,
information was stored in a variety of formats and accessible with different tools based on the
 format, which made fi nding, consuming, and relating historical research to your own research
diffi cult. You can read the original proposal for the WorldWideWeb project at
 http://www.w3.org/Proposal.html.

NOTE In this chapter and the remainder of the book, the term HTTP is used
to denote both unsecure HTTP and secure HTTPS requests. Where there is a
 difference between these two protocols, it will be noted in the text.

NOTE An interesting side note in the invention of HTTP and HTML is that
the fi rst World Wide Web server and browser were written on a NeXTStep
 computer. In 1997, Apple acquired NeXT Computer and used NeXTStep as the
basis for OS X. Apple’s OS X became the foundation for iOS.

There were three major innovations in Berners-Lee’s original proposal: HTML, HTTP, and the
URL. HTML defi ned a way to add styling to text, HTTP defi ned a way to convey data between
server and client, and the URL defi ned a way to uniquely locate a resource across a network of
machines.

As the use of web browsers and HTTP moved outside of the research lab into business and homes
in the mid-1990s, it soon became a target for nefarious people and organizations. In response,
engineers developed standards for securing HTTP traffi c. Initially there were two competing
 standards, HTTPS and S-HTTP. HTTPS encrypts the entire HTTP message, whereas S-HTTP
encrypts only the message body, leaving the headers in clear text. Both Microsoft and Netscape
decided to standardize on HTTPS, which led to the abandonment of S-HTTP.

HTTP was initially designed for the communication of human readable hypertext content from a
server to a client browser. The adoption of the World Wide Web caused HTTP to become the de
facto standard for communicating human readable information around the Internet and into
consumer’s homes. With the rise of HTTP carrying HTML came the realization that HTTP could
just as easily convey machine-to-machine information as well.

Because of the ubiquity of web browsers using HTML and HTTP, the use of HTTP to convey
machine-readable data became the path of least resistance to move information between systems on

c03.indd 28c03.indd 28 13/09/12 2:40 PM13/09/12 2:40 PM

http://www.w3.org/Proposal.html

Understanding HTTP Requests and Responses ❘ 29

the Internet. If an application is on a computer connected to a network, you can almost guarantee
that there is a way to communicate via HTTP to another host on the Internet. Corporate network
proxies and fi rewalls can readily and securely convey HTTP requests between the secured corporate
network and the Internet, performing fi ltering and security validations along the way. Although the
Internet is designed to carry a multitude of different application level protocols, HTTP has become
the protocol that requires the least confi guration for the end user.

UNDERSTANDING HTTP REQUESTS AND RESPONSES

To effectively use HTTP for client-server communication, you should understand the underpinnings
of the protocol. In this section you learn the key principles and structures of HTTP as it is used in
modern applications.

An HTTP request follows the client-server paradigm for computer communications. Figure 3-1
illustrates the sequence of steps in a simple HTTP request. The client establishes a TCP connection
to the server and then sends an HTTP request. The server subsequently responds to the request
by sending a HTTP response over the same TCP connection. The client can then reuse the TCP
 connection for another request or close it. Early versions of the HTTP protocol allowed only one
request per TCP connection. HTTP 1.1 permits the client to reuse the connection.

FIGURE 3-1

Send HTTP
Request

Receive HTTP
Response

Device App HTTP Server

TCP Connection

Close TCP Connection

c03.indd 29c03.indd 29 13/09/12 2:40 PM13/09/12 2:40 PM

30 ❘ CHAPTER 3 MAKING REQUESTS

The most signifi cant difference between HTTP and HTTPS is during the connection establishment
phase of the conversation. After the TCP connection is made but before HTTP requests are
 transmitted, an SSL session must be established between the client and the server. SSL session
establishment includes various stages: the client and server negotiating over which ciphers to use,
exchanging public keys, validating the negotiation, and optionally validating identity. After the SSL
session is established, all the data transmitted over the TCP connection will be encrypted.

URL Structure

From the perspective of an iOS developer, the other important invention of the WorldWideWeb project
was the URL. The URL provides a globally unique location name for any resource or content on
the Internet. As a rule, a single resource may be found with multiple URLs, but a single URL will
not refer to different resources. There are exceptions to this rule, such as when the hostname refers
to an ambiguous host. In the URL loading system of iOS, the NSURL object is used to manage URL
objects.

A URL is typically composed of fi ve
 components, as shown in Figure 3-2.

 ➤ Protocol — The protocol component
specifi es which application layer
protocol to use to communicate
to the server. If you’ve been around the web for a while, you may remember using ftp
as a protocol in addition to http. The dominance of http has led to the near extinction
of pre-HTTP protocol usage. Another commonly used protocol in iOS apps is the file
 protocol. file requests are used to retrieve resources in the local fi lesystem within the apps
sandbox. If you create an NSURL object using a string without a protocol, it defaults to the
file protocol.

 ➤ Credentials — Some HTTP servers support the delivery of user credentials in the URL to
 fulfi ll a BASIC authentication challenge. In Figure 3-2 the credentials component contains
the username and password of the authenticating user. This format is not widely used and is
considered less secure than other authentication methods.

 ➤ Hostname — The hostname portion of the URL specifi es the TCP hostname or IP address
of the host containing the wanted resource. If the protocol of the URL is FILE, then this
 component and the port component must be omitted. The exception to the preceding rule
about a single URL referencing a unique resource is broken when relative or local hostnames
are used. For example, if you use localhost as the hostname, the URL refers to the local
machine; therefore, the same URL can refer to different resources on different machines.

NOTE The defi nitive specifi cation for HTTP is IETF RFC 2616. This RFC was
adopted as a standard in 1999. You can fi nd this RFC at http://www.ietf.org/
rfc/rfc2616.txt.

FIGURE 3-2

http ://user:password@ hostname : port /absolute-path ?query

Protocol Credentials Hostname TCP Port absolute path query string

c03.indd 30c03.indd 30 13/09/12 2:40 PM13/09/12 2:40 PM

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

Understanding HTTP Requests and Responses ❘ 31

 ➤ Port — The port portion of the URL specifi es the TCP port to which the client should connect.
If omitted the client uses the default port for the specifi ed protocol: 80 for HTTP and 443 for
HTTPS. It is best practice to use these port values for apps running on devices outside net-
works you control because some network proxies and fi rewalls will block nonstandard port
numbers for security or privacy reasons.

 ➤ Absolute-path — The absolute-path component specifi es the path to the network resource
as if the HTTP server was drilling down into a directory tree. The absolute-path may include
any number of path components each separated by the forward slash (/) character. An
absolute-path may not contain a question mark, space, carriage-return, or line-feed
 characters. Many REST services use path components as a means to pass values to uniquely
identify an entity stored in a database. For example, a path of /customer/456/address/0
would specify the address at index 0 for the customer with an identifi er of 456.

 ➤ Query — The last component of a URL is the query string. This value is separated from
the absolute-path by a question mark (?). By convention multiple query parameters are each
separated by an ampersand (&) character. The query string may not contain carriage return,
space, or line-feed characters.

Because the contents of the absolute-path and query string are restricted, URLs are usually encoded
using percent encoding. RFC 3986, http://tools.ietf.org/html/rfc3986, specifi es the details
of percent encoding of URLs. iOS provides a method on the NSString object to perform percent
encoding of URLs. The following snippet shows how to percent encode an NSString.

NSString *urlString = @"http://myhost.com?query=This is a question";
NSString *encoded = [urlString
 stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

The resulting value of encoded is http://myhost.com?query=This%20is%20a%20question. Each
of the spaces was replaced by a %20 sequence. This encoding differs from URL encoding in that
it does not encode the ampersand (&) characters, thereby leaving the URL parameter separation
intact. URL encoding would encode the ampersands, question marks, and other punctuation. If
your query strings contain these characters, you need to implement a more thorough encoding
method.

Request Contents

An HTTP request consists of three parts: the request line, the request headers, and the request body.
The request line and request headers are lines of text each separated by carriage-return/line-feed
sequence (a byte with the value 13 or 0x0D and a byte with the value 10 or 0x0A). This use of
textual values in the HTTP request makes them easy to construct, parse, and debug. An empty line,
consisting of just a carriage-return/line-feed sequence or just a line-feed, separates the request
headers from the request body.

The following code snippet contains an example HTTP request from a search request.

GET /search?source=ig&hl=en&rlz=&q=ios&btnG=Google+Search HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:11.0)…

c03.indd 31c03.indd 31 13/09/12 2:40 PM13/09/12 2:40 PM

http://www.google.com
http://tools.ietf.org/html/rfc3986
http://myhost.com?query=Thisisaquestion
http://myhost.com?query=This%20is%20a%20question

32 ❘ CHAPTER 3 MAKING REQUESTS

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en,en-us;q=0.7,en-ca;q=0.3
Accept-Encoding: gzip, deflate
Connection: keep-alive
Referer: http://www.google.com/ig?hl=en&source=webhp
Cookie: PREF=ID=fdf9979…

The request line is the fi rst line of the data sent to the server. The request line contains three key
pieces of information: the HTTP request method, the request URI, and the HTTP version.

The request method is a single word indicating the action being requested by the client. Because it
is case-sensitive, the standard methods listed in Table 1-1 are all uppercase values. In the preceding
code snippet the request method is a GET method.

TABLE 1-1: Common Request Methods and Their Uses

METHOD STANDARD USES

GET Retrieves a piece of content, or entity in HTTP terminology, from the server.

GET requests usually don’t contain a request body, but it is allowed. Some

network caching appliances will cache only GET responses. GET requests

usually do not cause data changes on the server.

POST Updates an entity with data provided by the client. A POST request usually

has information in the body of the request that is used by the application

server. POST requests are considered to be non-idempotent, meaning that

if more than one request is processed, the result is diff erent than if only one

request is processed.

HEAD Retrieves metadata about a response without retrieving the entire contents

of the response. This method is usually used to check a server for recent

content changes without having to retrieve the full content.

PUT Adds an entity with data provided by the client. A PUT request usually has

information in the body of the request that is used by the application server

to create the new entity. Usually, PUT requests are considered to be idem-

potent, meaning that the request can be repeatedly applied with the same

results.

DELETE Removes an entity based on contents of the URI or request body provided

by the client. DELETE requests are most frequently used in REST service

interfaces.

The second fi eld in a request line is the URI. The URI uniquely identifi es the target of the request.
If the request uses the GET method, the URI unambiguously specifi es the content to retrieve on the
target host. The URI may also contain query parameters, which must not contain a space or
 carriage return character. In the prior code snippet the URI contains several query parameters, each

c03.indd 32c03.indd 32 13/09/12 2:40 PM13/09/12 2:40 PM

http://www.google.com/ig?hl=en&source=webhp

Understanding HTTP Requests and Responses ❘ 33

separated by an ampersand (&) character. Notice that the URI does not contain the protocol, host,
or port that a user usually provides in the address fi eld of a browser. The client uses the protocol
portion of the URL to determine how to connect to the server. The hostname and port specifi ed by
the client is provided in the Host header of the request.

The last fi eld of the request line specifi es the version of the HTTP protocol being used. In the
 previous HTTP request code example that version value is 1.1, which means that the server should
expect the client to apply headers and rules specifi c to version 1.1 of the HTTP protocol.

The lines immediately following the request line are the request headers, which provide additional
metadata to the server. This metadata may describe the client, further describe the request, or
request a certain type of response from the server. There may be one or more headers provided in
each request. The Host header is the only required header in an HTTP 1.1 request. It provides the
original hostname specifi ed by the client and may include the port number provided in the URL of
the original request. An HTTP server may serve content for multiple hostnames. The Host header
helps the HTTP server know the host to which the original request was made.

NOTE The HTTP specifi cation permits intermediaries between the HTTP
 client and server to add, remove, reorder, or modify HTTP headers. Therefore,
a request from your app may arrive at the server with new headers, modifi ed
 headers, or headers removed.

Even though it uses the stateful TCP transport layer, HTTP is defi ned as a stateless protocol. This
means that the HTTP server does not retain any information about a request to use in future
requests. Cookies were developed as a way to allow some simple state information to be stored on
the client and communicated to the server on subsequent requests.

Following the HTTP headers there is an optional request body. The request body is an arbitrary
sequence of bytes separated from the headers by a single blank line. The request body must conform
to the predetermined data encoding between the client and the server. For web browsers this is
usually form-encoded data, but for mobile applications this encoding is usually XML or JSON data.
Chapter 4, “Generating and Digesting Payloads,” examines more closely request body and response
body encoding.

In iOS the NSURLRequest object and its subclass NSMutableURLRequest provide the methods and
attributes necessary to build almost any HTTP request. These objects will be discussed in the
upcoming “High-Level iOS HTTP APIs” section.

Response Contents

After the HTTP server and any application servers supporting it fi nish processing the request, an
HTTP response is returned to the client over the same TCP socket. An HTTP response is structured
similarly to an HTTP request with the fi rst line being the status line, followed by headers, and a
response body. The following code shows a sample HTTP response.

c03.indd 33c03.indd 33 13/09/12 2:40 PM13/09/12 2:40 PM

34 ❘ CHAPTER 3 MAKING REQUESTS

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2012 12:59:18 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Transfer-Encoding: chunked
Server: gws

<!doctype html><html itemscope="itemscope"
itemtype="http://schema.org/WebPage">
<head><meta itemprop="image" content="/images/google_favicon_128.png"/>
<title>ios - Google Search</title>
<script>window.google={kEI:"prlxT5qtNqe70AHh873aAQ",
getEI:function(a){var b;
while(a&&!(a.getAttribute&&(b=a.getAttribute("eid"

NOTE In the preceding code thousands of lines have been removed for the sake
of clarity and brevity.

The status line contains three fi elds, each separated by a space character. The fi rst fi eld is the HTTP
version of the response. The next two fi elds provide status values indicating the outcome of the
request. The fi rst of the two fi elds is a three-digit integer value containing the result code of
the request. The last fi eld is a reason phrase that provides a short text description of the code.
In most situations the numeric value fully describes the status. Chapter 5, “Handling Errors,”
 examines error status, their causes, and appropriate ways to respond to errors.

The header lines immediately follow the status line; each separated by a carriage-return/line-feed
sequence. Each header contains metadata about the response including information such as when
the data was last modifi ed, how long the client may cache the data, how the data is encoded, and
state information to submit in subsequent requests.

The response body is separated from the headers by a single empty line. The response body may
contain an arbitrary number of binary characters. The length of the response body is communicated
to the client by either a Content-Length header in the request or by using chunked encoding. A
chunk encoded response contains a Transfer-Encoding header with a value of chunked. A chunk
encoded body contains one or more body segments. Each segment has a starting line that specifi es
the number of bytes in the chunk. The iOS URL loading system hides this complexity from your
application.

In iOS’s URL loading system, the NSURLResponse object and its subclass NSHTTPURLResponse
encapsulate the data returned from a request. There are two objects in this hierarchy because the
URL loading can fulfi ll requests for data based on non-HTTP URLs. For example, a request for a
file:// URL will not contain any headers.

c03.indd 34c03.indd 34 13/09/12 2:40 PM13/09/12 2:40 PM

http://schema.org/WebPage

High-Level iOS HTTP APIs ❘ 35

HIGH-LEVEL IOS HTTP APIS

In this section you learn about the high-level APIs most commonly used for HTTP communications
from an iOS application to an HTTP server. There are three primary methods to perform HTTP
requests and receive responses using the URL loading system:

 ➤ Synchronous — The thread on which the initiating code runs blocks until the entire
response is loaded and returned to the calling method. This technique is the simplest to
implement but has the most limitations.

 ➤ Queued asynchronous — The initiating code creates a request and places it on a queue to be
performed on a background thread. This method is slightly more diffi cult to implement and
removes a signifi cant limitation of the pure synchronous technique.

 ➤ Asynchronous — The initiating code starts a request that runs on the initiating thread but
calls delegate methods as the requests proceeds. This technique is the most complicated to
implement but provides the most fl exibility in handling responses.

Each request has its own approach and best practices, but all three requests are composed of the
same four objects. This section fi rst covers these similarities and then dives into the single methods
with examples and guidelines for each technique.

Objects Common to All Request Types

Like the menu of a cheap Mexican restaurant, all the URL loading request methods share a small set
of common ingredients. Three types of requests use a combination of four types of objects: NSURL,
NSURLRequest, NSURLConnection, and NSURLResponse.

NSURL

An NSURL object lets you easily manage URL values and gain access to the contents referenced by
that URL. NSURL objects can refer to a fi le-based resource or a network-based resource with no
 difference between how the two resource types are used. The following code snippet shows the
loading of data from a URL.

NSURL *url = [NSURL urlWithString:mysteryString];
NSData *data = [NSData dataWithContentsOfURL:url];

The value of mysteryString could reference a fi le or a network resource, and the code will behave the
same. The signifi cant difference is in the amount of time required to load the resource referenced
by mysteryString. If the URL might reference a network resource, it would be wise to execute the
code in a background thread so that the user interface does not pause while the data loads.

The most common way to create an NSURL object is to instantiate it using the class method
URLWithString:. This method creates an NSURL object initialized with the contents of the provided
NSString. The following snippet illustrates this.

NSURL *url = [NSURL URLWithString:@"http://www.wiley.com/path1"];

c03.indd 35c03.indd 35 13/09/12 2:40 PM13/09/12 2:40 PM

http://www.wiley.com/path1

36 ❘ CHAPTER 3 MAKING REQUESTS

The NSURL object provides many accessor methods to read the component values of the URL.
Each accessor provides read-only access to a portion of the URL. The scheme accessor returns
an NSString containing the protocol scheme used by the URL. If a particular component is not
 specifi ed in the target URL, then the value returns nil. Given the url object previously created, the
code in the following snippet can log Port is nil.

if (url.port == nil) {
 NSLog(@"Port is nil");
} else {
 NSLog(@"Port is not nil");
}

If the URL contains a query string, the query accessor method contains the value of all the query
parameters. The contents of the URL string must be percent encoded, per RFC 3986, prior to using
it to create an NSURL object. For example, if the following snippet is executed, the value of the
query parameter is q=iOS+Networking.

NSURL *url = [NSURL URLWithString:@"http://google.com?q=iOS+Networking"];

NSURL objects are immutable, meaning you cannot construct an empty NSURL object and populate its
properties by calling mutator methods, sometimes called setter methods, on the object. The object
is instantiated from either an NSString or another NSURL object. If the string used to instantiate
the NSURL object is malformed, the creation method call returns nil. Your code should validate that the
URL object was created correctly before using it for network requests.

NSURLRequest

After you create an NSURL object, your code can move to the next step required to perform an
HTTP request: creating an NSURLRequest object. An NSURLRequest object contains the information
necessary to load the contents of a URL independent of the protocol scheme specifi ed in the URL.
The URL loading system in iOS supports loading the contents of HTTP, HTTPS, FTP, and FILE
URLs. The URL loading system provides a means to be extended to handle new protocols by creating
subclasses of NSURLProtocol and providing feedback into the URL loading system.

The simplest way to create an NSURLRequest object is with the class method using a provided
NSURL. The following snippet shows the creation of a request object using all default values.

 NSURL *url = [NSURL URLWithString:
 @"https://gdata.youtube.com/feeds/api/standardfeeds/top_rated"];
 if (url == nil) {
 NSLog(@"Invalid URL");
 return;
 }
 NSURLRequest *request = [NSURLRequest requestWithURL:url];
 if (request == nil) {
 NSLog(@"Invalid Request");
 return;
 }

Using the default values means that the request uses the request caching rules specifi ed by the
URL protocol, and that the request has the standard request timeout. See Chapter 7, “Optimizing
Request Performance,” for more information on the options for controlling request caching. If the

c03.indd 36c03.indd 36 13/09/12 2:40 PM13/09/12 2:40 PM

http://google.com?q=iOS+Networking
https://gdata.youtube.com/feeds/api/standardfeeds/top_rated

High-Level iOS HTTP APIs ❘ 37

URL is an HTTP or HTTPS URL, then the request method will be a GET using the default headers
provided by the operating system.

The following example shows creating an NSURLRequest object using custom values for the caching
and timeout values. The code is instructing the URL loading system to ignore all caching and to
generate an error if completing the requested connection takes more than 20 seconds.

 NSURL *url = [NSURL URLWithString:
 @"https://gdata.youtube.com/feeds/api/standardfeeds/top_rated"];
 if (url == nil) {
 NSLog(@"Invalid URL");
 return;
 }
 NSURLRequest *request = [NSURLRequest
 requestWithURL:url
 cachePolicy:NSURLRequestReloadIgnoringCacheData
 timeoutInterval:20.0];
 if (request == nil) {
 NSLog(@"Invalid Request");
 return;
 }

The NSURLRequest object has several accessor methods to retrieve the properties of the
request, none of which you can modify using the immutable NSURLRequest class. If you need
to modify properties beyond the URL, caching policy, and timeout value, you need to use the
NSMutableURLRequest class.

NSMutableURLRequest is a subclass of NSURLRequest and provides mutator methods to change the
properties of the request. The following snippet shows the creation of a simple POST request with a
small message body. It consists of the bytes of an NSString in UTF8 encoding. The URL loading
system automatically populates the Content-Length header of the request.

NSURL *url = [NSURL urlWithString@"http://server.com/postme"];
NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
[req setHTTPMethod:@"POST"];
[req setHTTPBody:[@"Post body"
 dataUsingEncoding:NSUTF8StringEncoding]];

There are two ways to supply an HTTP body to an NSURLRequest: in memory like the preceding
example or via an NSInputStream. Using an input stream allows your code to supply a request body
without loading the entire body into memory. If you are sending something large like a photo or
video, using an input stream is the best choice. The following snippet shows the creation of a POST
method with an input stream. The NSString srcFilePath would be set beforehand to the path of
the fi le residing either in the app bundle or sandbox.

 NSMutableURLRequest *request =
 [NSMutableURLRequest requestWithURL:url];
 NSInputStream *inStream =
 [NSInputStream
 inputStreamWithFileAtPath:srcFilePath];
 [request setHTTPBodyStream:inStream];
 [request setHTTPMethod:@"POST"];

c03.indd 37c03.indd 37 13/09/12 2:40 PM13/09/12 2:40 PM

https://gdata.youtube.com/feeds/api/standardfeeds/top_rated
http://server.com/postme

38 ❘ CHAPTER 3 MAKING REQUESTS

Because the NSURLRequest object contains properties for both HTTP and non-HTTP requests, code
that accesses non-HTTP URLs will have the value of the HTTP specifi c properties set to nil.

NOTE In iOS 6 the NSURLRequest has a new property that indicates whether
the request can be made over a cellular network. Using this property enables
your app to leverage the Reachability framework discussed in Chapter 5,
“Handling Errors,” without explicitly adding this framework to your app.

NSURLConnection

The NSURLConnection object is the hub of activity for the URL loading system but has a sparse
interface that just provides methods to initialize, start, and cancel a connection.

Returning to the aforementioned primary methods used to perform HTTP requests and receive
responses, an NSURLConnection class functions via these three different modes of operation:
synchronous, asynchronous, and queued asynchronous. Synchronous mode is the easiest to use
but has signifi cant limitations that will make it inappropriate for more advanced interactions.
Asynchronous mode provides greater fl exibility but at the cost of complexity in your code. The
third mode of operation, queued asynchronous, provides the background operation of asynchronous
mode while keeping most of the simplicity of synchronous mode. The following sections in this
chapter cover these three modes.

When operating in asynchronous mode, the NSURLConnection object calls a delegate object to
guide the fl ow of the connection and to handle incoming data, handle authentication, and respond
to errors. The “Asynchronous Requests” section in this chapter explores the NSURLConnection
 delegate in-depth.

NSURLResponse

An NSURLResponse object is returned upon completion of the URL load request. The contents of
the response object can vary depending on the type of request that was made and the success of the
request. The following list outlines the various objects returned from the request. Two other objects
may also result from a URL load request: an NSError object and an NSData object. The NSError
object will be populated if the request was malformed or if the client could not connect to the server.
See Chapter 5 for in-depth information regarding error conditions. The resulting NSData object
contains the response body, if one were returned. If an NSError object is produced, neither an
NSURLResponse nor NSData object is produced.

 ➤ MIMEType — The mime type of the resulting data. This value may originate from the
server, be overridden by the client framework if the client framework believes the server was
mistaken, or be supplied by the client framework if no server value is supplied.

 ➤ expectedContentLength — This value may or may not be returned from the request, and
the returned value may not equal the actual size of the returned content. If the size of the
returned content is not known, this value will equal NSURLResponseUnknownLength.

c03.indd 38c03.indd 38 13/09/12 2:40 PM13/09/12 2:40 PM

High-Level iOS HTTP APIs ❘ 39

 ➤ suggestedFilename — The name that either the server supplied as the fi lename of the content
or a name derived from the URL and MIME type.

 ➤ URL — The URL of the returned content. This URL may differ from the URL provided in
the request due to redirects or normalization.

 ➤ textEncodingName — The name of the text encoding used by the originating source of the
data. This value may be nil if no text encoding was used in the response.

The URL loading system provides a subclass of NSURLResponse named NSHTTPURLResponse that
contains properties specifi c to HTTP requests. This class is indispensable to determine the outcome
of HTTP requests. Its additional parameters follow:

 ➤ Response headers — This property returns an NSDictionary of header values. The key
of the dictionary is the header name, and the value for each key is the header value.
The HTTP specifi cation allows a request to have multiple headers of the same name.
NSHTTPURLResponse handles this by returning a single NSString containing all the header
values, each separated by a comma.

 ➤ HTTP status code — The integer status code from the status line of the response. The
NSHTTPURLResponse class has a class method that returns a localized string description for
any supplied status code.

The following sections provide annotated examples of how to use each of the three request methods
of the URL loading system. Along with each example, best practices are provided for the use of each
technique.

Synchronous Requests

Synchronous requests are the simplest type of requests to perform in iOS, but the cost of simplicity
is reduced functionality and fl exibility. When a synchronous request is made, the thread on which
the request is made blocks until the request either completes or fails. Synchronous requests are
commonly used to create HTTP GET requests to retrieve resources of a predictable size on a background
thread. For example, retrieving an image to display in a table cell can easily be performed on a
background thread using a synchronous request.

NOTE The examples in this section are pulled from the example program
 provided for this chapter. This example program is a simple RSS client program
that retrieves an RSS feed from NASA and provides the capability to download
referenced video fi les to the iOS device that are viewed at a later time.

A synchronous request is used in this example to download the XML content of the RSS feed from
the example program VideoDownloader. Figure 3-3 shows a screen shot of the example app. The
segmented control at the top of the view provides a means to change between queued asynchronous

c03.indd 39c03.indd 39 13/09/12 2:40 PM13/09/12 2:40 PM

40 ❘ CHAPTER 3 MAKING REQUESTS

and synchronous requests to retrieve the feed XML. If you select the
synchronous method and press the refresh button to the right, you can
notice that the refresh button freezes in place and the app becomes
 nonresponsive while the request is made. On a Wi-Fi network this
 happens quickly, but if you do this on an EDGE network, you can notice
signifi cant delays.

Synchronous requests present the simplest means to retrieve data at a
URL, and there are many helper methods sprinkled throughout the iOS
APIs that use synchronous requests under the covers. For example, the
method on NSString stringWithContentsOfURL: creates an instance
of NSString and retrieves those contents from an arbitrary server based
on the contents of the URL. If the URL uses the FILE (for example,
file://foo.txt) protocol, then the contents are retrieved from the
local fi lesystem. If the URL uses the HTTP (for example, http://www
.wiley.com) or FTP protocol, the contents are retrieved from a remote
server. Therefore, you should be wary of these helper methods that
retrieve content from a URL unless you are confi dent that the URL will
be a FILE URL.

Listing 3-1 shows the doSyncRequest method within the example application that performs a syn-
chronous request to load the XML feed.

LISTING 3-1: doSyncRequest Method of VideoDownloader/FeedLoader.m

- (NSArray *) doSyncRequest:(NSString *)urlString {
 // make the NSURL object from the string
 NSURL *url = [NSURL URLWithString:urlString];

 // Create the request object with a 30 second timeout and a
 // cache policy to always retrieve the
 // feed regardless of cachability.
 NSURLRequest *request =
 [NSURLRequest requestWithURL:url
 cachePolicy:NSURLRequestReloadIgnoringLocalAndRemoteCacheData
 timeoutInterval:30.0];

 // Send the request and wait for a response
 NSHTTPURLResponse *response;
 NSError *error = nil;
 NSData *data = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&response
 error:&error];
 // check for an error
 if (error != nil) {
 NSLog(@"Error on load = %@", [error localizedDescription]);
 return nil;
 }

 // check the HTTP status
 if ([response isKindOfClass:[NSHTTPURLResponse class]]) {
 NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)response;

FIGURE 3-3

c03.indd 40c03.indd 40 13/09/12 2:40 PM13/09/12 2:40 PM

http://www.wiley.com
http://www.wiley.com

High-Level iOS HTTP APIs ❘ 41

 if (httpResponse.statusCode != 200) {
 return nil;
 }
 }

 // Parse the data returned into an NSDictionary
 NSDictionary *dictionary =
 [XMLReader dictionaryForXMLData:data
 error:&error];
 // Dump the dictionary to the log file
 NSLog(@"feed = %@", dictionary);

 NSArray *entries =[self getEntriesArray:dictionary];

 // return the list if items from the feed.
 return entries;

}

Listing 3-1 takes an NSString from the caller that contains the URL to load. After the URL is
constructed, an NSURLRequest object is instantiated. In this example the code overrides the default
caching policy and the default timeout. Note that the caching policy is set to never cache via the
NSURLRequestReloadIgnoringLocalAndRemoteCacheData caching policy. This best displays
the impact of synchronous requests on the UI because the UI thread is blocked. Normally, your
code would not override all caching, but it is common to override the default timeout and specify a
30-second timeout for this request, as done in the Listing 3-1.

After the request is created, the code calls the class method
sendSynchronousRequest:returningResponse:error on NSURLConnection to execute
the request. This method takes the request as an input parameter and two pointers: one to an
NSURLResponse object that will be populated with the server’s response and one to an NSError
object with error details if the request failed. The response pointer references an instance of
NSURLResponse; however, it will be an instance of the NSHTTPURLResponse subclass for all HTTP
requests. If the NSError is not nil, then the request failed at a low level; however, if it is nil then
the request did not fail because of a networking error or invalid URL. It could still have failed
semantically, for example if the server responded that it encountered an internal server error. The
contents of the NSError object referenced by that pointer contain a detailed description of the error,
and those values are covered in detail in Chapter 5.

The code in Listing 3-1 checks for the existence of an NSError object and the status code of the
NSHTTPURLResponse object. If both of those indicate success then the method proceeds.

The sendSynchronousRequest:returningResponse:error method returns the HTTP response
body as an NSData object. Because the feed is represented as XML, the NSData object of successful
requests is parsed by an XML reader into an NSDictionary. The dictionary is then traversed, and
the list of RSS items is returned to the caller.

Making synchronous calls is amazingly simple, requiring few lines of code to successfully retrieve data
from a server, but that simplicity comes at a price of limited use cases and an increased risk of defects.

Best Practices for Synchronous Requests

 ➤ Only use them on background threads, never on the main thread unless you are completely
sure that the request goes to a local fi le resource.

c03.indd 41c03.indd 41 13/09/12 2:40 PM13/09/12 2:40 PM

42 ❘ CHAPTER 3 MAKING REQUESTS

 ➤ Only use them when you know that the data returned will never exceed the memory
 available to the app. Remember that the entire body of the response is returned in-memory
to your code. If the response is large, it may cause out-of-memory conditions in your app.
Also remember that your code may duplicate the memory footprint of the returned data
when it parses it into a usable format.

 ➤ Always validate the error and HTTP response status code returned from the call before
processing the returned data.

 ➤ Don’t use synchronous requests if the source URL may require authentication, as the
 synchronous framework does not support responding to authentication requests. The only
exception is for BASIC authentication, for which credentials can be passed in the URL or
request headers. Performing authentication this way increases the coupling between your
app and the server, thereby increasing the fragility of the overall application. It can also
pass the credentials in clear text unless the request uses the HTTPS protocol. See Chapter 6,
“Securing Network Traffi c,” for information on responding to authentication requests.

 ➤ Don’t use synchronous requests if you need to provide a progress indicator to the users
because the request is atomic and provides no intermediate indications of progress.

 ➤ Don’t use synchronous requests if you need to parse the response data incrementally via a
stream parser.

 ➤ Don’t use synchronous requests if you may need to cancel the request before it is complete.

Queued Asynchronous Requests

Queued asynchronous requests are similar to synchronous requests. The program supplies an
NSURLRequest object, and the URL loading system attempts to load the request without any other
interaction with the invoking code. The main difference between the two methods is that the URL
loading system executes the queued asynchronous requests on a queue, potentially on a background
thread. The concept of queued asynchronous requests was added to iOS in version 5.0.

iOS provides a facility called operation queues in the aptly named NSOperationQueue. These queues
enable your program to describe an operation to perform and then submit the operation for queued
execution in fi rst-in-fi rst-out order. The queuing framework provides for priority ordering and ordering
based on operational dependencies, but the URL loading system does not use these facilities.

Before your code can make a queued asynchronous request, it must fi rst create a queue on which the
requests will be executed. The following code snippet shows how to create an operation queue.

NSOperationQueue *queue = [[NSOperationQueue alloc] init];

An operation queue may perform multiple operations concurrently. By default, the number of
 concurrent operations is determined by iOS based on system conditions. You can override the
default value by calling the setMaxConcurrentOperationCount: method of the created queue.
When your app starts a queue is created automatically, which can be retrieved by calling the
mainQueue class method of NSOperationQueue. Do not use this queue for executing network
requests because it operates on the main thread, and long operations freeze the user interface. If you
select the queued option from the test app’s segmented control and tap the refresh button, you can
notice that the refresh button returns to the default state immediately and the table view is cleared.

c03.indd 42c03.indd 42 13/09/12 2:40 PM13/09/12 2:40 PM

High-Level iOS HTTP APIs ❘ 43

This happens because the request is queued and the main run loop continues processing rather than
waiting for the request to complete.

Listing 3-2 shows the method used to create and process the results of a queued request. It starts
identically to the synchronous request method by creating an NSURL and passing it to a new
NSURLRequest. After the request is created, the code creates an NSOperationQueue named queue
if one does not already exist. This variable is declared as a static variable in the implementation
of the FeedLoader class. A typical application creates a queue in the app delegate at startup and
then uses that queue throughout the application. Knowing that a queue exists, the code calls
NSURLConnection to execute the request on the queue and calls a block after the operation either
completes or fails. When the request is placed on the queue, the doQueueRequest:delegate method
returns to the caller. Because the method returns before the URL load is complete, it requires a
delegate class to call when the load is complete. Because of the asynchronous completion pattern
used by this technique, your code needs to implement a delegate or notifi cation pattern to propagate
the received data back to the original requesting objects.

LISTING 3-2: doQueuedRequest Method of VideoDownloader/FeedLoader.m

- (void) doQueuedRequest:(NSString *)urlString delegate:(id)delegate {
 // make the NSURL object
 NSURL *url = [NSURL URLWithString:urlString];

 // create the request object with a no cache policy and a 30 second timeout.
 NSURLRequest *request = [NSURLRequest requestWithURL:url
 cachePolicy:NSURLRequestReloadIgnoringLocalAndRemoteCacheData
 timeoutInterval:30.0];

 // If the queue doesn't exist, create one.
 if (queue == nil) {
 queue = [[NSOperationQueue alloc] init];
 }

 // send the request and specify the code to execute when the
 // request completes or fails.
 [NSURLConnection sendAsynchronousRequest:request
 queue:queue
 completionHandler:^(NSURLResponse *response,
 NSData *data,
 NSError *error) {

 if (error != nil) {
 NSLog(@"Error on load = %@", [error localizedDescription]);
 } else {

 // check the HTTP status
 if ([response isKindOfClass:[NSHTTPURLResponse class]]) {
 NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)response;
 if (httpResponse.statusCode != 200) {
 return;
 }

continues

c03.indd 43c03.indd 43 13/09/12 2:40 PM13/09/12 2:40 PM

44 ❘ CHAPTER 3 MAKING REQUESTS

 }

 // parse the results and make a dictionary
 NSDictionary *dictionary =
 [XMLReader dictionaryForXMLData:data
 error:&error];
 NSLog(@"feed = %@", dictionary);

 // get the dictionary entries.
 NSArray *entries =[self getEntriesArray:dictionary];

 // call the delegate
 if ([delegate respondsToSelector:@selector(setVideos:)]) {
 [delegate performSelectorOnMainThread:@selector(setVideos:)
 withObject:entries
 waitUntilDone:YES];
 }
 }
 }];
}

The block of code to execute is passed in the completionHandler parameter of the
sendAsynchronousRequest:queue:completionHandler method. The completion block validates
that the request did not produce an error and that the HTTP status code is 200, which indicates
 success. If the request was successful, the returned data is parsed into an NSDictionary. The code
then verifi es that the provided delegate class supports the setVideos: method. If it does then it
invokes that method on the main thread and supplies the array of items returned by the RSS feed.
The setVideos: method is invoked on the main thread because the completion block is executed
on a background thread, and if the delegate method is executed in that context and then tries to
 manipulate the user interface, the results are unpredictable but almost always bad.

Best Practices for Queued Asynchronous Requests

 ➤ Only use them when you know that the data returned will never exceed the memory available
to the app. The entire body of the response is returned in-memory to your code. If the response
is large, it may cause out-of-memory conditions in your app. Remember that your code may
duplicate the memory footprint of the returned data when it parses it into a usable format.

 ➤ Use a single NSOperationQueue for all your operations and control the maximum number
of current operations based on the capacity of your server and the expected network
conditions.

 ➤ Always validate the error and HTTP response status code returned from the call before
 processing the returned data.

 ➤ Don’t use them if the source URL may require authentication because this functionality does
not support responding to authentication requests. You can put BASIC authentication credentials
in the URL supplied to the request if the service requires that type of authentication.

 ➤ Don’t use queued asynchronous requests if you need to provide a progress indicator to the
users because the request is atomic and provides no intermediate indications of progress.

LISTING 3-2 (continued)

c03.indd 44c03.indd 44 13/09/12 2:40 PM13/09/12 2:40 PM

High-Level iOS HTTP APIs ❘ 45

 ➤ Don’t use queued asynchronous requests if you need to parse the response data incremen-
tally via a stream parser.

 ➤ Don’t use queued asynchronous requests if you may need to cancel the request before it is
complete.

Asynchronous Requests

Asynchronous requests use the same ingredients as the synchronous and queued asynchronous
methods but add another ingredient, the NSURLConnectionDelegate object.

Figure 3-4 shows the sequence of delegate calls in relation to the progress of the HTTP request.
As the protocol handler proceeds through the HTTP protocol it calls the delegate methods at
 signifi cant milestones throughout the connection.

FIGURE 3-4

connection:didFailWithError:

Send HTTP
Request

Send HTTP
Body

connection:willSendRequest:

connection:didSendBodyData:

connection:didSendBodyData:

connection:didReceiveResponse:

connection:didReceiveData:

connection:didReceiveData:

connection:didFinishLoading:

TCP Connection

Receive HTTP
Response

Close TCP Connection

Protocol Handler Delegate HTTP Server

c03.indd 45c03.indd 45 13/09/12 2:40 PM13/09/12 2:40 PM

46 ❘ CHAPTER 3 MAKING REQUESTS

The protocol handler validates that the delegate implements a method before attempting to call the
method. If one is not implemented, then the protocol handler assumes a default value and proceeds
with the connection. The best way to explain the operation of the delegate methods is to walk
through the example app.

Listing 3-3 contains the code used to initiate the URL load request using the asynchronous
technique. This method starts similarly to the previous techniques: An NSURL object is created and
then used to make a request. After the request is created, the code creates an NSURLConnection
object and specifi es itself as the delegate object. As the loading of the URL contents progresses, the
protocol handler calls the delegate class with information about the state of the request. Using these
callbacks the delegate class can alter the behavior of the protocol handler.

After the connection is created, the code starts the request. Between the creation of the connection
and starting the connection, an app can alter how the delegate messages are delivered to the delegate
class. The code can specify a different run loop or operation queue to use to deliver the callbacks.
This example does not make these types of modifi cations.

LISTING 3-3: The start Method of VideoDownloader/AsyncDownloader.m

- (void) start {
 NSLog(@"Starting to download %@", srcURL);

 // create the URL
 NSURL *url = [NSURL URLWithString:srcURL];

 // Create the request
 NSURLRequest *request = [NSURLRequest requestWithURL:url];

 // create the connection with the target request and this
 // class as the delegate
 self.conn =
 [NSURLConnection connectionWithRequest:request
 delegate:self];

 // start the connection
 [self.conn start];
}

The example app implements several delegate methods to be called, but it leaves several
unimplemented. The delegate methods are defi ned by two protocols: NSURLConnectionDelegate
and NSURLConnectionDataDelegate. The following sections fi rst review the implemented methods
followed by the unimplemented ones.

connection:willSendRequest:redirectResponse: Delegate Method

The fi rst delegate method implemented, as shown in Listing 3-4, is the
connection:willSendRequest:redirectResponse: method. This method is called only if
the connection receives an HTTP redirect response.

c03.indd 46c03.indd 46 13/09/12 2:40 PM13/09/12 2:40 PM

High-Level iOS HTTP APIs ❘ 47

LISTING 3-4: Redirect Delegate Method of VideoDownloader/AsyncDownloader.m

- (NSURLRequest *)connection:(NSURLConnection *)connection
 willSendRequest:(NSURLRequest *)request
 redirectResponse:(NSURLResponse *)redirectResponse {

 // Dump debugging information
 NSLog(@"Redirect request for %@ redirecting to %@",
 srcURL, request.URL);
 NSLog(@"All headers = %@",
 [(NSHTTPURLResponse*) redirectResponse allHeaderFields]);

 // Follow the redirect
 return request;
}

This method is called if the protocol handler receives a redirect request from the server. An HTTP redirect
is an HTTP response that informs the client that the content it is looking for is at a different URL. If
your app loads content from a content delivery network (CDN) then redirected requests will be common.
This delegate method is always called before the methods that deliver a response or body data. Because
requests can undergo more than one redirect, this method may be called zero or more times for a single
request. If your delegate does not implement this method, the protocol handler follows the redirect to
the new location. By implementing this method your code can intercept a redirect and abort the
connection or modify the request based on the nature of the redirect. In the example, the code performs
a debugging function of logging the headers of the redirect request and then following the redirection.

connection:didReceiveResponse: Delegate Method

The second implemented method is the connection:didReceiveResponse: method, as shown in
Listing 3-5. This method is called when the protocol handler has completed building a response
object from the headers of the response.

LISTING 3-5: Response Received Delegate Method of VideoDownloader/AsyncDownloader.m

- (void) connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response {
 NSLog(@"Received response from request to url %@", srcURL);

 NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)response;
 NSLog(@"All headers = %@", [httpResponse allHeaderFields]);

 if (httpResponse.statusCode != 200) {// something went wrong,
 //abort the whole thing
 // reset the download counts
 if (downloadSize != 0L) {
 [progressView addAmountToDownload:-downloadSize];
 [progressView addAmountDownloaded:-totalDownloaded];
 }
 [connection cancel];
 return;

continues

c03.indd 47c03.indd 47 13/09/12 2:40 PM13/09/12 2:40 PM

48 ❘ CHAPTER 3 MAKING REQUESTS

 }

 NSFileManager *fm = [NSFileManager defaultManager];

 // If we have a temp file already, close it and delete it
 if (self.tempFile != nil) {
 [self.outputHandle closeFile];

 NSError *error;
 [fm removeItemAtPath:self.tempFile error:&error];
 }

 // remove any pre-existing target file
 NSError *error;
 [fm removeItemAtPath:targetFile error:&error];

 // get the temporary directory name and make a temp file name
 NSString *tempDir = NSTemporaryDirectory();
 self.tempFile = [tempDir stringByAppendingPathComponent:
 [self createUUID]];
 NSLog(@"Writing content to %@", self.tempFile);

 // create and open the temporary file
 [fm createFileAtPath:self.tempFile contents:nil attributes:nil];
 self.outputHandle = [NSFileHandle fileHandleForWritingAtPath:
 self.tempFile];

 // prime the download progress view
 NSString *contentLengthString = [[httpResponse allHeaderFields]
 objectForKey:@"Content-length"];
 // reset the download counts
 if (downloadSize != 0L) {
 [progressView addAmountToDownload:-downloadSize];
 [progressView addAmountDownloaded:-totalDownloaded];
 }
 downloadSize = [contentLengthString longLongValue];
 totalDownloaded = 0L;

 [progressView addAmountToDownload:downloadSize];
}

The didReceiveResponse method is called when the protocol handler has received enough data to
complete the URL response object. If an error occurs before enough data was received to complete
the response object, then this method will not be called. In the example code, the delegate method
validates the HTTP status of the provided response object. If the status is not a 200 status, the loading
of the request is canceled, and the view that provides download progress is reset. If the status is 200,
the code updates the progress view by adding the amount of data expected and creates a temporary
fi le to receive the HTTP response body that is soon delivered to another delegate method.

This method may be called multiple times by the protocol handler; therefore, the code must handle
the restart scenario. In the example, the restart logic includes resetting the progress indicator and
deleting the prior response’s temporary fi le if it exists.

LISTING 3-5 (continued)

c03.indd 48c03.indd 48 13/09/12 2:40 PM13/09/12 2:40 PM

High-Level iOS HTTP APIs ❘ 49

connection:didReceiveData: Delegate Method

The next delegate method implemented is the connection:didReceiveData: method, as shown in
Listing 3-6. This method is called when the protocol handler has received some or all the response
body. This method may be called zero or more times on your delegate, and the calls always follow
the initial connection:didReceiveResponse:. If you need to incrementally parse the response, the
stream parser should be fed from this method.

LISTING 3-6: The didReceiveData Method of VideoDownloader/AsyncDownloader.m

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data {
 // figure out how many bytes in this chunk
 totalDownloaded+=[data length];

 // Uncomment the following lines if you want a packet by
 // packet log of the bytes received.
 NSLog(@"Received %lld of %lld (%f%%) bytes of data for URL %@",
 totalDownloaded,
 downloadSize,
 ((double)totalDownloaded/(double)downloadSize)*100.0,
 srcURL);

 // inform the progress view that data is downloaded
 [progressView addAmountDownloaded:[data length]];

 // save the bytes received
 [self.outputHandle writeData:data];
}

This method may be called zero or more times, depending on the size of the response body. With
each call the protocol handler delivers a portion of the body in the data parameter. It is the
responsibility of the delegate method to accumulate the provided data objects and process or store
them. The chunks of data provided may not correspond with the syntactic boundaries of the application
protocol. In other words, if your code is receiving an XML document, the data objects will probably
not correspond neatly with element boundaries in the document. In the example, the app is appending
the bytes to the data fi le fi rst opened in the connection:didReceiveResponse: method.

connection:didFailWithError: Delegate Method

The next implemented method, as shown in Listing 3-7 is called when the connection fails. This
method may be called at any time during the handling of the request.

LISTING 3-7: The didFailWithError Method of VideoDownloader/AsyncDownloader.m

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error {
 NSLog(@"Load failed with error %@",

continues

c03.indd 49c03.indd 49 13/09/12 2:40 PM13/09/12 2:40 PM

50 ❘ CHAPTER 3 MAKING REQUESTS

 [error localizedDescription]);

 NSFileManager *fm = [NSFileManager defaultManager];

 // If you have a temp file already, close it and delete it
 if (self.tempFile != nil) {
 [self.outputHandle closeFile];

 NSError *error;
 [fm removeItemAtPath:self.tempFile error:&error];
 }

 // reset the progress view
 if (downloadSize != 0L) {
 [progressView addAmountToDownload:-downloadSize];
 [progressView addAmountDownloaded:-totalDownloaded];
 }
}

If called, it will be the last method called for this connection. The example app just logs an error
when the connection fails. It then closes the temporary download fi le if one exists and adjusts
the progress indicator to compensate for the aborted download. The protocol handler cancels the
request once this method returns. This method is a good candidate for instrumentation with
analytics so that you have quantitative metrics on the failure rate of the endpoint that your app calls.

connectionDidFinishLoading: Delegate Method

The last delegate method implemented for the example app, as shown in Listing 3-8, is the
connectionDidFinishLoading method. This delegate method is called when the entire request has
been loaded and all of the data received has been passed to the delegate.

LISTING 3-8: The connectionDidFinishLoading Method of VideoDownloader/AsyncDownloader.m

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 // close the file
 [self.outputHandle closeFile];

 // Move the file to the target location
 NSFileManager *fm = [NSFileManager defaultManager];
 NSError *error;
 [fm moveItemAtPath:self.tempFile
 toPath:self.targetFile
 error:&error];

 // Notify any concerned classes that the download is complete
 [[NSNotificationCenter defaultCenter]
 postNotificationName:kDownloadComplete
 object:nil
 userInfo:nil];
}

LISTING 3-7 (continued)

c03.indd 50c03.indd 50 13/09/12 2:40 PM13/09/12 2:40 PM

High-Level iOS HTTP APIs ❘ 51

This method will be the last method called for the connection, and its invocation is mutually
exclusive with the invocation of connection:didFailWithError:. The example app closes the fi le
in which all the received data has been accumulated, moves the fi le to a location based on the URL
of the originating request, and notifi es the view controller via the NSNotificationCenter that the
download has completed.

There are several other methods that a connection delegate may implement to increase the available
information and possible control of the connection. The remaining parts of this section describe
those methods.

connection:needNewBodyStream: Delegate Method

This method is optional and used only to re-request the input stream for the request body. It may be
called if the protocol handler needs to retransmit the request body because of either an error or an
authentication challenge. The method signature, shown in the following code snippet, receives the
NSURLConnection object requesting the new stream and the request that has triggered this delegate
callback.

- (NSInputStream *)connection:(NSURLConnection *)connection
 needNewBodyStream:(NSURLRequest *)request;

The delegate should return an unopened and auto-released NSInputStream object that references the
fi le to be uploaded. If your code does not implement this method and uses an input stream for
the body, the protocol handler fi rst makes a copy of the entire input stream before starting the
request. If your code sends a large fi le, you should implement this method to avoid the overhead of
duplicating the fi le.

connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:

Delegate Method

This optional delegate method, as shown in the following snippet, provides upload progress
information to the delegate object:

-(void)connection:(NSURLConnection *)connection
 didSendBodyData:(NSInteger)bytesWritten
 totalBytesWritten:(NSInteger)totalBytesWritten
 totalBytesExpectedToWrite:(NSInteger)totalBytesExpectedToWrite;

The protocol handler calls this delegate at undetermined intervals to report the upload progress. The
bytesWritten and totalBytesWritten values may not always increase due to the need to retransmit
the body if an error or authentication challenge occurs. This method should be implemented if you
want to provide an upload progress indicator to your users.

connection:willCacheResponse: Delegate Method

This optional method, as shown in the following code example, provides the delegate with a means
to inspect and modify the response that is cached by the protocol handler.

-(NSCachedURLResponse *)connection:(NSURLConnection *)connection
 willCacheResponse:(NSCachedURLResponse *)cachedResponse;

c03.indd 51c03.indd 51 13/09/12 2:40 PM13/09/12 2:40 PM

52 ❘ CHAPTER 3 MAKING REQUESTS

An NSCachedURLResponse object contains the NSURLResponse object and the data, as an NSData
object, returned from the request. The object also contains the storage policy to be used for the
retention of the response, which includes persistent storage, in-memory storage only, or storage not
allowed. The cached response object also contains a userInfo dictionary that can be used by your
application to store metadata with the cached request. If your delegate implementation returns nil,
the response is not cached.

Authentication Delegate Methods

There are fi ve delegate methods associated with client authentication of URL requests. The use of
these methods is fully described in Chapter 6.

Asynchronous Requests and Run Loops

Asynchronous requests require a run loop to operate. As data is transmitted to the server or received
from the server, the run loop is used to communicate the events to the delegate object. When you start
an asynchronous request, it operates on the run loop of the current thread. This implementation detail is
important because threads created in Grand Central Dispatch blocks or via an NSOperationQueue
do not have a run loop. Therefore, if you start an asynchronous request on a background thread,
you also need to make sure that either the thread has a run loop or it uses another run loop. The
 following snippet shows how to explicitly assign the processing of a request to a run loop.

 NSURLConnection connection = [[NSURLConnection alloc]
 initWithRequest:request
 delegate:self
 startImmediately:NO];

 [connection scheduleInRunLoop:[NSRunLoop mainRunLoop]
 forMode:NSDefaultRunLoopMode];
 [connection start];

The fi rst operation creates the NSURLConnection object but does not immediately start the method;
leaving it in a state where further initialization is possible. The next line of code fetches the run loop
for the main thread and supplies it to the connection as its run loop. Finally, the connection begins
processing via the start method. If you do not want to run the asynchronous request on the main
run loop you need to create a run loop on another thread and schedule the connection for the newly
created run loop.

Best Practices for Asynchronous Requests

 ➤ Use asynchronous requests for large uploads or downloads to reduce the memory footprint
of the app.

 ➤ Use asynchronous requests when authentication may be required.

 ➤ Use asynchronous requests when you need to provide progress feedback to the user.

 ➤ Be careful using asynchronous requests on background threads; make sure to provide a run
loop.

c03.indd 52c03.indd 52 13/09/12 2:40 PM13/09/12 2:40 PM

Advanced HTTP Manipulation ❘ 53

 ➤ Asynchronous requests are overkill for small requests that can be easily scheduled and
 completed on a request queue in a background thread.

 ➤ If you use an input stream to upload data, implement the connection:newBodyStream:
method to avoid duplication of the input stream.

ADVANCED HTTP MANIPULATION

HTTP headers play an important role supplying metadata that modifi es the server’s response or
provides additional information to the HTTP client. Because of this, iOS developers frequently need
to manipulate request headers or examine response headers. For example, some servers require the
addition of a custom authentication header that provides information about the user’s identity.
The standard URL loading system does not add these headers automatically, but it provides methods
to add them from your code.

In this section you learn about additional HTTP operations and manipulations available via the
URL loading system of iOS. The subsections describe how to create and use alternative HTTP
request methods, how to handle HTTP cookies, and the advanced use of HTTP headers.

Using Request Methods

At the beginning of this chapter, several additional HTTP methods were referenced in Table 1-1.
The most common type of request is a GET request, but it is sometimes abused and used where one
of the other methods, PUT, POST, HEAD or DELETE, would be more appropriate.

By its defi nition, a GET request should not include an HTTP body; it should just be the request line
and request headers. The HTTP server returns the contents of the resource specifi ed by the URL.
It is common for networking equipment to assume that the complete context of the GET request is
in the request line and cache responses based on that data. If your GET request has a request body
that alters the content returned by the request, then you may get incorrect results due to the caching
behavior of any intermediate networking equipment. By convention, GET requests should not cause
changes to any data on the server.

POST requests were fi rst used by HTML browsers to send, or post, data for HTML forms using a
specifi c data encoding, specifi ed by a Content-Type of application/x-www-form-urlencoded.
iOS apps typically use POST requests to send XML or JSON data to a server. The following code
snippet shows the creation of a JSON object and how to supply it as the request body.

NSError *error;
NSDictionary *dict =
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"dog", @"animal",
 @"fido", @"name",
 @"20", @"weight", nil];
NSData *jsonData = [NSJSONSerialization
 dataWithJSONObject:dict
 options:NSJSONWritingPrettyPrinted
 error:&error];

if (error != nil) { // encoding succeeded

c03.indd 53c03.indd 53 13/09/12 2:40 PM13/09/12 2:40 PM

54 ❘ CHAPTER 3 MAKING REQUESTS

 NSLog(@"Error on encoding dictionary");
 return;
}
NSLog(@"Json = %@", [[NSString alloc]
 initWithData:jsonData
 encoding:NSUTF8StringEncoding]);
NSMutableURLRequest *request = [NSMutableURLRequest
 requestWithURL:url];
[request setHTTPMethod:@"POST"];
[request setHTTPBody:jsonData];

The code fi rst creates a simple NSDictionary with a few name-value pairs about a fi ctional animal.
It then uses the built-in JSON library to create an NSData object that represents the dictionary. The
NSData object is then supplied to an NSMutableURLRequest object as the request body. The JSON
produced by this code is shown in the following snippet. Chapter 4 describes the process to build
and parse request and response payloads in more detail.

{
 "weight" : "20",
 "animal" : "dog",
 "name" : "fido"
}

A request using the HEAD method is instructing the HTTP server to return only the HTTP header
information about the requested resource. HEAD requests typically do not have request bodies and
expect no response body in return. They are commonly used to validate cached data against the
data on a server without retrieving the entire contents of the cached resource.

A PUT request is similar to a POST because it should always have a request body but differs
 semantically in one key way: A PUT request is used to add a new resource to the server, whereas a
POST is used only to update a resource on the server. This semantic difference is important when
interfacing with RESTful services, as described in Chapter 4.

Cookie Manipulation

Cookies are an important component of the HTTP protocol that were added after the initial
version. Cookies provide the capability for the server to track the state of the conversation without
maintaining a network connection between the client and server. In a browser client, the value of
the cookie is provided by the server on a request and then included on subsequent requests. Because
cookies are designed to track session state, they are typically quite small, usually tens to hundreds
of bytes.

A cookie sent from a server has several properties that determine the value of the cookie, when it is
returned to the server, and how long the client should retain the cookie. Those properties include the
following:

 ➤ Name — The name of the cookie, which should be unique across all cookies returned from
that DNS domain. The name and the value are the only two properties supplied to the
server on subsequent requests.

 ➤ Value — The value to be returned on the next request to the server.

c03.indd 54c03.indd 54 13/09/12 2:40 PM13/09/12 2:40 PM

Advanced HTTP Manipulation ❘ 55

 ➤ Domain — The DNS domain for which subsequent requests should contain the cookie.
For example, a cookie with a domain value of .domain1.com should not be returned to
.domain2.com. If omitted, the client should use the hostname of the URL as the domain.
If the domain is prepended with a period (.) the cookie should be returned for any request
to that domain or any of its subdomains. If the leading period is absent, then the cookie is
included only in requests to that domain and not to its subdomains.

 ➤ Path — The path constrains the delivery of a cookie to requests that are destined for the
specifi ed URL path. When combined with the DNS domain, the path property can restrict
the delivery of a cookie to a limited and precise set of URLs on a server.

 ➤ Expiration Date — The date and time at which the cookie should no longer be supplied in
requests and at which the cookie should be removed from the client’s storage.

 ➤ Session Only — Indicates whether the cookie should be returned only for the duration of
the current browser session or until the expiration date, whichever comes fi rst. In an iOS app
the session is the lifespan of the app between the OS loading the app and the OS
terminating the app.

 ➤ Secure — Indicates that the cookie should by supplied only over HTTPS connections and
not over HTTP connections.

 ➤ Comment — A comment value that is intended to explain to the user the purpose of the
cookie.

 ➤ Comment URL — A URL value that provides to the user an HTML document explaining
the purpose of the cookie.

 ➤ HTTP Only — An indicator instructing the client to not share the cookie with JavaScript
applications to prevent cross-site scripting.

 ➤ Version — The version of the HTTP Cookie specifi cation to which the cookie conforms.

Although it is not a browser, an iOS app can still use cookies advantageously in HTTP connections.
The URL loading framework does much of the heavy lifting necessary to leverage this feature of the
protocol. There are three things that apps typically need to do with cookies: retrieve the value of a
cookie, explicitly delete a cookie, and artifi cially add a cookie to a request.

The URL loading facility automatically handles cookies for all HTTP and HTTPS requests. It saves
cookies returned in responses and automatically adds them to subsequent requests per the rules
for cookie handling. Cookies are returned only to hosts in the DNS domain supplied in the domain
property of the cookie. Conveniently, the value of nonsession cookies is persisted across launches of
the app. So, if your app retrieves a cookie and then is terminated, the retrieved cookie will still be
present in subsequent invocations of the app. The URL loading system sends cookies only when they
are unexpired and valid for the target domain.

The URL loading system provides two signifi cant objects for the management of cookies:
NSHTTPCookie and NSHTTPCookieStorage. NSHTTPCookie contains the representation of a cookie
with all its required and optional properties. NSHTTPCookieStorage is a singleton object that
manages the cookies for your application. Note that NSHTTPCookieStorage cookies are sandboxed
like all other application data and cannot be shared across applications.

c03.indd 55c03.indd 55 13/09/12 2:40 PM13/09/12 2:40 PM

56 ❘ CHAPTER 3 MAKING REQUESTS

NSHTTPCookieStorage provides the capability to control which cookies are retained, but by default
it stores any cookies returned in a response, regardless of whether the cookie’s domain matches the
domain of the request. Using the cookie acceptance policy, your code can control how eagerly it
saves cookies. The values of the storage policy are as follows:

 ➤ NSHTTPCookieAcceptPolicyAlways — This is the default value and indicates that any
returned cookie should be retained.

 ➤ NSHTTPCookieAcceptPolicyNever — This value indicates that no cookies should be stored.

 ➤ NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain — This policy instructs
the NSHTTPCookieStorage object to retain only cookies whose domain value matches the
domain of the request.

The following snippet would prevent an application from retaining cookies.

[[NSHTTPCookieStorage sharedHTTPCookieStorage]
 setCookieAcceptPolicy:NSHTTPCookieAcceptPolicyNever];

Your code can also stop the automatic handling of cookies on a request-by-request basis by calling
the setHTTPShouldHandleCookies: with a value of NO on an NSMutableURLRequest before
submitting it. This prevents the URL loading system from processing the returned requests.

Retrieving Cookies from a Response

It’s a common task to retrieve the cookies from a response and look for a specifi c cookie by name.
The following code snippet shows how to perform a request and then fi nd the session ID returned
by a JavaEE web server.

 NSMutableURLRequest *req = [NSMutableURLRequest
 requestWithURL:url];

 NSHTTPURLResponse *response;
 NSError *error;

 // make a request
 NSData *data = [NSURLConnection
 sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

 // get the full set of headers and display them
 NSDictionary *headers = [response allHeaderFields];
 NSLog(@"Headers = %@", headers);

 // extract the set-cookie headers and split them into cookies
 NSArray *cookies = [NSHTTPCookie cookiesWithResponseHeaderFields:headers
 forURL:url];

 // look for the cookie with the name JSESSIONID
 for(NSHTTPCookie *cookie in cookies) {

c03.indd 56c03.indd 56 13/09/12 2:40 PM13/09/12 2:40 PM

Advanced HTTP Manipulation ❘ 57

 NSLog(@"Cookie: %@", cookie);
 if ([[cookie name] isEqualToString:@"JSESSIONID"]) {
 NSLog(@"Found the session id");
 }
 }

The request pattern is the same as other requests. The response object is declared as an
NSHTTPURLResponse and does not require a cast later. The allHeaderFields method returns
a dictionary containing all the header names and values. If a header appears multiple times
in the response, then the values are concatenated together with separating commas. The
 cookiesWithResponseHeaderFields returns an array of NSHTTPCookie objects, each containing
a cookie found in a SetCookie: header. Remember that this set of cookies may not exactly match
the cookies that will be supplied on the next request. Some of the cookies may expire before the next
request, and NSHTTPCookieStorage may already contain additional cookies that will be added to
the next request.

Deleting Cookies

Occasionally, you may need to delete a cookie from the persistent cookie storage so that it is no
longer added to outgoing requests. Because cookies are added to the request after your code starts
the connection via the asynchronous start or the sendSynchronousRequest method, you cannot
prevent a cookie that already exists in the cookie storage from being added to the request. Instead,
your code must fi rst remove the cookie from the apps NSHTTPCookieStorage object prior to starting
the request.

The following snippet shows how to clear all the cookies from the cookie storage.

- (void)deleteAllCookies
{
 // get the shared cookie jar
 NSHTTPCookieStorage *jar = [NSHTTPCookieStorage
 sharedHTTPCookieStorage];

 // get all the cookies
 NSArray *storedCookies = [jar cookies];

 // delete them all
 for(NSHTTPCookie *cookie in storedCookies) {
 [jar deleteCookie:cookie];
 }
 [[NSUserDefaults standardUserDefaults] synchronize];
}

The fi rst two lines of the method retrieve the singleton cookie storage object for the application. The
next line retrieves an NSArray of all the cookies stored. The loop that follows iterates over each of
the cookies in the array and blindly deletes each one.

Your code can selectively delete a cookie by using any combination of cookie properties. The
following snippet deletes a cookie by name for a specifi c URL. Remember that cookie names are
only unique to the target domain.

c03.indd 57c03.indd 57 13/09/12 2:40 PM13/09/12 2:40 PM

58 ❘ CHAPTER 3 MAKING REQUESTS

- (void)deleteCookie:(NSString *)cookieName url:(NSURL *)url {
 // get the shared cookie storage object
 NSHTTPCookieStorage *jar = [NSHTTPCookieStorage
 sharedHTTPCookieStorage];

 // get the cookies for the supplied URL
 NSArray *storedCookies = [jar cookiesForURL:url];

 // iterate over the list of cookies
 for(NSHTTPCookie *cookie in storedCookies) {

 // if the cookie name matches the target, delete it
 if ([cookieName isEqualToString:[cookie name]]) {
 NSLog(@"Deleting cookie %@", cookie);
 [jar deleteCookie:cookie];
 }
 }
}

This code uses the supplied URL to fi lter the set of cookies returned from the cookie storage. After
the list of cookies is returned, the method looks through the list for a cookie with a matching name,
and if found, that cookie is deleted.

The deleteCookie:url: method takes two arguments, the name of the cookie to delete and a URL
to which that cookie would be returned if a request were made to it. The rules for determining which
cookies to return to a domain allow for global cookies for a domain and cookies for a specifi c
host. Table 3-2 illustrates the application of the domain mapping rules across a domain and
subdomain.

TABLE 3-2: Cookie Domain Mapping

COOKIE DOMAIN

COOKIE SUBMITTED IN REQUEST TO

HTTP://WWW.HOST.COM

COOKIE SUBMITTED IN REQUEST TO

HTTP://HOST.COM

.host.com Yes Yes

.www.host.com Yes No

host.com No Yes

.www.nothost.com No No

If a request is made to http://www.host.com, then a cookie with a domain of .host.com or
.www.host.com will be added to the request. If a request is made to http://host.com, then a
cookie with a domain of .host.com will be added, but a cookie with a domain of .www.host.com
will not be added.

c03.indd 58c03.indd 58 13/09/12 2:40 PM13/09/12 2:40 PM

HTTP://WWW.HOST.COM
HTTP://HOST.COM
http://www.host.com
http://host.com
http://host.com
http://www.nothost.com
http://host.com
http://www.host.com
http://www.host.com
http://host.com
http://host.com
http://www.host.com

Advanced HTTP Manipulation ❘ 59

Creating Cookies

Cookies can be created and programmatically added to requests or the cookie storage. This might
be necessary if you want to artifi cially create cookies to conform to a web application’s unique
protocol. It may also be necessary to receive a cookie for one domain and create an identical cookie
to send to another domain. This section shows two methods to accomplish this task.

The fi rst snippet creates a cookie and adds it to an individual request.

// create a dictionary of properties
NSDictionary *properties = [NSDictionary
 dictionaryWithObjectsAndKeys:
 @"FOO",NSHTTPCookieName,
 @"This is foo", NSHTTPCookieValue,
 @"/", NSHTTPCookiePath,
 url, NSHTTPCookieOriginURL,
 nil];
// using the properties make a cookie
NSHTTPCookie *cookie = [NSHTTPCookie
 cookieWithProperties:properties];

// create a mutable request
NSMutableURLRequest req = [NSMutableURLRequest
 requestWithURL:url];

// make an array of 1 cookie
NSArray *newCookies = [NSArray arrayWithObject:cookie];

// make a dictionary of the headers required to send the cookie
NSDictionary *newHeaders = [NSHTTPCookie
 requestHeaderFieldsWithCookies:newCookies];
// make the cookie headers the headers of the request
[req setAllHTTPHeaderFields:newHeaders];

// send the request
[NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

The fi rst segment of the code creates a dictionary containing the properties of the new cookie using
a helpful set of NSHTTP constants for the property names. Using that dictionary, called properties
in the snippet, a new NSHTTPCookie is instantiated. An NSMutableURLRequest object is then
created using the default properties.

The next segment goes through a little dance to make the correct structure to add to the request.
It fi rst makes an NSArray containing the single new cookie. Then using that array it creates an
NSDictionary object with the headers to put into the HTTP request to represent the cookies. It then
replaces the default header contents with the new headers containing the cookie information.
If your code needed to add other headers, it would do so by adding them to the newHeaders
 dictionary before setAllHTTPHeaderFields: is invoked.

c03.indd 59c03.indd 59 13/09/12 2:40 PM13/09/12 2:40 PM

60 ❘ CHAPTER 3 MAKING REQUESTS

The second way to add cookies to a request, as shown in the following code snippet, is cleaner but
adds the cookie for all subsequent requests.

// create the properties for a cookie
NSDictionary *properties = [NSDictionary
 dictionaryWithObjectsAndKeys:
 @"FOO",NSHTTPCookieName,
 @"This is foo", NSHTTPCookieValue,
 @"/", NSHTTPCookiePath,
 url, NSHTTPCookieOriginURL,
 nil];
// create the cookie from the properties
NSHTTPCookie *cookie = [NSHTTPCookie
 cookieWithProperties:properties];

// add the cookie to the cookie storage
[[NSHTTPCookieStorage sharedHTTPCookieStorage] setCookie:cookie];

// create and issue a request
req = [NSMutableURLRequest requestWithURL:url];
[NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

The code starts out identically to the prior example by creating a cookie, which is then stored in the
apps cookie storage. Keep in mind that if the cookie storage acceptance policy has been restricted,
the cookie may not be stored. After storing the cookie, the new request automatically pulls it
from the cookie storage when it begins executing.

Advanced Headers

In addition to manipulating the body of a request and the cookies sent with a request, it is often
necessary to add or remove headers to or from a request and examine headers in a response.

The following sections describe how to manipulate HTTP request and response headers, and why it
may be important to closely manage the headers sent from your app.

Adding Request Headers

When your code needs to change request headers, it must create an NSMutableURLRequest object
rather than an unalterable NSURLRequest object. The NSMutableURLRequest class provides two
ways to add headers to a request: one header at a time or by replacing all headers.

The setAllHTTPHeaderFields: method provides a way to replace all the request headers with a
single call. This method was used in the cookie examples to add a cookie to the request. It can be
helpful if your code needs to add headers based on a dynamic set of data. If the data set is encoded
in a dictionary, it can be added to any outgoing request with a single call.

Headers can also be added to a request individually. The following code snippet shows how to add
an individual header to a request.

c03.indd 60c03.indd 60 13/09/12 2:40 PM13/09/12 2:40 PM

Advanced HTTP Manipulation ❘ 61

NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
[req addValue:@"en" forHTTPHeaderField:@"Content-Language"];
[req addValue:@"da" forHTTPHeaderField:@"Content-Language"];

The fi rst line instantiates a request object named req. The second line adds a header with a name
of Content-Language and a value of en to the request. The HTTP protocol specifi es that header
names end with a colon, but this method appends a colon if omitted. If the same header name is
added multiple times, the header values concatenate together with a separating comma. In the
preceding example, the resulting header was transmitted as follows:

Content-Language: en,da

Removing Request Headers

Sometimes it is necessary to remove a header from a request. For example, if an app wants to disable
compression of the returned data, it can override the default iOS header that indicates supports for
gzip or DEFLATE compression:

Accept-Encoding: gzip, deflate

This indicates to the server that it can compress the returned response body. The following code
overrides the Accept-Encoding header from the request:

NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
[req setValue:@"" forHTTPHeaderField:@"Accept-Encoding"];

Using the URL loading system API, there is not a way to completely delete one of the standard
headers that the API includes in the request. The best you can do is to override the value with an
empty value.

Examining Response Headers

When an HTTP request completes without errors, it may include zero or more headers. The following
code snippet illustrates a request that, upon successful completion of an HTTP request, dumps the
headers to the log fi le and retrieves the MIME type of the response.

NSHTTPURLResponse *response;
NSError *error;
[NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

NSDictionary *headers = [response allHeaderFields];
NSLog(@"Headers = %@", headers);

NSString *contentType = [headers objectForKey:@"Content-Type"];

This is safe to do if the request URL will always use either the HTTP or HTTPS protocol scheme.
The allHeaderFields method returns a dictionary of all the response headers, including
Set-Cookie headers. The last line of the snippet retrieves the value of the Content-Type header. If
the header was omitted from the response, the returned value will be nil. If the response contained

c03.indd 61c03.indd 61 13/09/12 2:40 PM13/09/12 2:40 PM

62 ❘ CHAPTER 3 MAKING REQUESTS

multiple headers of the same type, only one value will be returned. This single value contains all the
response values concatenated together with a comma separating each value.

Key Request Headers

Several HTTP headers are more commonly manipulated in requests than others. This section
discusses the use cases for these headers.

Many REST server implementations determine the data encoding for the returned payload by
 examining the Accept header. For example, an Accept header with a value of application/xml
would instruct the server to return an XML document, whereas application/json would cause a
JSON document to be returned.

The Authorization header can be prepopulated with authentication credentials to avoid a
 credentials check response from the server. The following snippet shows how to add a BASIC
authentication header:

NSString *basicBody = [NSString stringWithFormat:@"%@:%@",
 username, password];
NSData *authData = [basicBody
 dataUsingEncoding:NSASCIIStringEncoding];

// Base64 encode authData into a string called b64Data
// code omitted to perform the Base64 encoding

NSString *authValue = [NSString stringWithFormat:@"Basic %@",
 b64Data];
[theRequest setValue:authValue
 forHTTPHeaderField:@"Authorization"];

The code creates the body of the authentication data, called basicBody, which contains the
 username and password separated by a colon (:). The basicBody is then converted into an NSData
object containing the ASCII values of the string. Those bytes are then Base64-encoded into a
string, called b64Data. That string is then prepended with the word Basic set as the value for the
Authentication header.

As you can tell BASIC authentication provides no more security than Base64-encoding the password,
which means you should use only this approach over HTTPS connections. The Base64 code is
omitted from the example, but there are numerous libraries and categories available online to
Base64-encode data. Chapter 11, “Inter-App Communication,” contains additional information
about Base64 encoding.

Another header that may be necessary to modify is the User-Agent header, which was created to
identify the browser type to the HTTP server. In many enterprise networks, the user agent value is
used to direct traffi c to specifi c servers based on the browser type. Some HTTP servers modify the
content of the response based on the user agent value. By default, the user agent from your app
will contain the app product name and version, the network framework and version, and the OS
name and version. The User-Agent value for the VideoDownloader application is shown here.

VideoDownloader/1.0 CFNetwork/548.1.4 Darwin/11.0.0

c03.indd 62c03.indd 62 13/09/12 2:40 PM13/09/12 2:40 PM

Summary ❘ 63

The User-Agent header value for your app will differ based on the iOS version of the device and
will also be different when run in the iOS Simulator. If your network infrastructure employs user
agent-sensitive routing, it must accommodate these differences. There are two ways to accommodate
the differences:

 ➤ Override the User-Agent header to provide a value consistent across platforms.

 ➤ Route on a subset of the User-Agent header, such as only the application name. The remainder
of the header will change based on the version of the app and the device platform on which
it is running.

Your code is not limited to using only standard headers for requests. You can defi ne your own
custom headers with almost any header name; however, these custom names must not contain
colons or whitespace. Header names are case-sensitive, and you need to coordinate with web service
developers to determine precise header names and values. Custom headers are useful for transporting
authentication and control data that can be used by the application infrastructure to support the
application’s business logic. One example is to provide a session identifi er via a custom header so
that the application server can associate a session context with the request payload before sending it
to the application logic.

Custom headers are added to a request in the same way as standard headers, as shown in the follow-
ing code snippet:

NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
[req setValue:@"myValue" forHTTPHeaderField:@"My-Custom-Header"];

SUMMARY

HTTP requests have become the mainstay of app developers wanting to connect to enterprise
services. iOS provides a simple yet robust API to perform the vast majority of these requests without
the need to delve into lower-level APIs. Although it was originally created for browsers, the HTTP
protocol is fl exible enough to suit almost any request and response interaction between your app
and a remote server.

Using the URL loading system and NSURLRequest, NSURLResponse, and NSURLConnection, you can
issue requests with only a couple of lines of code. As the communications become more complex,
you can continue using this toolset to issue requests with tight integration into your app code. Using
the URL loading system API, you can control both the payload and request headers to completely
master the communications between your app and your server.

c03.indd 63c03.indd 63 13/09/12 2:40 PM13/09/12 2:40 PM

c03.indd 64c03.indd 64 13/09/12 2:40 PM13/09/12 2:40 PM

Generating and Digesting
Payloads

WHAT’S IN THIS CHAPTER?

 ➤ Using web service protocols and styles and understanding their

impacts on mobile applications

 ➤ Understanding common payload formats

 ➤ Digesting XML, HTML, and JSON payloads

 ➤ Generating JSON and xml payloads

WROX.COM DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. You can
fi nd the code for this chapter in the Chapter 4 download in a single Xcode project with the
 following major components:

 ➤ A newsreader application that parsers XML, HTML, and JSON data and generates
JSON and XML payloads. The source code for this application can be found in the
App.zip archive.

 ➤ An archive of CNN articles for use with the example app. The articles were saved
the day the application was developed. Article content can be found in the “News
Content” directory in the App.zip archive.

 ➤ A server-side PHP script to process XML and JSON payloads generated in the
 application. The source code for the server side component is available in the Server
.zip archive.

4

c04.indd 65c04.indd 65 13/09/12 2:40 PM13/09/12 2:40 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://WROX.COM
http://wrox.com

66 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

As more companies invest in initiatives to mobilize their work force, integrating enterprise services
into applications will become more common. Successfully communicating with web
services, internal to the organization or not, requires the ability to generate and digest the structured
data transmitted. This structured data forms the contract between your application and the web
service and enables each to be updated independently as long as the structure does not change.

This chapter compares and contrasts two popular web service implementations and the considerations
that you should take with mobile in mind. This chapter also reviews common data interchange
 formats and covers how to create and interpret payloads using a combination of native iOS APIs.
A payload is the body of data representing the intent of the transmission being processed.

For situations in which you have control over the design of the service, Chapter 2, “Designing Your
Service Architecture”; covers possible web service design patterns. These patterns are meant to
 optimize the service for mobile devices and maximize the reuse of business logic in the service tier.
This leads to a more streamlined payload digestion process (discussed in this chapter), which enables
you to deploy applications to multiple channels, for example the web, more quickly.

WEB SERVICE PROTOCOLS AND STYLES

A protocol is a set of formats, procedures, and rules to follow when exchanging structured
 information with another system. Among other things, protocols defi ne the data format to be
used during the transmission. This enables receiving systems to properly interpret the structured
 information and react accordingly. This section compares and contrasts SOAP, a popular protocol
within enterprise applications, with REST, an architectural design style that is well suited for web
services targeting mobile devices.

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is a lightweight protocol meant for exchanging structured
data between systems using Extensible Markup Language (XML). SOAP was originally designed for
Microsoft in 1998 to facilitate data interchange in a manner convenient to defi nitions, methods, and
procedures in common programming languages. Version 1.2 of the SOAP specifi cation became the
W3C recommendation in June 2003, with enhancements included in “Part 2” following in April 2007.

SOAP messages can form the foundation of a web service stack, and many enterprises have
established service tiers with SOAP as the backbone of their Service-Oriented Architectures
(SOA) that serve clients inside and outside the fi rewall. Although messages are typically one-way
 transmissions between SOAP nodes, the protocol was built with a more conversational mode in
mind. A SOAP node is a logical processing unit that can transmit, receive, process, or relay an
 individual SOAP message.

A SOAP message consists of an envelope that includes a header and a body, as shown in Figure 4-1.
The header is optional, as depicted by the dashed objects in Figure 4-1, and contains service-level
information, typically authentication and session management data. The body is the primary content
of the message. It contains the information to be processed by the ultimate receiver of the message.
SOAP was designed to use a variety of transport layers such as HTTP, e-mail, and asynchronous
queues. This helped SOAP become a single solution for many interconnectivity problems, but it was
designed before the explosion of mobile devices.

c04.indd 66c04.indd 66 13/09/12 2:40 PM13/09/12 2:40 PM

Web Service Protocols and Styles ❘ 67

The content and structure of the message body depends on the receiving system. A body can consist
of multiple child elements, each of which can be namespace qualifi ed. Each child element includes the
operation that should be performed by the receiver as well as any necessary parameter values.
The following code snippet provides a sample SOAP body.

<soap:Body>
 <m:GetWeather xmlns:m="http://www.<domain>.com/weather">
 <m:ZipCode>95014</m:ZipCode>
 </m:GetWeather>
</soap:Body>

The preceding code includes a SOAP body that instructs the receiver to execute the GetWeather
operation. This operation is namespace qualifi ed, indicated by the xmlns:m attribute. This operation
requires that the ZipCode parameter is passed to provide an appropriate response.

FIGURE 4-1

SOAP:Envelope

SOAP:Header

SOAP:Header

SOAP:Header

SOAP:Body

c04.indd 67c04.indd 67 13/09/12 2:40 PM13/09/12 2:40 PM

68 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

You can specify the data type for a specifi c operation parameter by including an additional attribute
within the parameters start-tag like so:

<m:ItemNumber xsi:type='xsd:int'>95014</m:ItemNumber>

The preceding code specifi es that the data type associated with the element content, 95014, is an
integer. Table 4-1 outlines some common data types supported by the SOAP protocol and their
corresponding attribute names.

TABLE 4-1: Common SOAP Data Types

DATA TYPE ATTRIBUTE NAME

Integer xsd:int

Boolean xsd:boolean

String xsd:string

Float xsd:float

Double xsd:double

Array or Dictionary xsd:struct

Generating SOAP client-side code from Web Service Description Language (WSDL) and XML
Schema Defi nition (XSD) documents can be complex. This complexity is exacerbated by the need to
develop for multiple platforms and device families. Another pitfall of SOAP is that changes can be
diffi cult in the mobile environment. When two internally operated servers communicate, controlling
changes to those servers is simple. It’s an entirely different story when you rely on users to update
their applications. In light of these diffi culties, there is another web service design style that tends to
be more appropriate for services targeting mobile devices.

Representational State Transfer (REST)

Representational state transfer (REST) was introduced in 2000 by Roy Fielding, one of the
principle authors of the RFC, “Hypertext Transfer Protocol (HTTP),” as part of his doctoral
 dissertation. Although often referred to as such, REST is not a standard or protocol; REST is an
architectural design style that can be applied to web services. Although REST was developed in
parallel with HTTP 1.1 and is often associated with the protocol, it is not limited to HTTP as the
sole application layer protocol. The largest implementation of the REST design style is the World
Wide Web. Services that implement a REST style interface are commonly referred to as RESTful.

One central facet of REST is the concept of a resource, which has a global identifi er. This
concept of uniform resource identifi ers (URIs) distinguishes REST from other architecture styles.
Resources can be thought of as anything exposed independent of its representation. For example,
 /user/accounts may be an endpoint to retrieve a JSON list of account resources. In
addition, /user/account/123 may be an endpoint to retrieve a specifi c image representation of an
account resource with the number 123.

c04.indd 68c04.indd 68 13/09/12 2:40 PM13/09/12 2:40 PM

Web Service Protocols and Styles ❘ 69

REST requires you to put a greater emphasis on schema design, approaching it from the resource
perspective versus designing in terms of actions or services like SOAP. You can think of resource
identifi ers as nearly complete sentences; having both a subject (for example, /user/account/123)
and a verb (for example, the HTTP method used in the request–POST, GET, PUT, or DELETE). This
lends itself to being both machine- and human-readable.

A RESTful architecture has two other key attributes: They are both stateless and cacheable. Stateless
interaction requires that a request contain all necessary information, which may typically be included
in a session, to understand the context of the transmission. The overhead associated with transmitting
this information with each request offsets some of the benefi t associated with REST response
 payloads, which are typically lighter-weight than other service patterns. Additionally, clients can eas-
ily cache responses because each resource has a unique, global identifi er. Static resources, such as
images, are also prime candidates to be hosted with a content delivery network (CDN) because they
can be cached on their expansive server network and served quickly upon request. Endpoints within a
RESTful service can return different data types. For example, some may return a resource representa-
tion as JSON formatted data, whereas others may return an image.

 Choosing an Approach

SOAP-based services are still actively deployed in many enterprises, especially those that run some of
the more popular packaged software solutions such as enterprise resource planning (ERP) software.
SOAP and REST try to solve the same problem in different ways. Although neither protocol is a
perfect fi t for every situation, REST style service architecture is the best design for mobile optimized
service tiers.

One false assumption is that SOAP is more secure than REST. This assumption arises because
there are specifi c security methods included as part of the overall SOAP, namely WS-Security.
However, the reason WS-Security was created is largely because the SOAP specifi cation was
 transport-independent, and no assumptions could be made about the security available on
the transport layer. As with any secure application, security must be designed into the architecture
and proper discipline must be followed.

Another assumption that doesn’t hold true in the mobile world is that the remote device is trustworthy.
When SOAP is used to communicate between known application servers within a network, this may
be true. For mobile devices however, which can easily be compromised, the opposite is true: You
need to assume that the remote device is not trustworthy.

As with any data protocol, security requires good design and discipline throughout the development
life cycle; REST is no different. REST security must be designed with the application data in mind.
One must carefully consider the data transmitted to ensure that only the minimal amount of data is
sent to allow the application to function as required.

Exposure of Personally Identifi able Information (PII) can happen just as easily when using REST as
when using HTTP or SOAP. PII should never be sent to a mobile device unless absolutely necessary
and where the reward outweighs the risk. Although deviating slightly from the constraints of the
REST style, requests from the device should leverage information held in the server session to verify
the semantic correctness of any inbound payload.

c04.indd 69c04.indd 69 13/09/12 2:40 PM13/09/12 2:40 PM

70 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

When implemented properly, RESTful style architecture is the best approach for delivering resources
to the mobile channel. Among other benefi ts, RESTful services offer the best combination of the
following:

 ➤ Developer familiarity and productivity

 ➤ Performance

 ➤ Network effi ciency

 ➤ Opportunity for security

 ➤ Robustness

 ➤ Interface fl exibility

In addition, one best practice is to consolidate all external service calls to a single Mobile Façade
built in the REST style and deliver resources in JSON format, which is discussed next in the
“Payloads” section. For a more detailed overview of the Mobile Façade architecture pattern, see
Chapter 2.

PAYLOADS

Payloads are the essential data exchanged during the service request-response transaction. For
 example, in a POST request, the payload is the request body. Payloads do not include the overhead
data such as request headers or the HTTP method being requested; POST in the example. If your
application is sending or receiving information from a web service you need to have a fi rm
understanding of the payload format for requests and responses.

This section provides an overview of common payload formats including XML, JSON, and HTML.
Once you have a fi rm understanding of those typical data exchange formats, you can practice
detailed examples of how to digest web service responses and integrate the received data into your
applications. Many applications also need the ability to send structured payload data to a web
service, therefore the fi nal topic in this section covers creating XML and JSON output and provides
examples of how to structure those requests.

Introducing Payload Data Formats

Inbound and outbound payload data comes in many shapes and sizes. For example, some developers
choose to communicate with their web services using raw strings or pipe-delimited data. Although
simple, that technique is not extensible, struggles to handle complex data structures, and could lead
to numerous downstream issues. This section covers three alternative, standardized formats for
sending and receiving structured data: Extensible Markup Language (XML), JavaScript Object
Notation (JSON), and Hypertext Markup Language (HTML).

XML

XML is a markup language for encoding and structuring data. The XML specifi cation, an extension
of the Standard Generalized Markup Language (SGML), was started in 1996 and is produced by
the World Wide Web Consortium (W3C). The fi fth revision was published in November 2008. The
initial focus of XML was on documents, but it has been widely adopted as a format to transmit

c04.indd 70c04.indd 70 13/09/12 2:40 PM13/09/12 2:40 PM

Payloads ❘ 71

structured data in web services. XML has been extended to a number of niche markup languages
and protocols such as VoiceXML for structuring voice dialogs, Open Financial Exchange (OFX) for
exchanging fi nancial data, and Really Simple Syndication (RSS) for publishing media content. As
mentioned in the last section, SOAP is a protocol for exchanging XML structured data.

XML documents contain markup and content. Markup consists of tags, attributes, and elements.
There are three types of tags: start-tags (<person>), end-tags (</person>), and empty-element tags
(<noContact />). Empty-element tags are also referred to as self-closing tags. Attributes are
key-value pairs within the start-tag or empty-element tag that provide additional information about
the element.

Elements are the components that comprise an XML document. Elements are a collection of tags,
attributes, and content. An element consists of both a start-tag and end-tag or an empty-element tag.
The data between the start-tag and end-tags is the content. Content can contain markup, including
other elements, which enables you to build parent-child relationships into your data structure. The
following code snippet provides an example of an XML element.

<person>
 <firstName>Nathan</firstName>
 <lastName>Jones</lastName>
 <emailAddress primary='true'>email@domain.com</emailAddress>
 <noContact medium='email' />
</person>

The preceding code outlines a person element that contains several child elements: firstName,
lastName, emailAddress, and noContact. The emailAddress element contains an attribute
indicating that the element’s content is this person’s primary e-mail address. The noContact
 element, which indicates that this person has opted-out of being contacted, contains an attribute
indicating the medium in which he should not be contacted.

JSON

JSON is a lightweight data format to exchange structured information. It is believed that JSON was
conceived and used in 2001; however, RFC4627 (http://tools.ietf.org/html/rfc4627), which
documents the application/json media type, was not published until July 2006. JSON has
experienced signifi cant adoption and growth fueled, in part, by the explosion of mobile applications
as they sought effi cient, easy-to-understand, compact methods for exchanging data over cellular
data networks.

JSON has a small, defi ned set of formatting rules that must be followed when creating payloads.
Following are the supported data types and their associated formatting rules:

 ➤ Numbers: Unquoted.

 ➤ Boolean: true or false; unquoted.

 ➤ Strings: Double-quoted.

 ➤ Arrays: Comma-separated lists enclosed in square brackets.

 ➤ Objects: Collection of key:value pairs enclosed in curly braces. Objects are represented in
Objective-C using NSDictionary.

 ➤ null: Unquoted.

c04.indd 71c04.indd 71 13/09/12 2:40 PM13/09/12 2:40 PM

http://tools.ietf.org/html/rfc4627

72 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

The root type of properly formatted JSON documents is either an array or an object. The following
code snippet is the JSON representation of the person code example previously outlined in the
XML overview.

{
 "person": {
 "firstName": "Nathan",
 "lastName": "Jones",
 "email": {
 "emailAddress": "email@domain.com",
 "primary": true
 },
 "noContact": "email"
 }
}

The preceding example represents person as an object with the keys firstName, lastName, email,
and noContact. In this code email is represented as a sub object to maintain visibility of the
primary attribute. The JSON has been formatted for human-readability and may not appear to
save much space. However, after stripping away all whitespace and newlines, the previous example
becomes the following more compact payload that can be just as easily interpreted by a machine.

{"person":{"firstName":"Nathan","lastName":"Jones","email":{"
emailAddress":"email@domain.com","primary":true},"noContact":"email"}}

HTML

HTML is a markup language standard for structuring data on a web page so that your browser can
interpret it. HTML was created in the early-1990s by Tim Berners-Lee as a means for co-workers
at CERN to exchange documents. The fi rst proposal for the HTML specifi cation was published
in mid-1993 and has since seen fi ve major revisions. As of this writing, the fi fth major revision,
aptly dubbed HTML5, is in draft status as it works through the specifi cation review and approval
process.

HTML document structures are similar to XML documents; they both descend from SGML.
However, the new draft version of HTML, HTML5, is not based on SGML like previous
versions. HTML documents consist of a doctype defi nition (DTD), elements, attributes, data types,
and character entity references. One key difference between HTML and XML document structures
is that HTML documents have a predefi ned set of tag and attribute names. This section focuses
on data structure and content, so data types and character entity references are not covered. There
are a number of types defi ned in HTML and that number grows signifi cantly as you include
types for all predefi ned attributes such as ID, languages, color, and units of length, to name
a few.

The doctype defi nition is the fi rst line of an HTML document and enables the browser to know
which version of the HTML specifi cation the page is written in. HTML elements, although
predefi ned, consist of a start-tag and end-tag (<html> and </html>) or an empty-element tag
(
). Element attributes are key-value pairs that reside within the start-tag. Attributes are

c04.indd 72c04.indd 72 13/09/12 2:40 PM13/09/12 2:40 PM

Payloads ❘ 73

 predefi ned, such as id, name, and class, but HTML5 includes support for custom attributes. These
attributes are prefi xed with data- and should not contain uppercase characters. Custom attributes
are intended to store application-specifi c data that does not fi t an existing attribute. The following
snippet is an example of an HTML document.

<!DOCTYPE html>
<html>
 <head>
 <title>Person: Nathan Jones</title>
 </head>
 <body>
 <div id='firstName'>Nathan</div>
 <div id='lastName'>Jones</div>
 <div id='emailAddress' data-primary='true'>
 email@domain.com
 </div>
 <div id='noContact' data-medium='email' />
 </body>
</html>

The preceding example contains an HTML representation of the person object used in the previous
three code examples. The doctype defi nition instructs the browser that the document was written
in HTML5. The root element html has two child elements: head and body. The head tag includes
metadata about the page such as title, keywords, and page styles. The body tag includes the content
that displays on the screen. The fi eld names are defi ned using the id attribute, and the value is the
content between the start-tags and end-tags. Note the use of HTML5 custom attributes to indicate
primary e-mail and the no-contact medium.

Digesting Response Payloads

Web services return structured data in a number of formats, most commonly XML and JSON. It’s
also feasible that an application must retrieve HTML-structured data. Applications that implement
these web services or retrieve HTML documents must interpret and transform that structured data
into an object that is meaningful in the context of the application. Chapter 6, “Securing Network
Traffi c,” discusses working with encrypted payloads.

This section covers parsing and transforming response data using native iOS APIs. To reinforce the
concepts discussed in this chapter, the sample application you work through is a lightweight RSS
reader. The application aggregates article content and Twitter information for articles posted to the
CNN Top Stories RSS feed (http://rss.cnn.com/rss/cnn_topstories.rss).

WARNING Major websites often optimize and reorganize their site markup
structure. For that reason, the wrox.com download for this chapter includes a
copy of the RSS feed and linked articles from the day this chapter was developed.

c04.indd 73c04.indd 73 13/09/12 2:40 PM13/09/12 2:40 PM

http://rss.cnn.com/rss/cnn_topstories.rss
http://wrox.com

74 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

XML

Before walking through how to parse XML documents, you must understand the two parsing styles,
Simple API for XML (SAX) and Document Object Model (DOM). SAX parsers are event-driven
and step through elements in an XML document sequentially, processing each element individually.
Alternatively, DOM parsers read the entire XML document into memory as a tree of nodes that can
be traversed.

iOS ships with two native XML parsers, NSXMLParser and libxml. NSXMLParser is an Objective-C
SAX parser that calls a variety of delegate methods as it encounters elements, attributes, CData
blocks, comments and document start, and end events. libxml is an open source, C-based API that
supports SAX and DOM parsing. libxml SAX parsing is similar to NSXMLParser in that it makes a
number of callbacks as it encounters certain events. libxml DOM reads the entire XML document
into a tree of nodes that can be traversed or queried using XML Path Language (XPath). The exam-
ples in this section use NSXMLParser, however, libxml is used in the next section on parsing HTML.

A number of third-party XML libraries are also available, most notably:

 ➤ TBXML (https://github.com/71squared/TBXML)

 ➤ TouchXML (https://github.com/TouchCode/TouchXML)

 ➤ KissXML (https://github.com/robbiehanson/KissXML)

 ➤ GDataXML (http://code.google.com/p/gdata-objectivec-client/source/browse/
trunk/Source/XMLSupport/)

Each library, as well as any native XML parser, has benefi ts and drawbacks. For example, some
libraries are more effi cient for speed and memory consumption but lack the capability to create
XML documents, and some are quick but consume larger portions of memory. Anticipated XML
document size also plays into the decision of which parser to choose; some parsers do well with small
documents, whereas others are intended to support large XML documents. Another factor to con-
sider for native parsers is that they are delivered and supported by Apple. This means that they will
be thoroughly tested with each future release of the iOS operating system to ensure backward com-
patibility. Each of these should be considered as you evaluate which parser to use in your application.

The purpose of the newsreader application is to display a list of articles with the capability to navi-
gate to the full text. Like many media outlets, CNN does not publish story content in its RSS feed.
That means fetching the entire article dataset requires two steps. First, you need to fetch the RSS
feed that contains post-metadata, including links to the full stories, which enable you to build a shell
for each post. Second, you need to fetch the actual story content and additional metadata from the
articles HTML meta tags.

Before you can create your XML parser, you need to know what data you intend to capture and
from where it will be retrieved. Listing 4-1 defi nes the interface for the Post object.

NOTE For clarity, the data source, whether it is a property that was fetched
from the RSS feed or HTML story content, has been listed next to the property.

c04.indd 74c04.indd 74 13/09/12 2:40 PM13/09/12 2:40 PM

https://github.com/71squared/TBXML
https://github.com/TouchCode/TouchXML
https://github.com/robbiehanson/KissXML
http://code.google.com/p/gdata-objectivec-client/source/browse/trunk/Source/XMLSupport/
http://code.google.com/p/gdata-objectivec-client/source/browse/trunk/Source/XMLSupport/

Payloads ❘ 75

LISTING 4-1: Post Object Interface Defi nition (/Application/topstories/topstories/Post.h)

@interface Post : NSObject

@property(nonatomic,strong) NSString *title; //rss
@property(nonatomic,strong) NSString *postDescription; //rss
@property(nonatomic,strong) NSString *content; //html
@property(nonatomic,strong) NSString *author; //html
@property(nonatomic,strong) NSString *section; //html
@property(nonatomic,strong) NSString *contentURL; //rss
@property(nonatomic,strong) NSDate *pubDate; //rss
@property(nonatomic,strong) NSMutableArray *keywords; //html
@property(nonatomic,strong) NSMutableArray *tweets;
@property(nonatomic,assign) BOOL contentFetched;
@property(nonatomic,assign) BOOL tweetsLoading;

- (NSDictionary*)dictionaryRepresentation;

@end

With the Post object defi ned, you are ready to create the RSS parser. Listing 4-2 outlines the
interface defi nition for the parser. Two things to note are the custom delegate that returns an array
of the Post objects that were fetched and that the parser conforms to the NSXMLParserDelegate.

LISTING 4-2: Top Stories RSS Parser Interface Defi nition (/Application/topstories/topstories/

TopStoriesParser.h)

#import "Post.h"

@protocol TopStoriesDelegate <NSObject>
@required
-(void)topStoriesParsedWithResult:(NSMutableArray*)posts;
@end

@interface TopStoriesParser : NSObject <NSXMLParserDelegate>

@property(nonatomic,strong) NSData *feedData;
@property(nonatomic,strong) NSMutableArray *posts;

@property(assign) id<TopStoriesDelegate> delegate;

- (id)initWithFeedData:(NSData*)data;
- (void)parseTopStoriesFeed;

@end

Listing 4-3 covers the implementation of the RSS parser. NSXMLParser is a SAX parser; as such, it
receives a number of delegate messages as certain parser events occur.

c04.indd 75c04.indd 75 13/09/12 2:40 PM13/09/12 2:40 PM

76 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

LISTING 4-3: Top Stories Parser Implementation (/Application/topstories/topstories/

TopStoriesParser.m)

#import "TopStoriesParser.h"
#import "Utils.h"

@interface TopStoriesParser () {
 Post *post;
 NSMutableString *currentValue;
 BOOL parsingItem;
}

@end

@implementation TopStoriesParser

@synthesize posts = _posts;
@synthesize feedData = _feedData;
@synthesize delegate = _delegate;

- (id)initWithFeedData:(NSData*)data {
 self = [super init];
 if (self != nil) {
 self.feedData = data;
 }
 return self;
}

- (void)parseTopStoriesFeed {
 // create and start parser
 NSXMLParser *parser = [[NSXMLParser alloc]
 initWithData:_feedData];
 parser.delegate = self;
 [parser parse];
}

#pragma mark - NSXMLParserDelegate
- (void)parserDidStartDocument:(NSXMLParser *)parser {
 _posts = [[NSMutableArray alloc] init];
}

- (void)parserDidEndDocument:(NSXMLParser *)parser {
 if ([_delegate respondsToSelector:
 @selector(topStoriesParsedWithResult:)]) {

 [_delegate topStoriesParsedWithResult:_posts];
 }
}

- (void)parser:(NSXMLParser *)parser
didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict {

 // if you were expecting an attribute, it would be

c04.indd 76c04.indd 76 13/09/12 2:40 PM13/09/12 2:40 PM

Payloads ❘ 77

 // handled here in the attributeDict by using
 // objectForKey: using the attribute name

 // started a new post, create a fresh object
 if ([elementName isEqualToString:@"item"]) {
 post = [[Post alloc] init];
 parsingItem = YES;
 }
}

- (void)parser:(NSXMLParser *)parser
foundCharacters:(NSString *)string {
 // capture the current element value
 NSString *tmpValue =
 [string stringByTrimmingCharactersInSet:
 [NSCharacterSet whitespaceAndNewlineCharacterSet]];
 if (currentValue == nil) {
 currentValue = [[NSMutableString alloc] initWithString:tmpValue];
 } else {
 [currentValue appendString:tmpValue];
 }
}

- (void)parser:(NSXMLParser *)parser
 didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName {

 // reached the end of a post
 if ([elementName isEqualToString:@"item"]) {
 [_posts addObject:post];
 post = nil;
 parsingItem = NO;
 }

 // make sure we're parsing a post item and not header data
 if (parsingItem == YES) {
 if ([elementName isEqualToString:@"title"]) {
 post.title = currentValue;

 } else if ([elementName isEqualToString:@"description"]) {
 post.postDescription = currentValue;

 } else if ([elementName isEqualToString:@"pubDate"]) {
 post.pubDate = [Utils publicationDateFromString:currentValue];

 } else if ([elementName isEqualToString:@"feedburner:origLink"]) {
 post.contentURL = currentValue;

 }
 }

 // reset the current element value
 currentValue = nil;
}

c04.indd 77c04.indd 77 13/09/12 2:40 PM13/09/12 2:40 PM

78 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

After the parser starts parsing the RSS feed, it calls the parserDidStartDocument: method at
which point an NSMutableArray is initialized to store the processed Post objects. Likewise, when
the parser reaches the end of the document, the parserDidEndDocument: method is called. At this
point, the parser has a complete list of Post objects, so the parser informs its delegate.

The parser:didStartElement:namespaceURI:qualifiedName:attributes: method is called
when a new element is started. This is where attributes are handled; remember, they are part of the
start-tag. parser:foundCharacters: is called as content is read from the element and
parser:didEndElement:namespaceURI:qualifiedName: is called when the element is closed.
When elements are closed, it is safe to process and store any accumulated content.

Now that the parser is complete, it can be called as the application receives RSS feed data.
Listing 4-4 details how to initialize the parser, begin the parsing process, and handle the
delegate method. FetchTopStoriesOperation registers as the delegate for the RSS parser. When
topStoriesParsedWithResult: is called, the operation iterates through each Post retrieved and
issues a subsequent call to initiate the second step in the process, retrieving the story content.

LISTING 4-4: Fetch Top Stories Operation Implementation (/Application/topstories/topstories/

FetchTopStoriesOperation.m)

#import "FetchTopStoriesOperation.h"
#import "FetchPostContentOperation.h"
#import "TopStoriesParser.h"

//#define kURL @"file:/<path to folder>/cnn_topstories.rss"
#define kURL @"http://rss.cnn.com/rss/cnn_topstories.rss"
#define kTimeout 30.0

@implementation FetchTopStoriesOperation

- (void)main {

 [self postNotification:kTopStoriesStartNotification];
 [self startNetworkActivityIndicator];

 // create the and issue request
 NSMutableURLRequest *req = [[NSMutableURLRequest alloc]
 initWithURL:[NSURL URLWithString:kURL]
 cachePolicy:NSURLCacheStorageAllowed
 timeoutInterval:kTimeout];

 NSHTTPURLResponse *response = nil;
 NSError *error = nil;
 NSData *data = [NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

 // check response got data and process data accordingly
 if (data != nil) {
 TopStoriesParser *parser = [[TopStoriesParser alloc]
 initWithFeedData:data];
 parser.delegate = self;

c04.indd 78c04.indd 78 13/09/12 2:40 PM13/09/12 2:40 PM

http://rss.cnn.com/rss/cnn_topstories.rss

Payloads ❘ 79

 [parser parseTopStoriesFeed];

 // there was an error getting the feed, alert the presses
 } else {
 [self postNotification:kTopStoriesErrorNotification];
 }

 [self stopNetworkActivityIndicator];
}

#pragma mark - TopStoriesDelegate
- (void)topStoriesParsedWithResult:(NSMutableArray *)posts {
 // add the parsed results to the model
 [Model sharedModel].posts = posts;

 // trigger the content fetch (low priority)
 // handled here vs Model.m to adjust priority
 for (Post *post in posts){
 FetchPostContentOperation *op = [[FetchPostContentOperation alloc]
 init];
 op.post = post;
 op.queuePriority = NSOperationQueuePriorityLow;
 [op enqueueOperation];
 }

 [self postNotification:kTopStoriesSuccessNotification];
}

@end

Using the information gathered to this point, the application should
resemble Figure 4-2. You can download the entire source from wrox.com
for a fully implemented table view.

At this point the application has fetched and parsed the RSS feed and
has initiated the story content download process. With that, it’s time to
parse the story content.

HTML

As discussed during the introduction, HTML documents share a similar
structure with XML. However, XML document structures typically
come with some sort of service contract between the sender and receiver.
HTML documents typically do not have a contract associated with
them; they can change frequently and drastically with little notice. One
possible solution to help minimize the impacts of constantly changing
HTML content to your application is to implement a remote façade, as
discussed in Chapter 2. This web service enforces a strict content structure
contract with the application. Changes to applications require App Store
approval and that the user update the application, but changes to a web
service under your control are much easier to deploy and more fl exible in
adapting to changes in the originating content.

FIGURE 4-2

c04.indd 79c04.indd 79 13/09/12 2:40 PM13/09/12 2:40 PM

http://wrox.com

80 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

This section uses a libxml wrapper created by Ben Reeves (https://github.com/zootreeves/
Objective-C-HMTL-Parser) to parse story content for each of the articles fetched from the RSS
feed. To use this wrapper in your application you need to complete the following:

 1. Add the HTMLNode.h /.m and HTMLParser.h /.m fi les to the project.

 2. Add the libxml2.dylib to the project.

 3. Add $(SDKROOT)/usr/include/libxml2 to the Header Search Paths fi eld in the targets’
Build Settings.

 4. Disable ARC for the HTMLNode and HTMLParser fi les. Within the target Build Phases, add
the compiler fl ag -fno-objc-arc to HTMLNode.m and HTMLParser.m. As of this writing, this
wrapper has not been converted for ARC support.

Listing 4-5 details how the application generates and processes the story content request. When
the network call fi nishes, the custom method processContentData: is called. This method creates
a new HTMLParser that processes the head and body tags, retrieving the pertinent meta data and
article content. The logic to retrieve story content is particularly interesting because CNN uses a
specifi c class to denote that a paragraph tag is part of the story.

LISTING 4-5: Fetch Story Content Implementation (/Application/topstories/topstories/

FetchPostContentOperation.m)

#import "FetchPostContentOperation.h"
#import "HTMLParser.h"

#define kTimeout 30.0

@interface FetchPostContentOperation ()
- (void)processContentData:(NSData*)content;
@end

@implementation FetchPostContentOperation

@synthesize post = _post;

- (void)main {

 [self postNotification:kPostContentStartNotification];
 [self startNetworkActivityIndicator];

 NSURL *url = [NSURL URLWithString_post.contentURL];
 NSMutableURLRequest *req = [[NSMutableURLRequest alloc]
 initWithURL:url

WARNING Given the propensity for change in HTML documents, you should
avoid parsing HTML within applications whenever possible. Changes could
dramatically impact an application’s ability to function properly.

c04.indd 80c04.indd 80 13/09/12 2:40 PM13/09/12 2:40 PM

https://github.com/zootreeves/Objective-C-HMTL-Parser
https://github.com/zootreeves/Objective-C-HMTL-Parser

Payloads ❘ 81

 cachePolicy:NSURLCacheStorageAllowed
 timeoutInterval:kTimeout];
 NSHTTPURLResponse *response = nil;
 NSError *error = nil;
 NSData *data = [NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

 // check response got data and process data accordingly
 if (data != nil) {
 [self processContentData:data];
 _post.contentFetched = YES;

 [self postNotification:kPostContentSuccessNotification];

 // there was an error getting the post content, alert the presses
 } else {
 [self postNotification:kPostContentErrorNotification];

 }

 [self stopNetworkActivityIndicator];
}

#pragma mark - Private Methods
- (void)processContentData:(NSData*)content {

 NSError *error = nil;
 HTMLParser *parser = [[HTMLParser alloc]
 initWithData:content error:&error];
 if (error) {
 return;
 }

 // get html doc head and meta tags
 HTMLNode *head = [parser head];
 NSArray *metaTags = [head findChildTags:@"meta"];

 // retrieve article meta data and add to the post
 for (HTMLNode *meta in metaTags) {
 NSString *name = [meta getAttributeNamed:@"name"];

 // keywords
 if ([name isEqualToString:@"keywords"]) {
 NSString *keywordContent = [meta getAttributeNamed:@"content"];
 NSMutableArray *keywords = (NSMutableArray*)
 [keywordContent
 componentsSeparatedByString:@","];

 if ([keywords count]>0) {
 _post.keywords = keywords;
 }

 // author name
 } else if ([name isEqualToString:@"author"]) {

continues

c04.indd 81c04.indd 81 13/09/12 2:40 PM13/09/12 2:40 PM

82 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

 NSString *author = [meta getAttributeNamed:@"content"];
 if (author.length > 0) {
 _post.author = author;
 }

 // article section
 } else if ([name isEqualToString:@"section"]) {
 NSString *section = [meta getAttributeNamed:@"content"];
 if (section.length > 0) {
 _post.section = section;
 }
 }
 }

 // get html doc body and paragraph tags
 HTMLNode *body = [parser body];
 NSArray *paragraphTags = [body findChildTags:@"p"];

 // iterate through all paragraphs saving the appropriate story content
 NSMutableString *storyContent = [[NSMutableString alloc] init];
 for (HTMLNode *para in paragraphTags) {

 // only save the 'story paragraphs' - class=cnn_storypgraphtxt
 NSString *class = [para getAttributeNamed:@"class"];
 NSRange storyParaTest = [[class lowercaseString]
 rangeOfString:@"cnn_storypgraphtxt"];
 if ((storyParaTest.location != NSNotFound) && (class != nil)) {
 [storyContent appendString:[para rawContents]];
 }
 }

 _post.content = storyContent;
}

@end

As you can see, parsing HTML can be extremely fragile. There are a
number of points throughout this process that could break, each of
which could render the application unusable. A simple change to the
class name for story content would cause the application not to receive
any story content and display a blank view.

However, if all goes well the story content would be retrieved and you
could drill into an individual article to read the entire story. Although
it is a simple layout, Figure 4-3 shows what the story content view may
resemble. The application shown in this fi gure has now fetched all
CNN-related content.

The next feature is to add light Twitter search integration to search for
story keywords retrieved from the meta tags.

FIGURE 4-3

LISTING 4-5 (continued)

c04.indd 82c04.indd 82 13/09/12 2:40 PM13/09/12 2:40 PM

Payloads ❘ 83

JSON

As of iOS 5 Apple provides native JSON parsing support via the NSJSONSerialization class.
Parsing JSON data prior to iOS 5’s native support required the use of a third-party library such as
JSON framework (https://github.com/stig/json-framework) or JSON-Kit (https://github.
com/johnezang/JSONKit). Although these libraries were well supported and were simple to use, the
native, Apple-supported API was a welcome addition.

NSJSONSerialization provides two methods for parsing JSON data:
JSONObjectWithData:options:error: and
JSONObjectWithStream:options:error. JSONObjectWithData:options:error: creates a
Foundation object from the JSON data passed. JSONObjectWithStream:options:error: behaves
similarly to JSONObjectWithData:options:error: with the exception that it accepts a JSON data
feed as its source. Both methods have an options parameter that accepts any combination of the
following values to confi gure how the parser interprets input.

 ➤ NSJSONReadingAllowFragments: Instructs the parser to enable top-level objects that are
neither an NSArray nor NSDictionary. This option can be used to allow simple JSON
structures such as {"user": null} to be successfully converted.

 ➤ NSJSONReadingMutableContainers: Instructs the parser to generate NSMutableArray
and NSMutableDictionary objects. Mutable objects mean that you can modify them
using methods, such as addObject: for NSMutableArray and setObject:forKey: for
NSMutableDictionary. This could be used in situations with a primary and secondary result
set in which you need to add a value from the secondary result to the primary result before
further processing.

 ➤ NSJSONReadingMutableLeaves: Instructs the parser to generate NSMutableString objects.
You could use this option if you need to manipulate a particular fi eld value within the
parsed response prior to performing additional processing.

One feature of the sample application is that it can fetch related tweets based on the stories keywords.
This is accomplished by using Twitter’s search API (http://search.twitter.com/search
.json?q=<query>), which returns JSON-encoded search results. Listing 4-6 outlines the interface
defi nition for the Tweet object. The Tweet object uses a small subset of fi elds returned from Twitter.
Each Post maintains an array of related tweets as they are retrieved.

LISTING 4-6: Tweet Object Interface Defi nition (/Application/topstories/topstories/Tweet.h)

@interface Tweet : NSObject

@property(nonatomic,strong) NSString *identifier;
@property(nonatomic,strong) NSString *fromUser;
@property(nonatomic,strong) NSString *fromUserDisplay;
@property(nonatomic,strong) NSString *profileImageURL;
@property(nonatomic,strong) NSString *text;
@property(nonatomic,strong) NSDate *createdDate;
@property(nonatomic,strong) UIImage *profileImage;

- (id)initWithDictionary:(NSDictionary*)tweetData;

@end

c04.indd 83c04.indd 83 13/09/12 2:40 PM13/09/12 2:40 PM

https://github.com/stig/json-framework
https://github.com/johnezang/JSONKit
https://github.com/johnezang/JSONKit
http://search.twitter.com/search.json?q=<query>
http://search.twitter.com/search.json?q=<query>

84 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

With the Tweet object defi ned, the application can search Twitter and begin parsing the JSON
response. Listing 4-7 details how to create the search request and parse the resulting response. When
the response is received, the operation calls JSONObjectWithData:options:error: to create an
NSDictionary representation of the search results. The operation then iterates through the tweet
data creating Tweet objects for each result and adding it to the Post.

LISTING 4-7: Retrieve Related Tweets (/Application/topstories/topstories/

FetchPostTweetsOperation.m)

#define kTimeout 30.0

@implementation FetchPostTweetsOperation

@synthesize post = _post;

- (void)main {

 [self postNotification:kTweetsStartNotification];
 [self startNetworkActivityIndicator];
 _post.tweetsLoading = YES;

 // create the twitter query
 NSMutableString *query = [[NSMutableString alloc] init];
 for (int i=0; i<[_post.keywords count]; i++) {
 // prepend comma for all but first keyword
 if (i != 0) {
 [query appendString:@","];
 }

 [query appendString:[_post.keywords objectAtIndex:i]];
 }

 // create the and issue request - separate variables for line size
 NSString *searchEndpoint = @"http://search.twitter.com/search.json";
 NSString *querystring = [NSString
 stringWithFormat:@"q=%@&rpp=15",
 [Utils urlEncode:query]];

 NSString *url = [NSString stringWithFormat:@"%@?%@",
 searchEndpoint,

NOTE Just after beginning development on this sample application, CNN
stopped populating the keywords meta tag in its stories. Given the change, the
author created the keyword meta data in the story fi les available on wrox.com.
Although this change did not materially impact the application, it underscores
the potential risks associated with parsing HTML content in applications.

c04.indd 84c04.indd 84 13/09/12 2:40 PM13/09/12 2:40 PM

http://search.twitter.com/search.json
http://wrox.com

Payloads ❘ 85

 querystring];
 NSMutableURLRequest *req = [[NSMutableURLRequest alloc]
 initWithURL:[NSURL URLWithString:url]
 cachePolicy:NSURLCacheStorageAllowed
 timeoutInterval:kTimeout];

 NSHTTPURLResponse *response = nil;
 NSError *error = nil;
 NSData *data = [NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

 // check response got data and process data accordingly
 if (data != nil) {

 // convert response to JSON
 NSError *error = nil;
 NSDictionary *searchResults = [NSJSONSerialization
 JSONObjectWithData:data
 options:NSJSONReadingAllowFragments
 error:&error];

 // create tweets
 NSMutableArray *tweets = [[NSMutableArray alloc] init];
 NSArray *results = [searchResults objectForKey:@"results"];
 for (NSDictionary *tweetData in results) {
 Tweet *tweet = [[Tweet alloc] initWithDictionary:tweetData];
 [tweets addObject:tweet];
 }

 _post.tweetsLoading = NO;
 if ([tweets count] > 0) {
 _post.tweets = tweets;
 [self postNotification:kTweetsSuccessNotification];

 // no tweets were retrieved
 } else {
 [self postNotification:kTweetsErrorNotification];
 }

 // there was an error getting the post content, alert the presses
 } else {
 _post.tweetsLoading = NO;
 [self postNotification:kTweetsErrorNotification];

 }

 [self stopNetworkActivityIndicator];
}

@end

c04.indd 85c04.indd 85 13/09/12 2:40 PM13/09/12 2:40 PM

86 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

When the TweetsTableViewController has been hooked up (see the
wrox.com downloads for this chapter) and the operation fi nishes, you
should see a related tweet view similar to Figure 4-4.

Generating Request Payloads

Integrating sophisticated web services into your applications often
requires you to transmit payloads in a structured format. These formats
are most typically JSON or XML, or some variation of XML such as
SOAP. This section covers how to create each of these common exchange
formats from the Foundation objects used within your applications. This
section builds on the newsreader sample application by adding the ability
to transmit the aggregated story content to a simple, server-side script
for evaluation. The script is included with the wrox.com downloads for
this chapter.

JSON

Generating JSON data is as easy as parsing it. Apple released
NSJSONSerialization with iOS 5, which provides a native API for cre-
ating JSON data from Foundation objects. NSJSONSerialization exposes two methods to
create JSON data, dataWithJSONObject:options:error: and
writeJSONObject:toStream:options:error:. Each method contains an options parameter
to confi gure the output of the method. As of this writing there is only a single option,
NSJSONWritingPrettyPrinted, which instructs the method to generate JSON that is more readable
by adding whitespace. Not specifying this option generates the most compact JSON possible.

NSJSONSerialization also provides isValidJSONObject: to validate whether the Foundation
object you attempt to convert is convertible. For objects to be converted to JSON, they must con-
form to the following rules:

 ➤ Top-level object that is an NSArray or NSDictionary.

 ➤ All objects must be NSString, NSNumber, NSArray, NSDictionary, or NSNull.

 ➤ All NSDictionary keys must be NSStrings.

 ➤ NSNumbers must not be NaN or infi nity.

Because the newsreader application stores articles in the form of a custom class, Post, a little
 legwork is required to use NSJSONSerialization. This additional legwork is required because the
Post class does not meet the conversion rules mentioned. One approach that enables the application
to convert articles into JSON is to implement a method on Post that returns an NSDictionary, as
shown in Listing 4-8. Only a subset of the class’s properties is included in an attempt to minimize
the example payload size.

FIGURE 4-4

c04.indd 86c04.indd 86 13/09/12 2:40 PM13/09/12 2:40 PM

http://wrox.com
http://wrox.com

Payloads ❘ 87

LISTING 4-8: Generating a Post NSDictionary Representation (/Application/topstories/topstories/

Post.m)

...
- (NSDictionary*)dictionaryRepresentation {
 NSString *pubDateString =
 [NSString stringWithFormat:@"%@", self.pubDate];

 // content, tweets, and keywords were left off to limit size
 return [NSDictionary dictionaryWithObjectsAndKeys:
 [Utils urlEncode:self.title], @"title",
 [Utils urlEncode:self.postDescription], @"description",
 [Utils urlEncode:self.author], @"author",
 [Utils urlEncode:self.section], @"section",
 [Utils urlEncode:self.contentURL], @"contentURL",
 [Utils urlEncode:pubDateString], @"pubDate", nil];
}

Now that each Post has an NSDictionary representation, they can be converted to JSON and
transmitted to the server-side script, as shown in Listing 4-9.

LISTING 4-9: JSON Generation and Transmission (/Application/topstories/topstories/

ShareArticlesOperationJSON.m)

#import "ShareArticlesOperationJSON.h"

@implementation ShareArticlesOperationJSON

@synthesize posts, shareType;

- (void)main {

 [self startNetworkActivityIndicator];

 // create url and issue request
 NSString *urlString =
 [NSString
 stringWithFormat:@"<server>/parse.php?parseMethod=%d",shareType];
 NSURL *url = [NSURL URLWithString:urlString];

 NSMutableURLRequest *req =
 [[NSMutableURLRequest alloc] initWithURL:url
 cachePolicy:NSURLCacheStorageAllowed
 timeoutInterval:30.0];

 [req setHTTPMethod:@"POST"];
 [req setValue:@"application/json" forHTTPHeaderField:@"Accept"];

 // convert array of POST objects to array of dictionary
 // objects so NSJSONSerialization can handle it
 NSMutableArray *articles = [[NSMutableArray alloc] init];
 for (Post *post in posts) {

continues

c04.indd 87c04.indd 87 13/09/12 2:40 PM13/09/12 2:40 PM

88 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

 // dictionaryRepresentation is a custom method
 // that creates an NSDictionary of a few key fields
 [articles addObject:post.dictionaryRepresentation];
 }
 NSDictionary *articleData =
 [NSDictionary dictionaryWithObject:articles forKey:@"articles"];

 // validate object
 if ([NSJSONSerialization isValidJSONObject:articleData] == NO) {
 [self postNotification:kShareArticleErrorNotification];
 [self stopNetworkActivityIndicator];
 return;
 }

 // convert dictionary to JSON data and set the body
 NSError *jsonWriteError = nil;
 NSData *payload =
 [NSJSONSerialization dataWithJSONObject:articleData
 options:NSJSONWritingPrettyPrinted
 error:&jsonWriteError];

 [req setHTTPBody:payload];

 NSHTTPURLResponse *response = nil;
 NSError *error = nil;
 NSData *data = [NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

 // check response got data and process data accordingly
 // you would also typically check the status code here too
 if (data != nil) {
 NSError *jsonParseError = nil;
 NSDictionary *responseDict =
 [NSJSONSerialization JSONObjectWithData:data
 options:0
 error:&jsonParseError];

 // successfully transmitted articles
 if ([responseDict objectForKey:@"articleCount"] != nil) {
 [self postNotification:kShareArticleStartNotification];

 // tell the user how many articles were sent
 NSInteger articleCount =
 [[responseDict objectForKey:@"articleCount"] intValue];

 NSString *msg =
 [NSString stringWithFormat:@"%d articles shared via JSON.",
 articleCount];

 dispatch_async(dispatch_get_main_queue(), ^{
 [[[UIAlertView alloc] initWithTitle:@"Great Success"

LISTING 4-9 (continued)

c04.indd 88c04.indd 88 13/09/12 2:40 PM13/09/12 2:40 PM

Payloads ❘ 89

 message:msg
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];
 });

 // server was not able to properly interpret the content
 } else {
 [self postNotification:kShareArticleErrorNotification];
 }

 }

 [self stopNetworkActivityIndicator];
}

The application creates an array of NSDictionary objects (representing each Post) and then creates
an NSDictionary with one key-value pair of articles. This is done so that the top-level of the
resulting JSON is a collection.

Attempting to convert invalid types to JSON causes your applications to
crash. Therefore, it is a best practice to call isValidJSONObject: prior
to calling dataWithJSONObject:options:error: to handle potential
errors gracefully.

After executing ShareArticlesOperationJSON the user should see an
alert that resembles Figure 4-5.

XML

There are a number of approaches to create XML documents, including
string formatting, using one of the third-party libraries that supports
writing XML mentioned earlier in the previous “XML” section, and
libxml. libxml is the only native API for writing XML that ships with
iOS. libxml is a C-based API, which means that it may be cumbersome
for users that have not worked with C functions before.

The examples in this section use libxml, specifi cally the xmlwriter
interface. The approach you ultimately choose depends on your
specifi c requirements. If you are in a situation in which all the service
 communication is done via JSON except for a single, third-party call
that requires a two-fi eld XML document, using libxml may be too
much overhead. However, more advanced requirements may benefi t from the use of a third-party
library or even a more fl exible wrapper around libxml than is presented in this section.

Building on the steps outlined in the XML parsing section earlier in this chapter, one additional step
is required to use libxml to create XML documents; <libxml/xmlwriter.h> must be imported
into each class creating XML. Within the newsreader sample application, XML generation for
articles has been consolidated to the postXMLDataFromDictionary: method in Utils, as shown in
Listing 4-10.

FIGURE 4-5

c04.indd 89c04.indd 89 13/09/12 2:40 PM13/09/12 2:40 PM

90 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

LISTING 4-10: Article XML Generation (/Application/topstories/topstories/Utils.m)

#import "Utils.h"
#import <libxml/xmlwriter.h>

@implementation Utils
...
+ (NSData*)postXMLDataFromDictionary:(NSDictionary*)dictionary {

 xmlTextWriterPtr _writer;
 xmlBufferPtr _buffer;
 xmlChar *_elementName;
 xmlChar *_elementValue;

 _buffer = xmlBufferCreate();
 _writer = xmlNewTextWriterMemory(_buffer, 0);

 xmlTextWriterStartDocument(_writer, "1.0", "UTF-8", NULL);
 xmlTextWriterStartElement(_writer, BAD_CAST "articles");

 NSArray *posts = [dictionary objectForKey:@"articles"];
 for (NSDictionary *post in posts) {

 // start the post element
 xmlTextWriterStartElement(_writer, BAD_CAST "article");

 // create elements for each post property
 NSArray *keys = [post allKeys];
 for (NSString *key in keys) {
 // you could optionally check class types here
 // and do additional processing, however, the
 // types being processed can be cast as xmlChar*

 // xmlChar pointer to element name and value
 _elementName = (xmlChar*)[key UTF8String];
 _elementValue = (xmlChar*)[[post objectForKey:key]
 UTF8String];

 // write the element
 xmlTextWriterStartElement(_writer, _elementName);
 xmlTextWriterWriteString(_writer, _elementValue);
 xmlTextWriterEndElement(_writer); // </_elementName>
 }

 xmlTextWriterEndElement(_writer); // </article>
 }

 xmlTextWriterEndElement(_writer); // </articles>
 xmlTextWriterEndDocument(_writer);
 xmlFreeTextWriter(_writer);

 // convert buffer to NSData and cleanup
 NSData *_xmlData = [NSData dataWithBytes:(_buffer->content)

c04.indd 90c04.indd 90 13/09/12 2:40 PM13/09/12 2:40 PM

Payloads ❘ 91

 length:(_buffer->use)];
 xmlBufferFree(_buffer);

 return _xmlData;
}

@end

Calling xmlTextWriterStartDocument() adds the XML version and encoding defi nition to
the document. When that is added you can begin calling xmlTextWriterStartElement(),
xmlTextWriterWriteString(), and xmlTextWriterEndElement() as needed to create your XML
structure. xmlTextWriterEndElement() does not require the element name to close; it keeps track
of that for you.

Two important function sets of libxml not required by this example are the ability to add
comments and element attributes to the XML document. Similar to elements, comments can be
added by calling the xmlTextWriterStartComment(), xmlTextWriterWriteComment(), and
xmlTextWriterEndComment() series of functions. Attributes are handled differently; there is a
convenience function, xmlTextWriterWriteAttribute(), that accepts the attribute name and value
and handles the start and end portion of the process for you.

When the method iterates through all the articles, it calls xmlTextWriterEndElement()
one fi nal time to close the parent element (articles in this case) and then calls
xmlTextWriterEndDocument() to complete the process. When complete, the application converts
the XML buffer to NSData so that it can be transmitted in the requests post body.

Now that the application can generate the necessary XML, Listing 4-11 outlines how to transmit
that data to the server.

LISTING 4-11: XML Request Creation and Transmission (/Application/topstories/topstories/

ShareArticlesOperationXML.m)

#import "ShareArticlesOperationXML.h"

@implementation ShareArticlesOperationXML

@synthesize posts, shareType;

- (void)main {

 [self startNetworkActivityIndicator];

 // create the and issue request
 ...

 // convert array of POST objects to array of dictionary
 // objects so the XML writer can handle it
 NSMutableArray *articles = [[NSMutableArray alloc] init];
 for (Post *post in posts) {
 [articles addObject:post.dictionaryRepresentation];
 }
 NSDictionary *articleData =

continues

c04.indd 91c04.indd 91 13/09/12 2:40 PM13/09/12 2:40 PM

92 ❘ CHAPTER 4 GENERATING AND DIGESTING PAYLOADS

 [NSDictionary dictionaryWithObject:articles forKey:@"articles"];

 // convert dictionary to XML data and set body
 NSData *payload = [Utils postXMLDataFromDictionary:articleData];
 [req setHTTPBody:payload];

 // issue network request
 NSHTTPURLResponse *response = nil;
 NSError *error = nil;
 NSData *data = [NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

 // check response got data and process data accordingly
 // you would also typically check the status code here too
 if (data != nil) {
 ...
 }

 [self stopNetworkActivityIndicator];
}

@end

A signifi cant portion of Listing 4-11 should look familiar; it resembles
Listing 4-9. It has been condensed for brevity but follows a similar
process. To simplify the XML generation logic, the array of Post objects
is converted to an NSDictionary following the same steps defi ned in
Listing 4-9. After the XML document has been generated, it is transmitted
to the server.

After executing ShareArticlesOperationXML the user should see an
alert Figure 4-6.

SUMMARY

There are several factors to consider when designing how your application communicates with web
services. When implemented properly, the best architecture to deliver data to the mobile channel is
REST. The optimal data interchange format for iOS applications is JSON. Although XML is also
natively supported, JSON payloads are easier to work with, map more appropriately to Foundation
types, and are more cellular network-friendly.

In the next chapter, you gain an understanding of where errors occur during the networking
communication process and how to handle them gracefully.

FIGURE 4-6

LISTING 4-11 (continued)

c04.indd 92c04.indd 92 13/09/12 2:40 PM13/09/12 2:40 PM

Handling Errors

WHAT’S IN THIS CHAPTER?

 ➤ Sources of networking errors in iOS applications

 ➤ Detecting reachability of the network

 ➤ Rules of thumb for handling errors

 ➤ A design pattern for handling network errors

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. The code is
in the Chapter 5 download and individually named according to the names throughout the chapter.

Thus far, you have learned about networking iPhones with other systems under the implied
assumption that things just work. In this chapter you discard that assumption and dive into
the real world of networking. In this real world, things go wrong, sometimes extremely wrong:
Phones move on and off networks; packets get lost or delayed; network infrastructure fails; and
there is the occasional user error. Writing a networked iOS app would be much easier if things
just worked, but unfortunately that isn’t the case. This chapter reviews some of the things that
can cause networked operations to fail. It discusses how the system informs the app of the fail-
ure, and how the app should gracefully inform the user. A software pattern that is helpful in
handling errors in a clean and consistent manner without requiring error handling code in the
application logic is also described.

UNDERSTANDING ERROR SOURCES

In the early days of iOS there was a weather app from a reputable source. It worked well
on Wi-Fi or a clean cellular network, but if the network was anything less than perfect, this

5

c05.indd 93c05.indd 93 05/10/12 3:49 PM05/10/12 3:49 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://WROX.COM
http://wrox.com

94 ❘ CHAPTER 5 HANDLING ERRORS

weather app seemed to catch a cold and crash to the Home screen. Dozens of other apps respond
poorly to network errors with a blizzard of UIAlertViews frantically informing the user that there is a
“404 Error on Server X” or something similar. Other apps have interfaces that become unresponsive
if the network is slow. Each of these is an example of poor understanding of network failure modes
and anticipation of possible network degradation or failures. If you want to avoid these kinds of
errors and adequately handle networking errors, you must fi rst understand their origin.

When you consider what a byte must do to get from a device to a remote server and back, all within
a couple of hundred milliseconds, it is a miracle that networked devices work at all. The complex-
ity of device networking and internetworking led to the development of layered networks. Layered
networks divide this complex environment into more manageable chunks. Although this helps the
programmer, networking errors like those mentioned previously can occur as data moves between
layers. Figure 5-1 illustrates the layering in the Internet Protocol stack.

Application

Layer

Transport

Layer

Internet

Layer

Hardware

Interface

Physical

Network

Physical

Network

Hardware

Interface

Hardware

Interface

Internet

Layer

Internet

Layer

Transport

Layer

Application

Layer

Identical

Stream

Identical

Packets

Internet

Packet

Internet

Packet

Transport

Stream

Application

Message Application

Message

Transport

Stream

Internet

Packet

Network

Frame
Network

Frame
Network

Frame

Network

Frame

Identical

Message

FIGURE 5-1

c05.indd 94c05.indd 94 05/10/12 3:49 PM05/10/12 3:49 PM

Understanding Error Sources ❘ 95

Every layer performs some sort of error checking, which could be mathematical, logical, or something
else altogether. For example, when the network interface layer receives a frame, it fi rst validates the
contents against the error correcting code, and if it doesn’t match, an error occurs. If the frame never
even arrives, a timeout or connection reset may occur. Error checks occur at every step up the stack on
the way to the application layer, where the message is checked both syntactically and semantically.

Although there is an almost infi nite number of ways that a connection between a phone and a server
may fail, when using the URL loading system in iOS, you can group these causes into three catego-
ries of errors: operating system errors, HTTP errors, and application errors. These categories of
errors correlate to steps in the sequence of operations necessary to make an HTTP request. Figure
5-2 is a simplifi ed sequence diagram of an HTTP request to an application server to provide some
data from an enterprise network. Each of the shaded zones represents an error domain for each of
the three types of errors. Typically, operating system errors are caused by problems reaching the
HTTP server. HTTP errors are caused by problems within the HTTP server or application server.
Application errors are caused by problems with either the data delivered in the request or with any
other systems the application server queries.

Detect

Connection

Resolve Hostname

Connect to HTTP Server

OS Errors HTTP Errors Application Errors

Handle

HTTP Request

Carrier Network Internet HTTP Server App Server Enterprise

Systems
Device App Device OS

Receive HTTP Response

Send HTTP Request

FIGURE 5-2

The steps in the sequence become much more complicated if the request is a secure HTTPS request
or if the HTTP server redirects the client. For many of these steps, there are numerous substeps,
such as the sequence of SYN and SYN-ACK packets involved in establishing a TCP connection.
The following sections describe each error category in greater detail.

Operating System Errors

Operating system (OS) errors are errors caused by a data packet not reaching its intended target.
That data packet may be part of establishing a connection or occur somewhere in the middle of the
connection. OS errors can be caused by several conditions:

 ➤ Lack of a network — If the device doesn’t have a data network connection, the connection
attempt is rejected quickly or fails midstream. These types of errors can be anticipated using
the Reachability framework provided by Apple, which is covered later in this section.

c05.indd 95c05.indd 95 05/10/12 3:49 PM05/10/12 3:49 PM

96 ❘ CHAPTER 5 HANDLING ERRORS

 ➤ Inability to route to the intended host — The device may have a network connection, but
the intended target of the connection may be on a segregated network or offl ine. These
errors can sometimes be detected quickly by the operating system but could potentially
result in a connection timeout.

 ➤ No application listening on the target port — After the request arrives at the target host, the
packet is delivered to the port number specifi ed in the request. If no server is listening on that
port or if too many connection requests are queued, then the connection request will be rejected.

 ➤ Inability to resolve the target hostname — If the name of the target host cannot be resolved,
then the URL loading system returns an error. Often these errors can be due to confi gura-
tion mistakes or an attempt to access a host on a segregated network with no external name
resolution.

In the URL loading system of iOS, operating system errors are reported to the application in an
NSError object. iOS uses NSError to communicate errors between software components. The key
benefi t of NSError when compared to a simple error code is that NSError objects contain an error
domain property.

The use of NSError objects is not limited to the operating system though. Your app can create its
own NSError objects and use them to propagate error messages around the app. The following snip-
pet illustrates an application method that uses NSError to communicate a failure back to the calling
view controller.

- (id)fetchMyStuff:(NSURL*)url error:(NSError**)error
{
 BOOL errorOccurred = NO;

 // some code that makes a call and may fail

 if (errorOccurred) //some kind of error
 {
 NSMutableDictionary *errorDict = [NSMutableDictionary dictionary];
 [errorDict setValue:@"Failed to fetch my stuff"
 forKey:NSLocalizedDescriptionKey];
 *error = [NSError errorWithDomain:@"myDomain"
 code:kSomeErrorCode
 userInfo:errorDict];
 return nil;
 } else {
 return stuff
 }

}

The domain property segregates error numbers based on the library or framework that produced
them. Using domains, framework developers do not need to worry about overlapping error codes
because the domain property defi nes which framework generated the error. For example, frame-
works A and B can both have an error code 1, but the two are distinguished by the unique domain
values provided by each framework. Consequently, if your code needs to distinguish between unique
NSError values, it must compare both the code and domain properties of the NSError object.

c05.indd 96c05.indd 96 05/10/12 3:49 PM05/10/12 3:49 PM

Understanding Error Sources ❘ 97

An NSError object has three primary properties:

 ➤ Code — An NSInteger value that indicates which error occurred. This number is unique to
the error domain that instantiates the error.

 ➤ Domain — An NSString pointer that specifi es the domain of the error. Example domains
include NSPOSIXErrorDomain, NSOSStatusErrorDomain, and NSMachErrorDomain.

 ➤ User Info — An NSDictionary pointer containing values specifi c to the error that occurred.

Many of the errors that occur within the URL loading system come from the NSURLErrorDomain
domain, and the code values are frequently drawn from the error codes defi ned in CFNetworkErrors.h.
As with any constant value provided by iOS, your code should rely on the defi ned constant name for
the error, not the actual error code value. For example, the error code if the client cannot connect to the
host is -1004 with a defi ned constant of kCFURLErrorCannotConnectToHost. Your code should never
directly reference -1004 because this value may change in future revisions of the OS; instead it should
use the kCFURLError provided enumeration name.

The following code example illustrates making an HTTP request using the URL loading system.

NSHTTPURLResponse *response=nil;
NSError *error=nil;
NSData *myData=[NSURLConnection sendSynchronousRequest:request
 returningResponse:&response
 error:&error];

if (!error) {
// No OS Errors, keep going in the process
 ...
} else {
 // Something low level broke
}

Notice that the NSError object is declared as a pointer to nil. The NSURLConnection object instan-
tiates only the NSError object if an error occurs. The URL loading system owns the NSError object;
you should retain the object if your code will need it later. If the NSError pointer still points to nil
after the synchronous request completes, then no low-level OS error occurred. At this point your
code knows that no OS level has occurred, but an error may have occurred at a higher layer in the
protocol stack.

If your application makes an asynchronous request, the NSError object is returned to the delegate
class on the method with the following signature:

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error

This message is the fi nal message delivered to the delegate for the request, and the delegate must dis-
cern the cause of the error and react appropriately. In the following example, the delegate displays a
UIAlertView to the user:

- (void) connection:conn didFailWithError:error {
 UIAlertView *alert = [UIAlertView alloc] initWithTitle:@"Network Error"

c05.indd 97c05.indd 97 05/10/12 3:49 PM05/10/12 3:49 PM

98 ❘ CHAPTER 5 HANDLING ERRORS

 message:[error description]
 delegate:self
 cancelButtonTitle:@"Oh Well"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

This code reports errors to the user but in an abrupt and unfriendly way. In the iOS Human
Interface Guidelines (HiG), Apple recommends against overuse of UIAlertViews because it breaks
the illusion of a magical device. The Gracefully Handling Network Errors section reviews a pattern
for handling errors cleanly and consistently with a pleasing user interface.

Another major cause of communication errors from iOS devices is the inability of the device to
reach its target server because it lacks a network connection. You can avoid many OS errors by fi rst
checking the network status before attempting a network request. Keep in mind that these devices
can rapidly move on and off the network; therefore, it is reasonable to check the network reachabil-
ity before each call.

iOS provides many ways to determine the status of a device’s network connection as part
of the SystemConfiguration framework. You can fi nd details on the low-level API in
SCNetworkReachability reference documentation. The API is powerful but also somewhat cryptic.
Thankfully, Apple provides an example program called Reachability that implements a simplifi ed,
high-level wrapper around SCNetworkReachability. Reachability is available in the iOS Developer
Library.

The Reachability wrapper provides four major pieces of functionality:

 ➤ An indication of whether or not the device has a functional network connection

 ➤ An indication of whether a specifi c host can be reached with the current network
connections

 ➤ An indication about which networking technology is being used: Wi-Fi, WWAN, or none

 ➤ Notifi cations of any changes in the network state

To use the Reachability API, download the example program from the iOS developer library at
http://developer.apple.com/library/ios/#samplecode/Reachability/Introduction/

Intro.html, and add Reachability.h and Reachability.m to your app’s XCode project. In
addition, you need to add the SystemConfiguration framework to your XCode project. Adding the
SystemConfiguration framework to your XCode project entails editing your project confi guration.
Figure 5-3 shows the steps required to add the SystemConfi guration framework to your XCode
project.

After selecting the project target, scroll-down the settings to the Linked Frameworks and Libraries
section and press the plus sign to add a framework. The framework selector then appears. Select the
SystemConfiguration framework and press the add button to add it to your project.

c05.indd 98c05.indd 98 05/10/12 3:49 PM05/10/12 3:49 PM

http://developer.apple.com/library/ios/#samplecode/Reachability/Introduction/Intro.html
http://developer.apple.com/library/ios/#samplecode/Reachability/Introduction/Intro.html

Understanding Error Sources ❘ 99

The following code snippet checks to see if a network connection is available. It does not guaran-
tee that any particular host or IP address is reachable; it just indicates that a network connection
exists.

#import "Reachability.h"
...
if ([[Reachability reachabilityForInternetConnection]
 currentReachabilityStatus] == NotReachable) {
 // handle the lack of a network
}

In some situations you may want to change certain actions, disable UI elements, or change timeout
values if the device is on a limited network. If your application needs to know the connection type it
is currently using, use the following code:

#import "Reachability.h"
...
NetworkStatus reach = [[Reachability reachabilityForInternetConnection]
 currentReachabilityStatus];
 if (reach == ReachableViaWWAN) {
 // Network Is reachable via WWAN (aka. carrier network)
} else if (reach == ReachableViaWiFi) {
 // Network is reachable via WiFi
}

1. Select Targets

4. Press Add

3. Select SystemConfiguration.framework

2. Click the add

Frameworks button

FIGURE 5-3

c05.indd 99c05.indd 99 05/10/12 3:49 PM05/10/12 3:49 PM

100 ❘ CHAPTER 5 HANDLING ERRORS

It is also useful to know if the reachability status of the device changes so that you can modify appli-
cation behavior proactively. The following code snippet initiates monitoring of network status:

#import "Reachability.h"
...
[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(networkChanged:)
 name:kReachabilityChangedNotification
 object:nil];
Reachability *reachability;
reachability = [[Reachability reachabilityForInternetConnection] retain];
[reachability startNotifier];

This code registers the current object as an observer for notifi cations with the name
kReachabilityChangedNotification. NSNotificationCenter calls the method named network-
Changed: on the current object. It passes into that object an NSNotification with the new reach-
ability status when it changes. The following example demonstrates the notifi cation listener:

- (void) networkChanged: (NSNotification*)notification
{
 Reachability* reachability = [notification object];
 if (reachability == ReachableViaWWAN) {
 // Network Is reachable via WWAN (a.k.a. carrier network)
 } else if (reachability == ReachableViaWiFi) {
 // Network is reachable via WiFi
 } else if (reachability == NotReachable) {
 // No Network available
 }
}

Reachability can also determine if a specifi c host is reachable on the current network. You can use
this feature to alter the behavior of an enterprise app based on whether the app is on an internal seg-
regated network or on the open Internet. The following code sample illustrates this feature:

Reachability *reach = [Reachability
 reachabilityWithHostName:@"www.captechconsulting.com"];
if (reachability == NotReachable) {
 // The target host is not reachable available
}

Keep in mind that this feature requires a round trip to the target host. If used for each request, it
can add signifi cant network overhead and latency to the application. Apple recommends that host
reachability detection not be performed on the main thread. There is a possibility that the attempt
to reach the host may block the main thread, which will cause the UI to freeze.

OS Errors are your fi rst indication that something has failed in your request. App developers some-
times ignore them, but if you ignore them it is at the peril of your app. Because HTTP leverages lay-
ered networking, there is another layer of potential failures that may occur at the HTTP layer or at
the application layer.

c05.indd 100c05.indd 100 05/10/12 3:49 PM05/10/12 3:49 PM

http://www.captechconsulting.com

Understanding Error Sources ❘ 101

HTTP Errors

HTTP Errors are caused by problems with the HTTP request, HTTP server, or application server.
HTTP errors are delivered to the requesting client via a status code in the HTTP response.

A 404 status is a common example of an HTTP error. It indicates that the resource specifi ed in the
URL cannot be found. The HTTP header shown in the following code snippet is an example of
the raw output from an HTTP server when it cannot fi nd the requested resource.

HTTP/1.1 404 Not Found
Date: Sat, 04 Feb 2012 18:32:25 GMT
Server: Apache/2.2.14 (Ubuntu)
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 248
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=iso-8859-1

You can fi nd the status code in the fi rst line of the response. An HTTP response may have an asso-
ciated message body containing friendly human readable content describing what happened. You
should not use the presence or absence of a response body as an indicator as to whether the HTTP
request succeeded.

There are fi ve categories of HTTP errors:

 ➤ Informational 100-level — Solely informational from the HTTP server and indicates that
the processing of the request will continue but with a caveat.

 ➤ Successful 200-level — The server processed the request. Each 200-level status indicates a dif-
ferent result of the successful request. For example, a 204 indicates that the request was suc-
cessful, but no payload was returned to the client.

 ➤ Redirection needed 300-level — Indicates that the client must perform some action to continue
the request because the desired resource has moved. The synchronous request methods of the
URL loading system handle redirects automatically without your code being notifi ed. If your
application needs to do custom handling with redirects, it should use asynchronous requests.

 ➤ Client Errors 400-level — Indicates that the client has sent erroneous data that the server
cannot correctly handle. For example, an unknown URL or a malformed HTTP header
causes errors in this range.

 ➤ Downstream errors 500-level — Indicates that an error occurred between the HTTP server
and any downstream application servers. For example, if the web server calls a JavaEE
application server and the servlet fails with a NullPointerException, then the client
receives a 500-level error.

The URL loading system in iOS handles the parsing of HTTP headers and makes it easy to retrieve the
HTTP status. If your code makes a synchronous call using an HTTP or HTTPS URL, then
the returned response object will be an instance of NSHTTPURLResponse. The NSHTTPURLResponse
object has a statusCode property that returns the numeric HTTP status of the request. The

c05.indd 101c05.indd 101 05/10/12 3:49 PM05/10/12 3:49 PM

102 ❘ CHAPTER 5 HANDLING ERRORS

following code demonstrates the validation of both the NSError object and the return of a successful
status from the HTTP server.

NSHTTPURLResponse *response=nil;
NSError *error=nil;
NSData *myData = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&response
 error:&error];

// Check the return
if ((!error) && ([response statusCode] == 200)) {
 // looks like things worked
} else {
 // things broke, again.
}

If the URL of the request could be something other than HTTP, the application should validate
that the response object is actually an NSHTTPURLResponse. The preferred method to validate the type
of the object is using the isKindOfClass: method on the returned object, as shown in the following
code:

if ([response isKindOfClass:[NSHTTPURLResponse class]]) {
 // It is a HTTP response, so we can check the status code
 ...

For defi nitive information on HTTP status codes see W3 RFC 2616 at http://www.w3.org/
Protocols/rfc2616/rfc2616.html.

Application Errors

This section discusses errors generated by the next layer in the network protocol stack: the applica-
tion layer. Application errors differ from OS or HTTP errors because there is no standard set of
values or causes for these errors. These errors are caused by the business logic and application run-
ning in the service tier. In some situations the errors may be code failures, such as exceptions, but in
others the errors may be semantic errors, such as an invalid account number supplied to the service.
In the former situation it is advisable to generate an HTTP 500-level error, but the latter scenario
should return an error code in the application payload.

For example, an application error would be reported in a mobile banking application if the user
tried to transfer more funds from an account than were available for transfer. If such a request
were made, the OS would report that the request was successfully sent and a response received. The
HTTP server would report that the request was received and a response sent, but the application
layer must report that the transaction failed.

The best practice for reporting application errors is to wrap all application payload data in a stan-
dard envelope that contains a consistent location for application errors. In the funds transfer exam-
ple, the business payload of a successful transfer response may look like:

{ "transferResponse":{
 "fromAccount":1,

c05.indd 102c05.indd 102 05/10/12 3:49 PM05/10/12 3:49 PM

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Rules of Thumb for Handling Errors ❘ 103

 "toAccount":5,
 "amount":500.00,
 "confirmation":232348844
 }
}

The response contains the source and destination accounts, the amount transferred, and a confi rma-
tion number. Including any error codes and messages directly into the transferResponse object
would make locating the error code and message diffi cult. If each action includes error reporting in
its own response object, any error reporting logic could not be reused across the application. Using
a packet structure like the one in the following code sample allows the application to quickly deter-
mine if an error occurred by checking for the existence of the "error" object in the response JSON
payload:

{"error":{
 "code":900005,
 "messages":"Insufficient Funds to Complete Transfer"
 },
 "data":{
 "fromAccount":1,
 "toAccount":5,
 "amount":500.00
 }
}

Any UI code to report errors can easily be reused because the error information is always in the
error attribute of the response payload. Additionally, handling of the actual transaction payload is
simplifi ed because it is always under the same attribute name.

Regardless of the cause of a failed request, either OS, HTTP layer, or application, your application
must know how to respond. You should spend time early in development considering all the failure
modes of the application and design a consistent method to detect and respond to them.

RULES OF THUMB FOR HANDLING ERRORS

Errors can be caused by a multitude of conditions, and the best way to handle them can vary as
greatly as the apps you write. Despite the complexity, some rules of thumb can help you cope with
the uncontrolled nature of error conditions.

Include Error Handling In the Interface Contract

When designing a service interface, it is a mistake to specify only the input, outputs, and operations
of the service. The interface contract should also specify how errors are communicated to the client.
A service interface should leverage industry-standard means to communicate errors wherever pos-
sible. For example, the server should not defi ne a new HTTP status value for a server side failure;
instead it should use the appropriate 500-level status. If standard values are used, both the client-
side and the server-side developers will have the same understanding of how errors will be commu-
nicated. Applications should never depend on accidental indications or overloaded property values
to determine the presence of an error.

c05.indd 103c05.indd 103 05/10/12 3:49 PM05/10/12 3:49 PM

104 ❘ CHAPTER 5 HANDLING ERRORS

Application developers should also not depend on the behavior of the current server software stack
to determine how to handle errors. When an iOS app is deployed, the server software stack may
change behavior due to a future upgrade or replacement.

Error Statuses Lie

Mobile networking has one nonobvious behavior that differs dramatically from errors in traditional
web applications: ambiguous error reporting. There are three possible outcomes of any network
request from a mobile device to a server:

 ➤ The device has absolute positive confi rmation that the operation succeeded. For example,
both the NSError and HTTP status values indicate success, and the returned payload con-
tains syntactically and semantically correct information.

 ➤ The device has absolute negative confi rmation that the operation failed. For example, the
returned application payload contained a failure indicator from the server that is specifi c to
the operation attempted.

 ➤ The device has ambiguous negative confi rmation that the operation failed. For example, the
mobile app sends an HTTP request to transfer funds between two accounts. The request is
received and successfully processed by the bank systems; however, the reply gets lost due to
a network failure, and the NSURLConnection reports a timeout. The timeout did occur, but
only after the transfer request was successful. If the transfer is retried, it results in a dupli-
cate transfer and possibly overdrawn accounts.

This third scenario is the scenario that can cause unexpected and undetected misbehavior of the
app. If the app developers do not know that the third scenario exists, they may make bad assump-
tions about a failure and inadvertently retry an operation that already succeeded. It is not just
enough to know that the full request failed; rather, the developers must consider what could cause
the request to fail and whether it is appropriate to automatically retry every failed request.

Validate the Payload

App developers should not impute that the payload is valid based on the fact that no OS or HTTP
error was reported. Many scenarios can occur in which the request appears to have succeeded, but
the payload is invalid. Any payload transferred between client and server should have a mechanism
for validation. JSON and XML are examples of payload formats that have validation mechanisms,
but neither comma separated value (CSV) fi les nor HTML do.

Separate Errors from Normal Business Conditions

The service contract should not report normal business conditions as errors. For example, if you
have a user whose account is locked due to potential fraud, the lock status should be reported in the
data payload rather than as an error condition. Separating errors from normal business conditions
enables your code to maintain proper separation of concerns. Errors should be reserved for situa-
tions when things are broken.

c05.indd 104c05.indd 104 05/10/12 3:49 PM05/10/12 3:49 PM

Gracefully Handling Network Errors ❘ 105

Always Check HTTP Status

Always check the HTTP status on HTTP responses, and be explicit about the status values that are
successful. This is the case even when making repeated calls to the same service. The status of the
server can change at any time, even between juxtaposed calls.

Always Check NSError

Your app code should always check the returned NSError value to make sure nothing broke at the
OS level. This is true even if you know that the app always runs on a well-run and tightly controlled
Wi-Fi network. Things do not always work correctly, and your code needs to be defensive when
dealing with the network.

Develop a Consistent Method for Handling Errors

The causes of networking errors are too numerous to enumerate, and the variety and scope of their
impact can be overwhelming. When you design your app, don’t just focus on consistent user inter-
face patterns or a consistent naming scheme. You should also design a consistent pattern for dealing
with network errors. This pattern should consider all the types of errors your app may encounter.
Your app cannot consistently communicate errors to the user if it is not handling those errors in a
consistent manner internally.

Always Set a Timeout

The default request timeout interval for an HTTP request in iOS is 4 minutes, which is a long time
for a mobile application, and most users do not spend 4 consecutive minutes in any application.
Developers need to choose a reasonable timeout value by evaluating the probable response times for
any network requests and then factor in network delays for the worst-case network scenario. The
following example demonstrates creating a request with a 20-second timeout.

- (NSMutableURLRequest *) createRequestObject:(NSURL *)url {
 NSMutableURLRequest *request = [[[NSMutableURLRequest alloc]
 initWithURL:url
 cachePolicy:NSURLCacheStorageAllowed
 timeoutInterval:20
 autorelease];
 return request;
}

GRACEFULLY HANDLING NETWORK ERRORS

iOS makes network communications relatively easy, but responding to all the types of errors and edge
conditions that can occur is not easy. It is all too common to hook up networking code to see results
quickly and plan on handling all the error conditions later. For nonmobile applications you can usu-
ally get away with this approach because the network connectivity from a workstation is predictable.
If the network was there when the application loaded, it is almost always still there when the user
loads the next page. In the rare case that it is not, the developer can depend on the browser to take
care of displaying a message to the user. If you delay adding exception handling in a mobile app, you

c05.indd 105c05.indd 105 05/10/12 3:49 PM05/10/12 3:49 PM

106 ❘ CHAPTER 5 HANDLING ERRORS

end up in a situation in which the network code needs signifi cant refactoring as every new error case is
encountered.

This section describes a design pattern that creates an elegant and robust framework for exception
handling and requires little work to extend it for new errors in the future.

Consider the three major exception cases for mobile communications:

 ➤ The remote server is not reachable due to insuffi cient network connectivity from the device.

 ➤ The remote server returns an error response because of an OS error, HTTP error, or appli-
cation error.

 ➤ The device attempts an unauthenticated request to a server that requires authentication.

As the number of potential exception conditions increase linearly, the amount of code required to
handle them increases exponentially. If your code attempts to deal with each type of error on each
type of request, the complexity and volume of your code also increases exponentially. This pattern
attempts to bend that exponential curve back to a more linear curve.

Design Pattern Description

The pattern described in this section uses a Command Dispatch pattern combined with broadcast
notifi cations. This pattern consists of the following object types:

 ➤ Controllers

 ➤ Command objects

 ➤ Exception listeners

 ➤ Command queues

The next section describes the behavior at a high level for each type of object.

Object Descriptions

This section describes the attributes and properties of the objects comprising the Command
Dispatch pattern.

Controllers
Controllers are typically view controllers that request data and process the results. In this design
pattern the controllers do not need to contain any exception handling logic. The only error cases
they need to handle are a successful completion or a completely unrecoverable failure of the service.
In the unrecoverable failure scenario, the controller would typically pop itself off the view stack
because the user has already been informed of the failure by the exception listener objects described
next. Controllers create commands and listen for the command’s completion.

Command Objects
Command objects correlate to the different network transactions that the application performs.
Examples of command object requests include retrieving images, fetching JSON data from a

c05.indd 106c05.indd 106 05/10/12 3:49 PM05/10/12 3:49 PM

Gracefully Handling Network Errors ❘ 107

specifi c REST endpoint, or POSTing information to a service. A command object is a subclass of
NSOperation. Because much of the logic in a command object is common to all other command
objects, you can create a superclass command object to handle it and let specifi c commands inherit
that logic. A command object has the following attributes:

 ➤ Completion notifi cation name — In iOS, controllers register themselves as observers for
this notifi cation name. When the service call returns successfully, the command object uses
NSNotificationCenter to broadcast a notifi cation with this name. Although it is usually unique
to the command class, in some situations it can be unique to a specifi c instance if there are mul-
tiple controllers issuing the same command types that want to distinguish individual responses.

 ➤ Server error exception notifi cation name — Special exception handler objects listen for this
notifi cation. The command object uses NSNotificationCenter to broadcast a message
with this name when the server times out or returns an OS or HTTP error not related to
authentication. All command classes usually share the same exception names, and therefore
the same exception listeners. But different classes of commands may necessitate different
exception listeners and have different server error exception names.

 ➤ Reachability exception notifi cation name — The command object produces a notifi cation
of this type when it detects a lack of reachability to the Internet or a target host. Another
exception listener may listen for this type of exception. In some apps this type of exception
is not needed because the server error exception listener handles the reachability exceptions.

 ➤ Authentication exception notifi cation name — The command object may produce a notifi ca-
tion of this type if it determines the user is not authenticated or the server reports an unau-
thenticated status. A third exception listener waits for this type of notifi cation to appear. The
authentication notifi cation names are typically shared across all notifi cations in the app.

 ➤ Custom attributes — These attributes are specifi c to the request being made. The issuing
controller typically supplies these values because they are the specifi c business data needed
for the service call and vary for each one.

Exception Listeners
Each exception listener is typically instantiated by the app delegate and remains in the background
waiting for its specifi c type of notifi cation. In many cases the exception listener displays a modal
view controller when it receives a notifi cation, which is described later in the Exception Listener
behavior section.

Command Queue
Controllers submit commands to the command queue for processing, and an app may have one
or more command queues. In iOS, command queues are subclasses of NSOperationQueue. The
main queue should not be used as a command queue because its operations run on the user inter-
face thread, which impairs the user experience when executing long-running operations. Using
NSOperationQueues provides built-in capability for managing the number of active operations and
interdependencies between operations.

Object Behaviors

Each of these objects has a distinct part to play in successfully completing a network transaction.
The following section describes their respective roles in this pattern.

c05.indd 107c05.indd 107 05/10/12 3:49 PM05/10/12 3:49 PM

108 ❘ CHAPTER 5 HANDLING ERRORS

Controller Behaviors
Controllers are focused on executing UI and business logic. When a controller wants data from a
service, it should take the following actions:

 1. Create a network command object.

 2. Initialize the request for specifi c attributes of the command object.

 3. Register as an observer for the completion of the command.

 4. Push the command onto an operation queue for execution.

 5. Wait for the NSNotificationCenter to deliver a completion notifi cation.

When the operation completes, the controller receives a completion notifi cation and takes the fol-
lowing actions:

 1. Checks the status of the operation to see if it was successful.

 2. If successful, it processes the received data. The received data is supplied to the controller
via the userInfo attribute of the NSNotification object. NSOperationQueues execute
NSOperation objects on their own thread. When the operation completes it sends an
NSNotification via the NSNotificationCenter. The notifi cation callback methods are
called on the thread on which the NSOperation runs, which in the example ensures that it
arrives on a thread other than the main thread. If the controller manipulates the UI, then it
needs to make those changes on the main thread, usually via Grand Central Dispatch (GCD).

 3. If unsuccessful, the controller has a number of options depending on the application
requirements. For example, it may pop itself off the view stack or update the UI, indicating
that the data is not available. It should not ask to retry or show a modal alert because those
actions are the responsibility of an exception listener.

 4. The controller should unregister itself as an observer for the commands’ completion notifi -
cation. In some cases this is not desirable if the controller wants to monitor for other data
arriving from the same command type.

Notice that controllers do not have any logic to handle retries, timeouts, authentication, or reach-
ability; that logic is all done by the commands and exception listeners.

If the controller wants to guarantee that only it receives the returned data, it should alter the com-
pletion notifi cation name for that instance of the command object to be a unique value prior to plac-
ing it on the queue and listen for notifi cations of that unique name.

Command Object Behaviors
Command objects are responsible for calling the target service and broadcasting the results of that
service call. The steps generally taken by a command object follow:

 1. Check for reachability. If the network is not reachable, broadcast a reachability exception
notifi cation.

 2. Check for authentication status if required. If the user is not yet authenticated, broadcast an
authentication exception notifi cation.

c05.indd 108c05.indd 108 05/10/12 3:49 PM05/10/12 3:49 PM

Gracefully Handling Network Errors ❘ 109

 3. Build the network request using the custom properties provided by the controller. Usually
the endpoint URL is specifi ed as a static attribute of the command object class or loaded
from a confi guration subsystem.

 4. Issue the network request using a synchronous request. See the “Synchronous Requests”
section in Chapter 3 for more details on this.

 5. Check the status of the request. If the status is an OS or HTTP error, it broadcasts a server
exception notifi cation. If the error is an authentication error, it broadcasts an authentication
exception notifi cation.

 6. Parse the results. See Chapter 4.

 7. Broadcast a completion notifi cation with a successful status.

When a command object broadcasts a notifi cation, completion or otherwise, it needs to create a
dictionary object that contains a copy of itself, the status of the call, and any data returned as a
result of the call. The self-copy is necessary because an instance of an NSOperation can be executed
only once. As discussed in the next section, a command may be resubmitted when the listener han-
dles the exception.

The synchronous request API is ideally suited to this pattern because the commands are
executed on a background thread instead of the main thread. If the request transmits or returns a
larger amount of data than you want to squeeze into memory, your application needs to use asyn-
chronous requests. Because the main function of an NSOperation is a single method, the opera-
tion must implement concurrency locking to block its main method until the asynchronous call
completes.

Exception Listener Behaviors
Exception listeners are the magic that makes this pattern especially powerful. These objects are
usually created by the app delegate and remain in memory listening for notifi cations. When a noti-
fi cation is received, it is the responsibility of the listener to inform the user and potentially solicit a
response from the user (other than throwing the phone through a wall). In the case of an exception,
the notifi cation contains a copy of the command that triggered the exception, and after the user has
responded, the listener usually resubmits the command back onto the queue to be retried. One inter-
esting caveat for the exception listeners is that because multiple commands may be in-fl ight there may
be multiple exception notifi cations generated while the user is still responding to the fi rst exception.
Because of this, the exception listeners must collect exception notifi cations and resubmit all the trig-
gering commands after the user responds to the fi rst exception. This collection of errors prevents a
common form of app misbehavior where the user is bombarded with UIAlertViews triggered by the
same fundamental problem.

The fl ow for a server exception can be as follows:

 1. Present a nice looking modal dialog explaining the error and giving the user the option to
cancel or retry.

 2. Collect any other server exceptions that may be broadcast.

 3. If the user selects retry, dismiss the dialog and resubmit all the collected commands.

c05.indd 109c05.indd 109 05/10/12 3:49 PM05/10/12 3:49 PM

110 ❘ CHAPTER 5 HANDLING ERRORS

 4. If the user selects cancel, dismiss the dialog. The listener should set the command completion
status to failed for all the collected commands and ask each one to broadcast a completion
notifi cation.

The fl ow for a reachability exception may be as follows:

 1. Present a nice looking modal dialog informing the users they need to be on a network with
connectivity.

 2. Collect any other service exceptions that may be broadcast.

 3. Listen for reachability changes. When the network is reachable, dismiss the dialog and
resubmit the collected commands.

The fl ow for an authentication exception is a bit more complicated. Keep in mind that commands
are independent of one another, and many can be in fl ight at any one time. The authentication fl ow
does not generate authentication exception notifi cations. The fl ow may look like this:

 1. Present a login view modally.

 2. Continue collecting commands that failed due to authentication errors.

 3. If the user cancels, the listener should send a completion notifi cation for the collected com-
mands with a failure status.

 4. If the user provides credentials, create a login command, and place it on the command queue.

 5. Wait for a completion notifi cation from the login command.

 6. If the login didn’t succeed due to a username/password mismatch, return to step 2.
Otherwise, dismiss the login view controller.

 7. If the login command was successful, resubmit the triggering commands to the command queue.

 8. If the login command failed, then ask the triggering commands to send a completion notifi -
cation with a failure status.

Command Queue Behaviors
Command queues are native iOS NSOperationQueue objects. By default a command queue operates
in fi rst-in-fi rst-out (FIFO) order. When your code adds a command object to an NSOperationQueue
it performs the following actions:

 1. Retain the command object so that its memory will not be released.

 2. Wait until an available slot comes open at the head of the queue.

 3. When the command object arrives at the head of the queue the start method of the com-
mand object is invoked.

 4. The main method of the command object is invoked.

Refer to iOS API documentation on the NSOperation and NSOperationQueue objects for detailed
information on the interaction between the queue and the command objects.

c05.indd 110c05.indd 110 05/10/12 3:49 PM05/10/12 3:49 PM

Gracefully Handling Network Errors ❘ 111

Command Dispatch Pattern Example

This section provides an example of the Command Dispatch pattern by calling an authenticated ser-
vice from YouTube. In this type of communication, a number of failure modes need to be considered.

 ➤ The user may not provide valid credentials.

 ➤ The device may not be on a functional network.

 ➤ YouTube may not respond in a timely manner or may fail for some reason.

The application needs to handle each of these conditions in an elegant and reliable manner. This
example surveys the major code components and discusses some of the implementation details.

The app in the included project is a simple demonstration app. It is not intended for anything other
than demonstrating this pattern.

Prerequisites

The things you need to have to successfully see this app operate are as follows:

 ➤ A YouTube account

 ➤ At least one video uploaded to your YouTube account (it doesn’t need to be public, just
uploaded to the account)

 ➤ The project zip fi le from the Wrox companion website

This project was developed using XCode 4.1 and iOS 4.3. The application was developed using the
YouTube API as it stood in October 2011. It is under Google’s control however and is subject to change.

Major Objects

After you download the project and load it up in XCode, you see the following classes.

Commands
In the commands group you’ll fi nd the following.

BaseCommand
The BaseCommand object is the superclass for all the command objects. It provides many methods
needed by every command class. These methods include:

 ➤ Methods to send completion, error, and login needed notifi cations

 ➤ A method to help issuing objects listen for completion notifi cations

 ➤ Methods used to support the actual NSURLRequests

BaseCommand extends NSOperation so all the logic of the command is in the main method of each
subclass of this object.

c05.indd 111c05.indd 111 05/10/12 3:49 PM05/10/12 3:49 PM

112 ❘ CHAPTER 5 HANDLING ERRORS

GetFeed
The main method of this command, shown in Listing 5-1, calls YouTube and loads the list of videos
uploaded by the currently logged in user. YouTube determines the identity of the logged in user by
a token passed in an HTTP header on the request. Without that header, YouTube returns an HTTP
status code of 0 instead of a more standard 4xx HTTP error.

LISTING 5-1: CommandDispathDemo/service-interface/GetFeed.h

- (void)main {
 NSLog(@"Starting getFeed operation");
 // Check to see if the user is logged in
 if ([self isUserLoggedIn]) { // only do this if the user is logged in

 // Build the request
 NSString *urlStr =
 @"https://gdata.youtube.com/feeds/api/users/default/uploads";
 NSLog(@"urlStr=%@",urlStr);
 NSMutableURLRequest *request =
 [self createRequestObject:[NSURL URLWithString:urlStr]];

 // Sign the request with the user’s auth token
 [self signRequest:request];

 // Send the request
 NSHTTPURLResponse *response=nil;
 NSError *error=nil;
 NSData *myData = [self sendSynchronousRequest:request
 response_p:&response
 error:&error];

 // Check to see if the request was successful
 if ([super wasCallSuccessful:response error:error]) {
 [self buildDictionaryAndSendCompletionNotif: myData];
 }
 }
}

In this code listing, many of the methods that called on self are implemented in the BaseCommand
superclass. The GetFeed command is prototypical of the Command Dispatch pattern. The main
method checks to make sure the user is logged in because there’s no reason to call the server if you
know this call will fail. If the user is logged in, then the code builds the request, adds the authenti-
cation header to it, then sends a synchronous request. The fi nal part of the code calls a superclass
method to determine if the call succeeded. This method uses both the NSError object and the HTTP
status code from the NSHTTPURLResponse object to determine success. If the call failed, then either
an error notifi cation or login needed notifi cation is broadcast.

LoginCommand
This method sends the request to YouTube to authenticate the user. This command is somewhat
more involved because it doesn’t use several of the helper methods found in the BaseCommand object.

c05.indd 112c05.indd 112 05/10/12 3:49 PM05/10/12 3:49 PM

https://gdata.youtube.com/feeds/api/users/default/uploads

Gracefully Handling Network Errors ❘ 113

It does not use these methods because it should not generate a Needs Authentication failure message
if the login fails. It reports only a status of good completion or failed completion.

The login listener handles the errors that come from failed login attempts. For more information
on the protocol that YouTube requires, reference http://code.google.com/apis/youtube/2.0/
developers_guide_protocol_understanding_video_feeds.html.

Exception Listeners
In the listeners group you’ll fi nd the view controllers that are presented when an error
occurs or when the user needs to log in. Both the NetworkErrorViewController and the
LoginViewController extend the InterstitialViewController, which provides several com-
mon helper methods. Both view controllers are presented as modal view controllers.

 ➤ NetworkErrorViewController: Provides the user with the choice to retry or abort the
failed operations. If the user selects retry, then the failed commands are placed back on the
operation queue.

 ➤ LoginViewController: Solicits a username and password from the user. It stays at the top
of the view stack until the user successfully logs in.

 ➤ InterstitialViewController: As a parent of the other exception listeners, it provides
support functionality such as the code to collect multiple error notifi cations and re-dispatch
them upon error resolution.

The key code in the listeners is found in the viewDidDisappear: method (see Listing 5-2), which
is called when the view has completely disappeared. If the commands are queued before the view
has completely disappeared, there is a chance that another error may trigger a repeated presenta-
tion of the view, thereby causing a fatal error in the application. iOS 5 has a better capacity to
handle this case because users can specify a block of code to execute when the view disappears.
The code does not need to determine the cause of the disappearance before handling the trigger-
ing commands.

LISTING 5-2: CommandDispatchDemo/NetworkErrorViewController.m

- (void) viewDidDisappear:(BOOL)animated {
 if (retryFlag) {
 // re-enqueue all of the failed commands
 [self performSelectorAndClear:@selector(enqueueOperation)];
 } else {
 // just send a failure notification for all failed commands
 [self
 performSelectorAndClear:
 @selector(sendCompletionFailureNotification)];
 }
 self.displayed = NO;
}

c05.indd 113c05.indd 113 05/10/12 3:49 PM05/10/12 3:49 PM

http://code.google.com/apis/youtube/2.0/developers_guide_protocol_understanding_video_feeds.html
http://code.google.com/apis/youtube/2.0/developers_guide_protocol_understanding_video_feeds.html

114 ❘ CHAPTER 5 HANDLING ERRORS

The application delegate registers itself as the listener for both network error and login-needed
 notifi cations (see Listing 5-3). It collects exception notifi cations and manages the presentation of the
correct view controller when an error occurs.

The code demonstrates the notifi cation handler for the login-needed notifi cation. Because it deals
with the user interface, its contents must be executed on the main thread using GCD.

LISTING 5-3: CommandDispatchDemo/CommandDispatchDemoAppDelegate.m

/**
 * Handles login needed notifications generated by commands
 **/
- (void) loginNeeded:(NSNotification *)notif {
 // make sure it all occurs on the main thread
 dispatch_async(dispatch_get_main_queue(), ^{
 // make sure only one thread adds a command at a time
 @synchronized(loginViewController) {
 [loginViewController addTriggeringCommand:
 [notif object];
 if (!loginViewController.displayed) {
 // if the view is not displayed then display it.
 [[self topOfModalStack:self.window.rootViewController]
 presentModalViewController:loginViewController
 animated:YES];
 }
 loginViewController.displayed = YES;
 }
 }); // End of GC Dispatch block
}

View Controllers
There is one primary view controller in this simple app. The RootViewController (see the follow-
ing code) extends UITableViewController. When this controller loads it creates and enqueues a
command to load the user’s list of videos (aka the YouTube feed). It patiently waits for the comple-
tion of that command by yielding the fl ow of control back to the main run loop. It is blissfully
unaware that it will always fail on the fi rst call because the user is not logged in.

The requestVideoFeed method found in CommandDispatchDemo/RootViewController.m starts
the process to load the video list like so:

 - (void)requestVideoFeed {
 // create the command
 GetFeed *op = [[GetFeed alloc] init];

 // add the current authentication token to the command
 CommandDispatchDemoAppDelegate *delegate =
 (CommandDispatchDemoAppDelegate *)[[UIApplication
 sharedApplication] delegate];
 op.token = delegate.token;

 // register to hear the completion of the command

c05.indd 114c05.indd 114 05/10/12 3:49 PM05/10/12 3:49 PM

Gracefully Handling Network Errors ❘ 115

 [op listenForMyCompletion:self selector:@selector(gotFeed:)];

 // put it on the queue for execution
 [op enqueueOperation];
 [op release];
}

Notice that the code does not need to check if the user is logged in; the command does that when it
executes.

The gotFeed: method, shown in the following code, handles the eventual return of data from
YouTube. Midway through the example the requestVideoFeed: method registers the gotFeed:
method as the target method for the completion notifi cation. This method loads the data for the
table view if the call succeeds. Otherwise it shows a UIAlertView.

- (void) gotFeed:(NSNotification *)notif {
 NSLog(@"User info = %@", notif.userInfo);
 BaseCommand *op = notif.object;
 if (op.status == kSuccess) {
 self.feed = op.results;

 // if entry is a single item, change it to an array,
 // the XML reader cannot distinguish single entries
 // from arrays with only one element
 id entries = [[feed objectForKey:@"feed"] objectForKey:@"entry"];
 if ([entries isKindOfClass:[NSDictionary class]]) {
 NSArray *entryArray = [NSArray arrayWithObject:entries];
 [[feed objectForKey:@"feed"] setObject:entryArray forKey:@"entry"];
 }
 dispatch_async(dispatch_get_main_queue(), ^{
 [self.tableView reloadData];
 });
 } else {
 dispatch_async(dispatch_get_main_queue(), ^{
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"No Videos"
 message:@"The login to YouTube failed"
 delegate:self
 cancelButtonTitle:@"Retry"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 });
 }
}

The class YouTubeVideoCell is a UITableViewCell subclass that asynchronously loads the thumb-
nail of a video. It uses the LoadImageCommand object to accomplish this.

/**
 * Start the process of loading the image via the command queue
 **/
- (void) startImageLoad {
 LoadImageCommand *cmd = [[LoadImageCommand alloc] init];

c05.indd 115c05.indd 115 05/10/12 3:49 PM05/10/12 3:49 PM

116 ❘ CHAPTER 5 HANDLING ERRORS

 cmd.imageUrl = imageUrl;
 // set the name to something unique
 cmd.completionNotificationName = imageUrl;
 [cmd listenForMyCompletion:self selector:@selector(didReceiveImage:)];
 [cmd enqueueOperation];
 [cmd release];
}

The issuing class changes the completion notifi cation name. It does this so that it, and only it,
receives a notifi cation for this particular image. Otherwise it would need to examine the returned
notifi cation to see if it were the command that it originally issued.

The beauty of the Command Dispatch pattern is that all the messy exception handling logic and
login presentation logic is divorced from the primary view controllers in the app. When a view con-
troller generates a command, it is blissfully ignorant of any exception handling or authentication
that occurs to actually complete the request. It simply issues a request, waits for a response, and
processes the response. It does not care that it may have taken fi ve retries and a user registration for
the request to be completed successfully. In addition, the service request code does not need to know
where the request originated or where the results are going; it can simply focus on executing the call
and broadcasting the results.

Further benefi ts are seen when a developer can write initial happy-path code and see demonstrable
results, and then in the future add the exception listeners with zero impact to the happy-path code.
In addition, if designed properly, all the network service calls can leverage the same base command
class resulting in abbreviated command classes.

In a universal app, you could alter the views presented by the exception listeners so that an error
presentation on an iPhone is sized suitable for that platform, and error presentation on an iPad is
better suited for the larger platform.

This pattern provides a way to rapidly show results, provide excellent separation of concerns between
business logic and exception handling, reduce duplicate code, and provide for a better user experience.

SUMMARY

There are many sources of errors that can and will occur when your code uses the network. Under-
standing the source of the errors can help you quickly diagnose and resolve networking issues. Using
the Reachability framework, your code can proactively respond to changing network conditions,
thereby avoiding unnecessary network errors. Following a consistent pattern for issuing network
requests and handing the successful or unsuccessful outcomes can make your code cleaner and more
maintainable.

c05.indd 116c05.indd 116 05/10/12 3:49 PM05/10/12 3:49 PM

PART III
Advanced Networking Techniques

 � CHAPTER 6: Securing Network Traffi c

 � CHAPTER 7: Optimizing Request Performance

 � CHAPTER 8: Low-Level Networking

 � CHAPTER 9: Testing and Manipulating Network Traffi c

 � CHAPTER 10: Using Push Notifi cations

c06.indd 117c06.indd 117 13/09/12 2:42 PM13/09/12 2:42 PM

c06.indd 118c06.indd 118 13/09/12 2:42 PM13/09/12 2:42 PM

Securing Network Traffi c

WHAT’S IN THIS CHAPTER?

 ➤ How to verify your application is communicating with the correct

server

 ➤ Authenticating with a service using HTTP and client-side certifi cates

 ➤ How to generate cryptographic hashes and use them to verify

payload integrity

 ➤ Encrypting and decrypting data within an iOS application

 ➤ Tips for storing credentials using the device’s keychain

WROX.COM DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. The code
for this chapter is in the Chapter 6 download and is divided into two major sections:

 ➤ An Xcode project that includes a rudimentary mobile banking application that
communicates with a simple web service

 ➤ A set of PHP scripts to serve as a web service for the mobile banking app, which
handles authentication, fetching account details, and transferring funds

6

c06.indd 119c06.indd 119 13/09/12 2:42 PM13/09/12 2:42 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://wrox.com
http://WROX.COM

120 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

The average cost of a mobile-related data breach in 2011 was $194 per-record with an
average total organizational cost of $5.5 million per incident (“2011 Cost of Data Breach Study.”
Ponemon Institute© Research Report, March 2012, http://www.symantec.com/content/
en/us/about/media/pdfs/b-ponemon-2011-cost-of-data-breach-us.en-us.pdf).
Given the highly networked nature of this world, it is of utmost importance that security be
reviewed and addressed at every step of an application’s development lifecycle.

To aid development of security-related requirements, Apple provides the Security framework and
CommonCrypto interfaces to developers for use in their applications. The Security framework is a
set of C APIs for managing certifi cates, trust policies, and access to the device’s secure data store.
CommonCrypto includes a set of interfaces to encrypt and decrypt data, generate common crypto-
graphic hashes (for example, MD5 and SHA1), calculate a message authentication code, and derive
password or passphrase-based keys.

This chapter covers how to use the Security framework with NSURLConnection to verify client
and server identity. It also examines common authentication patterns and provides an example of
encrypting transmitted data. Finally, it discusses how to decrypt server responses and securely store
credentials using the device keychain.

The sample mobile banking app included in the chapter downloads helps illustrate the various
points discussed in this chapter. The app contains a server-side component, which is developed in
PHP for simplicity. PHP is relatively straightforward and should be easy to understand even if you
lack previous experience with it. Important server-side snippets have been included throughout the
chapter and the entire server-side source is available in the Chapter 6 download folder online.

VERIFYING SERVER COMMUNICATION

It is likely that users of your applications will be on the go; these are mobile applications after all,
and you can rarely guarantee that any connection to the Internet is secure and rid of prying eyes.
Most coffee shops offer free Wi-Fi to their patrons, but these networks are perfect for eavesdropping
on one of your unsuspecting users. It is the developer’s responsibility to ensure that users
communicate only with the server(s) that you intend.

It is a best practice to use NSURLProtectionSpace to verify that users of your mobile banking
application communicate with your secure banking servers, especially when issuing requests that
manipulate data on the back end. NSURLProtectionSpace represents a server or realm that requires
authentication and is a property of all inbound NSURLAuthenticationChallenges.

The following code snippet illustrates how to create a protection space, which you can compare with
the information contained in the challenge:

NSURLProtectionSpace *defaultSpace =
 [[NSURLProtectionSpace alloc]
 initWithHost:@"yourbankingdomain.com"
 port:443
 protocol:NSURLProtectionSpaceHTTPS
 realm:@"mobile"
authenticationMethod:NSURLAuthenticationMethodDefault];

c06.indd 120c06.indd 120 13/09/12 2:42 PM13/09/12 2:42 PM

http://www.symantec.com/content/en/us/about/media/pdfs/b-ponemon-2011-cost-of-data-breach-us.en-us.pdf
http://www.symantec.com/content/en/us/about/media/pdfs/b-ponemon-2011-cost-of-data-breach-us.en-us.pdf

Verifying Server Communication ❘ 121

TABLE 6-1: Supported NSURLProtectionSpace Protocols

PROTOCOL CONSTANT DEFAULT PORT

NSURLProtectionSpaceHTTP 80 or 8080

NSURLProtectionSpaceHTTPS 443

NSURLProtectionSpaceFTP 21 or 22

Notice that you specifi ed port 443, which corresponds to the NSURLProtectionSpaceHTTPS
protocol. Table 6-1 lists additional supported protocols and their common port values. If you are
not sure which port is confi gured on your server, you can log any properties of the inbound
challenge to the console.

The application specifi es an authentication method of NSURLAuthenticationMethodDefault. The
default for the NSURLProtectionSpaceHTTP protocol is Basic authentication, so in this
case, specifying nil or NSURLAuthenticationMethodHTTPBasic is the same as specifying
NSURLAuthenticationMethodDefault. Following is a list of all supported authentication methods:

 ➤ NSURLAuthenticationMethodDefault

 ➤ NSURLAuthenticationMethodHTTPBasic

 ➤ NSURLAuthenticationMethodHTTPDigest

 ➤ NSURLAuthenticationMethodHTMLForm

 ➤ NSURLAuthenticationMethodNTLM

 ➤ NSURLAuthenticationMethodNegotiate

 ➤ NSURLAuthenticationMethodClientCertificate

 ➤ NSURLAuthenticationMethodServerTrust

Now that you have created a protection space with your server’s attributes, you need to ensure that
it is used to verify your connections. When your code requests a resource from the server that
requires authentication, the server responds with an HTTP status code of 401 - Access Denied
. NSURLConnection receives this response and immediately sends a willSendRequestFor
AuthenticationChallenge: delegate message with a copy of the authentication challenge. Figure
6-1 covers the basic challenge-response process.

c06.indd 121c06.indd 121 13/09/12 2:42 PM13/09/12 2:42 PM

122 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

Implementing willSendRequestForAuthenticationChallenge: provides you with an opportunity
to examine the challenge, determine if you want to respond to the server’s authentication challenge,
and issue the appropriate challenge response. Authentication Challenge responses are instances of
NSURLCredential, which can be created for trusts, username/password combinations, and client
certifi cates, which are discussed in detail in the next section. When creating an NSURLCredential
for server trust, it’s the responsibility of your delegate to evaluate the trust.

The following example outlines one possible implementation of protection space verifi cation within
willSendRequestForAuthenticationChallenge:.

- (void)connection:(NSURLConnection *)connection
 willSendRequestForAuthenticationChallenge:
 (NSURLAuthenticationChallenge *)challenge {

 // create an array of protection spaces for confirmation
 NSURLProtectionSpace *defaultSpace =
 [[NSURLProtectionSpace alloc]
 initWithHost:@"yourbankingdomain.com"
 port:443
 protocol:NSURLProtectionSpaceHTTPS
 realm:@"mobilebanking"
 authenticationMethod:NSURLAuthenticationMethodDefault];

 NSURLProtectionSpace *trustSpace =
 [[NSURLProtectionSpace alloc]
 initWithHost:@"yourbankingdomain.com"
 port:443
 protocol:NSURLProtectionSpaceHTTPS
 realm:@"mobilebanking"
 authenticationMethod:NSURLAuthenticationMethodClientCertificate];

Custom Code NSURLConnection

NSMutableURLRequest:

Method: GET

URL: balance.html

willSendRequestFor

AuthenticationChallenge:

NSURLCredential

NSData Object

HTTPServer

GET: balance.html

401 Access Denied,

WWW-Authenticate: Basic

realm=“mobile”

NSURI Credential

Status: 200

Contents: balance.html

1

5 6

6

3

8

2

4

FIGURE 6-1

c06.indd 122c06.indd 122 13/09/12 2:42 PM13/09/12 2:42 PM

Verifying Server Communication ❘ 123

 NSArray *validSpaces =
 [NSArray arrayWithObjects:defaultSpace, trustSpace, nil];

 // validate that the authentication challenge
 // came from a whitelisted protection space
 if (![validSpaces containsObject:challenge.protectionSpace]) {

 // dispatch alert view message to the main thread
 NSString *msg =
 @"We're unable to establish a secure connection.
 Please check your network connection and try again.";
 dispatch_async(dispatch_get_main_queue(), ^{
 [[[UIAlertView alloc] initWithTitle:@"Unsecure Connection"
 message:msg
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];
 });
 // cancel authentication attempt
 [challenge.sender cancelAuthenticationChallenge:challenge];
 }
 ...
}

This section has already covered how to create a protection space, but the preceding code snippet
covers adding an additional protection space, which provides some fl exibility to the back end. When
you have determined the protection spaces to support, create them and add them to an array for
comparison against inbound authentication challenges. In practice, you should defi ne valid
protection spaces as part of the model layer so that they can be reused across all your network
operations. If the protection space from an authentication challenge does not match any of your
supported spaces, you should inform the user and cancel the authentication challenge.

The code in the previous code example issues a UIAlertView to the main thread via Grand Central
Dispatch. This is necessary because each logical unit of network activity that the application
performs is created as a subclass of NSOperation, which is typically processed on a background
thread. However, the Mobile Banking example application issues the request asynchronously on the
main thread so that the application may respond to the willSendRequestForAuthentication
Challenge: delegate method. The use of Grand Central Dispatch in this scenario is a safety
precaution. Chapter 7, “Optimizing Request Performance,” covers a more appropriate
networking pattern and offers an effi cient method for notifying view controllers of issues that
require user action.

Now that you have implemented your server verifi cation, how does it protect users of the app? This
particular verifi cation ensures that the app is communicating only with the servers that you have
specifi ed. Should they fi nd themselves on a malicious network where traffi c is being rerouted to a
third-party’s server, for example yourbankingdomain.phishing.com, the protection space
verifi cation would fail due to mismatched hosts, and further communication would be halted. More
importantly, login credentials, bank account numbers, and so on would never be transmitted.

Sophisticated iOS applications often communicate with a web service, and those services may
need to change quickly. Unfortunately, consumer iOS application changes require submission and

c06.indd 123c06.indd 123 13/09/12 2:42 PM13/09/12 2:42 PM

http://yourbankingdomain.phishing.com

124 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

approval by Apple, which can be unpredictable. Your organization does not want to be in a
situation where web service authentication must be changed immediately, possibly rendering your
application inoperable. To mitigate this risk, the application should include protection spaces that
allow for communication to back up authentication servers or some other alternative. The inclusion
of multiple protection spaces allows you a certain amount of fl exibility but is ultimately a security
decision that each organization needs to evaluate.

Another approach that allows fl exibility on the back end is choosing to verify only certain
properties of an authentication challenge, such as the host, port, and protocol match a predefi ned
set. For example, one could verify that the challenge was issued from a particular host using SSL
over port 443, shown in the following code. If any of the conditions are not satisfi ed, the code
immediately issues an alert to the user indicating that it was unable to establish a secure connection.

if (![challenge.protectionSpace.host
 isEqualToString:@"yourbankingdomain.com"] ||
 !challenge.protectionSpace.port == 443 ||
 ![challenge.protectionSpace.protocol
 isEqualToString:NSURLProtectionSpaceHTTPS]) {

 // if ANY of our challenge verifications fail, alert the user
 dispatch_async(dispatch_get_main_queue(), ^{
 NSString *msg = @"We're unable to establish a secure connection."
 [[[UIAlertView alloc] initWithTitle:@"Unsecure Connection"
 message:msg
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];
 });

 // cancel authentication
 [challenge.sender cancelAuthenticationChallenge:challenge];
}

Server verifi cation is important, but it alone is not suffi cient to protect against all attacks. For
example, it does not protect against a man-in-the-middle attack in which someone is eavesdropping
on network communication. To ensure the security of your users’ data, additional security measures
such as message integrity and data encryption must be carefully reviewed and considered.

AUTHENTICATING WITH HTTP

Authentication is the process to confi rm the identity of the person trying to access a system. It is
paramount that the example mobile banking service tier discerns between a real user and an
imposter. This section covers common authentication patterns and how to handle those challenges
within your iOS applications.

The banking application has two authentication modes: standard and expedited. Standard authentica-
tion simply prompts users to enter their username and password, whereas expedited authentication
allows users to register a device and authenticate using a PIN without typing a username and password
each time. To maintain security with expedited authentication, if the user chooses to register the device

c06.indd 124c06.indd 124 13/09/12 2:42 PM13/09/12 2:42 PM

Authenticating with HTTP ❘ 125

on a given authentication request, the server response will include an additional attribute, the user’s
certifi cate. The application stores this certifi cate and checks for it on subsequent launches to determine
which authentication view should display.

The standard authentication mode of your banking application uses HTTP Basic authentication,
whereas expedited authentication uses a client-certifi cate downloaded from the web service. The fol-
lowing sections discuss each of these approaches.

HTTP Basic, HTTP Digest, and NTLM Authentication

The great thing about Basic, Digest, and NTLM authentication is that they are all username/
password-based authentication. This means that you can handle all three authentication challenge
types with the same logic. You tend to see Basic and Digest authentication more than NTLM, but
NTLM is still used.

HTTP Basic authentication was defi ned by RFC 1945 (http://tools.ietf.org/html/rfc1945)
and, as the name suggests, is basic. Username and password information are passed in plaintext
making it susceptible to interception and manipulation. However, these weaknesses can be accept-
able when paired with SSL, and that combination is a common authentication pattern.

HTTP Digest authentication was originally defi ned by RFC 2069 (http://tools.ietf.org/html/
rfc2069) as a more secure form of authentication that is used by applying an MD5 hash to the
password before it is transmitted and pairing it with a cryptographic nonce. A nonce is a random or
pseudo-random number used to sign a message, but each individual value can be used only one time.
Because each nonce value is used only once and then marked as expired, it prevents replay attacks
that re-send a previously encrypted message. HTTP Basic and HTTP Digest authentication have
since been combined into a single standard, RFC 2617 (http://tools.ietf.org/html/rfc2617).

NTLM is a Microsoft security protocol that provides authentication, integrity, and confi dentiality
services. NTLM authentication is a challenge-response protocol similar to HTTP Basic and
HTTP Digest authentication. It has largely been supplanted by the Kerberos system but continues
to be used to authenticate users remotely over the web. Kerberos is an authentication protocol
developed by MIT based on the idea of “tickets” that allow secure identifi cation over nonsecure
networks.

Luckily, NSURLConnection handles most of the nonce and hash legwork for the various
authentication methods, allowing you to simply specify credentials in the form of an
NSURLCredential object. NSURLCredential fi ts most authentication requirements because it can
represent credentials created from username/password combinations, client certifi cates, and server
trusts. Credentials have a variety of persistence options: Do Not Persist, Persist for the Current
Session Only, or Persist Permanently. Applications are granted access only to the credentials they
create versus those to which the user grants access, as is the case in traditional Mac development.

The response logic is the same for HTTP Basic, HTTP Digest, and NTLM authentication.
Listing 6-1 covers the additions required to willSendRequestForAuthenticationChallenge: to
respond to an authentication challenge with your username and password.

c06.indd 125c06.indd 125 13/09/12 2:42 PM13/09/12 2:42 PM

http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2069
http://tools.ietf.org/html/rfc2069
http://tools.ietf.org/html/rfc2617

126 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

LISTING 6-1: Handling Basic Authentication Challenges (/App/Mobile-Banking/

AuthenticateOperation.m)

- (void)connection:(NSURLConnection *)connection
 willSendRequestForAuthenticationChallenge:
 (NSURLAuthenticationChallenge *)challenge {

...

 // respond to basic authentication requests
 // DIGEST and NTLM authentication follow this pattern
 if (challenge.protectionSpace.authenticationMethod ==
 NSURLAuthenticationMethodHTTPBasic) {

 // proceed with authentication
 if (challenge.previousFailureCount == 0) {
 NSURLCredential *creds =
 [[NSURLCredential alloc]
 initWithUser:_username
 password:_password
 persistence:NSURLCredentialPersistenceForSession];

 [challenge.sender useCredential:creds
 forAuthenticationChallenge:challenge];

 // authentication has previously failed.
 // depending on authentication configuration, too
 // many attempts here could lead to a poor user
 // experience via locked accounts

 } else {

 // cancel the authentication attempt
 [[challenge sender] cancelAuthenticationChallenge:challenge];

 // alert the user that his credentials are invalid
 // this would typically be handled in a cleaner
 // manner such as updating the styled login view
 NSString *msg = @"Invalid username / password.";
 dispatch_async(dispatch_get_main_queue(), ^{
 [[[UIAlertView alloc]
 initWithTitle:@"Invalid Credentials"
 message:msg
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];
 });
 }
 }
...
}

c06.indd 126c06.indd 126 13/09/12 2:42 PM13/09/12 2:42 PM

Authenticating with HTTP ❘ 127

After confi rming that the challenge is for HTTP Basic or another supported challenge type, you
should ensure that the challenge hasn’t previously failed and create your NSURLCredential object
using the username and password entered. If the challenge previously failed, alert the user and can-
cel the challenge. This is important because willSendRequestForAuthenticationChallenge: can
be called multiple times. Depending on your confi guration, if the user’s credentials are invalid with-
out this check in place, it’s possible that an account could be locked after a single invalid credential
submission. If the inbound challenge authentication method is not a type the app can handle, do not
issue a response. This informs NSURLConnection that the application does not handle that particu-
lar authentication method.

Client-Certifi cate Authentication

Now that the user has successfully authenticated, assume the user registered the device during this
particular authentication request. During device registration, the application must store the certifi -
cate returned from the authentication service. The following provides an example of what a success-
ful service tier response may look like when it includes certifi cate data.

{
 "result": "SUCCESS",
 "additional_info": "Authentication Successful",
 "certificate": "<BASE64 Encoded Certificate>
}

Returned certifi cate data in the previous snippet is encoded in the PKCS #12 (.p12) fi le format, a
commonly used standard published by RSA Laboratories, for exchanging certifi cate data with client
applications. Listing 6-2 and Listing 6-3 outline how to decode Base 64 .p12 data, extract the iden-
tity and certifi cate information, and store credentials for future authentication requests.

LISTING 6-2: Authentication Response Handling with Certifi cate Data (/App/Mobile-Banking/

AuthenticateOperation.m)

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 ...

 // unpack service response
 NSError *error = nil;
 NSDictionary *response = [NSJSONSerialization
 JSONObjectWithData:self.responseData
 options:0
 error:&error];

 ...

 // create our client certificate if necessary,
 // and store in the credential store
 if (_registerDevice == YES) {
 NSString *certString = [response objectForKey:@"certificate"];
 NSData *certData =
 [NSData dataWithBase64EncodedString:certString];

 // retrieve the identity and certificate for our decoded data

continues

c06.indd 127c06.indd 127 13/09/12 2:42 PM13/09/12 2:42 PM

128 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

 SecIdentityRef identity = NULL;
 SecCertificateRef certificate = NULL;
 [Utils identity:&identity
 andCertificate:&certificate
 fromPKCS12Data:certData
 withPassphrase:@"test"];

 // store the certificate for future authentication challenges
 if (identity != NULL) {

 // store the certificate and identity in
 // the keychain as the default
 NSURLProtectionSpace *certSpace =
 [[NSURLProtectionSpace alloc]
 initWithHost:@"yourbankingdomain.com"
 port:443
 protocol:NSURLProtectionSpaceHTTPS
 realm:@"mobilebanking"
 authenticationMethod:
 NSURLAuthenticationMethodClientCertificate];

 NSArray *certArray = [NSArray arrayWithObject:
 (__bridge id)certificate];
 NSURLCredential *credential =
 [NSURLCredential
 credentialWithIdentity:identity
 certificates:certArray
 persistence:
 NSURLCredentialPersistencePermanent];

 [[NSURLCredentialStorage sharedCredentialStorage]
 setDefaultCredential:credential
 forProtectionSpace:certSpace];

 }
 }
 ...
}

The majority of Listing 6-2 is straightforward with the possible exception of retrieving the identity
and certifi cate from the .p12 certifi cate data returned by the service. Listing 6-3 details how to use
the SecPKCS12Import() function within the Security Framework to import an identity and trust
and then extract the certifi cate.

LISTING 6-3: Obtaining Identity and Certifi cate from .p12 Data (/App/Mobile-Banking/Utils.m)

+ (void)identity:(SecIdentityRef*)identity
 andCertificate:(SecCertificateRef*)certificate
 fromPKCS12Data:(NSData*)certData

LISTING 6-2 (continued)

c06.indd 128c06.indd 128 13/09/12 2:42 PM13/09/12 2:42 PM

Authenticating with HTTP ❘ 129

 withPassphrase:(NSString*)passphrase {

 // bridge the import data to foundation objects
 CFStringRef importPassphrase = (__bridge CFStringRef)passphrase;
 CFDataRef importData = (__bridge CFDataRef)certData;

 // create dictionary of options for the PKCS12 import
 const void *keys[] = { kSecImportExportPassphrase };
 const void *values[] = { importPassphrase };
 CFDictionaryRef importOptions = CFDictionaryCreate(NULL, keys,
 values, 1,
 NULL, NULL);

 // create array to store our import results
 CFArrayRef importResults = CFArrayCreate(NULL, 0, 0, NULL);
 OSStatus pkcs12ImportStatus = errSecSuccess;

 pkcs12ImportStatus = SecPKCS12Import(importData,
 importOptions,
 &importResults);

 // check if import was successful
 if (pkcs12ImportStatus == errSecSuccess) {
 CFDictionaryRef identityAndTrust =
 CFArrayGetValueAtIndex (importResults, 0);

 // retrieve the identity from the certificate imported
 const void *tempIdentity = NULL;
 tempIdentity = CFDictionaryGetValue (identityAndTrust,
 kSecImportItemIdentity);
 *identity = (SecIdentityRef)tempIdentity;

 // extract the certificate from the identity
 SecCertificateRef tempCertificate = NULL;
 OSStatus certificateStatus = errSecSuccess;
 certificateStatus = SecIdentityCopyCertificate (*identity,
 &tempCertificate);
 *certificate = (SecCertificateRef)tempCertificate;
 }

 // clean up
 if (importOptions) {
 CFRelease(importOptions);
 }
}

As part of the SSL handshake between the server and the application, willSendRequestFor
AuthenticationChallenge: will receive multiple callbacks with Server Trust and Client Certifi cate
authentication challenges. You must determine which of these challenges your application needs to
handle. The following example expands on Listing 6-1 to determine whether the application should
issue a client certifi cate or standard user credentials for authentication.

c06.indd 129c06.indd 129 13/09/12 2:42 PM13/09/12 2:42 PM

130 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

// if this is a client certificate authentication request AND
// the user has already registered this device, attempt to issue
// the certificate to the service tier
if (challenge.protectionSpace.authenticationMethod ==
 NSURLAuthenticationMethodClientCertificate
 && devicePreviouslyRegistered) {

 // proceed with authentication
 if (challenge.previousFailureCount == 0) {

 // retrieve the default credential specifically for
 // client certificate challenges
 NSURLCredential *credential =
 [[NSURLCredentialStorage sharedCredentialStorage]
 defaultCredentialForProtectionSpace:
 [[Model sharedModel] clientCertificateProtectionSpace]];
 if (credential) {
 [challenge.sender useCredential:credential
 forAuthenticationChallenge:challenge];
 }

 // authentication has previously failed.
 // depending on authentication configuration, too many attempts
 // here could lead to a poor user experience via locked accounts
 } else {
 // cancel the authentication attempt
 [[challenge sender] cancelAuthenticationChallenge:challenge];

 // alert the user that his credentials are invalid
 // this would typically be handled in a cleaner
 // manner such as updating the styled login view

 }

// either the user has not registered this device or
// this is not a client certificate challenge
} else {
 ...
 // perform authentication based on Listing 6-1
}

// if nothing catches this challenge,
// attempt to connect without credentials
 [challenge.sender
 continueWithoutCredentialForAuthenticationChallenge:challenge];

Within your service tier, you can retrieve the attributes of a certifi cate using the openssl_x509_
parse() function, as outlined in the following code snippet. After you obtain the certifi cate attri-
butes, there are a number of service tier authentication options available to you. One option is to
verify the Issuer and then look up the private key from a list of known keys for the user. Another
option would be to incorporate a PIN mechanism within the application, which is verifi ed prior to
issuing the client certifi cate to the authentication challenge.

c06.indd 130c06.indd 130 13/09/12 2:42 PM13/09/12 2:42 PM

Message Integrity with Hashing and Encryption ❘ 131

if (array_key_exists('SSL_CLIENT_CERT', $_SERVER)){
 $clientCertData = openssl_x509_parse($_SERVER['SSL_CLIENT_CERT']);
 // using certificate attributes and encrypted PIN
 // verify identity and issue authentication tokens
} else {
 // issue failed authentication message
}

NSURLConnection intercepts server responses with untrusted certifi cates; this includes self-signed
SSL certifi cates. If you test the authentication mechanisms discussed in this section with a self-
signed SSL certifi cate, the majority of the network based code will not be executed. However, email-
ing your server certifi cate (.cer fi le extension) to an e-mail account confi gured on the device allows
you to click and install it. When installed, NSURLConnection requests can recognize your server
certifi cate as trusted and proceed with processing.

MESSAGE INTEGRITY WITH HASHING AND ENCRYPTION

Now that the app has verifi ed that it is communicating with the correct server and has successfully
authenticated, it can begin issuing service requests on the user’s behalf. The app must ensure that the
data it transmits is properly secure and unmodifi ed during delivery. This section covers techniques
to satisfy both requirements with cryptographic hashes, message authentication codes (MAC), and
remove encryption.

These topics are implemented in the funds transfer functionality in the example Mobile Banking
application (available for download on the companion website). The funds transfer request utilizes
a combination of cryptographic hashes and encryption to ensure that the message is unreadable and
delivered in an unaltered state. Although a number of payload samples are generated and discussed
in this section, each follows the defi ned JSON payload structure outlined in the following code
example.

{
 "mac": "Message Authentication Code",
 "iv": "Initialization Vector",
 "payload": {
 "toAccount": "123123456456",
 "fromAccount": "654654321321",
 "amount": 23.23,
 "transferDate": "2012-02-27",
 "transferNotes": "Book advance to savings."
 }
}

The payload property will be the only encrypted element in the request body. For the service tier
to properly decrypt the payload, it requires the Initialization Vector (IV) used to encrypt the data
within the application. Typically the IV is sent along with the data it was used to encrypt. Although
it might seem like this weakens the message’s security, it does not because the IV alone is not enough
to decrypt the message. After the service tier has decrypted the payload, it generates a MAC using
the same predefi ned set of payload attributes and compares it to the MAC from the inbound request

c06.indd 131c06.indd 131 13/09/12 2:42 PM13/09/12 2:42 PM

132 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

to verify message integrity. If the message were altered in any way during its journey, the codes will
not match and the tainted message results in an error. The attribute set the example application
uses in this section’s example is the concatenation of the To Account, From Account, Amount, and
Transfer Date, as seen later when discussing Message Authentication Codes.

Figure 6-2 contains an overview of the steps taking place during the request-response transaction
and how each component is used throughout the encryption and decryption process on each side of
the transaction. Important values for encryption and decryption as well as the MAC algorithm are
known by both parties in the transaction. Also, the Request Body section aligns with the JSON
payload structure defi ned in the previous example.

Hashing

Cryptographic hashes, or digests, generate fi xed-size bit sequences for a given block of data. These
hash values make comparing and sorting blocks of data easy. A few common uses of hashes include
tracking fi le changes, downloading checksums, obfuscating data for database storage, and a rudi-
mentary method to verify integrity of request data. A more robust approach uses MACs, which is
covered in detail later in this section.

The iOS CommonCrypto library provides support for MD5, SHA-1, and SHA-256 digests as
well as a few other less commonly used routines. The examples covered in this chapter focus
only on MD5, SHA-1, and SHA-256; however, the process to generate hash values is the same
for all CommonCrypto digest routines. Hashes can be created manually through a series of
function calls to create a digest context, update the context with the data to be processed, and
retrieve the value of the digest calculation, or you can use convenience functions provided for
each digest routine.

FIGURE 6-2

iOS Application

Payload

Encryption

Process

Request Body

Encrypted Payload

Initialization Vector

Untainted message,

continue processing

Something is wrong, abort

If Equal:

Not Equal:

MACGenerate

MAC

Shared

HMAC Key

Shared

Encryption

Key

Generate

IV

Service Tier

Encrypted Payload

Decryption

Process

Generate

Service

MAC

Shared

HMAC Key

Shared

Encryption

Key

MAC

values

equal?

c06.indd 132c06.indd 132 13/09/12 2:42 PM13/09/12 2:42 PM

Message Integrity with Hashing and Encryption ❘ 133

To simplify practical use within your applications, create a category on NSString to implement your
hash methods. NSString+Hashing.h/.m houses all your hash related category methods. Its inter-
face defi nition is shown in Listing 6-4.

LISTING 6-4: NSString Hashing Category Defi nition (/App/Mobile-Banking/NSString+Hashing.h)

#import <CommonCrypto/CommonDigest.h>

enum {
 NJHashTypeMD5 = 0,
 NJHashTypeSHA1,
 NJHashTypeSHA256,
}; typedef NSUInteger NJHashType;

@interface NSString (Hashing)

- (NSString*)md5;
- (NSString*)sha1;
- (NSString*)sha256;
- (NSString*)hashWithType:(NJHashType)type;

@end

Listing 6-5 outlines the core logic within your hashing category. Each of the convenience methods,
md5, sha1, and sha256 call hashWithType:. Although there are some predefi ned hash enumerations
throughout CommonCrypto libraries that the application could potentially use, none of the enumerations
are defi ned within the context of digest calculations. Rather than relying on an enumeration that may
change in the future, the application uses this custom one that also provides the added benefi t of restrict-
ing the digest routines it supports.

LISTING 6-5: Core Digest Calculation Logic Within hashWithType (/App/Mobile-Banking/

NSString+Hashing.m)

- (NSString*)hashWithType:(NJHashType)type {

 // Create pointer to the string as UTF8 – this is NULL terminated
 const char *ptr = [self UTF8String];

 // Create buffer with length for chosen digest
 NSInteger bufferSize;
 switch (type) {
 case NJHashTypeMD5:
 // 16 bytes
 bufferSize = CC_MD5_DIGEST_LENGTH;
 break;

 case NJHashTypeSHA1:
 // 20 bytes
 bufferSize = CC_SHA1_DIGEST_LENGTH;

continues

c06.indd 133c06.indd 133 13/09/12 2:42 PM13/09/12 2:42 PM

134 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

 break;

 case NJHashTypeSHA256:
 // 32 bytes
 bufferSize = CC_SHA256_DIGEST_LENGTH;
 break;

 default:
 return nil;
 break;
 }

 unsigned char buffer[bufferSize];

 // Perform hash calculation and store in buffer
 switch (type) {
 case NJHashTypeMD5:
 CC_MD5(ptr, strlen(ptr), buffer);
 break;

 case NJHashTypeSHA1:
 CC_SHA1(ptr, strlen(ptr), buffer);
 break;

 case NJHashTypeSHA256:
 CC_SHA256(ptr, strlen(ptr), buffer);
 break;

 default:
 return nil;
 break;
 }

 // Convert buffer value to pretty printed NSString
 // this will match the servers hash calculation
 NSMutableString *hashString = [NSMutableString stringWithCapacity:bufferSize * 2];
 for(int i = 0; i < bufferSize; i++) {
 [hashString appendFormat:@"%02x",buffer[i]];
 }

 return hashString;

}

The only portion of the hashWithType: implementation that may not be straightforward is the fi nal
step. The fi nal step shown in Listing 6-5 loops through the byte output of the digest calculation and
converts it to hexadecimal, a readable output. With the core hash logic complete and consolidated to
a single method, implementing each convenience method requires only a single line of code each, as
shown in Listing 6-6.

LISTING 6-5 (continued)

c06.indd 134c06.indd 134 13/09/12 2:42 PM13/09/12 2:42 PM

Message Integrity with Hashing and Encryption ❘ 135

LISTING 6-6: Hashing Convenience Method Implementations (/App/Mobile-Banking/

NSString+Hashing.m)

- (NSString*)md5 {
 return [self hashWithType:NJHashTypeMD5];
}

- (NSString*)sha1 {
 return [self hashWithType:NJHashTypeSHA1];
}

- (NSString*)sha256 {
 return [self hashWithType:NJHashTypeSHA256];
}

This approach has the added benefi t of being easily extended to support additional digest calcula-
tions. The following example demonstrates calling each convenience method and the output it gen-
erates. The National Institute of Standards and Technology (NIST) provides test vectors to validate
digest calculation output at http://www.nsrl.nist.gov/testdata/.

NSLog(@"MD5: %@", [@"test string" md5]);
NSLog(@"SHA1: %@", [@"test string" sha1]);
NSLog(@"SHA256: %@", [@"test string" sha256]);

Output:
MD5: 6f8db599de986fab7a21625b7916589c
SHA1: 661295c9cbf9d6b2f6428414504a8deed3020641
SHA256: d5579c46dfcc7f18207013e65b44e4cb4e2c2298f4ac457ba8f82743f31e930b

Generating hashes in the service tier is similar because PHP supports each of the digest routines
implemented in Listing 6-6, plus a few dozen others. The standard function to generate a hash value
is hash(), which accepts the algorithm to perform and the value to perform it on. In addition, PHP
includes convenience functions for the generation of MD5 and SHA1 hashes. Generating hash val-
ues for each of the digests in PHP can be done like so:

echo "MD5: ".md5("test string")."</br>";
echo "SHA1: ".sha1("test string")."</br>";
echo "SHA256: ".hash("sha256", "test string")."</br>";

Output:
MD5: 6f8db599de986fab7a21625b7916589c
SHA1: 661295c9cbf9d6b2f6428414504a8deed3020641
SHA256: d5579c46dfcc7f18207013e65b44e4cb4e2c2298f4ac457ba8f82743f31e930b

The previous examples covered hashing string objects, but it is also just as easy to generate hashes of
NSData objects by creating a similar category on NSData. However, if you have advanced
hashing requirements or intend to compare hash values within your iOS application, you may want
to consider creating a custom class, which can be written to optimize initialization and make hash

c06.indd 135c06.indd 135 13/09/12 2:42 PM13/09/12 2:42 PM

http://www.nsrl.nist.gov/testdata/

136 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

comparison easier by overriding isEqualTo:. Whereas using a hashing algorithm enables you detect
content changes, Message Authentication Codes are paired with a key, making them more secure.

Message Authentication Codes

A message authentication code (MAC) is a mechanism for detecting payload modifi cation and veri-
fying authenticity by creating a hash of the inbound request data (or a pre-arranged subset of the
request data) and comparing it with a precomputed MAC that is delivered with the payload. MACs
are similar to the hash functions previously discussed but are more secure because they are paired
with a secret key. As depicted in Figure 6-2, your application will compute a MAC that is sent with
your request. This inbound MAC is then compared with a MAC computed in the service tier using
the same key and dataset. If the MAC values are not equal, it is safe to assume that the message
has been modifi ed. Another approach would be to generate a MAC of the cipher text. While this
accomplishes the same goal, it also allows you to determine if the message has been modifi ed prior
to executing a potentially expensive decryption process.

Although there are other MAC algorithms, examples in this section focus on Hash-Based Message
Authentication Code (HMAC) because it is natively supported in iOS and most service-tier plat-
forms. Often referred to as a keyed message authentication code, HMAC was defi ned by RFC2104
(http://tools.ietf.org/html/rfc2104). HMAC can use any hash function, typically either
MD5 or SHA-1, but its strength depends on the strength of both the underlying hash function and
the secret key. Although there are known weaknesses with the MD5 hash algorithm and SHA-1 is
considered cryptographically stronger, those weaknesses do not compromise their use in HMACs.

The iOS HMAC implementation supports use of the MD5, SHA-1, SHA-224, SHA-256, SHA-384,
and SHA-512 digest algorithms. The HMAC output length is always the same as the digest length of
the hashing algorithm used. As with the other hash functions discussed previously, HMACs can be
generated manually or using a convenience method, and the following examples demonstrate how to
use the convenience method.

The HMAC example builds on the NSString+Hashing category you created earlier. To start, the
category needs an additional method defi nition and two additional libraries imported, as outlined in
Listing 6-7.

LISTING 6-7: HMAC Hash Addition (/App/Mobile-Banking/NSString+Hashing.h)

...
#import <CommonCrypto/CommonHMAC.h>
#import <CommonCrypto/CommonCryptor.h>

@interface NSString (Hashing)
...
- (NSString*)hmacWithKey:(NSString*)key;

@end

Importing CommonCryptor may seem out of place, but you need access to key size constant
kCCKeySizeAES256 in your implementation of hmacWithKey:, as outlined in Listing 6-8.

c06.indd 136c06.indd 136 13/09/12 2:42 PM13/09/12 2:42 PM

http://tools.ietf.org/html/rfc2104

Message Integrity with Hashing and Encryption ❘ 137

LISTING 6-8: hmacWithKey: Implementation (/App/Mobile-Banking/NSString+Hashing.m)

- (NSString*)hmacWithKey:(NSString*)key {
 // Pointer to UTF8 representations of strings
 const char *ptr = [self UTF8String];
 const char *keyPtr = [key UTF8String];

 // Implemented with SHA256, create appropriate buffer (32 bytes)
 unsigned char buffer[CC_SHA256_DIGEST_LENGTH];

 // Create hash value
 CCHmac(kCCHmacAlgSHA256, // algorithm
 keyPtr, kCCKeySizeAES256, // key and key length
 ptr, strlen(ptr), // data to hash and length
 buffer); // output buffer

 // Convert HMAC buffer value to pretty printed NSString
 NSMutableString *output =
 [NSMutableString
 stringWithCapacity:CC_SHA256_DIGEST_LENGTH * 2];
 for(int i = 0; i < CC_SHA256_DIGEST_LENGTH; i++) {
 [output appendFormat:@"%02x",buffer[i]];
 }

 return output;

}

Listing 6-8 includes the implementation of hmacWithKey:, which is similar to the hashWithType:
method covered previously. The only two differences are the addition of a key and the restriction
to use only the SHA-256 digest algorithm. UTF8 representations of your key and input data are
 created and passed to the CCHmac() function to create the HMAC. That function populates buffer
with the HMAC value, and hmacWithKey: returns it as a string.

You are probably wondering where the key value comes from and how it was chosen. Keys are
essential to cryptographic security, and the importance of key strength cannot be overstated!
Without a properly secure and randomized key, you are opening the app up to numerous attacks.
Depending on the data you attempt to protect, you could also be opening yourself up to potential
lawsuits for cases such as data breaches and HIPAA violations. Recall the security overview from
Figure 6-2: The encryption (E-Key) and MAC (M-Key) keys are the only two components of each
step that are not transmitted with the request. The secrecy of those keys is your only hope at secur-
ing the transmitted data!

Because keys are the lynchpin of the security model, you must choose one methodically. The key’s
fi nal length should match the key length for the encryption algorithm (or HMAC). Anything shorter
than the algorithm’s key length is NULL-padded until it reaches the full length, and thus weakens
its randomness with each character it is short. If you must use user input data as the foundation for
a key, salt the value by pre-pending a random or pseudo-random value to the input. If you need the
ability to regenerate this key, make sure you store the salt used with your fi nal key value. Lastly,

c06.indd 137c06.indd 137 13/09/12 2:42 PM13/09/12 2:42 PM

138 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

run the salted value through several thousand hash calculations using one of the routines discussed
earlier, such as MD5 or SHA-1, and strip the appropriate number of bytes for use as your key.

If your application requires user input as the basis for your encryption key, consider using the
CCKeyDerivationPBKDF () function from the CommonCrypto / CommonKeyDerivation library.
CCKeyDerivationPBKDF () returns a key value for the salt, derivation algorithm, rounds of deriva-
tion, and output key length you specify. You can also use SecRandomCopyBytes() to generate a
random array of bytes.

Although it is common for developers to output various processing details to the log, you should
never print the generated key to the console. Log fi les can be easily retrieved from the device, which
could present a serious security fl aw if found by an attacker.

One downside to preshared keys is that the application needs to plan for key versioning. It is inevi-
table that you will come across a situation where you must modify your shared secret key, which
requires you to deploy a new version of your application and then update the service tier. However,
iOS users do not always diligently install app updates, and there is no mechanism to force them to
do so. How do you handle users of the previous version of your application? You need to ensure that
user transactions from your previous version will continue to be properly decrypted, verifi ed, and
processed by the service. Key versioning solves this problem without needing to issue an app update;
however, it must be included in the app’s development from the start.

Following is an example of how to generate an HMAC using the method created in Listing 6-8.

#import "NSString+Hashing.h"
...
// create mac input with to account, from account, amount, and transfer date
NSString *macCandidate = [NSString stringWithFormat:@"%@%@%@%@",
 @"1234", // to account
 @"4321", // from account
 @"2300.00", // amount
 @"2012-12-25 00:00:00"]; // transfer date
// generate mac
NSString *mac = [macCandidate hmacWithKey:@"065a62448fb75fce3764dcbe68f9908d"];
...
Output:
51e66ca8fd8eb4bbe02fc6421e0dda1deb94f0c9518996a55bc7a4c242f1c8a9

This example uses a subset of the funds transfer payload as the MAC candidate; however, you can
also use the entire payload. The concatenation order and attributes for the MAC candidate, which
is the value you will hash, must be shared with the service tier to ensure proper decryption. If either
the client or service tier operates under different assumptions, then the message integrity check will
fail and nothing will be processed.

Now that the MAC is transmitted and the service tier has decrypted the payload, the service must
generate the comparison MAC. The following code snippet demonstrates how to generate an
HMAC in PHP using the same concatenated input string used on the client side. The hash_hmac()
PHP function accepts similar input as the HMac() function in iOS and allows you to specify the
algorithm to use, the content to hash, and the key to be used.

c06.indd 138c06.indd 138 13/09/12 2:42 PM13/09/12 2:42 PM

Message Integrity with Hashing and Encryption ❘ 139

echo hash_hmac("sha256",
 "123443212300.002012-12-25 00:00:00",
 "065a62448fb75fce3764dcbe68f9908d");

Output:
51e66ca8fd8eb4bbe02fc6421e0dda1deb94f0c9518996a55bc7a4c242f1c8a9

Notice that the output values in the two previous examples match. Because the two values are the
same, the service tier can trust that it received an unmodifi ed request and can safely continue with
the funds transfer.

Encryption

Now that you have generated the message authentication code, the client is ready to encrypt the
request payload and send it to the server for processing. Although this section discusses two spe-
cifi c, symmetric encryption algorithms — the Advanced Encryption Standard and Data Encryption
Standard — and their suitability for mobile devices, it is not a comprehensive discussion of encryp-
tion theory. However, a good rule of thumb is to trust the experts and use a standardized and vetted
encryption algorithm instead of rolling your own.

ASYMMETRIC ENCRYPTION USING PUBLIC KEY CRYPTOGRAPHY

One topic not covered by this chapter is asymmetric encryption using public key
cryptography. Using public key cryptography allows an application to download
rotating public keys from your web service at a pre-determined interval and use
them to encrypt and decrypt communications. The benefi t here is that a key does
not need to be previously shared for the encryption process to properly function.
This option provides more deployment fl exibility and long-term maintenance, but
does complicate the encryption process, as both the device and web service must
maintain a running list of keys and their respective identifi ers so that encrypted
messages may be properly decrypted.

The Data Encryption Standard (DES) was the United States government’s encryption algorithm
from 1976 until 1999. Between 1999 and 2002, the standard was upgraded to use a more-secure
variant called Triple-DES. In 2002, the Advanced Encryption Standard (AES) was selected by the
NIST to offi cially replace DES and Triple-DES. DES implementations are still around today, but
most new implementations opt for Triple-DES. Even though AES is the offi cial standard, Triple-DES
has been approved for encryption of sensitive government information through 2030 by NIST.

Triple-DES uses two 56-bit keys and encrypts the data with the fi rst key, encrypts that result with the
second key, and then again with the fi rst key. The process of performing three separate encryption
passes is resource-intensive, which does not make Triple-DES the ideal candidate for mobile device
encryption. Even as processors continue to improve, there are more effi cient methods of encryption.

Alternatively, AES was designed for speed, strength, and more effi cient use of resources, making it
ideal for mobile devices. It requires only a single pass to encrypt data and provides an upper limit

c06.indd 139c06.indd 139 13/09/12 2:42 PM13/09/12 2:42 PM

140 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

of 256 exabytes (256 billion gigabytes) that can be encrypted in one message by the algorithm. One
additional benefi t of AES is that, as of iOS 4.3, messages greater than 1024 bytes are hardware
accelerated. (Hardware acceleration applies to the SHA-1 digest calculations greater than 4096
bytes, as well.) Given current device storage limitations, AES use in iOS should be well within
that limit.

The Mobile Banking application uses the AES encryption algorithm. However, in the interest of
being thorough and supporting the previous standard that may still be in use, this book includes
additional samples outlining how to use Triple-DES. The approach implemented in this section
involves the creation of categories on NSData and NSString.

Encryption and decryption in Objective-C is similar to generating the cryptographic hashes dis-
cussed in the previous section. Cipher methods are packaged within CommonCryptor, a library of C
functions, to encrypt and decrypt data that supports a number of algorithms as shown in Table 6-2.
The library provides a convenience function, CCCrypt(), which performs a stateless encryption or
decryption operation. This function is robust and should meet most cipher requirements, and is the
approach covered in this chapter. The library also provides a suite of functions that allow developers
more granular control over each step of the cipher process.

TABLE 6-2: Supported Encryption Algorithms

ENCRYPTION ALGORITHM ALGORITHM CONSTANT

Advanced Encryption Standard (AES), 128-bit block kCCAlgorithmAES128

Data Encryption Standard (DES) kCCAlgorithmDES

Triple-DES, Three Key, EDE Confi guration kCCAlgorithm3DES

CAST kCCAlgorithmCAST

RC4 Stream Cipher kCCAlgorithmRC4

RC2 Block Cipher kCCAlgorithmRC2

Blowfi sh Block Cipher kCCAlgorithmBlowfish

The full iOS cipher process consists of creating a crypto context, processing your message, retriev-
ing any remaining data, and then releasing the context. Although this chapter does not cover this
process, there is one additional step that may be executed between retrieving the fi nal output and
releasing the context to improve performance in certain situations. This additional step resets the
context, which allows you to process an additional message and even update the initialization vector
if needed. If you need to process a large number of messages, this approach should be considered.

As with previous examples, you create a category on NSString and NSData to hold your cipher
methods. Listing 6-9 and Listing 6-10 outline what each of your interface defi nitions should resem-
ble. The interface defi nition for NSData+Encryption has additional method defi nitions for Base 64
encoding and decoding.

c06.indd 140c06.indd 140 13/09/12 2:42 PM13/09/12 2:42 PM

Message Integrity with Hashing and Encryption ❘ 141

LISTING 6-9: NSData+Encryption Interface Defi nition (/App/Mobile-Banking/

NSData+Encryption.h)

@interface NSData (Encryption)

- (NSData*)encryptedWithAESUsingKey:(NSString*)key andIV:(NSData*)iv;
- (NSData*)decryptedWithAESUsingKey:(NSString*)key andIV:(NSData*)iv;

- (NSData*)encryptedWith3DESUsingKey:(NSString*)key andIV:(NSData*)iv;
- (NSData*)decryptedWith3DESUsingKey:(NSString*)key andIV:(NSData*)iv;

+ (NSData*)dataWithBase64EncodedString:(NSString*)string;
- (id)initWithBase64EncodedString:(NSString*)string;

- (NSString*)base64Encoding;
- (NSString*)base64EncodingWithLineLength:(NSUInteger)lineLength;

@end

LISTING 6-10: NSString+Encryption Interface Defi nition (/Chapter6/App/Mobile-Banking/

NSString+Encryption.h)

@interface NSString (Encryption)

- (NSString*)encryptedWithAESUsingKey:(NSString*)key andIV:(NSData*)iv;
- (NSString*)decryptedWithAESUsingKey:(NSString*)key andIV:(NSData*)iv;

- (NSString*)encryptedWith3DESUsingKey:(NSString*)key andIV:(NSData*)iv;
- (NSString*)decryptedWith3DESUsingKey:(NSString*)key andIV:(NSData*)iv;

@end

With your interfaces defi ned, jump to the implementation for NSString+Encryption. Listing 6-11
covers the implementation for each of your string encryption and decryption methods.

LISTING 6-11: NSString Encryption and Decryption Method Implementations (/App/

Mobile-Banking/NSString+Encryption.m)

#import "NSData+Encryption.h"
#import "NSData+Base64.h"
...
- (NSString*)encryptedWithAESUsingKey:(NSString*)key andIV:(NSData*)iv {
 NSData *encrypted =
 [[self dataUsingEncoding:NSUTF8StringEncoding]
 encryptedWithAESUsingKey:key
 andIV:iv];

 NSString *encryptedString = [encrypted base64Encoding];

 return encryptedString;
}

continues

c06.indd 141c06.indd 141 13/09/12 2:42 PM13/09/12 2:42 PM

142 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

- (NSString*)encryptedWith3DESUsingKey:(NSString*)key andIV:(NSData*)iv {
 NSData *encrypted =
 [[self dataUsingEncoding:NSUTF8StringEncoding]
 encryptedWith3DESUsingKey:key
 andIV:iv];

 NSString *encryptedString = [encrypted base64Encoding];

 return encryptedString;
}

- (NSString*)decryptedWithAESUsingKey:(NSString*)key andIV:(NSData*)iv {
 NSData *decrypted =
 [[NSData dataWithBase64EncodedString:self]
 decryptedWithAESUsingKey:key
 andIV:iv];

 NSString *decryptedString =
 [[NSString alloc] initWithData:decrypted
 encoding:NSUTF8StringEncoding];

 return decryptedString;
}

- (NSString*)decryptedWith3DESUsingKey:(NSString*)key andIV:(NSData*)iv {
 NSData *decrypted =
 [[NSData dataWithBase64EncodedString:self]
 decryptedWith3DESUsingKey:key
 andIV:iv];

 NSString *decryptedString =
 [[NSString alloc] initWithData:decrypted
 encoding:NSUTF8StringEncoding];

 return decryptedString;
}

Each of the NSString methods is similar; the primary differences are the direction of Base 64
encoding and how the result is encoded prior to being returned. Now, it is time to implement the
core of the cipher process in the NSData+Encryption category, as outlined in Listing 6-12 and
Listing 6-13.

LISTING 6-12: AES Encryption (/App/Mobile-Banking/NSData+Encryption.m)

#import <CommonCrypto/CommonCryptor.h>
#import "NSData+Base64.h"
...
- (NSData*)encryptedWithAESUsingKey:(NSString*)key andIV:(NSData*)iv {

 NSData *keyData = [key dataUsingEncoding:NSUTF8StringEncoding];

 size_t dataMoved;

LISTING 6-11 (continued)

c06.indd 142c06.indd 142 13/09/12 2:42 PM13/09/12 2:42 PM

Message Integrity with Hashing and Encryption ❘ 143

 NSMutableData *encryptedData =
 [NSMutableData dataWithLength:self.length + kCCBlockSizeAES128];

 CCCryptorStatus status = CCCrypt(kCCEncrypt,
 kCCAlgorithmAES128,
 kCCOptionPKCS7Padding, //CBC Padding
 keyData.bytes,
 keyData.length,
 iv.bytes,
 self.bytes,
 self.length,
 encryptedData.mutableBytes, //data out
 encryptedData.length,
 &dataMoved); // total data moved

 if (status == kCCSuccess) {
 encryptedData.length = dataMoved;
 return encryptedData;
 }

 return nil;

}

LISTING 6-13: Triple-DES Encryption (/App/Mobile-Banking/NSData+Encryption.m)

- (NSData*)encryptedWith3DESUsingKey:(NSString*)key andIV:(NSData*)iv {

 NSData *keyData = [key dataUsingEncoding:NSUTF8StringEncoding];

 size_t dataMoved;
 NSMutableData *encryptedData =
 [NSMutableData dataWithLength:self.length + kCCBlockSize3DES];

 CCCryptorStatus result = CCCrypt(kCCEncrypt,
 kCCAlgorithm3DES,
 kCCOptionPKCS7Padding, // CBC Padding
 keyData.bytes,
 keyData.length,
 iv.bytes,
 self.bytes,
 self.length,
 encryptedData.mutableBytes,// data out
 encryptedData.length,
 &dataMoved); // total data moved

 if (result == kCCSuccess) {
 encryptedData.length = dataMoved;
 return encryptedData;
 }

 return nil;

}

c06.indd 143c06.indd 143 13/09/12 2:42 PM13/09/12 2:42 PM

144 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

Listing 6-12 and Listing 6-13 cover encryption for AES and Triple-DES, using CCCrypt(), respec-
tively. The CCCrypt() function is straightforward, but it is important to allocate proper space for
your encryptedData pointer. The output length of CCCrypt() will never be more than the input
plus one additional block. Block size is based on the encryption algorithm being implemented.

In the example, if you don’t receive a successful result, the method returns nil. Depending
on your requirements, you may need to implement additional error handling. CCCrypt() has
three possible error results: kCCBufferTooSmall, kCCAlignmentError, and kCCDecodeError.
kCCBufferTooSmall or kCCDecodeError are the most common. kCCBufferTooSmall indicates
that the output buffer, encryptedData in this example, is not of suffi cient size. kCCDecodeError
can be received only during decryption operations and is most likely related to an invalid key.

With the encryption methods complete, Listing 6-14 covers how the application uses encryption in
practice. Listing 6-14 also details how MAC generation fi ts into the process.

LISTING 6-14: AES Encryption in Practice (/App/Mobile-Banking/FundsTransfer

Operation.m)

...
 // build our transfer data
 NSDictionary *transfer = [NSDictionary dictionaryWithObjectsAndKeys:
 _toAccount, @"toAccount",
 _fromAccount, @"fromAccount",
 date, @"transferDate",
 _transferNotes, @"transferNotes",
 amount, @"amount", nil];

 // create the json representation of our transfer data using ios5 API
 NSError *error = nil;
 NSData *transferData = [NSJSONSerialization dataWithJSONObject:transfer
 options:0 error:&error];
 NSString *transferString =
 [[NSString alloc] initWithData:transferData
 encoding:NSUTF8StringEncoding];

 // generate our initialization vector
 NSData *iv = [Utils blockInitializationVectorOfLength:kCCBlockSizeAES128];

 // because we generate random bytes,
 // it may not be proper UTF8 encoding.
 // because of this, we can't just init a string with data. instead,
 // we encode it for transmission. the IV is then decoded on the service
 // and used in the decryption process
 NSString *ivString = [iv base64Encoding];

 // encrypt our transfer data using AES and a randomly generated
 // IV (this IV needs to be what we send to the service)
 NSString *encryptedString =
 [transferString encryptedWithAESUsingKey:kAESEncryptionKey
 andIV:iv];

 // calculate our message authentication code
 NSString *macCandidate = [NSString stringWithFormat:@"%@%@%@%@",

c06.indd 144c06.indd 144 13/09/12 2:42 PM13/09/12 2:42 PM

Message Integrity with Hashing and Encryption ❘ 145

 _toAccount, // to account
 _fromAccount, // from account
 amount, // amount
 _transferDate]; // transfer date
 NSString *mac = [macCandidate hmacWithKey:kMACKey];

 // construct our payload
 NSMutableDictionary *payload = [NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 ivString, @"iv",
 mac, @"mac",
 encryptedString, @"payload", nil];

...

After you create your funds transfer data structure and generate an initialization vector, you need to
encrypt the transfer instructions and calculate a MAC. Although the MAC generation was covered
in the last section, it has been included in Listing 6-14 to provide additional context.

Until now, the initialization vector has been provided to you as an input. In Listing 6-14, you are
responsible for generating the initialization vector prior to encryption. Listing 6-15 covers how to
use the SecRandomCopyBytes() function, provided by the Security Framework (discussed in the
next section), to create a random array of bytes that are cryptographically secure.

LISTING 6-15: Initialization Vector Creation Using SecRandomCopyBytes() (/App/Mobile-Banking/

Utils.m)

+ (NSData*)blockInitializationVectorOfLength:(size_t)ivLength {
 // default to AES block size
 if (ivLength == 0) {
 ivLength = kCCBlockSizeAES128;
 }

 NSMutableData *iv = [NSMutableData dataWithLength:ivLength];

 int ivResult = SecRandomCopyBytes(kSecRandomDefault,
 ivLength,
 iv.mutableBytes);

 if (ivResult == noErr) {
 return iv;
 }

 return nil;
}

If you do not specify a vector length, this method uses the AES block size as the default. After gen-
erating the vector, ensure you did not receive an error and return the result. The only error is -1,
which indicates a failure. To use SecRandomCopyBytes(), you must include the Security Framework
in your project.

When transmitting encrypted data from one system to another for decryption, you must know how
the various parameters are utilized. CCCrypt()adds NULL padding to initialization vectors smaller

c06.indd 145c06.indd 145 13/09/12 2:42 PM13/09/12 2:42 PM

146 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

than the block size defi ned by the specifi ed algorithm. This could potentially cause integration issues
depending on how the receiving system handles padding.

Listing 6-16 covers decryption and MAC verifi cation in PHP using the encrypted payload generated
in Listing 6-14. The decryption process is identical for AES and Triple-DES with the exception of
the algorithm and key passed to the mcrypt_decrypt () function call.

LISTING 6-16: AES Decryption Using PHP (/Service/index.php)

// retrieve the request payload
$postData = json_decode(@file_get_contents('php://input'));
$inboundMac = $postData->mac;
$iv = $postData->iv;
$payload = $postData->payload;

// decrypt the payload
$decrypted = mcrypt_decrypt(MCRYPT_RIJNDAEL_128,
 $AES_KEY,
 base64_decode($payload),
 MCRYPT_MODE_CBC,
 $iv);
$decLength = strlen($decrypted);
$padding = ord($decrypted[$decLength-1]);
$decrypted = substr($decrypted, 0, -$padding);

// decode decrypted payload, split into components
$decryptedPayloadJSON = json_decode($decryptedPayload);
$toAccount = $decryptedPayloadJSON->toAccount;
$fromAccount = $decryptedPayloadJSON->fromAccount;
$amount = $decryptedPayloadJSON->amount;
$transferDate = $decryptedPayloadJSON->transferDate;
$transferNotes = $decryptedPayloadJSON->transferNotes;

// grab toAccount, fromAccount, amount, transferDate (in that order)
// and create message auth code (hmac)
$macCandidate = $toAccount.$fromAccount.$amount.$transferDate;
$derivedMac = hash_hmac("sha256", $macCandidate, $HMAC_KEY);

// validate inbound hmac matches your derived value
if ($inboundMac != $derivedMac) {
 sendAPIResponse
 (400,
 json_encode(buildErrorResponse("Message Integrity Error"))
);
 return;
}

// here you would perform your actual transfer and
// validate it was successful prior to issuing 200

sendAPIResponse(200);
return;

The following snippet demonstrates the algorithm change needed to decrypt a Triple-DES encrypted
blob.

c06.indd 146c06.indd 146 13/09/12 2:42 PM13/09/12 2:42 PM

Message Integrity with Hashing and Encryption ❘ 147

...
// decrypt the payload
$decrypted = mcrypt_decrypt(MCRYPT_3DES,
 $DES_KEY,
 base64_decode($payload),
 MCRYPT_MODE_CBC,
 $iv);
$decLength = strlen($decrypted);
$padding = ord($decrypted[$decLength-1]);
$decrypted = substr($decrypted, 0, -$padding);

// decode decrypted payload, split into components
...

With encryption covered, discussing decryption, response interpretation, and payload decryption
should go quickly. Decryption will be covered quickly because it is literally a single line of code, and
the following listings are similar to Listing 6-12 and Listing 6-13, respectively. CCCrypt() can be used
for both encryption and decryption operations and the intent is specifi ed using the fi rst parameter.

The methods outlined in Listing 6-17 and Listing 6-18 should look familiar; they are nearly identical
to their encryption counterparts. The only difference is that you instruct CCCrypt() to perform a
decrypt operation instead of an encrypt operation.

LISTING 6-17: AES Decryption (/App/Mobile-Banking/NSData+Encryption.m)

- (NSData*)decryptedWithAESUsingKey:(NSString*)key andIV:(NSData*)iv {

 NSData *keyData = [key dataUsingEncoding:NSUTF8StringEncoding];

 size_t dataMoved;
 NSMutableData * decryptedData =
 [NSMutableData dataWithLength:self.length + kCCBlockSizeAES128];

 CCCryptorStatus result = CCCrypt(kCCDecrypt,
 kCCAlgorithmAES128,
 kCCOptionPKCS7Padding, // CBC Padding
 keyData.bytes,
 keyData.length,
 iv.bytes,
 self.bytes,
 self.length,
 decryptedData.mutableBytes, //data out
 decryptedData.length,
 &dataMoved); // total data moved

 if (result == kCCSuccess) {
 decryptedData.length = dataMoved;
 return decryptedData;
 }

 return nil;

}

c06.indd 147c06.indd 147 13/09/12 2:42 PM13/09/12 2:42 PM

148 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

LISTING 6-18: Triple-DES Decryption (/App/Mobile-Banking/NSData+Encryption.m)

- (NSData*)decryptedWith3DESUsingKey:(NSString*)key andIV:(NSData*)iv {

 NSData *keyData = [key dataUsingEncoding:NSUTF8StringEncoding];

 size_t dataMoved;
 NSMutableData *decryptedData =
 [NSMutableData dataWithLength:self.length + kCCBlockSize3DES];

 CCCryptorStatus result = CCCrypt(kCCDecrypt,
 kCCAlgorithm3DES,
 kCCOptionPKCS7Padding, // CBC Padding
 keyData.bytes,
 keyData.length,
 iv.bytes,
 self.bytes,
 self.length,
 decryptedData.mutableBytes,//data out
 decryptedData.length,
 &dataMoved); // total data moved

 if (result == kCCSuccess) {
 decryptedData.length = dataMoved;
 return decryptedData;
 }

 return nil;

}

The application implements the list account functionality of the application to illustrate client-side
decryption. After a user authenticates successfully, the application immediately issues a request to
retrieve the user’s accounts. The list of accounts includes name, number, and balance, and transmits
to the application in encrypted form. You can decrypt the account list, validate message integrity,
and create account objects for display in the view layer.

Listing 6-19 covers creating the service tier response, which includes encrypting the payload using
AES and calculating a MAC. The structure created in Listing 6-19 should be familiar to you from
the discussion on encryption.

LISTING 6-19: Payload Generation and Encryption Within PHP (/Service/index.php)

// create array of bank accounts for the user
$accounts = array();

// fill our accounts array with data
...

// generate the IV
$iv = generateInitVectorOfLength(16);

c06.indd 148c06.indd 148 13/09/12 2:42 PM13/09/12 2:42 PM

Message Integrity with Hashing and Encryption ❘ 149

// create MAC from accounts data
$mac = hash_hmac("sha256", json_encode($accounts), $hmacKey);

// encrypt our payload
$encryptedPayload = mcrypt_encrypt(MCRYPT_RIJNDAEL_128,
$AES_Key,
addEncryptionPadding(json_encode($accounts)),
MCRYPT_MODE_CBC,
$iv);
// generate service response
$response['iv'] = $iv;
$response['mac'] = $mac;
$response['payload'] = base64_encode($encryptedPayload);
...

Although Listing 6-19 covers AES encryption, Triple-DES encryption is similar. You simply need to
change the initialization vector length from 16 to 8, update the encryption algorithm from MCRYPT_
RIJNDAEL_128 to MCRYPT_3DES, and change the key ($AES_Key).

Listing 6-20 details how to interpret and decrypt the response generated in Listing 6-19 within your
application.

LISTING 6-20: Handling AES Encrypted Responses (/App/Mobile-Banking/

GetAccountsOperation.m)

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {

 // unpack service response
 NSError *error = nil;
 NSDictionary *response =
 [NSJSONSerialization JSONObjectWithData:self.responseData
 options:0
 error:&error];

 // decrypt the payload
 NSString *inboundMAC = [response objectForKey:@"mac"];
 NSData *ivData =
 [[response objectForKey:@"iv"]
 dataUsingEncoding:NSUTF8StringEncoding];

 NSString *encryptedResponse = [response objectForKey:@"payload"];
 NSString *decryptedResponse =
 [encryptedResponse decryptedWithAESUsingKey:kAESEncryptionKey
 andIV:ivData];

 if (decryptedResponse != nil) {
 // create JSON array of account info
 NSError *accountError = nil;
 NSArray *accounts =
 [NSJSONSerialization JSONObjectWithData:
 decryptedResponse dataUsingEncoding:NSUTF8StringEncoding]
 options:0

continues

c06.indd 149c06.indd 149 13/09/12 2:42 PM13/09/12 2:42 PM

150 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

 error:&accountError];

 // validate the MAC
 NSString *generatedMAC = [decryptedResponse hmacWithKey:kMACKey];
 if ([inboundMAC isEqualToString:generatedMAC]) {

 // validation passed, create accounts
 for (NSDictionary *accountData in accounts) {
 Account *account = [[Account alloc] initWithData:accountData];
 [[Model sharedModel].accounts addObject:account];
 }

 } else {
 // post error notification
 }
 } else {
 // post error / unable to decrypt notification
 }
 ...
}

This section covered how to encrypt and decrypt data using native Objective-C libraries. Although
data encryption plays an important role in your users’ security, cryptography can be subject to
Federal export controls. These controls come into play during the AppStore submission process.
Figure 6-3 depicts the AppStore encryption confi rmation screen. For enterprise-deployed applica-
tions, you should consult your legal department.

LISTING 6-20 (continued)

FIGURE 6-3

c06.indd 150c06.indd 150 13/09/12 2:42 PM13/09/12 2:42 PM

Storing Credentials Securely on the Device ❘ 151

STORING CREDENTIALS SECURELY ON THE DEVICE

Now that the application can communicate securely with the service tier, it needs to store infor-
mation securely on the device. Apple provides the Keychain Services API as part of the Security
Framework to do just that. Keychain is a mechanism to securely store small amounts of data such
as passwords, keys, certifi cates, and identities on the device. Keychain is not intended for general-
purpose encryption and data storage, but items that require protection such as passwords and pri-
vate keys will be stored in an encrypted manner. Items such as certifi cates, which do not require that
level of protection, will not be encrypted for storage. This section discusses Keychain concepts, and
a more in-depth Keychain implementation is covered in Chapter 11, “Inter-App Communication.”

In iOS, each application has access to the Keychain items it creates without having to request
permission. This differs from traditional Mac development in which applications can access any
Keychain items the user approves. Keychain data is technically stored outside of the application
sandbox, which allows data to persist through an application deletion event. iOS Keychain rights
are dependent on the provisioning profi le used to sign the application. As your application pro-
gresses through its version lifecycle, it is important to use the same provisioning profi le.

An application’s Keychain can contain any number of items, each of which consists of data to store
and a set of attributes. The attributes for each Keychain item depend on the item class chosen during
storage. There are a number of common item attributes between item classes. For a complete list, refer
to Apple’s documentation, but Table 6-3 outlines the attributes that can be set by the application.

TABLE 6-3: Editable Keychain Item Attributes

ITEM ATTRIBUTE DESCRIPTION

kSecAttrAccessible Indicates when this item can be accessed; discussed further in

the chapter text

kSecAttrAccessGroup Indicates which access group the item belongs to; discussed

further in the chapter text

kSecAttrDescription User-visible string describing item

kSecAttrComment User-editable comment for item

kSecAttrCreator Item’s creator as unsigned integer representation of four-

character code

kSecAttrType Item’s type as unsigned integer representation of four-

character code

kSecAttrLabel User-visible label for item

kSecAttrIsInvisible Boolean indicating whether item should be displayed

kSecAttrIsNegative Indicates whether there is a valid password for this item

kSecAttrAccount Account name associated with this item; included in Generic

and Internet Password classes

continues

c06.indd 151c06.indd 151 13/09/12 2:42 PM13/09/12 2:42 PM

152 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

ITEM ATTRIBUTE DESCRIPTION

kSecAttrService Service name associated with this item; included in Generic

Password class

kSecAttrGeneric User-defi ned attribute included in Generic Password class

kSecAttrSecurityDomain Internet security domain of item; included in Internet Password class

kSecAttrServer Server domain or IP address of item; included in Internet

Password class

kSecAttrProtocol Protocol for this item; included in Internet Password class

kSecAttrAuthenticationType Authentication scheme for item; included in Internet Password class

kSecAttrPort Internet port number; included in Internet Password class

kSecAttrPath Path, typically URL path component; included in Internet

Password class

kSecAttrApplicationLabel Label for item used to look up key programmatically; included

in Key class

kSecAttrIsPermanent Boolean indicating whether key is stored permanently; included

in Key class

kSecAttrKeyType Algorithm associated with key; included in Key class

kSecAttrKeySizeInBits Total number of bits in key; included in Key class

kSecAttrEffectiveKeySize Eff ective number of bits in key; included in Key class

kSecAttrCanEncrypt Boolean indicating whether key can be used for encryption;

included in Key class

kSecAttrCanDecrypt Boolean indicating whether key can be used for decryption;

included in Key class

kSecAttrCanDerive Boolean indicating whether key can be used to derive another

key; included in Key class

kSecAttrCanSign Boolean indicating whether key can be used to create digital

signatures; included in Key class

kSecAttrCanVerify Boolean indicating whether key can be used to verify digital

signature; included in Key class

kSecAttrCanWrap Boolean indicating whether key can be used to wrap another

key; included in Key class

kSecAttrCanUnwrap Boolean indicating whether key can be used to unwrap another

key; included in Key class

TABLE 6-3 (continued)

c06.indd 152c06.indd 152 13/09/12 2:42 PM13/09/12 2:42 PM

Storing Credentials Securely on the Device ❘ 153

Two important attributes to note during the creation process, which are common to all classes, are
kSecAttrAccessible and kSecAttrAccessGroup. kSecAttrAccessible allows you to indicate
when the application can access the Keychain item. You should use the most restrictive option that
still allows your application to meet its stated purpose. Table 6-4 lists all possible values for the
kSecAttrAccessible attribute. At a minimum, you should consider setting kSecAttrAccessible
to a value ending with ThisDeviceOnly, which restricts the transfer of the Keychain item to a new
device. kSecAttrAccessGroup indicates which access group a Keychain item belongs to. Applications
can belong to multiple access groups as defi ned in the Entitlements.plist fi le from Chapter 11.
Multiple access groups can be used to further compartmentalize Keychain data. An access group can
also be used to share data between applications. The example in Chapter 11 touches on this in more
detail, including the Entitlements.plist fi le.

TABLE 6-4: kSecAttrAccessible Attribute Values

POSSIBLE VALUE DESCRIPTION

kSecAttrAccessibleWhen

Unlocked
Item data can be accessed whenever the device is unlocked.

Recommended when items are needed while application is in

the foreground.

kSecAttrAccessibleAfter

FirstUnlock
Item data can be accessed after the fi rst unlock following a

restart.

kSecAttrAccessibleAlways Item data is always accessible. It is not recommended that

developers use this attribute; it is intended for system use.

kSecAttrAccessibleWhen

UnlockedThisDeviceOnly
Similar to kSecAttrAccessibleWhenUnlocked except that

item data cannot be migrated to a new device.

kSecAttrAccessibleAfter

FirstUnlockThisDeviceOnly
Similar to kSecAttrAccessibleAfterFirstUnlock except

that item data cannot be migrated to a new device.

kSecAttrAccessibleAlways

ThisDeviceOnly
Item data is always accessible. Similar to

kSecAttrAccessibleAlways it is not recommended because

it’s intended for system use. Items with this value cannot be

migrated to a new device.

Given how easy it is to implement and its fl exibility for storage, Generic Password tends to be the
most common for developers to start with while they learn the Keychain concepts. The Generic
Password class is an ideal location for securely storing non-Internet passwords, such as authentica-
tion tokens like those used in this chapter’s service tier. The Generic Password class is also where
you may choose to store an indicator to detect previous installations of an application.

Interacting with Keychain Services requires an understanding of how to structure Keychain
searches. The most important step is specifying the appropriate item class value for the kSecClass
attribute. This is set during the creation of a Keychain item and compartmentalizes searches.
kSecAttrAccessGroup is also important to the search structure. As previously stated, an applica-
tion can contain multiple access groups. If your application specifi es the wrong access group to
search, it will not be able to locate the Keychain item you are seeking.

c06.indd 153c06.indd 153 13/09/12 2:42 PM13/09/12 2:42 PM

154 ❘ CHAPTER 6 SECURING NETWORK TRAFFIC

When creating an entry in Keychain, it is a best practice to fi rst determine whether the item already
exists and respond accordingly with an add or update. The remaining actions (retrieve, update,
and delete) accept a query parameter, which is an instance of CFDictionaryRef. The action is per-
formed on each Keychain item that matches the query provided. The query parameter can include
a combination of any number of item attributes (a subset of which is outlined in Table 6-3) and the
search attributes defi ned in Table 6-5.

TABLE 6-5: Predefi ned Keychain Search Attributes

SEARCH ATTRIBUTE DESCRIPTION

kSecMatchPolicy Restricts certifi cates and identities must conform to this

policy. Value is SecPolicyRef object.

kSecMatchIssuers Restricts certifi cates and identities where their certifi cate

chain contains one or more of the issuers in a CFArray

of X.509 names.

kSecMatchEmailAddressIfPresent Restricts certifi cates and identities where they contain

the address specifi ed or do not contain an address.

kSecMatchSubjectContains Restricts certifi cates and identities to those where the

subject contains the specifi ed CFStringRef.

kSecMatchCaseInsensitive Specifi es that search must match case sensitivity to be

returned.

kSecMatchTrustedOnly Boolean value that restricts certifi cates which can be

verifi ed back to a trusted anchor. When false, both

trusted and untrusted certifi cates will be returned.

kSecMatchValidOnDate Restricts keys, certifi cates, and identities that are valid

on the specifi ed date. Pass kCFNull to use the current

date.

kSecMatchLimit Specifi es the number of results that can be returned.

Default is kSecMatchLimitOne with the other pre-

defi ned constant being kSecMatchLimitAll.

kSecMatchLimitOne Restricts results to the fi rst matching item found.

kSecMatchLimitAll Specifi es that ALL matching results can be returned.

NOTE As stated earlier in this section, Chapter 11 covers integrating Keychain
storage into your application, including how to share data between multiple
applications.

c06.indd 154c06.indd 154 13/09/12 2:42 PM13/09/12 2:42 PM

Summary ❘ 155

SUMMARY

Securing network communication is extremely important and can take many forms, such as
validating that your users are communicating with the correct servers or authenticating users
before granting them access to your systems. You may also choose to encrypt all, or part of, your
network traffi c using ciphers such as AES and Triple-DES. To ensure your requests have not been
manipulated during transmission, you may use a MAC, or cryptographic hash, which requires
transmission planning with your service tier. After you have securely communicated the data,
you may choose to store it securely using the devices Keychain.

Even though Apple has provided these security libraries, you as a developer must still practice a little
common sense when it comes to protecting any valuable personal information stored in your app.
This becomes even more essential, and often contractually or legally obligated, when dealing with
data from fi nancial institutions, health organizations, or government agencies. Transparency with
your users is paramount, and you should always be clear about what information you access and
transmit on a user’s behalf. Store only the information absolutely necessary for your app to meet its
stated purpose, and always transmit that information in an appropriate and secure manner.

The next chapter discusses patterns for request optimization through HTTP caching, compression,
and pipelining.

c06.indd 155c06.indd 155 13/09/12 2:42 PM13/09/12 2:42 PM

c06.indd 156c06.indd 156 13/09/12 2:42 PM13/09/12 2:42 PM

Optimizing Request Performance

WHAT’S IN THIS CHAPTER?

 ➤ Understanding network bandwidth and latency

 ➤ Reducing request bandwidth with compression

 ➤ Reducing request latency with pipelining

 ➤ Minimizing request bandwidth with caching

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. The code
is in the Chapter 07 download and individually named according to the names throughout the
chapter.

As you have seen in earlier chapters, basic networking from an iOS device is powerful and
relatively easy. iOS has a full-featured API that supports many industry-standard protocols;
however, even if you develop a phenomenal app, the network communication may perform
suboptimally based on the device’s connection to the outside world.

This chapter teaches you the dimensions by which network performance is measured, and
you can use that knowledge to improve your app’s network communication. You learn best
practices that reduce bandwidth consumed by your app, improve the responsiveness, and even
prolong the battery life of the device running the app.

7

c07.indd 157c07.indd 157 13/09/12 2:42 PM13/09/12 2:42 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://WROX.COM
http://wrox.com

158 ❘ CHAPTER 7 OPTIMIZING REQUEST PERFORMANCE

MEASURING NETWORK PERFORMANCE

This section reviews at a high level the metrics used to describe network performance. Although there
are many metrics used to describe the performance of a wireless network, this section focuses on the
three most important ones: bandwidth, latency, and power consumption.

Network Bandwidth

The most common metric used to describe wireless network performance is bandwidth. Network
bandwidth in digital wireless communications is best described as the number of bits per second that a
communications channel may carry between two endpoints. Modern wireless networks boast impres-
sive theoretical bandwidth capabilities, but keep in mind that the bandwidth numbers quoted by car-
riers and network equipment providers are usually the theoretical maximums for the technology, and
the real-world bandwidth seen by a networked device can vary greatly from that maximum. Figure
7-1 shows the theoretical capacity of current wireless technologies on a logarithmic scale.

FIGURE 7-1

Maximum Bandwith (kbits/sec)
1,000,000

100,000

10,000

1,000
Max Rate (kbits/sec)

100

10

2G

G
PR

S

3G

Ed
ge

80
2.

11

80
2.

11
a

80
2.

11
g

EV
-D

O 4G LT
E

80
2.

11
n

1

There are many reasons why the bandwidth your device experiences differs so much from the
theoretical maximum. Chief among them is the fact that wireless network bandwidth is a shared
commodity. Even if a wireless technology boasts a high bandwidth, that channel may be shared by
thousands of wireless devices each competing for airtime. Consequently, the bandwidth consumption
and transmission activity of each of these devices can impact how much bandwidth is available to
your device. Figure 7-2 illustrates the route that a request from your app must take to arrive at the
destination server. Along every step of the route, your request must contend for bandwidth with
thousands of other data packets.

Consider a situation in which your app has sole use of an LTE base station in the middle of Kansas,
but that base station may have a small back haul circuit that connects it to the Internet at large. You

c07.indd 158c07.indd 158 13/09/12 2:42 PM13/09/12 2:42 PM

Measuring Network Performance ❘ 159

may get an excellent data rate to the tower, but the back
haul restricts the usable bandwidth. The maximum
speed of any network connection is the speed of the
slowest link along the communication path. Even if there
is suffi cient back haul bandwidth, carrier network equip-
ment applies a quality of service (QoS) priority value to
every data packet traversing their network. That equip-
ment usually deprioritizes simple data packets below
voice packets; therefore, your network request must wait
behind more time-sensitive voice data.

Other factors such as distance to the base station, atmo-
spheric conditions, and network interference can also
impact the bandwidth seen by the device. These myriad
factors are unavoidable, and the best response you can
take is to acknowledge that your app will receive a min-
iscule fraction of available bandwidth, and it needs to
make the best use of what it is given. Some suggestions
for how to do this are discussed later in the chapter in
the “Reducing Request Bandwidth” section.

Network Latency

A second measure of network performance is network
latency, which is the amount of time it takes for a network
packet to make a round trip between endpoints. Wireless carriers rarely quote latency fi gures for their
networks, but latency can have a dramatic effect on the perceived performance of your application. Like
bandwidth, there are many factors that impact the latency experienced by your application. The primary
factor is the inherent latency of the wireless network technology used to connect the device to the rest of
the world. Figure 7-3 shows the best-case latency fi gures for common network standards.

Carrier
Central
Office

Internal
Network

Network
Peer

Data
Center

Application
Server

Shared
Wireless
Channel

Shared
Trunk

Shared
Trunk

Shared back haul
circuit

FIGURE 7-2

160

140

120

100

80

60

40

20

0

3G
H
SPA

Edge

H
SPA

� LT
E

W
i-F

i

Eth
ern

et

Latency (ms)

Latency (ms)

FIGURE 7-3

c07.indd 159c07.indd 159 13/09/12 2:42 PM13/09/12 2:42 PM

160 ❘ CHAPTER 7 OPTIMIZING REQUEST PERFORMANCE

Latency is also dependent on the specifi c route taken by the packet as it moves between the device
and the destination server. Refer to Figure 7-2 to see an example route. Many other factors have a
noticeable impact on infl uencing network latency and are outlined in the following list:

 ➤ Other devices sharing the same base station may cause your packets to be delayed

 ➤ QoS prioritization of network packets may make your packets wait for other higher priority
packets

 ➤ Latency added by back haul channels can increase the latency experienced by your
application

 ➤ Server response times may add signifi cant time to your packet latency

There are many tools available for iOS devices to measure latency between the device and a net-
work host, such as SpeedTest.net’s app. If you use this or a similar tool, you immediately notice
the wide variance in latency times between individual requests on the same network, even those
made back-to-back. All these factors create a situation that is diffi cult to measure consistently and
accurately.

The effect of latency on your application is primarily in the area of responsiveness. The amount of
time a user must wait for a response to an action may vary between milliseconds to seconds depend-
ing on the network. This means that you must test your application on a variety of networks early
and often in the development process. Chapter 9, “Testing and Manipulating Network Traffi c,”
includes information on using Max OS X’s Network Link Conditioner to simulate a variety of net-
work conditions with the iOS Simulator. The impact of latency is inversely proportional to the size
of the requests generated by the application. (The exception to this guideline is for requests less than
1,500 bytes where the impact of network latency is identical down to 0 bytes.) If your application
sends requests with smaller payloads, then latency will have a greater effect. However, if your appli-
cation is streaming video content or some other activity that requires large payloads, then latency
will be of less concern than overall bandwidth.

You’ll see what measures you can take to reduce latency periods later in the chapter in the
“Reducing Request Latency” section.

Device Power

iOS devices are usually run on battery power, and every action taken by your app consumes power.
The primary consumers of power on an iOS device are as follows:

 ➤ Display and display backlight

 ➤ Location services

 ➤ Wi-Fi radio

 ➤ WWAN (cellular) radio

 ➤ Graphics processor

 ➤ CPU

c07.indd 160c07.indd 160 13/09/12 2:42 PM13/09/12 2:42 PM

http://SpeedTest.net

Optimizing Network Operations ❘ 161

 ➤ Bluetooth Radio

 ➤ Audio processor

With the exception of the display, your application has control over most of these variables. As you
optimize your program for better network performance, you have a secondary benefi t to improve the
power consumption profi le of your application. If your application is minimizing the amount of data
that it transmits, optimizing the use of existing TCP connections, and avoiding unnecessary requests,
it can reduce the amount of time the device must keep one or both of its radios powered on.

Another way to reduce battery usage by your application is to use encryption intelligently. A recent
best practice in web applications has been to encrypt all data, and this is good advice on applica-
tions that use desktop or laptop machines that are usually tethered to a power source. However, on
mobile devices with limited power, you should consider what requests must be encrypted. Images and
other publically available assets may not require encryption when in transit. The use of encryption
increases the CPU load and may activate hardware resources that would normally be powered down.

OPTIMIZING NETWORK OPERATIONS

Admitting that there may be problems with network performance is the fi rst step in addressing dif-
fi culties with network performance. If you don’t take steps to address network performance, you
may leave your users with an unpleasant experience. This section covers techniques you can utilize
to reduce the bandwidth used by your application by compressing the content of HTTP bodies, mea-
sures you can take to minimize the impact of high-latency connections, and methods you can try to
avoid using the network altogether by employing response caching.

Reducing Request Bandwidth

In the early days of computing, it was not uncommon to interconnect computers at 300 bits per
second. At this low speed, every bit transmitted was chosen with great care, and computer scientists
devised compact and sparse protocols that preserved bandwidth but were diffi cult to implement,
validate, and support.

As modern network speeds increased into the millions of bits per second, each individual bit became
almost irrelevant, and the protocols used over these connections became more verbose. These verbose
protocols were easier to maintain and manage. Protocols such as SOAP consume excessive amounts of
bandwidth but provide enough information to make each message almost self-describing.

With the advent of shared wireless networking such as GSM or CDMA, engineers have to reconsider
the bandwidth used by the protocols they select for an application and apply methods to reduce the
bandwidth used without sacrifi cing reliability or maintainability of the application. There are several
ways to reduce the amount of bandwidth consumed by an app:

 ➤ Use an effi cient data interchange format — Select an effi cient encoding for data between the
client and server. Chapter 4, “Generating and Digesting Payloads,” addresses the decision
criteria for selecting the right payload format.

c07.indd 161c07.indd 161 13/09/12 2:42 PM13/09/12 2:42 PM

162 ❘ CHAPTER 7 OPTIMIZING REQUEST PERFORMANCE

 ➤ Use precompressed data where possible — Compress or scale media assets such as audio,
video, and images with special purpose algorithms to suit the channel and device.

 ➤ Compress each request or response payload — Compress text payloads to provide signifi -
cant bandwidth savings with little impact on server or client code.

You can actually enable payload compression for nonmedia payloads by compressing server responses
or client requests. The method for compressing a response is signifi cantly different from compress-
ing a request. The next two sections describe this method of compression for both responses and
requests.

USING JSON AND XML FOR REQUEST AND RESPONSE BODIES

JSON and XML are common data encodings used for request or response bod-
ies. The effi ciency of an encoding scheme is highly dependent upon the data being
encoded, but JSON is usually a more effi cient scheme. Methods exist, such as CJSON
and EXI, to perform encoding specifi c compression on either JSON or XML. These
compressed encoding schemes require custom server and client modules to com-
press and decompress the data and may prevent reuse of the service. For example, if
you develop a service that uses CJSON you may be able to consume the data on an
iPhone, but you will not be able to reuse the service for a mobile web application.

NOTE You can fi nd offi cial specifi cations for HTTP response and request
formats and compression in the following RFC documents:

 ➤ RFC 2616 – Hypertext Transfer Protocol: http://www.ietf.org/rfc/
rfc2616.txt

 ➤ RFC 1951 – DEFLATE Compressed Data Format Specifi cation:
http://www.ietf.org/rfc/rfc1951.txt

 ➤ RFC 1952 – GZIP fi le format specifi cation: http://www.ietf.org/rfc/
rfc1952.txt

 ➤ RFC 1950 – ZLIB Compressed Data Format Specifi cation:
http://www.ietf.org/rfc/rfc1950.txt

Response Compression

Response payload compression is the easiest form of HTTP payload compression to implement. An
HTTP response is composed of the headers and body returned to the client in response to a previous
HTTP request. Response compression applies a data compression algorithm to the response body
and leaves the HTTP headers intact.

c07.indd 162c07.indd 162 13/09/12 2:42 PM13/09/12 2:42 PM

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1950.txt

Optimizing Network Operations ❘ 163

Response compression of text data can have a dramatic impact on the size of the data returned to
the client. With JSON or XML (see Chapter 4 for details on creating and processing JSON and
XML responses) the compressed payload can be less than 10 percent the size of the original payload,
but your results may vary depending on the succinctness of the original payload. If the original
source uses JSON with one-character fi eld names and has all whitespace removed, you see more
limited results compared to XML formatted for printing with lengthy element names. Typically,
the larger the payload the greater the compression ratio. Some small payloads may experience a net
increase in size due to compression lookup tables.

In iOS HTTP payload, compression is enabled by default for all HTTP NSURLConnection requests.
The received payload is automatically decompressed and presented to your code in its original for-
mat. The computational overhead of decompression is substantially less than the communication
overhead of transmitting ten times as many bytes; therefore, activating response compression is
almost always benefi cial.

NSURLConnection adds the following HTTP header to every request by default:

Accept-Encoding: gzip, deflate

The Accept-Encoding header informs the server that the client will accept payloads compressed
with either gzip or DEFLATE compression, but it is the server’s choice whether to compress its
response. Thus, the key to enabling the performance wins with response payload compression is to
confi gure the server terminating the HTTP to support compression.

NOTE Some browsers do not handle DEFLATE compression correctly so the
most common compression used is gzip.

NOTE The value of the library-path will vary depending on the installation of
Apache.

WARNING The name of the deflate_module is misleading because it supports
gzip compression but not DEFLATE compression.

For example, the process to confi gure the Apache web server involves loading a compression module
and activating an output fi lter for specifi c document types. First, your Apache confi guration needs to
load two modules.

LoadModule filter_module library-path/mod_filter.so
LoadModule deflate_module library-path/mod_deflate.so

The filter_module is a common module and is probably already loaded. The deflate_module is
less common but is part of the standard Apache installation for Linux, OS X, and Windows.

c07.indd 163c07.indd 163 13/09/12 2:42 PM13/09/12 2:42 PM

164 ❘ CHAPTER 7 OPTIMIZING REQUEST PERFORMANCE

Next you must defi ne the content to compress. The brute force approach is to add an output fi lter
applied to all content. The following snippet applies a global DEFLATE output fi lter:

SetOutputFilter DEFLATE

This is not a recommended approach unless you know that the web server is serving only text data
that can benefi t from compression. Applying compression to precompressed content, such as images,
audio, and video, can consume CPU resources to perform the compression while having little to no
positive impact on the size of the payload. A more targeted approach is to add output fi lters for only
the content types that can benefi t from compression. The following code applies compression to sev-
eral common content types:

AddOutputFilterByType DEFLATE text/plain
AddOutputFilterByType DEFLATE text/xml
AddOutputFilterByType DEFLATE application/xhtml+xml
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE application/xml
AddOutputFilterByType DEFLATE application/atom_xml
AddOutputFilterByType DEFLATE application/x-javascript
AddOutputFilterByType DEFLATE text/html
AddOutputFilterByType DEFLATE application/json

Enabling response compression should be transparent to other applications and browser-based users
because the client software, either application or browser, must explicitly indicate that it accepts a
compress payload with the Accept-Encoding header, which most modern browsers do. The only
downside of compression is that it makes the payload diffi cult to read and debug when using a net-
work sniffer to analyze traffi c during development. A recommended approach is to enable compres-
sion in the test environments but not in development environments.

Many other HTTP servers, including Microsoft’s IIS, support response compression. For informa-
tion on enabling compression in IIS see: http://www.iis.net/ConfigReference/system
.webServer/httpCompression. Many load balancer appliances, such as BIG-IP appliances,
support HTTP compression augmented by hardware-based compression subsystems.

If you do fi nd a reason to disable payload compression, the app can prevent it by clearing the auto-
matically set Accept-Encoding header. The following code is an example of clearing this header.

NSMutableURLRequest *request = [[[NSMutableURLRequest alloc]
 initWithURL:url
 cachePolicy:NSURLCacheStorageAllowed
 timeoutInterval:20] autorelease];
[request addValue:@"" forHTTPHeaderField:@"Accept-Encoding"];

The response to the request cannot be compressed by the server. Response compression is an easy
way to optimize your application’s use of network bandwidth and requires only minimal changes to
the service tier.

c07.indd 164c07.indd 164 13/09/12 2:42 PM13/09/12 2:42 PM

http://www.iis.net/ConfigReference/system.webServer/httpCompression
http://www.iis.net/ConfigReference/system.webServer/httpCompression

Optimizing Network Operations ❘ 165

Request Compression

Unlike response compression, request compression is much more complicated to implement because
it requires signifi cant client-side and server-side implementations. When performing request com-
pression, an HTTP client applies some type of data compression on the request body prior to send-
ing it to the server. Request compression is not well supported in web browsers because the browser
cannot know if the destination server can support decompression of the request. If the server does
not understand the compression scheme, the request is discarded, and the client app never gets a
response.

Because of this intractable problem, request compression requires a prior arrangement between the
application and server developers. An alternative is to develop a scheme in which the iOS applica-
tion queries the server to determine if compression is currently supported and then alter its behavior
based on the server response.

Request compression can be of signifi cant benefi t to mobile applications because wide area wireless
transmission speeds are usually asymmetric, providing greater bandwidth to data sent to the device
than to data originating from the device. The asymmetry is implemented because most web traffi c is
usually asymmetric. If your application defi es the standard asymmetric pattern, you should strongly
consider request compression. For example, if your application collects data for later upload to a
server, it can benefi t from compressing that uploaded payload. The sample application written for
this chapter includes a simple, moderately sized XML fi le that is 40 KB in size. Without compres-
sion, that fi le consumes 80 KB of bandwidth when transmitted to the server and echoed back to the
device. With both request and response compression enabled, the data consumes only 12 KB for
the same round trip.

To set up request compression you must fi rst defi ne an input fi lter in the web server. This example
shows how to defi ne this for Apache web servers.

WARNING Apache does not decompress data before sending it through a resource
fi lter such as the PHP or mod_jk modules. Therefore, if you pass compressed data
to a web app via a resource fi lter, the destination web app is responsible for the
decompression of the payload.

NOTE As with response compression, client apps should not waste CPU time
compressing content such as PDFs, encrypted data, images, audio, or video that is
already compressed. However, Base64 data representing pre-compressed data will
often benefi t from request compression. For example, if you must upload a JPEG
fi le in Base64 format, you can compress the Base64 data to achieve approximately
a 30 percent reduction in size over the uncompressed Base64 data.

The same modules used for response compression also perform request compression in Apache. The
following confi guration snippet loads the required modules.

c07.indd 165c07.indd 165 13/09/12 2:42 PM13/09/12 2:42 PM

166 ❘ CHAPTER 7 OPTIMIZING REQUEST PERFORMANCE

LoadModule filter_module library-path/mod_filter.so
LoadModule deflate_module library-path/mod_deflate.so

NOTE The value of the library-path will vary depending on the installation of
Apache.

NOTE The location of the html-directory will vary depending upon the confi gu-
ration of your host system.

The next step in Apache confi guration is to defi ne an input fi lter for the DEFLATE module. The fol-
lowing code snippet defi nes an input fi lter and a CGI alias.

SetInputFilter DEFLATE
SetOutputFilter DEFLATE
ScriptAlias /cgi/ <html-directory>/cgi-bin/

If a request arrives at the HTTP server with a header of Content-Encoding: gzip the HTTP
server attempts to decompress the request body and passes it to the next fi lter in the fi lter chain. For
demonstration purposes, the sample request compression app comes with a simple Perl script (see
Listing 7-1) that echoes the received payload back as the response body. The script does not care if
the received payload were compressed.

LISTING 7-1: Decomp.cgi

#!/usr/bin/perl
print "Content-type: text/html\n\n";
print "Hello, World.\n";
print "Body=\n";
foreach (<>) {
 print;
}

Next you add the compression code to your iOS app. It needs to both compress the payload and add a
Content-Encoding header to the request. The example compression code uses the libz.dylib frame-
work, which requires your project to link against that framework before compiling any compression
code. The code in Listing 7-2 shows the method used in the example program to compress the body of
the HTTP request:

LISTING 7-2: PostCompress/CompressRequest.m

- (NSData *)compressNSData:(NSData *)myData {

c07.indd 166c07.indd 166 13/09/12 2:42 PM13/09/12 2:42 PM

Optimizing Network Operations ❘ 167

 NSMutableData *compressedData = [NSMutableData dataWithLength:16384];

 z_stream compressionStream;
 // setup the compression stream
 compressionStream.next_in=(Bytef *)[myData bytes];
 compressionStream.avail_in = [myData length];
 compressionStream.zalloc = Z_NULL;
 compressionStream.zfree = Z_NULL;
 compressionStream.opaque = Z_NULL;
 compressionStream.total_out = 0;

 // start the compression of the stream using default compression
 if (deflateInit2(&compressionStream,
 Z_DEFAULT_COMPRESSION,
 Z_DEFLATED,
 (15+16),
 8, Z_DEFAULT_STRATEGY) != Z_OK) {
 // Something failed
 errorOccurred = YES;
 return nil;
 }

 // loop over the input stream writing bytes into
 // the compressedData buffer in 16K chunks
 do {
 // for every 16K of data compress a chunk into
 // the compressedData buffer
 if (compressionStream.total_out >= [compressedData length]) {
 // increase the size of the output data buffer
 [compressedData increaseLengthBy:16386];
 }

 compressionStream.next_out = [compressedData mutableBytes] +
 compressionStream.total_out;
 compressionStream.avail_out = [compressedData length] –
 compressionStream.total_out;
 // compress the next chunk of data
 deflate(&compressionStream, Z_FINISH);

 // keep going until no more compressed data to copy out
 } while (compressionStream.avail_out == 0);

 // end the compression run
 deflateEnd(&compressionStream);
 // set the actual length of the compressed data object
 // to match the number of bytes
 // returned by the compression stream
 [compressedData setLength: compressionStream.total_out];
 return compressedData;
}

Listing 7-3 shows the code to add the Content-Encoding header to the request. Without this header
the DEFLATE module does not know that the contents of the request are compressed.

c07.indd 167c07.indd 167 13/09/12 2:42 PM13/09/12 2:42 PM

168 ❘ CHAPTER 7 OPTIMIZING REQUEST PERFORMANCE

LISTING 7-3: PostCompress/CompressRequest.h

[request addValue:@"gzip" forHTTPHeaderField:@"Content-Encoding"];
NSData *compressed = [self compressNSData:myData];
[request setHTTPBody:compressed];
reqSize = [compressed length];

The example app implements compression and provides a way to perform multiple requests contain-
ing the sample payload against a URL of your choice. It displays the resulting size of the payload in
addition to the average and total time consumed by the requests. The times include the computa-
tional time required to compress the payload. Figure 7-4 shows the response time changes when dif-
ferent combinations of request and response compression are applied. The results here are calculated
using the Network Link Conditioner tool, which provides a more consistent performance than an
uncontrolled live cellular network.

Edge 3G DSL Cable Wi-Fi

9.00

No Comperssion

Request Only

Response Only

Both

8.00

7.00

6.00

5.00

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

Response Times Across Network Types

4.00

3.00

2.00

1.00

0.00

FIGURE 7-4

The benefi t is seen by the DSL profi le because DSL connections are typically asymmetric for
upstream and downstream speeds. Most notably, a request that would have taken almost 10 sec-
onds on an Edge network dropped to just below 3 seconds when both the request and response are
compressed.

Reducing Request Latency

Network latency includes the time required to establish a link between the phone and the carrier
network, to establish a TCP connection, to possibly negotiate an SSL connection, and to send and

c07.indd 168c07.indd 168 13/09/12 2:42 PM13/09/12 2:42 PM

Optimizing Network Operations ❘ 169

receive an HTTP request. Practically speaking, there is no way on an iOS device to reduce the
latency for a single network request, but there are techniques for reducing latency when multiple
requests are issued. In this section you learn how to reduce the latent time consumed by your appli-
cation’s network requests.

The techniques discussed in this section provide a means to avoid the repeated consumption of this
latent time. Just as it would be foolish to run to the grocery store once for every single item on your
shopping list; it is unwise to establish and tear down a TCP connection for each minor piece of
data required by your application. There are two best practices to reduce request latency: clustering
HTTP requests on a single TCP connection and pipelining HTTP requests to optimize the use of a
full-duplex TCP connection.

Your app is probably already using HTTP request clustering because iOS does it by default. After
an app fi nishes using an NSURLConnection object, the operating system keeps it open for several
seconds, usually about 10, before closing the connection. The technique can be used at a higher
level by holding nonessential updates until a suffi cient batch has accumulated or some user action
requires network activity. The app can then perform all the queued requests in close succession,
keeping the same connection active and avoiding the overhead of establishing more than one TCP
connection.

An alternative is to architect your service tier with a single service endpoint that proxies requests to
other services inside or outside of your organization. This approach can avoid latency by allowing
the application to reuse a single connection for disparate activities.

HTTP pipelining is a third way to reuse existing TCP connections. It enables an HTTP client to
send a second request on the same TCP socket before a response to the fi rst request is returned. The
responses are returned in the same order that the requests were made. Figure 7-5 illustrates the fl ow
of requests and responses for both pipelined and non-pipelined communications. Because POST and
PUT commands may modify entities on the server, it is recommended that you do not pipeline those
requests.

FIGURE 7-5

Non-Pipelined Requests Pipelined Requests

HTTP Client HTTP Server

Request 1

Request 2

Response 1

Response 2

HTTP Client HTTP Server

Request 1

Request 2

Request 3

Request 4

Response 1

Response 2

c07.indd 169c07.indd 169 13/09/12 2:42 PM13/09/12 2:42 PM

170 ❘ CHAPTER 7 OPTIMIZING REQUEST PERFORMANCE

You can enable pipelining for your NSURLRequest easily, as shown in the following code snippet.

NSMutableURLRequest *request = [[NSMutableURLRequest alloc]
 initWithURL:[NSURL URLWithString:url]];
[request setHTTPShouldUsePipelining:YES;

NOTE The request is a mutable request.

This approach should be used only with extensive testing on the target servers because not all
servers support HTTP pipelining. Both Apache and IIS support pipelining without additional
confi guration.

Avoid Network Requests

Beyond making requests smaller to reduce bandwidth and grouping them to avoid latency, the best
way to improve network performance is to avoid the network altogether. In this section you learn
the basics of HTTP caching and how you can leverage those rules in an iOS application to cache
content locally to avoid unnecessary network traffi c.

The IETF has explicitly defi ned how HTTP caching should work between a web browser and a web
server in RFC 2616. You can fi nd this information at http://www.w3.org/Protocols/rfc2616/
rfc2616-sec13.html. HTTP was designed for browser-to-server communications, and the caching
mechanisms are geared toward that usage pattern. iOS provides a mechanism to leverage standard
HTTP caching and to also adopt alternative behaviors. Every request issued via NSURLRequest goes
through a caching component. This component is an instance of an NSURLCache object or a subclass
of it. This object is the standard mechanism for iOS to manage the caching of responses from a server.

Default Caching Behavior

By default, NSURLRequest complies with RFC 2616 for managing the cache. This default behavior
specifi es that the cache will either return the most current copy of the content, a warning indicating
that the returned content might be stale, or an error indicating that the content cannot be returned.

On iOS this means that a returned request is cached in memory when it is retrieved the fi rst time
only if the headers of the response indicate that the response can be cached. On subsequent requests
to the same URL, iOS sends a request to the server with an If-Modified-Since header contain-
ing the modifi ed date and time of the cached response. If the server determines that the content has
not been modifi ed since the time supplied in the header, it returns an HTTP response with a status
of 304 and no response body. From this response iOS determines that the copy it has in cache is the
freshest content and returns it with a status code of 200, effectively hiding the cache activities from
the application code. In network confi gurations where the content comes from a content delivery
network (CDN), the source URL may change from request to request, thereby defeating the caching
approach defi ned by the HTTP standards.

These standard caching rules were designed for interaction with a web browser. Mobile applications
using HTTP as a transport protocol can bend these default rules to improve performance and still
fulfi ll all application requirements. The URL loading system in iOS provides client applications with

c07.indd 170c07.indd 170 13/09/12 2:42 PM13/09/12 2:42 PM

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

Optimizing Network Operations ❘ 171

a means to override the default behavior. When overriding the default behavior, you need to take the
time to fully understand the edge cases that may cause defects in your application.

You can override the default caching rules by setting the cache policy for a request, as shown in the
following code snippet.

NSMutableURLRequest *request=[[NSMutableURLRequest alloc]
 initWithURL:[NSURL URLWithString:url]];
[request setCachePolicy:NSURLRequestUseProtocolCachePolicy];

NOTE Notice that the request is an NSMutableURLRequest. This enables your
code to modify the parameters of the request.

iOS provides six different settings that enable the developer to control how responses are cached:

 ➤ NSURLRequestUseProtocolCachePolicy — This setting instructs the system to follow the
rules specifi ed in RFC 2616.

 ➤ NSURLRequestReloadIgnoringLocalCacheData — This setting instructs the request to
bypass the local cache and retrieve new contents from the network. If some network appli-
ance, such as a caching network proxy, is between your application and the source of the
data and has kept a cached copy of the content, that copy may be returned.

 ➤ NSURLRequestReloadIgnoringLocalAndRemoteCacheData — This setting instructs the
request to bypass the local cache and to add headers to the request, asking intermediate
appliances to also bypass their cache to provide the freshest data from the source server.

 ➤ NSURLRequestReturnCacheDataElseLoad — This setting causes the caching system to
return a cached copy of the content without verifying with the server that it has the freshest
copy. If a cached copy of the request exists in the cache, it will be returned. If a cached copy
does not exist, the content is retrieved via a network request. This setting provides the fastest
response time but has the highest possibility of returning stale data. One way to use this
setting to your advantage is to use this type of request to provide initial quick responsiveness
to the user but also issue a request on a background thread that refreshes the cache with fresh
data from the server.

 ➤ NSURLRequestReturnCacheDataDontLoad — This setting specifi es that only content from
the cache will be returned. If the content is not in the cache, an error will be returned rather
than fetching the content from a server.

 ➤ NSURLRequestReloadRevalidatingCacheData — This setting always revalidates the data.
In some scenarios the cached response may have an expiration time after which the system
will check for fresher data. If this setting is used, that expiration time is ignored and the
freshness of the content is always validated against the server.

Beyond confi guring how each request utilizes the cache, you can specify the amount of data cached
by your application by confi guring the application’s NSURLCache object.

c07.indd 171c07.indd 171 13/09/12 2:42 PM13/09/12 2:42 PM

172 ❘ CHAPTER 7 OPTIMIZING REQUEST PERFORMANCE

Confi guring NSURLCache

An instance of NSURLCache is created when your application starts making networking requests
using any of the standard iOS classes. By default this instance caches data only in RAM, which
means that when your program exits, its cached requests will be cleared. The RAM cache will also
be cleared whenever the device enters a low-memory state.

iOS does provide a way to redefi ne the default cache and specify a larger memory capacity and per-
sistent storage to allow the cache to survive app restarts. The following code snippet shows a redefi -
nition of the default cache:

NSURLCache *cache = [[NSURLCache alloc]
 initWithMemoryCapacity:1024*1024
 diskCapacity:1024*1024*20
 diskPath:@"URLCache"];
[NSURLCache setSharedURLCache:cache];

This example creates a 1-MB memory cache and a 20-MB persistent cache. The location of the
cache database is in the application’s sandbox under the Library/Caches directory in a fi le named
URLCache. The second line of the example sets the application’s cache instance to the one just created
in the line above it.

There is an odd behavior in iOS that in some situations system components in the application set
the memory capacity of the cache to 0 MB, which effectively disables the cache. One way to defeat
this unexplained behavior is to subclass NSURLCache with your own implementation that rejects
attempts to set the memory cache size to zero. The following code shows a subclass implementation
that prevents this behavior.

@interface NonZeroingCache : NSURLCache

@end

@implementation NonZeroingCache

-(void)setMemoryCapacity:(NSUInteger)newMemSize
{
 if (newMemSize == 0) {
 NSLog(@"Attempt to set cache size to 0");
 return;
 }
 [super setMemoryCapacity: newMemSize];
}

@end

The code in the setMemoryCapacity: method validates that the size is not zero and calls the super
class to set the new size for any value other than zero.

You can maximize app performance by compressing data and pipelining requests, but the fastest
requests are the requests you don’t make. By carefully considering your application requirements
and the behavior of your server, you can retain data in a cache and refresh that data only when it
has changed on the server to avoid making those requests.

c07.indd 172c07.indd 172 13/09/12 2:42 PM13/09/12 2:42 PM

Summary ❘ 173

SUMMARY

iOS users expect applications that respond immediately to their every request. There is a rule of
thumb in the mobile industry that the smaller the screen, the more impatient the user. To provide an
application that is enjoyable to use means valuing the user’s time as much as you value your time.
Optimizing the amount of bandwidth your application uses by compressing responses and requests,
avoiding unnecessary latency by pipelining requests, and even avoiding redundant network requests
by caching responses can make your application faster and improve the user experience.

c07.indd 173c07.indd 173 13/09/12 2:42 PM13/09/12 2:42 PM

c07.indd 174c07.indd 174 13/09/12 2:42 PM13/09/12 2:42 PM

Low-Level Networking

WHAT’S IN THIS CHAPTER?

 ➤ Deciphering BSD Sockets

 ➤ Implementing CFNetwork APIs

 ➤ Developing with NSStream

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118362402 on the Download Code tab. The code for this chapter is found in
one example project: Low-Level Networking.zip.

Every complex computer system is built on one or more layers of abstraction, and low-level
networking is no exception. At the root of the networking house of cards is the humble
Berkley, or BSD, socket. It performs the most basic task of networking: sending and receiving a
series of bits. Because it takes a fair amount of code to properly send a single byte and because
that same logic is repeated for every single socket, libraries were built to encapsulate that
logic so it can be reused by anyone. On iOS the resulting library is called Core Foundation
networking, or CFNetwork, which is a lightweight wrapper around raw sockets, but
soon became too cumbersome for the most common use cases. Eventually another layer,
NSStream, was added as a wrapper around CFNetwork and was intended to be the most
basic Objective-C networking API. More familiar classes, such as NSURLConnection and
UIWebView, are easy to use and accomplish a lot with minimal code because of the solid
foundation these three low-level libraries provide. This chapter gives working examples of
each library connecting to the same server and performing the same task, which enables you to
compare their relative power and complexity.

8

c08.indd 175c08.indd 175 11/09/12 9:05 AM11/09/12 9:05 AM

http://www.wrox.com/remtitle.cgi?isbn=9781118362402
http://www.wrox.com/remtitle.cgi?isbn=9781118362402
http://wrox.com
http://WROX.COM

176 ❘ CHAPTER 8 LOW-LEVEL NETWORKING

BSD SOCKETS

What became the BSD socket API was fi rst implemented in the late 1980s by researchers at the
University of California at Berkley. It was eventually standardized as the Portable Operating System
Interface (POSIX) sockets API by the Institute of Electrical and Electronics Engineers (IEEE) as the
standard for UNIX and all UNIX-like operating systems. Its popularity and relative ease-of-use has
also inspired a similar implementation for the Winsock API for Microsoft Windows. At some layer,
BSD sockets carry almost all Internet traffi c and give application programmers absolute control over
any communication to a remote device or server. A single socket is a one-way connection between
two endpoints; thus they are typically created in pairs: one for reading and one for writing. Like
almost all other resources on UNIX systems, sockets are represented as fi les and are assigned a fi le
descriptor when created. The six most common socket API calls are summarized in Table 8-1.

TABLE 8-1: BSD SOCKET API CALLS

API CALL DESCRIPTION

int socket(int addressFamily, int type,

int protocol)
Creates and initializes a new socket.

Returns a fi le descriptor number on

success and -1 on failure

int bind(int socketFileDescriptor, sockaddr

*addressToBind, int addressStructLength)
Assigns the socket to the address and port

specifi ed in the addressToBind struct

int accept(int socketFileDescriptor,

sockaddr *clientAddress, int

clientAddressStructLength)

Accepts a connection request and stores

the client’s address into clientAddress

int connect(int socketFileDescriptor,

sockaddr *serverAddress, int

serverAddressLength)

Connects to the server specifi ed in

serverAddress

hostent* gethostbyname(char *hostname) Attempts to use DNS to fi nd an IP

address corresponding to the provided

hostname

int send(int socketFileDescriptor, char

*buffer, int bufferLength, int flags)
Sends up to bufferLength bytes from

buffer across the socket

int receive(int socketFileDescriptor, char

*buffer, int bufferLength, int flags)
Reads up to bufferLength bytes from

the socket into buffer

int sendto(int socketFileDescriptor,

char *buffer, int bufferLength, int

flags, sockaddr *destinationAddress, int

destinationAddressLength)

Sends up to bufferLength bytes from

buffer to destinationAddress

int recvfrom(int socketFileDescriptor,

char *buffer, int bufferLength, int

flags, sockaddr *fromAddress, int

*fromAddressLength)

Reads up to bufferLength bytes from

the socket into buffer and stores the

sender’s address into fromAddress

c08.indd 176c08.indd 176 11/09/12 9:05 AM11/09/12 9:05 AM

BSD Sockets ❘ 177

BSD sockets are implemented strictly in C and can be used unmodifi ed in Objective-C code.
This is convenient if you would like to reuse an existing networking library, use a port code from
another platform with little hassle, or if you have previous socket experience and do not want to
spend resources learning one of Apple’s higher-level frameworks. Apple recommends against this
practice, however, because raw sockets don’t have access to built-in networking features of the OS
like the system wide VPN. Even worse, initiating a socket connection won’t automatically turn on
the device’s Wi-Fi or cellular radios. The radios are intelligently turned off to save battery power,
and any communication attempts will fail until some other networking process activates the radio.
CFNetwork’s wrapper around BSD sockets can activate the device’s radio; thus it is recommended
over BSD sockets in almost every scenario.

To create a socket, call socket(int addressFamily, int type, int protocol) with the desired
networking domain, socket type, and protocol enumeration values from socket.h. Typically, the
addressFamily is either IPv4 (AF_INET) or IPv6 (AF_INET6) for traffi c originating from an iOS
app; however, you can also open a socket to a local fi le. The socket type is commonly set to stream
(SOCK_STREAM) or datagram (SOCK_DGRAM). These two values are important because socket() is
frequently called with a protocol value of 0, which indicates that the system can use the domain
and type values to automatically choose the appropriate protocol. For stream sockets, the auto-
matic value is Transmission Control Protocol (IPPROTO_TCP) and for datagram sockets it is User
Datagram Protocol (IPPROTO_UDP). The semantics of these two protocols are discussed in more
detail in Chapter 12, “Device-to-Device Communication with GameKit.” If the socket is success-
fully created, the returned value is the number of the new fi le descriptor; however, if the call fails
for any reason, the return value will be -1. At this point, no communication has occurred yet, and
the socket has not been designated as an input or output socket (this won’t happen until the socket
is used for the fi rst time). Clients are now ready to begin connecting to a server; however, a server
requires one or more calls before it is ready to communicate.

Confi guring a Socket Server

The BSD socket server must associate the socket with a unique address by calling bind(int sock-
etFileDescriptor, sockaddr *addressToBind, int addressStructLength). This takes the
socket and assigns, or binds, it to a specifi c address and port. It returns 0 for a successful bind and
-1 otherwise. After the socket is bound, the next step depends on the type of connection you speci-
fi ed in the socket() call, either UDP or TCP:

 ➤ For UDP sockets, you are ready to start transmitting data to the world because UDP is a
connection-less protocol and doesn’t require someone listening on the other end.

 ➤ TCP sockets are connection-oriented and require a participant on the other end of the
socket. To establish a connection for TCP, you must call listen(int socketFile
Descriptor, int backlogSize) to set up the data structure for the backlog queue.

The socket passed as the fi rst argument becomes a read-only socket and can’t be used to send
messages. The backlogSize indicates how many pending connections can be queued up while
waiting to be acknowledged by your server code. When listening, the server waits for an incoming
connection request and calls accept(int socketFileDescriptor, sockaddr *clientAddress,
int clientAddressStructLength) to accept the request. This removes the pending request from

c08.indd 177c08.indd 177 11/09/12 9:05 AM11/09/12 9:05 AM

178 ❘ CHAPTER 8 LOW-LEVEL NETWORKING

the backlog queue and populates the clientAddress struct with the client’s addressing information,
most importantly its IP address and port. After the pending request has been accepted, the server is
ready to receive messages from a client.

Connecting as a Socket Client

A client’s fi rst action depends on the protocol in use by the socket. For TCP sockets, the client must
fi rst negotiate the connection to a server with connect(int socketFileDescriptor, sockaddr
*serverAddress, int serverAddressLength). The call blocks while the TCP handshake occurs
and then returns 0 on success or -1 on failure. For UDP sockets, connect() is optional; however,
calling it sets the default address for the socket for all UDP traffi c. This makes sending and receiving
UDP datagrams convenient. If the device connects to a hostname instead of an IP address, it is prob-
ably not clear how to proceed because sockaddr struct contains only an IP address. The Domain
Name System (DNS) was created to solve this problem of converting a hostname to an IP address.
The hostent* gethostbyname(char *hostname) function makes a blocking DNS query for the
specifi ed hostname. The hostent struct contains a list of IP addresses for the host in a format
directly compatible with the sockaddr struct used through the sockets API. If hostname contains
an IP address in dot notation, the call simply populates the returned hostent’s fi rst result with the
given IP address and returns immediately. This behavior makes it easy for the user to provide either
an IP address or hostname without needing to branch the connection logic. If a DNS entry cannot
be found for the supplied hostname, gethostbyname() returns NULL.

Once the socket is connected, the device can send or receive messages across it. There are two pairs
of socket API calls to use, and the correct pair depends on the type of socket in use. TCP sockets use
the int send(int socketFileDescriptor, char *buffer, int bufferLength, int flags)
and int receive(int socketFileDescriptor, char *buffer, int bufferLength, int
flags) pair. When sending, the socket described by socketFileDescriptor transmits buffer’s
bytes between 0 and bufferLength. If successful, it returns the number of bytes successfully sent
and -1 for any failure. When receiving, buffer is populated with a copy of the fi rst bufferLength
bytes read from the socket. Similarly to send(), receive() also returns the number of bytes suc-
cessfully read and -1 for any failure. UDP sockets that previously used connect() to set the default
address can also use send() and receive() in the same manner as TCP sockets. Otherwise, UDP
sockets must use the second pair of API calls used specifi cally for connectionless protocols.

UDP sockets can send to multiple addresses using the same socket connection with the int
sendto(int socketFileDescriptor, char *buffer, int bufferLength, int flags,

sockaddr *destinationAddress, int destinationAddressLength) API call. This call behaves
similarly to send() except it has additional arguments for the destination address. Because UDP
doesn’t make any guarantee about message delivery, it can immediately use the socket to send to
another address via another sendto() call. The corresponding connectionless receiving call is int
recvfrom(int socketFileDescriptor, char *buffer, int bufferLength, int flags,

sockaddr *fromAddress, int *fromAddressLength) and behaves similarly to sendto(). Note
one important difference: The last argument is a pointer to an integer that will be populated with
the fi nal length of the fromAddress struct. Because UDP sockets are not usually connected to a
single endpoint, the code receiving a datagram needs to know where it came from, and recvfrom()
populates fromAddress with that information.

c08.indd 178c08.indd 178 11/09/12 9:05 AM11/09/12 9:05 AM

BSD Sockets ❘ 179

Now that all the pieces are in place to connect to other devices and send or receive data, the fol-
lowing example ties everything together. The example app connects to a monitoring server in a
warehouse that controls its alarm and climate control systems. The example app must connect using
a low-level networking framework because the warehouse server reports its results over the telnet
protocol, which isn’t directly supported by the higher-level objects such as NSURLConnection. Three
separate networking controllers each load the same telnet results using a different low-level frame-
work and display the fetched results to the user. The warehouse server responds with a string for-
matted according to the following snippet of code:

84,60,+67,1,1,0,0,0,1
{room temperature},{outlet temperature},{coil temperature},{compressor status},
{air switch status},{auxiliary heat status},{front door status},{system status},
{alarm status}

Each controller fetches the data in a background thread, as shown in Listing 8-1, to prevent the user
interface from blocking during the network communication.

LISTING 8-1: Fetching Results in a Background Thread (LLNNetworkingController.m)

- (void)start {
 NSURL *url = [NSURL URLWithString:[NSString stringWithFormat:@"telnet://%@:%i",
 self.urlString, self.portNumber]];

 NSThread *t = [[NSThread alloc] initWithTarget:self
 selector:@selector(loadCurrentStatus:)
 object:url];
 [t start];
}

The networking controller reports its results to the user interface through two delegate mes-
sages: networkingResultsDidLoad: takes the networking results as an argument, and network-
ingResultsDidFail: takes a user-readable message that indicates what went wrong. The complete
socket implementation to load the warehouse results is shown in Listing 8-2.

LISTING 8-2: Loading Results with BSD Sockets (LLNBSDSocketController.m)

- (void)loadCurrentStatus:(NSURL*)url {
 if ([self.delegate respondsToSelector:@selector(networkingResultsDidStart)]) {
 [self.delegate networkingResultsDidStart];
 }

 // create a new Internet stream socket
 socketFileDescriptor = socket(AF_INET, SOCK_STREAM, 0);

 if (socketFileDescriptor == -1) {
 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidFail:)]) {

 [self.delegate networkingResultsDidFail:

continues

c08.indd 179c08.indd 179 11/09/12 9:05 AM11/09/12 9:05 AM

180 ❘ CHAPTER 8 LOW-LEVEL NETWORKING

 @"Unable to allocate networking resources."];
 }

 return;
 }

 // convert the hostname to an IP address
 struct hostent *remoteHostEnt = gethostbyname([[url host] UTF8String]);

 if (remoteHostEnt == NULL) {
 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidFail:)]) {

 [self.delegate networkingResultsDidFail:
 @"Unable to resolve the hostname of the warehouse server."];
 }

 return;
 }

 struct in_addr *remoteInAddr = (struct in_addr *)remoteHostEnt->h_addr_list[0];

 // set the socket parameters to open that IP address
 struct sockaddr_in socketParameters;
 socketParameters.sin_family = AF_INET;
 socketParameters.sin_addr = *remoteInAddr;
 socketParameters.sin_port = htons([[url port] intValue]);

 // connect the socket; a return code of -1 indicates an error
 if (connect(socketFileDescriptor, (struct sockaddr *) &socketParameters,
 sizeof(socketParameters)) == -1) {

 NSLog(@"Failed to connect to %@", url);

 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidFail:)]) {

 [self.delegate networkingResultsDidFail:
 @"Unable to connect to the warehouse server."];
 }

 return;
 }

 NSLog(@"Successfully connected to %@", url);

 NSMutableData *data = [[NSMutableData alloc] init];
 BOOL waitingForData = YES;

 // continually receive data until you reach the end of the data
 while (waitingForData){

LISTING 8-2 (continued)

c08.indd 180c08.indd 180 11/09/12 9:05 AM11/09/12 9:05 AM

BSD Sockets ❘ 181

 const char *buffer[1024];
 int length = sizeof(buffer);

 // read a buffer's amount of data from the socket; the number
 // of bytes read is returned
 int result = recv(socketFileDescriptor, &buffer, length, 0);

 // if you got data, append it to the buffer and keep looping
 if (result > 0){
 [data appendBytes:buffer length:result];

 // if you didn't get any data, stop the receive loop
 } else {
 waitingForData = NO;
 }
 }

 // close the stream since you are done reading
 close(socketFileDescriptor);

 NSString *resultsString = [[NSString alloc] initWithData:data
 encoding:NSUTF8StringEncoding];
 NSLog(@"Received string: '%@'", resultsString);

 LLNNetworkingResult *result = [self parseResultString:resultsString];

 if (result != nil) {
 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidLoad:)]) {

 [self.delegate networkingResultsDidLoad:result];
 }

 } else {
 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidFail:)]) {

 [self.delegate networkingResultsDidFail:
 @"Unable to parse the response from the warehouse server."];
 }
 }
}

The sockets controller begins by creating a new Internet stream socket with socket(). It then takes
the server’s hostname and uses gethostbyname() to get its IP address. If both of these calls are
successful, the app is ready to populate the sockaddr_in struct with the hostname and port, and
then use it to connect to the server. When setting the port, the integer value is converted to network
byte order with htons() to ensure it can be read properly by both big endian and little endian
systems. In the connect() call, sockaddr_in is cast to a sockaddr, and this is possible because
both structs have the same layout when sockaddr_in.sin_family is AF_INET. When the socket is
connected, the app is ready to read any available data into an NSMutableData for later processing.
It reads in 1,024-byte chunks until a read call indicates that no more data is available. After all the

c08.indd 181c08.indd 181 11/09/12 9:05 AM11/09/12 9:05 AM

182 ❘ CHAPTER 8 LOW-LEVEL NETWORKING

data is downloaded, it is converted to a string, parsed into each individual piece of
environment data, and given to the UI for display to the user. Cleaning up a socket is as easy as
calling close() on the socket fi le descriptor.

CFNETWORK

CFNetwork is situated one step higher in the framework hierarchy and is a lightweight wrapper
around BSD sockets. You can notice many similarities in the callback methods and logic fl ow
that are a consequence of the underlying BSD foundation. As noted earlier, the main benefi t of
CFNetwork over raw sockets is that CFNetwork integrates into system-level settings and the main
run loop. System services such as turning on the antenna when necessary and routing through a
system wide VPN are benefi ts gained when moving up in the framework hierarchy, and there are
few signifi cant drawbacks.

Run loop integration is essential to threading and is the basis of the event processing fl ow in iOS.
Every thread can have its own run loop, and the run loop of the main thread is called the main
run loop or UI run loop. Each loop schedules the processing of asynchronous events and sleeps the
thread if no events have occurred. Examples of these events are keyboard or gesture input, networking
events, or timers, and each one needs to be handled by custom application logic. As you can see
in the next code example, each thread has its own run loop; however, each secondary thread must
explicitly start and stop its own loop. CFNetwork uses a callback system similar to the delegates
used in higher-level Objective-C frameworks and is only feasible because of the run loop support in
the framework.

C functions are used to create and open the socket, and the callback system is used for
all other events originating from it. CFNetwork contains a create convenience function
CFStreamCreatePairWithSocketToHost() that can create a pair of sockets, one for reading
and one for writing, for a given hostname and port. The framework takes care of converting the
hostname to an IP address and the port number to network byte order. If you don’t need one of
the pair, you can simply pass NULL as the read or write stream argument to skip its allocation.
Just as with raw sockets, the streams must be explicitly opened with CFReadStreamOpen() or
CFWriteStreamOpen() before they can be used. Both calls are asynchronous, and will call the
callback function with kCFStreamEventOpenCompleted when successfully opened. Listing 8-3
demonstrates creating and opening the stream using the same warehouse feed from the previous
example.

LISTING 8-3: Creating a Socket with CFNetwork (LLNCFNetworkController.m)

- (void)loadCurrentStatus:(NSURL*)url {
 if ([self.delegate respondsToSelector:@selector(networkingResultsDidStart)]) {
 [self.delegate networkingResultsDidStart];
 }

 // keep a reference to self to use for controller callbacks
 CFStreamClientContext ctx = {0, (__bridge void *)(self), NULL, NULL, NULL};

 // get callbacks for stream data, stream end, and any errors

c08.indd 182c08.indd 182 11/09/12 9:05 AM11/09/12 9:05 AM

CFNetwork ❘ 183

 CFOptionFlags registeredEvents = (kCFStreamEventHasBytesAvailable |
 kCFStreamEventEndEncountered |
 kCFStreamEventErrorOccurred);

 // create a read-only socket
 CFReadStreamRef readStream;
 CFStreamCreatePairWithSocketToHost(kCFAllocatorDefault,
 (__bridge CFStringRef)[url host],
 [[url port] integerValue],
 &readStream,
 NULL);

 // schedule the stream on the run loop to enable callbacks
 if (CFReadStreamSetClient(readStream, registeredEvents,
 socketCallback, &ctx)) {

 CFReadStreamScheduleWithRunLoop(readStream,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);

 } else {
 NSLog(@"Failed to assign callback method");

 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidFail:)]) {

 [self.delegate networkingResultsDidFail:
 @"Unable to respond to data from the warehouse server."];
 }

 return;
 }

 // open the stream for reading
 if (CFReadStreamOpen(readStream) == NO) {
 NSLog(@"Failed to open read stream");

 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidFail:)]) {

 [self.delegate networkingResultsDidFail:
 @"Unable to read data from the warehouse server."];
 }

 return;
 }

 CFErrorRef error = CFReadStreamCopyError(readStream);

 if (error != NULL) {
 if (CFErrorGetCode(error) != 0) {
 NSLog(@"Failed to connect stream; error '%@' (code %ld)",

continues

c08.indd 183c08.indd 183 11/09/12 9:05 AM11/09/12 9:05 AM

184 ❘ CHAPTER 8 LOW-LEVEL NETWORKING

 (__bridge NSString*)CFErrorGetDomain(error),
 CFErrorGetCode(error));
 }

 CFRelease(error);

 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidFail:)]) {

 [self.delegate networkingResultsDidFail:
 @"Unable to connect to the warehouse server."];
 }

 return;
 }

 NSLog(@"Successfully connected to %@", url);

 // start processing
 CFRunLoopRun();
}

The only remaining part of initialization is to register the socket callback function, which requires
three distinct steps:

 1. First, create a callback function to pass to the stream. Both read and write streams have the
same callback signatures and differ only in the type of stream reference passed as the fi rst
argument. For example, the callback function can be any function that has the method
signature void socketCallback(CFReadStreamRef stream, CFStreamEventType
event, void *info). The fi rst argument is the stream that generated the event, and almost
every function you would use to process the stream, requires a reference to it. The event that
generated the callback is passed as event and can be one of the CFStreamEventType values,
as listed in Table 8-2. The last value is a parameter that you set when registering the context
of the stream and can be a pointer to any data that can help you process the stream data.

 2. Next, create the previously mentioned context value by populating a
CFStreamClientContext struct for the stream, which holds a pointer to your own info
object and callback functions for retaining, releasing, or copying that object. Typically, you
pass a reference to self, which would point to the class managing the stream, for info and
NULL for each optional callback.

 3. Finally, choose the stream events your code wants to receive. Simply store a bitwise OR of
the CFStreamEventType values described in Table 8-2 that you want to have processed by
your callback function.

After these three pieces are in place, call CFReadStreamSetClient(CFReadStreamRef stream,
CFOptionFlags streamEvents, CFReadStreamClientCallBack callbackFunction,

CFStreamClientContext *context) to register the callback with the stream. Listing 8-4 combines
these concepts into an example callback function for a read stream.

LISTING 8-3 (continued)

c08.indd 184c08.indd 184 11/09/12 9:05 AM11/09/12 9:05 AM

CFNetwork ❘ 185

LISTING 8-4: Example Read Stream Callback (LLNCFNetworkController.m)

void socketCallback(CFReadStreamRef stream, CFStreamEventType event, void *myPtr) {
 LLNCFNetworkController *controller = (__bridge LLNCFNetworkController*)myPtr;

 switch(event) {
 case kCFStreamEventHasBytesAvailable:
 // read bytes until there are no more
 while (CFReadStreamHasBytesAvailable(stream)) {
 UInt8 buffer[kBufferSize];
 int numBytesRead = CFReadStreamRead(stream, buffer, kBufferSize);

 [controller didReceiveData:[NSData dataWithBytes:buffer
 length:numBytesRead]];
 }

 break;

 case kCFStreamEventErrorOccurred: {
 CFErrorRef error = CFReadStreamCopyError(stream);

 if (error != NULL) {
 if (CFErrorGetCode(error) != 0) {
 NSLog(@"Failed while reading stream; error '%@' (code %ld)",
 (__bridge NSString*)CFErrorGetDomain(error),
 CFErrorGetCode(error));
 }

 CFRelease(error);
 }

 if ([controller.delegate respondsToSelector:

TABLE 8-2: CFStream Event Types

EVENT CONSTANT DESCRIPTION

kCFStreamEventOpenCompleted The socket was successfully opened.

kCFStreamEventHasBytesAvailable The socket has bytes available for reading.

kCFStreamEventCanAcceptBytes The socket has space in its buff er to write bytes.

kCFStreamEventErrorOccurred An error occurred with an opera-

tion. CFReadStreamCopyError() or

CFWriteStreamCopyError() can provide more

details about the error.

kCFStreamEventEndEncountered The socket reached the end of the byte stream.

kCFStreamEventNone This default value represents no event at all.

continues

c08.indd 185c08.indd 185 11/09/12 9:05 AM11/09/12 9:05 AM

186 ❘ CHAPTER 8 LOW-LEVEL NETWORKING

 @selector(networkingResultsDidFail:)]) {

 [controller.delegate networkingResultsDidFail:
 @"An unexpected error occurred while reading from
 the warehouse server."];
 }

 break;
 }

 case kCFStreamEventEndEncountered:
 [controller didFinishReceivingData];

 // clean up the stream
 CFReadStreamClose(stream);

 // stop processing callback methods
 CFReadStreamUnscheduleFromRunLoop(stream,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);

 // end the thread's run loop
 CFRunLoopStop(CFRunLoopGetCurrent());

 break;

 default:
 break;
 }
}

Even if the callback is successfully registered, you won’t see it called until the run loop is properly
handled. Thankfully, this requires only two short steps: registering the callback with the run
loop and starting the run loop. True to their names, CFReadStreamScheduleWithRunLoop(CFR
eadStreamRef stream, CFRunLoopRef runLoop, CFStringRef runLoopMode) and its write
stream equivalent schedule the stream with the given run loop. The runLoop is almost always
CFRunLoopGetCurrent(), which returns the default run loop for the current thread, and
runLoopMode is almost always kCFRunLoopCommonModes, which encompasses the default mode and
any other manually added modes for the current thread. When the stream is integrated into the run
loop, it’s as easy as starting the loop with CFRunLoopRun() and waiting for events to happen.

NSSTREAM

Moving up yet another level in the framework hierarchy leads to NSStream, which is an Objective-C
wrapper around the CFNetwork APIs. It uses a delegate protocol NSStreamDelegate that almost
exactly mimics the function of the CFNetwork’s stream callback function, and all the same run loop
requirements apply to NSStream as well. NSStream has two concrete subclasses, NSInputStream
and NSOutputStream, which perform the same functions as CFReadStream and CFWriteStream,
respectively.

LISTING 8-4 (continued)

c08.indd 186c08.indd 186 11/09/12 9:05 AM11/09/12 9:05 AM

NSStream ❘ 187

Implementing an NSStream for reading or writing is relatively straightforward except for one wrin-
kle: The iOS SDK doesn’t support NSHost, which is required to use NSStream’s designated
initializer, getStreamsToHost:port:inputStream:outputStream:. Because this is a pain point for
almost every developer, especially those porting code from Mac OS X, Apple has published a
technical note (Technical Q&A QA1652, http://developer.apple.com/library/ios/#qa/
qa1652/_index.html) with an NSStream category that mimics the missing functionality, which
has been adapted for the example implementation in Listing 8-5. The solution takes advantage
of the toll-free bridging between CFReadStreamRef and NSInputStream and drops down to the
CFNetwork framework to create the stream exactly how it was created in Listing 8-3.

TOLL-FREE BRIDGING

If two objects are toll-free bridged, it means that references to the CoreFoundation
object are interchangeable with the Objective-C Foundation object. For example,
common types such as NSString, NSArray, NSDictionary, and NSInputStream are
bridged to CFStringRef, CFArrayRef, CFDictionaryRef, and CFReadStreamRef,
respectively. Although it may seem like magic to interchange bridged types, it is
possible because of the way concrete subclasses of the Foundation object are laid out
in memory, as well as the brute-force checking in the various CoreFoundation C calls.
This complexity is hidden from you; just use whichever bridged type is convenient.

LISTING 8-5: Creating an NSStream to a Hostname without NSHost (NSStream+StreamsToHost.m)

+ (void)readStreamFromHostNamed:(NSString *)hostName
 port:(NSInteger)port
 readStream:(out NSInputStream **)readStreamPtr {

 assert(hostName != nil);
 assert((port > 0) && (port < 65536));
 assert((readStreamPtr != NULL));

 CFReadStreamRef readStream = NULL;

 CFStreamCreatePairWithSocketToHost(NULL,
 (__bridge CFStringRef) hostName,
 port,
 ((readStreamPtr != NULL) ? &readStream :
 NULL),
 NULL);

 if (readStreamPtr != NULL) {
 *readStreamPtr = CFBridgingRelease(readStream);
 }
}

After you can easily make a stream, the same basic steps from the previous example implementations
are repeated here. Listing 8-6 demonstrates creating a read stream, setting the delegate, scheduling
it in the run loop, and opening it. These same steps might have taken a few dozen lines for a BSD
socket or CFNetwork implementation; however, here it can be done in just six!

c08.indd 187c08.indd 187 11/09/12 9:05 AM11/09/12 9:05 AM

http://developer.apple.com/library/ios/#qa/qa1652/_index.html
http://developer.apple.com/library/ios/#qa/qa1652/_index.html

188 ❘ CHAPTER 8 LOW-LEVEL NETWORKING

LISTING 8-6: Initializing an NSInputStream (LLNNSStreamController.m)

- (void)loadCurrentStatus:(NSURL *)url {
 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidStart)]) {

 [self.delegate networkingResultsDidStart];
 }

 NSInputStream *readStream;
 [NSStream readStreamFromHostNamed:[url host]
 port:[[url port] integerValue]
 readStream:&readStream];

 [readStream setDelegate:self];
 [readStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [readStream open];

 [[NSRunLoop currentRunLoop] run];
}

Implementing the NSStreamDelegate protocol looks similar to the CFReadStream callback function
and encompasses the exact same events. Listing 8-7 provides an example implementation that reads
the warehouse server feed into an NSMutableData object and then parses it. The only remotely
complex part of the code here is the read:maxLength: call for NSInputStream; however, the basic
concept is similar to the previous examples that read bytes into a buffer. NSStream is a lightweight
yet powerful object because of the great foundation classes it uses under the hood.

LISTING 8-7: Example NSStreamDelegate Implementation (LLNNSStreamController.m)

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode {
 switch (eventCode) {
 case NSStreamEventHasBytesAvailable: {
 if (receivedData == nil) {
 receivedData = [[NSMutableData alloc] init];
 }

 uint8_t buf[1024];
 int numBytesRead = [(NSInputStream *)stream read:buf maxLength:1024];

 if (numBytesRead > 0) {
 [receivedData appendBytes:(const void *)buf length:numBytesRead];

 } else if (numBytesRead == 0) {
 NSLog(@"End of stream reached");

 } else {
 NSLog(@"Read error occurred");
 }

 break;
 }

c08.indd 188c08.indd 188 11/09/12 9:05 AM11/09/12 9:05 AM

NSStream ❘ 189

 case NSStreamEventErrorOccurred: {
 NSError *error = [stream streamError];
 NSLog(@"Failed while reading stream; error '%@' (code %d)",
 error.localizedDescription, error.code);

 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidFail:)]) {

 [self.delegate networkingResultsDidFail:
 @"An unexpected error occurred while reading from
 the warehouse server."];
 }

 [self cleanUpStream:stream];
 }

 case NSStreamEventEndEncountered: {
 NSString *resultsString = [[NSString alloc] initWithData:receivedData
 encoding:NSUTF8StringEncoding];
 NSLog(@"Received string: '%@'", resultsString);

 LLNNetworkingResult *result = [self parseResultString:resultsString];

 if (result != nil) {
 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidLoad:)]) {
 [self.delegate networkingResultsDidLoad:result];
 }

 } else {
 if ([self.delegate respondsToSelector:
 @selector(networkingResultsDidFail:)]) {

 [self.delegate networkingResultsDidFail:
 @"Unable to parse the response from the warehouse
 server."];
 }
 }

 [self cleanUpStream:stream];

 break;
 }

 default:
 break;
 }
}

- (void)cleanUpStream:(NSStream*)stream {
 [stream removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [stream close];

 stream = nil;
}

c08.indd 189c08.indd 189 11/09/12 9:05 AM11/09/12 9:05 AM

190 ❘ CHAPTER 8 LOW-LEVEL NETWORKING

SUMMARY

This chapter has taken you on a tour of the low-level networking frameworks available for iOS and
provides pros and cons for each. As you move up the framework hierarchy, code becomes shorter
and less complex, but you also lose power as each layer of abstraction hides more of the raw
networking sockets that actually perform the communication. The warehouse server examples
provide an easy way to determine the proper framework for your app because each implementation
can be directly compared in terms of complexity, development time, and ease of use.

c08.indd 190c08.indd 190 11/09/12 9:05 AM11/09/12 9:05 AM

Testing and Manipulating
Network Traffi c

WHAT’S IN THIS CHAPTER?

 ➤ Observing network traffi c

 ➤ Manipulating network traffi c with proxies

 ➤ Simulating real-world network conditions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. The code is
in the Chapter 9 download and individually named according to the names throughout the chapter.

You make mistakes. This is an ines capable fact of life that everybody deals with every day.
Because you and every other person in the world make mistakes, the software you write also
has mistakes. Because of this it is essential to diagnose software behavior, fi nd the mistakes,
correct them, and try to avoid them in the future.

When writing networked applications, many layers of software and hardware are in between
each component of the system. It is often necessary to observe the interaction between these
components to get a complete and accurate picture of what happens at a higher level, so you
can better discover any existing mistakes.

This chapter describes methods to observe these network interactions, manipulate them, and
simulate real-world conditions in them. Observing network interactions gives you an accurate
picture of which requests leave the device and what data is received. Manipulating network
traffi c allows you to create situations in a development lab that occur only when consumers
use the app. Simulating network conditions also enables you to validate the behavior of the
app under varying network conditions.

9

c09.indd 191c09.indd 191 05/10/12 3:50 PM05/10/12 3:50 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://WROX.COM
http://wrox.com

192 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

OBSERVING NETWORK TRAFFIC

When writing a networked application, you do not have total control over the packets transmitted from
or received by the device. Many layers of software and hardware exist between your code on the device
and the code on a remote server. Because the interactions between your code and the underlying net-
work layers may be poorly documented or poorly understood, you sometimes must examine the raw
data transmitted from the device to know without a doubt what your app is sending. Likewise, similar
layers intervene between the server and your app, and you sometimes must know the exact data received
from the server. For example, if your app adds HTTP headers to a request, you may need to know
exactly how iOS is further manipulating those headers and what it eventually transmits to the server.

The act of observing network traffi c is called sniffi ng or packet analysis. Packet analyzers have been
around since the early days of networking and are available for almost every type of physical inter-
connect and protocol. This section focuses on sniffi ng Ethernet and Wi-Fi connections that use TCP
transport and HTTP application protocols from a development system running OS X Lion.

Sniffi ng Hardware

Before you can start capturing network traffi c from an iOS device, you must fi rst have a network topol-
ogy that can facilitate packet capture. The computer running the sniffi ng software must be on the same
network as the Wi-Fi device, or the packets from the Wi-Fi network must be propagated to the sniffi ng
laptop. Therefore, you may need to do some hardware shuffl ing to capture traffi c from a device.

NOTE No special hardware or network confi guration is required to capture pack-
ets from the iOS Simulator. If you need to capture these packets, you can use the
sniffi ng software listed in the next section to listen on the loopback device (lo0) or
the interface used to connect to the network.

The fi rst suggested confi guration, shown in Figure 9-1,
uses a Wi-Fi network shared by both the sniffi ng com-
puter and the iOS device.

In the common Wi-Fi confi guration, the iOS device and
sniffi ng computer pair with a Wi-Fi access point. The
Wi-Fi adapter on the sniffi ng computer receives all net-
work packets transmitted over the Wi-Fi network. The
sniffi ng software must be confi gured to run in monitor
mode so that the low-level Wi-Fi drivers propagate all
packets to the sniffi ng software. In some corporate net-
works with heavy Wi-Fi coverage, the mobile device and
the sniffi ng computer may pair to different access points
on different channels. This can occur even when the device
and computer are in close proximity because the two sys-
tems have different rules controlling which access points to
prefer and how aggressively to switch access points. If
the device and computer pair to different networks, the
computer may not see Wi-Fi traffi c from the device.

Wi-Fi
Access
Point

Sniffng
Laptop

iOS
Device

Router Internet

W
i-
F
i

W
i-
F
i

FIGURE 9-1

c09.indd 192c09.indd 192 05/10/12 3:50 PM05/10/12 3:50 PM

Observing Network Traffi c ❘ 193

Sniffing
Laptop

iOS
Device

Ethernet
Network

Router Internet

W
i-
F
i

FIGURE 9-2

A second confi guration, shown in
Figure 9-2, uses the Internet-sharing
feature of OS X to make the sniffi ng
laptop act as the Wi-Fi access point.

In this confi guration you need to connect
the sniffi ng laptop to a wired Ethernet
network and enable Internet sharing in
OS X to share the Ethernet network with
Wi-Fi users. You then need to confi gure
the iOS device to join the Wi-Fi network
created by the sniffi ng laptop. Each
network packet sent from the device to
the Internet traverses the Wi-Fi and Ethernet interface of the laptop. Using this confi guration you can
observe client-server traffi c as well as peer-to-peer traffi c such as the traffi c generated by Game Kit.

Sniffi ng Software

There are many network sniffers available for OS X; some free like Wireshark (discussed later)
and Packet Peeper (see http://sourceforge.net/projects/packetpeeper/), as well as some
shareware like Cocoa Packet Analyzer (http://www.tastycocoabytes.com/cpa).

A command-line packet sniffer, tcpdump, is bundled with OS X and is the foundation for most
other sniffers available for OS X. tcpdump can capture the network traffi c from an interface, fi lter it
according to criteria you specify, display the traffi c, and save the traffi c trace to a log fi le. The traffi c
display of tcpdump is diffi cult to decipher, but many packet analyzers leverage the fi ltering syntax;
making it worthwhile to learn.

Capturing with tcpdump

The sniffi ng needs of network engineers vary greatly from those of app developers. Network
 engineers need to see every bit transmitted from the device, and this level of detail obscures the
HTTP request data most important to app developers. This section looks at the fi lters commonly
used by app developers to analyze networking traffi c generated by an app.

If you run tcpdump from the command line with no fi lters, you see a fl ood of packets. This fl ood
usually obscures the traffi c that you want to see: the traffi c between your app and its server.

To avoid this you should apply fi ltering. The most basic fi lter is fi ltering by host, which causes
tcpdump to ignore all traffi c except for that with a specifi c host. The following code snippet
shows a fi lter tcpdump command that fi lters out all traffi c except to or from the host at address
192.168.1.50.

sudo tcpdump host 192.168.1.50

NOTE The sudo command will prompt you for a password. You should use the
password for the currently logged in account.

c09.indd 193c09.indd 193 05/10/12 3:50 PM05/10/12 3:50 PM

http://sourceforge.net/projects/packetpeeper/
http://www.tastycocoabytes.com/cpa

194 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

The host fi lter can use either an IP address or a DNS host or domain name. If you specify a DNS
domain, any traffi c to any host in that domain will be captured. You can also fi lter traffi c from mul-
tiple hosts by using logical operators to include other criteria. The following code captures traffi c to
host 192.168.1.50 and 10.1.2.25.

sudo tcpdump host 192.168.1.50 or 10.1.2.25

Depending on your network confi guration, it may be necessary to fi lter for traffi c destined for an
entire subnet. The following code snippet fi lters traffi c to the 192.168.1 subnet.

sudo tcpdump net 192.168.1.0/24

Another common practice is to fi lter packets by the TCP or UDP port numbers used by the con-
nection. tcpdump uses names defi ned in /etc/services to map a TCP service port name to a port
number. The following code shows two equivalent commands to fi lter for HTTP traffi c.

sudo tcpdump port http
sudo tcpdump port 80

Remember that the value http is used to look up the port number, not to detect the protocol used in
the connection. Therefore, if you use the HTTP protocol over a TCP connection using a port other
than 80, the preceding fi lters cannot capture that traffi c.

The fi lter criteria can be combined to focus the capture on a specifi c host and port by using
logical operators. The following snippet captures only packets on ports 80 and 8080 for host
192.168.1.50.

sudo tcpdump host 192.168.1.50 and \(port 80 or port 443\)

Using the and and or operators along with separating parentheses, you can fi lter your captured
data to eliminate extraneous traffi c that might obscure problems. The backslash (\) characters in
the fi lter expression prevent the command shell from interpreting the parentheses. When using
tcpdump fi lter syntax within a graphical program, these backslash characters must be omitted.
Inversely, be careful not to over-fi lter and remove important data.

tcpdump can be used to run an extended capture of network traffi c and save it to a capture fi le for
later analysis. The graphical sniffer, Wireshark, described in the next section, “Capturing with
Wireshark,” can import an existing capture fi le so that you can drill into the data using a friendlier
interface. The following snippet can capture all traffi c on port 80 and save it to a fi le named
http-capture.trace.

sudo tcpdump –s 1514 port 80 –w http-capture.trace

The –s 1514 argument instructs tcpdump to capture the fi rst 1514 bytes of the packet. This cap-
tures the most common Ethernet packet size; however, if your network uses jumbo-sized packets,
you may need to increase this value.

c09.indd 194c09.indd 194 05/10/12 3:50 PM05/10/12 3:50 PM

Observing Network Traffi c ❘ 195

Capturing with Wireshark

Wireshark (http://www.wireshark.org) is a free, cross-platform graphical network sniffer avail-
able for most major operating systems. It can capture new traces or analyze traces captured earlier
with tcpdump. On OS X, Wireshark requires that X11 also be installed. The installation process
modifi es the permissions of a handful of device fi les so that the installing user can capture data from
those devices without being a super-user.

When you start Wireshark you see a helpful start page, as shown in Figure 9-3, where you can start
a trace directly against an interface, set trace options, or open an existing trace fi le.

Select options to configure
the capture filters

FIGURE 9-3

If you start a trace directly on an interface, you see a fl ood of packets that are probably not helpful. If
you start a trace by using the Capture->Options menu entry, you can tune your capture to fi t your
needs.

NOTE Because Wireshark is such a powerful tool, it has functions that you will
probably never use as a developer; don’t let that stop you from experimenting
with the application to discover features that may be benefi cial. If you confi g-
ure yourself into a corner where things stop working, close the application and
restart it; nothing will be permanently broken.

c09.indd 195c09.indd 195 05/10/12 3:50 PM05/10/12 3:50 PM

http://www.wireshark.org

196 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

Using the Capture Options dialog box, as shown in Figure 9-4, the Interface fi eld allows you to
select an interface to capture. Table 9-1 lists three common network interfaces.

Interface Field

Turn on monitor mode for

shared Wi-Fi monitoring

Filter Field

Live Update

Settings

FIGURE 9-4

TABLE 9-1: Network Interface Descriptions

INTERFACE NAME INTERFACE TYPE DESCRIPTION

en0 Ethernet The wired Ethernet port on an OS X laptop

en1 Wi-Fi The default Airport interface in OS X

lo0 Loopback The local loopback interface used if a program connects
to localhost or 127.0.0.1

Use the capture fi lter fi eld to specify which packets to capture using the same syntax as the
tcpdump command. The sniffer captures only packets going to host www.nasa.gov
(refer to Figure 9-4).

If you are sniffi ng your app’s packets using the common Wi-Fi topology (refer to Figure 9-1) you
need to enable monitor mode. Monitor mode confi gures the Wi-Fi adapter to pass all network

c09.indd 196c09.indd 196 05/10/12 3:50 PM05/10/12 3:50 PM

http://www.nasa.gov

Observing Network Traffi c ❘ 197

packets received on the Wi-Fi adapter up to the software driver. Without this option enabled,
the packets not addressed to the sniffi ng computer are ignored by the Wi-Fi hardware. Your mileage
may vary depending on your wireless network confi guration, operating system version, and version of
Wireshark. Wireshark is available for OS X, Linux, and Windows. Each platform provides slightly
different capabilities so you can use a different OS if necessary to get the perfect confi guration for
your network.

The live update settings instruct Wireshark to continually update the display as packets are cap-
tured. This feature is useful to determine if you have specifi ed the fi lter correctly and to easily detect
when you have captured suffi cient data; however, on slower machines it may impact the perfor-
mance of the application enough to cause it to drop packets. Pressing the Start button on this dialog
initiates a capture session.

With live updating enabled, you see packet headers appear in the Captured Packet list as
they are captured. Figure 9-5 shows an example capture of the network packets produced
when the VideoDownloader app, described in Chapter 3, “Making Requests,” was run on an
iPhone.

The Packet Decomposition panel exposes the values for each protocol layer for the packet selected
in the Captured Packets List. The packet is decomposed into three layers: Ethernet II, Internet
Protocol, and Transmission Control Protocol (refer to Figure 9-5).

Captured Packets

Packet
Decomposition

Packet
Hex Dump

Display Filter

FIGURE 9-5

c09.indd 197c09.indd 197 05/10/12 3:50 PM05/10/12 3:50 PM

198 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

The Packet Hex Dump area displays the hexadecimal values for each byte in the selected packet
and an ASCII conversion of those hex values. If you drill down into a protocol layer in the Packet
Decomposition panel the selected portion of the packet is highlighted in the hex dump.

One incredibly helpful feature of Wireshark is the capability to follow a TCP stream. In a typical
packet dump on a moderately active machine, you have multiple TCP streams and HTTP conversa-
tions occurring concurrently with their packets intermingled. To follow a TCP stream, Ctrl+click on
a packet from the stream to activate the packet menu, as shown in Figure 9-6.

Follow TCP
Stream for full

HTTP conversation

FIGURE 9-6

Select the Follow TCP Stream option of the packet context menu to show the stream trace (see
Figure 9-7). The Follow TCP Stream dialog displays the contents of each packet of the stream as
one continuous set of data. The outbound and inbound data are shaded differently so that you can
easily distinguish the packet direction. In Figure 9-7 the data outbound from the phone has a dark
background and the inbound data has a white background. Notice that the response data appears to
be gibberish because the Content-Encoding of the payload is gzip, and it must be decompressed to
reveal its actual contents.

c09.indd 198c09.indd 198 05/10/12 3:50 PM05/10/12 3:50 PM

Observing Network Traffi c ❘ 199

Wireshark has a solution to the problem of compressed data. Figure 9-8 shows the contents of the
eighth packet selected. Wireshark has deduced that this packet is the response to an HTTP request
and that it has XML data in the response body. Therefore it provides additional diagnostic data
about the entire payload. The Packet Reassembly Views contain the payload of the response pieced
together from any subsequent network packets that contain the payload. If the HTTP response were
compressed, Wireshark would decompress it. The Uncompressed Entity Body view displays the con-
tents of the response after decompression.

FIGURE 9-7

c09.indd 199c09.indd 199 05/10/12 3:50 PM05/10/12 3:50 PM

200 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

Wireshark is a powerful tool that should be in every network developer’s tool box. It can be extended
with modules, called dissectors, which parse many industry-standard protocols, but you can also
develop your own dissectors to parse your own custom protocols. If built from source, Wireshark can
be used to decrypt SSL connections under certain circumstances. By using Wireshark, you can exam-
ine every bit and packet transmitted from the device for any networking protocol, which is helpful if
you are doing custom protocol development or using non-HTTP based communications. The next
section provides a simpler, but less powerful, way to capture and decode network traffi c within your
development environment.

MANIPULATING NETWORK TRAFFIC

Network packet capture tools provide a way to observe network traffi c, but sometimes you need
to do more than observe. Luckily there is a common network component, an HTTP proxy, which
developers can leverage to manipulate HTTP and HTTPS requests. Some of the uses of HTTP
manipulation include

 ➤ Error simulation — You can intercept a response and change the status code on the
response to an error status and optionally change the payload to represent an error. This
capability enables you to test how your app responds to error responses from the server
without needing to actually invoke an error.

Packet Reassembly Views

FIGURE 9-8

c09.indd 200c09.indd 200 05/10/12 3:50 PM05/10/12 3:50 PM

Manipulating Network Traffi c ❘ 201

 ➤ Future state simulation — If you know that a future version of the server will provide differ-
ent responses from the current server, you can test old versions of the app against the altered
protocol.

 ➤ Server validation — You can modify requests to the server to validate responses based on
data that may be diffi cult to duplicate on a device without writing Objective-C code.

 ➤ Security validation — Security personnel can validate the behavior of your app or an off-
the-shelf app for secure network interactions.

 ➤ Reverse engineering — You can use a proxy to intercept and decode any HTTP request to
discover how an app communicates with its servers.

Network proxies are appliances that usually reside at the perimeter of a secured network and act as
a go-between for every request sent to a server. Many large enterprises deploy network proxies to
provide content fi ltering, access control, virus protection, and response caching for personal computers
within their network. The HTTP client, typically a browser, must be confi gured to use the appliance
as a proxy; otherwise, it has no access to servers outside of the protected network. Figure 9-9
illustrates the sequence of activities for an HTTP request and response that traverses a proxy server.

Client HTTP Proxy

TCP Connection

Server

TCP Connection

Modified HTTP Request

HTTP Request

Modified
HTTP Response

HTTP Response

FIGURE 9-9

c09.indd 201c09.indd 201 05/10/12 3:50 PM05/10/12 3:50 PM

202 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

When a client makes an HTTP request, the client fi rst establishes a TCP connection to the
proxy server and sends the HTTP request to the proxy. The proxy applies its processing rules
to the request, which may deny the request because it is destined for a blacklisted site or because
the request itself has unauthorized content. If the proxy is a caching proxy, it may short-circuit the
request and return a response cached from an earlier request to the same destination. If the request
is acceptable, the proxy establishes a TCP connection with the true target host specifi ed in the
request and then transmits the HTTP request to the target host. If the target host responds, then
the HTTP response is received by the proxy, and additional processing rules are applied. For
example, the response may be scanned for viruses or cached. If the response is acceptable, it is
passed back to the requesting client.

A proxy can handle HTTPS requests in a couple of different ways. First, it may just deny all HTTPS
requests, but this behavior is uncommon. Alternatively, some proxy confi gurations pass
HTTPS requests through unaltered and unfi ltered. The third possible behavior is that the proxy
establishes an HTTPS connection with the client and provides an SSL certifi cate that appears to
be from the target host but is signed with the proxy’s Certifi cate Authority (CA) certifi cate.
The proxy is essentially performing a man-in-the-middle attack on the request, but instead of
nefarious purposes, the attack is intended to protect the enterprise. For this approach to work, the
client must have the proxies’ CA certifi cate installed in its keychain. If the request is allowed,
the proxy establishes an SSL connection with the target host and transmits the request
securely.

There are many proxy software and hardware packages available to network engineers. These
packages are designed for network engineers and have limited usefulness to app developers.
Charles (http://www.charlesproxy.com) is a reasonably-priced proxy software package
designed for developers. It is a desktop application that performs proxy services for any HTTP
client. Charles allows the developer to manually intercept a request and modify the request or
response. It can also be confi gured to automatically perform the same types of modifi cations on
requests.

If you use an HTTP proxy to manipulate network traffi c, you can manipulate only HTTP and
HTTPS requests. If your app uses another protocol, a proxy will not be of assistance.

The following subsections describe the use of Charles to intercept and manipulate HTTP requests
and responses.

Setting Up Charles

To use Charles, the OS X machine and the iOS device must be on the same network. They do not
need to be on the same subnet, but one should be able to ping the other. The iOS device must be
on a Wi-Fi network because iOS does not apply proxy settings to WWAN connections. To set-up
Charles to capture traffi c via a proxy, perform the following steps:

 1. When you run Charles, it confi gures the proxy settings on the OS X machine by
default. This behavior clutters the data captured from the device, so you need to
disable the OS X proxy. To do this, select the Proxy Settings menu, as shown in
Figure 9-10.

c09.indd 202c09.indd 202 05/10/12 3:50 PM05/10/12 3:50 PM

http://www.charlesproxy.com

Manipulating Network Traffi c ❘ 203

 2. A settings dialog appears, as shown in Figure 9-11. Select the Mac OS X tab, and uncheck
all the options on that view; then press OK. Charles then removes the proxy confi guration
from all active network interfaces.

Select Proxy Settings

FIGURE 9-10

Disable Mac OS X Proxy and
Enable Mac OS X Proxy startup

FIGURE 9-11

 3. Next you must confi gure the iOS device to route all its HTTP traffi c through the proxy.
First, determine the IP address of the machine running Charles. On that machine, open a
Terminal window and execute the ifconfig command. The following snippet shows part of
the output.

$ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
…
en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether e0:f8:47:34:98:8a
 inet6 fe80::e2f8:47ff:fe34:988a%en1 prefixlen 64 scopeid 0x5
 inet 192.168.1.34 netmask 0xffffff00 broadcast 192.168.1.255
 media: autoselect
 status: active

c09.indd 203c09.indd 203 05/10/12 3:50 PM05/10/12 3:50 PM

204 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

 4. Look for the confi guration of the en1 interface. The IP address will
be provided in that confi guration data; in this case the IP address
is 192.168.1.34. The interface you use depends on your network
topology. If the machine running Charles only has an Ethernet
interface then you need to use en0 as the interface.

 5. Remembering this value, go to the iPhone or iPad and start the
Settings app and the Wi-Fi Settings subsection. Tap on the blue
disclosure indicator on the table cell of the active Wi-Fi network.
At the bottom of the subsequent detail view, as shown in
Figure 9-12, there is a segmented control where you can enable
manual HTTP proxy confi guration.

 6. Select the Manual option, and enter the IP address that was previ-
ously in the server fi eld. The default port for Charles is port 8888.
Press the back button in that view and the proxy settings are applied. If you leave these
settings active on the phone, it will block all HTTP traffi c unless Charles is running at the
specifi ed address, so don’t forget to reverse this setting when you complete your debugging
session.

This example uses the VideoDownloader app provided with Chapter 3, which downloads an RSS
feed from NASA. When run with the proxy confi gured and recording data, the proxy captures a
single HTTP transaction. Charles groups these transactions into a single line. If you select a transac-
tion and the Structure tab above the transaction list, you can drill down into a request and examine
the request and response in detail. Figure 9-13 shows the capture of a single request from the app
caught by the proxy.

FIGURE 9-12

FIGURE 9-13

View various parts of the request/response

c09.indd 204c09.indd 204 05/10/12 3:50 PM05/10/12 3:50 PM

Manipulating Network Traffi c ❘ 205

HTTP Breakpoints

Charles allows you to set a breakpoint on a URL so that you can
 interrupt and alter the request or response. You can have multiple
breakpoints set on many different URLs. To set a breakpoint, perform
the following steps:

 1. Ctrl+click the transaction in the list that matches the URL of
the transaction you want to catch. The resulting pop-up menu,
shown in Figure 9-14, contains an option to set a breakpoint
on that URL.

 2. Select the Breakpoints option to enable a breakpoint on that
URL. On a subsequent invocation of the VideoDownloader
app, Charles can catch the request and display the breakpoint
window, as shown in Figure 9-15.

FIGURE 9-14

FIGURE 9-15

The request Overview panel provides summary information about the request that is extracted from
the request. Some of the values are undefi ned because a response has not yet been received. If you
select the Edit Request panel, you see the exact contents of the request that was sent by the device.
On the Edit Request panel, as shown in Figure 9-16, you can manually manipulate the contents of
the request.

c09.indd 205c09.indd 205 05/10/12 3:50 PM05/10/12 3:50 PM

206 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

You can use this panel to modify the URL, headers, query string, text of the request body, or the raw
bytes of the request. If you modify the URL, Charles sends the request to a different URL than that speci-
fi ed by the app. If you use this functionality, you can direct a single request to a test server to validate an
older version of the apps behavior against a new server before deploying the server into production.

You can also add, remove, or modify headers or the body in the request. This is helpful to validate
the server’s response to different meta data or payload data in the request. If you press the Execute
button, Charles forwards the request to the server.

If a breakpoint is set on a URL, then Charles also interrupts the transaction and displays the edit
request panel, as shown in Figure 9-17, when the response to the request is received from the server.
For every breakpoint you receive two interruptions.

FIGURE 9-16

FIGURE 9-17

c09.indd 206c09.indd 206 05/10/12 3:50 PM05/10/12 3:50 PM

Manipulating Network Traffi c ❘ 207

Using the response breakpoint panel, you can modify the HTTP response headers and body
returned by the server. Like editing the request, all the content of the response may be altered.
This is a powerful feature that allows you to validate an app’s response to erroneous
responses or simulate edge conditions that would normally be diffi cult to reproduce in
the service tier.

If the app you test has short request timeout values, then intercepting requests with breakpoints
may cause timeout errors in the app. Manual editing of requests or responses needs to be performed
quickly, or by setting up a rewrite rule in Charles.

Rewrite Rules

Rewrite rules specify modifi cations to make to HTTP transactions automatically by Charles.
A rewrite rule can be assigned to a set of URLs and contains a set of modifi cations to make to
the request, response, or both. The modifi cations can be made to any part of the URL, header, or
body. Each modifi cation is described as a text pattern and replacement text, which can be regular
expressions.

To add a rewrite rule select the Tools ➪ Rewrite menu option from Charles’ application menu.
The Rewrite Settings window is shown in Figure 9-18.

FIGURE 9-18

c09.indd 207c09.indd 207 05/10/12 3:50 PM05/10/12 3:50 PM

208 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

Using this window you can add a new rule set, add target URLs to the rule set, and create new
rules. Each rule describes a text manipulation to perform on the requests and responses that match
the URL. To add a rule, click the Add button on the rule section. The Rewrite Rule defi nition dia-
log, as shown in Figure 9-19, allows you to defi ne the following:

 ➤ The part of the message to modify including headers, query parameters, URL, or body

 ➤ The phase of the transaction to which the rule applies: the request or the response

 ➤ The text or regular expression to match against

 ➤ The substitution text

FIGURE 9-19

In Figure 9-19 the rule matches any occurrence of the text NASA in the response body and replaces
it with NNAASSAA. If you apply this rule and run the VideoDownloader app you see the modifi ed
text in the descriptions of the videos provided by the RSS feed. This capability is helpful in quickly
applying modifi cations to the HTTP data so that complex edge conditions or error scenarios can be
simulated to validate the service tier or app.

Charles has many other features that you can use to manipulate the HTTP conversation between
your app and a server. You can map requests to local fi les or other remote servers, which is helpful
if the changes to a response are more complex than what can be accomplished with text
replacement.

c09.indd 208c09.indd 208 05/10/12 3:50 PM05/10/12 3:50 PM

Simulating Real-World Network Conditions ❘ 209

You can also intercept and modify HTTPS requests with Charles. To enable HTTPS decryption you
must confi gure Charles, using the Proxy Settings SSL panel, to enable specifi c URLs for SSL
decryption. You also must install Charles’ CA certifi cate on the iOS device so that the device accepts
the SSL certifi cates signed by Charles. The Charles CA certifi cate may be downloaded from
www.charlesproxy.com/charles.crt. To install the certifi cate on your device, visit the download
URL from the iOS device and iOS will confi rm the installation of the untrusted certifi cate. When
installed, the iOS device accepts other SSL certifi cates signed by Charles. Before SSL decryption is
confi gured, the transaction contents displayed are cipher-text, which is unreadable. After successful
confi guration, the transaction results display as clear, readable text. This feature is invaluable for
observing SSL connections from your app.

WARNING Do not leave the Charles certifi cate installed on a device used for
nondevelopment activities. The presence of a rogue CA certifi cate can expose
you to a man-in-the-middle attack on public networks.

Using a proxy to intercept and modify HTTP requests is a powerful tool for simulating or
generating errors to validate your application’s behavior. Proxies are limited to intercepting only
HTTP traffi c.

SIMULATING REAL-WORLD NETWORK CONDITIONS

Network packet capture and HTTP proxy tools are excellent at providing visibility to network traf-
fi c. Another tool that all iOS developers should have in their toolbox and be familiar with is a
network traffi c shaper to simulate slow or unreliable networks.

Using a traffi c shaper to degrade network performance can help you identify problems in your app.
Problem areas that can be identifi ed include:

 ➤ Over-aggressive timeouts — If you have set timeout values too low, testing the app on
a degraded network highlights operations that would normally succeed but are aborted
because of a timer expiration.

 ➤ Missing error handling — If you have timeouts occurring but the code to handle the time-
out is missing or defective, running the app on a network that triggers the timeouts can
identify those defects.

 ➤ User interface freezing — If your app is inadvertently making network calls on the main
thread, running on a degraded network can help you detect the problem.

 ➤ User confusion — Running the app on a slow network during usability testing can illumi-
nate areas where the app may not freeze but the user may be confused about what the app
is doing when waiting for a response. These defects are usually resolved by user interface
changes that inform the user of the activity performed by the app.

c09.indd 209c09.indd 209 05/10/12 3:50 PM05/10/12 3:50 PM

http://www.charlesproxy.com/charles.crt

210 ❘ CHAPTER 9 TESTING AND MANIPULATING NETWORK TRAFFIC

 ➤ Cache implementation validation — It can be diffi cult to quantify the improvement
provided by data caching when running your app on a high-speed network. Using a traffi c
shaper you can quantify the improvement that your users can expect to see when caching is
implemented.

OS X Lion provides a great traffi c shaper called Network Link Conditioner (NLC). NLC interacts
with the low-level network interface drivers of OS X and throttles the speed of every interface on
the machine running it. It provides the ability to independently change the bandwidth, latency,
and packet loss rate of both the received and transmitted data. NLC can also apply a delay to DNS
responses.

NLC comes with several predefi ned network profi les that match common network types, such as
Wi-Fi, 3G, and EDGE networks. Figure 9-20 shows the profi le for a good 3G network. You can
also defi ne your own profi les if you need to test on networks with other types of behavior. The
performance experienced through the preconfi gured profi les is somewhat optimistic when compared
to real-world networks; therefore, it may be necessary to apply settings slower than described by the
default profi les.

FIGURE 9-20

The NLC installation package is delivered as part of the XCode installation but not installed by
default. Instead, a folder is written to /Applications/Utilities/Network Link Conditioner
that contains the preference pane. Double-click the Network Link Conditioner.prefPane fi le to
install the preference pane in your OS X System Preferences application. When installed, you can
access NLC via the System Preferences.

When using NLC, it must fi rst be unlocked and then turned on. The Profi le drop-down list allows
you to select a packaged or custom network profi le to apply. Use the Manage Profi les button to cre-
ate new profi les or edit the parameters of the packaged profi les.

For NLC to be refl ected on iOS device communications, you need to run your device in a shared
network topology (refer to Figure 9-2); otherwise the network packets from the device will bypass
NLC. If you debug the app in the iOS Simulator, NLC actively shapes the network traffi c. XCode

c09.indd 210c09.indd 210 05/10/12 3:50 PM05/10/12 3:50 PM

Summary ❘ 211

uses the local loopback network interface to communicate with the app running in the iOS
Simulator, and NLC shapes the traffi c through every network interface. Therefore, if you run a slow
profi le in NLC, it may take some time for your app to start in the simulator.

Although the Network Link Conditioner is useful for simulating real-world network conditions, it is
not a replacement for testing in the real world. It cannot replicate the randomness of actual carrier
networks or the behavior of nondeveloper users. Use NLC to perform development testing but don’t
bypass in-the-wild testing of your app.

SUMMARY

An enterprise-connected iOS application involves the use and cooperation of many network
components outside of your control. Using tools to observe and manipulate network traffi c between
your app and enterprise infrastructure can help you identify and avoid defects in your application.
Network sniffers help you see the truth about what data is moving between the device and any
remote servers. HTTP proxies enable you to manipulate those communications to simulate new or
defective conditions. Network traffi c shapers help you observe how your app behaves on
uncontrolled or defective networks.

c09.indd 211c09.indd 211 05/10/12 3:50 PM05/10/12 3:50 PM

c09.indd 212c09.indd 212 05/10/12 3:50 PM05/10/12 3:50 PM

Using Push Notifi cations

WHAT’S IN THIS CHAPTER?

 ➤ Interacting with local notifi cations

 ➤ Providing an excellent user experience with remote notifi cations

 ➤ Applying notifi cation best practices to your application

WROX.COM DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. The code
is in the Chapter 10 download and is divided into the following major examples:

 ➤ An Xcode project that includes code for local and remote notifi cations

 ➤ SQL script to build the database used for remote notifi cations

 ➤ Server-side scripts, written in PHP, to manage remote notifi cations

One key metric used to determine the success of an application is repeat usage. User acquisi-
tion costs can be high, and after you attract users, you must provide a predictable, nonintru-
sive method to inform them when you have something that requires their attention.

Push notifi cations are a mechanism that allows you to inform users that the application has
new information for them. Notifi cations can take many forms: An enterprise app might
inform users of a purchase order pending approval, or a game may alert users that it is their
turn to play. When done properly, push notifi cations are a great tool to drive effi ciency gains
in the enterprise and engagement in commercial iOS applications.

Apple provides two notifi cation methods: local and remote. Local notifi cations are scheduled
for delivery by the system on behalf of the application. Local notifi cations are managed on the
device and are free, meaning they do not require the overhead of a server, nor do they require

10

c10.indd 213c10.indd 213 13/09/12 2:43 PM13/09/12 2:43 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://wrox.com
http://WROX.COM

214 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

user permission. Local notifi cations are handled the same as remote notifi cations in terms of inclu-
sion in the notifi cation center and the overall user experience.

Alternatively, remote notifi cations are registered for delivery using the Apple Push Notifi cation ser-
vice (APNs). APNs launched in June 2009 with iOS 3.0 and makes use of a persistent IP connection
for notifi cation delivery. Remote notifi cations require the additional overhead of a server or third-
party provider to facilitate communication with APNs. Remote notifi cations require explicit user
approval as well as integration within business processes to be effective.

To reinforce the concepts behind local and remote notifi cations, this chapter’s examples create
a lightweight Relationship Manager akin to a Customer Relationship Manager (CRM) system.
The fi rst iteration of the application schedules reminders on the device using local notifi cations.
From there, you create a custom remote notifi cation service and integrate it into your Relationship
Manager application.

SCHEDULING LOCAL NOTIFICATIONS

Local notifi cations are ideally suited for self-contained applications
where information is restricted to a single device. Applications such as
alarm clocks and task managers are perfect examples of applications
where local notifi cations may be used.

Unlike remote notifi cations, local notifi cations do not require explicit
user approval for delivery. As noted earlier, local notifi cations are deliv-
ered by the operating system, making them free to both developers and
users, and they do not require an active network connection for delivery.
However, local notifi cations are still bound by the user-confi gured noti-
fi cation preferences within the Settings application. Figure 10-1 depicts
the different settings available to the user.

Creating Local Notifi cations

Local notifi cations are instances of UILocalNotification and require a fireDate for the system to
know when to deliver the notifi cation. Scheduling a local notifi cation without a fireDate presents
the notifi cation immediately. You may also specify a timeZone so that notifi cation delivery is
adjusted as the user changes time zones. Reminder and task manager style applications can utilize the
repeatInterval, which is specifi ed using an NSCalendarUnit type. The following list includes the
possible NSCalendarUnit values for a repeat interval. If specifi ed, the system can use the value to
schedule the next notifi cation as the current one is delivered. If left blank, the default is a one-off
notifi cation that does not repeat.

 ➤ NSEraCalendarUnit

 ➤ NSYearCalendarUnit

 ➤ NSMonthCalendarUnit

 ➤ NSDayCalendarUnit

 ➤ NSHourCalendarUnit

 ➤ NSMinuteCalendarUnit

FIGURE 10-1

c10.indd 214c10.indd 214 13/09/12 2:43 PM13/09/12 2:43 PM

Scheduling Local Notifi cations ❘ 215

 ➤ NSSecondCalendarUnit

 ➤ NSWeekdayCalendarUnit

 ➤ NSWeekdayOrdinalCalendarUnit

 ➤ NSQuarterCalendarUnit

 ➤ NSWeekOfMonthCalendarUnit

 ➤ NSWeekOfYearCalendarUnit

 ➤ NSYearForWeekOfYearCalendarUnit

The user experience of a local notifi cation will be driven by the confi guration options set while cre-
ating it. The options allow you to alter the behavior of the notifi cation, how the system delivers it,
and how the application responds to being launched by a notifi cation. Table 10-1 details the avail-
able properties for local notifi cations.

TABLE 10-1: UILocalNotifi cation Properties

PROPERTY TYPE DESCRIPTION

fireDate Date Date and time the OS should deliver the message.

timeZone Time

Zone

Without specifying, fireDate is interpreted as GMT, which may result

in a poor user experience depending on the application. Specifying

this value adjusts the fireDate based on the current time zone.

repeatInter-

val
Calendar

Unit

Specifi es how often a notifi cation should be repeated.

Notifi cations will be rescheduled after each delivery. The default is

to not repeat a notifi cation.

repeatCalen-

dar
Calendar The calendar used during the creation of a notifi cation. The default

is to use the users’ current calendar.

alertBody String Notifi cation message.

hasAction Boolean Instructs the OS to display or not display the alert action.

alertAction String This is the title of the right-button if users have confi gured the alert

style or the value placed next to Slide To in the lock screen. If a

value is specifi ed for alertBody, the default for this fi eld is View.

alertLaunch

Image
String Filename of an image in the applications bundle displayed on

launch of the application if triggered from the action button or by

sliding the lock screen item.

soundName String The fi lename of the sound in the applications bundle to play upon

delivery of the notifi cation. Specifying

UILocalNotificationDefaultSoundName uses the default

 system sound. Sounds are limited to 30 seconds, and anything

 longer results in the OS playing the system sound.

continues

c10.indd 215c10.indd 215 13/09/12 2:43 PM13/09/12 2:43 PM

216 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

PROPERTY TYPE DESCRIPTION

applicationIcon

BadgeNumber
Integer The value to display as the application icons’ badge number.

userInfo Dictionary Key-value store that allows you to pass custom data through your

notifi cation. Data in userInfo can be used to enhance the user

experience by doing something like launching the app to a specifi c

view or with a specifi c value.

One property that can be creatively leveraged to enhance the user experience is alertLaunchImage.
It specifi es the fi le that is shown as the launch image when the application is opened using the notifi -
cation’s action button or the launch slider on the lock screen. When paired with the userInfo prop-
erty, alertLaunchImage can display a temporary view similar to the layout the user ultimately sees
when the application completes the launch process. This gives your users immediate feedback while
the application assembles the entire view.

After you create the notifi cation, you are ready to schedule it with the operating system. Local noti-
fi cations are scheduled using one of two UIApplication methods: scheduleLocalNotification:
and presentLocalNotificationNow:. The fi rst schedules a notifi cation with the system for
delivery on the fireDate specifi ed during creation. The second ignores the specifi ed fireDate
and displays the notifi cation to the user immediately.

Listing 10-1 covers a method to create, confi gure, and schedule a local notifi cation. This method
can serve as the foundation for notifi cation scheduling within an application.

LISTING 10-1: Method to Schedule Local Notifi cation (/Application/RelationshipManager/Relationship

Manager/Model.m)

- (void)scheduleNotificationWithFireDate:(NSDate*)fireDate
 timeZone:(NSTimeZone*)timeZone
 repeatInterval:(NSCalendarUnit)repeatInterval
 alertBody:(NSString*)alertBody
 alertAction:(NSString*)alertAction
 launchImage:(NSString*)launchImage
 soundName:(NSString*)soundName
 badgeNumber:(NSInteger)badgeNumber
 andUserInfo:(NSDictionary*)userInfo {

 // create notification using parameter values
 UILocalNotification *notification = [[UILocalNotification alloc] init];
 notification.fireDate = fireDate;
 notification.timeZone = timeZone;
 notification.repeatInterval = repeatInterval;
 notification.alertBody = alertBody;
 notification.alertLaunchImage = launchImage;
 notification.soundName = soundName;
 notification.applicationIconBadgeNumber = badgeNumber;
 notification.userInfo = userInfo;

TABLE 10-1 (continued)

c10.indd 216c10.indd 216 13/09/12 2:43 PM13/09/12 2:43 PM

Scheduling Local Notifi cations ❘ 217

 // special handling for action
 // default hasAction is YES, so if we don't have one
 // set to no. this removes button / slider
 if (alertAction == nil) {
 notification.hasAction = NO;
 } else {
 notification.alertAction = alertAction;
 }

 // schedule notification asynchronously
 dispatch_async(dispatch_get_main_queue(), ^{
 [[UIApplication sharedApplication]
 scheduleLocalNotification:notification];
 });
}

The method covered in Listing 10-1 schedules notifi cations asynchronously using Grand Central
Dispatch, Apple’s solution to managing concurrency on multicore hardware. As the number of
scheduled notifi cations increases, the length of time to complete the scheduling processes also
increases. Calling that process asynchronously allows the application to remain responsive while the
notifi cation is saved.

NOTE Although this will not be an issue for most applications, at the time of
writing, there is a 64-notifi cation limit imposed on local notifi cations. You can
still schedule notifi cations, but delivery is limited to the 64 closest notifi cations
in chronological order of fireDate, with the system disregarding the remaining
notifi cations. This means that if you currently have 64 local notifi cations sched-
uled, scheduling another will discard the notifi cation with the furthest fireDate
from the current date. Recurring notifi cations count as a single notifi cation as
they are automatically rescheduled by the system. If you fi nd yourself exceeding
this limitation, you should review how you are engaging your users and whether
local notifi cations are the correct method.

Now that you have implemented the foundation of your notifi cation scheduler, Listing 10-2 outlines
a convenience method to schedule “client follow-up” notifi cations. This method calls the method
created in Listing 10-1 using a combination of dynamic and static content. More specifi cally, you
specify a consistent launch image and badge number, and ensure that no sound is used.

LISTING 10-2: Convenience Method for Scheduling Follow-up Notifi cations (/Application/

RelationshipManager/RelationshipManager/Model.m)

- (void)scheduleContactFollowUpForContact:(Contact*)contact
 onDate:(NSDate*)date
 withBody:(NSString*)body

continues

c10.indd 217c10.indd 217 13/09/12 2:43 PM13/09/12 2:43 PM

218 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

 andAction:(NSString*)action {

 // add action to user info to help user experience on launch
 NSDictionary *userInfo = [NSDictionary dictionaryWithObjectsAndKeys:
 contact.emailAddress, @"emailAddress",
 contact.phoneNumber, @"phoneNumber",
 @"contactProfile", @"type",
 action, @"action", nil];

 [self scheduleNotificationWithFireDate:date
 timeZone:[NSTimeZone systemTimeZone]
 repeatInterval:0 // don't repeat
 alertBody:body
 alertAction:action
 launchImage:@"" // contact default
 soundName:nil // no sound
 badgeNumber:1
 andUserInfo:userInfo];

}

Canceling Local Notifi cations

Now that you’ve completed scheduling a notifi cation, you need a way to cancel that notifi cation
should it become irrelevant prior to delivery. iOS provides two methods on UIApplication to can-
cel a local notifi cation. The fi rst, cancelLocalNotification:, enables you to cancel an individual
notifi cation; and the second, cancelAllLocalNotifications:, allows you to cancel all currently
scheduled notifi cations, including those with repeat intervals set. Typically, you cancel notifi cations
on an individual basis and reserve use of cancelAllLocalNotifications: for “reset” situations,
because it will delete all notifi cations scheduled for the application. However, at times it may make
sense to add a wrapper around cancelLocalNotification: so that you may delete all notifi cations
of a certain type, or for a certain contact.

The lightweight CRM application allows you to schedule follow-up reminders for individual con-
tacts. In the event that the contact is no longer a customer or changes positions, it should have the
ability to cancel notifi cations for an individual contact. To accomplish this, you fi rst need a method
to retrieve all currently scheduled notifi cations for a given contact by looping through all local noti-
fi cations and inspecting the userInfo property of each one. Listing 10-3 details how to retrieve all
notifi cations for a specifi c contact.

LISTING 10-3: Method to Retrieve Notifi cations for a Contact (/Application/RelationshipManager/

RelationshipManager/Model.m)

- (NSArray*)notificationsForContact:(Contact*)contact {
 NSMutableArray *contactNotifications = [[NSMutableArray alloc] init];

 // get ALL scheduled notifications and loop through them
 NSArray *scheduledNotifications = [[UIApplication sharedApplication]
 scheduledLocalNotifications];

LISTING 10-2 (continued)

c10.indd 218c10.indd 218 13/09/12 2:43 PM13/09/12 2:43 PM

Scheduling Local Notifi cations ❘ 219

 for (UILocalNotification *notification in scheduledNotifications) {

 // if the email address in the notification user info matches
 // the contacts email, add it to your output
 if ([[notification.userInfo objectForKey:@"emailAddress"]
 isEqualToString:contact.emailAddress]) {

 [contactNotifications addObject:notification];
 }
 }

 return (NSArray*)contactNotifications;
}

Now that you have all notifi cations for a specifi c contact, you can easily cancel them.
Because it is possible for users to have pending notifi cations for multiple contacts at the same
time, you should not use cancelAllLocalNotifications: in this circumstance. Instead,
use the cancelLocalNotification: method like so, where notifi cation is an instance of
UILocalNotification:

[[UIApplication sharedApplication]
 cancelLocalNotification:notification];

Listing 10-4 outlines the second approach, used for canceling all local notifi cations for a contact.
This method uses the response from the method defi ned in Listing 10-3 as the basis for the notifi ca-
tions to cancel.

LISTING 10-4: Method to Cancel All Local Notifi cations for a Contact (/Application/

RelationshipManager/RelationshipManager/Model.m)

- (void)cancelNotificationsForContact:(Contact*)contact {

 // retrieve all notifications for the specified
 // contact and loop through them
 NSArray *notifications = [self notificationsForContact:contact];
 for (UILocalNotification *notification in notifications) {

 // cancel the notification
 [[UIApplication sharedApplication]
 cancelLocalNotification:notification];
 }
}

Handling the Arrival of Local Notifi cations

Handling remote notifi cations is important to the overall user experience, therefore you must prop-
erly manage local notifi cations as they arrive and ensure necessary information is presented to the
user. How the application responds to a notifi cation depends on the confi guration specifi ed during
creation and whether the application is currently active. If the application is not currently active and

c10.indd 219c10.indd 219 13/09/12 2:43 PM13/09/12 2:43 PM

220 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

a user selects the action button (or drags the lock screen slider) the application will launch. Just like
a normal application launch, application:didFinishLaunchingWithOptions: is called in the
application delegate, but the Options parameter contains the notifi cation that triggered the launch.

If the application is active and implements application:didReceiveLocalNotification:,
that method will be invoked with the triggering notifi cation. You must understand that if the
 application is active, much of the confi gured notifi cation behaviors are discarded, for example
displaying an alert containing the alertBody. However, the notifi cation still displays in the
 notifi cation center provided the user has not disabled the notifi cation center for the application.
If you want to display an alert in both cases, you must manually create an alert view within
application:didReceiveLocalNotification:.

To provide the optimal user experience, the example in this section implements both
application:didFinishLaunchingWithOptions: and application:didReceiveLocal
Notification:. The implementations are similar: They both inspect the notifi cation and determine
what, if any, action should be taken. Building on the client follow-up notifi cation discussed earlier in
Listing 10-2, the application responds by loading the contacts detail view. Using the contact method
(call or email) specifi ed when creating the notifi cation, the application can also ask the user whether
the application should initiate the call or e-mail. This approach enables you to easily add support for
additional notifi cation types as your business process grows.

Listing 10-5 and Listing 10-6 cover the specifi cs for each implementation.

LISTING 10-5: Local Notifi cation Handling Within Launch Sequence (/Application/

RelationshipManager/RelationshipManager/AppDelegate.m)

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // determine if app launched from a local notification
 UILocalNotification *localNotification =
 [launchOptions objectForKey:
 UIApplicationLaunchOptionsLocalNotificationKey];

 if (localNotification != nil) {
 NSDictionary *userInfo = localNotification.userInfo;

 NSString *action = [userInfo objectForKey:@"action"];
 Contact *contact = [[Model sharedModel]
 contactWithEmailAddress:
 [userInfo objectForKey:@"emailAddress"]];

 // initiate a phone call
 if ([action isEqualToString:@"Call"]) {
 NSString *phone = [NSString stringWithFormat:@"tel:%@",
 contact.phoneNumber];

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:phone]];

 // start an email

c10.indd 220c10.indd 220 13/09/12 2:43 PM13/09/12 2:43 PM

Scheduling Local Notifi cations ❘ 221

 } else if ([action isEqualToString:@"Email"]) {
 NSString *email = [NSString stringWithFormat:@"mailto:%@",
 contact.emailAddress];

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:email]];

 }

 }
 ...
}

LISTING 10-6: Local Notifi cation Handling When Application Is Active (/Application/

RelationshipManager/RelationshipManager/AppDelegate.m)

- (void)application:(UIApplication*)application
 didReceiveLocalNotification:(UILocalNotification *)notification {

 // alert the user that a notification was received
 // because the user was in the application, we present
 // them with some additional information
 dispatch_async(dispatch_get_main_queue(), ^{
 NSDictionary *userInfo = notification.userInfo;

 NSString *action = [userInfo objectForKey:@"action"];
 Contact *contact = [[Model sharedModel]
 contactWithEmailAddress:
 [userInfo objectForKey:@"emailAddress"]];

 [UIAlertView alertViewWithTitle:@"Reminder"
 message:notification.alertBody
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:[NSArray
 arrayWithObjects:@"View Contact",
 action, nil]
 onDismiss:^(int buttonIndex)
 {
 // display the contact details
 if (buttonIndex == 0) {

 ContactDetailTableViewController *contactVC =
 [[ContactDetailTableViewController alloc]
 initWithStyle:UITableViewStyleGrouped];

 contactVC.contact = contact;
 contactVC.presentedModally = YES;

 UINavigationController *nc =
 [[UINavigationController alloc]

continues

c10.indd 221c10.indd 221 13/09/12 2:43 PM13/09/12 2:43 PM

222 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

 initWithRootViewController:contactVC];

 [self.navigationController
 presentModalViewController:nc animated:YES];

 // initiate the selected action
 } else if (buttonIndex == 1) {
 // initiate a phone call
 if ([action isEqualToString:@"Call"]) {
 NSString *phone =
 [NSString stringWithFormat:@"tel:%@",
 contact.phoneNumber];

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:phone]];

 // start an email
 } else if ([action isEqualToString:@"Email"]) {
 NSString *email =
 [NSString stringWithFormat:@"mailto:%@",
 contact.emailAddress];

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:email]];

 }
 }
 }
 onCancel:^()
 {
 // don't do anything for cancel
 });
}

Listing 10-6 uses a category on UIAlertView written by Mugunth Kumar that consolidates the
UIAlertView display and delegate methods. This is one approach that enables you to handle
UIAlertView input with data from the triggering notifi cation. These categories are available at
https://github.com/MugunthKumar/UIKitCategoryAdditions.

WARNING At the time of writing, there is a known issue within the iOS
Simulator where the application:didReceiveLocalNotification: is
fi red twice, split seconds apart. Any logic placed within
application:didReceiveLocalNotification: is executed twice unless you put
validation in place. One solution to this is to test local notifi cation functionality
on a device.

Now that you have implemented local notifi cations, you can learn how to enhance the Relationship
Manager application using remote notifi cations.

LISTING 10-6 (continued)

c10.indd 222c10.indd 222 13/09/12 2:43 PM13/09/12 2:43 PM

https://github.com/MugunthKumar/UIKitCategoryAdditions

Registering and Responding to Remote Notifi cations ❘ 223

REGISTERING AND RESPONDING TO REMOTE
NOTIFICATIONS

Although local notifi cations can be a great solution in certain situations, they are limited because
the application must be running to schedule the notifi cation. Local notifi cations are also restricted
to the device that scheduled them. Remote notifi cations solve this problem by enabling you to initi-
ate a device notifi cation from an external server, which is then delivered using the APNs.

Remote notifi cations allow for greater fl exibility because they can be initiated outside of the applica-
tion. For example, assume your customers are in the receiving department at a given company and
there is a new requirement to send purchase approvers a notifi cation when something they approved
is received at the warehouse. Remote notifi cations allow you to accomplish this without the appli-
cation actively running. If you were using local notifi cations or custom alerts, you would need to
change the application; distribute a new version to all users; and the biggest pitfall: They must
actively be using the application to be notifi ed.

This section covers implementing a custom remote notifi cation service as well as how to register for
and respond to remote notifi cations within an application. The custom notifi cation service connects
with APNs to register a notifi cation for delivery. Although you can follow along with the examples
in this section, to test your implementation you need two things:

 ➤ A paid Apple Developer membership: The iOS Simulator does not handle remote notifi ca-
tions, so you will need to install the test application on a device. In addition, you need to
request an SSL certifi cate from Apple for your notifi cation server, which is covered in the
“Confi guring Remote Notifi cations” section later in this chapter.

 ➤ Access to a web-server connected to the Internet and running PHP and MySQL: For testing
purposes, a server running on your Mac should suffi ce.

APNs is the single communication gateway that controls all remote notifi cation delivery. This
gateway is a common interface for both consumer (distributed via the App Store) and enterprise
applications. Figure 10-2 outlines the entire remote notifi cation process as it is covered in this
chapter. If you choose to outsource your remote notifi cation delivery, your diagram will look
slightly different.

The process begins when an application requests permission to deliver notifi cations. This request is
made to the operating system, which then prompts the user for permission. If the user grants permis-
sion, the operating system fetches a device token from APNs, which is delivered to the application
and subsequently stored at the application’s remote push service. When an appropriate event occurs,
the application’s remote push service registers a remote notifi cation with APNs using the previously
retrieved device token. If the notifi cation is successfully registered, APNs makes a “best effort”
attempt at delivering the notifi cation. With so many variables such as network connectivity and
device status, it is not possible to determine whether a notifi cation was delivered though. If things go
accordingly, notifi cations are delivered to the device. If the application is open, the operating system

c10.indd 223c10.indd 223 13/09/12 2:43 PM13/09/12 2:43 PM

224 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

relays the notifi cation to the active device for handling, as discussed in the previous section.
If the application is not active, the operating system displays the notifi cation based on the user’s
confi gured settings.

In practice, APNs delivers remote notifi cations to a token that is associated with a single device. It
is the responsibility of the developer to obtain this token and provide it as the delivery destination
when registering a notifi cation with APNs. Permission to deliver remote notifi cations is at the discre-
tion of each user; therefore, developers must design their applications to degrade gracefully. Remote
notifi cations should enhance the experience, but the application should continue to function as
expected without them should permission not be granted.

Confi guring Remote Notifi cations

Before you can begin using APNs, you must confi gure remote notifi cations for each application
within the iOS Provisioning Portal. This section walks you through the steps required to confi gure
remote notifi cations for the application and obtaining the necessary certifi cate fi les to communicate
with APNs and register notifi cations for delivery.

 1. First you need to generate a Certifi cate Signing Request (CSR) using the Keychain
Access application on your computer. A CSR is a request for an identity certifi cate
from a certifi cate authority, which for APNs is Apple. Figure 10-3 outlines how to
initiate the CSR.

6. New Remote

Notification

1.
 R

e
q
u
e
st

P
e
rm

is
si

o
n

Adapted from Apple Developer Documentation

8. Delivered to App

when Launched

2. T
oken

Request

3. T
oken

7.
Rem

ote

Notifi
catio

n

5. Token

Your Push Service

APNs

RMRM

FIGURE 10-2

c10.indd 224c10.indd 224 13/09/12 2:43 PM13/09/12 2:43 PM

Registering and Responding to Remote Notifi cations ❘ 225

 2. After you start the CSR wizard, you will
be presented with a screen similar to
Figure 10-4. Enter your e-mail address
and a descriptive name for the request.
This name will also be tied to the
private key generated along with the
CSR. Choosing a descriptive name makes
locating the private key in the future much
easier. You need your private key to
connect with APNs.

FIGURE 10-3

NOTE It may be worthwhile for you to save your CSR. APNs certifi cates, devel-
opment, and production have lifespans of one year. Saving your CSR makes the
renewal process easier and could help avoid service interruptions.

FIGURE 10-4

 3. After your CSR has been generated, select the new private key, and export it to a safe,
memorable place. You can export the private key by Ctrl+clicking the private key entry in
Keychain Access and choosing the export option, but be sure to remember the export pass-
word you set.

c10.indd 225c10.indd 225 13/09/12 2:43 PM13/09/12 2:43 PM

226 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

 4. Now, open the iOS Provisioning Portal at https://developer.apple.com/ios/ in your
browser, and navigate to the application list. Because you are enhancing an existing
application, the one created in the last section, you should already have an entry in the list
for Relationship Manager. The entry should be similar to Figure 10-5. After you locate
the application in the list, click the Confi gure action link in the Action column.

 6. After you select Continue, a screen similar to Figure 10-7 appears. Because you have
already generated your CSR (refer to Figure 10-4) you can click Continue through
this view.

FIGURE 10-5

 5. Clicking the Confi gure action displays a screen similar to Figure 10-6. This view is where you
confi gure notifi cations for both development and production. Check the Enable for Apple
Push Notifi cation Service box and then choose the Confi gure option in the right-most column.

FIGURE 10-6

c10.indd 226c10.indd 226 13/09/12 2:43 PM13/09/12 2:43 PM

https://developer.apple.com/ios/

Registering and Responding to Remote Notifi cations ❘ 227

FIGURE 10-7

 7. After clicking through the screen in Figure 10-7, you see another screen, similar to Figure 10-8,
with a prompt to choose your CSR. Select the Choose File button, navigate to your CSR, select
it, and choose the Generate button.

FIGURE 10-8

c10.indd 227c10.indd 227 13/09/12 2:43 PM13/09/12 2:43 PM

228 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

 9. Navigate back to the list of applications; you should now see that push notifi cations have
been successfully confi gured for development, as shown in Figure 10-11.

 8. If everything works as planned, you see a slight overlay while Apple generates your APNs
certifi cate and then a success message that resembles Figure 10-9. Click the Continue button
to navigate to the next screen, and download your certifi cate, as shown in Figure 10-10.

FIGURE 10-9 FIGURE 10-10

FIGURE 10-11

Because this chapter uses PHP for the service tier, you need to combine the private key created along
with the CSR (refer to Figure 10-4) and the SSL certifi cate provided to you by Apple (refer to Figure
10-10) into a single PEM format fi le. You can use the PEM fi le format to specify a certifi cate, private
key, or both concatenated together. In other server-side languages these steps may not be required,

NOTE Application builds (development and distribution) that use remote
 notifi cations must be signed with a provisioning profi le confi gured for
remote notifi cations. If you have previously issued provisioning profi les for the
application, you should re-issue them after confi guring remote notifi cations. You
cannot request permission to deliver notifi cations until the application is
signed correctly.

c10.indd 228c10.indd 228 13/09/12 2:43 PM13/09/12 2:43 PM

Registering and Responding to Remote Notifi cations ❘ 229

but the function used to initiate an APNs connection in this chapter, stream_context_create(),
requires that the certifi cate be in the PEM format. The following steps outline one way to convert
and combine the two fi les:

 1. Open the Terminal application on your computer, and navigate to the directory where you
saved the two fi les. For example purposes, assume the fi les are in the Push Service directory
on the desktop as shown here:

$ cd /Users/njones/Desktop/Push\ Service/

 2. Convert the SSL certifi cate downloaded from Apple into the PEM format like so:

$ openssl x509 -inform der –in AcmeRelationshipManager.cer –out
AcmeRelationshipManagerCert.pem

 3. Convert the private key from PKCS12 (.p12) format to PEM format like so:

$ openssl pkcs12 -in AcmeRelationshipManagerPrivateKey.p12 -out
AcmeRelationshipManagerKey.pem -nocerts

 4. You will be prompted to enter the import password, which is the password you chose when
exporting the private key from Keychain Access. After successfully entering the import pass-
word, you will be prompted to enter a PEM passphrase and then verify it. This should be
secure, and you need to store it for use when connecting to APNs.

 5. Finally, combine the certifi cate and private key PEM fi les into a single fi le like so:

$ cat AcmeRelationshipManagerCert.pem AcmeRelationshipManagerKey.
pem > AcmeCertKey.pem

NOTE You can test your connection to APNs by using the openssl s_client
command from Terminal. The s_client command enables you to connect to
SSL servers. APNs has two servers: development and production, available at
gateway.sandbox.push.apple.com:2195 and gateway.push.apple.com:2195,
respectively. The production endpoint is used for applications signed for distribu-
tion. Visit www.openssl.org/docs/apps/s_client.html for more information
on the s_client command.

Remote notifi cations are now confi gured, and you have the necessary fi les for the server to connect
to APNs and register notifi cations. Now, you need to request permission to deliver notifi cations to
your users.

Registering for Remote Notifi cations

Before you can send your fi rst notifi cation, the remote server must be confi gured to register each
user’s device. Users can have more than one device, and your storage method must allow for it.
Listing 10-7 includes a set of SQL statements that you can use to create the foundation for storing
this data on the remote server.

c10.indd 229c10.indd 229 13/09/12 2:43 PM13/09/12 2:43 PM

http://www.openssl.org/docs/apps/s_client.html
http://gateway.push.apple.com:2195
http://gateway.sandbox.push.apple.com:2195

230 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

LISTING 10-7: Database Structure for Remote Notifi cation Handling (/Push Server/

pushdatastructure.sql)

 CREATE TABLE IF NOT EXISTS 'users' (
 'userid' varchar(120)
 NOT NULL,
 'datecreated' timestamp
 NOT NULL DEFAULT '0000-00-00 00:00:00',
 PRIMARY KEY ('userid')
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE IF NOT EXISTS 'user_tokens' (
 'userid' varchar(120) NOT NULL,
 'token' varchar(64) NOT NULL,
 'datecreated' timestamp
 NOT NULL DEFAULT '0000-00-00 00:00:00',
 'dateremoved' timestamp
 NOT NULL DEFAULT '0000-00-00 00:00:00'
 COMMENT 'date the feedback service was polled for token',
 PRIMARY KEY ('userid','token')
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

After building the database, you should create a simple web-service script to register new users and
devices. This script creates the user-device relationship used to determine which devices a notifi ca-
tion should be delivered to. Listing 10-8 outlines a simple PHP script to register users and their
device. This is a single script that fi rst determines if the user on the inbound request already exists.
If the user does not exist, the script creates the users and then register the device.

LISTING 10-8: Server-side Script to Register Users and Devices (/Push Server/register.php)

<?php
 ...

 // get the post body
 $userid = $_REQUEST['user'];
 $token = $_REQUEST['token'];

 if (empty($userid) || empty($token)) {
 sendAPIResponse(400);
 return;
 }

 // determine if user exists
 $sql = "SELECT userid
 FROM users
 WHERE userid='".$userid."' LIMIT 1;";
 $query = mysql_query($sql, $dbConnection);
 $userExists = mysql_fetch_row($query);

 // add a 'user' record
 if (!$userExists) {

c10.indd 230c10.indd 230 13/09/12 2:43 PM13/09/12 2:43 PM

Registering and Responding to Remote Notifi cations ❘ 231

 $sql = "INSERT INTO users (userid, datecreated)
 VALUES ('".$userid."', '".$now."');";
 if (!mysql_query($sql, $dbConnection)) {
 // return error
 sendAPIResponse(400);
 return;
 }
 }

 // determine if token already exists
 $sql = "SELECT token
 FROM user_tokens
 WHERE userid='".$userid."'
 AND token='".$token."' LIMIT 1;";
 $query = mysql_query($sql, $dbConnection);
 $tokenExists = mysql_fetch_row($query);

 // add a token for current user
 if (!$tokenExists) {

 $sql = "INSERT INTO user_tokens (userid, token, datecreated)
 VALUES ('".$userid."','".$token."','".$now."');";
 if (!mysql_query($sql, $dbConnection)) {
 // return error
 sendAPIResponse(400);
 return;
 }
 }

 // close the database connection
 mysql_close($dbConnection);

 // return success
 sendAPIResponse(200);
?>

Once you have a registration script in place, it’s time to request permission from the application’s
user to deliver remote notifi cations. This must be repeated for each application on each of the user’s
devices. Listing 10-9 shows how to initiate the approval process for remote notifi cations as part of
the application launch process. Refer to the “Understanding Notifi cation Best Practices” section for
best practices on requesting remote notifi cation permissions.

LISTING 10-9: Request Permission to Deliver Remote Notifi cations (/Application/Relationship

Manager/RelationshipManager/AppDelegate.m)

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // request permission to deliver remote notifications, if needed
 BOOL requested = [[NSUserDefaults standardUserDefaults]
 boolForKey:kPushTokenTransmitted];
 if (requested != YES) {
 [[UIApplication sharedApplication]

continues

c10.indd 231c10.indd 231 13/09/12 2:43 PM13/09/12 2:43 PM

232 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

 registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeAlert |
 UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound)];
 }
 ...
}

After the application launches, you see an alert similar to Figure 10-12
prompting the user to approve the delivery of remote notifi cations.

Table 10-2 outlines the four remote notifi cation types that you can
request permission to deliver. As you can see from Listing 10-9, you
can request any combination of the four notifi cation types. The user can
change these permissions anytime using the Settings application and
restrict what can and cannot be triggered as part of your remote notifi ca-
tion. For example, if a user has disabled sound for the application,
no sound plays during delivery even if the notifi cation payload specifi es a
sound fi le. The application should be designed such that any notifi cation
type can be enabled or disabled independently.

TABLE 10-2: Remote Notifi cation Types

TYPE DESCRIPTION

UIRemoteNotification

TypeAlert
This permission allows access to display an alert view or banner

depending on the users’ confi guration. This alert is also what

may display in the users’ Notifi cation Center and Lock Screen if

they have confi gured it.

UIRemoteNotification

TypeBadge
This permission allows access to set the application’s icon badge.

UIRemoteNotification

TypeSound
This permission allows access to play a short sound when either

an alert or badge notifi cation is delivered.

UIRemoteNotification

TypeNewsstandContent

Availability

This permission allows access to notify the application when

there is new content available for download via the Newsstand

framework.

After a user grants permission, the application invokes the
application:didRegisterForRemoteNotificationsWithDeviceToken: method on the
application delegate. Conversely, if a user rejects the request, the
application:didFailToRegisterForRemoteNotificationsWithError: method is called.
In application:didRegisterForRemoteNotificationsWithDeviceToken: the application
should create a request to the remote server script covered in Listing 10-8 to register the user and
the device token.

FIGURE 10-12

LISTING 10-9 (continued)

c10.indd 232c10.indd 232 13/09/12 2:43 PM13/09/12 2:43 PM

Registering and Responding to Remote Notifi cations ❘ 233

Listing 10-10 demonstrates how to retrieve the device token and one approach for transmitting it
to the script created in Listing 10-8. If you chose to implement server-side localization, discussed in
the Remote Notifi cation Payloads section, this is where you would initially retrieve the users’ locale
and transmit it along with the token. A best practice is to store an indicator that the token has been
successfully transmitted to the notifi cation provider. This helps avoid unnecessary calls to the server
because subsequent calls to registerForRemoteNotificationTypes: after permission has been
granted invokes application: didRegisterForRemoteNotificationsWithDeviceToken:. You
can see that Listing 10-10 sets a BOOL if the call to Listing 10-8 is successful.

LISTING 10-10: Handling Remote Notifi cation Approval (/Application/RelationshipManager/

RelationshipManager/AppDelegate.m)

- (void)application:(UIApplication *)application
 didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken {
 // hardcode the current user, this would typically
 // be a token or value retrieved after they logged
 // in to use the app
 NSString *userId = @"nate@emaildomain.com";
 NSString *token = [NSString stringWithFormat:@"%@", deviceToken];

 // clean the token
 token = [token stringByTrimmingCharactersInSet:
 [NSCharacterSet characterSetWithCharactersInString:@"<>"]];
 token = [token stringByReplacingOccurrencesOfString:@" "
 withString:@""];

 // handle the request off the main thread
 dispatch_async(dispatch_get_main_queue(), ^{

 // build the post body
 NSString *postBody = [NSString
 stringWithFormat:@"user=%@&token=%@",
 userId,
 token];
 // build the request
 NSString *endpoint = @"http://yourdomain.com/push/register.php";
 NSMutableURLRequest *request =
 [[NSMutableURLRequest alloc]
 initWithURL:[NSURL URLWithString:endpoint]
 cachePolicy:NSURLRequestReloadIgnoringCacheData
 timeoutInterval:30.0];

 // configure the remaining request properties
 request.HTTPMethod = @"POST";
 request.HTTPBody = [postBody
 dataUsingEncoding:NSUTF8StringEncoding];
 [request setValue:@"application/x-www-form-urlencoded"
 forHTTPHeaderField:@"Content-Type"];

 NSError *error = nil;

continues

c10.indd 233c10.indd 233 13/09/12 2:43 PM13/09/12 2:43 PM

http://yourdomain.com/push/register.php
mailto:nate@emaildomain.com

234 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

 NSHTTPURLResponse *response;

 // this method returns NSData, but in this case
 // we don't care about it
 [NSURLConnection sendSynchronousRequest:request
 returningResponse:&response
 error:&error];

 // verify we got a success
 if (response.statusCode == 200) {

 // save our local flag so that we don't
 // hit this logic each time the app is opened
 [[NSUserDefaults standardUserDefaults]
 setBool:YES forKey:kPushTokenTransmitted];
 [[NSUserDefaults standardUserDefaults] synchronize];

 // alert the user if we didn't get a success
 } else {
 [[[UIAlertView alloc] initWithTitle:@"Error"
 message:@"Unable to "
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];
 }

 });
}

Remote Notifi cation Payloads

APNs payloads are JSON objects with a strict limit of 256 bytes. It is your responsibility to ensure
that the payload does not exceed this limit, or the notifi cation will be rejected by APNs. Payloads
are key-value pairs with a top-level namespace aps. The following snippet outlines a standard APNs
payload structure in human-readable form.

{
 "aps" : {
 "alert" : "New delivery received.",
 "badge" : 1,
 "sound" : "delivery.caf"
 }
}

Given that each byte counts against the 256 byte limit, one best practice is to remove space and
newline characters. The following snippet depicts the condensed payload outlined in the previous
snippet.

{"aps":{"alert":"New delivery received.","badge":1,"sound":"delivery.caf"}}

LISTING 10-10 (continued)

c10.indd 234c10.indd 234 13/09/12 2:43 PM13/09/12 2:43 PM

Registering and Responding to Remote Notifi cations ❘ 235

The aps namespace contains any of the three available properties: alert, badge, and sound.
Table 10-3 details how each property is used. Note that the value passed for the alert property
can either be a string or a dictionary. Passing a dictionary allows you to further confi gure how the
notifi cation appears and how the application functions as a result. Table 10-4 discusses the various
properties available for an alert dictionary.

TABLE 10-3: Possible aps Dictionary Properties

PROPERTY TYPE DESCRIPTION

alert String or

Dictionary

When a string is passed, it is used as the message body and two but-

tons are used: Close and View. Refer to Table 10-4 for possible values

 available to you when passing a dictionary.

badge Number This is the value to appear on the application icon. No logic (for example,

increment or decrement) is performed on this number; it appears as sent.

Therefore, displaying an unread count requires that you maintain the

read status on your server and badge appropriately. If nothing is sent in

this property, the system removes any existing badge value.

sound String This is the name of the sound fi le to play as the notifi cation displays. This

fi le must exist in the application bundle. Supported formats include .aiff ,

.wav, and .caf.

TABLE 10-4: Available Child Properties of alert

CHILD-PROPERTY TYPE DESCRIPTION

body String Notifi cation message.

action-loc-key String If specifi ed, this value modifi es the display of the alert by

 adding a second button with this value being the text of the

right button. If not specifi ed, a single button is used.

loc-key String Key to a localized value that will be used as the notifi cation

body. Values for this key can be formatted with %@, %n, and %$

to accommodate argument values from loc-args.

loc-args Array Array of strings to replace format placeholders in the value set/

retrieved for loc-key.

launch-image String Filename of an image in the applications bundle that displays

on launch of the application if triggered from the action button

or by sliding the lock screen item.

There are two methods for localizing remote notifi cations: server-side and within the application.
Server-side localization involves translating the message body and action button text prior to
delivery. This strategy also requires that you maintain a reference to the users’ current locale so that
messages are properly translated.

c10.indd 235c10.indd 235 13/09/12 2:43 PM13/09/12 2:43 PM

236 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

Localizing remote notifi cations within the application does require up-front planning but only
requires that you specify a value for the loc-key parameter, which is the key to the localized
value used as the message body text. You can also provide an optional array of arguments to
display in the localized message body using the loc-args property. Localized messages are still
subject to the 256 byte payload restriction. This approach has the added benefi t of requiring only
the key to a message instead of the entire message body. Depending on if the language is localized,
this could be a signifi cant advantage considering the payload constraints.

After confi guring the aps namespace, you can also create a custom namespace to deliver
 information specifi c to the application. Custom namespaces are similar to the userInfo property on
UILocalNotification discussed in the previous section. Custom namespaces must be included at
the same level as the aps namespace in the payload structure. Note that the 256 byte payload restric-
tion is enforced on the entire payload, not just the data in the aps namespace. You must consider this
restriction when designing your remote notifi cations to avoid size rejections. The following code pro-
vides an example of how to include custom namespaces within the notifi cation payload:

{
 "aps" : {
 "alert" : "New delivery received.",
 "badge" : 1,
 "sound" : "delivery.caf"
 },
 "emailAddress" : "nate@prospect.com",
 "action" : "Email"
}

Sending Remote Notifi cations

With your users’ device successfully registered, it is time to send a notifi cation. To register
 notifi cations for delivery, you must connect to APNs using the SSL certifi cate created during the
confi guration process discussed earlier in this chapter. The approach covered in this section includes
two key server-side scripts: one to handle the APNs connection and another that provides a simple
interface for initiating notifi cations. Listing 10-11 demonstrates how to connect to APNs, construct
the binary payload using the simple format, and register a notifi cation.

LISTING 10-11: Method to Connect with APNs (/Push Server/apns.php)

function sendPushNotification ($token, $payload) {
 $certificate = "../Path/To/Certificate/AcmeCertKey.pem";
 $passphrase = "YourPassphrase";
 $endpoint = "ssl://gateway.sandbox.push.apple.com:2195"

 $context = stream_context_create();
 stream_context_set_option ($context,
 'ssl',
 'local_cert',
 $certificate);

 stream_context_set_option ($context,

c10.indd 236c10.indd 236 13/09/12 2:43 PM13/09/12 2:43 PM

mailto:nate@prospect.com

Registering and Responding to Remote Notifi cations ❘ 237

 'ssl',
 'passphrase',
 $passphrase);

 // connect to APNs server
 $conn = stream_socket_client(
 $endpoint,
 $err,
 $errstr,
 60,
 STREAM_CLIENT_CONNECT | STREAM_CLIENT_PERSISTENT,
 $context
);

 if (!$conn) {
 echo "Connection to APNs Failed...";
 return;
 }

 // build the binary
 $message = chr(0) .
 pack('n', 32) .
 pack('H*', $token) .
 pack('n', strlen($payload)) .
 $payload;

 // push the notification
 $result = fwrite($conn, $message, strlen($message));

 // close the connection to APNs
 fclose($conn);

 if ($result) {
 echo "Notification sent...";
 } else {
 echo "Error sending notification...";
 }
}

To address some of the issues with the simple format, Apple introduced the enhanced format. The
enhanced format enables developers to specify notifi cation expiration dates and retrieve additional
details if an error occurs.

APNs stores the last notifi cation registered for each application on a device. If the device was offl ine,
this allows APNs to forward that notifi cation when connected. The issue is that the material in the
notifi cation can become dated and irrelevant to the point that you no longer want it to be delivered.
The expiration date is the fi xed time at which APNs can discard the message because it is no longer
valid. You can instruct APNs not to store the notifi cation by specifying a value of zero or less.

With the simple format, if an error occurs, APNs severs the connection without any indication as to
what happened. Using the enhanced format allows developers to assign an identifi er to each notifi ca-
tion being transmitted. If an error occurs, APNs returns an error response along with the assigned
identifi er for further investigation. Table 10-5 details the different APNs response codes and their
meaning.

c10.indd 237c10.indd 237 13/09/12 2:43 PM13/09/12 2:43 PM

238 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

TABLE 10-5: APNs Enhanced Format Response Codes

RESPONSE CODE DESCRIPTION

0 No errors encountered

1 Processing error

2 Missing device token

3 Missing topic

4 Missing payload

5 Invalid token size

6 Invalid topic size

7 Invalid payload size

8 Invalid token

255 None (Unknown)

Listing 10-12 covers a simple script that can be called from a browser to register a notifi cation. The
script retrieves all the devices associated with the user being notifi ed and calls the script created in
Listing 10-11 to handle APNs communication. In practice, a script like this would not be accessible
to the public; it would be placed behind some type of authentication mechanism.

LISTING 10-12: Remote Notifi cation Test Delivery Script (/Push Server/ sendNotifi cation.php)

<?php

 ...

 // get request parameter values
 $userId = $_REQUEST['userid'];
 $contactEmail = $_REQUEST['contact'];
 $message = $_REQUEST['message'];
 $badge = $_REQUEST['badge'];
 $sound = $_REQUEST['sound'];

 // clean up the action value
 $action = $_REQUEST['action'];
 $action = (!empty($action)) ? $action : "View";

 // get token(s) for user
 $sql = "SELECT token
 FROM user_tokens
 WHERE userid='".$userId."';";

c10.indd 238c10.indd 238 13/09/12 2:43 PM13/09/12 2:43 PM

Registering and Responding to Remote Notifi cations ❘ 239

 $query = mysql_query($sql, $dbConnection);

 // send push to ALL devices that belong to user
 while ($row = mysql_fetch_array($query)) {
 // create the payload
 $alert['body'] = $message;
 $alert['action-loc-key'] = $action;

 $aps['alert'] = $alert;

 // add sound
 if (!empty($sound)) {
 $aps['sound'] = $sound;
 }

 // add badge
 if (!empty($badge)) {
 $aps['badge'] = intval($badge);
 }

 $payload['aps'] = $aps;

 // add custom namespace fields
 $payload['emailAddress'] = $contactEmail;

 // connect to apns and send push
 sendPushNotification ($row['token'], json_encode($payload));
 }

 // close the database connection
 mysql_close($dbConnection);
?>

With the server-side components in place and the device registered, you can now test everything.
Call the script created in Listing 10-12 with the following parameter values. If all goes as expected,
you should receive a notifi cation shortly similar to Figure 10-13.

 ➤ userid: nate@emaildomain.com

 ➤ contact: John@prospect.com

 ➤ message: Email John about proposal

 ➤ badge: 1

 ➤ action: Email

The userid value in the preceding parameter list matches the hardcoded
value in the registration process covered in Listing 10-10. The value
specifi ed for contact should match an entry that has been added to the
Relationship Manager application. This ensures that you trigger the han-
dling logic covered in the next section.

Depending on your requirements and especially if you expect signifi cant
throughput in your push service, you should consider using a queued

FIGURE 10-13

c10.indd 239c10.indd 239 13/09/12 2:43 PM13/09/12 2:43 PM

mailto.nate@emaildomain.com
mailto:John@prospect.com

240 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

message approach to improve fl exibility and effi ciency. This involves an additional step in the server-
side script-fl ow to queue notifi cations to a new database table for delivery rather than connect with
APNs immediately. A background process would then process the queued notifi cations, establish a
single connection to APNs, and register and then archive the notifi cations.

Apple advertises that it actively monitors APNs connections and may consider constantly establish-
ing connections as a denial of service attack. Please review the APNs Provider Communication
documentation on the developer portal at https://developer.apple.com/ios for additional
information. The preceding enhancement helps optimize your APNs connections and provides you
with the fl exibility to implement many of the best practices discussed later in this chapter, such as
“Do Not Disturb” and server-side localization.

Responding to Remote Notifi cations

The process to handle remote notifi cations is the same as handling local notifi cations with the
exception of the delegate method invoked and how the data for the UIAlertView is retrieved.
How the application responds is still driven primarily by the payload delivered from the notifi ca-
tion provider and whether the application is active. If the application is not currently active and the
user selects the action button (or drags the lock screen slider) the application launches. Just like a
standard launch, the application:didFinishLaunchingWithOptions: method is invoked in the
application delegate. You can retrieve the remote notifi cation payload from the launchOptions dic-
tionary using the key UIApplicationLaunchOptionsRemoteNotificationKey. Listing 10-13 dem-
onstrates how to add custom notifi cation handling during the application launch process.

LISTING 10-13: Remote Notifi cation Handling Within Launch Sequence (/Application/Relationship

Manager/RelationshipManager/AppDelegate.m)

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 ...

 // determine if app launched from a push notification
 NSDictionary *pushNotification =
 [launchOptions
 objectForKey:UIApplicationLaunchOptionsRemoteNotificationKey];
 if (pushNotification != nil) {
 NSString *action = [[[pushNotification objectForKey:@"aps"]
 objectForKey:@"alert"]
 objectForKey:@"action-loc-key"];

 Contact *contact = [[Model sharedModel]
 contactWithEmailAddress:
 [pushNotification
 objectForKey:@"emailAddress"]];

 // initiate a phone call
 if ([action isEqualToString:@"Call"]) {
 NSString *phone = [NSString stringWithFormat:@"tel:%@",

c10.indd 240c10.indd 240 13/09/12 2:43 PM13/09/12 2:43 PM

https://developer.apple.com/ios

Registering and Responding to Remote Notifi cations ❘ 241

 contact.phoneNumber];

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:phone]];

 // start an email
 } else if ([action isEqualToString:@"Email"]) {
 NSString *email = [NSString stringWithFormat:@"mailto:%@",
 contact.emailAddress];

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:email]];

 }
 }
 ...

}

If the application is active and implements application:didReceiveRemoteNotication:, that
method is invoked with the payload from the notifi cation. As with local notifi cations, much of the
standard behavior is discarded if the application is active. Thus, if you want to inform your user,
you must implement the functionality. Listing 10-14 demonstrates how to intercept a remote
notifi cation when the application is active and presents the user with a list of actions to perform.
The bulk of this logic could be consolidated with the local notifi cation implementation with the
exception of how the action text is derived. The location within the dictionary differs depending
if it is a local or remote notifi cation.

LISTING 10-14: Remote Notifi cation Handling When Application Is Active (/Application/Relationship

Manager/RelationshipManager/AppDelegate.m)

- (void)application:(UIApplication*)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo {

 // alert the user that a notification was received
 // because the user was in the application, we present
 // them with some additional information / options
 dispatch_async(dispatch_get_main_queue(), ^{

 NSString *action = [[[userInfo objectForKey:@"aps"]
 objectForKey:@"alert"]
 objectForKey:@"action-loc-key"];
 Contact *contact = [[Model sharedModel]
 contactWithEmailAddress:
 [userInfo objectForKey:@"emailAddress"]];

 // get the reminder message
 NSString *message;
 message = [[[userInfo objectForKey:@"aps"]
 objectForKey:@"alert"] objectForKey:@"body"];
 if (message == nil) {
 // no message found at that path

continues

c10.indd 241c10.indd 241 13/09/12 2:43 PM13/09/12 2:43 PM

242 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

 // that implies a simple notification structure
 message = [[userInfo objectForKey:@"aps"]
 objectForKey:@"alert"];
 }

 [UIAlertView alertViewWithTitle:@"Reminder"
 message:message
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:[NSArray
 arrayWithObjects:@"View Contact",
 action, nil]
 onDismiss:^(int buttonIndex)
 {
 // display the contact details
 if (buttonIndex == 0) {

 ContactDetailTableViewController *contactVC =
 [[ContactDetailTableViewController alloc]
 initWithStyle:UITableViewStyleGrouped];

 contactVC.contact = contact;
 contactVC.presentedModally = YES;

 UINavigationController *nc =
 [[UINavigationController alloc]
 initWithRootViewController:contactVC];

 [self.navigationController
 presentModalViewController:nc animated:YES];

 // initiate the selected action
 } else if (buttonIndex == 1) {
 // initiate a phone call
 if ([action isEqualToString:@"Call"]) {

 NSString *phone = [NSString
 stringWithFormat:@"tel:%@",
 contact.phoneNumber];

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:phone]];

 // start an email
 } else if ([action isEqualToString:@"Email"]) {

 NSString *email = [NSString
 stringWithFormat:@"mailto:%@",
 contact.emailAddress];

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:email]];

 }
 }

LISTING 10-14 (continued)

c10.indd 242c10.indd 242 13/09/12 2:43 PM13/09/12 2:43 PM

Understanding Notifi cation Best Practices ❘ 243

 }
 onCancel:^()
 {
 // don't do anything for cancel
 }]; });

 // reset the application badge to 0
 [UIApplication sharedApplication].applicationIconBadgeNumber = 0;
}

The application now contains custom support for remote notifi cations and
provides users with an enhanced experience if a notifi cation is received
while they use the application. Install the application on a test device and
initiate a few test notifi cations similar to what you did earlier when con-
fi rming notifi cations were registered with APNs successfully. When the
application is not active, you should continue to see the standard alert,
similar to what you saw in Figure 10-13. However, when the application
is active the user should see an alert that resembles Figure 10-14.

UNDERSTANDING NOTIFICATION BEST
PRACTICES

Following are a few best practices to keep in mind as you implement
notifi cations. These can enhance the overall user experience while still
allowing you to achieve the engagement and effi ciency gains you need. In
some cases, they may help you exceed your goals.

 ➤ Request permission only when needed: Applications tend to inundate users during the ini-
tial launch with prompts for permission to access services such as location (GPS), remote
notifi cations, and contacts. This can be frustrating and can result in lower conversion rates.
You should request permission only to deliver remote notifi cations when you need to. For
example, if you offer remote notifi cations as a paid upgrade, do not request permission to
deliver remote notifi cations until the user initiates the upgrade process.

 ➤ Ensure remote notifi cation value is clear: Users must understand the value they will receive
by allowing you to deliver remote notifi cations. Ideally, this value proposition is understood
prior to requesting permission.

 ➤ Limit remote notifi cation frequency: Notifi cations are intended to inform users that a spe-
cifi c event has taken place and can now be acted on within the application, such as a friend
request. Follow a delivery cadence that makes sense for your application and content. Users
would expect that a messaging application deliver a notifi cation every time they receive a
message; however, those same users would likely expect only a single, daily notifi cation
from a daily-deals application.

 ➤ Allow users to confi gure the notifi cation experience: Users want to defi ne their own experi-
ence. Allow them to confi gure the types of notifi cations they receive (for example, friend
requests and new messages), the content included in those notifi cations (for example, simply

FIGURE 10-14

c10.indd 243c10.indd 243 13/09/12 2:43 PM13/09/12 2:43 PM

244 ❘ CHAPTER 10 USING PUSH NOTIFICATIONS

displaying New Message versus the entire message content) and setting a Do Not Disturb
window in which notifi cations will be not be delivered. In iOS 6, Apple provides a native
Do Not Disturb feature. When enabled, this feature enforces a system wide Do Not Disturb
window where all alerts are silenced. User confi gurable settings should not extend to every-
thing, though. For example, specifi c bank account details and other personally identifi able
information should never be delivered via a notifi cation.

 ➤ Support multiple devices: Actions resulting from a notifi cation on one device should be
refl ected on all other devices linked to the same user. For example, if a user has two regis-
tered devices, you push an Unread Message count of 3 to each device. As the user reads one
of the messages on the fi rst device, the unread count on each device should be updated to
refl ect the new unread count of 2. This requires additional resources on the server-side and
initial planning within the application but makes for a much better experience overall.

 ➤ Develop an In-App notifi cation center: An In-App notifi cation center provides a centralized
location for users to view important updates. Remote notifi cations are not reliable. When a
device is not connected to a network, Wi-Fi or cellular, APNs queue only one notifi cation
per application for delivery when the devices reconnects. A notifi cation center that retrieves
sent notifi cations on launch provides a simple mechanism to ensure users receive your
updates. This becomes more valuable for enterprise applications where users are notifi ed of
workfl ow items via remote notifi cation.

 ➤ Poll the feedback service: When an application no longer exists on a device and a remote
notifi cation is attempted, the operating system reports the undeliverable failure to APNs. To
limit unnecessary failures, Apple provides the feedback service, which is a binary interface
similar to the interface to register a remote notifi cation, available at feedback.push
.apple.com:2196 (sandbox access is available at feedback.sandbox.apple.com:2196).
The feedback service provides a running list of per-application device tokens that had a
failed delivery. As a provider, you should periodically review the feedback service and
update your database accordingly.

 ➤ Measure notifi cation success: Monitor how frequently notifi cations are sent and the number
of times a notifi cation drives an application to be launched. Consider assigning notifi cation
types or using a custom notifi cation payload value, to enhance your understanding of which
messages are most effective.

SUMMARY

Local and remote notifi cations provide a unique channel for engaging your users and driving effi -
ciency in your business. Local notifi cations can be effective in driving users to respond to local
reminders and require little overhead and management when deployed. Remote notifi cations offer
the most fl exibility for external integration but require additional confi guration and maintenance
compared to local notifi cations. Depending on your requirements, you may choose to deploy a
hybrid approach to optimize cost and functionality.

In the next chapter, you learn how to communicate within applications installed on the device using
techniques such as URL schemas and keychain.

c10.indd 244c10.indd 244 13/09/12 2:43 PM13/09/12 2:43 PM

http://feedback.push.apple.com:2196
http://feedback.push.apple.com:2196
http://feedback.sandbox.apple.com:2196

PART IV
Networking App to App

 � CHAPTER 11: Inter-App Communication

 � CHAPTER 12: Device-to-Device Communication with Game Kit

 � CHAPTER 13: Ad-Hoc Networking with Bonjour

c11.indd 245c11.indd 245 13/09/12 2:44 PM13/09/12 2:44 PM

c11.indd 246c11.indd 246 13/09/12 2:44 PM13/09/12 2:44 PM

Inter-App Commun ication

WHAT’S IN THIS CHAPTER?

 ➤ Registering custom URL schemes

 ➤ Changing behavior based on the presence of other installed apps

 ➤ Leveraging enterprise single sign-on

 ➤ Detecting and reusing data from previous installations

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. The code
is in the Chapter 11 download and individually named according to the names throughout the
chapter.

After mastering the traditional forms of network communication, it’s natural to look at
other apps on a device and wonder how you can interact with them as well. The sandboxed
 operating model of iOS applications limits the capabilities of the inter-app communication
techniques described in this chapter, but with some creative thinking, you can accomplish
more than you might think. The most direct approach is to implement one or more URL
schemes in your app. URL schemes enable an app to sense the presence of other apps and
perform specifi c actions in them. Alternatively, a more indirect approach uses a shared
keychain as a common key-value store for a group of related apps by the same developer. This
chapter provides concrete examples of both of these approaches. Many of these examples are
meant for Facebook and Twitter, but also include a generic implementation ready to use for
any other app’s custom scheme.

11

c11.indd 247c11.indd 247 13/09/12 2:44 PM13/09/12 2:44 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://WROX.COM
http://wrox.com

248 ❘ CHAPTER 11 INTER-APP COMMUNICATION

URL SCHEMES

URL schemes have three main uses: adjusting logic based on the presence of other apps on a device,
switching to another app, or responding to another app opening your app. You can also use schemes
to open an app from a website or at the conclusion of a web-based authentication fl ow. This section
uses a suite of applications to demonstrate the basic uses of custom URL schemes. Each application
implements its own scheme, and the entire suite confi gures itself to include functionality of all other
installed apps in the suite. The code examples cover best practices for implementing and responding
to custom schemes, sensing other apps installed on a device, and sending serialized data between
apps. Given that in most cases only one application is active at a time, data predominantly fl ows
only one way, and the receiving app becomes active to process the data.

Implementing a Custom URL Scheme

The fi rst step to implementing a custom URL scheme is to determine which features of your
 application would be useful for another application to invoke. For example, a shopping app might
want to display a product’s information when given a UPC code or a messaging app could prepopulate
a recipient and message. It is also useful to allow other apps to link to the most popular views in
your app, which in a tab bar application is commonly the root view for each tab. To do this you
should assign each of the views or features a short identifi er to use when responding to incoming
URL requests, and create a short name to use as the URL identifi er (for example, http or telnet).
Ensure your short name is unique because it is undefi ned how the operating system will handle
multiple applications that implement the same scheme.

Each application includes its URL scheme(s) in Info.plist, which registers them with the operating
system during installation. For example, an application named Acme Employee Directory might use
the scheme acme-directory in its Info.plist. Figure 11-1 shows the required keys and values in
Xcode’s plist editor.

FIGURE 11-1

c11.indd 248c11.indd 248 13/09/12 2:44 PM13/09/12 2:44 PM

URL Schemes ❘ 249

When the operating system encounters an acme-directory:// URL, it will call one of two methods
in the application delegate, depending on the current state of the application. If the application is
not running, it is launched and application:didFinishLaunchingWithOptions: will have an
options dictionary containing the keys UIApplicationLaunchOptionsSourceApplicationKey
and UIApplicationLaunchOptionsURLKey, which identify the calling application and full URL,
respectively. If your application determines it can handle the given URL, it should return YES from
application:didFinishLaunchingWithOptions:. The operating system then calls the application
delegate’s application:openURL:sourceApplication:annotation: to actually handle the URL.
When the app is brought to the foreground, the operating system displays its default image (usually
called Default.png). Alternatively, if the application was running in the background or suspended,
it will resume and only application:openURL:sourceApplication:annotation: will be called to
handle the URL. The two possible execution paths are shown in Figure 11-2.

FIGURE 11-2

Wake up the app

App Inactive
URL Arrives

App Not Running

applicationDidBecomeActive:

Open the URL

application:openURL:
sourceApplication:annotation:

Activate the app

applicationWillEnterForeground:

Load user interface

Initialize app

application:didFinish
LaunchingWithOptions:

Open the URL

application:openURL:
sourceApplication:annotation:

applicationWillEnterForeground:

Activate the app

Because your URL scheme often displays a different view than would normally show on launch, you
can defi ne a variety of default images for each URL scheme you implement. Each variation follows a
specifi c format with a mix of required and optional values.

 ➤ The UILaunchImageFile value is required and set to Default unless otherwise specifi ed in
Info.plist.

 ➤ The URL scheme string is the acme-directory value previously specifi ed in Info.plist,
and it is also required.

 ➤ An orientation value is optional, but enables you to use Portrait or Landscape to show a
launch image positioned in the device’s current orientation.

c11.indd 249c11.indd 249 13/09/12 2:44 PM13/09/12 2:44 PM

250 ❘ CHAPTER 11 INTER-APP COMMUNICATION

 ➤ Scale is an optional value that is familiar to most developers, and it enables you to use @2x
to specify images for Retina devices.

 ➤ The fi nal optional value is device, which displays images customized to phone-style devices
with iphone or tablet-style devices with ipad.

Take the Employee Directory application as an example of the device value. It includes custom
images specifi c to its URL scheme on phone-style devices for both non-Retina and Retina displays
with the fi les Default-acme-directory-portrait@2x.png and
Default-acme-directory-portrait.png. This snippet shows the full pattern for naming
 scheme-specifi c default images. Values in curly braces are required, and values in square brackets
are optional.

{UILaunchImageFile value}-{URL scheme string}[-orientation][scale][~device].png

Determining if you can handle a URL is highly dependent on the specifi c application; however, for
a quick sanity check you can validate that the URL is requesting one of the feature identifi ers you
chose previously. More specifi c bounds checking, pattern matching, or some other validation may
also be appropriate. In the Acme Employee Directory shown in Listing 11-1, the URL is checked to
ensure it uses the custom scheme acme-directory, requests the identifi er employee, and supplies an
employee identifi er that exists.

LISTING 11-1: Validating an Acme Directory URL (EDAppDelegate.m)

 - (BOOL)canHandleURL:(NSURL *)url
 fromSourceApplication:(NSString *)sourceApplication
 withAnnotation:(id)annotation {

 NSLog(@"Determining if we can handle URL '%@' "
 "requested by '%@' with data '%@'",
 url, sourceApplication, annotation);

 // we're only requiring a URL, but we could also check
 // sourceApplication or annotation if necessary
 if (url == nil) {
 return NO;
 }

 // we'll only respond to URLs of the pattern:
 // "acme-directory://employee/{integer}"
 if ([[url scheme] isEqualToString:@"acme-directory"]) {
 NSString *viewIdentifier = [url host];

 // there is only one view identifier we'll accept
 if ([viewIdentifier isEqualToString:@"employee"]) {
 NSInteger employeeNumber = [self employeeNumberFromURL:url];
 EDEmployee *employee = [[EDEmployeeManager sharedManager]
 employeeForId:employeeNumber];

 // if we got an employee, then accept the URL
 if (employee != nil) {
 return YES;

c11.indd 250c11.indd 250 13/09/12 2:44 PM13/09/12 2:44 PM

mailto:Default-acme-directory-portrait@2x.png

URL Schemes ❘ 251

 }
 }
 }

 return NO;
 }

If an app responds to more than one scheme, identifi er, or needs a longer path, it is easy to extend
the example canHandleURL:fromSourceApplication:withAnnotation: method. You need to be
aware of one unintuitive aspect of URL handling: Even if your application returns NO from
application:didFinishLaunchingWithOptions:, it is still launched or brought to the foreground
because it registered the URL scheme.

Sensing the Presence of Other Apps

Social networking features are now commonly included in a wide variety of applications to increase
user engagement or spread awareness of the service or product. In many cases the developer includes
Twitter and Facebook by default, and the social features work the same way for all users. However,
even if users have a mobile application for either network, they are forced to use the app’s unfamiliar
user interface and are often required to authorize the application before proceeding with the desired
feature. This added friction can hurt conversion rates for your social features and can have a
material impact on the popularity of your app. The proper approach to combat this issue is to detect
when a native application is installed and optionally invoke that app’s custom URL scheme. Most
social or messaging apps provide URL schemes for precisely this situation. Your users will appreciate
using a familiar user interface in a client that has already been authorized on the service.

To start sensing the presence of another app, you fi rst need to know the custom URL scheme(s)
provided by the destination app. Many developers publish the details of any custom schemes in their
API documentation or on a developer-specifi c page on their websites. After you have the scheme
name, implementing the feature is relatively easy using UIApplication’s canOpenURL: method. It
returns YES if an application is installed that registered the scheme in the given URL and NO
otherwise. For example, to test for the presence of Facebook or Twitter, test if canOpenURL: returns
YES for the respective URL schemes like so:

if ([[UIApplication sharedApplication] canOpenURL:
 [NSURL URLWithString:@"twitter://"]]) {

 // this device has the Twitter for iPhone application
}

if ([[UIApplication sharedApplication] canOpenURL:
 [NSURL URLWithString:@"fb://"]]) {

 // this device has the Facebook application
}

After you detect the presence of another app, you can alter your user interface or functionality to
match those of that app. For example, you may want to disable the sharing feature if the app is not
found, or provide a fallback that accomplishes the same task in an alternative way. Some apps
register two similar URL schemes, but the second one appends the current version to the end

c11.indd 251c11.indd 251 13/09/12 2:44 PM13/09/12 2:44 PM

252 ❘ CHAPTER 11 INTER-APP COMMUNICATION

(for example, acme-directory-1-0:// for version 1.0). An app that wants to use URL scheme
features that are only available in certain versions of the target app can then test not only for its
presence, but also for a specifi c version’s presence.

When the same team or coordinating teams are developing many related apps, detecting installed
apps becomes more interesting. In an enterprise environment, many companies deploy multiple apps
internally, each with a specifi c focus or target audience. These apps can enable extra features or
external hooks if they know applications are present that can deliver extra value.

The Employee Directory app described in the previous section can be extended to include hooks for
users that have the installed Employee Records, another example app. In this scenario, Employee
Records is given only to HR employees because it contains sensitive personal information. Each of
the applications may want to reveal buttons to open an employee’s specifi c page in the other apps
only if they are installed.

In the directory app, users who have Employee Records can see a corresponding entry under the
Companion Apps table section, as shown in Figure 11-3. This section is populated from
dictionaryOfInstalledCompanionApps shown in Listing 11-2, which simply checks for each URL
scheme. Similar code is also added to Employee Directory and Employee Records to enable the same
functionality.

LISTING 11-2: Checking for Companion Applications (EDUtils.m)

+ (NSDictionary*)dictionaryOfInstalledCompanionApps {
 NSMutableDictionary *companionApps = [NSMutableDictionary dictionary];

 // employee records
 if ([[UIApplication sharedApplication] canOpenURL:
 [NSURL URLWithString:@"acme-records://"]]) {

 [companionApps setValue:@"acme-records://employee/"
 forKey:@"Employee Records"];
 }

 return companionApps;
}

Advanced Communication

The previous examples have used only plaintext to convey information
to the destination app, but you can send almost any serializable object
in a URL. The Employee Records application example can be further
extended to receive an image from another application and add it to
an employee’s fi le. Any object that can be serialized to NSData can be
sent via a custom URL scheme. For most common iOS types and all the
primitive types, you can use methods provided by NSKeyedArchiver
to create encapsulated data objects. Objects are serialized with
 archivedDataWithRootObject: and primitive types with one of many FIGURE 11-3

c11.indd 252c11.indd 252 13/09/12 2:44 PM13/09/12 2:44 PM

URL Schemes ❘ 253

methods that follow the pattern encode{type}:forKey:. NSDictionary objects and UIImage
objects have custom serializers specifi c to them. To serialize your own custom object, it must implement
NSCoding and two methods: initWithCoder: and encodeWithCoder:. NSKeyedArchiver can use
the two methods automatically when your object is passed to archivedDataWithRootObject:.
Table 11-1 maps common iOS object types to their respective serializers.

TABLE 11-1: Serializers for Common iOS Types

TYPE SERIALIZER

NSDictionary NSPropertyListSerialization

UIImage UIImageJPEGRepresentation() or

UIImagePNGRepresentation()

Objects conforming to NSCoding NSKeyedArchiver

Primitive types NSKeyedArchiver

After the object has been represented as an NSData object, it must be converted to a string to pass
through a URL. An obvious answer is to use NSString’s initWithData:encoding:; however, the
resulting string would not be safe to include in a URL. RFC 3986 defi nes a list of valid characters
that may be included in a URL, summarized in Table 11-2.

Character Name

A–Z Uppercase letters

a-z Lowercase letters

0–9 Numbers

- Hyphen

. Period

_ Underscore

~ Tilde

: Colon

/ Forward slash

? Question mark

continues

TABLE 11-2: Valid URL Characters

c11.indd 253c11.indd 253 13/09/12 2:44 PM13/09/12 2:44 PM

254 ❘ CHAPTER 11 INTER-APP COMMUNICATION

Knowing this set of characters, the Internet Engineering Task Force standardized an encoding
known as base64 in RFC 4648. It is used specifi cally to represent binary data (the image in this
example application) as an ASCII text string. Every six bits of the binary data is encoded into one
character using a standardized conversion table, as shown in Table 11-3.

Character Name

Number sign or hash

] or [Left or right square brackets

@ At sign

! Exclamation mark

$ Dollar sign

& Ampersand

‘ Single quote

) or (Left or right parentheses

* Asterisk

+ Plus sign

, Comma

; Semicolon

= Equals sign

RFC 3986, http://tools.ietf.org/html/rfc3986

TABLE 11-2 (continued)

6-BIT

VALUE

ENCODED

CHARACTER

6-BIT

VALUE

ENCODED

CHARACTER

6-BIT

VALUE

ENCODED

CHARACTER

6-BIT

VALUE

ENCODED

CHARACTER

0 A 16 Q 32 g 48 w

1 B 17 R 33 h 49 x

2 C 18 S 34 i 50 y

3 D 19 T 35 j 51 z

4 E 20 U 36 k 52 0

5 F 21 V 37 l 53 1

TABLE 11-3: base64 Conversion Table

c11.indd 254c11.indd 254 13/09/12 2:44 PM13/09/12 2:44 PM

http://tools.ietf.org/html/rfc3986

URL Schemes ❘ 255

Although the base64-encoded string is close, it is still not quite ready for inclusion in the URL.
Characters 62 (“+” or plus) and 63 (“/” or forward slash) each have a special meaning in a
URL and could potentially disrupt the receiving app from decoding your binary data correctly. The
plus sign represents a space character when used in the query string, and if your data is interpreted
as a space, the parser could stop prematurely or interpret erroneous data. The forward slash
character is used to represent components of the URL’s path and could confuse the parser into
starting or stopping too early. For example, consider a case in which the start of the binary data
encodes to employee/5/. When passed to Employee Records the URL could be parsed as
acme-records://employee/5/..., which would open the fi fth employee’s detail view instead of
passing the full binary data as intended.

There are two solutions to the unintended consequences of the + and / characters in a base64-
encoded string. The most straightforward fi x is to URL-encode the base64 string. Many
applications that use network communication already have a utility method to URL-encode a string,
and it can be reused here. If your application does not have one, be wary of solutions that use only
NSString’s stringByAddingPercentEscapesUsingEncoding:, which Apple describes as
returning:

... a representation of the receiver using a given encoding to determine the percent
escapes necessary to convert the receiver into a legal URL string.

Recall that the plus sign and forward slash are legal URL characters; thus, they will not be encoded
by it. When given a base64-encoded string, stringByAddingPercentEscapesUsingEncoding:
actually returns the exact same string unchanged.

6-BIT

VALUE

ENCODED

CHARACTER

6-BIT

VALUE

ENCODED

CHARACTER

6-BIT

VALUE

ENCODED

CHARACTER

6-BIT

VALUE

ENCODED

CHARACTER

6 G 22 W 38 m 54 2

7 H 23 X 39 n 55 3

8 I 24 Y 40 o 56 4

9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6

11 L 27 b 43 r 59 7

12 M 28 c 44 s 60 8

13 N 29 d 45 t 61 9

14 O 30 e 46 u 62 +

15 P 31 f 47 v 63 /

RFC 4648, http://tools.ietf.org/html/rfc4648

c11.indd 255c11.indd 255 13/09/12 2:44 PM13/09/12 2:44 PM

http://tools.ietf.org/html/rfc4648

256 ❘ CHAPTER 11 INTER-APP COMMUNICATION

TABLE 11-4: base64url Conversion Table

6-BIT

VALUE

ENCODED

CHARACTER

6-BIT

VALUE

ENCODED

CHARACTER

6-BIT

VALUE

ENCODED

CHARACTER

6-BIT

VALUE

ENCODED

CHARACTER

 0 A 16 Q 32 g 48 w

 1 B 17 R 33 h 49 x

 2 C 18 S 34 i 50 y

 3 D 19 T 35 j 51 z

 4 E 20 U 36 k 52 0

 5 F 21 V 37 l 53 1

 6 G 22 W 38 m 54 2

 7 H 23 X 39 n 55 3

 8 I 24 Y 40 o 56 4

 9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6

11 L 27 b 43 r 59 7

12 M 28 c 44 s 60 8

13 N 29 d 45 t 61 9

14 O 30 e 46 u 62 –

15 P 31 f 47 v 63 _

RFC 4648, http://tools.ietf.org/html/rfc4648

The second solution is to use a base64 variant called base64url that was created to address this
situation. It uses a modifi ed conversion table that replaces the plus sign with a hyphen (-) and the
forward slash with an underscore (_). The modifi ed conversion table is shown in Table 11-4.

A fourth sample application Employee Records Image Adder adds an image to an employee using a
second identifi er in the Employee Records URL scheme. For example, to add an image to the fi rst
employee, the app should open acme-records://addimage/1/{image data string}. To create
the image data string, it employs the three-step process discussed previously: Serialize the image,
base64-encode it, and then URL-encode it. The code in Listing 11-3 uses a base64-encoding
category on NSData that provides base64EncodingWithLineLength:; however any base64
implementation will do. The receiving application performs the same three steps in reverse order to
recover the UIImage object.

c11.indd 256c11.indd 256 13/09/12 2:44 PM13/09/12 2:44 PM

http://tools.ietf.org/html/rfc4648

Shared Keychains ❘ 257

LISTING 11-3: Passing an Image in a Custom URL Scheme (IAViewController.m)

// encode the image as data
NSData *imageData = UIImagePNGRepresentation(imageView.image);

// turn the data into a string by base64-encoding it
NSString *imageString = [imageData base64EncodingWithLineLength:0];

// url-encode the base64 string
NSString *encodedString = [IAUtils encodeURL:imageString];

// create and open the URL
NSURL *url = [NSURL URLWithString:[NSString stringWithFormat:
 @"acme-records://addimage/%@/?%@",
 employeeNumberField.text,encodedString]];
[[UIApplication sharedApplication] openURL:url];

Although URL schemes are great when you intend to open the receiving app and any size data can
be passed this way, the user experience will suffer as the time required to validate and open a long
URL becomes noticeable. Alternative techniques exist that offer the ability to share data while
maintaining focus on your application.

SHARED KEYCHAINS

A shared keychain is especially useful in the enterprise because it creates a common area accessible
to all apps that share a bundle seed ID. This shared space makes it straightforward to implement
a single sign-on (SSO) authentication system for a group of related apps. Additionally, an app that
stores data in the keychain can detect previous installs of itself, which can improve user experience
by reusing previously provided authentication credentials or adjusting the user interface for an
experienced user.

The iOS keychain provides a single area for secure storage for protected operating system data like
Wi-Fi passwords or account credentials. That storage is also available for third-party apps to store
similar protected data. To remain secure, keychain entries are always encrypted on disk and in
device backups. Protected data remains in the keychain even after an app is deleted, which enables
later installations to reuse the same credentials. Multiple apps from the same developer can be
confi gured to use the same encryption key, which allows each of those apps to access shared
keychain items. The code examples in this section offer a template for advanced features, such as
implementing SSO for a suite of apps or detecting previous installations of an app.

Enterprise SSO

Single sign-on functionality is a requirement for most enterprise applications delivered on the desktop
or over the web because it enhances security and convenience for the user. As the number of
internally deployed apps grows, SSO will become just as important in the mobile environment as
well. SSO is commonly implemented as an end-to-end authentication framework that enables users
to authenticate to multiple applications with a single set of shared credentials. When a successful

c11.indd 257c11.indd 257 13/09/12 2:44 PM13/09/12 2:44 PM

258 ❘ CHAPTER 11 INTER-APP COMMUNICATION

login attempt has been made, the SSO provider usually issues an authentication token that is stored
and used to sign all subsequent requests. If an application’s security requirements allow for this
token to be shared, it can be securely stored in the shared keychain and made available to other apps
without requiring the user to log in to those apps as well. If the token cannot be shared, the user’s
account identifi er or e-mail address can still be saved, providing a smaller but still signifi cant
productivity gain.

Three preliminary steps must be taken before a project can use a shared keychain for SSO:

 1. Each app must share a common Bundle Seed ID, which is a value set in the iOS Provisioning
Portal when applications are created. Figure 11-4 shows an example application’s entry in
the Provisioning Portal.

FIGURE 11-4

FIGURE 11-5

 2. Each project needs
to include an
Entitlements.plist
fi le that specifi es the
Bundle Seed ID in one
or more keychain-access-groups. Figure 11-5 demonstrates the required keys and values
in Xcode’s plist editor.

 3. Each project needs to include the Security.framework to properly compile. To include this,
perform the following steps:

 A. In the Project Navigator, highlight your project.

 B. Highlight your target.

c11.indd 258c11.indd 258 13/09/12 2:44 PM13/09/12 2:44 PM

Shared Keychains ❘ 259

 C. Select the Build Phases tab.

 D. Expand Link Binaries with Libraries.

 E. Click the + button.

 F. Search for and add Security.framework.

Now that the project is confi gured, it is prudent to begin by developing some low-level keychain
utility methods that can help drive high-level functionality of the application. Because this utility
class will be included in each individual SSO-enabled app, its implementation should be decoupled
from implementation details of any one application. Ideally, it should be compiled into a static
library that can be included in each application with little or no confi guration needed.

Most keychain Create, Read, Update, and Delete (CRUD) operations use a common set of
confi guration parameters that are given in an NSDictionary object that contains a specifi c set of
keys. Listing 11-4 contains a setup method, keychainSearch:, that creates the dictionary object
with the shared confi guration. Each operation calls keychainSearch: at some point to initialize the
keychain search context. Your utility method needs to include many keys, each of which is described
in more detail in Chapter 7, “Optimizing Request Performance.” The most important key is
kSecAttrAccessGroup, which defi nes the shared keychain space used by the SSO framework. Note
that the iOS Simulator’s keychain implementation does not support kSecAttrAccessGroup, and it
must be included only in compilations for an iOS device. Because of this quirk, all apps have access
to all keychain items on the simulator.

LISTING 11-4: Initializing a Keychain Search Dictionary (SSOUtils.m)

+ (NSMutableDictionary*)keychainSearch:(NSString*)identifier {
 NSData *encodedIdentifier = [identifier dataUsingEncoding:
 NSUTF8StringEncoding];
 NSMutableDictionary *keychainSearch = [[[NSMutableDictionary alloc]
 init] autorelease];

 // set the type to generic password
 [keychainSearch setObject:(id)kSecClassGenericPassword forKey:(id)kSecClass];

 // set the item's identifier
 [keychainSearch setObject:encodedIdentifier forKey:(id)kSecAttrGeneric];
 [keychainSearch setObject:encodedIdentifier forKey:(id)kSecAttrAccount];

 // use the shared keychain
 // note: not supported in the simulator and will cause
 // all keychain calls to fail
 #if !(TARGET_IPHONE_SIMULATOR)
 [keychainSearch setObject:kKeychainSSOGroup
 forKey:(id)kSecAttrAccessGroup];
 #endif

 return keychainSearch;
}

c11.indd 259c11.indd 259 13/09/12 2:44 PM13/09/12 2:44 PM

260 ❘ CHAPTER 11 INTER-APP COMMUNICATION

To read an existing keychain value, Listing 11-5 implements getValueForIdentifier:, which
returns a keychain value. It is given an identifi er that acts as a key for the desired value. It
calls keychainSearch: to initialize the confi guration dictionary and then sets two additional
parameters.

LISTING 11-5: Retrieving a Keychain Item (SSOUtils.m)

+ (NSString*)getValueForIdentifier:(NSString*)identifier {
 NSMutableDictionary *search = [self keychainSearch:identifier];

 // limit to the first result
 [search setObject:(id)kSecMatchLimitOne forKey:(id)kSecMatchLimit];

 // return data vs a dictionary of attributes
 [search setObject:(id)kCFBooleanTrue forKey:(id)kSecReturnData];

 // perform the search
 NSData *value = nil;
 OSStatus status = SecItemCopyMatching((CFDictionaryRef)search,
 (CFTypeRef *)&value);

 if (status == noErr) {
 return [NSString stringWithUTF8String:[value bytes]];
 }

 return nil;
}

Listing 11-5 specifi es a value of kSecMatchLimitOne for kSecMatchLimit to ensure the keychain
returns the fi rst result it fi nds. To return more than one result, you can pass a CFNumberRef speci-
fying the desired maximum number of results or pass kSecMatchLimitAll to return all possible
results. The method also sets kSecReturnData to kCFBooleanTrue to instruct the keychain to
return the raw data of the wanted item’s value. Other types of return data are possible by setting
other keys to kCFBooleanTrue:

 ➤ kSecReturnAttributes returns an attribute of the item.

 ➤ kSecReturnRef returns a reference to the item.

 ➤ kSecReturnPersistentRef returns a persistent reference to the item.

If more than one of these types is true, then the keychain request returns a dictionary of the
requested information. The query itself is handled by the call to SecItemCopyMatching(), which
takes your confi guration parameters and executes the search. The results of the search are copied
into the reference provided by &value, and the returned OSStatus is the status of the search.
Possible status codes are summarized in Table 11-5. The utility method ends by returning the string
value of the returned value or nil in the case of any error.

c11.indd 260c11.indd 260 13/09/12 2:44 PM13/09/12 2:44 PM

Shared Keychains ❘ 261

TABLE 11-5: Keychain Search Status Codes

RETURN CODE CONSTANT DESCRIPTION

errSecSuccess No error.

errSecUnimplemented Function or operation not implemented.

errSecParam One or more parameters passed to the function

were not valid.

errSecAllocate Failed to allocate memory.

errSecNotAvailable No trust results are available.

errSecAuthFailed Authorization/authentication failed.

errSecDuplicateItem The item already exists.

errSecItemNotFound The item cannot be found.

errSecInteractionNotAllowed Interaction with the security server is not allowed.

errSecDecode Unable to decode the provided data.

The next utility method setValue:forIdentifier: is shown in Listing 11-6 and implements both
create and update operations on keychain items. Separate keychain methods exist for the two
 operations, and your implementation must determine which is appropriate. Thus, it calls
getValueForIdentifier: to determine if an item with this identifi er already exists. If it does exist,
the method branches into the update logic. If the new value differs from the existing value, it will
be converted to an NSData object and then inserted in the update parameters NSDictionary with
the key kSecValueData. There are many other attributes that can be included in this dictionary, and
the full list is available in Apple’s Keychain Constants documentation. If an item for the given identi-
fi er does not already exist, the method executes the else branch, which creates the item. Similarly to
update, it sets the item’s NSData representation to the key kSecValueData; however, the key/value
pair is inserted into the search dictionary instead of an entirely new dictionary. The method passes
NULL to the result parameter of SecItemUpdate() because it does not need to retain a reference
to the newly inserted item. Both branches of code return YES if the operation is successful and NO
otherwise.

LISTING 11-6: CREATING OR UPDATING A KEYCHAIN ITEM (SSOUTILS.M)

+ (BOOL)setValue:(NSString*)value forIdentifier:(NSString*)identifier {
 NSString *existingValue = [self getValueForIdentifier:identifier];

 // check if value exists
 if (existingValue) {

 // update if the new value is different
 if (![existingValue isEqualToString:value]) {

continues

c11.indd 261c11.indd 261 13/09/12 2:44 PM13/09/12 2:44 PM

262 ❘ CHAPTER 11 INTER-APP COMMUNICATION

 NSMutableDictionary *search = [self keychainSearch:identifier];

 NSData *valueData = [value dataUsingEncoding:NSUTF8StringEncoding];
 NSMutableDictionary *update = [NSMutableDictionary
 dictionaryWithObjectsAndKeys:valueData,
 (id)kSecValueData, nil];

 OSStatus status = SecItemUpdate((CFDictionaryRef)search,
 (CFDictionaryRef)update);

 if (status == errSecSuccess) {
 return YES;
 }

 return NO;

 } else {
 return YES;
 }

 // if no value exists, create a new entry
 } else {
 NSMutableDictionary *add = [self keychainSearch:identifier];

 NSData *valueData = [value dataUsingEncoding:NSUTF8StringEncoding];
 [add setObject:valueData forKey:(id)kSecValueData];

 OSStatus status = SecItemAdd((CFDictionaryRef)add,NULL);

 if (status == errSecSuccess) {
 return YES;
 }

 return NO;
 }
}

The last CRUD operation, Delete, is shown in Listing 11-7 and is simple to implement using the
existing keychainSearch: method. The keychain method SecItemDelete() can search for all
items matching the search dictionary and remove them from the keychain. If the Delete operation is
successful, the utility method returns YES; otherwise it returns NO.

LISTING 11-7: Deleting a Keychain Item (SSOUtils.m)

+ (BOOL)deleteValueForIdentifier:(NSString*)identifier {
 NSMutableDictionary *search = [self keychainSearch:identifier];

 OSStatus status = SecItemDelete((CFDictionaryRef)search);

 if (status == errSecSuccess) {

LISTING 11-6 (continued)

c11.indd 262c11.indd 262 13/09/12 2:44 PM13/09/12 2:44 PM

Shared Keychains ❘ 263

 return YES;
 }

 return NO;
}

Now that the app has some building blocks to use for keychain interaction, high-level
functionality for the SSO implementation can be implemented with them. The most important is
authenticateWithUsername:andPassword: that can perform an authentication check and save the
resulting token into the keychain. The example provided in Listing 11-8 can accept any username/
password combination; however a real enterprise implementation always requires a network call to
an SSO provider. That provider should return a cryptographically secure authentication token that
expires after a specifi ed time interval. The app should store the token for use when making subse-
quent network requests, and it can optionally store the expiration time if available.

LISTING 11-8: Authenticating with a Username and Password (SSOUtils.m)

+ (BOOL)authenticateWithUsername:(NSString *)username
 andPassword:(NSString *)password {

 // you should do a check of the given credentials here
 // this dummy application will always return a successful login
 BOOL loginResult = YES;

 if (loginResult == YES) {
 // set SSO username
 [self setValue:username forIdentifier:kCredentialUsernameKey];

 // set SSO token
 [self setValue:@"SSOValidToken" forIdentifier:kCredentialTokenKey];
 }

 return loginResult;
}

Later views within the secured application should call credentialsAreValid before requesting or
displaying sensitive data, typically in a view controller’s viewWillAppear: method or in the app delegate’s
applicationWillEnterForeground:. The code in Listing 11-9 validates the saved authentication
token and informs the application whether it can continue to display the view, or if it should request
that the user re-authenticate. This example implementation does a dummy check, but a rigorous
check may include a separate network call to an SSO provider or a client-side cryptographic check.

LISTING 11-9: Validating Stored Credentials (SSOUtils.m)

+ (BOOL)credentialsAreValid {
 NSString *token = [self credentialToken];

 if (token == nil) {
 return NO;

continues

c11.indd 263c11.indd 263 13/09/12 2:44 PM13/09/12 2:44 PM

264 ❘ CHAPTER 11 INTER-APP COMMUNICATION

LISTING 11-9 (continued)

 }

 // you should do a secure check of the token here
 // we'll do a dummy check to make sure it matches our
 // secret value 'SSOValidToken'
 return [token isEqualToString:@"SSOValidToken"];
}

The last high-level operation logs out the current user by deleting the stored authentication token.
Listing 11-10 shows an example implementation of logout. Your implementation could also delete
kCredentialUsernameKey; however, in most cases the user experience benefi t of prepopulating a
username fi eld with the previous value outweighs any potential security weakness.

LISTING 11-10: Removing Stored Credentials for Logout (SSOUtils.m)

+ (void)logout {
 // destroy the saved token
 [self deleteValueForIdentifier:kCredentialTokenKey];
}

With this foundation, an enterprise application has everything it needs to implement an SSO system
that improves user experience and effi ciency across a group of related apps. As mobile apps become
more prevalent in the enterprise, experience with shared keychain programming will become a
requirement for every iOS developer.

Detecting Previous Installations

Using a combination of persistent and temporary storage, an app can detect previous installations
of itself and initialize its user interface to help the returning user. The most common use for this
 capability is to remember previous authentication values and prepopulate parts of the app with the
existing username or password. This functionality is nearly built-in for apps that employ the SSO
pattern described previously. The installed app can also skip introductory tutorials or feature tours
to let an experienced user get up-and-running as soon as possible.

This section describes an example app that records the user’s birthday to the keychain and loads
it on subsequent launches. If the app is deleted and reinstalled, it asks the user if he would like
to use the previously saved birthday or discard it. Listing 11-11 demonstrates a view controller’s
 viewDidLoad method that loads the saved birthday (if any) and prepopulates the text fi eld if it isn’t
the fi rst launch. Although this method also checks if this is the fi rst launch of the newly installed
app, it is not required and is done only to avoid fi lling in the birthday fi eld before the user responds
to the UIAlertView.

c11.indd 264c11.indd 264 13/09/12 2:44 PM13/09/12 2:44 PM

Shared Keychains ❘ 265

LISTING 11-11: Changing the UI Based on a Previous Installation (IDViewController.m)

- (void)viewDidLoad {
 // check for a previous installation
 NSString *savedBirthday = [IDUtils savedBirthday];
 BOOL firstLaunch = [IDUtils isFirstLaunch];

 if (savedBirthday != nil && firstLaunch) {
 [[[UIAlertView alloc] initWithTitle:NSLocalizedString(
 @"Previously Saved Birthday",@"Previously Saved Birthday")
 message:NSLocalizedString(@"It appears you saved a birthday
 in a previous installation of this application. Do you
 want to keep it?",@"It appears you saved a birthday
 in a previous installation of this application. Do you
 want to keep it?")
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Discard", @"Discard")
 otherButtonTitles:NSLocalizedString(@"Keep", @"Keep"),nil]
 show];
 }

 // pre-populate the birthday field if this isn't the first launch
 if (firstLaunch == NO) {
 self.birthdayField.text = savedBirthday;
 }

 // focus the birthday field
 [self.birthdayField becomeFirstResponder];
}

The savedBirthday method in Listing 11-12 simply fetches the value in the keychain for a
predetermined key kKeychainBirthdayKey. If no value is found, you can safely assume the app was
never previously installed. Reliably testing this situation is diffi cult because you get only one chance
per test device. However, using deleteValueForIdentifier: to delete the keychain entry for
kKeychainBirthdayKey puts the device in the pre-installation state. For easy back-to-back testing,
call the delete utility method in the app delegate’s applicationDidEnterBackground: and make
sure to background the application before stopping the task in Xcode.

LISTING 11-12: Retrieving a Saved Birthday (IDUtils.m)

+ (NSString *)savedBirthday {
 return [self getValueForIdentifier:kKeychainBirthdayKey];
}

You should recognize getValueForIdentifier: from the discussion of the SSO pattern, and the
exact same code is reused here. The NSUserDefaults storage is used to implement isFirstLaunch:
in Listing 11-13.

c11.indd 265c11.indd 265 13/09/12 2:44 PM13/09/12 2:44 PM

266 ❘ CHAPTER 11 INTER-APP COMMUNICATION

LISTING 11-13: Detecting the First Launch of an Application (IDUtils.m)

+ (BOOL)isFirstLaunch {
 BOOL hasBeenLaunched = [[NSUserDefaults standardUserDefaults]
 boolForKey:kDefaultsHasBeenLaunchedKey];

 if (hasBeenLaunched == NO) {
 // this is the first launch, so set a defaults value
 // saying that we were launched at least once
 [[NSUserDefaults standardUserDefaults] setBool:YES
 forKey:kDefaultsHasBeenLaunchedKey];
 [[NSUserDefaults standardUserDefaults] synchronize];

 return YES;
 }

 return NO;
}

This method returns YES when the app is launched for the fi rst time under its current installation.
Unlike the keychain, any NSUserDefaults entries are cleared when the app is uninstalled;
 therefore if kDefaultsHasBeenLaunchedKey is not found (which boolForKey: returns as NO)
you know it must have been cleared. After it is called for the fi rst time, this method writes YES to
kDefaultsHasBeenLaunchedKey.

Although trivial, the birthday example application can get you started on the mechanics to modify
the UI for previous users of an app. The tricky issue is determining how to streamline features for
those users while retaining a clean user experience for brand new users. You certainly want to avoid
altering the app too drastically or the code base can become completely unmanageable.

SUMMARY

This chapter covered four different ways to use inter-app communication to add functionality or
enhance the user’s experience of an iOS application. Detecting other apps’ custom URL schemes
gives a developer the ability to enable additional functionality when other apps are installed or
link to specifi c views in installed third-party apps. Reading and writing to a shared keychain is
an indirect way to communicate between apps from the same developer or company. The shared
keychain provides a common key-value store for those apps to store SSO or other persistent data.
Inter-app communication is not always the most elegant or direct way to send data, but in the
compartmentalized world of iOS apps, it can offer functionality that is otherwise impossible.

c11.indd 266c11.indd 266 13/09/12 2:44 PM13/09/12 2:44 PM

Device-to-Device
Communication with Game Kit

WHAT’S IN THIS CHAPTER?

 ➤ Using Game Kit classes and confi guring transfer options

 ➤ Understanding traditional client-server communication

 ➤ creating peer-to-peer connections

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. The code
for this chapter is found in the Chapter 12 download and is all from one example project:
Game Kit Auctioneer.zip.

All communication topics covered so far have assumed that the device is connected to a
network that is connected to the Internet at large; however, iOS devices can transfer data
even in the absence of a traditional network. Apple’s Game Kit framework facilitates device-to-
device communication in environments lacking cellular service, access to power to run a Wi-Fi
infrastructure, or some other limitation that precludes offering access to a local area network
(LAN) or the Internet. Examples might be deep in a national forest, on a remote stretch of
highway, or far underground in a building’s subbasement.

Although the name implies its most common use, Game Kit is not only about enabling
 multiplayer games. The framework is data-agnostic, and apps can send any type of data using
a variety of communication options. Its unique capability to operate over both short-range

12

c12.indd 267c12.indd 267 13/09/12 2:44 PM13/09/12 2:44 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://WROX.COM
http://wrox.com

268 ❘ CHAPTER 12 DEVICE-TO-DEVICE COMMUNICATION WITH GAME KIT

personal area networks (PANs) without any networking
 infrastructure and on more conventional Wi-Fi LANs makes
Game Kit an essential tool for a well-rounded iOS developer.
This chapter discusses initializing a networking session,
discovering other devices, and sending data packets in the
context of a Game Kit-powered auction client.

GAME KIT BASICS

Game Kit encompasses game-specifi c technologies such as
achievements, leaderboards, and matchmaking in addition
to the underlying network communication features.
Figure 12-1 gives an overview of Game Kit’s position on top
of the other high-level communication frameworks.

FIGURE 12-1

Message delivered
via Wi-Fi

Message delivered
via Bluetooth

Game Kit

Bonjour

CFNetwork

Network
Adaptor

Bluetooth
Adaptor

NOTE This chapter does not discuss the gaming features because they are used
only with Apple’s Game Center service and are not applicable for general
purpose communication.

Game Kit networking gives developers three communication modes that control the fl ow of data
messages among the devices in a network. These networks are represented on each device as a
GKSession instance, and each connected device, or peer, is identifi ed by its peer ID.

 ➤ Peer-to-peer (P2P) — This mode treats each peer equally and sends all messages to everyone
connected to the network.

 ➤ Client-server — In this communication mode one peer is designated the host of the session,
and all other peers are only clients of that host. The data transmission properties of the
 network remain unchanged; however, in a client-server network peers can’t see other peers
in the same role.

 ➤ Turn-based match — This fi nal mode is less favorable for enterprise software because each
participant must have a Game Center account. Because of this signifi cant drawback, this
chapter does not discuss turn-based communication.

Within these high-level session confi gurations, there are also developer-confi gurable settings
to control the availability and behavior of the underlying networking stack. Session availability is
controlled differently based on the wanted user interface. GKPeerPickerController, Apple’s
provided implementation, enables you to specify if you want to search for peers over Bluetooth and

c12.indd 268c12.indd 268 13/09/12 2:44 PM13/09/12 2:44 PM

Game Kit Basics ❘ 269

Wi-Fi using the connectionTypesMask. The following code example demonstrates the three
connection confi gurations. In addition to enabling you to search for peers of a certain type, Apple’s
implementation can prompt the user to turn on Bluetooth if it is not enabled. Because the Bluetooth
setting is not something exposed as a public API, the same functionality is impossible to implement
with a custom user interface. If either connection type is required for the application to function,
you should indicate that requirement in the UIRequiredDeviceCapabilities dictionary of the
 application’s Info.plist. To require the ability to make Wi-Fi connections, set the key wifi with
the value YES. To require Bluetooth connections on iOS 3.1 or later, set the key peer-peer to YES.
If your application uses a custom UI instead of GKPeerPickerController, GKSession always
responds to both Bluetooth and Wi-Fi peers.

GKPeerPickerController *picker = [[GKPeerPickerController alloc] init];

// search for only Bluetooth peers
picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;

// search for only Wi-Fi peers
picker.connectionTypesMask = GKPeerPickerConnectionTypeOnline;

// search for Bluetooth or Wi-Fi peers
picker.connectionTypesMask = (GKPeerPickerConnectionTypeNearby |
 GKPeerPickerConnectionTypeOnline);

[picker show];

Although Bluetooth has the unique advantage of operating independently of network infrastructure,
it also carries some signifi cant drawbacks. Its maximum range of 32 feet is considerably shorter
than that of a Wi-Fi network, which can span multiple access points to cover very large areas. Wi-Fi
networks also have nearly ten times more bandwidth available to each peer. Although a Bluetooth
radio uses less power than a Wi-Fi radio, if all peers are available over both connection types, Game
Kit still prefers Wi-Fi to Bluetooth. While this may seem like a mistake when considering just one
connection, it actually reduces the device’s overall power consumption. An iOS device connected to
a Wi-Fi network will use that connection for all background data requests such as periodic e-mail
checks or push notifi cations. Because that radio will already be in use, it actually increases power
consumption to power the Bluetooth radio at the same time.

Even though Apple identifi es that its “nearby” implementation is based on Bluetooth, apps cannot
directly control the Bluetooth interface without joining the Made for iPhone (MFi) program. MFi is
designed for interfacing with external accessories such as speaker docks, medical sensors, and other
specialized hardware. Similarly, Apple’s Wi-Fi communication is implemented with Bonjour, but
applications cannot interact with the Bonjour service directly. For more information about Bonjour,
see Chapter 13, “Ad-Hoc Networking with Bonjour.”

Message reliability is the last important confi guration decision to make before hooking up the Game
Kit classes and delegates. The framework provides two reliability settings, GKSendDataReliable
and GKSendDataUnreliable, when sending individual datagrams. A datagram is a message sent
over the network that can be composed of one or more packets. If the message size is larger than

c12.indd 269c12.indd 269 13/09/12 2:44 PM13/09/12 2:44 PM

270 ❘ CHAPTER 12 DEVICE-TO-DEVICE COMMUNICATION WITH GAME KIT

1000 bytes, the amount of data that fi ts in one packet, it is split into chunks, transmitted
individually to the receiving party, and then stitched back together into the original message.
Because the message chunks are sent separately, the receiver must wait for all chunks to arrive before
processing the fi nal message, which signifi cantly degrades performance. Game Kit enforces a maximum
size of 87 kilobytes for a single datagram. Sending a datagram with the GKSendDataReliable mode
ensures that it will be retransmitted if a network error occurs, and it guarantees that messages will
be delivered in the order that they were sent. With GKSendDataUnreliable however, the datagram
is sent only once, and if it never reaches the intended destination, then it is lost forever. Readers
who are familiar with transport layer protocols will notice that these two reliability modes almost
exactly match the operating characteristics of Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) datagrams, and Game Kit does use TCP and UDP under the covers
to enable the guarantees of GKSendDataReliable and GKSendDataUnreliable. Examples of both
reliability modes are shown in the following code.

NSError *error;
GKSession *session;
NSMutableData *stateUpdatePacket;
NSMutableData *heartbeatPacket;

// initialization code omitted for brevity

// send this state update packet reliably
if (![session sendDataToAllPeers:stateUpdatePacket
 withDataMode:GKSendDataReliable
 error:&error]) {

 NSLog(@"Error sending packet: %@",[error localizedDescription]);
}

// send this heartbeat packet unreliably
if (![session sendDataToAllPeers:heartbeatPacket
 withDataMode:GKSendDataUnreliable
 error:&error]) {

 NSLog(@"Error sending packet: %@",[error localizedDescription]);
}

The reliability settings are not per session but per datagram, which lets apps choose the most
appropriate reliability setting for the type of data being sent. For example, initialization or state
update datagrams are essential to the operation of an app and should always be sent reliably. You
want to guarantee their order because peers who receive those messages out of order will potentially
be in different states of operation. Simple heartbeat datagrams or frequent UI updates, which may be
sent hundreds of times per session, will typically be sent unreliably because by the time the
sender discovers that the datagram was lost in transit, it is most likely time to send the next one.
Thus, using GKSendDataReliable might actually decrease performance of the app by using
resources to send stale updates and queue the more recent datagrams, causing a staleness
feedback loop.

c12.indd 270c12.indd 270 13/09/12 2:44 PM13/09/12 2:44 PM

Peer-to-Peer Networking ❘ 271

All communication over a Game Kit session is sent unencrypted. If datagram confi dentiality is essen-
tial to the application, for example, if a mobile checkout device transmits credit card information
back to a register, the developer is responsible for encrypting the traffi c before handing it off to the
GKSession. See Chapter 6, “Securing Network Traffi c,” for more information on encryption for iOS
devices. If a business case does not require the security of encryption, all values sent via Game Kit
should be checked for sanity to protect against tampering by a malicious user. For example, a mobile
checkout device shouldn’t allow for purchase transactions with a negative price or for items that
don’t exist in a retailer’s database.

When debugging Game Kit applications, it’s important to use real devices whenever possible. The
iOS Simulator cannot connect to Bluetooth sessions and behaves differently than a physical device
when communicating over Wi-Fi. Even though this requires that you have two or more devices
at a time, Xcode supports running the same app on multiple devices simultaneously and can
easily switch between log consoles or debuggers on each one. This greatly helps debugging because
you can log state changes or packets to the console and compare what each device sees at
all times.

NOTE When two devices connect via USB, both appear in the Scheme/Device
drop-down along with any installed Simulators. To debug an app on both
devices, simply select one device and run the app; then select the second device
and run the app again. To switch between consoles or debuggers on each
device, choose between the devices in the Debug Area’s top toolbar drop-down.

PEER-TO-PEER NETWORKING

Peer-to-peer Game Kit connections allow any peer in the network to behave as both a server and
client simultaneously. In many situations the same device switches between client and server roles as
it works through a business process, but a single P2P connection can be used instead of having the
device reconnect under each new role. P2P is also well suited for a process where the peer’s role is
not known before the process begins.

The ability to be both a client and a server is powerful, but it also has its drawbacks. P2P can make
your code more convoluted as you keep track of your status in the network in coordination with
all other peers. Additionally, although Apple doesn’t explicitly set a maximum number of P2P
 connections that Game Kit supports, the reliability of the network drops slightly as each peer joins
the session, and it drops precipitously after the fi fth peer. Symptoms of decreased reliability include
peers disappearing from the session without cause or datagrams not successfully arriving at their
intended destination. Thus it is recommended that you connect only between two and four peers for
any one session. Game Kit implicitly steers you in this direction because GKPeerPickerController
supports only connecting one peer to another without offering support for three or more peers.
These red fl ags are something to keep in mind when exploring the functionality of P2P.

c12.indd 271c12.indd 271 13/09/12 2:44 PM13/09/12 2:44 PM

272 ❘ CHAPTER 12 DEVICE-TO-DEVICE COMMUNICATION WITH GAME KIT

To demonstrate a P2P networking, this section provides an example application called Game Kit
Auctioneer. It allows peers to create an auction for an item, accept multiple bids from other peers,
and end bidding at any time. Peers who want to buy instead of sell can simply wait for an auction to
appear, join it, and then make a bid if the price is favorable. In the age of eBay, an auction doesn’t
seem like a good fi t for Game Kit; however, consider the case of a farmer’s market in a remote
location or a surplus warehouse with thick steel walls. In these places an Internet connection might
not exist or reception may be too poor for it to be useful. With a more traditional web services-
based auction app, it becomes completely useless when the Internet is no longer available. Game
Kit’s capability to create a Bluetooth PAN means that it can work both in remote locations and
wherever Wi-Fi is available.

Connecting to a Session

To create or connect to an existing Game Kit session, each peer creates a GKSession object, which
interacts with the network on the peer’s behalf. It takes three parameters: the session ID, the peer’s
display name, and the desired networking mode for the peer. For this P2P application, the networking
mode is always GKSessionModePeer. Listing 12-1 shows the complete session creation code.

LISTING 12-1: Creating a GKSession (GANetworkingManager.m)

#define kGameKitSessionID @"auctioneer1.0"

// create a new GameKit session
_session = [[GKSession alloc] initWithSessionID:kGameKitSessionID
 displayName:nil
 sessionMode:GKSessionModePeer];
_session.delegate = self;

The session ID is the fi rst parameter and is constant across all instances of the application and
ensures that you connect only to peers who understand your data messages. Only peers advertising the
same session ID will be visible to others as available. It is essential that your session ID contains
the current version of the application to allow newer versions to modify or add new message types.
You want to ensure that mismatched versions never communicate; consider what would happen if
the next version of the Auctioneer app changed the order of how winning bids are identifi ed. Version
2.0 users might see that the winner was named $12.00 instead of Johnny Appleseed. More likely is
that the data formats won’t be compatible in any way, and both clients will ignore each other’s
malformed messages or even crash.

The second parameter, display name, is a human-readable name for the peer that is returned by
displayNameForPeer:. If a display name of nil is given when creating the session, the device’s
name, as shown in the Settings app, is used. Each peer also has a machine-readable peerId, which is
used to uniquely identify each peer in the session. Display name is not guaranteed to be unique and
should be used only for display purposes in the UI.

Now that the app has a session to use, the user is presented with the GALobbyViewController,
which shows all available peers in a UITableView (refer to Figure 12-2). If a user wants to host an
auction, he taps on the other peers to invite and waits for their response. To join someone else’s auc-
tion, he simply has to wait for an invitation, as shown in Figure 12-3, to appear.

c12.indd 272c12.indd 272 13/09/12 2:44 PM13/09/12 2:44 PM

Peer-to-Peer Networking ❘ 273

URL Arrives

Open the URL

application:openURL:
sourceApplication:

annotation:

Activate the App

applicationWillEnter
Foreground:

Wake the App

applicationDid
BecomeActive:

Initialize App

application:didFinish
LaunchingWithOptions:

Load User Interface

App InactiveApp Not Running

FIGURE 12-2 FIGURE 12-3

When tapping a row of the UITableView, Auctioneer calls the GKSession’s
connectToPeer:withTimeout:, which prompts that peer’s GKSessionDelegate to receive
session:didReceiveConnectionRequestFromPeer:, which shows the invitation UIAlertView. If
the remote peer accepts, it calls acceptConnectionFromPeer:error: on its GKSession, and the local
peer receives session:peer:didChangeState: with a new state of GKPeerStateConnected. Other
peer states are shown in Table 12-1. The remote peer can then enter the auction UI and wait for the
auction to start. If the remote peer declines the invitation, it calls denyConnectionFromPeer: and
the local peer receives session:connectionWithPeerFailed:withError:. Peers that reject
invitations simply stay in the auction lobby. Figure 12-4 illustrates the methods called on the local
and remote peer during the connection process.

FIGURE 12-4

connectTOPeer:withTimeout:

session:peer:didChangeState:
with GKPeerStateConnected

User
accepts

User
rejects

Local Peer Remote Peer

session:connectionWith
PeerFailed:withError:

session:didReceive
ConnectionRequestFromPeer:

acceptConnectionFrom
Peer:error:

denyConnectionFromPeer:

c12.indd 273c12.indd 273 13/09/12 2:44 PM13/09/12 2:44 PM

274 ❘ CHAPTER 12 DEVICE-TO-DEVICE COMMUNICATION WITH GAME KIT

The auction host repeats the invitation process until she has invited up to six people and then
taps the start button to begin the auction. The auction start message is the fi rst custom datagram
sent through the GKSession.

Sending Data to Peers

Before exchanging data with other peers, you must fi rst identify all possible types of messages you
need to send to the group. Each application defi nes its own datagram types, which could range from
just one to many dozens for a complex app. Remember that the largest possible message size is 87
kilobytes, so design your messages to fi t within that constraint. In Game Kit Auctioneer, there are
four possible datagrams:

 ➤ GAPacketTypeAuctionStart: Informs all peers that the auction has started

 ➤ GAPacketTypeBid: Submits a bid to the auctioneer

 ➤ GAPacketTypeAuctionStatus: Informs all peers of the current highest bid

 ➤ GAPacketTypeAuctionEnd: Informs all peers that the auction is over, the name of the
winner, and the winning bid

Listing 12-2 shows the four message types defi ned as an enumeration GAPacketType, which maps
them to integer values.

LISTING 12-2: Packet Type Enumeration (GANetworkingPackets.h)

typedef enum {
 GAPacketTypeAuctionStart = 0,
 GAPacketTypeAuctionEnd,
 GAPacketTypeAuctionStatus,
 GAPacketTypeBid
} GAPacketType;

TABLE 12-1: Peer Connection States

STATE DESCRIPTION

GKPeerStateAvailable The peer is eligible to connect, but no connection

exists yet.

GKPeerStateUnavailable The peer is not eligible to connect.

GKPeerStateConnected The peer is already connected to this session.

GKPeerStateConnecting The peer has started the connection process but has

not reached GKPeerStateConnected.

GKPeerStateDisconnected The peer is not connected to this session.

c12.indd 274c12.indd 274 13/09/12 2:44 PM13/09/12 2:44 PM

Peer-to-Peer Networking ❘ 275

The integer mapping is important because you can prefi x the data of the packet with the integer
value of the GAPacketType, allowing each peer to easily determine the packet type and how to
decode it. When sending any binary data over the network, it must be sent in network byte or
big-endian order. This step should always be done; however, it is especially important because the
ARM processors used in iOS devices natively use little-endian order.

ENDIANNESS

Big- and little-endian byte orders are ways to represent a set of binary data. Big-endian
ordering stores the bytes from most signifi cant to least signifi cant, whereas little-
endian is the inverse. An example of big-endian ordering is a telephone number,
where the groups of digits are listed from most signifi cant (the country code) to least
signifi cant (the subscriber number). Endianness has its roots in hardware
implementations for storing values in memory, and the network byte order was
standardized to prevent a little-endian machine from inadvertently interpreting
binary data that is stored in big-endian order without knowing that translation was
required. The names big-endian and little-endian originated in Jonathon Swift’s
novel Gulliver’s Travels and describe two different ways to break a boiled egg.

When the host is ready to start the auction, it sends the start packet that includes the host’s peer
ID, the item up for auction, and the number of other peers that will be bidding. Listing 12-3 covers
populating the packet’s data dictionary, serializing it, and sending it to GANetworkingManager for
transmission. The keys of the NSMutableDictionary must match between the sender’s message
creation code and the remote peer’s receiving code.

LISTING 12-3: Populating and Serializing a Data Packet (GALobbyViewController.m)

/*
 * tell all participants this auction is starting
 */
NSMutableDictionary *dataDict = [NSMutableDictionary dictionary];
GAPeer *devicePeer = [[GANetworkingManager sharedManager] devicePeer];

// auction owner
[dataDict setObject:devicePeer.peerID forKey:@"ownerPeerID"];

// item name
[dataDict setObject:itemName forKey:@"itemName"];

// number of participants
[dataDict setObject:[NSNumber numberWithInt:[confirmedPeers count]]
 forKey:@"numberOfParticipants"];

// participants

continues

c12.indd 275c12.indd 275 13/09/12 2:44 PM13/09/12 2:44 PM

276 ❘ CHAPTER 12 DEVICE-TO-DEVICE COMMUNICATION WITH GAME KIT

if ([confirmedPeers count] > 0) {
 GAPeer *peer = [confirmedPeers objectAtIndex:0];
 [dataDict setObject:peer.peerID forKey:@"participant1PeerID"];
}

// other 5 participants removed for brevity

NSMutableData *data = [[NSMutableData alloc] init];
NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]
 initForWritingWithMutableData:data];
[archiver encodeObject:dataDict forKey:@"AuctionStarted"];
[archiver finishEncoding];

// send the message
[[GANetworkingManager sharedManager] sendPacket:data
 ofType:GAPacketTypeAuctionStart];

When the packet has been populated, it must be sent across the airwaves to all other interested
parties. The following code snippet, found in code fi le GANetworkingManager.m, shows how to send
a packet type and its data to all peers connected to a Game Kit session. CFSwapInt32HostToBig()
is used to convert the 32-bit integer GAPacketType to big-endian ordering. Notice that the packet’s
data is not converted to big-endian order because it was encoded by NSKeyedArchiver, which
creates NSData objects that are endian-independent. For more information on converting to
other data types, see https://developer.apple.com/library/mac/#documentation/
CoreFoundation/Reference/CFByteOrderUtils/Reference/reference.html.

- (void)sendPacket:(NSData*)data ofType:(GAPacketType)type {
 NSMutableData *newPacket = [NSMutableData dataWithCapacity:(
 [data length]+sizeof(uint32_t))];

 // data is prefixed with GAPacketType so the peer knows how to handle it
 uint32_t swappedType = CFSwapInt32HostToBig((uint32_t)type);
 [newPacket appendBytes:&swappedType length:sizeof(uint32_t)];
 [newPacket appendData:data];

 // reliably send the packet
 NSError *error;
 if (![_session sendDataToAllPeers:newPacket
 withDataMode:GKSendDataReliable
 error:&error]) {

 NSLog(@"Error sending packet: %@",[error localizedDescription]);
 }
}

Each peer receives the data packet and passes it to GANetworkingManagerAuctionDelegate’s
manager:didReceivePacket:ofType: method for further action, as shown in the following snippet
from the code fi le GANetworkingManager.m. The packet type is decoded from the beginning of the
data packet, and the remaining data is restored into an exact copy of the NSData that was
originally sent.

LISTING 12-3 (continued)

c12.indd 276c12.indd 276 13/09/12 2:44 PM13/09/12 2:44 PM

https://developer.apple.com/library/mac/#documentation/CoreFoundation/Reference/CFByteOrderUtils/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/CoreFoundation/Reference/CFByteOrderUtils/Reference/reference.html

Peer-to-Peer Networking ❘ 277

- (void)receiveData:(NSData*)data
 fromPeer:(NSString*)peerID
 inSession:(GKSession*)session
 context:(void*)context {

 GAPacketType header;
 uint32_t swappedHeader;

 if ([data length] >= sizeof(uint32_t)) {
 // separate the bytes of the header into swappedHeader
 [data getBytes:&swappedHeader length:sizeof(uint32_t)];

 // convert to the host's endianness
 header = (GAPacketType)CFSwapInt32BigToHost(swappedHeader);

 // separate the remaining bytes of the message into payload
 NSRange payloadRange = {sizeof(uint32_t), [data length]-sizeof(uint32_t)};
 NSData* payload = [data subdataWithRange:payloadRange];

 // tell the auction that we received a packet
 [auctionDelegate manager:self
 didReceivePacket:payload
 ofType:header];
 }
}

After the network manager processes the packet, it is given to GAAuctionViewController to be
interpreted, and the auction state is updated to refl ect its contents. The code in Listing 12-4 decodes
the GAPacketTypeAuctionStart packet, but similar code is used for the other three packet types. The
start packet populates the list of participants and updates the biddingHasStarted fl ag, which
prevents peers from displaying the bid UI before the auction has begun. Figures 12-5 and 12-6 show
the auction view controller from the perspective of the host and a participant, respectively.

LISTING 12-4: Decoding a Packet (GAAuctionViewController.m)

- (void)manager:(GANetworkingManager*)manager didReceivePacket:(NSData*)data
 ofType:(GAPacketType)packetType {

 switch (packetType) {
 case GAPacketTypeAuctionStart: {
 NSKeyedUnarchiver *unarchiver = [[NSKeyedUnarchiver alloc]
 initForReadingWithData:data];
 NSDictionary *dataDict = [unarchiver decodeObjectForKey:
 @"AuctionStarted"];
 [unarchiver finishDecoding];

 // item name
 self.itemName = [dataDict objectForKey:@"itemName"];

 // participants

continues

c12.indd 277c12.indd 277 13/09/12 2:44 PM13/09/12 2:44 PM

278 ❘ CHAPTER 12 DEVICE-TO-DEVICE COMMUNICATION WITH GAME KIT

 self.peerList = [[NSMutableArray alloc] init];

 int numberOfParticipants = [[dataDict
 objectForKey:@"numberOfParticipants"] intValue];

 //NSString *ownerPeerID = [dataDict objectForKey:@"ownerPeerID"];

 NSString *p1PeerID = [dataDict objectForKey:@"participant1PeerID"];
 if (numberOfParticipants > 0) {
 [self.peerList addObject:[[GAPeer alloc] initWithPeerID:p1PeerID]];
 }

 // update UI with the info from this packet
 [self.tableView reloadData];

 // allow participants to make bids
 biddingHasStarted = YES;

 break;
 }
 }
}

FIGURE 12-5 FIGURE 12-6

Now that Game Kit Auctioneer can send and receive custom datagrams, the rest of the sample code
simply implements the business rules of an auction. In this specifi c application, peers are not
disconnected after the auction fi nishes; however, other apps might have a requirement to disconnect
either the host or other peers. For example, if there were a rule that a person could participate in
only one auction per day, she should disconnect from the rest of the session. To do this, a peer can
call GKSession’s disconnectFromAllPeers. If a peer determines that another peer should be
forcibly disconnected from the session, it can call disconnectPeerFromAllPeers: with the
 offending peer’s peer ID.

LISTING 12-4 (continued)

c12.indd 278c12.indd 278 13/09/12 2:44 PM13/09/12 2:44 PM

Client-Server Communication ❘ 279

CLIENT-SERVER COMMUNICATION

Implementing a GKSession with peers in both GKSessionModeServer and GKSessionModeClient
modes is similar to the P2P session, with only a few signifi cant differences. Peers that connect to a
session as servers will only be able to see other peers connected as clients, and client peers can only
see other peers connected as servers. The following code example demonstrates connecting a server
peer and client peer to a Game Kit session.

#define kGameKitSessionID @"auctioneer1.0"

// create a new GameKit session as a server
_session = [[GKSession alloc] initWithSessionID:kGameKitSessionID
 displayName:nil
 sessionMode:GKSessionModeServer];

// create a new GameKit session as a client
_session = [[GKSession alloc] initWithSessionID:kGameKitSessionID
 displayName:nil
 sessionMode:GKSessionModeClient];

_session.delegate = self;

The fi rst difference from P2P networking is that client-server sessions have a maximum limit of 16
connected peers, which is much higher than the P2P case because of the simplifi ed network topology.
The simpler networking logic in the framework also results in a slight performance boost over P2P
code. In many cases, the same business rules that might lend themselves to a P2P network can also
be implemented with a client-server network as well, with minimal extra development time.

Another difference between P2P and client-server is that in the latter, peer visibility changes based
on its session mode. Server peers can see only client peers, and client peers can see only server peers.
This behavior ensures that each session has only one server peer and one or more client peers. A
common misconception is that all networking traffi c is routed through the server; however, just as in
a P2P confi guration, all datagrams are visible to all peers. To prevent client peers from interpreting
datagrams that were not intended for them, you should include the recipient’s peer ID in the data-
gram, and then all peers that don’t match that peer ID should ignore it. In Game Kit Auctioneer, a
similar check is done to choose the alert style for a winning bid. If the device’s peer ID were the win-
ning peer ID, the alert displays “You Won the Auction …,” but if the peer ID is a remote peer, the
alert displays “{peer name} won the auction …” instead. The following code snippet from the code
fi le GAAuctionViewController.m demonstrates this check as part of the processing for the auction
end datagram.

- (void)manager:(GANetworkingManager*)manager didReceivePacket:(NSData*)data
ofType:(GAPacketType)packetType {

 switch (packetType) {
 case GAPacketTypeAuctionEnd: {
 NSKeyedUnarchiver *unarchiver = [[NSKeyedUnarchiver alloc]
 initForReadingWithData:data];

c12.indd 279c12.indd 279 13/09/12 2:44 PM13/09/12 2:44 PM

280 ❘ CHAPTER 12 DEVICE-TO-DEVICE COMMUNICATION WITH GAME KIT

 NSDictionary *dataDict = [unarchiver
 decodeObjectForKey:@"AuctionFinish"];
 [unarchiver finishDecoding];

 // update data model
 NSInteger winningBid = [[dataDict objectForKey:@"winningBid"]
 intValue];
 NSString *winnerPeerID = [dataDict objectForKey:@"winnerPeerID"];

 // tell the user who won
 NSString *message;

 if ([winnerPeerID isEqualToString:
 [GANetworkingManager sharedManager].devicePeer.peerID]) {

 message = [NSString stringWithFormat:@"You won the auction with a
 bid of $%i!", winningBid];
 } else {
 message = [NSString stringWithFormat:@"%@ won the auction with a
 bid of $%i!",
 [[GANetworkingManager sharedManager] displayNameForPeer:
 [[GAPeer alloc] initWithPeerID:winnerPeerID]],
 winningBid];
 }

 UIAlertView *finishedAlert = [[UIAlertView alloc]
 initWithTitle:@"Auction Finished"
 message:message
 delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];

 finishedAlert.tag = 700;
 [finishedAlert show];
 }
 }
}

SUMMARY

Game Kit fi ts a unique role in the iOS ecosystem because of its Bluetooth integration to create a
network of nearby devices. Its Wi-Fi functionality presents an easy-to-use wrapper around Bonjour
services; however, the real benefi t comes from supporting both networking technologies with the
same code base. Its innovative P2P model enables applications to provide unparalleled fl exibility
when joining networks, and the client-server model provides a more familiar environment with
improved stability.

c12.indd 280c12.indd 280 13/09/12 2:44 PM13/09/12 2:44 PM

Ad-Hoc Networking with
Bonjour

WHAT’S IN THIS CHAPTER?

 ➤ Using zero confi guration networking

 ➤ Resolving and connecting to Bonjour services

 ➤ Implementing Bonjour to provide an excellent user experience

WROX.COM DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at www.wrox.com/WileyCDA/
WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-

the-iPhone-and-iPad.productCd-1118362403.html on the Download Code tab. The code
for this chapter is in the Chapter 13 download and is divided into two example apps, which
both contain a shared Bonjour library:

 ➤ The Associate Help application publishes a Bonjour service and acts as a host in
communication with a single client.

 ➤ The Consumer Help application browses for available Bonjour services, acts as the
client, and requests a connection with the host.

 ➤ A shared library containing Bonjour, a Bonjour Service, and BonjourBrowser, a
Bonjour Browser class, can be customized and dropped into your project to abstract the
publication, discovery, resolution, and communication aspects from your front end.

Consumers using iOS devices have a lot of choices for applications, and those apps must
provide an excellent user experience to gain recognition in a crowded marketplace. With the
extensive penetration of networked devices and Wi-Fi networks, this presents an opportunity

13

c13.indd 281c13.indd 281 13/09/12 2:45 PM13/09/12 2:45 PM

http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-iOS-Network-Programming-Connecting-the-Enterprise-to-the-iPhone-and-iPad.productCd-1118362403.html
http://WROX.COM
http://wrox.com

282 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

for companies to, quite literally, connect with their customers, engage them, and deliver an experi-
ence that exceeds their expectations.

Bonjour is such a technology; it enables devices to easily discover and connect to other devices on
the same network with limited or no user involvement. The framework has a number of applicable
mobile use cases ranging from network-based game play, fi le sharing between devices, and even
home automation. Although Bonjour is not limited to mobile devices, it is a practical use case with
popular examples including Apple technology such as the Remote application, AirPrint, and Game
Kit, and it is also how TiVo enables customers to record on one TiVo box and view on another.
There are a number of third-party applications that use Bonjour to share fi les, contact details, and
calendar information between iOS-based and OS X-based applications.

This chapter provides a brief history of Bonjour and an overview of the technology before stepping
through two example applications to demonstrate how to integrate Bonjour into an application.
These examples reinforce the topics covered in this chapter by solving a common problem in retail:
quickly getting associates in front of inquisitive customers to provide that exceptional shopping
experience. This pair of applications consists of an internal, employee-only application and a
consumer-facing application like you would fi nd in the App Store.

ZEROCONF OVERVIEW

Bonjour is a technology that enables devices to easily discover and connect with other devices on
the same network. It was released in 2002 under the moniker Rendezvous and in 2005 was eventu-
ally renamed to Bonjour. Although Bonjour can greatly enhance the user experience, the real power
and impact lies with application developers. Bonjour gives developers the fl exibility and freedom to
perform networking tasks such as detecting and connecting to a supported device without requiring
user input.

More specifi cally, Bonjour is Apple’s implementation of zero confi guration networking, or zeroconf.
Zeroconf is a set of techniques aimed at simplifying networking by alleviating the need for compo-
nents such as Dynamic Host Confi guration Protocol (DHCP) and Domain Name System (DNS)
servers. Zeroconf was designed to accommodate the creation of new, evolving classes of networked
products. Zeroconf currently operates to fulfi ll three main requirements: addressing, resolution, and
discovery.

Addresses

Devices need the capability to secure a network address without the overhead of a DHCP server.
Zeroconf uses link-local addressing, which enables hosts on the same link, or network, to communi-
cate with each other. iOS natively supports automatic confi guration for IPv4 and IPv6 addresses as
defi ned in RFC 3927 (http://www.tools.ietf.org/html/rfc3927) and RFC 2462 (http://www
.tools.ietf.org/html/rfc2462), respectively. IPv4 link-local addresses fall within the 169.254/16
prefi x, and IPv6 addresses are assigned with the fe80::/64 prefi x. Each of these prefi xes has been
reserved for link-local addressing.

c13.indd 282c13.indd 282 13/09/12 2:45 PM13/09/12 2:45 PM

http://www.tools.ietf.org/html/rfc3927
http://www.tools.ietf.org/html/rfc2462
http://www.tools.ietf.org/html/rfc2462

Zeroconf Overview ❘ 283

Resolution

Part of zeroconf’s intent is that devices be able to refer to services on the network by a name instead
of only an address. Each device provides a unique name to identify itself, and these names end with
.local. The client can provide this name as long as there is not another device with that name on
the network. Host names are analogous to the link-local addresses discussed in the previous section
in that they are meaningful only to the network on which they originated.

Zeroconf uses Multicast Domain Name Service (mDNS) to provide name resolution without the
need to confi gure a conventional DNS server. mDNS is similar to unicast DNS but is implemented
over a multicast protocol where each device on the network actively listens for DNS queries. These
queries, ending in .local, are sent to the mDNS multicast address, and the device with the corre-
sponding name replies with its address. The link-local mDNS multicast address is 224.0.0.251 for
IPv4 and ff02::fb for IPv6.

There are two types of mDNS queries: One-Shot Multicast and Continuous Multicast. The One-
Shot approach is simpler and takes the fi rst response that it receives without listening for additional
responses. Although simple, it can fulfi ll the requirement where an end user enters a fully qualifi ed
local address, such as http://njones.local, or http://OfficeJet6300.local.

Continuous querying does not assume that a single response paints the entire picture. It is asynchro-
nous, and as its name implies, continues to listen for responses and relays them as they are received.
Typically, it displays a list of all the available services, for example, all available printers on a net-
work. If you stopped listening for results after the quickest printer responded, you would continually
present users with a single-item list. This might not necessarily be the optimal printer available and
can lead to a poor user experience.

To support continuous querying, the host performing the query should implement known answer
suppression, which informs responders that they have already replied to a particular query so that
they do not do so again. A number of other effi ciencies are built into mDNS that you can fi nd at
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt.

Discovery

Devices must browse for available services on a network without maintaining a service directory.
The Apple implementation of zeroconf uses DNS-based Service Discovery (DNS-SD) to advertise
available services over the network. Each available service publishes its instance name, service
type, and domain. DNS-SD paired with mDNS forms the basis for Bonjour. DNS-SD strives to
provide a method to query services by type and to abstract the network address layer from the
user by persisting instance names. If a user chooses a service today, a printer for example, that
service should continue to function tomorrow even if the underlying network address of that
service changes.

To provide this functionality, Bonjour uses a tuple of the instance name, service type, and
domain. This tuple uniquely identifi es a service and is the preferred method to store a reference
to a service, instead of just the address. Service types are given on a fi rst-come, fi rst-served basis.
Custom service types should be registered with the Internet Assigned Numbers Authority (IANA),

c13.indd 283c13.indd 283 13/09/12 2:45 PM13/09/12 2:45 PM

http://njones.local
http://OfficeJet6300.local
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt

284 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

which is simple and free; see RFC 6335 (http://tools.ietf.org/html/rfc6335). One benefi t of regis-
tering with IANA is that it manages service type confl icts for you. For a list of the currently registered
service types, visit http://www.dns-sd.org/ServiceTypes.html.

Services are represented by the format <instance name> . <service type> . <domain>. For
example, a laptop broadcasting the iTunes Home Sharing service on the local network might be
njones-mbp._home-sharing._tcp.local. Here are some additional details for each component.

 ➤ Instance name: Confi gurable and is the user-friendly name of the service displayed to users.
According to zeroconf documentation, implementations should not require that a value be
specifi ed.

 ➤ Service type: Pair of DNS labels. The fi rst label is an underscore followed by the service
type, or Application Protocol Name such as _home-sharing. Technically, this name can be
any value as long as other devices you intend to communicate with also know it; however,
it is best to register with IANA as discussed previously. The second label is either _tcp for
services running over TCP or _udp for all others. See http://files.dns-sd.org/
draft-cheshire-dnsext-dns-sd.txt for more information.

 ➤ Domain: Represents the DNS subdomain within which the service name is registered. This
value could be local. Subdomains are supported and provide a simple means of organizing
services. For example, you might broadcast printers on printers.apple.com to unclutter
apple.com.

BONJOUR OVERVIEW

Given that Bonjour is a zeroconf implementation, it’s natural to assume that deploying and con-
necting to a Bonjour service follows a series of steps similar to those needed for zeroconf. However,
iOS abstracts most of the low-level networking and leaves developers with a set of APIs and a
simple, four-step process. The process includes publishing, browsing for, resolving, and ultimately
connecting with a service. After the service is
broadcast on the network, devices browsing for
the same type can discover it. When a device
fi nds a wanted service, it attempts to resolve the
service’s address. After determining the service’s
address, the host and client establish a two-way
communication channel on which to share data.
This communication channel is independent of
Bonjour and directly handled by each individual
app. Figure 13-1 outlines the Bonjour discovery
process, and each of these phases is covered fur-
ther in the following sections.

Publishing a Service

The NSNetService class represents Bonjour services. When you want to register a Bonjour service,
you must create an NSNetService object that may be published. The method to create a publishable

3.3. Resolve

4. Communicate

2. Browse

3.1. Resolve3.2. R
eso

lve

1: P
ublis

h

FIGURE 13-1

c13.indd 284c13.indd 284 13/09/12 2:45 PM13/09/12 2:45 PM

http://tools.ietf.org/html/rfc6335
http://www.dns-sd.org/ServiceTypes.html
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt
http://printers.apple.com
http://apple.com

Bonjour Overview ❘ 285

Bonjour service is initWithDomain:type:name:port: as demonstrated here, which assumes an
NSNetService instance variable named service exists.

service = [[NSNetService alloc] initWithDomain:@""
 type:@"_serviceType._tcp."
 name:name
 port:port];
service.delegate = self;

The fi rst three parameters — domain, type, and name — should look familiar. As discussed earlier
in the “Discovery” section, these three parameters align with the three components of a service
name. Technically, only the type and port parameters are required for a service to be published.
Typically, domain is left empty so that the service is made available on all possible domains on the
network. The name parameter is optional, and if a value is not specifi ed, the device name will be
used by default.

NOTE There is a similar method, initWithDomain:type:name:, intended for
use when the domain, type, and name are already known and the application
wants to circumvent the browsing process. It is typically used when the client has
previously connected to a service. This is discussed further in the “Resolving a
Service” section.

The type argument is required and identifi es how and what the service does. It consists of the
service type, or Application Protocol Name, and the transport protocol. The two possible val-
ues for transport protocol are ._tcp for services running over TCP and ._udp for any others.
Most iOS applications will use ._tcp. As previously mentioned in the “Discovery” section, the
Application Protocol Name can be any value you want, but it is recommended to register the name
with http://www.iana.org. The Application Protocol Name is limited to a 15-character maxi-
mum. Apple provides an informative resource on domain naming conventions, currently available
at https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/
NetServices/Articles/domainnames.html.

The last parameter is port, which specifi es the application’s port so that data is properly routed
while communicating with a connected peer. The port you specify during service creation is part of
the address that is ultimately resolved during the connection process. A port can be used by only one
application at a time, so it is imperative to choose a port that is not already in use. A best practice is
to allow the kernel to assign the port from those currently available by passing a 0 for a port to the
fi rst CFSocketSetAddress () function call.

Although not required for Bonjour to facilitate service discovery, each application that intends
to accept connection requests must confi gure a listening socket to handle those requests.
Unfortunately, in iOS this requires developers to jump down a level from Cocoa to CFNetwork,
which is covered in detail in Chapter 8, “Low-Level Networking” Listing 13-1 shows how to let the
system assign an available port for the service and register a socket callback that listens for connec-
tion attempts.

c13.indd 285c13.indd 285 13/09/12 2:45 PM13/09/12 2:45 PM

http://www.iana.org
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/NetServices/Articles/domainnames.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/NetServices/Articles/domainnames.html

286 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

LISTING 13-1: Confi guring Socket and Fetching Port (/Apps/Associate/associate-help/

associate-help/Bonjour.m)

CFSocketContext socketCtxt = {0, (__bridge void*)self, NULL, NULL, NULL};
ipv4socket = CFSocketCreate(kCFAllocatorDefault,
 PF_INET,
 SOCK_STREAM,
 IPPROTO_TCP,
 kCFSocketAcceptCallBack,
 (CFSocketCallBack)&BonjourServerAcceptCallBack,
 &socketCtxt);

ipv6socket = CFSocketCreate(kCFAllocatorDefault,
 PF_INET6,
 SOCK_STREAM,
 IPPROTO_TCP,
 kCFSocketAcceptCallBack,
 (CFSocketCallBack)&BonjourServerAcceptCallBack,
 &socketCtxt);

if (ipv4socket == NULL || ipv6socket == NULL) {
 if (ipv4socket) CFRelease(ipv4socket);
 if (ipv6socket) CFRelease(ipv6socket);
 ipv4socket = NULL;
 ipv6socket = NULL;
 return;
}

int yes = 1;
setsockopt(CFSocketGetNative(ipv4socket),
 SOL_SOCKET,
 SO_REUSEADDR,
 (void *)&yes,
 sizeof(yes));

setsockopt(CFSocketGetNative(ipv6socket),
 SOL_SOCKET,
 SO_REUSEADDR,
 (void *)&yes,
 sizeof(yes));

// set up the IPv4 endpoint
// if port is 0, causes the kernel to choose a port
struct sockaddr_in addr4;
memset(&addr4, 0, sizeof(addr4));
addr4.sin_len = sizeof(addr4);
addr4.sin_family = AF_INET;
addr4.sin_port = htons(port);
addr4.sin_addr.s_addr = htonl(INADDR_ANY);
NSData *address4 = [NSData dataWithBytes:&addr4 length:sizeof(addr4)];

if (kCFSocketSuccess != CFSocketSetAddress(ipv4socket,

c13.indd 286c13.indd 286 13/09/12 2:45 PM13/09/12 2:45 PM

Bonjour Overview ❘ 287

 (__bridge CFDataRef)address4)) {

 NSLog(@"Error setting ipv4 socket address");
 if (ipv4socket) CFRelease(ipv4socket);
 if (ipv6socket) CFRelease(ipv6socket);
 ipv4socket = NULL;
 ipv6socket = NULL;
 return;
}

if (port == 0) {
 // get the port number, port will be used for IPv6 address and service
 NSData *addr = (__bridge NSData *)CFSocketCopyAddress(ipv4socket);
 memcpy(&addr4, [addr bytes], [addr length]);
 port = ntohs(addr4.sin_port);
}

// set up the IPv6 address
struct sockaddr_in6 addr6;
memset(&addr6, 0, sizeof(addr6));
addr6.sin6_len = sizeof(addr6);
addr6.sin6_family = AF_INET6;
addr6.sin6_port = htons(port);
memcpy(&(addr6.sin6_addr), &in6addr_any, sizeof(addr6.sin6_addr));
NSData *address6 = [NSData dataWithBytes:&addr6 length:sizeof(addr6)];

if (kCFSocketSuccess != CFSocketSetAddress(ipv6socket,
 (__bridge CFDataRef)address6)) {

 NSLog(@"Error setting ipv6 socket address");
 if (ipv4socket) CFRelease(ipv4socket);
 if (ipv6socket) CFRelease(ipv6socket);
 ipv4socket = NULL;
 ipv6socket = NULL;
 return;
}

// set up sources and add sockets to run loop
CFRunLoopRef cfrl = CFRunLoopGetCurrent();
CFRunLoopSourceRef src4 = CFSocketCreateRunLoopSource(kCFAllocatorDefault,
 ipv4socket,
 0);

CFRunLoopAddSource(cfrl, src4, kCFRunLoopCommonModes);
CFRelease(src4);

CFRunLoopSourceRef src6 = CFSocketCreateRunLoopSource(kCFAllocatorDefault,
 ipv6socket,
 0);

CFRunLoopAddSource(cfrl, src6, kCFRunLoopCommonModes);
CFRelease(src6);

c13.indd 287c13.indd 287 13/09/12 2:45 PM13/09/12 2:45 PM

288 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

In this listing the application fi rst creates a socket context and two sockets, PF_INET for
IPv4 and PF_INET6 for IPv6. kCFSocketAcceptCallback instructs the socket to accept
connection requests and call the callback function passed as a pointer to argument six,
(CFCallBack)&BonjourServerAcceptCallback, which is discussed in Listing 13-6. The last
argument is the socket context, created to pass a reference to self, which is ultimately passed to
the callback function. This is done because C-functions do not have access to Objective-C con-
structs. In Automatic Reference Counting (ARC)-enabled applications, the pointer cast must be
bridged using __bridge. After the sockets are created, the application instructs the kernel to
reuse ports in the TIME_WAIT state by calling the setsockopt function and passing SO_REUSEADDR
for the third parameter.

The application then creates an IPv4 address struct, sockaddr_in, and passes an instance variable,
port, which has been initialized to 0 (zero), to sin_port. Passing a port of zero instructs the kernel
to choose an available port. The application then assigns the address to the IPv4 socket using the
CFSocketSetAddress() function. When the application sets the IPv4 socket address, it fetches
the actual port assigned by the kernel using CFSocketCopyAddress() and uses that port to create
an IPv6 address struct, sockaddr_in6, and sets the IPv6 socket address similar to what was done
for the IPv4 socket. After both socket addresses have been assigned, each socket is registered with
the run loop.

PORT ASSIGNMENT

When manually assigning port numbers, you must understand what ports are avail-
able. In general, you should never use a port between 0 and 1023. These are well-
known ports assigned to protocols such as HTTP. Ports 1024 through 49151 are
publicly available for use but are registered ports with IANA. If you want to use a port
in this range, it should be registered with IANA. Ports 49152 to 65535 are available
for use without registration. Ports assigned by the kernel fall within the latter range.

NSNetService is integrated into the application’s run loop and communicates various state changes
via a series of delegate calls from the NSNetServiceDelegate protocol. Each application has a main
run loop in which certain objects can be registered. NSNetService objects are scheduled in the
current threads run loop when they are created.

Registering with the run loop allows an object to perform a task and issue any necessary delegate
calls each time through the run loop. Most high-level networking APIs in iOS register with the
run loop so that they may listen for network activity. NSNetService objects can be scheduled in
a run loop using the scheduleInRunLoop:forMode: method. However, unless your service is
operating on a secondary thread or you need to specify a different mode, this is typically not needed.
If the application does need to schedule the service on a different run loop, the application should
remove the service from the current run loop using the method removeFromRunLoop:forMode:.
After the service is removed from the current run loop, it is safe to schedule it again.

When the application is ready to advertise a service to the network, it calls the service’s publish
method. By default, if the name specifi ed for the new service already exists on the network, it will

c13.indd 288c13.indd 288 13/09/12 2:45 PM13/09/12 2:45 PM

Bonjour Overview ❘ 289

be renamed when calling publish. If the application requires additional control over the publication
process, it should use the publishWithOptions: method. Currently only one option is available,
NSNetServiceNoAutoRename, which suppresses the renaming behavior.

Success or failure of the publishing process is communicated via the netServiceDidPublish:
and netService:didNotPublish: delegate methods, respectively. The second parameter of
netService:didNotPublish: is an NSDictionary object containing two key-value pairs. One
pair is the error domain, which can be accessed with the key NSNetServicesErrorDomain, and the
other is the error code, which can be accessed with the key NSNetServicesErrorCode. Error codes
are represented by the NSNetServicesError enumeration. In the case of a service name collision,
for example, the netService:didNotPublish: delegate method would be called with an error code
of NSNetServicesCollisionError. Errors can also occur after a service is successfully published.
The netServiceWillPublish: delegate method is called before a service is actually advertised on
the network but is not called if the service will not be published due to an error.

Bonjour services can also contain something known as a TXT record. TXT records are a mecha-
nism to store custom, key-value pairs of additional information about the service. The intent is
that TXT records be used to convey small pieces of information that are not necessary prior to
establishing a connection with a service. The intended size of 100 bytes or less makes it ideal to
communicate a service version number to clients, for example. TXT records can be set by the pub-
lisher and read, but not altered, by the client. Reading TXT records are covered in the “Resolving a
Service” section later in this chapter. NSNetService provides a class method dataFromTXTRecord-
Dictionary: to create the appropriate record data from an NSDictionary as demonstrated in the
following code. Dictionary keys must be NSString objects, and values must be NSData objects. If
there is an error generating the proper format, the method returns nil.

- (void)netServiceDidPublish:(NSNetService *)sender {
 ...
 // Advertise the service version
 NSData *versionData = [@"1.0" dataUsingEncoding:NSUTF8StringEncoding];
 NSDictionary *txtRecord = [NSDictionary
 dictionaryWithObject:versionData
 forKey:@"version"];

 NSData *txtRecordData = [NSNetService
 dataFromTXTRecordDictionary:txtRecord];
 sender.TXTRecordData = txtRecordData;
}

When the application is ready to stop advertising the service on the network, it calls the stop
method. The stop method instructs the service to halt broadcasting, which will be executed the
next time through the run loop, and the application will be notifi ed via the netServiceDidStop:
delegate method. After a service is stopped, it will not be discoverable, and no new connections are
accepted. The service still exists, however, so the application can resume broadcasting by calling the
publish method again. The following code is an example of how to stop a service from broadcast-
ing on the network assuming service was an instance of NSNetService.

[service stop];

c13.indd 289c13.indd 289 13/09/12 2:45 PM13/09/12 2:45 PM

290 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

BONJOUR SERVICES IN A MULTITASKING ENVIRONMENT

Apple’s introduction of multitasking in iOS 4, although a welcome addition, greatly
complicated how networking is handled within applications as they enter the back-
ground and are resumed to the foreground. Applications sent to the background are
candidates to be suspended. Bonjour communicates over sockets, which cannot be
processed by an application when it is suspended. The operating system, however,
still sees the socket as active and accepts the connection, but the suspended
application cannot communicate over it.

Applications should stop listening and halt broadcasting of any Bonjour services as
they prepare to enter the background. They can re-open these connections
and republish services when they are brought to the foreground. For additional
information, review Technical Note TN2277 available at http://developer
.apple.com/library/ios/#technotes/tn2277/_index.html.

Browsing for Services

To provide users with the ability to choose the published service with which they would like to
connect, applications need a mechanism to browse available services on the network. In iOS,
browsing for services on the network is easy using the NSNetServiceBrowser class. Implementing
NSNetServiceBrowser is similar to NSNetService, discussed in the previous section. Applications
create an instance of NSNetServiceBrowser, optionally schedule it in a run loop, initiate the
search (instead of publish), and then wait for delegate methods to be called. As with NSNetService,
NSNetServiceBrowser objects are scheduled in the current thread’s run loop during creation so it
is not generally necessary for an application to schedule it manually. If the application does need
to schedule the browser in a different run loop, it should fi rst remove it from the current run loop
and then schedule it again. The following example demonstrates how to create a service browser
and initiate a search. Don’t forget to set the delegate so that the application is notifi ed of the various
changes.

if (browser == nil) {
 browser = [[NSNetServiceBrowser alloc] init];
}

browser.delegate = self;
[browser searchForServicesOfType:@"_serviceType._tcp."
 inDomain:@""];

You can see that the searchForServicesOfType:inDomain: method on NSNetServiceBrowser
initiates a search on the network. The type specifi ed for a search should match the type specifi ed
during the service publication step performed by the host. When the service browser confi guration
is complete and ready to commence a search, the netServiceBrowserWillSearch: method notifi es
the delegate. This method does not need to be implemented, but is a good place to update the user
interface to indicate that a search is in progress.

c13.indd 290c13.indd 290 13/09/12 2:45 PM13/09/12 2:45 PM

http://developer.apple.com/library/ios/#technotes/tn2277/_index.html
http://developer.apple.com/library/ios/#technotes/tn2277/_index.html

Bonjour Overview ❘ 291

As services are discovered the netServiceBrowser:didFindService:moreComing: method
 notifi es the delegate. This method is called once for each discovered service, so the application
must maintain a collection of all services if you want to display them to the user. The moreComing
parameter indicates whether this method will be called again with additional services. To provide
the optimal user experience, you should refrain from updating the user interface until the
moreComing parameter is NO. If you expect a large number of services and want to provide incre-
mental feedback, the application could “group” results and update the user interface every nth
service discovered. Receiving a value of NO does not mean that more services will not be discovered
in the future, such as when a new service is published. Following is one possible implementation
of the netServiceBrowser:didFindService:moreComing: method that adds each NSNetService
object to the services collection, an NSMutableArray, at which point you would trigger an update
to the user interface.

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing {

 if (![services containsObject:aNetService]) {
 [services addObject:aNetService];
 }

 if (moreComing == NO) {
 // Update UI
 }
}

Likewise, the netServiceBrowser:didRemoveService:moreComing: method notifi es the delegate
when a previously discovered service is no longer available. This method is also called once for
each service that has been removed and includes the moreComing parameter, which has the same
behavior as it does for the netServiceBrowser:didFindService:moreComing: method. The
application could use this delegate method to update a collection of available services and user
interface like so:

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didRemoveService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing {
 [services removeObject:aNetService];

 if (moreComing == NO) {
 // Update UI
 }
}

If the search fails for any reason, the netServiceBrowser:didNotSearch: method notifi es
the delegate. Similar to the netService:didNotPublish: delegate method discussed in the
“Publishing a Service” section, the second parameter is an NSDictionary containing an error code
and domain. The error code and domain can be extracted with the NSNetServicesErrorCode
and NSNetServicesErrorDomain keys, respectively. The error code will be a value from the

c13.indd 291c13.indd 291 13/09/12 2:45 PM13/09/12 2:45 PM

292 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

NSNetServicesError enumeration. If a search fails, the application should inspect the error and
stop the search as shown in the following code:

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didNotSearch:(NSDictionary *)errorDict {

 NSString *errorCode = [errorDict
 objectForKey:NSNetServicesErrorCode];
 NSString *errorDomain = [errorDict
 objectForKey:NSNetServicesErrorDomain];

 // alert user of the error

 [browser stop];
}

After the search stops, the netServiceBrowserDidStopSearch: delegate method is called. This
provides the application with an opportunity to perform any necessary clean up and update the
user interface to indicate that a search is no longer being performed. Depending on the application’s
structure, this could also be a good time to reset the service browser instance and reset the delegate
as seen here.

- (void)netServiceBrowserDidStopSearch:
 (NSNetServiceBrowser *)aNetServiceBrowser {

 // clears browser and delegate
 // a new browser will be created
 // if search is initiated again
 browser = nil;

 // Update UI
}

If the application needs the capability to browse services outside of the local network, it
should implement a domain search by calling the searchForBrowsableDomains method on
NSNetServiceBrowser. As new domains are discovered or removed from the network, the
netServiceBrowser:didFindDomain:moreComing: and netServiceBrowser:didRemoveDomain:
moreComing: methods will be notifi ed as shown here. As done with discovered services, the
 application should maintain a collection of domains that can be displayed to users for selection.

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didFindDomain:(NSString *)domainString
 moreComing:(BOOL)moreComing {

 if (![domains containsObject:domainString]) {
 [domains addObject:domainString];
 }
}

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didRemoveDomain:(NSString *)domainString

c13.indd 292c13.indd 292 13/09/12 2:45 PM13/09/12 2:45 PM

Bonjour Overview ❘ 293

 moreComing:(BOOL)moreComing {

 [domains removeObject:domainString];
}

Resolving a Service

Before communicating with a service, the application fi rst needs to determine the service’s
network address. To do this, you need to call the resolveWithTimeout: method on the service
with which the application wants to connect. There are two methods to retrieve an NSNetService
object. First, the user could select one from a list fetched by an NSNetServiceBrowser as discussed
previously. The second approach is to create an instance of NSNetService directly using the
initWithDomain:type:name: method. The latter is used in situations in which the device has previ-
ously connected to the service and the application saved the connection details as demonstrated in
the snippet here. Printers are a prime example of this behavior.

NSNetService *savedService = [[NSNetService alloc]
 initWithDomain:@""
 type:@"_serviceType._tcp."
 name:@"Kids Shoes Department"];
savedService.delegate = self;
[savedService resolveWithTimeout:5.0];

SAVING SERVICE CONNECTION DETAILS

Resolution is performed each time a service is used because the underlying address
may have changed. When saving a service for future use, it is imperative that the
application saves the tuple of domain, type, and name instead of the service’s
current network address. The intent of Bonjour is to abstract the network address
information; therefore, as services come and go on the network they continue to
function.

The application can use the saved domain, type, and name to resolve a service by
directly creating an NSNetService object using the initWithDomain:type:name:
method and sending the service the resolveWithTimeout: message.

Prior to calling resolveWithTimeout: on an instance of NSNetService, the application
needs to assign the delegate. This delegate is notifi ed of success and failure via the
netServiceDidResolveAddress: and netService:didNotResolve: delegate methods, respec-
tively. In addition, the netServiceWillResolve: method is called prior to resolving a service and
presents a great opportunity for updating the user interface. The client initiates service resolution;
therefore, the client needs to indicate that it conforms to the NSNetServiceDelegate protocol,

c13.indd 293c13.indd 293 13/09/12 2:45 PM13/09/12 2:45 PM

294 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

often in addition to NSNetServiceBrowserDelegate. Assuming that a user selected a service with
which to connect, the code may look something like the following:

- (void)connectToService:(NSNetService*)service {
 // set the services delegate so the
 // app gets the resolve callbacks
 service.delegate = self;
 [service resolveWithTimeout:5.0];

 // halt browsing since the app
 // is connecting to a service
 [browser stop];
}

The netServiceDidResolveAddress: delegate method is invoked as each address is resolved
for the service. The netServiceDidResolveAddress: method may be called more than once, espe-
cially on devices that support both IPv4 and IPv6. Address information can be partially resolved, so
developers should ensure that all necessary address information is set prior to initiating a connec-
tion. Address information can be retrieved from the addresses property on the NSNetService
object, which is passed to the delegate. The addresses property is an NSArray of NSData objects
each containing a sockaddr struct. If address information is missing, you can expect another call to
the netServiceDidResolveAddress: method. You can extract address components like so.

- (void)netServiceDidResolveAddress:(NSNetService *)sender {

 for (NSData *addressData in [sender addresses]) {
 struct sockaddr *address;
 address = (struct sockaddr*)[addressData bytes];

 switch (address->sa_family) {
 // IPv6
 case AF_INET6: {
 struct sockaddr_in6 *addr6 =
 (struct sockaddr_in6*)address;
 //addr6->sin6_port; // Port
 //addr6->sin6_addr; // IP Address
 break;
 }

 // IPv4
 case AF_INET:
 default: {
 struct sockaddr_in *addr4 =
 (struct sockaddr_in*)address;
 //addr4->sin_port; // Port
 //addr4->sin_addr; // IP Address
 break;
 }
 }
 }
}

Likewise, the netService:didNotResolve: delegate method is notifi ed if there are
any issues resolving the address. Similar to the netService:didNotPublish: and

c13.indd 294c13.indd 294 13/09/12 2:45 PM13/09/12 2:45 PM

Bonjour Overview ❘ 295

netServiceBrowser:didNotSearch: delegate methods discussed previously, the second parameter
of netService:didNotResolve: is an NSDictionary containing an error code and domain. The
error code can be retrieved with the key NSNetServicesErrorCode, and the domain is fetched
with the key NSNetServicesErrorDomain. Optionally, the application could read any available
address information from the service passed to the delegate method to determine specifi cally
what address information was not resolved.

Depending on the service being resolved, it may be necessary for the connecting application to
retrieve additional custom attributes, such as a version number, from the host services TXT record
data. TXT records are stored on the NSNetService object in the TXTRecordData property. Similar
to how TXT record data is initially set, as discussed earlier in the “Publishing a Service” section, the
dictionaryFromTXTRecordData: class method on NSNetService converts TXT record data to an
NSDictionary as shown here.

- (void)netServiceDidResolveAddress:(NSNetService *)sender {

 NSDictionary *txtDictionary = [NSNetService
 dictionaryFromTXTRecordData:
 [sender TXTRecordData]];

 NSData *versionData = [txtDictionary objectForKey:@"version"];
 NSString *version = [[NSString alloc]
 initWithData:versionData
 encoding:NSUTF8StringEncoding];
 ...
}

As a reminder, the object stored for each key is an instance of NSData, which typically requires
an additional statement to convert it to something meaningful. However, because the objects are
instances of NSData, this provides a lot of fl exibility around what can be transmitted to connecting
services as long as the application is respectful of the intended use and size restrictions.

In addition, the connecting application can be notifi ed of changes to TXT record data via
the netService: didUpdateTXTRecordData: delegate method. The application must call the
startMonitoring method on the NSNetService object with which it is connecting to be notifi ed of
changes. Likewise, the application should call the stopMonitoring method when it no longer needs
to be notifi ed of changes.

After the client application has resolved the selected service, it can connect and begin communicat-
ing with the host.

Communicating with a Service

When Bonjour has facilitated address resolution, its job is done, and the two devices are
ready to connect and begin communicating. Communication is done via streams, which are a
straightforward, device-independent method to exchange data. A stream is a sequence of bytes
transmitted between the endpoints of a connection. In iOS, the concrete classes NSInputStream and
NSOutputStream represent streams.

There are two methods to connect to the host: using the selected NSNetService objects’
hostName and port properties to connect manually or using a pair of preconfi gured NSStream

c13.indd 295c13.indd 295 13/09/12 2:45 PM13/09/12 2:45 PM

296 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

objects provided by the service. The examples in this chapter use the preconfi gured streams for com-
munication. Chapter 8 provides a more in-depth discussion on low-level networking and sockets.

You can fetch the preconfi gured streams by calling the getInputStream:outputStream: method
on the NSNetService object and passing NSInputStream and NSOutputStream pointers to the
appropriate parameters. If the application needs only one of the streams, it should pass NULL instead
of an NSStream object pointer. Assuming an application needs to only read data, the following is an
example of how to retrieve a preconfi gured stream.

- (void)netServiceDidResolveAddress:(NSNetService *)sender {
 ...
 NSInputStream *is;
 if (![sender getInputStream:&is outputStream:NULL]) {
 NSLog(@"Error getting stream");
 }

 // Input Stream
 if (is != NULL) {
 inputStream = is;
 inputStream.delegate = self;
 [inputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 if (inputStream.streamStatus == NSStreamStatusNotOpen) {
 [inputStream open];
 }

 }
 ...
}

This example fetches the input stream and then tests to ensure that a valid stream was returned.
If a valid stream were returned, it is assigned to an instance variable used in the stream delegate
method to test which stream is processed. To be notifi ed of events via the NSStreamDelegate,
you must set a delegate. The returned stream will not have been scheduled in any run loops, so that
should also be done at this point. This allows the stream to serve its purpose, such as determining
whether the host has any data available to be read, each time through the run loop. The returned
stream object should not be open, but you should code defensively to avoid any possible problems.
The streamStatus property contains a status value from the NSStreamStatus enumeration.

The stream:handleEvent: delegate method is notifi ed of important stream events defi ned in the
NSStreamEvent enumeration and listed here.

 ➤ NSStreamEventNone

 ➤ NSStreamEventOpenCompleted

 ➤ NSStreamEventHasBytesAvailable

 ➤ NSStreamEventHasSpaceAvailable

 ➤ NSStreamEventErrorOccurred

 ➤ NSStreamEventEndEncountered

c13.indd 296c13.indd 296 13/09/12 2:45 PM13/09/12 2:45 PM

Bonjour Overview ❘ 297

Depending on the read/write requirements of the application, the events most applications are
concerned with are NSStreamEventOpenCompleted, NSStreamEventHasBytesAvailable, and
NSStreamEventHasSpaceAvailable. However, in the interest of completeness and providing the
optimal experience, applications should implement NSStreamEventErrorOccurred so that users
can be informed of any issues accordingly, and NSStreamEventEndEncountered so that the applica-
tion can close the stream and remove it from the run loop. If an error is encountered, the application
should inspect the stream’s streamError property, an NSError object, for additional information.

Continuing with the example of an application that receives data via an input stream, the following
is one possible implementation of the stream:handleEvent: delegate method assuming the data
received is an NSString object.

- (void)stream:(NSStream *)aStream handleEvent:(NSStreamEvent)eventCode {
 switch (eventCode) {
 case NSStreamEventHasBytesAvailable:
 if (aStream == inputStream) {
 if (receiveData == nil) {
 receiveData = [[NSMutableData alloc] init];
 }
 uint8_t buffer[1024];
 unsigned int len = 0;
 len = [(NSInputStream *)aStream read:buffer
 maxLength:1024];

 if(len) {
 [receiveData appendBytes:(const void *)buffer
 length:len];

 bytesRead = [NSNumber
 numberWithInt:([bytesRead intValue]+len)];

 if (![inputStream hasBytesAvailable]) {

 NSString *result = [[NSString alloc]
 initWithData:receiveData
 encoding:NSUTF8StringEncoding];
 NSLog(@"** Result: %@", result);

 // clean up
 receiveData = nil;
 bytesRead = nil;
 }
 } else {
 NSLog(@"No data found in buffer.");
 }
 }
 break;

 case NSStreamEventOpenCompleted:
 if (aStream == inputStream) {
 NSLog(@"Input Stream Opened");
 }
 break;

c13.indd 297c13.indd 297 13/09/12 2:45 PM13/09/12 2:45 PM

298 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

 case NSStreamEventEndEncountered: {
 [aStream close];
 [aStream removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 break;
 }

 case NSStreamEventErrorOccurred:
 if (aStream == inputStream) {
 NSLog(@"Input stream error: %@", [aStream streamError]);
 }
 break;

 default:
 break;
 }
}

This example may look intimidating, but it’s straightforward. First, the delegate method is
broken down into logical parts to respond to the various NSStreamEvents that are possible.
When the NSStreamEventOpenCompleted event is received, the application simply logs it to the
console. However, if the application wants to maintain a particular streams status outside of
the streamStatus property, this is the proper place to do so. NSStreamEventEndEncountered
is equally as straightforward in that it closes the stream that has ended and removes it from
the run loop so that it does not continue to be monitored each time through the run loop. If an
NSStreamEventErrorOccurred event is received, the application logs a statement to the console that
includes the additional streamError details.

The code within the NSStreamEventHasBytesAvailable event may look foreign compared to
some of the code discussed in this book, but it should be familiar from Chapter 8.
The NSStreamEventHasBytesAvailable event is triggered when the sending system has
received the NSStreamEventHasSpaceAvailable event and has data pending transfer.
Apple recommends that applications send and receive stream data in moderate sizes, typi-
cally 512 or 1,024 bytes. Given that recommendation, it is possible that a single read event
would not retrieve an entire dataset being transferred. In situations in which a dataset
exceeds the buffer limit of the receiver, the delegate method is continuously called with the
NSStreamEventHasBytesAvailable event until the entire dataset has been read from the stream.
In the previous example, the data read into the buffer is appended to an NSMutableData instance
variable until the input stream has transferred all its data. After all the data is received, the code
converts this simple dataset into an NSString and logs it to the console. The chapter example
demonstrated in the next section covers how to transfer more complex data structures.

The getInputStream:outputStream: method made available to NSNetService objects greatly
simplifi es the connection and communication process between devices. Although this section sits
outside the bounds of Bonjour, it is important to understand how clients and services (or peers)
communicate after the discovery facilitated by Bonjour is complete. The next section covers an
in-depth example of Bonjour and device-to-device communication.

c13.indd 298c13.indd 298 13/09/12 2:45 PM13/09/12 2:45 PM

Implementing Bonjour-Based Applications ❘ 299

IMPLEMENTING BONJOUR-BASED APPLICATIONS

As mentioned during the chapter opening, the example for this chapter consists of two sample
applications; one deployed to employee devices at a clothing retailer and one for its customers that
is deployed as part of an existing application. Employees broadcast their availability to assist cus-
tomers on the store’s customer Wi-Fi network. Customers with the retailers’ application can browse
available employees and request help to their current specifi ed location.

Technically, instances of the employee application will always be the host, or server side, of the
interaction model. Customers fall into the client-side of the equation and always initiate any con-
nection requests. Both sample applications follow a similar pattern in which the model abstracts all
Bonjour activities and communicates to the front end via NSNotificationCenter.

Before the applications can communicate, they need to be speaking the same language. How struc-
tured information is transmitted depends on the requirements for both applications; however, the
ones discussed in this chapter use two classes, HelpRequest and HelpResponse, which are shared
between the employee and customer applications. The interaction model of the two applications is
such that the customer requests help from an employee and that employee responds with her answer.
Customer help requests are represented by the HelpRequest class, as defi ned in Listing 13-2.

LISTING 13-2: HelpRequest Class Defi nition (/Apps/Associate/associate-help/associate-help/

HelpRequest.h)

@interface HelpRequest : NSObject <NSCoding>

@property(nonatomic,strong) NSString *question;
@property(nonatomic,strong) NSString *location;

@end

As you can see in Listing 13-2, the HelpRequest class conforms to the NSCoding protocol, which
is a simple mechanism for serializing and unserializing structured objects. When combined with
NSKeyedArchiver and NSKeyedUnarchiver, it enables applications to serialize structured objects
into bytes that can be transferred over the network. Because the HelpRequest class is shared
between applications, the transferred data can be easily converted back into a structured object
on the receiving end of the transmission. Listing 13-3 outlines how to implement NSCoding for the
HelpRequest class.

LISTING 13-3: HelpRequest Class Implementation (/Apps/Associate/associate-help/associate-help/

HelpRequest.m)

#import "HelpRequest.h"

@implementation HelpRequest

@synthesize question, location;

continues

c13.indd 299c13.indd 299 13/09/12 2:45 PM13/09/12 2:45 PM

300 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

#pragma mark - NSCoding
- (void)encodeWithCoder:(NSCoder*)aCoder {
 [aCoder encodeObject:self.question forKey:@"question"];
 [aCoder encodeObject:self.location forKey:@"location"];
}

- (id)initWithCoder:(NSCoder*)aDecoder {
 self = [super init];
 self.question = [aDecoder decodeObjectForKey:@"question"];
 self.location = [aDecoder decodeObjectForKey:@"location"];
 return self;
}

@end

Associate responses to help requests are represented by the HelpResponse class. HelpResponse is
a simple class that also conforms to NSCoding. HelpResponse is also an example of how to encode
and decode different data types, compared to HelpRequest, as shown in Listing 13-4.

LISTING 13-4: HelpResponse Interface and Implementation (/Apps/Associate/associate-help/

associate-help/HelpResponse.h/m)

@interface HelpResponse : NSObject <NSCoding>

@property(nonatomic,assign) BOOL response;

@end

@implementation HelpResponse

@synthesize response;

#pragma mark - NSCoding
- (void)encodeWithCoder:(NSCoder*)aCoder {
 [aCoder encodeBool:self.response forKey:@"response"];
}

- (id)initWithCoder:(NSCoder*)aDecoder {
 self = [super init];
 self.response = [aDecoder decodeBoolForKey:@"response"];
 return self;
}

As mentioned earlier, the code for these base communication classes is shared between each
application.

LISTING 13-3 (continued)

c13.indd 300c13.indd 300 13/09/12 2:45 PM13/09/12 2:45 PM

Implementing Bonjour-Based Applications ❘ 301

Employee Application

Now that the communication fundamentals are complete, it’s time to
build the employee application. Employees running it can advertise
themselves as available to assist customers. The application consists of
a single view that enables employees to set their department and toggle
their availability. When launched, the employee application resembles
Figure 13-2.

The core of the employee application focuses around the publication
of itself as a service and handling the communication with connecting
devices. This functionality lives within the Bonjour class, a singleton
that handles all NSNetService-related and NSStream-related details.
Listing 13-5 outlines the Bonjour class defi nition; note the notifi cation
constants declared above the interface. These are the notifi cation names
broadcast using NSNotificationCenter. All code for the employee
application can be found in the Chapter 13 download folder on the companion website.

LISTING 13-5: Bonjour Interface Defi nition (/Apps/Associate/associate-help/associate-help/

Bonjour.h)

#import "HelpRequest.h"
#import "HelpResponse.h"

#define kNotificationResultSet @"NotificationObject"
#define kPublishBonjourStartNotification @"PublishStartNotification"
#define kPublishBonjourErrorNotification @"PublishErrorNotification"
#define kPublishBonjourSuccessNotification @"PublishSuccessNotification"
#define kStopBonjourSuccessNotification @"StopSuccessNotification"
#define kHelpRequestedNotification @"HelpRequestedNotification"

@interface Bonjour : NSObject <NSNetServiceDelegate, NSStreamDelegate>

+ (Bonjour*)sharedPublisher;

- (BOOL)publishServiceWithName:(NSString*)name;

- (void)stopService;

- (void)sendHelpResponse:(HelpResponse*)response;

@end

Although most methods declared in Listing 13-5 resemble the core NSNetService methods,
the approach to wrap the NSNetService methods enables the model to abstract as much of the
publication detail as possible from the front end. The Bonjour class in this example is intended for
use with a single service type and an empty service domain. Although that may not work for all
situations, this enables the model to expose a streamlined publication process in the form of the
publishServiceWithName: method. You need to implement the methods declared in Listing 13-5,
as shown in Listing 13-6.

FIGURE 13-2

c13.indd 301c13.indd 301 13/09/12 2:45 PM13/09/12 2:45 PM

302 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

LISTING 13-6: Bonjour Implementation (/Apps/Associate/associate-help/associate-help/Bonjour.m)

- (BOOL)publishServiceWithName:(NSString*)name {

 // setup the listening socket for connection attempts
 // and determine a port on which to advertise the service
 if (![self setupListeningSocket]) {
 return NO;
 }

 // create the service for publishing
 // this type should be registered - iana.org
 service = [[NSNetService alloc]
 initWithDomain:@""
 type:@"_associateHelp._tcp."
 name:name
 port:port];

 if (service == nil) {
 return NO;
 }

 service.delegate = self;

 // Publish service
 [Utils postNotifification:kPublishBonjourStartNotification];
 [service publish];

 return YES;
}

- (void)stopService {
 [service stop];
}

The publishServiceWithName: method sets up a listening socket and lets the kernel assign a port,
as shown previously in Listing 13-1, before instantiating an NSNetService object. If the service is
successfully created, the delegate is set, and the UI is alerted just before broadcasting it to the net-
work. If the service is successfully published, the netServiceDidPublish: delegate method is noti-
fi ed, which, in turn, notifi es the front end so that it can update the interface accordingly, as shown
in Listing 13-7. If there is an error publishing the service, the netService:didNotPublish: delegate
method is called, which also alerts the front end, as demonstrated in Listing 13-7.

LISTING 13-7: NetService Publication Delegate Methods (/Apps/Associate/associate-help/

associate-help/Bonjour.m)

- (void)netServiceDidPublish:(NSNetService *)sender {
 [Utils postNotifification:kPublishBonjourSuccessNotification];
}

- (void)netService:(NSNetService *)sender
 didNotPublish:(NSDictionary *)errorDict {

c13.indd 302c13.indd 302 13/09/12 2:45 PM13/09/12 2:45 PM

http://iana.org

Implementing Bonjour-Based Applications ❘ 303

 // typically you would pass along the errorDict
 // object or some form of error messaging
 [Utils postNotifification:kPublishBonjourErrorNotification];
}

- (void)netServiceDidStop:(NSNetService *)sender {
 // reset port so a new one is assigned
 port = 0;
 CFRelease(ipv4socket);
 CFRelease(ipv6socket);

 [Utils postNotifification:kStopBonjourSuccessNotification];
}

When the service has been successfully stopped, the netServiceDidStop: method is called where
the application should reset the port to 0 so that subsequent publication requests assign a new port
during socket creation. One of the most tedious steps in publishing a service that communicates
with other devices is confi guring the socket and connection handler callbacks. Because all connec-
tion requests originate from the customer application in this example, only the employee application
needs to plan for this.

Listing 13-1 from the “Publishing a Service” section covers how to confi gure the sockets as well
as how to allow the kernel to assign a port for you. Although you could hardcode a port for the
service to use, you may encounter confl icts that render the application useless. Therefore, it is
recommended that you allow the system to choose a port for you. As referenced in Listing 13-1,
the application must implement a callback function that will be called when the socket receives
a connection request. Listing 13-8 demonstrates how to implement the callback function set in
Listing 13-1.

LISTING 13-8: Connection Request Callback Function (/Apps/Associate/associate-help/

associate-help/Bonjour.m)

static void BonjourServerAcceptCallBack (CFSocketRef socket,
 CFSocketCallBackType type,
 CFDataRef address,
 const void *data,
 void *info) {

 Bonjour *server = (__bridge Bonjour*)info;
 if (type == kCFSocketAcceptCallBack) {
 // AcceptCallBack: data is pointer to a CFSocketNativeHandle
 CFSocketNativeHandle socketHandle
 = *(CFSocketNativeHandle *)data;

 CFReadStreamRef readStream = NULL;
 CFWriteStreamRef writeStream = NULL;
 CFStreamCreatePairWithSocket(kCFAllocatorDefault,
 socketHandle,
 &readStream,
 &writeStream);
 continues

c13.indd 303c13.indd 303 13/09/12 2:45 PM13/09/12 2:45 PM

304 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

 if (readStream && writeStream) {
 CFReadStreamSetProperty
 (readStream,
 kCFStreamPropertyShouldCloseNativeSocket,
 kCFBooleanTrue);

 CFWriteStreamSetProperty
 (writeStream,
 kCFStreamPropertyShouldCloseNativeSocket,
 kCFBooleanTrue);

 NSInputStream *is = (__bridge NSInputStream*)readStream;
 NSOutputStream *os = (__bridge NSOutputStream*)writeStream;
 [server handleNewConnectionWithInputStream:is
 outputStream:os];

 } else {
 // encountered failure
 // no need for socket anymore
 close(socketHandle);
 }

 // clean up
 if (readStream) {
 CFRelease(readStream);
 }

 if (writeStream) {
 CFRelease(writeStream);
 }
 }
}

Similar to Listing 13-1, Listing 13-8 may look intimidating, but it is actually straightforward.
First, this function is called when the socket receives a connection request from the customer
application. You could think of this as serving a similar function to that of a delegate method
in Objective-C. When the function is called, the fi rst step is to fetch a reference to self.
Because C-functions do not have access to self, this is accomplished by casting the info
function parameter to the Bonjour class. The info parameter was set using the
(__bridge void*)self when creating the socket context used to confi gure the listening
sockets in Listing 13-1.

If the callback type is kCFSocketAcceptCallBack, meaning connection requests are accepted and
child streams will be passed to the callback function, the application creates read and write streams
for the socket. If both streams are created, the application instructs each to close and release the
underlying native socket when the stream is released. After the stream properties have been set, they
are cast to their respective Objective-C types, and then handleNewConnectionWithInputStream:
outputStream: is called, as implemented in Listing 13-9.

LISTING 13-8 (continued)

c13.indd 304c13.indd 304 13/09/12 2:45 PM13/09/12 2:45 PM

Implementing Bonjour-Based Applications ❘ 305

LISTING 13-9: handleNewConnectionWithInputStream:outputStream: Method (/Apps/Associate/

associate-help/associate-help/Bonjour.m)

- (void)handleNewConnectionWithInputStream:(NSInputStream*)istr
 outputStream:(NSOutputStream*)ostr {
 inputStream = istr;
 outputStream = ostr;

 inputStream.delegate = self;
 outputStream.delegate = self;

 [inputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 // output stream is scheduled in the runloop when it is needed

 if (inputStream.streamStatus == NSStreamStatusNotOpen) {
 [inputStream open];
 }

 if (outputStream.streamStatus == NSStreamStatusNotOpen) {
 [outputStream open];
 }

}

The handleNewConnectionWithInputStream:outputStream: method sets two instance vari-
ables used for stream comparison later in the process and then sets the delegate. Streams are not
prescheduled in a run loop, so you must schedule them so that they can monitor for the various
NSStreamEvents. The method then checks the status of each stream and opens them if necessary. As
streams are opened the delegate is notifi ed with the NSStreamEventOpenCompleted event, as shown
in Listing 13-10, which simply logs the event to the console.

LISTING 13-10: stream:handleEvent: Open Completed Event (/Apps/Associate/associate-help/

associate-help/Bonjour.m)

- (void)stream:(NSStream *)aStream
 handleEvent:(NSStreamEvent)eventCode {

 switch (eventCode) {
 case NSStreamEventHasBytesAvailable:
 if (aStream == inputStream) {
 if (receiveData == nil) {
 receiveData = [[NSMutableData alloc] init];
 }
 uint8_t buf[1024];
 unsigned int len = 0;
 len = [(NSInputStream *)aStream read:buffer
 maxLength:1024];

 if(len) { continues

c13.indd 305c13.indd 305 13/09/12 2:45 PM13/09/12 2:45 PM

306 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

 [receiveData appendBytes:(const void *)buffer
 length:len];

 bytesRead = [NSNumber
 numberWithInt:([bytesRead intValue]+len)];

 if (![inputStream hasBytesAvailable]) {

 // you could optionally keep the 'transaction'
 // state stored so that you could determine
 // which object you are expecting.
 HelpRequest *request;
 @try {
 request =
 [NSKeyedUnarchiver
 unarchiveObjectWithData:receiveData];

 NSDictionary *info =
 [NSDictionary
 dictionaryWithObject:request
 forKey:kNotificationResultSet];

 [[NSNotificationCenter defaultCenter]
 postNotificationName:
 kHelpRequestedNotification
 object:nil
 userInfo:info];

 }
 @catch (NSException *exception) {
 NSString *msg =
 @"Exception while unarchiving request data.";
 NSLog(@"%@", msg);
 }
 @finally {
 // clean up
 receiveData = nil;
 bytesRead = nil;
 }
 }
 } else {
 NSLog(@"No data found in buffer.");
 }
 }
 break;

 ...

 case NSStreamEventOpenCompleted:
 if (aStream == inputStream) {
 NSLog(@"Input Stream Opened");
 } else {
 NSLog(@"Output Stream Opened");

LISTING 13-10 (continued)

c13.indd 306c13.indd 306 13/09/12 2:45 PM13/09/12 2:45 PM

Implementing Bonjour-Based Applications ❘ 307

 }
 break;

 ...
 }
}

Listing 13-10 also includes the logic to read data from
the input stream. The stream delegate is notifi ed with the
NSStreamEventHasBytesAvailable event when the connected system
receives data. The logic processing that event continues to append data
from the input stream buffer until there are no more bytes available.
Because the only inbound data to the employee application will be a
HelpRequest, after all data has been read, the application attempts to
create a HelpRequest object using NSKeyedUnarchiver and NSCoding,
as discussed in Listing 13-3. If the object creation is successful, the appli-
cation notifi es the front end, which triggers an alert to the employee, as
shown in Figure 13-3.

After the employee responds to the HelpRequest (refer to Figure 13-3),
the sendHelpResponse: method on Bonjour is invoked. Listing 13-11
details the implementation of sendHelpResponse:.

LISTING 13-11: sendHelpResponse: Implementation (/Apps/Associate/associate-help/

associate-help/Bonjour.m)

- (void)sendHelpResponse:(HelpResponse*)response {
 if (sendData == nil) {
 sendData = [[NSMutableData alloc] init];
 }
 NSData *responseData =
 [NSKeyedArchiver archivedDataWithRootObject:response];

 [sendData appendData:responseData];
 [outputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];

 // associate is going to help customer
 // stop the service so they aren't discoverable
 // while with the customer
 if (response.response == YES) {
 [self stopService];
 }
}

The sendHelpResponse: method creates a data representation of the response using
NSKeyedArchiver and adds it to a queue of data pending transmission. In more sophisticated appli-
cations, a more advanced queue such as an NSMutableArray of NSData may be warranted. After the
HelpResponse data has been added to the queue, the application schedules the outputStream in
the current run loop so that it begins actively monitoring for the NSStreamEventHasSpaceAvailable

FIGURE 13-3

c13.indd 307c13.indd 307 13/09/12 2:45 PM13/09/12 2:45 PM

308 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

event, which notifi es the stream:handleEvent: delegate method. After the outputStream has been
scheduled in the run loop, the service is stopped so that other customers do not attempt to request help
while the employee is busy. When the employee is done helping the current customer, she will republish
availability.

Listing 13-12 indicates that if there is data to be sent, the delegate writes it to the stream buffer 1
kilobyte at a time, which will be read from the stream by the customer application. After all data
has been transmitted, the application cleans the queue and removes the outputStream from the run
loop. It is rescheduled when there is additional data to transmit.

LISTING 13-12: NSStreamEventHasSpaceAvailable Logic (/Apps/Associate/associate-help/

associate-help/Bonjour.m)

- (void)stream:(NSStream *)aStream
 handleEvent:(NSStreamEvent)eventCode {

 switch (eventCode) {
 ...
 case NSStreamEventHasSpaceAvailable: {
 if (aStream == outputStream) {
 // send data if there is some pending
 if ([sendData length] > 0) {
 uint8_t *readBytes =
 (uint8_t *)[sendData mutableBytes];

 // keep track of pointer position
 readBytes += [bytesWritten intValue];
 int data_len = [sendData length];

 unsigned int len =
 ((data_len - [bytesWritten intValue] >= 1024) ?
 1024 : (data_len-[bytesWritten intValue]));

 uint8_t buffer [len];
 (void)memcpy(buffer, readBytes, len);
 len = [(NSOutputStream*)aStream
 write:(const uint8_t *)buffer
 maxLength:len];

 bytesWritten =
 [NSNumber
 numberWithInt:([bytesWritten intValue]+len)];

 if ([sendData length] == [bytesWritten intValue]) {
 sendData = nil;
 [outputStream
 removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 }

 if ([bytesWritten intValue] == -1) {
 NSLog(@"Error writing data.");

c13.indd 308c13.indd 308 13/09/12 2:45 PM13/09/12 2:45 PM

Implementing Bonjour-Based Applications ❘ 309

 }
 }
 }
 break;
 }
 ...
 }
}

Customer Application

With the host component complete and employees broadcasting their
ability to help, the customer application is needed to initiate requests.
The customer application consists of a two-view tab bar controller. The
fi rst view provides customers with the ability to shop and browse from
their mobile device. For this example the shop and browse functionality
has not been implemented. The second view presents customers with a
list of available employees. This example assumes that customers always
connect to the same network as employees. In practice you should pro-
vide a backup means to request help, such as a simple form. If customers
are not connected to the network, it would be a better experience to
disable the feature all together.

Figure 13-4 shows the shop view, and Figure 13-5 shows the help
view in which a single employee is currently available. As mentioned
with the employee app, all presentation tier code can be found in the
Chapter 13 downloads folder. However, as with the employee applica-
tion, all Bonjour browse, connection, and communication functionality
has been abstracted from the presentation tier, making display and
interaction with services straightforward.

The main class in the model is BonjourBrowser, as defi ned in
Listing 13-13. BonjourBrowser is also implemented as a singleton.
Similar to the employee application, interaction between the model and
the front end is done via NSNotificationCenter. Notifi cation constants
are defi ned before the @interface declaration.

LISTING 13-13: BonjourBrowser Interface Defi nition (/Apps/Consumer/consumer-help/

consumer-help/BonjourBrowser.h)

#import "HelpRequest.h"
#import "HelpResponse.h"

#define kNotificationResultSet @"NotificationObject"

#define kBrowseStartNotification @"BonjourBrowseStartNotification"
#define kBrowseErrorNotification @"BonjourBrowseErrorNotification"
#define kBrowseSuccessNotification @"BonjourBrowseSuccessNotification"

#define kConnectStartNotification @"BonjourConnectStartNotification"

FIGURE 13-4

FIGURE 13-5

continues

c13.indd 309c13.indd 309 13/09/12 2:45 PM13/09/12 2:45 PM

310 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

#define kConnectErrorNotification @"BonjourConnectErrorNotification"
#define kConnectSuccessNotification @"BonjourConnectSuccessNotification"

#define kServiceRemovedNotification @"BonjourServiceRemovedNotification"
#define kSearchStoppedNotification @"BonjourSearchStoppedNotification"

#define kHelpRequestedNotification @"HelpRequestedNotification"
#define kHelpResponseNotification @"HelpResponseNotification"

@interface BonjourBrowser : NSObject <NSNetServiceDelegate,
 NSNetServiceBrowserDelegate,
 NSStreamDelegate>

+ (BonjourBrowser*)sharedBrowser;

- (void)browseForHelp;

- (NSArray*)availableServices;

- (void)connectToService:(NSNetService*)service;

- (void)sendHelpRequest:(HelpRequest*)request;

@end

When customers select the Help tab, the application calls browseForHelp, which instantiates an
NSNetServiceBrowser object and begins a search for the type _associateHelp._tcp., which is
the type specifi ed during service publication from the employee application. When the search has
been initiated, the method informs listeners of the event, as shown in Listing 13-14.

LISTING 13-14: browseForHelp Implementation (/Apps/Consumer/consumer-help/consumer-help/

BonjourBrowser.m)

- (void)browseForHelp {
 if (browser == nil) {
 browser = [[NSNetServiceBrowser alloc] init];
 }

 browser.delegate = self;
 [browser searchForServicesOfType:@"_associateHelp._tcp."
 inDomain:@""];

 [Utils postNotifification:kBrowseStartNotification];
}

If there are issues performing the search, the netServiceBrowser:didNotSearch: delegate method
is notifi ed, which broadcasts a message to the front end and stops the search, as demonstrated in
Listing 13-15. After the search has stopped, the netServiceBrowserDidStopSearch: delegate

LISTING 13-13 (continued)

c13.indd 310c13.indd 310 13/09/12 2:45 PM13/09/12 2:45 PM

Implementing Bonjour-Based Applications ❘ 311

method is called. As shown in Listing 13-15, the application takes this opportunity to clear the
browser instance variable and notify the front end so that any related status indicators can be
updated.

LISTING 13-15: netServiceBrowser:didNotSearch: and netServiceBrowserDidStopSearch:

Implementations (/Apps/Consumer/consumer-help/consumer-help/

BonjourBrowser.m)

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didNotSearch:(NSDictionary *)errorDict {
 // alert the user and stop the browser
 [Utils postNotifification:kBrowseErrorNotification];
 [browser stop];
}

- (void)netServiceBrowserDidStopSearch:
 (NSNetServiceBrowser *)aNetServiceBrowser {

 // clears browser and delegate
 // a new browser will be created
 // if search is initiated again
 browser = nil;
 [Utils postNotifification:kSearchStoppedNotification];
}

As services are discovered the netServiceBrowser:didFindService:moreComing: delegate
method is invoked, which adds the service to an NSMutableArray instance variable that maintains
available services and notifi es the front end, as shown in Listing 13-16. Pay particular close atten-
tion to the moreComing indicator prior to notifying listeners of updates because it is called once per
discovered service. In this example there should not be more than a couple of dozen services, assum-
ing two or three per department, but searching for printers on a large corporate network could be a
different story. Although this example does not sort the service collection, this is one place to do so,
just before broadcasting the notifi cation.

LISTING 13-16: netServiceBrowser:didFindService:moreComing: Implementation (/Apps/

Consumer/consumer-help/consumer-help/BonjourBrowser.m)

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing {

 if (![services containsObject:aNetService]) {
 [services addObject:aNetService];
 }

 if (moreComing == NO) {
 [Utils postNotifification:kBrowseSuccessNotification];
 }
}

c13.indd 311c13.indd 311 13/09/12 2:45 PM13/09/12 2:45 PM

312 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

The front end can fetch currently available services from the model
by calling availableServices. This enables the model to add and
remove services that the front end can retrieve as needed without having
to maintain its own copy. availableServices returns an NSArray of
NSNetService objects that can be displayed in a UITableView
(refer to Figure 13-5). When customers are ready to request help, they
tap on the appropriate service. Selecting a service begins the resolution
process by passing the chosen service to connectToService: and then
presenting the customers with a view prompting for additional informa-
tion, as shown in Figure 13-6.

If there is an issue resolving the service, the
netService:didNotResolve: delegate method is called, which posts
a notifi cation to the front end at which point the customer is informed.
As the service is resolved, the netServiceDidResolveAddress: del-
egate method is called. Listing 13-17 covers the implementation of the
netService:didNotResolve: and netServiceDidResolveAddress: delegate methods. As men-
tioned in the “Resolving a Service” section, developers should code defensively and ensure that the
necessary address information has been resolved prior to retrieving the preconfi gured streams or
connecting manually. Because that has already been covered, it has been left out of this listing for
the sake of brevity.

LISTING 13-17: netService:didNotResolve: and netServiceDidResolveAddress: Implementations

(/Apps/Consumer/consumer-help/consumer-help/BonjourBrowser.m)

- (void)netService:(NSNetService *)sender
 didNotResolve:(NSDictionary *)errorDict {
 [Utils postNotifification:kConnectErrorNotification];
}

- (void)netServiceDidResolveAddress:(NSNetService *)sender {
 NSInputStream *tmpIS;
 NSOutputStream *tmpOS;
 BOOL error = NO;

 // this application requires both streams
 // if you don't get them both, that poses
 // a problem
 if (![sender getInputStream:&tmpIS outputStream:&tmpOS]) {
 error = YES;
 }

 // Input Stream
 if (tmpIS != NULL) {
 inputStream = tmpIS;
 inputStream.delegate = self;
 [inputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];

FIGURE 13-6

c13.indd 312c13.indd 312 13/09/12 2:45 PM13/09/12 2:45 PM

Implementing Bonjour-Based Applications ❘ 313

 if (inputStream.streamStatus == NSStreamStatusNotOpen) {
 [inputStream open];
 }

 } else {
 error = YES;
 }

 // Output Stream
 if (tmpOS != NULL) {
 outputStream = tmpOS;
 outputStream.delegate = self;
 //output stream is scheduled in runloop when it is needed
 if (outputStream.streamStatus == NSStreamStatusNotOpen) {
 [outputStream open];
 }

 } else {
 error = YES;
 }

 if (error == NO) {
 [Utils postNotifification:kConnectSuccessNotification];
 } else {
 [Utils postNotifification:kConnectErrorNotification];
 }
}

The netServiceDidResolveAddress: method attempts to fetch the preconfi gured streams
using the getInputStream:outputStream: method on NSNetService. For each stream returned,
it assigns it to its instance variable counterpart, inputStream or outputStream; sets the delegate;
and then checks the streamStatus to determine whether it should be opened. inputStream is
scheduled with the run loop, but outputStream is not. outputStream will be scheduled with the
run loop when it is needed, as was done in the employee application.

After the customer enters the necessary information on the request view and taps Submit, the
application calls sendHelpRequest:, which converts the request parameter to NSData using
NSKeyedArchiver, appends the data to the applications outbound queue, and then schedules the
outputStream with the current run loop, as shown in Listing 13-18.

LISTING 13-18: sendHelpRequest: Implementation (/Apps/Consumer/consumer-help/

consumer-help/BonjourBrowser.m)

- (void)sendHelpRequest:(HelpRequest*)request {

 if (sendData == nil) {
 sendData = [[NSMutableData alloc] init];
 }

 // convert the request to NSData (using NSKeyedArchiver/NSCoding)
 NSData *requestData = [NSKeyedArchiver

continues

c13.indd 313c13.indd 313 13/09/12 2:45 PM13/09/12 2:45 PM

314 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

 archivedDataWithRootObject:request];

 [sendData appendData:requestData];
 [outputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
}

After the outputStream is scheduled with the run loop, the application begins actively listening
for the NSStreamEventHasSpaceAvailable event from the connected peer. When the device
receives the event, it notifi es the stream:handleEvent: delegate as discussed previously in the
Employee Application section. Listing 13-19 demonstrates how to send data to the employee
application. This process is the same as covered in Listing 13-12.

LISTING 13-19: stream:handleEvent: NSStreamEventHasSpaceAvailable Implementation

(/Apps/Consumer/consumer-help/consumer-help/BonjourBrowser.m)

- (void)stream:(NSStream *)aStream
 handleEvent:(NSStreamEvent)eventCode {

 switch (eventCode) {
 case NSStreamEventHasSpaceAvailable: {
 if (aStream == outputStream) {
 if ([sendData length] > 0) {
 uint8_t *readBytes =
 (uint8_t *)[sendData mutableBytes];

 // keep track of pointer position
 readBytes += [bytesWritten intValue];
 int data_len = [sendData length];

 unsigned int len =
 ((data_len - [bytesWritten intValue] >= 1024) ?
 1024 : (data_len-[bytesWritten intValue]));

 uint8_t buffer[len];
 (void)memcpy(buffer, readBytes, len);
 len = [(NSOutputStream*)aStream
 write:(const uint8_t *)buffer
 maxLength:len];

 bytesWritten =
 [NSNumber
 numberWithInt:([bytesWritten intValue]+len)];

 if ([sendData length] == [bytesWritten intValue]) {
 sendData = nil;
 [outputStream
 removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];

LISTING 13-18 (continued)

c13.indd 314c13.indd 314 13/09/12 2:45 PM13/09/12 2:45 PM

Implementing Bonjour-Based Applications ❘ 315

 }

 if ([bytesWritten intValue] == -1) {
 NSLog(@"Error writing data.");
 }
 }
 }
 break;
 }
 ...
}

After the data has been transmitted, the outbound queue is cleared, and the outputStream is
removed from the run loop. It is rescheduled the next time the customer sends a request to an
employee.

After the request has been sent, the customer application waits for a response from the employee.
That response is delivered over the inputStream, and the stream:handleEvent: delegate method
receives the NSStreamEventHasBytesAvailable event when there is a response. Listing 13-20 dem-
onstrates how to handle the inbound response data.

LISTING 13-20: stream:handleEvent: NSStreamEventHasBytesAvailable Implementation

(/Apps/Consumer/consumer-help/consumer-help/BonjourBrowser.m)

- (void)stream:(NSStream *)aStream
 handleEvent:(NSStreamEvent)eventCode {

 switch (eventCode) {
 ...
 case NSStreamEventHasBytesAvailable:
 if (aStream == inputStream) {
 if (receiveData == nil) {
 receiveData = [[NSMutableData alloc] init];
 }
 uint8_t buffer[1024];
 unsigned int len = 0;
 len = [(NSInputStream *)aStream read:buffer
 maxLength:1024];

 if(len) {
 [receiveData appendBytes:(const void *)buffer
 length:len];

 bytesRead = [NSNumber
 numberWithInt:([bytesRead intValue]+len)];

 if (![inputStream hasBytesAvailable]) {

 // you could optionally keep the 'transaction'
 // state stored so that you could determine
 // which object you are expecting.
 HelpResponse *response;

continues

c13.indd 315c13.indd 315 13/09/12 2:45 PM13/09/12 2:45 PM

316 ❘ CHAPTER 13 AD-HOC NETWORKING WITH BONJOUR

 @try {
 response =
 [NSKeyedUnarchiver
 unarchiveObjectWithData:receiveData];

 NSDictionary *info =
 [NSDictionary
 dictionaryWithObject:response
 forKey:kNotificationResultSet];

 [[NSNotificationCenter defaultCenter]
 postNotificationName:kHelpResponseNotification
 object:nil
 userInfo:info];

 }
 @catch (NSException *exception) {
 NSLog(@"Exception unarchiving data.");
 NSLog(@"Possible missing / corrupt data.");
 }
 @finally {
 // clean up
 receiveData = nil;
 bytesRead = nil;
 }

 }
 } else {
 NSLog(@"No data found in buffer.");
 }
 }
 break;
 ...
 }
}

After ensuring the stream being processed is the inputStream, the application initializes an
NSMutableData object to store all received data. Then the application pulls 1 kilobyte off the
inbound stream. If data is actually read, it is appended to the NSMutableData variable cre-
ated earlier, and a byte counter is updated to refl ect the number of bytes actually read. If
the inputStream doesn’t have any more bytes available, the application attempts to create a
HelpResponse object using NSKeyedUnarchiver and then notifi es the front end and passes
the response. If there are additional bytes to be read, the delegate continues to receive the
NSStreamEventHasBytesAvailable event until the buffer has been exhausted.

When the employee response is received, it is presented to the customer, as shown in Figure 13-7,
and the request view is dismissed. However, in the help request view, after the employee submits
a request, the application disables each button in the navigation bar until either an error occurs
or the employee responds. More sophisticated applications may want to review other options that

LISTING 13-20 (continued)

c13.indd 316c13.indd 316 13/09/12 2:45 PM13/09/12 2:45 PM

Summary ❘ 317

enable the customer to continue to use the application while the employee
responds to the request. One possible option is to add the listener to the
AppDelegate. This becomes even more important if the service you pro-
vide allows customers to queue requests, similar to a deli ticket system, in
which there may be several customers ahead of them in line.

You should now have two fully functional applications; one that
publishes itself as a host and can be discovered via Bonjour, and another
that uses Bonjour to browse and connect with available services. When
connected, the two applications should be able to communicate
seamlessly with each other.

SUMMARY

Bonjour is a great technology to facilitate ad-hoc networking to share
data between devices on the same network. This chapter has taken you through the background
of Bonjour, the steps required to successfully publish a service on the network, and the process to
browse and ultimately connect a host and peer. Use of Bonjour is not limited to iPhones and iPads;
you can use it to discover any type of device that can publish a Bonjour service. Devices range from
printers and DVR boxes to home automation tools.

The employee and customer applications provide a good framework to integrate Bonjour into your
applications. However, there are other networking tools available that you should review to ensure
Bonjour is best for your needs. One option is Game Kit, which is covered in Chapter 12. Chapter
8 covers low-level network programming functionality that may also be something to consider for
certain requirements.

This is the fi nal chapter in this book. All three of us thank you for buying the book, allowing us
the opportunity to share our experiences with you, and for making it to the end. We hope it’s been
informative. Thank you, again.

 — Jack Cox, John Szumski, and Nathan Jones

FIGURE 13-7

c13.indd 317c13.indd 317 13/09/12 2:45 PM13/09/12 2:45 PM

c13.indd 318c13.indd 318 13/09/12 2:45 PM13/09/12 2:45 PM

319

INDEX

A

absolute-path, URLs, 31
AES (Advanced Encryption Standard), 139,

142–143
decryption

Objective-C, 147
PHP and, 146–147

encrypted response handling, 149–150
in practice, 144–145

ambiguous error reporting, 104
APIs (application programming interfaces)

endpoints, fetching, 19–20
HTTP, 27

high-level, 35–53
Keychain Services, 151
networking, 4

Bonjour, 5
BSD sockets, 6–7
CFNetwork, 6
Game Kit, 5
NSNetService, 5
NSStream, 6
NSURLConnection, 5

Objective-C, 4
APNs (Apple Push Notifi cations), 214,

223–224
application:didFinishLaunching

WithOptions:, 249
applications

Bonjour-based, 299–300
customer application, 309–317
employee application, 301–309

errors, 102–103
sensing presence, 251–252

ARC (Automatic Reference Counting), 288
architecture, service architecture, 9–10
archiveDataWithRootObject:, 252–253
arrays, SOAP, 68
asymmetric encryption, public key

cryptography, 139
asynchronous requests

best practices, 52–53
NSURLConnectionDelegate object, 45
queued, 42–45
run loops and, 52–53

authentication
client-certifi cate, 127–131
delegate methods, 52
HTTP, 124–125
HTTP Basic, 125–127
HTTP Digest, 125–127
NSURLAuthenticationMethodClient

Certificate method, 121
NSURLAuthenticationMethodDefault

method, 121
NSURLAuthenticationMethodHTMLForm

method, 121
NSURLAuthenticationMethodHTTP

Basic method, 121
NSURLAuthenticationMethodHTTP

Digest method, 121
NSURLAuthenticationMethodNegotiate

method, 121
NSURLAuthenticationMethodNTLM

method, 121

bindex.indd 319bindex.indd 319 11/09/12 9:25 PM11/09/12 9:25 PM

320

authentication – BSD socket API

NSURLAuthenticationMethodServerTrust
method, 121

NSURLCredential, 122
NTLM, 125–127
willSendRequestForAuthentication

Challenge:, 122
availableServices, 312

B

background threads, fetching results, 179
bandwidth, 158–159

requests
reducing, 161–168
response compression, 162–164

base64 conversion table, 254–255
base64url conversion table, 256
BaseCommand object, 111
best practices

asynchronous requests, 52–53
notifi cations, 243–244
queued asynchronous requests, 44–45

big-endian byte orders, 275
Bluetooth, Game Kit, 269–270
Bonjour, 5

applications, 299–300
customer application, 309–317
employee application, 301–309

ARC (Automatic Reference Counting),
288

Associate Help, 281
Bonjour Browser class, 281
Bonjour Service, 281
CFSocketSetAddress() function,

288
Consumer Help, 281
initWithDomain:type:name:, 285
kCFSocketAcceptCallback, 285
multitasking environments, 290
netService:didNotPublish, 289
netServiceDidPublish:, 289
NSNetService, 288

NSNetService class, 285
NSNetServiceBrowser class, 290
NSNetServiceDelegate, 288
NSNetServicesErrorCode, 291
overview, 284
port numbers, 288
removeFromRunLoop:forMode: method,

288
resolveWithTimeout: method,

293–295
run loop, 288
scheduleInRunLoop:forMode: method,

288
services

browsing for, 290–293
communication, 295–298
publishing, 285–290
resolving, 293–295

TXT records, 289
zeroconf, 282

DNS-SD (DNS-based Service Discovery),
283–284

link-local addressing, 282
mDNS (Multicast Domain Name Service),

283
resolution, 282–283

BonjourBrowser class, 309–310
Boolean data types, SOAP, 68
breakpoints, Charles, 205–207
BSD

socket server
confi guration, 177–178
TCP sockets, 177
UDP sockets, 177

sockets, 6–7
loading results, 179–181

BSD socket API
addressFamily, 177
calls, 176
creating sockets, 177
POSIX (Portable Operating System Interface)

sockets API, 176
socket clients, 178–182

authentication (continued)

bindex.indd 320bindex.indd 320 11/09/12 9:25 PM11/09/12 9:25 PM

321

callback functions, sockets, registering – cookies

C

callback functions, sockets, registering, 184
cancelAllLocalNotifications: method,

218–219
cancelLocalNotification: method, 218–219
canOpenURL: method, 251
CCCrypt() function, 140–144
CDN (content delivery network), 20, 69
CFNetwork API, 6

CFReadStreamOpen() function, 182
CFStreamClientContext, 184
CFStreamCreatePairWithSocketToHost

() function, 182
CFWriteStreamOpen() function, 182
run loop integration, 182
sockets, creating, 182–183

CFReadStreamOpen() function, 182
CFRunLoopActivity, run loops, 7
CFRunLoopObserverRef() function, 7
CFSocket class, 4
CFSocketSetAddress() function, 288
CFStream, event types, 185
CFStream class, 4
CFStreamClientContext, 184
CFStreamCreatePairWithSocketToHost()

function, 182
CFWriteStreamOpen() function, 182
Charles

breakpoints, 205–207
Rewrite Settings, 207–209
setup, 202–204

chunked encoding, 34
Client Errors 400-level errors (HTTP), 101
client-certifi cate authentication, 127–131
clients, façades, 15–17

service versioning, 17–18
versioned services, 19–20

client-server mode (Game Kit), 268
GKSessionModeClient, 279
GKSessionModeServer, 279

Cocoa touch, layers, 3–4
Command Dispatch pattern

BaseCommand object, 111

controllers, view controllers, 114–116
exception listeners, 113–114
GetFeed method, 112
LoginCommand method, 112–113
prerequisites, 111

command objects
attributes, 107
behaviors, 108–109

command queues, behaviors, 111
CommonCrypto library, 132
compression

requests, 165–168
responses, 162–164

connect() function, 181
connection:didFailWithError: delegate

method, 49–50
connectionDidFinishLoading delegate

method, 50–51
connection:didReceiveData: delegate

method, 49
connection:didReceiveResponse: delegate

method, 47–48
connection:didSendBodyData:totalBytes

Written:totalBytesExpected: delegate
method, 51

connection:needNewbodyStream: delegate
method, 51

connectionTypesMask, 269
connection:willCacheResponse: delegate

method, 51–52
connection:willSendRequest:redirectResp

onse: delegate method, 46–47
Continuous Multicast, 283
contract programming, 11
controllers

InterstitialViewController, 113
logic, 108
LoginViewController, 113
NetworkErrorViewController, 113
view controllers, 114–116

RootViewController, 114–116
UITableViewController, 114–116

cookies, 54–56
creating, 59–60

bindex.indd 321bindex.indd 321 11/09/12 9:25 PM11/09/12 9:25 PM

322

cookies – endpoints, fetching

deleting, 57–58
domain mapping, 58
properties, 54–55
retrieving from responses, 56–57

Core Foundation layer, 4
Core Foundation networking. See CF

Network API
credentials

security, 151–152
URLs, 30
validating, 263–264

credentialsAreValid, 263
CRUD (create, read, update, delete), 259
cryptographic hashes, 131, 132–136
cryptography, public key, 139
CSR (Certifi cate Signing Request), 224–225
CSV (comma-separated values), 12–14
customer application (Bonjour), 309–317

D

Data Encryption Standard. See DES (Data
Encryption Standard)

data types, SOAP, 68
dataWithJSONObject:options:error:

method, 86
debugging, Game Kit, 271
decryption

AES
Objective-C, 147
PHP and, 146–147

NSString, method implementation, 142
DefaultMode, 8
DELETE method, 32
DES (Data Encryption Standard), 139

Triple-DES, 139, 143–144
decryption with Objective-C, 148

design patterns
command objects

behaviors, 108–109
description, 106–107

command queue
behaviors, 110

description, 107
controllers

behaviors, 108
description, 106

exception listeners
behaviors, 109–110
description, 107

device power, 160–161
DHCP (Dynamic Host Confi guration Protocol),

282
dictionary data type, SOAP, 68
dictionaryOfInstalledCompanion

Apps, 252
digest calculations, 133–135
dissectors, Wireshark, 200
DNS (Domain Name System), 282
DNS-based Service Discovery (DNS-SD), 5
DNS-SD (DNS-based Service Discovery),

283–284
DOM (Document Object Model), 74
domains, cookies, 58
doQueuedRequest method, 43–44
doSyncRequest method, 40–41
double data type, SOAP, 68
Downstream errors 500-level errors (HTTP),

101
DTDs (doctype defi nitions), 72

E

employee application (Bonjour), 301–309
encodeWithCoder: method, 253
encoding, chunked, 34
encryption

AES (Advanced Encryption Standard), 139
algorithms, 140
asymmetric, public key cryptography, 139
CCCrypt(), 140–144
DES (Data Encryption Standard), 139
NSString, method implementation, 142
payloads, PHP, 148–149
requests, 131

endianness, 275
endpoints, fetching, 19–20

cookies, (continued)

bindex.indd 322bindex.indd 322 11/09/12 9:25 PM11/09/12 9:25 PM

323

enhanced format – Game Kit

enhanced format, payloads, 236–237
enterprise SSO, 257–264
ERP (enterprise resource planning) software, 69
error handling

ambiguous reporting, 104
application errors, 102–103
CCCrypt() function, 144–145
consistency in handling, 105
error sources, 93–95

application errors, 102–103
HTTP errors, 101–102
operating system errors, 95–100

HTTP errors, 101–102
HTTP status and, 105
interface contract and, 103–104
network errors, 105–106

Command Dispatch pattern, 111–116
design patterns, 106–110
exception cases, 106

normal business conditions, 104
NSError, 105
payload validation, 104
timeouts, 105

error simulation, 200
error sources, 93–95

application errors, 102–103
HTTP errors, 101–102
operating system errors, 95–100

events
CFStream event types, 185
timer events, 7

exception listeners
behaviors, 109–110
InterstitialViewController, 113
LoginViewController, 113
NetworkErrorViewController, 113

F

façade
client examples, 15–17

service versioning, 17–18
versioned services, 19–20

reliability, 11

remote façade pattern, 10–12
services examples, 12–14

Façade Tester application, 12–14
FetchTopStoriesOperation, 78
fl oat data type, SOAP, 68
functions

CCCrypt(), 140–144
CFReadStreamOpen(), 182
CFRunLoopObserverRef(), 7
CFSocketSetAddress(), 288
CFStreamCreatePairWithSocketTo

Host(), 182
CFWriteStreamOpen(), 182
connect(), 181
gethostbyname(), 181
htons(), 181
kCFStreamEventOpenCompleted, 182
SecItemCopyMatching(), 260
SecItemDelete(), 262–263
socket(), 181
xmlTextWriterEndComment(), 91
xmlTextWriterEndElement(), 91
xmlTextWriterStartComment(), 91
xmlTextWriterStartDocument(), 91
xmlTextWriterStartElement(), 91
xmlTextWriterWriteAttribute(), 91
xmlTextWriterWriteComment(), 91
xmlTextWriterWriteString(), 91

G

GALobbyViewController, 272
Game Kit, 5

client-server mode, 268
GKSessionModeClient, 279
GKSessionModeServer, 279

data packets
populating, 275–276
serializing, 275–276

debugging, 271
GAPacketType, message types, 274–275
GAPacketTypeAuctionEnd, 274
GAPacketTypeAuctionStart, 274
GAPacketTypeAuctionStatus, 274

bindex.indd 323bindex.indd 323 11/09/12 9:25 PM11/09/12 9:25 PM

324

Game Kit – HTTP (Hypertext Transfer Protocol)

GAPacketTypeBid, 274
messages, reliability, 269–270
MFi, 269
overview, 268
P2P mode, 268, 271–272

client-server mode comparison, 279
connection states, 274
sending data, 274–278

sessions, connecting to, 272–274
turn-based match mode, 268
UITableView, 272–274
Wi-Fi, 269–270

GANetworkManager, 275
GAPacketType, message types, 274–275
GAPacketTypeAuctionStart, 277–278
GDataXML library, 74
GET method, 32
GetFeed method, 112
gethostbyname() function, 181
getInputStream:outputStream: method,

296, 298, 313
getValueForIdentifier: method, 260
GKPeerPickerController, 268–269,

271–272
GKPeerStateAvailable, 274
GKPeerStateConnected, 274
GKPeerStateConnecting, 274
GKPeerStateDisconnected, 274
GKPeerStateUnavailable, 274
GKSendDataReliable mode, 270–271
GKSendDataUnreliable mode, 270–271
GKSession, 268
GKSessionDelegate protocol, 5
GKSessionModePeer, 272

H

handleNewConnectionWithInputStream:

outputStream: method, 305
hardware, sniffi ng hardware, 192–193
hashing, 132–136
HEAD method, 32
headers

request headers, 60–61
key request headers, 62–63

response headers, 61–62
HelpRequest class, 299–300
HelpResponse class, 299–300
HiG (Human Interface Guidelines), 98
HMAC (Hash-Based Message Authentication

Code), 136–139
hostname, URLs, 30
HSURLConnection object, 38
HTML (Hypertext Markup Language)

DTDs (doctype defi nitions), 72
parsing, processContentData:

method, 80
payloads and, 72–73

response payloads, 79–82
htons() function, 181
HTTP (Hypertext Transfer Protocol)

APIs, 27
authentication, 124–125

HTTP Basic, 125–127
HTTP Digest, 125–127
NTLM, 125–127

breakpoints (Charles), 205–207
cookies, 54–56

creating, 59–60
deleting, 57–58
retrieving from responses, 56–57

error categories, 101
headers

key request headers, 62–63
request headers, 60–61
response, 61–62

HTTPS and, 29–30
overview, 28–29
requests, 27–30

asynchronous, 45–53
run loops and, 52–53

common objects, 35–39
contents, 31–33
HSURLConnection object, 38
methods, 53–54
NSURL object, 35–36
NSURLRequest object, 36–38

Game Kit, (continued)

bindex.indd 324bindex.indd 324 11/09/12 9:25 PM11/09/12 9:25 PM

325

HTTP pipelining – kSecAttrComment Keychain item attribute

NSURLResponse object, 38–39
queued asynchronous, 42–45
response contents, 33–34
synchronous, 39–42
URIs, 32–33

HTTP pipelining, 169–170
HTTPS requests, proxies, 202

I

Info.plist, 248–249
Informational 100-level errors (HTTP), 101
initWithCoder: method, 253
initWithDomain:type:name:, 285
integers, SOAP, 68
interfaces

error handling and, 103–104
GKPeerPickerController, 268–269
network interface descriptions, 196
NSData+Encryption, 140–141
NSString+Encryption, 140–141
Post object, 74–75
RSS parser, 75–76

InterstitialViewController, 113
isValidJSONObject: method, 86

J

JSON
generation, 87–89
parsing

JSONObjectWithData:options:

error: method, 83–86
NSJSONReadingAllowFragments

method, 83
NSJSONReadingMutableContainers

method, 83
NSJSONReadingMutableLeaves

method, 83
NSJSONSerialization class, 83–86
Tweet object, 83–85

payloads and, 71–72
response payloads, 83–86

request bodies, 162

response bodies, 162
transmission, 87–89

JSONObjectWithData:options:error:
method, 83–86

K

kCFSocketAcceptCallback, 285, 304–305
kCFStreamEventOpenCompleted function,

182
key request headers, 62–63
keychain search dictionary, 259
keychain search status codes, 261
Keychain Services API, 151

item attributes, editable, 151–152
search attributes, 154

keychain values, 260
keychainSearch: method, 259–260, 262
KissXML library, 74
known answer suppression, 283
kReachabilityChangedNotification,

100
kSecAttrAccessGroup Keychain item attribute,

151
kSecAttrAccessible Keychain item attribute,

151
values, 153

kSecAttrAccount Keychain item
attribute, 151

kSecAttrApplicationLabel Keychain item
attribute, 152

kSecAttrCanDecrypt Keychain item attribute,
152

kSecAttrCanDerive Keychain item attribute,
152

kSecAttrCanEncrypt Keychain item attribute,
152

kSecAttrCanSign Keychain item attribute, 152
kSecAttrCanUnwrap Keychain item attribute,

152
kSecAttrCanVerify Keychain item attribute,

152
kSecAttrCanWrap Keychain item attribute, 152
kSecAttrComment Keychain item attribute, 151

bindex.indd 325bindex.indd 325 11/09/12 9:25 PM11/09/12 9:25 PM

326

kSecAttrCreator Keychain item attribute – methods

kSecAttrCreator Keychain item attribute, 151
kSecAttrDescription Keychain item

attribute, 151
kSecAttrEffectiveKeySize Keychain item

attribute, 152
kSecAttrGeneric Keychain item attribute, 152
kSecAttrIsInvisible Keychain item attribute,

151
kSecAttrIsNegative Keychain item attribute,

151
kSecAttrIsPermanent Keychain item attribute,

152
kSecAttrKeySizeInBits Keychain item

attribute, 152
kSecAttrKeyType Keychain item attribute, 152
kSecAttrLabel Keychain item attribute, 151
kSecAttrPath Keychain item attribute, 152
kSecAttrPort Keychain item attribute, 152
kSecAttrSecurityAuthenticationType

Keychain item attribute, 152
kSecAttrSecurityDomain Keychain item

attribute, 152
kSecAttrSecurityProtocol Keychain item

attribute, 152
kSecAttrSecurityServer Keychain item

attribute, 152
kSecAttrService Keychain item attribute, 152
kSecAttrType Keychain item attribute, 151
kSecMatchLimit, 260
kSecMatchLimitOne, 260

L

layered networks, 94–95
layers, 3–4
libxml wrapper, 80
libxml.NSXMLParser, 74
little-endian byte orders, 275
local notifi cations, 213

arrival, 219–222
canceling, 218–219
creating, 214–218
scheduling, 216–217

follow-up, 217–218

UILocalNotification, 214
properties, 215–216

LoginCommand method, 112–113
LoginViewController, 113
loops, run loops, NSRunLoop, 7

M

MAC (message authentication codes), 131,
136–139

mDNS (multicast DNS), 5
known answer suppression, 283
zeroconf, 283

Continuous Multicast, 283
One-Shot Multicast, 283

messages
Game Kit, reliability, 269–270
SOAP, 66–67

methods
authentication delegate methods, 52
cancelAllLocalNotifications:,

218–219
cancelLocalNotification:, 218–219
canOpenURL:, 251
connection:didFailWithError:, 49–50
connectionDidFinishLoading, 50–51
connection:didReceiveData:, 49
connection:didReceiveResponse:,

47–48
connection:didSendBodyData:totalByt

esWritten:totalBytesExpected:, 51
connection:needNewbodyStream:, 51
connection:willCacheResponse:,

51–52
connection:willSendRequest:redirect

Response:, 46–47
dataWithJSONObject:options:

error:, 86
doQueuedRequest, 43–44
doSyncRequest, 40–41
encodeWithCoder:, 253
GetFeed, 112
getInputStream:outputStream:, 296,

298, 313

bindex.indd 326bindex.indd 326 11/09/12 9:25 PM11/09/12 9:25 PM

327

MFi – network errors

getValueForIdentifier:, 260
handleNewConnectionWithInputStream:

outputStream:, 305
HTTP requests, 53–54
initWithCoder:, 253
isValidJSONObject:, 86
JSONObjectWithData:options:error:,

83–86
keychainSearch:, 259–260, 262
LoginCommand, 112–113
mutator, 36
netServiceBrowser:didFindService:mo

reComing:, 311–312
netServiceBrowser:didStopSearch:,

310–311
netServiceDidResolveAddress:, 294,

313
NSJSONReadingAllowFragments, 83
NSJSONReadingMutableContainers, 83
NSJSONReadingMutableLeaves, 83
NSURLAuthenticationMethodClient

Certificate, 121
NSURLAuthenticationMethodDefault,

121
NSURLAuthenticationMethodHTMLForm,

121
NSURLAuthenticationMethodHTTPBasic,

121
NSURLAuthenticationMethodHTTPDigest,

121
NSURLAuthenticationMethodNegotiate,

121
NSURLAuthenticationMethodNTLM, 121
NSURLAuthenticationMethodServer

Trust, 121
parserDidEndDocument:, 78
parserDidStartDocument:, 78
processContentData:, 80
publicServiceWithName:, 301–302
removeFromRunLoop:forMode:, 288
requests

DELETE, 32
GET, 32
HEAD, 32

POST, 32
PUT, 32

requestVideoFeed, 114–116
resolveWithTimeout:, 293–295
scheduleInRunLoop:forMode:, 288
SecPKCS12Import(), 128–129
SecRandomCopyBytes(), 145
sendHelpResponse:, 307–308
setter, 36
setValue:forIdentifier:, 261
stream:handleEvent:, 296–297
topStoriesParsedWithResult:, 78
URLWithString, 35
viewDidLoad, 264–265
viewWillAppear:, 263
writeJSONObject:toStream:options:er

ror:, 86
MFi, 269
multitasking, Bonjour, 290
mutator methods, 36

N

netServiceBrowser:didFindService:

moreComing: method, 311–312
netServiceBrowser:didNotSearch:

method, 310
netServiceBrowser:didStopSearch:

method, 310–311
netServiceDidResolveAddress: method,

294, 313
network errors, 105–106

Command Dispatch pattern
BaseCommand object, 111
exception listeners, 113–114
GetFeed method, 112
LoginCommand method, 112–113
prerequisites, 111
view controllers, 114–116

design patterns
command objects, 106–109
command queue, 107, 110
controllers, 106, 108
exception listeners, 107, 109–110

bindex.indd 327bindex.indd 327 11/09/12 9:25 PM11/09/12 9:25 PM

328

network errors – NSNetService class

exception cases, 106
network traffi c

error simulation, 200
future state simulation, 201
NLC (Network Link Conditioner), 210–211
reverse engineering, 201
security validation, 201
server validation, 201
sniffi ng

hardware, 192–193
software, 193–200

networkChanged: method, 100
NetworkErrorViewController, 113
networking APIs, 4

Bonjour, 5
BSD sockets, 6–7
CFNetwork, 6
Game Kit, 5
NSNetService, 5
NSStream, 6
NSURLConnection, 5

networkingResultsDidFail message, 179
networkingResultsDidLoad message, 179
networks

bandwidth, 158–159
frameworks, 3–4
interface descriptions, 196
latency, 159–160

requests, reducing, 168–170
layered, 3–4, 94–95
optimizing, 161–173
PANs (personal area networks), 268
performance

bandwidth, 158–159
device power, 160–161
latency, 159–160
measuring, 158–161

real-world simulations, 209–211
NLC (Network Link Conditioner), 210–211
notifi cations

APNs, 223–224
best practices, 243–244
local, 213

arrival, 219–222
canceling, 218–219
creating, 214–218
scheduling, 216–218

push, 213
remote, 213

confi guring, 224–229
CSR (Certifi cate Signing Request),

224–225
payloads, 234–236
registering, 214, 223–224, 229–234
responding to, 240–243
sending, 236–240
types, 232

NSCalendarUnit, 214
NSCoding, 253
NSData+Encryption interface defi nition,

140–141
NSDefaultRunLoopMode, 8
NSDictionary, 86–87
NSError object, 96–97, 102
NSHTTPCookie object, 55
NSHTTPCookieStorage object, 55
NSHTTPURLResponse class, 34, 39
NSInputStream, 295
NSJSONReadingAllowFragments method, 83
NSJSONReadingMutableContainers method, 83
NSJSONReadingMutableLeaves method, 83
NSJSONSerialization class, 83–86

dataWithJSONObject:options:error:
method, 86

isValidJSONObject: method, 86
NSJSONWritingPrettyPrinted, 86
writeJSONObject:toStream:options:er

ror: method, 86
NSJSONWritingPrettyPrinted, 86
NSKeyedArchiver, 252–253, 299
NSKeyedUnarchiver, 299
NSMutableData, 316
NSMutableDictionary, 275
NSMutableURLRequest class, 33
NSNetService, 288
NSNetService API, 5
NSNetService class, 285

network errors (continued)

bindex.indd 328bindex.indd 328 11/09/12 9:25 PM11/09/12 9:25 PM

329

NSNetServiceBrowser class – NSURLResponse object

NSNetServiceBrowser class, 290, 310
NSNetServiceDelegate protocol, 288
NSNetServicesErrorCode, 291
NSNetServicesErrorDomain, 295
NSNotificationCenter, 309–310

networkChanged: method, 100
NSOperationQueue object, 42–43, 111
NSOutputStream, 295
NSRunLoop, 7
NSRunLoopCommonModes, 8
NSStream API, 6

implementing, 187
NSInputStream, 186
NSOutputStream, 186
NSStreamDelegate, 186

NSStreamDelegate protocol, 186, 296
implementing, 188–189

NSStreamEventEndEncountered, 297
NSStreamEventErrorOccurred, 297
NSStreamEventHasBytesAvailable, 297
NSStreamEventHasSpaceAvailable,

297, 314
NSStreamEventOpenCompleted, 297
NSString, 41, 133

encryption/decryption method
implementations, 141–142

NSString+Encryption interface defi nition,
140–141

NSURL object, 30, 35–36
NSURLAuthenticationChallenge, 120–121
NSURLAuthenticationMethodClient

Certificate method, 121
NSURLAuthenticationMethodDefault method,

121
NSURLAuthenticationMethodHTMLForm

method, 121
NSURLAuthenticationMethodHTTPBasic

method, 121
NSURLAuthenticationMethodHTTPDigest

method, 121
NSURLAuthenticationMethodNegotiate

method, 121
NSURLAuthenticationMethodNTLM

method, 121

NSURLAuthenticationMethodServerTrust
method, 121

NSURLCache, confi guration, 172
NSURLConnection, 120

compression, 163
NSURLConnection API, 5
NSURLConnection object, 97
NSURLConnectionDelegate object, 45

connection:didFailWithError: method,
49–50

connectionDidFinishLoading method,
50–51

connection:didReceiveData:
method, 49

connection:didReceiveResponse:
method, 47–48

connection:didSendBodyData:total

BytesWritten:totalBytesExpectedToW

rite: method, 51
connection:needNewbodyStream: method,

51
connection:willCacheResponse: method,

51–52
connection:willSendRequest:redirect

Response: method, 46–47
NSURLCredential, 122
NSURLProtectionSpace, 120–121

protocols, 121
NSURLProtectionSpaceHTTPS, 121
NSURLRequest object, 33, 36–38

pipelining, 170
NSURLRequestReloadIgnoringLocalAndRemote

CacheData, 171
NSURLRequestReloadIgnoringLocalCache

Data, 171
NSURLRequestReloadRevalidatingCacheData,

171
NSURLRequestReturnCacheDataDontLoad,

171
NSURLRequestReturnCacheDataElseLoad,

171
NSURLRequestUseProtocolCachePolicy,

171
NSURLResponse object, 34, 38–39

bindex.indd 329bindex.indd 329 11/09/12 9:25 PM11/09/12 9:25 PM

330

NSXMLParser – payloads

NSXMLParser, 74
NTLM authentication, 125–127

O

Objective-C
AES decryption, 147
Triple-DES decryption, 148

Objective-C APIs, 4
objects

HSURLConnection, 38
NSError, 96–97
NSHTTPCookie, 55
NSHTTPCookieStorage, 55
NSOperationQueue, 42–43, 111
NSURL, 30, 35–36
NSURLConnectionDelegate, 45
NSURLRequest, 33, 36–38
NSURLResponse, 34, 38–39
toll-free bridging, 187
transferResponse, 103
Tweet, 83–85

OFX (Open Financial Exchange), 71
One-Shot Multicast, 283
operating system errors

causes, 95–96
NSError object, 96–97
NSURLConnection object, 97
Reachability wrapper, 98
SystemConfiguration framework, 98
UIAlertViews, 98

P

Packet Decomposition panel (Wireshark), 196
Packet Hex Dump (Wireshark), 198
Packet Reassembly Views (Wireshark), 199
packets

analysis, 192–193
latency and, 160

PANs (personal area networks), 268
parserDidEndDocument: method, 78

parserDidStartDocument: method, 78
parsing

DOM and, 74
HTML, processContentData: method, 80
JSON

JSONObjectWithData:options:

error: method, 83–86
NSJSONReadingAllowFragments

method, 83
NSJSONReadingMutableContainers

method, 83
NSJSONReadingMutableLeaves method,

83
NSJSONSerialization class, 83–86
Tweet object, 83–85

RSS, 75–79
FetchTopStoriesOperation, 78
parserDidEndDocument: method, 78
parserDidStartDocument:

method, 78
topStoriesParsedWithResult:

method, 78
SAX and, 74
service locator fi les, 21–23
XML parsers, 74

payloads
compression, 163
data formats

HTML, 72–73
JSON, 71–72
XML, 70–71

defi nition, 66
encryption, 148–149
enhanced format, 236–237
generation, 148–149
POST requests, 70
remote notifi cations, 234–236
request payloads, JSON, 86–89
response payloads, 73

HTML, 79–82
JSON, 83–86
XML, 74–79, 89–92

simple format, 236–237

resolveWithTimeout: method, (continued)

bindex.indd 330bindex.indd 330 11/09/12 9:25 PM11/09/12 9:25 PM

331

peer-to-peer (P2P) mode (Game Kit) – requests

validation, error handling and, 104
peer-to-peer (P2P) mode (Game Kit),

268, 271–272
compared to client-server mode, 279
connection states, 274
sending data, 274–278

PEM fi le, 228–229
PHP

AES decryption, 146–147
payload encryption, 148–149

PII (Personally Identifi able Information), 69
port, URLs, 31
port numbers, 288
POST method, 32
Post object, interface, 74–75
POST requests, payloads, 70
previous installation detection, 264–266
processContentData: method, 80
programming, contract programming, 11
protection space, 120–121
protocols

defi nition, 66
URLs, 30

publicServiceWithName: method, 301–302
push notifi cations, 213–214
PUT method, 32

Q

queries, URLs, 31
queued asynchronous requests, 42–45

R

Reachability API, 98–99
Reachability wrapper, 98
real-world network simulations, 209–211
Redirection needed 300-level errors

 (HTTP), 101
Reeves, Ben, 80
remote façade pattern, 10–12
remote notifi cations, 213

confi guring, 224–229

CSR (Certifi cate Signing Request),
224–225

payloads, 234–236
registering, 214, 223–224, 229–234
responding to, 240–243
sending, 236–240
types, 232

removeFromRunLoop:forMode:
method, 288

reporting errors, ambiguous, 104
request clustering, 169
request encryption, 131
request payloads, JSON, 86–89
requests

avoiding, 170–172
bandwidth

reducing, 161–168
response compression, 162–164

bodies
JSON, 162
XML, 162

caching, default behavior, 170–171
compression, 165–168
HTTP, 27–31

asynchronous, 45–53
common objects, 35–39
contents, 31–33
headers, 60–61
HSURLConnection object, 38
methods, 53–54
NSURL object, 35–36
NSURLRequest object, 36–38
NSURLResponse object, 38–39
queued asynchronous, 42–45
response contents, 33–34
synchronous, 39–42
URIs, 32–33

HTTPS, proxies, 202
latency, reducing, 168–170
methods

DELETE, 32
GET, 32
HEAD, 32

bindex.indd 331bindex.indd 331 11/09/12 9:25 PM11/09/12 9:25 PM

332

requests – Security framework

POST, 32
PUT, 32

requestVideoFeed method, 114–116
rescheduling, 7
resolution, zeroconf, 282–283
resolveWithTimeout: method, 293–295
resources, REST and, 68
response headers, 61–62
response payloads, 73

HTML, 79–82
JSON, 83–86
XML, 74–79, 89–92

responses
bodies

JSON, 162
XML, 162

compressing, 162–164
cookie retrieval, 56–57
NSURLRequestReloadIgnoring

LocalAndRemoteCacheData, 171
NSURLRequestReloadIgnoringLocalCache

Data, 171
NSURLRequestReloadRevalidatingCache

Data, 171
NSURLRequestReturnCacheDataDont

Load, 171
NSURLRequestReturnCacheDataElse

Load, 171
NSURLRequestUseProtocolCache

Policy, 171
REST (representational state transfer),

68–69
ERP software, 69
PII and, 69
services, 70
WS-Security, 69

reverse engineering, network traffi c and, 201
RootViewController, 114–116
RSS (Really Simple Syndication), 71

parser, 75–79
FetchTopStoriesOperation, 78
parserDidEndDocument: method, 78
parserDidStartDocument: method, 78

topStoriesParsedWithResult:
method, 78

run loops
asynchronous requests and, 52–53
Bonjour, 288
CFNetwork API, 182
CFRunLoopActivity and, 7
modes, 8
NSDefaultRunLoopMode, 8
NSRunLoop, 7
NSRunLoopCommonModes, 8
rescheduling, 7
timer events, 7
timers, 7

S

SAX (Simple API for XML), 74
scheduleInRunLoop:forMode: method, 288
scheduling, local notifi cations, 216–217

follow-up, 217–218
SCNetworkReachability, 98
searches, Keychain Services API, 154
SecItemCopyMatching() function, 260
SecItemDelete() function, 262–263
SecPKCS12Import() method, 128–129
SecRandomCopyBytes() method, 145
security

authentication, HTTP, 124–131
credentials, 151–152
cryptographic hashes, 132–136
encryption

AES (Advanced Encryption Standard),
139

algorithms, 140
DES (Data Encryption Standard), 139

hashes, 132–136
MAC (message authentication code), 136–139
NTLM authentication, 125–127
server, communication verifi cation, 120–124
validation, 201

Security framework, 120
Keychain Services API, 151
NSURLConnection, 120

requests, (continued)

bindex.indd 332bindex.indd 332 11/09/12 9:25 PM11/09/12 9:25 PM

333

sendHelpRequest: – toll-free bridging

SecPKCS12Import() method,
128–129

SecRandomCopyBytes() method, 145
shared keychains, 258–259

sendHelpRequest:, 313
sendHelpResponse: method, 307–308
sensing app presence, 251–252
serialization

custom objects, 253
iOS types, 253

server
BSD socket server, 177–178
security, communication verifi cation,

120–124
validation, 201

service architecture, 9–10
remote façade pattern, 10–12

service locators, 20–23
loading fi les, 21–23
parsing fi les, 21–23

service versioning, 17–18
examples, 18–19

client example, 19–20
serviceLocator.json fi le, 21
setsockopt function, 288
setter methods, 36
setValue:forIdentifier: method, 261
SGML (Standard Generalized Markup

Language), 70
shared keychains

creating items, 261–262
keychain search dictionary, 259
kSecMatchLimit, 260
kSecMatchLimitOne, 260
reading values, 260
search status codes, 261
SSO, 257–264
updating items, 261–262

simple format, payloads, 236–237
simulating errors, 200
sniffi ng

hardware, 192–193
software

tcpdump, 193–194

Wireshark, 195–200
SOA (Service-Oriented Architectures), 66
SOAP (Simple Object Access Protocol),

66–68
data types, 68
messages, 66–67
WSDL and, 68
XSD and, 68

socket() function, 181
socket client, connecting as, 178–182
socket.h, 177
sockets

BSD sockets, 6–7
callback functions, registering, 184
creating, CFNetwork, 182–183

software, sniffi ng
tcpdump, 193–194
Wireshark, 195–200

sources of errors, 93–95
application errors, 102–103
HTTP errors, 101–102
operating system errors, 95–100

SSO (single sign-on), 257–264
stream:handleEvent: method,

296, 297
streamStatus property, 296
strings, SOAP, 68
Successful 200-level errors (HTTP), 101
synchronous requests, 39–42
SystemConfiguration framework, 98

T

TBXML library, 74
TCP connections, 29

reusing, 169
TCP sockets, 177

clients, 178
tcpdump, sniffi ng and, 193–194
threads, background, fetching results, 179
timer events, 7
timers, 7
TLDs (top-level domain), names, 12
toll-free bridging, 187

bindex.indd 333bindex.indd 333 11/09/12 9:25 PM11/09/12 9:25 PM

334

topStoriesParsedWithResult: method – XML

topStoriesParsedWithResult:
method, 78

TouchXML library, 74
transferResponse object, 103
Triple-DES encryption, 143–144

decryption with Objective-C, 148
turn-based match mode (Game Kit), 268
Tweet object, 83–85
TXT record data, 295

U

UDP sockets, 177–178
UI logic, controllers and, 108
UIAlertView category, 222
UIAlertViews, 98
UIApplication, canOpenURL: method, 251
UIApplicationLaunchOptionsSource

ApplicationKey, 249
UIApplicationLaunchOptionsURLKey, 249
UILaunchImageFile, 249
UILocalNotification, 214–216
UIRemoteNotificationTypeAlert, 232
UIRemoteNotificationTypeBadge, 232
UIRemoteNotificationTypeNewsstand

ContentAvailability, 232
UIRemoteNotificationTypeSound, 232
UIRequiredDeviceCapabilities

dictionary, 269
UITableView, Game Kit and, 272–274
UITableViewController, 114–116
URIs (uniform resource identifi ers)

HTTP requests, 32–33
REST and, 68

URLs (Uniform Resource Locators), 28
absolute-path, 31
credentials, 30
hostname, 30
port, 31
protocol, 30
query, 31
structure, 30–31
URL schemes

advanced communication, 252–257

custom, implementing, 248–251
execution paths, 249

valid characters, 253
values, managing, 35–36

URLWithString method, 35

V

validation
credentials, 263–264
payloads, error handling and, 104

versioning, service versioning, 17–18
client example, 19–20
examples, 18–19

view controllers, 114–116
RootViewController, 114–116
UITableController, 114–116

viewDidLoad method, 264–265
viewWillAppear: method, 263
VoiceXML, 71

W

Wi-Fi, Game Kit, 269–270
willSendRequestForAuthentication

Challenge:, 122
wireless networks, bandwidth, 158
Wireshark, 195–200
writeJSONObject:toStream:options:error:

method, 86
WSDL (Web Service Description Language), SOAP

client-side code, 68
WS-Security, 69

X

Xcode, plist editor, 248
XML (Extensible Markup Language)

libraries
GDataXML, 74
KissXML, 74
TBXML, 74
TouchXML, 74

libxml.NSXMLParser, 74

bindex.indd 334bindex.indd 334 11/09/12 9:25 PM11/09/12 9:25 PM

335

xmlTextWriterEndComment() function – zeroconf

NSXMLParser, 74
payloads and, 70–71

response payloads, 74–79
request bodies, 162
requests, creation and transmission, 91–92
response bodies, 162
response payloads, 89–92
SOAP and, 66
VoiceXML, 71

xmlTextWriterEndComment() function, 91
xmlTextWriterEndElement() function, 91
xmlTextWriterStartComment() function, 91
xmlTextWriterStartDocument() function, 91
xmlTextWriterStartElement() function, 91
xmlTextWriterWriteAttribute() function, 91
xmlTextWriterWriteComment() function, 91

xmlTextWriterWriteString() function, 91
XPath (XML Path Language), 74
XSD (XML Schema Defi nition), SOAP

client-side code, 68

Z

zeroconf, 282
DNS-SD (DNS-based Service Discovery),

283–284
link-local addressing, 282
mDNS (Multicast Domain Name Service),

283
Continuous Multicast, 283
One-Shot Multicast, 283

resolution, 282–283

bindex.indd 335bindex.indd 335 11/09/12 9:25 PM11/09/12 9:25 PM

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox49 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read thousands of books for free online with this 15-day
trial offer.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

trial

badvert.indd 336badvert.indd 336 13/09/12 2:38 PM13/09/12 2:38 PM

http://www.safaribooksonline.com/wrox49

Related Wrox Books
Beginning iOS Game Development
ISBN: 978-1-118-10732-4

No matter your experience level with iOS programming, this beginner’s guide covers the technologies

you need to know to get started creating fun iOS games. Learning how to create games should be

nearly as much fun as playing them, so this book offers a complete, playable game in nearly every

chapter. Each game is created in simple, easy-to-understand parts, building to a full game by

chapter’s end.

Professional iPhone and iPad Database Application Programming
ISBN: 978-0-470-63617-6

As the iPhone and iPad grow in popularity, there is a growing demand for applications that are focused

on data. Developers need to know how to get data onto these devices, deal with and create data,

and communicate with external services—this book satisfies that need. The in-depth coverage of

displaying and manipulating data, creating and managing data using Core Data, and integrating

your applications using web services puts you on your way to implementing data-driven applications

for the iPhone or iPad.

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Patrick Alessi

Professional

iPhone® and iPad™

Database Application Programming

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Beginning

iOS Game
Development

Patrick Alessi
IN FULL COLOR

Related Wrox Books
Beginning iOS Game Development
ISBN: 978-1-118-10732-4

No matter your experience level with iOS programming, this beginner’s guide covers the technologies

you need to know to get started creating fun iOS games. Learning how to create games should be

nearly as much fun as playing them, so this book offers a complete, playable game in nearly every

chapter. Each game is created in simple, easy-to-understand parts, building to a full game by

chapter’s end.

Professional iPhone and iPad Database Application Programming
ISBN: 978-0-470-63617-6

As the iPhone and iPad grow in popularity, there is a growing demand for applications that are focused

on data. Developers need to know how to get data onto these devices, deal with and create data,

and communicate with external services—this book satisfies that need. The in-depth coverage of

displaying and manipulating data, creating and managing data using Core Data, and integrating

your applications using web services puts you on your way to implementing data-driven applications

for the iPhone or iPad.

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Patrick Alessi

Professional

iPhone® and iPad™

Database Application Programming

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Beginning

iOS Game
Development

Patrick Alessi
IN FULL COLOR

	Professional iOS Network Programming: Connecting the Enterprise to the iPhone® and iPad®
	Copyright
	About the Authors
	About the Technical Editor
	Credits
	Acknowledgments
	Contents
	Introduction
	Who this Book is for
	What this Book Covers
	How this Book is Structured
	What you need to use this Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Part I: Understanding iOS and Enterprise Networking
	Chapter 1: Introducing iOS Networking Capabilities
	Understanding the Networking Frameworks
	iOS Networking APIs
	NSURLConnection
	Game Kit
	Bonjour
	NSStream
	CFNetwork
	BSD Sockets

	Run Loops
	Run Loop Modes

	Summary

	Chapter 2: Designing Your Service Architecture
	Remote Façade Pattern
	Example Façade Services
	Example Façade Clients

	Service Versioning
	Example Versioned Services
	Example Client Using Versioned Services

	Service Locators
	Summary

	Part II: HTTP Requests: The Workhorse of iOS Networking
	Chapter 3: Making Requests
	Introducing HTTP
	Understanding HTTP Requests and Responses
	URL Structure
	Request Contents
	Response Contents

	High-Level iOS HTTP APIs
	Objects Common to All Request Types
	Synchronous Requests
	Queued Asynchronous Requests
	Asynchronous Requests

	Advanced HTTP Manipulation
	Using Request Methods
	Cookie Manipulation
	Advanced Headers

	Summary

	Chapter 4: Generating and Digesting Payloads
	Web Service Protocols and Styles
	Simple Object Access Protocol (SOAP)
	Representational State Transfer (REST)
	Choosing an Approach

	Payloads
	Introducing Payload Data Formats
	Digesting Response Payloads
	Generating Request Payloads

	Summary

	Chapter 5: Handling Errors
	Understanding Error Sources
	Operating System Errors
	HTTP Errors
	Application Errors

	Rules of Thumb for Handling Errors
	Include Error Handling In the Interface Contract
	Error Statuses Lie
	Validate the Payload
	Separate Errors from Normal Business Conditions
	Always Check HTTP Status
	Always Check NSError
	Develop a Consistent Method for Handling Errors
	Always Set a Timeout

	Gracefully Handling Network Errors
	Design Pattern Description
	Command Dispatch Pattern Example

	Summary

	Part III: Advanced Networking Techniques
	Chapter 6: Securing Network Traffic
	Verifying Server Communication
	Authenticating with HTTP
	HTTP Basic, HTTP Digest, and NTLM Authentication
	Client-Certificate Authentication

	Message Integrity with Hashing and Encryption
	Hashing
	Message Authentication Codes
	Encryption

	Storing Credentials Securely on the Device
	Summary

	Chapter 7: Optimizing Request Performance
	Measuring Network Performance
	Network Bandwidth
	Network Latency
	Device Power

	Optimizing Network Operations
	Reducing Request Bandwidth
	Reducing Request Latency
	Avoid Network Requests

	Summary

	Chapter 8: Low-Level Networking
	BSD Sockets
	Configuring a Socket Server
	Connecting as a Socket Client

	CFNetwork
	NSStream
	Summary

	Chapter 9: Testing and Manipulating Network Traffic
	Observing Network Traffic
	Sniffing Hardware
	Sniffing Software

	Manipulating Network Traffic
	Setting Up Charles
	HTTP Breakpoints
	Rewrite Rules

	Simulating Real-World Network Conditions
	Summary

	Chapter 10: Using Push Notifications
	Scheduling Local Notifications
	Creating Local Notifications
	Canceling Local Notifications
	Handling the Arrival of Local Notifications

	Registering and Responding to Remote Notifications
	Configuring Remote Notifications
	Registering for Remote Notifications
	Remote Notification Payloads
	Sending Remote Notifications
	Responding to Remote Notifications

	Understanding Notification Best Practices
	Summary

	Part IV: Networking App to App
	Chapter 11: Inter-App Communication
	URL Schemes
	Implementing a Custom URL Scheme
	Sensing the Presence of Other Apps
	Advanced Communication

	Shared Keychains
	Enterprise SSO
	Detecting Previous Installations

	Summary

	Chapter 12: Device-to-Device Communication with Game Kit
	Game Kit Basics
	Peer-to-Peer Networking
	Connecting to a Session
	Sending Data to Peers

	Client-Server Communication
	Summary

	Chapter 13: Ad-Hoc Networking with Bonjour
	Zeroconf Overview
	Addresses
	Resolution
	Discovery

	Bonjour Overview
	Publishing a Service
	Browsing for Services
	Resolving a Service
	Communicating with a Service

	Implementing Bonjour-Based Applications
	Employee Application
	Customer Application

	Summary

	Index
	Advertisement

