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Online	book	about	how	to	write	a	computer	operating	system	in	C/C++	from	scratch.

Caution:	This	repository	is	a	remake	of	my	old	course.	It	was	written	several	years	ago	as	one	of	my	first	projects	when	I
was	in	High	School,	I'm	still	refactoring	some	parts.	The	original	course	was	in	French	and	I'm	not	an	English	native.	I'm
going	to	continue	and	improve	this	course	in	my	free-time.

Book:	An	online	version	is	available	at	http://samypesse.gitbooks.io/how-to-create-an-operating-system/	(PDF,	Mobi	and
ePub).	It	was	been	generated	using	GitBook.

Source	Code:	All	the	system	source	code	will	be	stored	in	the	src	directory.	Each	step	will	contain	links	to	the	different
related	files.

Contributions:	This	course	is	open	to	contributions,	feel	free	to	signal	errors	with	issues	or	directly	correct	the	errors	with
pull-requests.

Questions:	Feel	free	to	ask	any	questions	by	adding	issues.	Please	don't	email	me.

You	can	follow	me	on	Twitter	@SamyPesse	or	support	me	on	Flattr	or	Gittip.

The	goal	is	to	build	a	very	simple	UNIX-based	operating	system	in	C++,	not	just	a	"proof-of-concept".	The	OS	should	be
able	to	boot,	start	a	userland	shell,	and	be	extensible.
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What	kind	of	OS	are	we	building?
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The	term	x86	denotes	a	family	of	backward	compatible	instruction	set	architectures	based	on	the	Intel	8086	CPU.

The	x86	architecture	is	the	most	common	instruction	set	architecture	since	its	introduction	in	1981	for	the	IBM	PC.	A	large
amount	of	software,	including	operating	systems	(OS's)	such	as	DOS,	Windows,	Linux,	BSD,	Solaris	and	Mac	OS	X,
function	with	x86-based	hardware.

In	this	course	we	are	not	going	to	design	an	operating	system	for	the	x86-64	architecture	but	for	x86-32,	thanks	to
backward	compatibility,	our	OS	will	be	compatible	with	our	newer	PCs	(but	take	caution	if	you	want	to	test	it	on	your	real
machine).

The	goal	is	to	build	a	very	simple	UNIX-based	operating	system	in	C++,	but	the	goal	is	not	to	just	build	a	"proof-of-concept".
The	OS	should	be	able	to	boot,	start	a	userland	shell	and	be	extensible.

The	OS	will	be	built	for	the	x86	architecture,	running	on	32	bits,	and	compatible	with	IBM	PCs.

Specifications:

Code	in	C++
x86,	32	bit	architecture
Boot	with	Grub
Kind	of	modular	system	for	drivers
Kind	of	UNIX	style
Multitasking
ELF	executable	in	userland
Modules	(accessible	in	userland	using	/dev/...)	:

IDE	disks
DOS	partitions
Clock
EXT2	(read	only)
Boch	VBE

Userland	:
API	Posix
LibC
"Can"	run	a	shell	or	some	executables	like	Lua,	...

Chapter	1:	Introduction	to	the	x86	architecture	and	about	our
OS

What	is	the	x86	architecture?

Our	Operating	System
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The	first	step	is	to	setup	a	good	and	viable	development	environment.	Using	Vagrant	and	Virtualbox,	you'll	be	able	to
compile	and	test	your	OS	from	all	the	OSs	(Linux,	Windows	or	Mac).

Vagrant	is	free	and	open-source	software	for	creating	and	configuring	virtual	development	environments.	It	can	be
considered	a	wrapper	around	VirtualBox.

Vagrant	will	help	us	create	a	clean	virtual	development	environment	on	whatever	system	you	are	using.	The	first	step	is	to
download	and	install	Vagrant	for	your	system	at	http://www.vagrantup.com/.

Oracle	VM	VirtualBox	is	a	virtualization	software	package	for	x86	and	AMD64/Intel64-based	computers.

Vagrant	needs	Virtualbox	to	work,	Download	and	install	for	your	system	at	https://www.virtualbox.org/wiki/Downloads.

Once	Vagrant	and	Virtualbox	are	installed,	you	need	to	download	the	ubuntu	lucid32	image	for	Vagrant:

vagrant	box	add	lucid32	http://files.vagrantup.com/lucid32.box

Once	the	lucid32	image	is	ready,	we	need	to	define	our	development	environment	using	a	Vagrantfile,	create	a	file	named
Vagrantfile.	This	file	defines	what	prerequisites	our	environment	needs:	nasm,	make,	build-essential,	grub	and	qemu.

Start	your	box	using:

vagrant	up

You	can	now	access	your	box	by	using	ssh	to	connect	to	the	virtual	box	using:

vagrant	ssh

Put	any	file	into	the	same	directory	of	Vargrantfile,	it	will	be	available	in	the	/vagrant	directory	of	VM	(in	this	case,	Ubuntu
Lucid32):

cd	/vagrant

The	file	Makefile	defines	some	basics	rules	for	building	the	kernel,	the	user	libc	and	some	userland	programs.

Build:

Chapter	2:	Setup	the	development	environment

Install	Vagrant

Install	Virtualbox

Start	and	test	your	development	environment

Build	and	test	our	operating	system
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make	all

Test	our	operating	system	with	qemu:

make	run

The	documentation	for	qemu	is	available	at	QEMU	Emulator	Documentation.

You	can	exit	the	emulator	using:	Ctrl-a.
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When	an	x86-based	computer	is	turned	on,	it	begins	a	complex	path	to	get	to	the	stage	where	control	is	transferred	to	our
kernel's	"main"	routine	(	kmain()	).	For	this	course,	we	are	only	going	to	consider	the	BIOS	boot	method	and	not	it's
successor	(UEFI).

The	BIOS	boot	sequence	is:	RAM	detection	->	Hardware	detection/Initialization	->	Boot	sequence.

The	most	important	step	for	us	is	the	"Boot	sequence",	where	the	BIOS	is	done	with	its	initialization	and	tries	to	transfer
control	to	the	next	stage	of	the	bootloader	process.

During	the	"Boot	sequence",	the	BIOS	will	try	to	determine	a	"boot	device"	(e.g.	floppy	disk,	hard-disk,	CD,	USB	flash
memory	device	or	network).	Our	Operating	System	will	initially	boot	from	the	hard-disk	(but	it	will	be	possible	to	boot	it	from
a	CD	or	a	USB	flash	memory	device	in	future).	A	device	is	considered	bootable	if	the	bootsector	contains	the	valid
signature	bytes		0x55		and		0xAA		at	offsets	511	and	512	respectively	(called	the	magic	bytes	of	Master	Boot	Record	(MBR),
This	signature	is	represented	(in	binary)	as	0b1010101001010101.	The	alternating	bit	pattern	was	thought	to	be	a
protection	against	certain	failures	(drive	or	controller).	If	this	pattern	is	garbled	or	0x00,	the	device	is	not	considered
bootable)

BIOS	physically	searches	for	a	boot	device	by	loading	the	first	512	bytes	from	the	bootsector	of	each	device	into	physical
memory,	starting	at	the	address		0x7C00		(1	KiB	below	the	32	KiB	mark).	When	the	valid	signature	bytes	are	detected,	BIOS
transfers	control	to	the		0x7C00		memory	address	(via	a	jump	instruction)	in	order	to	execute	the	bootsector	code.

Throughout	this	process	the	CPU	has	been	running	in	16-bit	Real	Mode	(the	default	state	for	x86	CPUs	in	order	to	maintain
backwards	compatibility).	To	execute	the	32-bit	instructions	within	our	kernel,	a	bootloader	is	required	to	switch	the	CPU
into	Protected	Mode.

GNU	GRUB	(short	for	GNU	GRand	Unified	Bootloader)	is	a	boot	loader	package	from	the	GNU	Project.	GRUB	is	the
reference	implementation	of	the	Free	Software	Foundation's	Multiboot	Specification,	which	provides	a	user	the
choice	to	boot	one	of	multiple	operating	systems	installed	on	a	computer	or	select	a	specific	kernel	configuration
available	on	a	particular	operating	system's	partitions.

To	make	it	simple,	GRUB	is	the	first	thing	booted	by	the	machine	(a	boot-loader)	and	will	simplify	the	loading	of	our	kernel
stored	on	the	hard-disk.

GRUB	is	very	simple	to	use
Make	it	very	simple	to	load	32bits	kernels	without	needs	of	16bits	code
Multiboot	with	Linux,	Windows	and	others
Make	it	easy	to	load	external	modules	in	memory

GRUB	uses	the	Multiboot	specification,	the	executable	binary	should	be	32bits	and	must	contain	a	special	header
(multiboot	header)	in	its	8192	first	bytes.	Our	kernel	will	be	a	ELF	executable	file	("Executable	and	Linkable	Format",	a
common	standard	file	format	for	executables	in	most	UNIX	system).

Chapter	3:	First	boot	with	GRUB

How	the	boot	works?

What	is	GRUB?

Why	are	we	using	GRUB?

How	to	use	GRUB?
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The	first	boot	sequence	of	our	kernel	is	written	in	Assembly:	start.asm	and	we	use	a	linker	file	to	define	our	executable
structure:	linker.ld.

This	boot	process	also	initializes	some	of	our	C++	runtime,	it	will	be	described	in	the	next	chapter.

Multiboot	header	structure:

struct	multiboot_info	{

				u32	flags;

				u32	low_mem;

				u32	high_mem;

				u32	boot_device;

				u32	cmdline;

				u32	mods_count;

				u32	mods_addr;

				struct	{

								u32	num;

								u32	size;

								u32	addr;

								u32	shndx;

				}	elf_sec;

				unsigned	long	mmap_length;

				unsigned	long	mmap_addr;

				unsigned	long	drives_length;

				unsigned	long	drives_addr;

				unsigned	long	config_table;

				unsigned	long	boot_loader_name;

				unsigned	long	apm_table;

				unsigned	long	vbe_control_info;

				unsigned	long	vbe_mode_info;

				unsigned	long	vbe_mode;

				unsigned	long	vbe_interface_seg;

				unsigned	long	vbe_interface_off;

				unsigned	long	vbe_interface_len;

};

You	can	use	the	command		mbchk	kernel.elf		to	validate	your	kernel.elf	file	against	the	multiboot	standard.	You	can	also
use	the	command		nm	-n	kernel.elf		to	validate	the	offset	of	the	different	objects	in	the	ELF	binary.

The	script	diskimage.sh	will	generate	a	hard	disk	image	that	can	be	used	by	QEMU.

The	first	step	is	to	create	a	hard-disk	image	(c.img)	using	qemu-img:

qemu-img	create	c.img	2M

We	need	now	to	partition	the	disk	using	fdisk:

fdisk	./c.img

#	Switch	to	Expert	commands

>	x

#	Change	number	of	cylinders	(1-1048576)

>	c

>	4

#	Change	number	of	heads	(1-256,	default	16):

>	h

>	16

#	Change	number	of	sectors/track	(1-63,	default	63)

>	s

Create	a	disk	image	for	our	kernel	and	grub
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>	63

#	Return	to	main	menu

>	r

#	Add	a	new	partition

>	n

#	Choose	primary	partition

>	p

#	Choose	partition	number

>	1

#	Choose	first	cylinder	(1-4,	default	1)

>	1

#	Choose	last	cylinder,	+cylinders	or	+size{K,M,G}	(1-4,	default	4)

>	4

#	Toggle	bootable	flag

>	a

#	Choose	first	partition	for	bootable	flag

>	1

#	Write	table	to	disk	and	exit

>	w

We	need	now	to	attach	the	created	partition	to	the	loop-device	(which	allows	a	file	to	be	access	like	a	block	device)	using
losetup.	The	offset	of	the	partition	is	passed	as	an	argument	and	calculated	using:	offset=	start_sector	*
bytes_by_sector.

Using		fdisk	-l	-u	c.img	,	you	get:	63	*	512	=	32256.

losetup	-o	32256	/dev/loop1	./c.img

We	create	a	EXT2	filesystem	on	this	new	device	using:

mke2fs	/dev/loop1

We	copy	our	files	on	a	mounted	disk:

mount		/dev/loop1	/mnt/

cp	-R	bootdisk/*	/mnt/

umount	/mnt/

Install	GRUB	on	the	disk:

grub	--device-map=/dev/null	<<	EOF

device	(hd0)	./c.img

geometry	(hd0)	4	16	63

root	(hd0,0)

setup	(hd0)

quit

EOF

And	finally	we	detach	the	loop	device:
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losetup	-d	/dev/loop1

GNU	GRUB	on	Wikipedia
Multiboot	specification

See	Also
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A	kernel	can	be	programmed	in	C++,	it	is	very	similar	to	making	a	kernel	in	C,	except	that	there	are	a	few	pitfalls	you	must
take	into	account	(runtime	support,	constructors,	...)

The	compiler	will	assume	that	all	the	necessary	C++	runtime	support	is	available	by	default,	but	as	we	are	not	linking	in
libsupc++	into	your	C++	kernel,	we	need	to	add	some	basic	functions	that	can	be	found	in	the	cxx.cc	file.

Caution:	The	operators		new		and		delete		cannot	be	used	before	virtual	memory	and	pagination	have	been	initialized.

The	kernel	code	can't	use	functions	from	the	standard	libraries	so	we	need	to	add	some	basic	functions	for	managing
memory	and	strings:

void					itoa(char	*buf,	unsigned	long	int	n,	int	base);

void	*				memset(char	*dst,char	src,	int	n);

void	*				memcpy(char	*dst,	char	*src,	int	n);

int					strlen(char	*s);

int					strcmp(const	char	*dst,	char	*src);

int					strcpy(char	*dst,const	char	*src);

void					strcat(void	*dest,const	void	*src);

char	*				strncpy(char	*destString,	const	char	*sourceString,int	maxLength);

int					strncmp(	const	char*	s1,	const	char*	s2,	int	c	);

These	functions	are	defined	in	string.cc,	memory.cc,	itoa.cc

During	the	next	step,	we	are	going	to	use	different	types	in	our	code,	most	of	the	types	we	are	going	to	use	unsigned	types
(all	the	bits	are	used	to	stored	the	integer,	in	signed	types	one	bit	is	used	to	signal	the	sign):

typedef	unsigned	char					u8;

typedef	unsigned	short					u16;

typedef	unsigned	int					u32;

typedef	unsigned	long	long					u64;

typedef	signed	char					s8;

typedef	signed	short					s16;

typedef	signed	int									s32;

typedef	signed	long	long				s64;

Compiling	a	kernel	is	not	the	same	thing	as	compiling	a	linux	executable,	we	can't	use	a	standard	library	and	should	have
no	dependencies	to	the	system.

Our	Makefile	will	define	the	process	to	compile	and	link	our	kernel.

For	x86	architecture,	the	followings	arguments	will	be	used	for	gcc/g++/ld:

Chapter	4:	Backbone	of	the	OS	and	C++	runtime

C++	kernel	run-time

Basic	C/C++	functions

C	types

Compile	our	kernel

How	to	make	an	Operating	System

12Backbone	of	the	OS	and	C++	runtime

https://github.com/SamyPesse/How-to-Make-a-Computer-Operating-System/blob/master/src/kernel/runtime/cxx.cc
https://github.com/SamyPesse/How-to-Make-a-Computer-Operating-System/blob/master/src/kernel/runtime/string.cc
https://github.com/SamyPesse/How-to-Make-a-Computer-Operating-System/blob/master/src/kernel/runtime/memory.cc
https://github.com/SamyPesse/How-to-Make-a-Computer-Operating-System/blob/master/src/kernel/runtime/itoa.cc
https://github.com/SamyPesse/How-to-Make-a-Computer-Operating-System/blob/master/src/kernel/Makefile


#	Linker

LD=ld

LDFLAG=	-melf_i386	-static		-L	./		-T	./arch/$(ARCH)/linker.ld

#	C++	compiler

SC=g++

FLAG=	$(INCDIR)	-g	-O2	-w	-trigraphs	-fno-builtin		-fno-exceptions	-fno-stack-protector	-O0	-m32		-fno-rtti	-nostdlib	-nodefaultlibs	

#	Assembly	compiler

ASM=nasm

ASMFLAG=-f	elf	-o
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13Backbone	of	the	OS	and	C++	runtime



Now	that	we	know	how	to	compile	our	C++	kernel	and	boot	the	binary	using	GRUB,	we	can	start	to	do	some	cool	things	in
C/C++.

We	are	going	to	use	VGA	default	mode	(03h)	to	display	some	text	to	the	user.	The	screen	can	be	directly	accessed	using
the	video	memory	at	0xB8000.	The	screen	resolution	is	80x25	and	each	character	on	the	screen	is	defined	by	2	bytes:	one
for	the	character	code,	and	one	for	the	style	flag.	This	means	that	the	total	size	of	the	video	memory	is	4000B	(80B25B2B).

In	the	IO	class	(io.cc),:

x,y:	define	the	cursor	position	on	the	screen
real_screen:	define	the	video	memory	pointer
putc(char	c):	print	a	unique	character	on	the	screen	and	manage	cursor	position
printf(char*	s,	...):	print	a	string

We	add	a	method	putc	to	the	IO	Class	to	put	a	character	on	the	screen	and	update	the	(x,y)	position.

/*	put	a	byte	on	screen	*/

void	Io::putc(char	c){

				kattr	=	0x07;

				unsigned	char	*video;

				video	=	(unsigned	char	*)	(real_screen+	2	*	x	+	160	*	y);

				//	newline

				if	(c	==	'\n')	{

								x	=	0;

								y++;

				//	back	space

				}	else	if	(c	==	'\b')	{

								if	(x)	{

												*(video	+	1)	=	0x0;

												x--;

								}

				//	horizontal	tab

				}	else	if	(c	==	'\t')	{

								x	=	x	+	8	-	(x	%	8);

				//	carriage	return

				}	else	if	(c	==	'\r')	{

								x	=	0;

				}	else	{

								*video	=	c;

								*(video	+	1)	=	kattr;

								x++;

								if	(x	>	79)	{

												x	=	0;

												y++;

								}

				}

				if	(y	>	24)

								scrollup(y	-	24);

}

We	also	add	a	useful	and	very	known	method:	printf

/*	put	a	string	in	screen	*/

void	Io::print(const	char	*s,	...){

				va_list	ap;

				char	buf[16];

Chapter	5:	Base	classes	for	managing	x86	architecture

Printing	to	the	screen	console
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				int	i,	j,	size,	buflen,	neg;

				unsigned	char	c;

				int	ival;

				unsigned	int	uival;

				va_start(ap,	s);

				while	((c	=	*s++))	{

								size	=	0;

								neg	=	0;

								if	(c	==	0)

												break;

								else	if	(c	==	'%')	{

												c	=	*s++;

												if	(c	>=	'0'	&&	c	<=	'9')	{

																size	=	c	-	'0';

																c	=	*s++;

												}

												if	(c	==	'd')	{

																ival	=	va_arg(ap,	int);

																if	(ival	<	0)	{

																				uival	=	0	-	ival;

																				neg++;

																}	else

																				uival	=	ival;

																itoa(buf,	uival,	10);

																buflen	=	strlen(buf);

																if	(buflen	<	size)

																				for	(i	=	size,	j	=	buflen;	i	>=	0;

																									i--,	j--)

																								buf[i]	=

																												(j	>=

																													0)	?	buf[j]	:	'0';

																if	(neg)

																				print("-%s",	buf);

																else

																				print(buf);

												}

													else	if	(c	==	'u')	{

																uival	=	va_arg(ap,	int);

																itoa(buf,	uival,	10);

																buflen	=	strlen(buf);

																if	(buflen	<	size)

																				for	(i	=	size,	j	=	buflen;	i	>=	0;

																									i--,	j--)

																								buf[i]	=

																												(j	>=

																													0)	?	buf[j]	:	'0';

																print(buf);

												}	else	if	(c	==	'x'	||	c	==	'X')	{

																uival	=	va_arg(ap,	int);

																itoa(buf,	uival,	16);

																buflen	=	strlen(buf);

																if	(buflen	<	size)

																				for	(i	=	size,	j	=	buflen;	i	>=	0;

																									i--,	j--)

																								buf[i]	=

																												(j	>=

																													0)	?	buf[j]	:	'0';

																print("0x%s",	buf);

												}	else	if	(c	==	'p')	{

																uival	=	va_arg(ap,	int);

																itoa(buf,	uival,	16);

																size	=	8;

																buflen	=	strlen(buf);

																if	(buflen	<	size)

																				for	(i	=	size,	j	=	buflen;	i	>=	0;

																									i--,	j--)
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																								buf[i]	=

																												(j	>=

																													0)	?	buf[j]	:	'0';

																print("0x%s",	buf);

												}	else	if	(c	==	's')	{

																print((char	*)	va_arg(ap,	int));

												}

								}	else

												putc(c);

				}

				return;

}

A	large	number	of	instructions	are	available	in	Assembly	but	there	is	not	equivalent	in	C	(like	cli,	sti,	in	and	out),	so	we	need
an	interface	to	these	instructions.

In	C,	we	can	include	Assembly	using	the	directive	"asm()",	gcc	use	gas	to	compile	the	assembly.

Caution:	gas	uses	the	AT&T	syntax.

/*	output	byte	*/

void	Io::outb(u32	ad,	u8	v){

				asmv("outb	%%al,	%%dx"	::	"d"	(ad),	"a"	(v));;

}

/*	output	word	*/

void	Io::outw(u32	ad,	u16	v){

				asmv("outw	%%ax,	%%dx"	::	"d"	(ad),	"a"	(v));

}

/*	output	word	*/

void	Io::outl(u32	ad,	u32	v){

				asmv("outl	%%eax,	%%dx"	:	:	"d"	(ad),	"a"	(v));

}

/*	input	byte	*/

u8	Io::inb(u32	ad){

				u8	_v;							\

				asmv("inb	%%dx,	%%al"	:	"=a"	(_v)	:	"d"	(ad));	\

				return	_v;

}

/*	input	word	*/

u16				Io::inw(u32	ad){

				u16	_v;												\

				asmv("inw	%%dx,	%%ax"	:	"=a"	(_v)	:	"d"	(ad));				\

				return	_v;

}

/*	input	word	*/

u32				Io::inl(u32	ad){

				u32	_v;												\

				asmv("inl	%%dx,	%%eax"	:	"=a"	(_v)	:	"d"	(ad));				\

				return	_v;

}

Assembly	interface
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Thanks	to	GRUB,	your	kernel	is	no	longer	in	real-mode,	but	already	in	protected	mode,	this	mode	allows	us	to	use	all	the
possibilities	of	the	microprocessor	such	as	virtual	memory	management,	paging	and	safe	multi-tasking.

The	GDT	("Global	Descriptor	Table")	is	a	data	structure	used	to	define	the	different	memory	areas:	the	base	address,	the
size	and	access	privileges	like	execute	and	write.	These	memory	areas	are	called	"segments".

We	are	going	to	use	the	GDT	to	define	different	memory	segments:

"code":	kernel	code,	used	to	stored	the	executable	binary	code
"data":	kernel	data
"stack":	kernel	stack,	used	to	stored	the	call	stack	during	kernel	execution
"ucode":	user	code,	used	to	stored	the	executable	binary	code	for	user	program
"udata":	user	program	data
"ustack":	user	stack,	used	to	stored	the	call	stack	during	execution	in	userland

GRUB	initializes	a	GDT	but	this	GDT	is	does	not	correspond	to	our	kernel.	The	GDT	is	loaded	using	the	LGDT	assembly
instruction.	It	expects	the	location	of	a	GDT	description	structure:

And	the	C	structure:

struct	gdtr	{

				u16	limite;

				u32	base;

}	__attribute__	((packed));

Caution:	the	directive		__attribute__	((packed))		signal	to	gcc	that	the	structure	should	use	as	little	memory	as	possible.
Without	this	directive,	gcc	include	some	bytes	to	optimize	the	memory	alignment	and	the	access	during	execution.

Now	we	need	to	define	our	GDT	table	and	then	load	it	using	LGDT.	The	GDT	table	can	be	stored	wherever	we	want	in
memory,	its	address	should	just	be	signaled	to	the	process	using	the	GDTR	registry.

The	GDT	table	is	composed	of	segments	with	the	following	structure:

Chapter	6:	GDT

What	is	the	GDT?

How	to	load	our	GDT?
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And	the	C	structure:

struct	gdtdesc	{

				u16	lim0_15;

				u16	base0_15;

				u8	base16_23;

				u8	acces;

				u8	lim16_19:4;

				u8	other:4;

				u8	base24_31;

}	__attribute__	((packed));

We	need	now	to	define	our	GDT	in	memory	and	finally	load	it	using	the	GDTR	registry.

We	are	going	to	store	our	GDT	at	the	address:

#define	GDTBASE				0x00000800

The	function	init_gdt_desc	in	x86.cc	initialize	a	gdt	segment	descriptor.

void	init_gdt_desc(u32	base,	u32	limite,	u8	acces,	u8	other,	struct	gdtdesc	*desc)

{

				desc->lim0_15	=	(limite	&	0xffff);

				desc->base0_15	=	(base	&	0xffff);

				desc->base16_23	=	(base	&	0xff0000)	>>	16;

				desc->acces	=	acces;

				desc->lim16_19	=	(limite	&	0xf0000)	>>	16;

				desc->other	=	(other	&	0xf);

				desc->base24_31	=	(base	&	0xff000000)	>>	24;

				return;

}

And	the	function	init_gdt	initialize	the	GDT,	some	parts	of	the	below	function	will	be	explained	later	and	are	used	for
multitasking.

void	init_gdt(void)

{

				default_tss.debug_flag	=	0x00;

				default_tss.io_map	=	0x00;

				default_tss.esp0	=	0x1FFF0;

				default_tss.ss0	=	0x18;

				/*	initialize	gdt	segments	*/

				init_gdt_desc(0x0,	0x0,	0x0,	0x0,	&kgdt[0]);

How	to	define	our	GDT	table?
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				init_gdt_desc(0x0,	0xFFFFF,	0x9B,	0x0D,	&kgdt[1]);				/*	code	*/

				init_gdt_desc(0x0,	0xFFFFF,	0x93,	0x0D,	&kgdt[2]);				/*	data	*/

				init_gdt_desc(0x0,	0x0,	0x97,	0x0D,	&kgdt[3]);								/*	stack	*/

				init_gdt_desc(0x0,	0xFFFFF,	0xFF,	0x0D,	&kgdt[4]);				/*	ucode	*/

				init_gdt_desc(0x0,	0xFFFFF,	0xF3,	0x0D,	&kgdt[5]);				/*	udata	*/

				init_gdt_desc(0x0,	0x0,	0xF7,	0x0D,	&kgdt[6]);								/*	ustack	*/

				init_gdt_desc((u32)	&	default_tss,	0x67,	0xE9,	0x00,	&kgdt[7]);				/*	descripteur	de	tss	*/

				/*	initialize	the	gdtr	structure	*/

				kgdtr.limite	=	GDTSIZE	*	8;

				kgdtr.base	=	GDTBASE;

				/*	copy	the	gdtr	to	its	memory	area	*/

				memcpy((char	*)	kgdtr.base,	(char	*)	kgdt,	kgdtr.limite);

				/*	load	the	gdtr	registry	*/

				asm("lgdtl	(kgdtr)");

				/*	initiliaz	the	segments	*/

				asm("			movw	$0x10,	%ax				\n	\

												movw	%ax,	%ds				\n	\

												movw	%ax,	%es				\n	\

												movw	%ax,	%fs				\n	\

												movw	%ax,	%gs				\n	\

												ljmp	$0x08,	$next				\n	\

												next:								\n");

}
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An	interrupt	is	a	signal	to	the	processor	emitted	by	hardware	or	software	indicating	an	event	that	needs	immediate
attention.

There	are	3	types	of	interrupts:

Hardware	interrupts:	are	sent	to	the	processor	from	an	external	device	(keyboard,	mouse,	hard	disk,	...).	Hardware
interrupts	were	introduced	as	a	way	to	reduce	wasting	the	processor's	valuable	time	in	polling	loops,	waiting	for
external	events.
Software	interrupts:	are	initiated	voluntarily	by	the	software.	It's	used	to	manage	system	calls.
Exceptions:	are	used	for	errors	or	events	occurring	during	program	execution	that	are	exceptional	enough	that	they
cannot	be	handled	within	the	program	itself	(division	by	zero,	page	fault,	...)

When	the	user	pressed	a	key	on	the	keyboard,	the	keyboard	controller	will	signal	an	interrupt	to	the	Interrupt	Controller.	If
the	interrupt	is	not	masked,	the	controller	will	signal	the	interrupt	to	the	processor,	the	processor	will	execute	a	routine	to
manage	the	interrupt	(key	pressed	or	key	released),	this	routine	could,	for	example,	get	the	pressed	key	from	the	keyboard
controller	and	print	the	key	to	the	screen.	Once	the	character	processing	routine	is	completed,	the	interrupted	job	can	be
resumed.

The	PIC	(Programmable	interrupt	controller)is	a	device	that	is	used	to	combine	several	sources	of	interrupt	onto	one	or
more	CPU	lines,	while	allowing	priority	levels	to	be	assigned	to	its	interrupt	outputs.	When	the	device	has	multiple	interrupt
outputs	to	assert,	it	asserts	them	in	the	order	of	their	relative	priority.

The	best	known	PIC	is	the	8259A,	each	8259A	can	handle	8	devices	but	most	computers	have	two	controllers:	one	master
and	one	slave,	this	allows	the	computer	to	manage	interrupts	from	14	devices.

In	this	chapter,	we	will	need	to	program	this	controller	to	initialize	and	mask	interrupts.

The	Interrupt	Descriptor	Table	(IDT)	is	a	data	structure	used	by	the	x86	architecture	to	implement	an	interrupt	vector
table.	The	IDT	is	used	by	the	processor	to	determine	the	correct	response	to	interrupts	and	exceptions.

Our	kernel	is	going	to	use	the	IDT	to	define	the	different	functions	to	be	executed	when	an	interrupt	occurred.

Like	the	GDT,	the	IDT	is	loaded	using	the	LIDTL	assembly	instruction.	It	expects	the	location	of	a	IDT	description	structure:

struct	idtr	{

				u16	limite;

				u32	base;

}	__attribute__	((packed));

The	IDT	table	is	composed	of	IDT	segments	with	the	following	structure:

struct	idtdesc	{

				u16	offset0_15;

				u16	select;

				u16	type;

Chapter	7:	IDT	and	interrupts
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				u16	offset16_31;

}	__attribute__	((packed));

Caution:	the	directive		__attribute__	((packed))		signal	to	gcc	that	the	structure	should	use	as	little	memory	as	possible.
Without	this	directive,	gcc	includes	some	bytes	to	optimize	the	memory	alignment	and	the	access	during	execution.

Now	we	need	to	define	our	IDT	table	and	then	load	it	using	LIDTL.	The	IDT	table	can	be	stored	wherever	we	want	in
memory,	its	address	should	just	be	signaled	to	the	process	using	the	IDTR	registry.

Here	is	a	table	of	common	interrupts	(Maskable	hardware	interrupt	are	called	IRQ):

IRQ Description

0 Programmable	Interrupt	Timer	Interrupt

1 Keyboard	Interrupt

2 Cascade	(used	internally	by	the	two	PICs.	never	raised)

3 COM2	(if	enabled)

4 COM1	(if	enabled)

5 LPT2	(if	enabled)

6 Floppy	Disk

7 LPT1

8 CMOS	real-time	clock	(if	enabled)

9 Free	for	peripherals	/	legacy	SCSI	/	NIC

10 Free	for	peripherals	/	SCSI	/	NIC

11 Free	for	peripherals	/	SCSI	/	NIC

12 PS2	Mouse

13 FPU	/	Coprocessor	/	Inter-processor

14 Primary	ATA	Hard	Disk

15 Secondary	ATA	Hard	Disk

This	is	a	simple	method	to	define	an	IDT	segment

void	init_idt_desc(u16	select,	u32	offset,	u16	type,	struct	idtdesc	*desc)

{

				desc->offset0_15	=	(offset	&	0xffff);

				desc->select	=	select;

				desc->type	=	type;

				desc->offset16_31	=	(offset	&	0xffff0000)	>>	16;

				return;

}

And	we	can	now	initialize	the	interupts:

#define	IDTBASE				0x00000000

#define	IDTSIZE	0xFF

idtr	kidtr;

How	to	initialize	the	interrupts?
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void	init_idt(void)

{

				/*	Init	irq	*/

				int	i;

				for	(i	=	0;	i	<	IDTSIZE;	i++)

								init_idt_desc(0x08,	(u32)_asm_schedule,	INTGATE,	&kidt[i]);	//

				/*	Vectors		0	->	31	are	for	exceptions	*/

				init_idt_desc(0x08,	(u32)	_asm_exc_GP,	INTGATE,	&kidt[13]);								/*	#GP	*/

				init_idt_desc(0x08,	(u32)	_asm_exc_PF,	INTGATE,	&kidt[14]);					/*	#PF	*/

				init_idt_desc(0x08,	(u32)	_asm_schedule,	INTGATE,	&kidt[32]);

				init_idt_desc(0x08,	(u32)	_asm_int_1,	INTGATE,	&kidt[33]);

				init_idt_desc(0x08,	(u32)	_asm_syscalls,	TRAPGATE,	&kidt[48]);

				init_idt_desc(0x08,	(u32)	_asm_syscalls,	TRAPGATE,	&kidt[128]);	//48

				kidtr.limite	=	IDTSIZE	*	8;

				kidtr.base	=	IDTBASE;

				/*	Copy	the	IDT	to	the	memory	*/

				memcpy((char	*)	kidtr.base,	(char	*)	kidt,	kidtr.limite);

				/*	Load	the	IDTR	registry	*/

				asm("lidtl	(kidtr)");

}

After	intialization	of	our	IDT,	we	need	to	activate	interrupts	by	configuring	the	PIC.	The	following	function	will	configure	the
two	PICs	by	writting	in	their	internal	registries	using	the	output	ports	of	the	processor		io.outb	.	We	configure	the	PICs
using	the	ports:

Master	PIC:	0x20	and	0x21
Slave	PIC:	0xA0	and	0xA1

For	a	PIC,	there	are	2	types	of	registries:

ICW	(Initialization	Command	Word):	reinit	the	controller
OCW	(Operation	Control	Word):	configure	the	controller	once	initialized	(used	to	mask/unmask	the	interrupts)

void	init_pic(void)

{

				/*	Initialization	of	ICW1	*/

				io.outb(0x20,	0x11);

				io.outb(0xA0,	0x11);

				/*	Initialization	of	ICW2	*/

				io.outb(0x21,	0x20);				/*	start	vector	=	32	*/

				io.outb(0xA1,	0x70);				/*	start	vector	=	96	*/

				/*	Initialization	of	ICW3	*/

				io.outb(0x21,	0x04);

				io.outb(0xA1,	0x02);

				/*	Initialization	of	ICW4	*/

				io.outb(0x21,	0x01);

				io.outb(0xA1,	0x01);

				/*	mask	interrupts	*/

				io.outb(0x21,	0x0);

				io.outb(0xA1,	0x0);

}

The	registries	have	to	be	configured	in	order.

PIC	ICW	configurations	details
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ICW1	(port	0x20	/	port	0xA0)

|0|0|0|1|x|0|x|x|

									|			|	+---	with	ICW4	(1)	or	without	(0)

									|			+-----	one	controller	(1),	or	cascade	(0)

									+---------	triggering	by	level	(level)	(1)	or	by	edge	(edge)	(0)

ICW2	(port	0x21	/	port	0xA1)

|x|x|x|x|x|0|0|0|

	|	|	|	|	|

	+-----------------	base	address	for	interrupts	vectors

ICW2	(port	0x21	/	port	0xA1)

For	the	master:

|x|x|x|x|x|x|x|x|

	|	|	|	|	|	|	|	|

	+------------------	slave	controller	connected	to	the	port	yes	(1),	or	no	(0)

For	the	slave:

|0|0|0|0|0|x|x|x|		pour	l'esclave

											|	|	|

											+--------	Slave	ID	which	is	equal	to	the	master	port

ICW4	(port	0x21	/	port	0xA1)

It	is	used	to	define	in	which	mode	the	controller	should	work.

|0|0|0|x|x|x|x|1|

							|	|	|	+------	mode	"automatic	end	of	interrupt"	AEOI	(1)

							|	|	+--------	mode	buffered	slave	(0)	or	master	(1)

							|	+----------	mode	buffered	(1)

							+------------	mode	"fully	nested"	(1)

You	should	have	noticed	that	when	I'm	initializing	our	IDT	segments,	I'm	using	offsets	to	segment	the	code	in	Assembly.
The	different	functions	are	defined	in	x86int.asm	and	are	of	the	following	scheme:

%macro				SAVE_REGS	0

				pushad

				push	ds

				push	es

				push	fs

				push	gs

				push	ebx

				mov	bx,0x10

				mov	ds,bx

				pop	ebx

%endmacro

%macro				RESTORE_REGS	0

				pop	gs

Why	do	idt	segments	offset	our	ASM	functions?
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				pop	fs

				pop	es

				pop	ds

				popad

%endmacro

%macro				INTERRUPT	1

global	_asm_int_%1

_asm_int_%1:

				SAVE_REGS

				push	%1

				call	isr_default_int

				pop	eax				;;a	enlever	sinon

				mov	al,0x20

				out	0x20,al

				RESTORE_REGS

				iret

%endmacro

These	macros	will	be	used	to	define	the	interrupt	segment	that	will	prevent	corruption	of	the	different	registries,	it	will	be
very	useful	for	multitasking.
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In	the	chapter	related	to	the	GDT,	we	saw	that	using	segmentation	a	physical	memory	address	is	calculated	using	a
segment	selector	and	an	offset.

In	this	chapter,	we	are	going	to	implement	paging,	paging	will	translate	a	linear	address	from	segmentation	into	a	physical
address.

Paging	will	allow	our	kernel	to:

use	the	hard-drive	as	a	memory	and	not	be	limited	by	the	machine	ram	memory	limit
to	have	a	unique	memory	space	for	each	process
to	allow	and	unallow	memory	space	in	a	dynamic	way

In	a	paged	system,	each	process	may	execute	in	its	own	4gb	area	of	memory,	without	any	chance	of	effecting	any	other
process's	memory,	or	the	kernel's.	It	simplifies	multitasking.

The	translation	of	a	linear	address	to	a	physical	address	is	done	in	multiple	steps:

1.	 The	processor	use	the	registry		CR3		to	know	the	physical	address	of	the	pages	directory.
2.	 The	first	10	bits	of	the	linear	address	represent	an	offset	(between	0	and	1023),	pointing	to	an	entry	in	the	pages

directory.	This	entry	contains	the	physical	address	of	a	pages	table.
3.	 the	next	10	bits	of	the	linear	address	represent	an	offset,	pointing	to	an	entry	in	the	pages	table.	This	entry	is	pointing

to	a	4ko	page.
4.	 The	last	12	bits	of	the	linear	address	represent	an	offset	(between	0	and	4095),	which	indicates	the	position	in	the	4ko

page.

Chapter	8:	Memory	management:	physical	and	virtual
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The	two	types	of	entries	(table	and	directory)	look	like	the	same.	Only	the	field	in	gray	will	be	used	in	our	OS.

	P	:	indicate	if	the	page	or	table	is	in	physical	memory
	R/W	:	indicate	if	the	page	or	table	is	accessible	in	writting	(equals	1)
	U/S	:	equals	1	to	allow	access	to	non-preferred	tasks
	A	:	indicate	if	the	page	or	table	was	accessed
	D	:	(only	for	pages	table)	indicate	if	the	page	was	written
	PS		(only	for	pages	directory)	indicate	the	size	of	pages:

0	=	4ko
1	=	4mo

Note:	Physical	addresses	in	the	pages	diretcory	or	pages	table	are	written	using	20	bits	because	these	addresses	are
aligned	on	4ko,	so	the	last	12bits	should	be	equal	to	0.

A	pages	directory	or	pages	table	used	1024*4	=	4096	bytes	=	4k
A	pages	table	can	address	1024	*	4k	=	4	Mo
A	pages	directory	can	address	1024	(1024	4k)	=	4	Go

Format	for	pages	table	and	directory

How	to	enable	pagination?
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To	enable	pagination,	we	just	need	to	set	bit	31	of	the		CR0	registry	to	1:

asm("		mov	%%cr0,	%%eax;	\

							or	%1,	%%eax;					\

							mov	%%eax,	%%cr0"	\

							::	"i"(0x80000000));

But	before,	we	need	to	initialize	our	pages	directory	with	at	least	one	pages	table.
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