This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Preface

This book was born at sea—Tliterally. One lazy day, I was aboard my home and sailboat anchored in the Bahamas, where I had
planned to spend a leisurely winter. It was one of the first times in two decades that I wasn 't writing at least one computer book
and working at it almost every day. After writing thirty -some books, I told myself I needed a break. I deserved a vacation.
Maybe I'd dust off that novel I ’ve always threatened to finish.

So, instead of spending the day glaring at a computer screen, I went fishing, one of my many talents. Unfortunately, catching is not
another and, late that night, after a hearty meal of rice and beans (and, you know, the fish laugh at me, but that ’s another story), I
started reading a couple of books about Linux that I had brought along.

I was familiar with UNIX, having used it to install networks and database systems years ago. I remember thinking that all
computers would eventually run UNIX or something like it, a thought that returned as I read about Linux. The more I read, the
more intrigued I became. After digging out the laptop from under the life raft, I installed Linux, tried the GNU C ++ compiler, and
in a couple of hours a gale could have blown through and I wouldn ’t have noticed. Nothing could have excited me more than
discovering the fantastic GNU C++ compiler! Okay, catching a really big fish would have done it. But not much else.

At my fingertips, [realized, was not merely a great C++ compiler, but a full -featured, professional software development system.
Along with GNU C++ comes an impressive suite of programming tools including the Emacs editor (which I used to write this
book’s sample programs), a revision control system, debuggers, a profiler, and a host of other tools and libraries for console and
X development. In a word—Wow!

That moment started me on a journey through GNU C++ that is just now coming to a close as I write these words. The result is
this book, a complete guide to the ANSI C++ programming language using GNU C++ for Linux. In these chapters, you will find
information on creating finished Linux software from console utilities to X graphical applications. Numerous sample programs
pepper these pages, and as with all of my books, you are welcome to incorporate this book ’s listings into your own programs
without restriction. On the book’s CD-ROM is the full Linux -Mandrake 6.0 Red Hat operating system, the GNU C++ compiler,
various tools and utilities, plus all of this book ’s sample program files.

Now that the book is finished, I realize that my voyage into the world of Linux programming, GNU C ++, and other related topics
has only just begun. Like all programmers, the more I know about a programming language, the more I realize how much more I
have to learn, and I welcome your comments and suggestions for future editions of this book. Please contact me by sending email
to TomSwan@compuserve.com, Or write to me in care of the publisher.

Perhaps now I’ll have time for a little more fishing. I might even catch something this time. But you know what? I *ve grown kind of
fond of rice and beans. Enjoy!

Tom Swan
Key West, Florida
About the Author

Tom Swan (www.tomswan.com) is an internationally popular author of more than 30 books on computer programming in C ++,
Pascal, Delphi, and assembly language. His books are favorites in classrooms and have been translated into numerous languages
worldwide. Professional developers have cut their programming teeth on Tom ’s bestselling books—such as Mastering Borland
C++ 5.0, Mastering Turbo Assembler, Learning C ++, and Delphi™ 4 Bible. Tom is a frequent contributor and former
columnist for Dr. Dobb ’s Journal , PC World , and PC Techniques magazines. He is an avid Linux enthusiast who is building a
new name by supporting free software distribution to the Linux community.

Page 1

http://www.tomswan.com/

This document is created with trial version of CHM2PDF Pilot 2.10.

Dedication
To Maureen Walsh Hunt, for believing in me.
Acknowledgments

So many people contribute to a book of this size and scope, it is impossible for me to thank them all. A mere thank you seems
inadequate to folks such as Linus Torvalds who brought us Linux, and to Richard Stallman for starting the free -software ball
rolling that led to the GNU project, and hence to Linux. I don’t know these two gentlemen personally, but I am indebted to them
as well as to the hundreds if not thousands of programmers worldwide who have improved Linux and GNU C ++, and who
continue to contribute to this amazing project. I also thank Bruce E. Wampler for developing the V C++ class library for X
programming, introduced in this book’s final two chapters.

On a personal note, warm thanks to Barbara Paré for encouraging me to begin this project and see it through (and for keeping the
bad weather at bay); to Larry Weeldreyer for the use of his scanner and for many tips and suggestions (plus the lunches and good
company); to George Shetzley for helping me run errands and for friendship; to my friends at Sunset Marina for package handling,
getting my phone service woes solved, and especially for the air conditioner; to Anne Swan for emotional support and for
forwarding my mail while I travel around; to John Windholtz for reminding me to tell readers what a.out means (and to Patty
Windholtz for the sundowners and company); to Barry Braverman for helping me maintain my sanity and improve my guitar
playing; to my brother David Swan for encouraging me to knuckle down and do the work; and to my mother Mary Swan and my
father Reyer Swan for the care packages and loving support not only during the time I wrote this book, but always.

I am particularly grateful to the employees and associates of Que and Macmillan USA, and even though I don ’t know all your
names, your hard work shines on every page. I especially thank (in alphabetical order) Richard Blum, Geneil Breeze, Erik
Dafforn, Tom Hayes, Dean Miller, Julie Otto, John Pierce, Katie Robinson, and Mandie Rowell. My name might be on the cover,
but without the help of these fine people and everyone at Que and Macmillan USA, this book would simply not exist.

Previous Table of Contents Next

Page 2

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Part 1
Getting Started

1 Introducing This Book 3
2 Installing Linux 11
3 Installing GNU C++ 31

CHAPTER 1
Introducing This Book

Learning a new subject is like taking a trip, although the destination in a book is not a park or an island, but knowledge. Not
everyone, however, likes to travel the same way. Some prefer to hop in a vehicle and just go. Others meticulously plan in advance
every aspect of their journey.

If you ’re the take-off -now-and-the-consequences-be-damned type, you might want to skip to Chapter 2, “Installing Linux.” Jet-
setters who have already installed Linux and want to start programming right now should turn to Part II, “C++ Fundamentals.” For
the rest of us who opt for a more leisurely course through life ’s adventures, consider this chapter as a road map (or a nautical
chart) and equipment list for the chapters in this book.

Read this chapter to understand the styles used in the text, for overviews of this book ’s six parts and 30 chapters, and for a
general feel of the book ’s layout. In addition, I include here some notes about the hardware and software you need to make the
most of this book ’s information.

Text Styles

To help make this book easier to read, the text is set using three distinct styles. Normal text looks like this. Programming words
such as string and while are set in monospace. This typeface should closely, although perhaps not perfectly, match the characters
you see on your screen when viewing source code listings. Any commands you are to type are set in bold italic when appearing
in a sentence, or they are set apart and preceded by console-shell dollar signs as in the following two commands that compile and
run one of the book ’s sample programs:

$ g++ welcome.cpp
$./a.out

Three other text items—notes, tips, and warnings—appear at numerous places throughout this book. Here’s an example of a
note, which typically expands on a topic or suggests how to find additional information:

Note: If you have Internet access (and who doesn’t these days?), use a Web search engine such as Lycos or Google to look for
sites containing the key words Linux and UNIX. Remember, Linux is UNIX, so for the most information, search both types of
locations.

A tip gives more specific advice and is usually short and to the point:
Tip: If you are browsing this book in a bookstore, purchasing a copy would be a really great idea!

A warning tells you about a questionable or harmful programming technique that might lead to a hard -to-find bug in a program’s

source code:
Page 3

This document is created with trial version of CHM2PDF Pilot 2.10.

Tip: Learning to program in C++ might be hazardous to your vacation time and personal life. During your quest to master GNU C ++,
don’t forget to put this book aside every so often and go smell the roses.

Requirements

In general, if you can run any version of Linux, you can use this book to learn GNU C ++ programming. Every Linux installation
comes complete with the full GNU C++ development system, so unless you intend to upgrade your operating system, if you have
already installed Linux, you can skip to the part and chapter summaries at the end of this chapter. For readers who are installing
Linux for the first time using this book ’s CD-ROM, or a version from another source, following are minimum and suggested
hardware and software requirements.

Note: GNU stands for GNU is Not UNIX -an intentionally recursive definition. GNU C++ is one of many pieces of the GNU project,
which, through the Free Software Foundation (FSF), encourages the free distribution of computer software.

Hardware Requirements

Linux runs on just about any 80386, 80486, or 80586 (Pentium) based PC. However, the Mandrake-Linux 6.0 CD-ROM
included with this book is optimized for, and therefore requires, a Pentium -class system. Linux does not require a color display,
but if you plan to run X (as do most Linux users), a 16- or 24-bit color video card and suitable monitor are recommended. There
are reports of Linux running on 8086 - and 80286-based systems, although these older-model PCs are not likely to take full
advantage of the operating system. Tantalizing news also floats around concerning Linux installations on 68000 and other systems,
but at the present, Linux is generally an Intel-processor-based operating system.

UNIX users might be able to use much of this book ’s information along with a version of GNU C ++. This may require obtaining
and installing the compiler and libraries, but these are readily available over the Internet (see Appendix C, “Web and FTP Sites”).
This book’s information on X and Xlib programming should also apply to any X installation, and the V class library discussed in
Chapter 29, “Introducing the V Class Library,” and Chapter 30, “Developing X Software with V,” comes with support for
numerous UNIX and Linux platforms, plus (with a suitable compiler, not included) Microsoft Windows and OS/2. Because
readers of this book probably have a wide range of hardware, I can 't make any guarantees that the programs listed in the coming
chapters will work on any particular system, but if you encounter any system dependencies or quirks, please let me know by
dropping a line in care of the publisher.

Note: I wrote this book and all sample programs on my Dell Pentium-Pro system with 32MB RAM, 24-bit true-color video, and a
bunch of disk drives with the total capacity of an average bottomless pit. It ’s a great system, but being more than two years old, it
is nowhere near state of the art. I developed most of this book ’s programs and text using Red Hat Linux version 5.1. I also tested all
programs and information using Linux -Mandrake (Red Hat) 6.0 as supplied with this book. The program’s listings were also tested
using Caldera Linux 2.2. Most other flavors of Linux should work equally well.

Authorities differ on minimum memory requirements for running Linux, but as always in computer programming, the more memory
you have, the better. For best results, you should have at least 2MB RAM, but 16MB or even 32MB is needed to compile really
big projects and to run the X windowing system at a reasonable speed. If you merely want to learn GNU C ++ programming, as
long as Linux runs, you can probably compile and run most of this book ’s sample programs.

Previous Table of Contents Next

Page 4

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

There are also differing reports on how much free disk space you need, but this is probably not much of a concern for most
readers, especially those with relatively new computers that typically include huge disk drives. Based on a totally unscientific rough
guess, SO0MB is a rock-bottom minimum size, but at least one gigabyte is better. You’ll need at least two gigabytes of hard drive
space if you want to install both Linux and Microsoft Windows on the same system. (Chapter 2 explains how to do that.)

A keyboard is required, of course, but a mouse is optional. However, X applications require a mouse. You don 't need a printer.
A tape drive or other backup system is highly recommended. A CD player is required to install this book’s CD-ROM.

Although not strictly required, a UPS (uninterruptible power supply) is an essential piece of gear on any Linux (and UNIX)
installation. Linux maintains file directories in memory until the associated disk or other device is unmounted, which in the case of
hard drives, does not occur until the system is properly shut down. This means that a power loss might be disastrous. I use an
APC power supply with my computer to prevent interruptions, which happen regularly in my tropical-storm-prone area. For more
information, check out APC’s Web site at http://www.apcc.com.

Software Requirements

Linux and GNU C++ are freely distributed under the GNU General Public License (see Appendix E, “Copyright Information—
The GNU General Public License”). This fact makes it possible for the publisher to offer on this book ’s CD-ROM the entire
Linux-Mandrake 6.0 operating system, an enhanced version of Red Hat Linux 6.0. The CD -ROM includes the complete GNU
C++ development system, all libraries, and all tools you need to create C++ programs from small to large. Also on the CD-ROM
are the source code files for this book ’s sample programs as well as the V C++ class library for X programming.

In short, you don’t need any other software to make full use of this book —everything you need is on the included CD-ROM. If
you already have Linux installed, simply copy this book’s files to your hard drive along with the V C++ class library if you want to
learn X programming techniques (see also Chapter 3, “Installing GNU C++,” and Chapter 29, “Introducing the V Class
Library.”).

Listings

This book’s listings are numbered by chapter and also named—for example, Listing 4.1, welcome.cpp. To find a listing ’s source
code file on disk, change to that chapter ’s directory such as src/c04. (See Chapter 3 for instructions on how to install this book ’s
listing files.)

Any line numbers mentioned in reference to a listing—for example, in this book ’s hands-on sessions with the GNU debugger—
might differ for you. This is because, to save space in the book, I deleted extraneous comment lines, divided long lines to fit on the
printed page, and removed duplicate programming. Future updates to any listings on disk may also cause line numbers to change.
Of course, the complete sources for all programs are on the CD -ROM.

Note: Follow the instructions in this book to compile and run each sample program. Some programs are divided into separate
modules that require linking together. Just because a source code file ends with the filename extension .cpp doesn 't mean it is a
complete program.

Part Summaries

This book is organized into six parts and 30 chapters, covering the entire ANSI C++ programming language as implemented by
GNU C++, plus other topics. Read the following for overviews of each part:

 Part [, “Getting Started,” Chapters 1 to 3, provides overviews of this book and instructions for installing and configuring
Linux and GNU C++.

 Part II, “C++ Fundamentals,” Chapters 4 to 11, COVers thg basics of C++ programming and explains how to create
age

http://www.apcc.com/

This document is created with trial version of CHM2PDF Pilot 2.10.
++ ++

programs using GNU C++.

e Part III, “Object-Oriented Programming,” Chapters 12 to 17, explains object-oriented C++ techniques using classes,
encapsulation, and inheritance.

* Part IV, “Advanced C++ Techniques,” Chapters 18 to 21, expands on the preceding part with advanced object-oriented
programming methods using C++.

e Part V, “C++ Class Libraries,” Chapters 22 to 27, details the standard C++ string class and the standard template
container and algorithm library.

 Part VI, “X Window Development,” Chapters 28 to 30, introduces X and Xlib programming and concludes with a

hands-on tutorial for the V C++ class library for X software development for Linux, Microsoft Windows, and other
platforms.

Previous Table of Contents Next

Page 6

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Chapter Summaries

This book’s numerous topics are covered in 30 chapters and include details on installation, C++ programming, standard libraries,
and X application development. Read the following for overviews of each chapter:

* Chapter 1, “Introducing This Book,” as you are discovering, suggests how to make the most of this book.

* Chapter 2, “Installing Linux,” gives tips for installing Linux using this book’s CD-ROM and explains how to set up a dual
boot system for Linux and Microsoft Windows.

 Chapter 3, “Installing GNU C++,” suggests how to install and configure GNU C++, how to install this book’s listing files,
and also compares the C and C++ programming languages.

* Chapter 4, “Introducing GNU C++,” covers the basics of C++ programming using the GNU C++ compiler.

* Chapter 5, “Compiling and Debugging C++ Programs,” suggests numerous ways to compile and debug programs (using
the provided GNU debugger), and also explains how to deal with many common types of errors and warning messages.
 Chapter 6, “Creating Data Objects,” explains how to create variables and other structures for storing data in C++
programs.

 Chapter 7, “Applying Fundamental Operators,” illustrates many of the ways to create expressions using C++ operators.
 Chapter 8, “Controlling Input and Output,” introduces standard C++ methods for programming input and output
statements and also compares these methods with standard C techniques.

* Chapter 9, “Controlling Program Flow,” documents C++ flow-control statements such as for and while loops.

* Chapter 10, “Creating and Calling Functions,” explains how to write functions and use them to divide programs into
manageable pieces.

* Chapter 11, “Managing Memory with Pointers,” gives a detailed account of the tricky subject of pointers and memory
management using the C++ new and delete operators.

 Chapter 12, “Introducing the Class,” introduces the major contribution of C++ to programming: the class, and shows how
to use classes to encapsulate data and functions.

* Chapter 13, “Creating and Destroying Objects,” shows the nuts and bolts for using C++ classes to create and use
objects in object-oriented programming.

* Chapter 14, “Investing in Inheritance,” makes clear the mechanics and advantages of using inheritance to build C++ class
hierarchies.

 Chapter 15, “Programming with Virtual Functions,” explains the technique of runtime -binding of objects to functions, a
feature that sometimes goes by the term polymorphism.

* Chapter 16, “Handling Exceptions,” covers in detail how to deal with program errors using C++ exceptions.

* Chapter 17, “Creating Class Templates,” illustrates how to create and use class and function templates, one of the unique
features in C++.

* Chapter 18, “Overloading Your Friends,” shows the methods and purpose of friend functions and how overloaded
functions work.

* Chapter 19, “Overloading Operators,” expands on the preceding chapter with a look at overloading C++ operators such
as + and / for use with new data types.

* Chapter 20, “Customizing I/O Streams,” uses overloaded operator techniques to program I/O stream statements to
recognize new data types and to read and write objects in disk files.

* Chapter 21, “Honing Your C++ Skills,” covers a number of advanced C++ programming techniques, such as reference
counting and the copy-on-write method, and completes this book’s tutorial information on C++ programming.

 Chapter 22, “Mastering the Standard string Class,” explains how to create and use string data with the standard C++
string class template.

* Chapter 23, “Using the Standard Template Library (STL),” introduces the ANSI C++ standard template container
library provided with GNU C++ and other ANSI C++ compilers.

* Chapter 24, “Building Standard Containers,” shows examples of storing data in standard C++ template container objects
such as vectors and lists.

 Chapter 25, “Applying Standard Algorithms,” lists and explains numerous examples showing how to apply ANSI C++
standard algorithms such as sort() on standard template containers and other data structures.

* Chapter 26, “Introducing X Programming,” takes a close look at the complex world of programming for X (incorrectly
Page 7

This document is created with trial version of CHM2PDF Pilot 2.10.

but popularly known also as X Windows), provided with every Linux installation, and also widely available on UNIX
systems. This chapter provides the basics for creating an X client that connects to an X server to provide a graphical user
interface (GUI).

* Chapter 27, “Controlling Xlib Input and Output,” details how to create graphical output using Xlib functions and also
how to respond to keyboard and mouse input events sent from an X server.

 Chapter 28, “Breaking Out of Xlib Fundamentals,” carries the introduction of Xlib programming into advanced areas
including the tricky subject of using X colormaps.

* Chapter 29, “Introducing the V Class Library,” introduces V, a portable, object-oriented, class library included on the
CD-ROM for X, Microsoft Windows, and OS/2 application development using GNU C ++ and other ANSI C++
compilers.

* Chapter 30, “Developing X Software with V,” covers many of the features found in V for creating fully developed X
client applications complete with pull-down menus, toolbars, graphics, and status bars.

Summary

This book’s CD-ROM provides the full Linux -Mandrake 6.0 operating system, including GNU C++, plus all utilities and
programming tools. Also on the CD-ROM are this book’s source code files and the V C++ class library for programming X
windowed client applications for Linux and Microsoft Windows. This chapter gives hardware and software requirements for
running Linux and GNU C++. It also lists overviews of the book ’s six parts and 30 chapters. The next two chapters provide
additional tips and instructions for installing and configuring Linux and GNU C ++.

Previous Table of Contents Next

Page 8

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 2
Installing Linux

Because this book describes programming for Linux using GNU C++, I don’t want to waste your time or mine with a lengthy
tutorial on installing and using Linux. Consider this chapter, then, as more of a personal account than a reference. It is by no means
a complete guide to installing and configuring Linux, but some of the tips in this chapter might prove useful, especially if you run

into difficulties.

If you are new to Linux, you are fortunate because most CD -ROM distributions such as Linux-Mandrake 6.0 included with this
book now come with auto-installation utilities. Chances are excellent that you can simply boot to the CD-ROM, install Linux, and
turn to the next part to begin learning your way around C++ programming. This wasn’t always the case, however, and in the recent
past, getting a Linux system up and running usually took much trial and error.

Tip: If you already have Linux installed, try using your existing system. Don 't upgrade without good reason .

How to Install Linux

Before installing Linux, a little homework will save you many hours of grief. Linux is complex software, and a successful installation
requires more effort than when installing an application or a simpler operating system such as Microsoft Windows. Following are
some tips that saved my skin on numerous occasions when installing Linux:

* Back up all existing application, data, and operating system files. Don’t just trust your backup software —be sure that
you can also restore your files from the backup copies. For safety, make two backups and print out any critical data. As
with any operating system software, installing Linux removes all existing files on your system, and a reliable backup is
absolutely essential to a successful installation, especially if you intend to create a dual -boot system for Linux and Microsoft
Windows.

» Keep a detailed log of every step that you perform during installation. Don ’t neglect to write down the steps that failed
and any solutions you discovered. If you have to reinstall from scratch, or if you need to install Linux on a different
computer, these notes will be extremely valuable and can save you hours of frustration. (If you have a spare laptop,
consider using it to create this log file.)

* Write down as much information as you can about your system, its hard drive parameters, video system, monitor, video
refresh frequencies, processor type and speed, memory capacity, BIOS version, and other facts. Run all available system
and setup utilities to obtain facts about your modem, sound card, and other adapters. If possible, print these screens for
future reference. You can 't collect too much information . Keep in mind that, during installation, it might not be possible
to obtain essential facts about your hardware, so spend as much time on this step as you can.

* Decide now whether you want to install a standalone Linux system or create dual-boot partitions for Linux and another
operating system such as Microsoft Windows. In this chapter are suggestions for creating dual -boot Linux installations using
standard MS-DOS tools. Expend some mental energy figuring out the best arrangement for your needs. After you install
Linux, it might be difficult to make changes such as converting a single -boot to a dual-boot system, or allocating more or
less space to a specific disk partition.

 Turn off your screen blanker. Many users aren ’t aware that they have such a blanker enabled because it’s overridden by
a screen saver—for example, one in Microsoft Windows. Boot your computer and press Delete to enter your computer ’s
setup utility. On some systems, you might have to press a different key such as F1 or F2. Look for a command that
disables the screen blanker. If you can’t find this command, don’t worry—mnot all systems have this feature.

Warning: Did you back up your system? Remember, installing a new operating system such as Linux wipes out a/l existing files. If
you didn’t back up your system, do so now before continuing.

Page 9

This document is created with trial version of CHM2PDF Pilot 2.10.

CD-ROM Booting Trouble

On some systems, the default device boot order prevents booting to a CD -ROM. (My NEC laptop exhibits this problem.) The
usual boot order is drive A: (floppy disk), C: (primary hard drive partition), followed by a CD -ROM or, perhaps, an lomega zip
drive. This means that, if the system has an installed operating system on drive C:, it might never attempt to boot to the CD -ROM
even if one is inserted, thus causing the automatic installation to fail before it even begins.

The solution is to change the default boot order to boot to the CD -ROM before the primary partition. Usually, you can do this by
rebooting the computer and pressing the Delete key. (Remember, on some systems, this might be another key—it’s F2 on my
laptop.) This should bring up a setup utility with an option to arrange the device boot order. Set your CD-ROM drive to boot
after drive A: (so you can still recover by booting to a floppy disk) but before drive C:. After installing Linux, you can change the
boot order back to its original configuration.

If your system doesn ’t permit changing the device boot order, and if you can’t boot to the CD-ROM included with this book,
you’ll have to use another method to install Linux. If you can boot to MS-DOS, do that and then insert the CD-ROM (I assume
here that it’s in drive D:). Enter these commands:

d:
cd \dosutils
autoboot.bat

You must be running only MS-DOS for those commands to work—you cannot, for example, use these commands from a DOS
window opened in Microsoft Windows. If you can 't boot to MS-DOS, you have to create a special boot floppy disk to install
Linux. Complete instructions for creating this disk are in the file Readme on the CD -ROM. View this file using the Microsoft
Windows WordPad accessory application.

Note: When booting to plain MS-DOS, you might need to load a driver to access the CD-ROM. You’ll also need a copy of the
Microsoft mscdex.exe utility for accessing the CD -ROM ’s file system. This file is included with most MS -DOS and Microsoft
Windows software.

Previous Table of Contents Next

Page 10

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Standalone Installations

Most current Linux CD-ROMs, including the one packaged with this book, provide automatic setup utilities that make installation
a snap, especially if you are creating a dedicated Linux system. Simply boot to the CD -ROM and follow onscreen instructions.
The Mandrake-Linux 6.0 automatic installer includes utilities for partitioning your hard drive—you don’t need to do this before
installation.

If you want to install both Linux and Microsoft Windows, read the next section. Otherwise, turn now to “Installing Mandrake-
Linux 6.0” later in this chapter.

Dual-Boot Installations

Many software developers need to create dual -boot systems for Linux and Microsoft Windows. This is not as difficult as you
might have heard, but it does take a little more work. The most critical part of the process is correctly partitioning your hard drive
or drives.

The following steps are from my notes that I kept while installing a dual -boot configuration on the system I used to write this book
and its sample programs. The details might be a little different for your system, but the following suggestions should help you
puzzle through any difficulties you encounter.

Warning: If you already have a dedicated Linux system installed, and the Linux loader (Lilo) is stored in your system ’s master boot
record (MBR), attempts to reinstall DOS or Microsoft Windows might fail. In such cases, you must low -level-format your hard drive
and restore the original MBR before proceeding. On some systems, however, you might be able to use the following steps to delete
all disk drive partitions and then use a system CD-ROM to recover the MBR.

First, back up your Windows directories. If possible, back up everything, including the operating system, all applications, and your
data files. If you have multiple drives such as C: and D:, be sure that you back up the files in both locations —many backup utilities
do not automatically back up multiple drives. However, if it isn 't practical to back up every file, you might back up only your data
files and then use your Windows CD -ROM and other application source disks to reinstall.

Even after making a complete backup, you still need an original Microsoft Windows CD -ROM or the equivalent set of floppy
disks for reinstallation. That might not be true if you can back up over a network, or if you are running MS -DOS backup
software. But if your backup software runs under Windows, you must first install the operating system from its original source,
install your backup software, and then restore your files from your backups.

Warning: Do not perform the following steps until you are sure that you can reinstall Microsoft Windows from an original CD -
ROM or set of floppy disks, and that you can restore your backed -up application and data files.

After creating and verifying your backups, the next step is to create an MS -DOS boot disk. Insert a blank disk into drive A:, and
from an MS-DOS prompt or a DOS window opened in Microsoft Windows, enter the following command (this erases all files on
the disk):

format a: /s

The /s option copies system boot files to the disk. After formatting is done, copy to the disk the utility programs fdisk.exe,
format.com, sys.com, and scandisk.exe that are probably located in C:\DOS or C:\Windows\Command. Y ou might also want to
save copies of your autoexec.bat and config.sys files, but be sure to rename them (or place them in a subdirectory on the disk) so
that they aren’t referenced during booting.

Page 11

This document is created with trial version of CHM2PDF Pilot 2.10.

Next, boot to the MS-DOS disk. You are now going to allocate your hard-drive partitions and permanently erase all files on your
hard drives. This is your last chance to back up your files . When you are ready to proceed (you should be seeing an A:
prompt), enter fdisk to run the MS-DOS disk partitioning program. If you are asked whether to enable large disk support,
answer no.

Select option 4 and write down all existing partition information in your installation log. Now, follow the next steps, which should
be generally correct for most readers. However, depending on how many drives you have and their sizes, you might need to make
specific changes to suit your system and needs. The following steps assume that you are dividing your system equally between
Linux and Microsoft Windows:

1. Delete all logical drives one by one from the extended DOS partition, if there is one.

2. Delete the extended DOS partition.

3. Delete the primary DOS partition.

4. Create a new Primary DOS Partition using 25% to 50% of the hard drive. This must be the first partition. You will
install Microsoft Windows to this partition.

5. Set the active partition to the Primary DOS Partition that you just created.

6. Optionally create a new extended DOS partition using 25% of the hard drive, or however much space you want. I like
to do this to create a separate partition for my data files.

7. If you created an extended DOS partition, also create a logical drive (D:) in the extended DOS partition. You can
create more than one logical drive at this time—for example, to divide an extended partition among multiple drive letters.
8. Exit fdisk. If you are asked whether to write the new partition data, answer yes.

9. Leaving the floppy disk in drive A:, reboot by pressing Ctrl-Alt-Del.

Previous Table of Contents Next

Page 12

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

You are still booted to the floppy disk, and at this stage in the game, the new partitions are not yet usable. All you ’ve done so far
1s to apportion your hard drive’s disk space. Next, from the A: prompt, you need to format the primary DOS partition to make it
usable for MS-DOS and Windows. Do this by entering the following command:

format c:

The format program warns that you are about to destroy all data on your hard drive C:. Answer yes and wait for formatting to
finish. When prompted for a volume label, enter dos or another name if you want. If you partitioned any extended logical drives,
you must also format each of these. For example, to format drive D:, enter this:

format d:

Again, answer yes to the warning prompt. When you are finished formatting each logical drive, you are ready to install Microsoft
Windows. This should be easy. Remove the floppy disk and insert your original Windows CD -ROM or “setup” floppy disk into
the drive. Reboot by pressing Ctrl-Alt-Del. Because there is no operating system on drive C:, booting should automatically
transfer to the CD-ROM drive even if it comes after C: in the boot sequence.

The rest should be automatic. Because you formatted only selected drive partitions, Windows “sees” only the space allocated to
the primary and, if you created one, an extended partition. The rest of the space is reserved for Linux.

After the Windows installation finishes, and you reboot, you might install auxiliary drivers, applications, and perform other setup
chores as you want. However, I suggest you postpone any further steps until you finish installing Linux. If something goes wrong,
you might have to start over, so don’t waste too much time configuring Windows now. You can do that and restore your backups
later after you are finished installing Linux. Continue to the next section to complete your installation.

Installing Mandrake-Linux 6.0

Assuming that you can boot to the included CD-ROM (see the preceding sections if you need help), and after partitioning your
drive if you are creating a dual-boot system, you are ready to install Linux. Boot the CD-ROM ’s automatic installation program
and follow instructions onscreen. Most steps are well explained, and you should be able to complete most sections without help.
However, the following notes answer some questions that might arise during installation.

Note: Before proceeding, try to find out the refresh frequency of your video monitor and the amount of RAM in your video card.
Also determine whether your system clock stores the time in local or GMT (Greenwich Mean Time), also known as Zulu or UTC
(Universal Coordinated Time). Most PCs store local, not GMT, time.

Do not select expert mode unless you are truly an expert. The installation program performs “auto probing” to determine various
facts about your system, and if you disable this feature by selecting expert mode, you must enter system parameters manually.

Three control keys operate all installation screens. Press Tab to move from one item to another. Press Enter to select a highlighted
item. Press the spacebar to select or deselect options such as check boxes. The automatic installer does not use a mouse. The
bottom of the display also displays function and other keys you can press from time to time.

Tip: Virtual screens are supported during installation. To see them, press Alt-F1 through Alt-F4. Various messages are displayed
on these screens, and on them you might find useful information in case of trouble.

After you select some obvious items such as the language to use, and your keyboard type, you ’ll be asked whether to use Disk
Druid or fdisk to partition your drive. Unless you are familiar with the Linux fdisk utility (this is not the same as the MS -DOS fdisk

program), you should use Disk Druid. Even if you already partitioned your drive, you need to use this utility to complete the
Page 13

This document is created with trial version of CHM2PDF Pilot 2.10.

partitioning information for Linux.

Depending on whether you already have any partitions set up, you might need to use the Delete command to delete an existing
partition to make room for Linux. Use the Add command to create two partitions—one of type Linux Swap and one of type
Linux Native . The swap partition should be 128MB if you have less than 64MB of RAM, or no less than 80MB if you have
more than 64MB of RAM. The native partition should be as large as possible.

You must specify a mount point for each partition except for the swap space, which has no mount point. For most users, the
Linux Native partition’s mount point should be named / (a single forward slash, not a backslash). If you are setting up multiple
partitions—for example, to correspond with multiple hard drives —you may specify other mount points such as /home for user
directories.

When you are finished creating partitions and specifying their mount points, continue to the next screen. Save the partition table
information, and if you see an option to “Check for bad blocks...,” select it by pressing the spacebar. This takes some extra time,
but is a wise choice. Formatting of the Linux partitions now takes place. If you have installed Microsoft Windows, those partitions
are not affected.

Previous Table of Contents Next

Page 14

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The next and final steps configure X, if you elected to install this graphical interface. The first step in the process installs
XFree86—a collection of X servers written for Intel 80x86 processors. After that, you are asked for information about your
video system. With luck, your monitor is listed in the lengthy database displayed onscreen. In that case, just select your monitor
and continue. If your monitor is not listed, you have to enter its sync frequencies manually. To do that, select Custom and follow
onscreen instructions.

Warning: If you do not know your monitor’s sync frequencies, do not just try values at random. Entering the wrong frequencies
can permanently damage your monitor!

It’s okay to select Custom even if you are unsure about the exact sync frequencies for your monitor. In that event, however, you
should select a relatively safe entry such as Standard VGA, 640 x480 @ 60 Hz or Super VGA, 800%600 @ 56Hz and go on to
the next step. At least, this will let you start using Linux until you can figure out the proper settings, which you can specify later.

Select the Probe command to begin an auto-detection phase of the installation that attempts to identify your video hardware. This
is done in addition to configuring your monitor—auto-detection probes your video card or circuitry to determine how much
memory is available and what display modes are supported. Most modern video systems are correctly identified, and if the
displayed test screen looks right, you can proceed. However, if auto -detection fails, you must enter the amount of memory in your
video system, the number of bit planes, and select one or more resolutions. If you are unsure about these settings, try the highest
values that seem to work. (For best results, X needs a resolution of at least 800 -by-600. It works only marginally with a 640-by-
480 display.)

Finally, you are asked whether to start Linux in graphics or console mode. I prefer console mode because it shortens boot time,
but this requires me to log in and then enter startx to run X. If you want to run X at startup, that’s fine.

Tip: After installation, a complete log of the steps taken is stored in the file /tmp/install.log.

Booting Linux

You have now installed Linux and are ready to begin using your new operating system. Remove all floppy disks and CD -ROMs,
and reboot. If you set up your computer as a standalone system, Lilo boots directly into Linux after a 5 -second pause. If you have
a dual-boot system, Lilo waits briefly for you to select an operating system. Enter dos to boot into Microsoft Windows, or just
press Enter to boot to Linux. If Lilo times out, it automatically boots the Linux kernel (but see the tip at the end of this section to
change the pause time).

The first step after booting is to log in as a user. You must do this even if you are running Linux on a standalone workstation.
During installation, you were given the opportunity to create a login name and password. Enter these now at the login prompt.

Some users see a graphics display for logging in; others log in at a character -based terminal. Either way, after logging in, you
should see a prompt of some kind in a terminal window, probably ending with a dollar sign (§). If not, look for a button, a
command, or an icon of some sort that opens a terminal window. This might be called a console or a terminal. You ’ll use this
console mode to compile and run the sample programs in this book, as explained in the coming chapters.

If you see a character prompt after logging in, and you want to run the X windowing system, enter startx at the prompt. Because
of the many configurations and window managers available, I can 't predict what you’ll see at this point. Probably, you see a
graphics screen with a terminal window, or a desktop manager of some sort. After X starts, if you don ’t see a terminal or console
window, look for a command or button to open one so that you can compile and run this book ’s sample programs.

If your graphics display doesn ’t suit you, exit X (or choose a “logout” option if you find one), and get back to a login prompt. (Try
Page 15

This document is created with trial version of CHM2PDF Pilot 2.10.

typing exit if you are still logged in.) Enter roof to log in as the super user, and then from a console shell prompt, enter
Xconfigurator to configure X. This is the same configuration program that you ran during installation. Select a different resolution
or enter new video parameters until you are satisfied.

Tip: To extend the time that Lilo waits before booting, log in as root and edit the file /etc/lilo.conf. Enter or edit a command such as
delay=5000 to specify a pause time in tenths of seconds. For some reason, this command is misnamed timeout= in countless versions of
Linux.

Previous Table of Contents Next

Page 16

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Shutting Down

When you are finished using Linux, you must shut down your system properly. Failing to shut down can cause the loss of files
because of the way Linux and UNIX systems keep their directory information in memory. Although this provides for a faster file
system (a necessity in a networked environment), it means that a power loss can have serious consequences—all the more reason
to attach a UPS to your system.

To shut down Linux, there might be a button you can click or a command to select from a menu. Some X window managers
provide an Exit command that returns you to a character-based console; others return you to the login screen. In any case, to
shut down, you must log in as root (the super user). Do that and enter the root password you specified during installation, and then
enter the following command to shut down Linux:

$ shutdown -h now

The -h option halts the computer. The word now performs the command right away. You can instead enter the number of minutes
to wait before shutting down—but that’s necessary only if you are the system administrator in a network environment, and you
want to give users fair warning of an imminent shutdown. After you see the message “System halted,” or similar, you can switch
off power. (If you have power -management facilities on your system, it might turn off automatically at this point.) To reboot
instead of shutting down, enter the following:

$ shutdown -r now

After Linux shuts down, the -r option reboots the computer. When you see the Lilo prompt, you can enter dos to boot to
Microsoft Windows, or press Enter to get back to Linux.

Tip: Press the usual PC reboot keys, Ctrl-Alt-Del, to reboot if you halted the computer and want to continue. Some Linux systems
permit shutting down by pressing these keys, but for better safety, you should always log in as root and enter a proper shutdown
command.

Mounting Disks and Drives

One of the most perplexing subjects for Linux newcomers is how to mount and use disks of various kinds. Even getting Linux to
recognize a floppy disk might take some wrangling. I end this chapter with some additional information that should help answer
any questions you have about mounting different types of disks. If you want to start using GNU C ++, however, you can turn to the
next chapter now and read the following information later.

General Disk Usage

Keep in mind that under Linux you cannot simply insert a disk and use it. Unlike with MS-DOS and Microsoft Windows, Linux
requires you to mount a disk before you can access its files. To ensure that all directory information is updated on a disk, you
must unmount it before removing the physical disk. Failing to unmount a disk before removing it may cause a loss of information.

Tip: Some computers lock the drive door until a disk is unmounted; however, this isn’t true for all computers nor for all types of
disk drives. If you can’t remove a disk from a drive, try unmounting it as explained in the following sections.

Mounting a disk attaches it to the file system and makes the disk ’s files available as though they existed in a subdirectory. In Linux,
there are no A:, C:, or D: drives—all disks appear as directories in the same file system as your hard drive. On most installations,
mounted disks appear in the /mnt directory, but it’s possible to mount a disk in a different location named anything you want.

Page 17

This document is created with trial version of CHM2PDF Pilot 2.10.

The default mount directory, /mnt, is just an empty subdirectory in your Linux file system. Mounting a disk atfaches it to that
directory. For example, after mounting a CD -ROM to /mnt/cdrom, that directory references the files on the disk. To store files on
the mounted disk (assuming that you can write to this type of media), simply copy the files to the mount location. When you
unmount the disk, Linux updates the directory. The actual writing of large files might not take place until this time.

Mounting MS-DOS Partitions

If you created a dual-boot system for Linux and Microsoft Windows, you can make your Windows file systems available under
Linux. (However, you cannot access Linux files from Windows, or at least there is no straightforward way to do so.) The first step
is to create directories for the mount points. Do this in Linux by logging in as root and then entering commands at a console
prompt such as the following:

$ cd /mnt
$ mkdir msdosc
$ mkdir msdosd

You now have two directories, /mnt/msdosc and /mnt/msdosd, that you can use to mount your MS-DOS partitions. You need to
know the device names for each partition, which you can find using fdisk or the equivalent utility. (You must be the super user to
run the Linux /sbin/fdisk utility.) For example, to mount my C: and D: drives, I can enter these commands:

$ mount -t msdos /dev/hdal /mnt/msdosc
$ mount -t msdos /dev/hda5 /mnt/msdosd

Tip: To become the super user, instead of logging off and back in, you can simply enter su at a console prompt and enter the root
password. Type exit to give up your super powers and return to normal status.

Previous Table of Contents Next

Page 18

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The -t option specifies the disk type (msdos here). The last two arguments give the device name and mount point directories. If the
commands are successful, you should now have access to all files on C: and D:. (However, depending on the type of file access
table, or FAT, in use on your MS-DOS or Microsoft Windows patrtitions, long filenames might be truncated to the old MS -DOS
8.3 format.)

Determining the proper device names might take some digging. On my system, /dev/hdal is the first partition and references my C:
drive. This should be the same for all users. The /dev/hdaS device is the first logical drive (my D: drive), which is actually stuffed
inside an extended partition. That partition’s device name is /dev/hda2, but we don’t want to mount the partition; we want to
mount the logical drive inside the partition (which might contain multiple logical drives). Because only four primary partitions are
permitted, logical partitions begin with /dev/hda5, /dev/hda6, and so on.

Hard drive partitions are unmounted automatically when you shut down Linux. Because you can’t physically remove hard disks
from their drives, it isn ’t necessary to unmount them. However, you may do so by issuing the following commands (again, you
might have to be the super user):

$ umount /mnt/msdosc
$ umount /mnt/msdosd

Automatic MS-DOS Drive Mounting

If you want to have Linux automatically mount your MS -DOS partitions at boot time, log in as root and edit the file /etc/fstab with
the necessary mounting information. Unless specified as noauto, all devices in /etc/fstab are mounted if possible when Linux starts.

The information in the file also makes using the mount command easier. After entering the correct data in /etc/fstab, you can simply
specify the mount point to mount any device. The mount utility retrieves the drive’s type and its device name from the information

in /etc/fstab.

Listing 2.1 shows the /etc/fstab file on my system. Do not blindly copy this data to your file! Before creating an entry in your file,
you should have tested the command thoroughly as suggested in the preceding section. After successfully mounting a disk in a
drive, you can enter that device’s information into /etc/fstab. Copy and preface any modified lines with # to turn them into
comments for future reference. For safety, make a copy of the unmodified file and also note in your installation log any changes
you make.

Listing 2.1 The Author’s /etc/fstab File

/dev/hda4 / ext2 defaults
/dev/hda3 swap swap defaults
/dev/£d0 /mnt/floppy ext2 noauto,user

/dev/cdrom /mnt/cdrom 1509660 noauto, ro,user
/dev/hdal /mnt/msdosc msdos defaults
/dev/hdab5 /mnt/msdosd msdos defaults
/dev/hdd4 /mnt/zip ext2 noauto,user
none /proc proc defaults

O O O O O o o
O O O O O o o

Warning: Listing 2.1, /etc/fstab, is for reference only. It is not included on this book ’s CD-ROM. Do not copy or use this file on
your system. Use it only as a guide for configuring the actual file -system devices listed in your installation’s /etc/fstab file.

In addition to adding entries for /mnt/msdosc and /mnt/msdosd, I also changed the entries for /dev/fd0 (floppy drive 0, otherwise
known as A:) and /dev/cdrom to include the word user in the fourth column. This change allows me to mount these devices while
logged in under my username instead of root. I also specified pAgauLy for these entries to prevent them from being mounted

This document is created with trial version of CHM2PDF Pilot 2.10.
noauto

automatically during booting because I normally don’t keep disks in the drives. (See the sections on lomega zip drives near the
end of this chapter for the meaning of the next -to-last entry.) With my /etc/fstab file, to mount a Linux floppy disk, I can insert it
and simply type the following:

$ mount /mnt/floppy

This causes the mount utility to read the device information for that mount point from /etc/fstab. I can similarly mount a CD -ROM
by inserting it and then typing this:

$ mount /mnt/cdrom

To unmount either type of disk is equally simple. The following commands unmount a floppy and CD -ROM, making it safe to
remove the floppy and, because my system locks the door for a mounted disk, to spit out the CD -ROM disk:

$ umount /mnt/floppy
$ umount /mnt/cdrom

Tip: The correct command is spelled umount, not unmount, which I frequently type and then waste several minutes trying to figure
out why the command no longer works.

Use the preceding commands to mount and unmount only Linux formatted disks. Do not mount MS -DOS disks this way.
Instead, you can simply insert an MS-DOS formatted disk into A: and run the Linux DOS utility programs such as mdir and
mcopy to access your files. MS-DOS disks never have to be mounted and unmounted.

For CD-ROMS, you don’t have to be concerned about the type of file system because most all CDs, except for some very old
ones, are formatted using the ISO9660 standard. This is true whether the contents of the CD -ROM are intended for use with
Microsoft Windows, Linux, or another operating system. ISO9660 CD -ROM disks are directly usable from MS-DOS, Linux,
and other operating systems.

Mounting a CD-ROM

See Listing 2.1 for the /etc/fstab entry to enable a CD -ROM drive. If you install this book’s CD-ROM, a similar entry is created
automatically, but you might want to add user to the fourth column so that ordinary users can mount CD-ROM disks. Read the
other notes in the preceding section for mounting instructions. The mount point for CD -ROMs is usually /mnt/cdrom.

Using Floppy Disks

As mentioned, it’s important to know whether a disk is formatted for MS -DOS or Linux. Be sure to label all disks accordingly.
MS-DOS disks can be used without mounting—but you must run utilities such as mdir and mcopy to access files on them.

To create a native Linux disk requires two steps. First, you need to format the disk. Next, you have to install a file system. There ’s

more than one way to give these commands, so try them on a scratch disk and make extensive tests copying files before trusting
the disk to store important information.

Previous Table of Contents Next

Page 20

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

You must be the super user to format a floppy disk, so the first step is to upgrade yourself using the su command and entering
root’s password (you could alternatively log in as root):

$ su
Password:

Insert a blank 3.5-inch disk into the A: drive and format it with the following command (this erases all files on the disk). For
reference, I show the formatting program ’s output:

$ fdformat /dev/fd0H1440

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done

Verifying ... done

When formatting is complete, you must install a file system to be able to use the disk to store Linux files. (However, a “raw” disk
utility could now be used to transfer a binary image to the formatted disk —a technique often employed to quickly manufacture
copies of system disks.) To create a file system, use the mkfs utility in the /sbin (system binaries) directory. You must specify this
directory unless you actually logged in as root. Again, I show some of the program ’s output:

$ /sbin/mkfs -t ext2 -m 0 /dev/fd0H1440 1440
mke2fs 1.10, 24-Apr-97 for EXT2 FS 0.5b, 95/08/09
Linux ext2 filesystem format

360 inodes, 1440 blocks

0 blocks (0.00%) reserved for the super user

8192 blocks per group, 8192 fragments per group

360 inodes per group

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

The -m 0 option in the command reserves zero bytes for the super user. Normally, 10% is set aside, but this is probably not
necessary when formatting small floppy disks. Carefully specify the device name fdoH1440—in that name, 0H is the digit zero and a
capital H.

Alternatively, try the following simpler command, which runs the mke2fs utility, also located in /sbin:

$ /sbin/mke2fs /dev/£fd0 1440

Whichever command works for you, when you are finished creating file systems, be sure to relinquish super -user status by typing
the following command:

$ exit

That logs you out, or it causes you to lose your super powers and return to a normal, mild-mannered human being who, of course,
cannot be trusted to format floppy disks.

Mounting Iomega Zip MS-DOS Disks

If you have an lomega zip drive, you can use zip disks in much the same way as you do disks. Ordinarily, a zip disk comes
formatted for use with MS -DOS and Microsoft Windows. Internally, the disks are formatted and recognized as hard drives, but
they are configured as logical drives in the same way as drives such as D: and E: in an extended hard -drive partition.

The trick for mounting one of these disks is to discover the drive ’s Linux device name. Watch during booting for a line that

mentions [OMEGA ZIP DRIVE or something like that and nPote ﬂzlfi: device name. This is probably /dev/hdd, but don’t count on it.
age

This document is created with trial version of CHM2PDF Pilot 2.10.

You can’t mount that device directly because, as in all extended hard-drive partitions, the file system is actually encased in a
logical drive. On my system, that logical drive’s device name is /dev/hdda, and so to mount the disk, I can enter commands such
as the following (the first command is needed only once to create the mount -point directory):

$ mkdir /mnt/zip
$ mount -t msdos /dev/hdd4 /mnt/zip

$ umount /mnt/zip

Because this makes the zip disk appear to be an msdos hard drive, you can use Linux commands to access files and directories
just as you can with a mounted hard drive partition such as /mnt/msdosc. You don’t have to use the mcopy and mdir commands,
which are intended for use only with MS-DOS floppy disks.

Creating Linux Zip Disks

Although you can use MS-DOS-formatted lomega zip disks with Linux commands, better performance is possible by installing a
Linux file system. This also makes zip disks ideal for backups. For example, to back up the directory and all its files for this book,
I simply enter these commands:

$ mount /mnt/zip
$ cp -a gpl /mnt/zip
$ umount /mnt/zip

The gpl—GNU Programming for Linux—in this command is the directory where I store this book’s files. The -a option, for
“archive,” is just a simple way to copy many files and directories with one command. To use a zip drive this way on your system,
you need to install a file system on the disk. You also might want to modify /etc/fstab so that you can mount and unmount zip disks
without having to become the super user. However, you must be root to perform these steps, so enter this command first:

$ su
Password:

Note: Do not mount a zip disk before formatting. If you are not sure whether it ’s mounted, unmount the disk by typing
umount /mnt/zip .

Next, follow these steps to install a Linux file system on a zip disk. This removes all existing files from the disk, so be sure you
want to do that before continuing. I assume here that the lomega drive device name is /dev/hdd, which might be different for you.
Because zip disks are configured as hard drives, they have partition tables that you can examine using the Linux fdisk utility. With
a zip disk inserted but not mounted, enter this command:

$ /sbin/fdisk /dev/hdd
Warning: Be extremely careful when running the fdisk utility. Some of its commands permanently erase files. Remember also that
you are the super user, and your powers include read and write permission for al/ files. Finally, be aware that the fdisk utility might

understand different commands than described here, or it might have an entirely different display depending on the version of
Linux you are running. Consider the following instructions as suggested guidelines only and proceed with caution.

Previous Table of Contents Next

Page 22

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Type m for a list of fdisk commands. Type p to print the zip disk’s partition information, which should look something like this:

Disk /dev/hdd: 64 heads, 96 sectors, 32 cylinders

Units = cylinders of 6144 * 512 bytes

Device Boot Begin Start End Blocks Id System

/dev/hdd4 * 1 1 32 98288 6 DOS 16-bit >=32M

You might also see some error messages about block number discrepancies. If so, ignore them. This step merely verifies that you
are operating on your zip disk and haven’t accidentally specified a primary hard -drive partition.

Next, use the d command to delete partition number 4 (the only one allocated). Create a new primary partition with the n
command, making it number 4 and specifying cylinders 1 to 32. If your disk is a different size, get the correct cylinder numbers
from the Start and End columns in the original partition table. Finally, use the w command to write the partition table to the disk
and then type ¢ to quit.

You can now run /sbin/mke2fs to create a new file system on the zip disk. Do that by entering the following command:

$ /sbin/mke2fs /dev/hdd4

You should see a bunch of information onscreen, which might help you verify that the disk is formatted correctly. After the
command finishes (it doesn ’t take long), test the disk by mounting it. First create a mount point if you haven ’t already done so by
typing this:

$ mkdir /mnt/zip

You can name the mount point anything you want, but /mnt/zip seems logical enough. Mount the native Linux zip disk by issuing
the following command:

$ mount -t ext2 /dev/hdd4 /mnt/zip

So that you can more easily mount a zip disk, and also so that you don’t have to become the super user to do that, add
commands such as the following to /etc/fstab:

/dev/hdd4 /mnt/msdoszip msdos noauto,user
/dev/hdd4 /mnt/zip ext2 noauto, user

00

00

I purposely specify different mount points for my MS -DOS zip disks and those formatted with a native Linux file system, although
this isn’t strictly necessary. Simply use the mount command described in the preceding section. (If you mount the wrong type of
disk, the mount utility displays an error message.) I know I’ve said this before, but do remember to unmount your zip disk when
finished using it, and if you are still the super user, also return to your normal login rank:

$ umount /mnt/zip
$ exit

Getting Online Information

Use the Linux info utility to view online information about operating system commands, GNU C ++, and dozens of other topics.
The info utility is intended to replace the age-old UNIX man program—not a sexist reference, but an abbreviation for “manual.”
Although man is available in Linux, the info program generally gives more up -to-date information.

To use info, type its name at a console prompt optionally followed by the name of the item you want to know more about. For
example, enter the following command for information about the Emacs programmer ’s editor:

Page 23

This document is created with trial version of CHM2PDF Pilot 2.10.

$ info emacs

When you are finished viewing information, type ¢ to quit info and return to a console prompt. Some info topics seem to be case
sensitive, so if an info command doesn 't work, check the exact spelling of the item you are trying to find. For a tutorial on using
the info utility, type info info . For help using man, type man man or info man .

Throughout this book, I suggest various info pages you might like to view for more information about a subject. However, don ’t
wait for me to suggest using info to answer any questions you might have while reading this book. In time, you ’ll find info to be one
of the most useful information utilities at your disposal.

Summary

It is my sincere wish that you are reading this summary after happily and successfully installing Linux on your computer. It ’s
difficult in one small chapter to provide a complete guide to installing and configuring an operating system as large and as capable
as Linux, but this chapter should have given you a springboard for getting started as well as providing tips for formatting and using
hard drives, floppy disks, and lomega zip disks. Steps in this chapter suggested ways to create standalone Linux systems, and
dual-boot systems for Linux and Microsoft Windows. The next chapter explains how to install the GNU C ++ compiler, if
necessary, along with this book’s listing files.

Previous Table of Contents Next

Page 24

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 3
Installing GNU C++

Because GNU C++ comes with Linux, installing the operating system may already have installed the compiler and other necessary
files. In that case, you can skip to “How to Install This Book’s Sample Programs” in this chapter. However, depending on the
options you selected during installation, you might have to install additional files using one of the methods explained here.

Note: For C programmers in the audience who want to learn C++, a section, “Comparing C and C++,” near the end of this chapter
compares features in the C and C++ languages. This information might also be useful to readers who are upgrading C programs to
C++, or who simply need help deciphering C source code files.

Where to Get GNU C++
The best source for GNU C++ is right here, on this book’s CD-ROM. However, if you want to upgrade to a newer release, or if
you already have Linux or UNIX running and you want to add GNU C++ to your system, begin your search for the necessary files

at the following Web site:

http://www.gnu.org/

You’ll have to hunt for the page that offers the release files, and because this is a very busy server, you might need to download
the files using a mirror FTP (file transfer protocol) site. At this writing, the FTP location of the files is ftp://ftp.gnu.org/gnu/gcc . At
the minimum, you need the GCC compiler, all associated library files, and preferably, any documentation files you come across.
These files are provided in “tarred and zipped” format. For example, a recent release of GNU C ++ comes in a file cryptically
named something like gcc-g++-2.95.1.tar.gz. Files for upgrading an installed compiler also are available. These are generally
smaller than the full system and take less time to download.

The “gz” filename extension indicates the file is compressed using GNU ’s gzip file compression utility. You can unzip the file by
using gunzip. The “tar” in the filename indicates that the files are packed using the age -old UNIX tar (tape archive) utility, which
despite its name, works just fine with disks and other media, not only tape. For more information on these utilities, read their
online documentation by entering the commands info tar , info gzip , and info gunzip . Also read the following sections for more
installation suggestions.

Note: Until just before this book was scheduled to be published, the GNU C ++ compiler went by the name EGCS (Experimental GNU
Compiler System). It is now again known, as it had been originally, as GCC, but this acronym has been changed to stand for “GNU
Compiler Collection.” In any case, despite its many different names, they all refer to the same GNU compiler system that you can

use to write programs using ANSI C++ and ANSI C as explained in this book.

How to Install the GNU C++ Compiler

Before you go to the trouble of installing GNU C ++, check whether the compiler is already installed. To do that, get to a console
prompt and enter the following command (notice that the correct command is not c++ but g++, the g referring to GNU C++):

$ g++ -v

Reading specs from /usr/lib/gcc-1ib/i686-pc-linux—-gnu/
L pgee-2.91.66/specs

gcc version pgcc-2.91.66 19990314 (egcs-1.1.2 release)

If you see a similar response—don’t worry about the version number or exact filename spellings—you are ready to go. However,

if the compiler’s version number is earlier than 2.3, you might need to install an upgrade to make full use of this book ’s advanced
Page 25

http://www.gnu.org/
ftp://ftp.gnu.org/gnu/gcc/

This document is created with trial version of CHM2PDF Pilot 2.10.

chapters. If all seems well, turn to “How to Install This Book’s Sample Programs.”

If you receive an error message such as “bash: g++: command not found,” you need to install GNU C++ before continuing.
Basically, you have four choices:

* Reinstall Mandrake-Linux 6.0 from scratch using this book ’s CD-ROM.

» Upgrade your installation to add GNU C++ and associated library files, using the upgrade option on this book ’s CD-
ROM automatic installer.

* Install individual packages from this book ’s CD-ROM using the Red Hat Package Manager (RPM), either from a
console window or using an X window manager.

* Download the GNU C++ compiler release files from the Internet and install the files manually (not recommended unless
you know your way around Linux and UNIX).

The following sections discuss each of these installation methods. The first three methods are relatively simple. Of these, the first
two methods can be used by anyone. The third requires you to know your system’s root password. The last method might require
additional research into how your system is organized and also requires you to know the root password.

Reinstalling Everything

This is the easiest method. Reboot to the attached CD-ROM, and follow instructions in Chapter 2, “Installing Linux,” to install the

operating system and GNU C++. Be sure to select the proper components during installation, as suggested in the chapter. GNU
C++ 18 not installed by default unless you select that component. If you have the room, install Everything.

Previous Table of Contents Next

Page 26

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Upgrading an Existing Installation

If you have already installed Mandrake -Linux 6.0, but neglected to install the GNU C++ compiler, you can add the necessary files
without affecting existing user directories and files. Follow these steps:

1. Back up all files. Even though upgrading your installation doesn ’t affect user directories, making a complete backup
before upgrading is a good idea in case something goes wrong.

2. Insert the CD-ROM and reboot. If Linux is running, to reboot, log on as root and enter the command shutdown -r
now.

3. When you see the opening installation screen, press Enter for a normal installation —do not select expert mode. Select
various options such as your keyboard type and language.

4. Eventually, you are shown a window titled Installation Path. Choose the Upgrade button (press Tab and Enter). This
bypasses the drive-partitioning parts of the installation and proceeds straight to building a database of installed packages.
This takes a few minutes.

5. Eventually, you see another window titled Upgrade Packages. Answer Yes to customize the set of packages already
installed. Unfortunately, this part of the installation is not the same as the original that presents components for installation —
instead, you must specify each package. Select a listed entry to display the individual packages. At the least, select
Development/Debuggers (gdb, xxgdb), Development/Languages (cpp, libstdc++-devel, pgcc, pgec-c++),
Development/Libraries (glib-devel, glibc-devel, gtk+-devel, readline-devel, Xaw3d-devel, XFree86-devel), and
Development/Tools (automake, make, patch, and others). You may also select other packages at this time. Select the
Done command when you are finished, but review all your selections before selecting Done —the only way to return to this
step is to start over.

Tip: A log of the upgraded packages is saved in /tmp/upgrade.log. Read and save this file after the upgrade installation finishes.

The rest of the upgrade -installation is automatic, although you might have to enter responses in a few more display screens. When
installation finishes, Linux reboots. Be sure to remove the CD-ROM when this happens.

After logging on, enter the test command g++ -v to check that GNU C++ is properly installed. If so, you can skip to “How to
Install This Book’s Sample Programs.”

Installing Packages with RPM

Another way to install packages is to run the Red Hat Package Manager (RPM). This utility has become a standard on many
different types of Linux, so even if you aren ’t using Red Hat’s version, you probably have RPM on your system. (The included
CD-ROM comes with RPM for console and X display modes.) RPM maintains a database of installed packages, so you can use
it also to check whether a particular file is installed.

A package is an archive that contains the files for a single program, or for a group of programs. A package might also contain
updates in the form of patches, and it includes directory and installation information. You can find packages on various Linux Web
sites and also on most Linux CD-ROMs. They are typically located in directories named RPMS (binary packages) and SRPMS
(source file packages). These directories are probably located inside one or another subdirectory, so you might have to hunt for
them.

Note: RPM package files on this book’s CD-ROM are located in the directory /mnt/cdrom/Mandrake/RPMS.

To install a package from a CD-ROM, you first have to mount the disk (see Chapter 2, “Installing Linux,” for help if you get stuck

with this step). Probably, you can simply insert the CD-ROM and enter this command at a console prompt:
Page 27

This document is created with trial version of CHM2PDF Pilot 2.10.
mount /mnt/cdrom

If you are running X, you might find a CD -ROM icon that you can click with the mouse. This should also mount the CD-ROM
and display its files.

After mounting the CD-ROM, you can run RPM and install package files, which end with the filename extension .rpm. Depending
on your version of Linux, however, the package filenames for GNU C ++ and associated libraries are probably different. Look for
package files beginning with the words pgcc and pgcc-c++, or if you are not using this book ’s CD-ROM, those beginning with
gce and egcs. You also need to install various library files, particularly those beginning with the words libe, libelf, and libstdc ++.

Note: To save space here, I don’t always show complete package filenames. For example, the egcs package file on one of my Linux
systems is named egcs-1.0.2-12.src.rpm. Here, I might refer to that file as eges.rpm without the embedded version numbers.
Remember to press the Tab key to more easily type filenames such as these. For example, type eges-1 and press Tab to automatically
complete the rest of the filename.

If you are running X and a window manager installed by this book ’s CD-ROM, log in as root, and then to install GNU C++,
follow the steps listed next. You might have to repeat these steps to install other packages such as any library files needed to
compile various programs in this book:

Insert this book’s CD-ROM and click on the icon labeled CDROM to mount the disk.

Start RPM by clicking its icon.

Select RPM ’s File, Open command.

Click the up arrow to find the directory path /mnt/cdrom.

Open the /mnt/cdrom directory, and then go to the Mandrake or Red Hat subdirectories.

6. From there, go to the subdirectory RPMS. This should open a window listing numerous package files. (The complete
pathname of the directory is /mnt/cdrom/Mandrake/RPMS.)

7. Package filenames keep changing with every release of Linux, and they differ among vendors. For the GNU C ++
compiler on this book’s CD-ROM, find the file pgce -c++.rpm. On another disk, this might be named gec-c++.rpm or
perhaps egcs-c++.rpm (minus any version numbers in the filenames).

8. Open the package file by double-clicking its name, and then from the resulting dialog box, select the Install button.
9. If you did not log on as the super user, you see an error message and are asked for the root password. (This window
might be confusingly hidden behind another.) Enter the password and try again. Installation of the package files should
proceed.

10. Repeat the preceding steps to install any other packages you need. You can use these steps also to install components
such as games, utilities, and source code files.

RN

Previous Table of Contents Next

Page 28

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

After downloading a “tarred and zipped” file, you need to unpack it into a directory. Always create a temporary directory for this
purpose to prevent accidentally installing a few hundred files in your home or other directory. After unpacking, look for Readme
or similarly named files for additional instructions.

Note: MS-DOS and Microsoft Windows users who download Linux and UNIX files might find their filenames scrambled. This
happens because Microsoft operating systems do not like filenames with multiple extensions. One solution is to rename your
files—for example, from filename.tar.gz to filename -tar.gz (the hyphen may also be an underscore). If you copy a “tarred and zipped”
file from a DOS or Windows directory to a Linux directory, you might find the filename truncated to something like file~1.gz. In that
case, note the original filename and use the Linux mv command to rename the file before proceeding.

To decompress and unpack a “tarred and zipped” file, copy it to an empty directory, and then enter commands such as the
following:

$ gunzip gcc-g++-2 95 1 tar.gz
$ tar -tf gcc-g++-2 95 1 tar
$ tar -xvf gcc-g++-2 95 1 tar

The first command decompresses the file and automatically removes the .gz filename extension. The second command, which you
can skip if you want, lists the tarred files before unpacking them. The third command unpacks the files and creates any necessary
subdirectories. You don’t have to type the full filenames —just type the first few letters and press Tab to complete the names
automatically (assuming that your shell supports this feature).

At this point, you need to look for a Readme or other file containing compilation and additional installation instructions. In many
cases, you merely need to set up a configuration file, and then run the make utility to compile and copy files to their final resting
places. (If you have trouble, check the Web sites listed in Appendix C, “Web and FTP Sites,” for help. Look for FAQ sheets and
other online help files.)

Caldera OpenLinux Users

If you are using Caldera’s OpenLinux, especially version 2.2, you might discover that the automated installation does not properly
install the GNU C++ compiler. This is so even if you select the option All Recommended Packages. Following is an email message
from this book ’s technical editor, Richard Blum, describing the problem and explaining the steps he took to resolve it. Perhaps his
account will help you install GNU C++ if you experience the same difficulty. Rich writes...

“I decided to upgrade to Caldera OpenLinux 2.2. After a couple of failed attempts, I was finally able to get it running on my PC.
When I tried to compile the first program, I received a ‘command not found’ error. I checked, and sure enough, g++ was not on
the system. The GNC C compiler, gcc, was installed and worked fine, but not g++. I checked the installed programs, and the egcs
c++ module was not loaded (even though I had selected the Install All Packages option). I tried to manually install the package,
but RPM claimed that it failed on ‘dependencies.” Thinking that I must have seriously messed something up, I reinstalled the entire
operating system, but received the same result. By now, I was getting worried. I checked the Caldera Web site, and discovered a
‘KnowledgeBase’ article on fixing egcs dependencies (REF#990524-0005). The site offers several new .rpm files to download
and install. After I did that, everything worked fine. ”

How to Install This Book’s Sample Programs

All this book’s sample programs are provided on the CD-ROM packaged with this book. All files are provided in full source
code form and must be compiled before you can run them. In addition, see Chapter 29, “Introducing the V Class Library,” for
instructions on installing the V C++ class library for X programming, also provided on the CD-ROM.

Page 29

This document is created with trial version of CHM2PDF Pilot 2.10.

Note: Listings printed in this book do not include extraneous comments, and in some cases, have been stripped of duplicated
programming to save space. This might cause line numbers shown in the text—for example, in descriptions of how to use the GNU
debugger—to differ from those line numbers on your screen. The full source code for all listings is on the CD -ROM. For best
results, use the CD-ROM files to compile the programs as instructed in the chapters.

Mounting the CD-ROM

This book’s source code files are packed into a single “tarred and zipped” file, named gplsrc-tar.gz (that’s gpl for GNU
Programming for Linux). To find this file, insert the CD -ROM and then mount it by issuing the following command:

$ mount /mnt/cdrom

If you have trouble, see Chapter 2, “Installing Linux.” for detailed instructions on mounting disks. (On some systems, you might
have to become the super user by typing suand entering the root password to give the preceding command.)

Previous Table of Contents Next

Page 30

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Unpacking the Files

After mounting the CD-ROM, locate the gplsrc-tar.gz file (it might be in a subdirectory), and copy it to your home directory or to
a new one created using mkdir:

$ cp gplsrc-tar.gz /home/yourname
$ cd /home/yourname

To unpack the archive, issue the following two commands. This creates, inside the current directory, a single new directory named
src, with subdirectories containing the source files organized by chapter:

$ gunzip gplsrc-tar.gz
$ tar -xvf gplsrc-tar

The first command decompresses the .gz file and removes the filename extension. The second command unpacks the archive using
the Linux tar utility and creates all chapter subdirectories such as C04 and C05. After unpacking the files, you can remove the
original archive, unmount the CD-ROM, and if you are logged in as the super user, return to a normal user by issuing these
commands:

umount /mnt/cdrom
exit

cd /home/yourname
rm gplsrc.tar

Uy U Ur U

You can now change to a chapter subdirectory and compile the programs found there (in some cases, you might have to look
further into other subdirectories to find listing files):

$ cd src/c04
$ g++ welcome.cpp
$./a.out

Comparing C and C++

C programmers reading this book might want to hunt for information specific to C ++. Following is a list of key differences between
C and C++ that will help you focus on the topics you need to learn to begin programming “the C++ way.” Beginners and
newcomers to C and C++ can skip this section, which uses terms familiar to C programmers but not yet introduced in this book.
You might find the following information useful also for upgrading C programs to C ++, or just for deciphering a C program’s
source code statements:

* C and C++ generally use the same syntax, operators, expressions, built-in types, structures, arrays, unions, loops,
functions, and pointers. These fundamental elements are used identically in both languages.

e C and C++ support the same kinds of preprocessor directives such as #include, #define, and conditional expressions such
as #ifdef.

* C++ has several new reserved words (a total of 97 in my version of GNU C ++), many of which are the same in C and
C++. See Chapter 6, “Creating Data Objects,” and also Appendix A, “GNU C++ Reserved Words,” for a complete list of
GNU C++ reserved words.

* C++ introduces a few operators that are not found in C. For example, the “put-to” operator << is used to write data to
objects. This book fully explains how to use all C and C++ operators. See Appendix B, “C++ Operator Precedence and
Associativity,” for a complete list.

e C++ supports minimum and maximum operators. The expression (X <? Y) returns the lesser of X and Y. The expression (X
>? B) returns the greater of X and Y. Not all C++ compilers support this feature.

* C++ requires all functions to have formal prototypes. C encourages, but does not require, function prototypes. Functions
that are used before being declared (that is, if there are Ay, i_Jn}plicit function declarations) generate a compiler error.

This document is created with trial version of CHM2PDF Pilot 2.10.

* Type checking in expressions is more strictly enforced in C++ than in C. In general, values in expressions must be of the
same types, or they must be readily convertible to appropriate types. Where C gives an incompatible type warning, C++
tends to generate a compiler error. However, objects are implicitly cast from one type to another, an action that is easily
missed. Be careful in assignment statements to use objects and values either of the same types or, if different, of types that
are assignment compatible.

* C++ reduces the need for typedef declarations. You can declare a struct such as

struct mystruct {
}s

and then declare variables such as mystruct x;. To do the same in ANSI C, you need to write struct mystruct x;, or you need
to use a typedef alias for struct mystruct.

* In C++, a char object is an 8-bit byte. In C, a char’s size is not defined. In C, character constants are of type int, and the
expression sizeof(‘X’) equals sizeof(int). In C++, character constants are of type char, and the expression sizeof(‘X’) equals
sizeof(char). (However, tests indicate that, in GNU C++ and GNU C, sizeof(‘X’) always equals 1.)

* C++ permits local object declarations in compound statement blocks. For example, in C++, if you declare a local variable
inside a while loop, that variable’s scope is limited to the loop’s statement block. In C++, you can also create local variables
inside a for statement.

* C++ provides const (constant) objects. Any object declared const cannot have its value changed at runtime. (This feature
is also available in ANSI C, but not in precursor C compilers.)

* C++ supports comments beginning with // and extending to the end of the line. C++ also recognizes C-style comments
delimited with /* and */. C++-style comments are found more and more in ANSI C compilers (GNU C and C++ recognize
both types of comment styles).

* In C++, function parameters may be given default values. In addition, functions can be overloaded —that is, a program
may have two or more functions of the same name provided that they differ in at least one parameter data type.

* C++ supports object-oriented programming, a main focus of this book. The primary tool for C ++ OOP is the class, an
enhanced struct that encapsulates data and functions, and that supports the concept of inheritance. C ++ classes can use
single inheritance (one class derived from another base class) and multiple inheritance (one class derived from two or more
base classes).

* Because on some systems C++ programs might need to be linked using a standard system linker, C++ supports an
internal convention known as name mangling . In brief, this creates unique identifiers by combining an object ’s type and
name information. However, because of name mangling, standard C functions need to be specially declared so that the
linker can find them. If you have trouble linking to a standard C library, try including its function and other declarations
inside the directive extern “C” { ... }.

* C++ supports inline functions. Calls to inline functions are replaced at compile time with the function ’s statements. Using
inline functions can greatly speed performance in time -critical loops. (In GNU C++, you must compile with optimizations
using option -O to enable inline function expansion.)

* C++ supports virtual functions, which in classes, are used to create polymorphic objects. The classic example of
polymorphism is a graphics object that “knows” how to draw itself. Drawing a full screen of such objects is a simple matter
of telling them to do their thing. Virtual functions do not exist in C.

* C++ supports templates, a facility for automatically generating classes and functions. With templates, you can write
completely general code that is molded at compile time into specific forms from which objects and functions are then
created.

* C++ supports exceptions, a powerful means for intertwining error handling in programs. Exceptions are particularly useful
for dealing with critical errors such as a memory shortage that occurs during a deeply nested function call. By providing an
automatic method for handling error conditions, exceptions reduce the need to write explicit error -checking flow -control
statements.

* C++ provides a standard template library (STL) plus a string class, both described in this book. The STL combines
algorithms such as sorting and searching with data structures—vectors, stacks, queues, and others—in completely general
ways.

e ANSI C++ allows nested functions—that is, one function declared and used inside another. However, GNU C++ does
not yet support this feature.

Summary Page 32

This

cument is created with trial version of CHM2PDF Pilot 2.10.
ummary

Most likely, you do not have to install GNU C++. Most Linux automated installation programs install the compiler, especially if you
elect to install “all packages” or “everything.” If you followed the installation instructions in Chapter 2, you probably have GNU
C++ installed and ready to go. However, if you experience trouble running the compiler, this chapter offered several alternative
methods and tips for installing GNU C++ (and other files) by using this book ’s CD-ROM, the Red Hat Package Manager (RPM),
or by downloading the necessary files from the Internet. This chapter also explained how to unpack and install this book ’s sample
programs. In addition, at the end of this chapter was a comparison of features in C and C ++ that might be of interest to C
programmers. Now, turn to the next chapter to begin learning how to use GNU C++ for Linux programming.

Previous Table of Contents Next

Page 33

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Part I1
C++ Fundamentals

4 Introducing GNU C++ 45

5 Compiling and Debugging C++ Programs 63
6 Creating Data Objects 89

7 Applying Fundamental Operators 133

8 Controlling Input and Ouput 145

9 Controlling Program Flow 167

10 Creating and Calling Functions 191

11 Managing Memory with Pointers 223

CHAPTER 4
Introducing GNU C++

By now, you have installed Linux and GNU C++. You’ve tweaked files and poked settings to configure the operating system to
your heart’s content. You’re ready to start learning how to program Linux software with GNU C++. Where should you begin?

Right here. Even if you know C, C++, or another language, don’t skip this and the following GNU C++ tutorial chapters. Most
chapters build on the preceding chapters, and even C++ gurus can benefit from reading them in order. Along the way, you pick up
valuable techniques for compiling, optimizing, debugging, maintaining, and modularizing GNU C++ programs. Armed with this
information, you not only learn programming techniques but also acquire the tools and knowledge for creating and maintaining
many different types of Linux programs from the lowliest console utilities to the most complex X graphical applications.

Welcome to C++ Programming

Many programming books begin with a program named “hello” that prints a message onscreen. Although simple, the hello
program introduces the fundamentals of a programming language, and it verifies that your system is properly configured. Being the
contrary sort, however, I name my hello program “welcome.” Running it welcomes you to GNU C++ programming.

The Welcome Program

Listing 4.1 shows the source code listing for the welcome program. The program file is named welcome.cpp, and it is located in
the src/c04 directory along with other numbered listings in this chapter. Files from other chapters are similarly organized in
directories by chapter number.

Listing 4.1 welcome.cpp

#include <iostream.h>

int main ()

{
cout << “Welcome to GNU C++ for Linux programming!” << endl;
return 0;

}

Note: If you did not copy the src directory and its files from this book ’s CD-ROM to your hard drive, do so now by following the
Page 34

This document is created with trial version of CHM2PDF Pilot 2.10.

instructions in Chapter 3, “Installing GNU C++,” in the section “How to Install This Book’s Sample Programs.”

The welcome program’s filename ends with .cpp, which, of course, stands for “C plus plus.” C++ filenames can end with other
extensions such as .cc, .cxx, .cpp, or .c++. I prefer .cpp because that’s the default for Borland C ++, but you can use one of the
other filename endings if you prefer. Filenames ending with .c (lowercase ¢) contain standard C source code, not C ++. However,
GNU C++ can compile C and C++ programs, and it lets you combine C and C++ techniques as you want. With C, you get only
C; with GNU C++, you get the best of both worlds.

Compiling the Welcome Program

Before examining welcome.cpp, compile and run the program. Compiling a C++ program in source-code form creates an
executable code file that you can run by typing its name. There are many ways to compile programs (I explain more in Chapter 5,
“Compiling and Debugging C++ Programs”). The easiest method, and the one to use for most of this book ’s sample programs, is
to change to the file’s directory and then run the GNU C++ compiler. To do that, enter commands such as

$ cd /home/username/src/c04
$ g++ welcome.cpp

The dollar signs represent the shell prompt, which might be different for you, and might show a different character. In this book,
lines preceded with dollar signs are those you type at the console. Don 't type the dollar signs. To run the compiler, you may
type either g++ or ¢++. In some versions of Linux, those commands actually run the GNU C compiler, gce, with options selected
for C++ programming. In newer releases, GNU C++ is the standalone compiler, egcs (Experimental GNU Compiler System),
which does not rely on gcc.

Note: GNU C++ selects the correct compiler depending on the filename extension. The commands g++ filename.c and gcc
filename.c run the GNU C compiler. The command g++ filename.cpp automatically selects GNU C++,

After you compile welcome.cpp, a directory listing produced by the 1s command shows a new file named a.out. This file contains
the executable code that g++ created. It’s a finished code file, ready to run. However, because the src/c04 directory is probably
not in your environment path, to run the program, preface its name with a period and slash. This tells the shell to look for the file in
the current directory. For example, enter this command:

$./a.out
Welcome to GNU C++ for Linux programming!

The two lines show your typing and the program’s output. I often reproduce screen output this way so that you can compare your
screen with mine. But don’t merely read this text. To learn a programming language, there’s no substitute for entering, compiling,
and running programs on your own computer.

Note: You might come across documentation that states a.out is an “old format” replaced by the ELF executable code format.
Nowadays, a.out is in ELF format, and you don’t need to do anything special to enable the newer system. To be sure, however,
enter a Linux file command as follows and check the reported message:

$ file ./a.out
./a.out: ELF 32-bit LSB executable, Intel 80386,
% version 1, dynamically linked, not stripped

The Output File Option

Compiling programs to a.out is convenient for quick tests, but subsequent compilations overwrite the output file. To save a.out,
you can rename the file using a mv command, but it’s easier to specify an output filename in the first place. To do that, use the
compiler’s -o option in a command such as

Page 35

This document is created with trial version of CHM2PDF Pilot 2.10.

$ g++ -o welcome welcome.cpp

Follow -0 with the output filename. It’s conventional to use the same filename as the source with no extension. You may specify a
different name if you want. Some authorities say not to add a space after -o; others show the command as I do. If the preceding
command fails for you, try -owelcome. After compiling, you can run the program by entering

Previous Table of Contents Next

Page 36

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

$./welcome
Welcome to GNU C++ for Linux programming!

Warning: Be especially careful when using the -o option to supply a filename. If you type a command such as g++ -0 xxx.cpp, the
compiler overwrites xxx.cpp! Always double check that you have supplied the name of a file after -o and that you are sure it is safe
to overwrite the file.

Understanding the Welcome Program

Now that you know how to compile and run a C++ program, take a look at the source code in welcome.cpp (refer to Listing
4.1). The first line is a preprocessor directive. This is a command to the compiler that, in this case, tells it to include the
declarations from a file named iostream.h, one of hundreds of similar %eader files that come with GNU C and C++. Include
directives are usually in the following form:

#include <filename.h>

Although include directives might appear just about anywhere in a program’s source code file, they are normally best located near
the top above any other programming. The directive begins with #include, and is followed by a filename enclosed in angle
brackets) (otherwise known as less-than and greater-than signs). The filename doesn’t have to end with .h, but it almost always
does. The brackets tell GNU C++ to look in standard directories for the named file. To include a header file of your own making,
use double quotes like this:

#include “local.h”

GNU C++ stores standard header files in the directories /ust/include, /ust/include/g++, and others. Different versions of Linux and
GNU C++ might store header files elsewhere. Place your own header files in your program ’s directory or in a subdirectory named
include.

Warning: Never store your own header files in the standard include directories. You might lose them when upgrading or
reinstalling GNU C++.

Including a header file imports its declarations as though they were typed at the location of the #include directive. Through a
somewhat roundabout process, this also causes the compiler to link into the finished code various subroutines and data that, in this
case, implement the GNU C++ /O stream library. In due course, you learn more about how to link code to libraries, and what
exactly happens when you include a header file. Here, you need to understand only that including iostream.h provides input and
output capabilities for C++ programs.

Next in welcome.cpp is a function named main(). Functions group one or more statements, written in a statement block
between a pair of matching braces. The statements run when another part of the program calls the function. In this case, however,
it’s the shell that calls main(). (I explain the main() function more fully in the section “Program Entry and Exit” later in this chapter.)
All C and C++ programs must have one and only one main() function.

Note: To distinguish them from other program elements, in this book, function names such as main() end with a pair of parentheses.

The main() function in welcome.cpp contains two statements. The first one writes a string to the standard output, usually the
console. Examine this statement closely:

cout << “Welcome to GNU C++ for Linux programming!” << endl;
Page 37

This document is created with trial version of CHM2PDF Pilot 2.10.

The C++ output operator << passes the quoted string plus an end-of-line object (endl) to cout. The ¢ in cout stands for “character.”
It’s an output object, provided by the C++ I/O stream library, that can accept character data such as strings and end-of-line
objects. Writing to cout sends text to the system’s standard output file, most often the user ’s console. Another output object, cerr,
writes to the standard error output file. Notice that a semicolon terminates the statement. Function declarations, statement blocks,
preprocessor directives, and some other items you meet throughout this book are not statements, so they don’t end with
semicolons.

Tip: Using the Emacs editor, press M -a to move backward and M -e to move forward one statement at a time in C and C++ source
code files. M stands for meta-key. On most PC keyboards, the meta-key is Alt.

The second and last statement in main() (notice that it too ends with a semicolon) returns a value to the function’s caller:

return O;

A return value of 0 indicates that the program ran and finished successfully. A nonzero value, which must be in the range of 1 to
255, indicates that an error occurred. See “Program Entry and Exit” later in this chapter for more information on main() return
statements.

More About Semicolons

Semicolon placement in C and C++ programming confuses everyone at first. Always remember that semicolons terminate
statements , not lines of text. Semicolons also terminate some other elements such as variable definitions, but more on that in
Chapter 6, “Creating Data Objects.”

The best way to learn where to type semicolons is to understand that the compiler needs them to locate the ends of statements
and declarations. This is because the compiler ignores whitespace, or more specifically, extraneous blank lines, spaces, and tabs.
Programmers write most statements on separate lines and use indentation to make source code readable, but the compiler is no
literary connoisseur, and it doesn’t care how the text looks. The following rearranged welcome.cpp compiles correctly because
the compiler understands its syntax perfectly well (notice the locations of the semicolons):

#include <iostream.h>
void main () {cout<<“Welcome to GNU C++ for Linux programming!”
<<endl;return 0;}

If you write code like that, you will incur the wrath of all who have to read your programs. You ’ll deserve it too.
Calling C Library Functions

Because the C++ programming language is based on C, anything you can do in C, you can do in C++. The same is generally true
with most C++ compilers, but GNU C++ makes it particularly easy to switch between the two languages. You can also combine C
and C++ programming methods in the same program.

Those capabilities are important to C++ programmers for several reasons. For one, numerous Linux programs are written in C. To
understand the source code statements in those programs, you need to know C programming techniques. For another, GNU C++
provides an extensive standard library of C functions that perform all sorts of services such as working with dates and times,
performing mathematical calculations, and manipulating character strings. The GNU C library implements all functions defined in
the ANSI C specification, also known as ISO C. Also available in the library are IEEE POSIX standard functions and other
declarations. This book explains how to use many GNU C library functions in C++ programs.

Note: POSIX stands for a mouthful. It ’s the Portable Operating System Interface for Computer Environments, an attempt to
standardize the function libraries from many different versions of UNIX, hence the X in the acronym.

A good example of how C and C++ differ is in printing charq,catgeg styings and other data. As you have learned, in C ++, you can

This document is created with trial version of CHM2PDF Pilot 2.10.
++ ++

write strings to the cout object with a statement such as

cout << “The write stuff” << endl;

Listing 4.2, cwelcome.cpp, shows two other ways to print strings to the standard output using methods commonly found in C
programming but also available to C++ programmers. For comparison, the program also shows the C++ method.

Listing 4.2 cwelcome.cpp

#include <iostream.h>
#include <stdio.h>

int main ()

{
puts (“A string written by puts()”);
printf (YA string written by printf ()\n”);
cout << “A string written to cout” << endl;
return 0;

Previous Table of Contents Next

Page 39

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Compile and run the cwelcome program by typing the following two commands:

gt+ cwelcome.cpp

./a.out

string written by puts()
string written by printf ()
string written to cout

i

Running the program writes three output lines three different ways. The first technique calls the library function , puts(). This
function, along with several others, is declared in the stdio.h header file. So that it can call the function, the program includes
stdio.h in addition to iostream.h. As usual, the two include directives are placed near the top of the source code file. Calling puts()
as follows prints a quoted string to the standard output and also starts a new line:

puts (“A string written by puts()”);

The second output technique in cwelcome calls another library function, printf(), also declared in stdio.h. The f in printf() stands for
“formatted.” Although used in simple fashion here, printf() can perform highly complex formatting on its output, as explained in
Chapter 8, “Controlling Input and Output,” in the section “Formatting Output with the sprintf() Family.” As with puts(), calling printf
() as follows is another perfectly acceptable way to print a string to the standard output:

printf (YA string written by printf ()\n”);

Look closely at the end of the quoted string. The double -character symbol \n is called an escape code. A backslash begins the
code, which is followed in this case by a lowercase n. Together, the two characters represent the “new line” character. Written to
the standard output, this starts a new line on the display. To write a backslash, type two of them like this:

printf (“Write a backslash \\ and start a new line\n”);

Some other escape codes are \t, which prints a tab, \e for <esc> (this might be specific to GNU C ++), and \a, which is supposed
to “alert” the user by ringing a bell, but don’t count on it. You can use escape codes in any literal string. For example, the
following C++ statement writes a string to the standard output followed by two new lines:

cout << “Give me some space!\n\n”

It is clearer, although not necessarily better, to use the endl object in place of \n. The technically correct way to write the preceding
line in C++ is

cout << “Give me some space!” << endl << endl;

Note: See Chapter 6, “Creating Data Objects,” in the section “Character Escape Codes” for a complete list of escape codes you can
insert into strings.

You might wonder which C or C++ output method to use. All work perfectly well, but I favor the C ++ method for several reasons.
As explained in this book’s more advanced chapters, in C++ you can create customized output objects for use in I/O stream
statements (see for example Chapter 20, “Customizing I/O Streams”). You can also use the << operator to write file data along
with >> to read input, and you can even reprogram those operators to recognize other types of objects. C is not as flexible. In the
standard C library, the puts() function is strictly limited to writing string data. Other functions in the C library are similarly restricted
to using data of a specific type. That ’s not bad, but in practice, the inflexibility of standard C library functions creates barriers to
writing easily maintained code.

Another good reason to favor C++ over C output techniques is that C++ uses exceptions for error handling. Because the C
Page 40

This document is created with trial version of CHM2PDF Pilot 2.10.
++ ++

language does not implement exceptions, standard C library functions can 't use them to report errors. Chapter 16, “Handling
Exceptions,” explains how to use exceptions for creating robust programs that safely handle even the trickiest error conditions.

Comments About Comments

A comment in a program is text intended strictly for human consumption. The compiler ignores any comments it finds in source
code and header files.

Use comments liberally to document your program’s source code, credit the program’s authors, keep a history of modifications,
and for other notes. For instance, I usually keep a list of unfinished business in a comment at the beginning of my program files.

This helps jog my memory about what needs doing, especially when I haven’t looked at the file recently.

The following sections explain how to write comments using two different styles —one for C and C++ programs, and one for C++
only.

C-Style Comments
You may use C-style comments in C and C++ programs. This type of comment begins with the double -character symbol /* and

ends with its mirror image, */. The compiler ignores both symbols and all text in between, even if that text stretches for two or
more lines. For example, this single-line comment might appear at the beginning of a source code file:

/* Fishing Database System: by Grouper Tom */

Note: Any relation to Grouper Tom and the author is strictly wishful thinking.

You may also write C-style comments on multiple lines. Even so, you need only one set of comment delimiters. For example, you
might create a file with commented text that you can insert into new source code files:

/* Program name: */
/* Author: */
/* Purpose: */

Rather than type all those comment delimiters, you can more easily write those lines this way:

/* Program name:
Author:
Purpose:

*/

That looks a little strange; so many programmers pretty things up with some fancy footwork, writing the preceding comment as

/*

* Program name:

* Author:
Purpose:

*/

For some reason, this style confuses many programmers when they first see it. But look —there’s a starting comment delimiter /*
on the first line and an ending delimiter */ on the last. The compiler ignores all the text in between, including the three asterisks in
the middle, there only for the sake of neatness. For a fancier effect, many programmers box their comments using text such as this:

/*
* Program name:
* Author:

* Purpose:

* */

Page 41

This document is created with trial version of CHM2PDF Pilot 2.10.

That’s still just one comment to the compiler. The comment generates no code, and it produces no effect in the compiled program.
Even so, it’s amazing how much time programmers spend getting their comment file headers just right!

C-style comments don’t have to appear on their own lines. They can appear ahead of or even in the middle of statements and
other declarations. However, the most common use for comments is to document a statement such as this:

r”

cout << “Press Enter... /* Tell user to press the Enter key */

In this case, the statement’s purpose is fairly obvious, and it probably doesn’t need commenting, but too many comments are
better than too few. Don ’t hesitate to use comments to document even the obvious statements and declarations in your code.

Comments usually document what the program does, but you can also use them for commenting-out portions of source code
that you don’t want to erase completely, perhaps because you are chasing down a bug. Examine this statement:

cout << “One ” /*<< endl*/ << “Two” << endl;
Because of the comment delimiters, the compiler “sees” that statement as though written:

cout << “One ” << “Two” << endl;

Compiling and running that statement writes the text “One Two” on a single line. Removing the comments and changing the
statement to the following inserts an endl object between the two strings, thus writing them on separate lines:

cout << M“One ” << endl << “Two” << endl;
Using C comments as demonstrated here is a simple, but vital, technique to learn. You will frequently comment -out unfinished

sections of code or statements that you ’ve copied to try out variations or optimizations. To restore the original code, simply delete
the comment delimiters.

Previous Table of Contents Next

Page 42

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

C++-Style Comments

C++ adds to C another kind of comment delimiter that works a little differently. In a C ++ program, a double slash // begins a
comment. The compiler ignores every character from // to the end of the line. To use a C++-style comment, type // followed by the
comment’s text:

// Fishing Database System: by Grouper Tom

Unlike C comments, C++ comments use only one double-character symbol. They begin at // and continue to the end of the line.
Multiple C++ comments must all begin with //. Using C++ comments, you can write the file header from the preceding section like
this:

//
// Program name:
// Author:
// Purpose:
//

C++ comments typically document statements and other declarations. Here’s the same statement from the preceding section, but
this time ending with a C++ comment:

”

cout << “Press Enter... // Tell user to press the Enter key

This type of comment looks clean and is easy to type. The compiler ignores all text from // to the end of the line. For this reason,

you can’t use C++ comments to comment-out code in the middle of a statement, but you can use them to temporarily delete a
statement such as

// cout << “This doesn’t do anything!” << endl;

Removing the comment delimiter from the beginning of the line enables the statement.

Note: History buffs might like to know that C ++-style comments are resurrected from C’s predecessor language, BCPL. The GNU C
compiler, gcc, recognizes C++-style comments in C programs, but not all C compilers do the same.

This Book’s Source File Comments
As you might have noticed, all source code files on this book ’s CD-ROM begin with several comments that document the file’s

name and purpose, give compilation instructions, and, in many cases, show how to use or run the compiled code. The comments
also include my copyright notice to satisfy the legal beagles.

Note: You may use any of this book’s sample listings in your own programs as you want. See Appendix E, “Copyright
Information—The GNU General Public License,” for details.

Listing 4.3 shows the welcome.cpp program’s opening comments. To save space, most printed listings in this book do not show
these comments.

Listing 4.3 welcome.cpp (comments only)

/7

Page 43

This document is created with trial version of CHM2PDF Pilot 2.10.

// welcome.cpp -- A simple C++ program
// Time-stamp: <1999-02-10 10:24:17 tswan>
// To compile:

// gt+ -o welcome welcome.cpp

// To run:

// . /welcome

// Copyright (c) 1999 by Tom Swan. All rights reserved.
//

Each comment line in welcome.cpp is a C++-style comment that begins with a double slash. Various comments identify and
describe the program. On the third line is a time stamp in a form that the Emacs editor recognizes (more on this in the next
section). Other comments show compilation and running instructions, and the ubiquitous copyright notice. In some files, you might
find additional comments at the end where I like to keep a revision history of modifications and bug fixes.

Creating an Automatic Time Stamp

If you use the Emacs text editor, you can track modifications to files with an automatic time stamp comment such as in
welcome.cpp. To create a time stamp, insert the following comment in any of the first eight lines of a source code file:

// Time-stamp: <>

A similar entry works the same in any text file, but in a non -source-code file, the C++ comment delimiter, //, isn’t needed. You
may also write the line as a C-style comment. To enable automatic time stamping for Emacs, insert the following command into a
text file named .emacs (preceded by a period) saved in your home directory:

(add-hook ‘write-file-hooks ‘time-stamp)

Now every time Emacs saves a file to disk, it inserts the date, time, and your login username between the time stamp ’s angle
brackets. Saving welcome.cpp, for example, changes the time stamp to something like this:

// Time-stamp: <1999-02-10 10:24:17 tswan>

An automatic time stamp is a great way to note when you last modified a file. Later in this book (see Chapter 20, “Customizing
I/O Streams”), you examine a program that prints the names of files and their automatic time stamps.

Program Entry and Exit

Two important aspects of all programs, large and small, are how they start and how they end. As a programmer, you have certain
responsibilities to ensure that your programs start correctly, but more important, to make certain they end in high style. Following
are proper methods for correctly starting and ending C ++ programs.

The main() Function

All C and C++ programs have one and only one main() function. The first statement inside main() is the first to run. When main()
ends, control passes back to the process that started the program—for example, the shell. Programming main() is how you control
the way a program starts and, most often, but not always, how it ends.

There are slightly different ways to construct the main() function. In its simplest form, main() looks like this:

int main ()
{
}

That’s also the shortest possible, syntactically complete, C++ program. The word int ahead of the function name indicates that the
function returns an integer value to its caller. Because of that declaration, it is more correct to end main() with an explicit return

Page 44++

This document is created with trial version of CHM2PDF Pilot 2.10.
main()

statement. Following is the shortest possible, correctly written , C++ program:

int main ()

{

return 0;

}

The zero value indicates the program ended with no errors, but more on this technique under “Returning Values from main().”
Sometimes, you might see main() declared with void in place of int:

void main ()
{
}

The word void here indicates that main() returns no value, and therefore, a return statement isn’t needed. (Only a programmer can
appreciate the beauty of using something like void to indicate nothing.)

The empty parentheses in main() tell you that the function receives no parameters from its caller. Actually, as C or C ++
programmers in the audience probably know, main() can receive parameters, but if they are not declared, they effectively don ’t
exist. Chapter 11, “Managing Memory with Pointers,” in the section “Passing Arguments to main(),” explains how to add
parameters to the main() function. All forms of main() shown here are correct, but it is more proper to declare main() as returning int
and to end the function with an explicit return statement. Whatever its form, when main() ends, so does the program.

Tip: When browsing through source code files, try to find the file that contains main(). Because main() is where all C and C++
programs start running, finding this function often provides a useful key for unlocking the program ’s secrets. Many programmers
place their program’s main() function in a file named main.cpp or main.c.

C-Style main() Functions

While browsing C source code files, you might see main() declared this way:

int main (void)
{

return 0;

}

The word void in parentheses is an ANSI C technique for indicating that a function receives no input parameters. GNU C ++
doesn’t seem to mind this type of declaration, but other C++ compilers might complain, so it’s best not to use this form of main() in
C++ programs.

C programmers also seem to favor writing the function return type on a separate line. You will often see a C program ’s main()
function (and others) written like this:

int
main (void)
{

return 0;

}

Placing the return type on its own line is purely a matter of style. C++ programmers tend to place the data type ahead of the
function name.

Previous Table of Contents Next

Page 45

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Returning Values from main()

You can use a shell script to run a program and examine its return value. This is often a simple, but effective, way to indicate
whether a program succeeded or failed. Listing 4.4, error.cpp, combines what you know so far about C ++ to display a message
and return an error result code. No real error occurs, of course.

Listing 4.4 error.cpp

#include <iostream.h>

int main ()

{
cout << “This program simulates an error” << endl;
return 12;

Listing 4.5, runerror, is a sample bash (Bourne Again Shell) script that intercepts a program’s return code. Script programming is
too far afield from this book ’s subject matter, so I won’t go into it here. Use the info command or consult a Linux reference for
help with writing scripts for the shell of your choice.

Listing 4.5 runerror

if ./a.out

then

echo “Program terminated successfully”
else

echo “Error result code = $?”
fi

To make the shell script executable, enter a command such as

$ chmod a+x runerror

Next, compile the error.cpp program, and then run it by executing the shell script. For example, type the following two
commands:

$ g++ error.cpp

$./runerror

This program simulates an error
Error result code = 12

The program displays the first message. The shell script displays the second, which indicates that the program returned an error
code of 12. Change the return value in error.cpp from 12 to 0, and then recompile and run the program as before. This time, it
displays:

$./runerror

This program simulates an error

Program terminated successfully

Page 46

This document is created with trial version of CHM2PDF Pilot 2.10.

Going Out in Style

When main() ends, so does the program. However, there are other ways to end programs. A useful method is to call the standard
library’s exit() function, declared in the stdlib.h header file. For example, to end a program and return the error code 1, call exit()
like this:

#include <stdlib.h>
exit (1) ;

The value in parentheses is called an argument, and it is passed to the exit() function. To try out exit(), include the stdlib.h header
file in a copy of error.cpp and insert the preceding line in place of the return statement. Listing 4.6, exiterr.cpp, shows the finished
program.

Listing 4.6 exiterr.cpp

#include <iostream.h>
#include <stdlib.h>

int main ()

{

cout << “Calling exit() to simulate an error...” << endl;
exit (1) ;
}

To compile exiterr.cpp and run it using the runerror shell script, enter the following two commands:

$ g++ exiterr.cpp

$./runerror

Calling exit () to simulate an error...
Error result code = 1

Unlike a return statement in main(), the exit() function can terminate a program at any place in its execution. This is valuable because,
in larger programs, it is often necessary to “bail out” somewhere in the middle of a deeply buried function. In such cases, calling
exit() 1s one of the best ways to end a program immediately when a serious error crops up —for example, if the program can ’t
open a critical file.

Along with exit(), stdlib.h also defines two constants, EXIT FAILURE and EXIT SUCCESS, intended for use with the function.
Constants are values that cannot be changed at runtime, and by convention, they are typed in all capital letters. Use one of the two
constants in an exit() statement such as this:

exit (EXIT FAILURE) ;

That returns the value 1 to the shell. Use the other constant to end the program and return the value 0, which means no error
occurred:

exit (EXIT SUCCESS) ;
Obviously, the descriptive constants make the program much clearer than literal values such as 0 and 1. You learn more about
constants in Chapter 6, “Creating Data Objects.” If you are following along, use the runerror script to examine the values returned

by the preceding two statements.

You may use either constant also in main() return statements. For example, either of the following two statements is a good way to
end main():

Page 47

This document is created with trial version of CHM2PDF Pilot 2.10.

return EXIT FAILURE;
return EXIT SUCCESS;

Notice that, with exit(), the constant is in parentheses, but not so with return. This is because exit() is a function; return is a
fundamental C++ operative. You call functions such as exit(), and you pass them arguments in parentheses. You don’t call
operatives such as return; you simply use them. Technically, though, parentheses group expressions, and because even a simple
value is an “expression,” the following works perfectly well with parentheses added:

return (EXIT FAILURE);

Note: This may be nit-picking at its worst, but as a convention, I insert a space after retun to indicate that the statement is not a
function call. No space as in exit(1) indicates the statement calls a function. This is purely my own choice of styles, not a C ++
requirement, and many C++ programmers insert a space between the function name and its parentheses. Some even get real huffy
about these sorts of concerns. No doubt I’ll hear from them.

Going Down in Flames

To end a program and indicate that a more serious error occurred, you can call abort() declared in stdlib.h along with exit(). The
abort() function does not accept an argument value. Call it as follows with empty parentheses:

abort () ;

Note: Calling abort() is a drastic measure that is rarely necessary. It causes no permanent damage, but it is not a recommended way to
end C or C++ programs. Because many existing programs call abort(), you should be aware of its effects, but it ’s probably best never
to use this function.

To examine what happens when a program calls abort(), enter the preceding statement into a copy of the welcome.cpp program,
save it as atest.cpp (or use another filename), and then type the following commands:

$ g++ atest.cpp
$./a.out
Aborted (core dumped)

The last line tells you the process—that is, the running program—was aborted, and that core memory, including the system stack,
was dumped to a file named core. Such core dumps tend to be huge (often 200KB or more) and nearly impossible to decipher.
If you want to take a look at a core dump, use the Linux hexdump utility by typing the following command (if /ess isn’t on your
system, use more instead):

$ hexdump -bc core | less
Type ¢ to quit. More power to you if you can understand the output of a core dump. There are other, and vastly more

sophisticated, ways to debug errant code, as you learn starting in Chapter 5, “Compiling and Debugging C++ Programs.” If you
are following along, you can remove the core -dump file with the command rm core.

Note: Yet one more way to exit a program is to throw an exception. Exceptions are extremely valuable for dealing with error
conditions, but you need to learn more about C++ programming before using them. Exceptions are available only in C++, not in C.

Review of Entry and Exit Techniques

As you have learned in this chapter, starting a program is easy. Simply create a main() function and insert the program ’s first
statement into the function’s statement block. You also learned five ways to end a C++ program. Here they are in a list for review:

* Do nothing. After its last statement, main() simply ends, returning the user to the shell or to whatever process started the
Page 48

This document is created with trial version of CHM2PDF Pilot 2.10.
main()

program.

* Execute a return statement in main(), optionally passing a return value in the range 0 to 255 back to main()’s caller—for
example, a shell script.

* Call exit() to end the program at any time or place. To make exit() available to your program, include the stdlib.h header
file. Pass to exit() a literal value in the range 0 to 255, or use one of the two stdlib.h constants EXIT SUCCESS or

EXIT FAILURE.

* Call the abort() function, also declared in stdlib.h, from anywhere in the program. Calling abort() ends the program
immediately and creates a core dump file. This is a drastic measure that is rarely necessary and is not considered good
programming.

* Throw an exception, but don’t try this yet.

Summary

This chapter introduced GNU C++ programming with a simple program, welcome.cpp, that shows elements common to all C++
programs large and small. The chapter also explained how to compile and run C++ programs, display text on the console using a
variety of methods, call C library functions, create and use C - and C++-style comments, write main() functions, and properly begin
and end programs.

For more information on subjects introduced in this chapter, turn to the following chapters:

* Chapter 6, “Creating Data Objects”

* Chapter 8, “Controlling Input and Output”

* Chapter 10, “Creating and Calling Functions”

* Chapter 11, “Managing Memory with Pointers”
* Chapter 16, “Handling Exceptions”

e Chapter 20, “Customizing I/O Streams”

Previous Table of Contents Next

Page 49

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 5
Compiling and Debugging C++ Programs

Compiling is the process of translating source code text into executable code. Debugging is the art of making that code run error
free. These are the mechanical aspects of programming, and as a mechanic needs to know how to use shop tools, so you need to
know how to run compilers and debuggers—the essential tools of a programmer ’s trade.

This chapter introduces key mechanics of GNU C++, such as warnings, errors, portable code generation, and performance
optimizations. Using specific options, you learn how to interrupt compilation so that you can study the compiler ’s output at
different stages and understand more about the compilation process.

This chapter also introduces the GNU C++ debugger. By learning how to run the debugger now, you’ll be ready to use it when the
time comes to squash bugs in your code. And that time will come, just as surely as ants to a picnic. It has been said that all
programs have bugs. Maybe that’s true, but with the help of the GNU C++ debugger, you can learn to find and fix most kinds of
errors so that your program’s users don’t bug you with complaints.

Warnings and Errors

Although all programmers make mistakes, the most skillful developers know how to find and fix most kinds of errors before they
cause bugs. To identify mistakes in source code so that you can repair them, the compiler prints warnings and errors about any
problems it discovers.

Note: There’s a world of difference between a warning and an error. A warning is a message the compiler prints when it discovers
a potential problem in the source code. An error is a mistake in syntax that prevents the compiler from finishing its job.

Warnings are frequently caused by missing declarations, values of inappropriate types, and various kinds of improper
constructions. Despite the warning, the program’s source code is syntactically complete, so these types of problems don ’t prevent
the compiler from creating a finished code file. However, that code might not run correctly.

Errors are caused by syntactical mistakes in source code such as typographical errors, missing semicolons, and other kinds of
faulty constructions. Because these types of problems make it impossible for the compiler to create a finished code file, you must
fix all reported errors before completing the compilation.

Warnings and errors are sometimes called compile-time bugs . Later in this chapter in the section “Introduction to Debugging,”
you learn about another class of errors that the compiler does not identify. These are called runtime bugs and are caused by
faulty logic in your program. Runtime bugs are your responsibility to find and fix.

The next sections show examples of warnings and errors, and further explain the differences between these two types of compiler
messages.

You’ve Been Warned

A typical warning comes about when a program fails to supply code that satisfies an earlier declaration. For example, if you
declare a function that returns an integer value but you neglect to write a statement to perform that action, the compiler warns you
of your mistake. Technically, because the source code is syntactically complete, this is not an error. However, the resulting
program almost certainly fails to produce expected results.

For example, suppose that you write a main() function to return an integer value. But inside main(), you insert a return statement that

simply ends the function. Here’s the faulty code:
Page 50

This document is created with trial version of CHM2PDF Pilot 2.10.

int main ()

{
return; // 2272

}

In this book, the C++-style comment, // 222, at the end of a line indicates a questionable practice or a faulty construction that might
cause a bug. Type those lines into a text file named atest.cpp and then compile with the following command:

$ g++ atest.cpp

atest.cpp: In function ‘int main()’:
atest.cpp:3: warning: ‘return’ with no wvalue,
% in function returning non-void

You receive two messages from the compiler. The first message identifies the name of the function in which GNU C ++ found a
problem. The second message is the warning. It tells you several important facts:

* The name of the file (atest.cpp)

* The line number that caused a problem (3)
* That this is a warning message

The nature of the problem

The text of the warning message tells you that the compiler found a plain return statement in a function that is declared to return a
value—that is, one declared as “non-void.” That warning message might seem a bit cryptic, and you will frequently have to
interpret messages to understand them. However, GNU C++ tends to give helpful messages that are far more descriptive than
those of other C++ compilers.

Despite the warning, the compiler creates the finished executable code file. In this case, running that code causes no harm
because, as you learned in the preceding chapter, the shell ignores main()’s return value. But in another situation, that same warning
might indicate a serious problem. Never ignore any warnings you receive from the compiler . You’ve been warned.

To Err Is Human

You’re human. You’re a programmer. You are going to make mistakes. Even experts make plenty of them. Those that confuse
the compiler cause compilation to end prematurely with an error message. For example, type the following atest.cpp program
exactly as follows:

int main ()

{
return EXIT SUCCESS;

}

In the preceding chapter, returning the EXIT SUCCESS constant seemed to work, but now when you compile the program, the
compiler reports an error:

$ g++ atest.cpp

atest.cpp: In function ‘int main()’:

atest.cpp:3: ‘EXIT SUCCESS’ undeclared (first use this function)
atest.cpp:3: (Each undeclared identifier is reported only once
atest.cpp:3: for each function it appears in.)

As it does for warnings, the compiler tells you the filename, line number where the problem occurred, and name of the function.
Because the word “warning” does not appear in the messages, this is an error, and the compiler does not create a finished code
file. Even though you see several message lines, they refer to only one error. Read the text carefully to become familiar with the
GNU C++ format for error messages, many of which provide lengthy explanations that can help you figure out what ’s wrong.
Here, the compiler tells you that EXIT SUCCESS is an “undeclared identifier,” and that line 3 is where the compiler first found this
problem.

Page 51

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 52

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

You probably realize what’s wrong. Because in C++ you must declare items such as con-stants, variables, and functions before
you can use them, the compiler has no idea what EXIT SUCCESS is. As the preceding chapter explains, the stdlib.h header file
declares that constant. The problem arose because the programmer neglected to include the header file. To fix the bug, insert the
following directive above main():

#include <stdlib.h>

Note: The single most likely cause of an undeclared identifier error is a forgotten include file. This often happens when the
programmer assumes that one header includes another. For example, in my version of GNU C ++, iostream.h includes stdio.h, so it
might seem unnecessary to include both headers. However, the same might not be true with all GNU C++ versions or with another
compiler. By the way, don’t worry about including a header file more than once. All headers are designed so that the compiler
ignores them if they are included two or more times.

An even more common mistake is a simple typographical error that causes compilation to halt. The compiler is an unforgiving
taskmaster, and even the tiniest mistake results in an error message. For an example, try this test program, which does not use a
semicolon to terminate a statement:

#include <iostream.h>
int main ()

{

cout << “Where’s my semicolon?” << endl // 27?7?

}

Even though the preceding code lacks only one teensy character, when you compile the program with the following command, the
compiler reports a “parse error” (the line number might be different for you):

$ g++ atest.cpp
atest.cpp: In function ‘int main()’:
atest.cpp:4: parse error before ‘}’

Parsing is part of the process the compiler undertakes to translate C++ source code into executable code. The compiler parses
the program’s text into a symbolic form suitable to the compiler’s tastes. When the compiler finds a mistake in the text, it can’t go
on because it no longer “comprehends” the program’s expression. Errors in parsing confuse the compiler the way a missing word
in a sentence might confuse you. Of course, you might be able to figure out an incomplete sentence ’s meaning. But the compiler
isn’t so intuitive, and it must have a complete program, or it refuses to go on.

In this case, the compiler found a closing brace before it finished parsing a statement. Notice that the error message indicates that
the error is located at some place before the unexpected character. The compiler doesn’t explain what the mistake is or its
precise location, but only that it found an unexpected character. The source of the error might be many lines back from where the
compiler became confused, and this can make finding the cause of parsing errors difficult.

Tip: If you have trouble locating the cause of a parsing error, comment -out preceding statements one at a time and recompile.
When you can compile the program successfully, the error is in the last statement that you converted into a comment.

Warning and Error Options
Although GNU C++ warns about most kinds of common problems, by specifying selected options, you can control how picky the

compiler is about parsing a program’s source code. Increasing the compiler’s warning level this way might help you find and fix
subtle bugs. The technique is also helpful if you are just learning C ++, when, of course, you are apt to make more mistakes.

Page 53

This document is created with trial version of CHM2PDF Pilot 2.10.

To increase the level of warnings issued, use the -Wall option. Despite the “all” in that option’s name, you can add even more
warnings by specifying -w. For a full load of all possible warnings, combine the two options with a command such as

$ g+t+ -Wall -W atest.cpp

Be careful to type a capital W in both cases. The following command turns off all warnings:

$ g++ -w welcome.cpp // 2°2°?
Don’t ever do that! It tells the compiler not to report any warnings, and this command could cause you to miss a serious bug.

You can also turn on specific warnings. A good one is -Wreturn-type. This tells the compiler to warn you about functions that
declare a return value but don’t include a return statement. To use this option, compile the program with a command such as

$ g++ -Wreturn-type atest.cpp

Another specific warning finds a subtle problem that can easily occur when using C -style comments. Insert these two statements
into a atest.cpp file’s main() function:

cout << “Hello ” /* write a string *\
cout << “there!” << endl; /* write another string */

When you compile and run the program, it prints only the “Hello” string, but does not print “there” and does not start a new line
(notice that the dollar sign prompt appears after “Hello”):

$ g++ atest.cpp
$./a.out
Hello $

Look closely at the end of the first statement and you ’ll see the problem. The careless programmer typed a backslash instead of a
forward slash. When the compiler parses the opening comment bracket, /*, it searches for the ending bracket, */, which here
appears at the end of the second statement. Everything in between has been accidentally commented-out by the typo. Because
the program is syntactically complete, it compiles with no warnings or errors. But it fails to run as expected.

In similar cases, especially when a program compiles without error but runs strangely or not at all, use the -Wcomment warning to
find whether you have made this type of mistake. Compiling the code with the following command shows the warning message:

$ g++ -Wcomment atest.cpp
atest.cpp:6: warning: ‘/*’ within comment

The warning tells you that a starting comment delimiter was found inside another C -style comment. Often, when using C
comments, this indicates that a section of the program was mistakenly commented -out. By the way, this same error isn’t possible
with C++-style comments.

Tip: Specifying -Wall enables the -Wcomment and -Wreturn-type warnings along with others. See the info gcc pages for more information
on the specific warnings enabled by -Wall and -W.

Turning Warnings into Errors

Many developers rightly insist on a clean compilation before they release their code. The most careful among them switch on all
warning levels with -wall and -W.

However, despite issuing a warning, the compiler still creates the finished code file, and it is easy to miss a warning message on a
busy screen. This is especially so when compiling large programs using a Makefile script . To prevent the creation of the output
code file if any warnings are discovered, use the -Werror option as follows:

Page 54

This document is created with trial version of CHM2PDF Pilot 2.10.

$ g++ -Wall -Werror atest.cpp
atest.cpp:6: warning: ’'/*’ within comment

Previous Table of Contents Next

Page 55

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

With -Werror in effect, the compiler considers any warnings to be errors, and it does not create the executable code file. Notice,
however, that it still shows the message as a “warning.”

Warning: My tests indicate that with -Werror in effect, the compiler does not remove an old a.out file from the directory. This could
cause you to assume that the compiler completed its job successfully, when in fact, it did not create the finished code. To work
around this bug, always remove a.out (or a differently named output file) before compiling with -Werror.

Compile-and-Go Script

I highly recommend using the -Wall and -w options to compile your programs, especially if you are just learning C++. These
options point out potential trouble spots. They are also invaluable for helping you write code that has a good chance of compiling
with other C++ development systems.

Rather than type those options over and over, you might want to create a shell script for compiling programs using selected
options. Listing 5.1, cg (compile and go), shows a sample bash shell script that you can use to compile and run many of this
book’s sample programs using the -Wall and -W options.

Listing 5.1 cg

g++ -Wall -W $1 $2 $3 $4 $5 $6 $7 $8 $9
./a.out

Enter or copy the script (it’s in the src/c05 directory) to a directory listed in your environment path. Make the file executable by
entering the following command:

$ chmod a+x cg

Use cg as follows to compile and run programs such as welcome.cpp in the preceding chapter:

$ cg welcome.cpp
Welcome to GNU C++ for Linux programming!

Note: If cg is not in a directory listed in your PATH environment variable, to run the program in the current directory, precede it
with a period and slash—for example, enter ./cg welcome.cpp .

Compiler Options

GNU C++ offers a virtual mountain of options that you can specify to select from a diverse set of features. However, after you
learn which options you need, you can probably ignore most of the others. Many options have little or no effect on executable
code but merely satisfy an esoteric ANSI C++ rule or select a feature of interest only to that particular option ’s author.

For a complete list of options, use the commands info g++ and also info gcc . You need to examine both sets of info pages for
the complete story of options available in GNU C++. Take a moment to browse the compiler’s info pages so that you know
where to find specific options, but don ’t be overwhelmed by the number of choices. (Press ¢ to get out of the info program.) I
cover various compiler options at the appropriate times throughout the book. However, the next sections introduce a few options
you might want to start using right away.

Page 56

This document is created with trial version of CHM2PDF Pilot 2.10.

Note: Because some options have long names, you must enter multiple options individually. For example, to specify the -c (compile
only) and -W (extra warnings) options, you must type -c -W. Combining the two options into W does not work as it might for some
other programs.

Portability Options

Writing portable code is a concern to many programmers, especially those who develop function and class libraries. By restricting
source code to strictly defined ANSI C++ constructions, you increase the potential market for your software.

Although writing portable code is a worthy goal, it is difficult to achieve in practice. Even if your programming is ANSI
compatible, it still might not be portable, a fact that Microsoft Windows developers soon realize when they attempt to move their
programs to X. Still, the following GNU C++ options help promote, if not guarantee, portability. First, try the -Wtraditional option
using a command such as

$ g++ -Wtraditional atest.cpp

This option warns about constructions that are either nontraditional or not allowed in the ANSI C++ and ANSI C specifications.
Specify -traditional without the capital W if you want the compiler to treat all nontraditional items as errors:

$ g++ -traditional atest.cpp

If the program compiles with that command, it has a good chance of compiling with other ANSI C ++ systems. Another option, -
pedantic, prints warnings if a program uses GNU -specific features. With this option in effect, the compiler warns you if the
program uses GNU features that another compiler is unlikely to recognize.

Finally, you can try the -ansi option. This instructs the compiler to accept only ANSI defined constructions. Programmers who
write real software in the real world probably won ’t ever use -ansi. It’s of value, however, for testing GNU ’s adherence to the
standard, comparison testing of GNU C++ versions, and identifying discrepancies between GNU C++ and other ANSI
implementations. The -ansi option might appeal to instructors who need to test whether student programs adhere to the ANSI
standard. It’s also useful for students who have finicky professors.

Note: If you specify -traditional or -ansi when compiling C programs, GNU C reportedly no longer recognizes C++-style comments,
although this might not be true for all compiler versions.

Intermediate Compilations

When you compile a C++ or a C program, several intermediate processes take place behind the scenes. It is often useful, and
always informative, to halt the compiler at one or more of these intermediate steps. This can provide insight into a compilation
problem and also help you better understand how the compiler operates. To halt compilation at various intermediate stages, GNU
C++ provides the following three options:

* _E Stop after preprocessing; do not compile.
* .S Stop after compiling; do not assemble.
* ¢ Stop after assembling; do not link.

Using the -E Option

The -E option shows the text of the program after the preprocessor expands directives such as #include. Because the output of this
command is sent to the standard output, usually the console, you need to pipe the output to the less or more utilities, or store the
results in a file for later viewing. For example, enter one of the following two commands to compile the welcome.cpp program
from the preceding chapter:

$ g++ -E welcome.cpp | less

Page 57

This document is created with trial version of CHM2PDF Pilot 2.10.

$ g++ -E welcome.cpp > tmp.txt

Previous Table of Contents Next

Page 58

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

If you try the second command, load tmp.txt into a text editor to see the program ’s expanded text. This option is particularly
useful when compilation fails to complete because of missing elements. By compiling with -E, you see all the included header files,
along with their expanded macros. A macro is a preprocessor command that is expanded into a C or C++ declaration or
statement. Macros can be exceedingly complex and are often difficult to understand. Running them through the preprocessor with
the -E option makes them much more readable, if not perfectly plain.

Tip: For more information on the GNU preprocessor, view the info pages for cpp. In this case, cpp doesn ’t mean “C plus plus,” but
“The GNU C-Compatible Compiler Preprocessor.”

The -E option is also useful for discovering the names of various objects that the compiler adds to programs. For example, the
preprocessor output created by using the -E option on welcome.cpp shows the following three declarations:

extern I0 istream withassign cin;
extern IO ostream withassign cout, cerr;
extern IO ostream withassign clog

At this point, you might not understand those lines—see Chapter 20, “Customizing I/O Streams.” However, you have seen the
cout and cerr objects shown here on the second line. The GNU preprocessor creates that declaration as a result of the program
including the iostream.h header file. When you need to find the type of an included object, examining the preprocessed text is
often useful. In this case, the preprocessed text tells you that cout and cerr are external objects of type 10 ostream withassign. The
word extern in these declarations indicates that the actual objects exist somewhere else, most probably in a library file that is
combined—that is, /inked—to the compiled output code file.

Using the -s Option

Linking 1is the process of combining various files and libraries of compiled code to create a final executable file such as a.out. The
intermediate code is called object code . Use the -S option to halt compilation just before the compiler creates object code for a
program’s source text. For example, enter this command:

$ g++ -S welcome.cpp

After that, the directory contains a new file, welcome.s, which you can examine with less or more (or load it into your editor). In
this file are the assembly language statements that GNU C++ creates. This might come as a surprise, but as the file shows, the
compiler outputs assembly language statements in text form, not executable code as you may have assumed. Yet another
intermediate step calls on the GNU assembler (as) to create the program’s intermediate object code, which the GNU linker (I1d)
combines with library files and other object code files to create a finished executable code file.

Using the -¢ Option

The -c option halts compilation after the assembler creates object code for the specified source file. Without this option, GNU
C++ links that code to other libraries to create a finished executable code file such as a.out. Use the -c option to create separate
modules that you intend to link later on. See “Separate Compilation” in this chapter for more about using the -c option.

The Compilation Process

As you can tell from the preceding section, a lot goes on when compiling even a simple program such as welcome.cpp. You can
normally ignore the details of the intermediate stages, but it ’s useful to understand the basic steps. Using the aforementioned
options and inspecting the output reveals that compilation involves from one to four separate processes that always take place in

the following order:

Page 59

This document is created with trial version of CHM2PDF Pilot 2.10.

1. The GNU preprocessor, cpp, expands directives such as #include. This output is piped directly to the compiler. Use
option -E to halt compilation after this stage.

2. The GNU compiler, egcs, translates the preprocessed C and C++ statements into assembly language, stored in an
intermediate file ending in .s. Use option -S to halt compilation after this stage.

3. The GNU assembler, as, translates assembly language statements into object code, stored in an intermediate file ending
in .0. Use option -c to halt compilation after this stage.

4. The GNU linker, ld, combines the program’s object code files with any required libraries to create the finished
executable code. This output is stored as a.out or in a file named in an -0 option.

For simplicity, the preceding four processes are collectively known as “compiling.” However, understand that more than one
process is needed to translate a C++ program from text into executable code and that there are actually three symbolic languages
involved: preprocessing directives, C++ (or C), and assembly language. Fortunately for you and me, GNU C ++ easily handles all
the intermediate steps with hardly a whimper.

Tip: For more information on the GNU assembler, view the info pages for as and gasp —respectively, the GNU assembler and
assembly preprocessor. For more information on the GNU linker, view the info pages for 1d.

To examine all the commands issued at each intermediate stage during compilation, use the -v, verbose, option. Try this:

$ g+t+ -v welcome.cpp

Using the -v option displays each intermediate compiler command and also shows all the files referenced during preprocessing,
compilation, assembling, and linking. When you can’t figure out why a program won’t compile, -v can often help pinpoint the
cause. At such times, however, you might want the compiler not to produce real output. To merely inspect the compiler’s
commands, combine -v with another option, -fsyntax-only, to perform a syntax check of the program ’s source code. For example,
enter this command:

$ g++ -v -fsyntax-only welcome.cpp

The -fsyntax-only option alone is useful also for viewing any warnings or errors the compiler generates. Because no output is
actually created, compilation might go faster with this command. You can use the -v option also to determine your compiler
version. On my system, the compiler reported the following:

$ g++ -v
Reading specs from /usr/lib/gcc-1ib/i386-redhat-linux/

Y egcs-2.90.27/specs gcc version egcs-2.90.27 980315
% (egcs-1.0.2 release)

Separate Compilation
One of the most widely used compiler options is -c, compile only. This option halts compilation after the GNU assembler creates a

source file’s object code. With -¢ in effect, the GNU linker does not combine that object code to create a finished executable
code file. Using the -c option is called separate compilation .

Tip: You must use the - option when compiling a module that does not have a main() function.

Previous Table of Contents Next

Page 60

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

With separate compilation, you can divide programs into multiple source code files. Using the -¢ option, GNU C++ compiles each
module separately, and then at some later point, another compilation command combines the resulting object code files to create
the finished executable code. Dividing the source code among separate files this way makes it more convenient to edit and debug
large programs. Separate compilation also saves time that would be wasted by unnecessarily recompiling finished and tested
modules.

For example, suppose that your program is stored in three source code files named first.cpp, second.cpp, and main.cpp. So that
you can follow along, sample files of those names are in the CD -ROM s src/c05 directory but aren’t listed here. Only main.cpp
has a main() function. The other files contain functions that the program uses. Use the -c option to compile the first.cpp and
second.cpp source code files:

$ g+t+ -c first.cpp
$ g++ -c second.cpp

Given those commands, the compiler creates two new object code files, first.o and second.o, in the working directory. The files
contain the object code created from their respective source code files, but the program isn ’t yet ready to run because it lacks a
main() function. Also, the intermediate code files are not linked to any required libraries. You can also separately compile multiple
source code files with a single command such as

$ g++ -c first.cpp second.cpp

That also creates first.o and second.o in the current directory. To create the finished executable program, issue the following
command without the -c option:

$ g++ main.cpp first.o second.o

That tells the compiler to translate main.cpp into main.o and then to link the three object code files—main.o, first.o, and
second.o—along with any needed library code to create the finished executable code file, a.out. Because -c is not specified, the
compiler removes the intermediate main.o file, but it does not erase first.o and second.o because those files already exist. To keep
all three object code files, you can compile all files separately and then link them into the finished code file by using commands
such as these:

$ g++ -c main.cpp
$ g++ -c first.cpp second.cpp
$ g++ -o runme main.o first.o second.o

The first command compiles main.cpp, creating main.o. The second command compiles first.cpp and second.cpp, creating the
object code files first.o and second.o. Finally, the third command specifies runme as the output code filename and links the three
object code files along with any needed library code to create the finished program. In the third command, g ++ is used merely as
an executive—a kind of supervisor—for running the linker. Because no source files are specified, the preprocessor, compiler, and
assembler stages are skipped. It is possible to run the GNU linker directly, but using g++ as an executive is usually easier and
ensures that all proper linking options are selected.

To Quote or Not to Quote

Programmers new to C or C++ are usually confused when writing #include directives whether to quote header filenames as in
“header.h” or to bracket them like this: <header.h>. But the mystery is easily explained by two rules:

e Use brackets to include standard C and C++ header files such as iostream.h and stdlib.h.
* Use double quotes to include your own program’s header files. You may name them as you like, but it’s common to use
the .h filename extension.

Page 61

This document is created with trial version of CHM2PDF Pilot 2.10.

Most programs use a mix of standard and program headers. For example, the following two directives include two header files:

#include <time.h>
#include “graphics.h”

In the first instance, the compiler looks in its standard paths for the bracketed time.h file. In the second instance, the compiler
looks for a file named graphics.h in the current directory.

Include-File Options

Several useful options alter the directories where the compiler searches for files named in #include directives. By using these
options, you can tell the compiler to look in alternate directories for your program ’s header files. Wild and crazy programmers
cleverly name their include directories include.

The option -1 (it must be a capital I) tells the compiler to search a named directory ahead of those it normally examines for quoted
header files in directives such as

#include “myheader.h”

The following command, for example, tells the compiler to search in the /include directory for the program ’s quoted header files
before searching the current directory:

$ g++ -I /include atest.cpp

If you specify multiple directories using -1 options, they are scanned in left-to-right order. The following command looks in two
directories, includel and include2, for the program’s quoted header files:

$ g++ -I/includel -I/include2 atest.cpp

There may or may not be a space between the -1 option and the named directory. To specify an include directory to be searched
after the compiler searches the current directory, use the -idirafter option. The following command searches /include after the
compiler finishes looking in the current directory for the program ’s quoted headers:

$ g++ -idirafter /include atest.cpp

Neither -I nor -idirafter has any effect on the compiler ’s search for standard header files such as stdlib.h and iostream.h. The two
options affect only the header files that belong to your program. They help you organize a large program ’s many files and are also
useful for trying test compilations using modified copies of header files, or for compiling different versions of a program using
alternate declarations.

Controlling the Include Paths

Selected options specify all the paths the compiler searches for header files, including standard ones in locations such

as /ust/include. These additional measures are useful for testing custom versions of the standard header files, perhaps if one is
found to cause a compilation problem. Experienced programmers also sometimes streamline standard headers by removing
extraneous declarations, although this is a tremendous undertaking and not for the faint -hearted. If you think you ’re ready, feel free
to skip to the next section. But if you are experiencing problems with a standard header, or you need to modify one for some
reason, read on.

The first step is to use option -I- to change the way the compiler treats quoted and bracketed filenames in #include directives.

Specifying -I- (the option is preceded and followed by hyphens) causes the compiler to search for both forms of header filenames,
<header.h> and “header.h”, in any subsequent -1 paths. For example, examine this command:

$ g++ -I- -I /myinclude atest.cpp

Page 62

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 63

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Given those options, the compiler looks for <header.h> and “header.h” in the /myinclude directory. Another option, -idirafter,
specifies whether the compiler searches the specified include directory before (-1) or after (-idirafter) it searches the standard
locations. However, even with the -I- option in effect, the compiler still looks for standard headers in the standard places.

If you don’t want the compiler to do that, specify the -nostdinc (no standard includes) option. Combined with -I- and -I, -nostdinc
gives you total control over where the compiler looks for standard and program header files. When using these options, you
assume responsibility for telling the compiler where to find all the header files it needs. This can be a little confusing. The correct
command to give is in the following general form (but don ’t type this yet). The option order is critical:

$ g++ -nostdinc -I ./ -I- -I /myinclude atest.cpp

Take that a piece at a time. The option -nostdinc tells GNU C++ not to search its standard include-file directories. Option -I-
specifies that the subsequent -I directory, /myinclude, should be searched for both forms of headers, <header.h> and “header.h”,
rather than just the quoted form as usual. With these options, the compiler no longer looks in the current directory for quoted
filenames, so if that ’s also necessary, you must specify that location using -I /. This must precede -I- to prevent the compiler from
looking for bracketed headers also in the current directory, which is probably not what you want.

If you try the preceding command on a test file, it almost certainly fails because even small programs require searching for
numerous header files in various locations. You must find out what those locations are. Using the -v option explained in this
chapter, for example, compiling a test program provided the following information:

$ g++ -v atest.cpp

#include “...” search starts here:

#include <...> search starts here:
/usr/include/g++

/usr/i386-redhat-linux/include
/usr/lib/gcc-1ib/i386-redhat-linux/egcs-2.90.27/include
Y /usr/include End of search list.

From this and other information reported by the -v option, you can write down all the directories and referenced header files the
compiler needs. You can then copy those files to a new directory and tell the compiler to hunt for its files there. If that directory is
named /test/include, the command to compile the program becomes

$ g++ -nostdinc -I ./ -I- -I /test/include atest.cpp

Now that the compiler uses copies of its standard headers, you can edit them without fear of damaging the original files. To go
back to using the standard headers in their rightful places, simply compile normally.

Warning: Don’t take this section as an endorsement for modifying standard header files. Although this is sometimes necessary to
check out an assumption about a problem that seems to involve a standard declaration, it’s dangerous to fiddle around with the
standard headers. Needless to say (but I'll say it anyway), the steps outlined here are vastly safer than becoming the super user
and editing standard header declarations. Don’t ever do that! I provide the foregoing information specifically so that you won ’t be
tempted to do something so potentially harmful to the compiler’s health.

Optimizing Code

GNU C++ 1s an optimizing compiler . This means that, given certain options, the compiler attempts to produce code that runs
faster than the code it normally generates. Unless you tell GNU C++ to optimize, it takes no such action.

Why doesn’t the compiler simply produce the fastest, tightest code possible in the first place? There are several reasons. For one,

some optimizations are more appropriate than others depending on the type of program. For example, the -ffast-math option can
Page 64

This document is created with trial version of CHM2PDF Pilot 2.10.
-ffast -math

speed math calculations at the expense of violating stringent IEEE rules such as ensuring that parameter values passed to the sqrt()
(square-root) function are always positive. Because these tests can degrade the program ’s performance, you might choose not to
make them if you are writing an action game, but you ’d probably want to perform the standard checks in a mathematical
subroutine library.

Another reason the compiler does not normally optimize code is time. Each level of optimization increases compilation time and
expands the amount of memory required during compilation. Also, with no optimizations selected, the compiler produces code
that the GNU debugger can synchronize with the program’s source text so that you can view statements and data. Because
optimizations rearrange compiled code, use processor registers, and perform other tricks, it is more difficult to debug optimized
code.

Other optimizations speed performance but can greatly expand the size of the executable code file. Depending on your needs, you
might opt to have smaller code files in return for a small degradation in performance. On the other hand, if you have plenty of disk
space, you probably want your programs to run as fast as possible regardless of how much real estate they stake out. The
following sections describe various options that you can use to select different levels and types of optimizations.

Optimization Levels

General optimization options begin with -0 (that’s the capital letter O) either alone or followed by one of the digits 0, 1, 2, or 3.
For example, to compile welcome.cpp from the preceding chapter using the first level of optimizations, specify -O1 to the compiler
with this command:

$ g++ -01 welcome.cpp

Level one is the default, so that’s the same as typing -0 alone. The equivalent command is

$ g++ -0 welcome.cpp

Specify -02 or -03 to select additional levels of optimizations, which might result in even faster running code, but which also makes
the compiler work a lot harder. The option -00 (a capital O and a zero) is the same as not specifying any optimizations. Because
the compiler normally performs no optimizations, you rarely have to specify -00, but it might come in handy in a Makefile script

that selects among optimization levels.

You can also select specific optimizations such as -ffast-math. These options begin with -f and are followed by the option name.
There must be no space after -f. For example, the following command tells the compiler to ignore the inline keyword:

$ g++ -fno-inline

Previous Table of Contents Next

Page 65

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Inline functions, which you meet in Chapter 10, “Creating and Calling Functions,” can greatly speed up some kinds of programs.
They are an excellent example of the kinds of optimizations that you can perform in the program’s source code. However, inline
functions can also greatly expand the program’s executable code file. Using the preceding option might cause the program to run a
little slower, but it might also reduce its code file size significantly.

Inline functions are actually compiled as such only when using at least the first level of optimization, -0 or -01, so specifying -fno-
inline alone has no effect. GNU C ++ does not integrate inline functions in nonoptimized code, and therefore, you must combine the
-fno-inline option with an option-level selector, as in this command:

$ g++ -01 -fno-inline welcome.cpp

That specifies optimization level one but does not expand inline functions. Most GNU C ++ optimization and other options have
similar “no-" forms. The opposite option, -finline, for example tells the compiler to recognize the inline keyword. However, because
that’s the default action, you probably never need to specify -finline.

To Optimize or Not to Optimize

Just before releasing a program, many developers compile using the highest level of optimization and then ship the beast out the
door (or, more likely these days, over the Internet). However, there is a great danger in doing this. If you don ’t optimize until just
before releasing your program, this means that you have spent the last several weeks or months testing and debugging code that is
different from the code you release. You are sending your users a version of a program that is virtually untested!

For that reason, some programmers advise always compiling with the same level of optimizations to be used in the finished code.
That’s good advice, but these are the folks who have access to the university ’s Cray supercomputer at 2 a.m. For those of us
developing on PCs, optimizing makes debugging too difficult, and it wastes compilation time that can be better spent on other
activities. (Sleeping comes to mind. Eating is useful, too.)

I suggest a compromise. Start optimizing when your program begins to resemble its expected final form. Use optimizations
periodically from then on—at each level of beta release, for example, or whatever you call your program ’s test versions. At other
times, and especially for debugging sessions, turn off all optimizations. Certainly, you should test optimized code at selected
intervals and not just before you send out the finished program. But you don ’t have to optimize every single time you compile.
With a little care, this scheme lets you use optimizations safely and still have time left for dinner and a little shut -eye.

Introduction to Debugging

At the beginning of this chapter, you learned about errors and warnings —messages the compiler issues for problems it discovers
in a program’s source code. These are examples of compile -time bugs. Another type of error is called a runtime bug. This is a
problem caused, not by an error of syntax, but by faulty logic in your program ’s operation. For example, a runtime bug might
result from a statement multiplying two values when it should have added them. The compiler can ’t help you there. It comprehends
the program’s symbolic expression, but it doesn’t understand what the program is supposed to do.

When a program fails to operate as expected, it’s time to dig out the debugger, roll up your sleeves, and investigate the cause.
Don’t waste time staring at the source code. After all, you have spent hours slaving over that code, and if it doesn ’t work, staring
at it some more is unlikely to reveal the problem. Learn instead to use the GNU debugger to peer inside the program similar to the
way you can use a microscope to observe a plant or animal’s normally invisible cell structures. Viewing a program this way at a
“microscopic” level is the best way to find out why it isn’t working.

This chapter introduces the GNU debugger and explains how to load a program into the debugger for investigation. Mastering the
art of debugging, however, can take a lifetime. To help you learn debugging techniques, and not merely the debugger ’s
commands, throughout this book I point out C++ debugging methods.

Page 66

This document is created with trial version of CHM2PDF Pilot 2.10.

Note: In addition to C and C++ programs, the GNU debugger can debug programs written in Pascal, Modula-2, and Fortran, but
support for these and other languages is currently incomplete.

Compiling for Debugging

Before you can run a program under the control of a debugger, you must compile it using special options that add information to
the compiled object code. This information makes it possible for the debugger to synchronize the executing program with its
source code. After compiling for debugging, you can perform various commands such as running the program a single statement at
a time while viewing each statement’s effect, a process called single-stepping. You can also inspect the values of variables, and
you can set breakpoints to halt the program automatically at strategic locations.

Future chapters explain all those commands in association with appropriate C++ programming techniques. Here, you learn how to
compile a program for debugging and how to run it under the debugger ’s control. To compile code for debugging, specify the -g
option. For example, compile welcome.cpp from the preceding chapter using this command:

$ g++ —-g welcome.cpp

Compiling with debugging information takes longer than usual, so be patient. Using -g produces a medium-level amount of
debugging information in the object code. Usually, this is adequate, but for even more information (and a longer compilation time),
jump to level 3 using this command:

$ g++ -g3 welcome.cpp

At level 3, the highest available, the output includes macro definitions and, perhaps, other helpful data. Because GNU versions
undoubtedly differ on this, you might have to experiment to find out what each level does on your system. For quick tests, you can
jump down a level with -g1 using a command such as

$ g++ —-gl welcome.cpp

The -g1 option does not produce line number information, nor does it allow inspection of local variables, but compilation finishes
more quickly and you might use this for simple investigations. For best results in most cases, you can ignore the subject of levels
and simply compile using the option -g.

Note: If your versions of GNU C and C ++ are installed with multiple debugging formats, you might need to compile for debugging
by using the options -ggdb (same as -g normally), -gstabs+, -gstabs, -gxcoff+, -geoff, -gdwarf+, or -gdwarf. For most readers of this book, the -g
option is all that’s needed. (See the info gcc pages for more information on this topic.)

Previous Table of Contents Next

Page 67

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

If you compile with optimizations, the debugger might not be able to synchronize the running program with the source code.
However, the GNU debugger allows you to specify the first level of optimization (-O or -01) and still be able to debug the results.
Use this command to optimize and prepare a program for debugging:

$ g++ -0 -g welcome.cpp

That might cause some parts of the program to be out of synch with the source code, but at least you can debug the optimized
code. This is so largely because, unlike some other compilers such as Cfront, which translates C ++ into C for compiling with the
system’s C compiler, GNU C++ is a true compiler. It translates C++ source code directly into object code (in the form of
assembly language), and as a result, the debugging information added to that code more closely tracks the original source even
with some optimizations. However, with -0, inline functions are more difficult to trace.

Tip: To debug inline functions as normal, callable functions, compile using -g but without the -0 option. Or, you can use -O along
with -fno-inline.

The GNU C++ compiler creates debugging information in a format known as stabs, which stands for Symbol Tables. Given the -g
option, the compiler stores stabs directives in the intermediate assembly language file. The assembler and linker transfer the data in
those directives to the object code and executable code files. Debugging information includes the source code file ’s line numbers
and symbols, such as the names of functions and variables. To view this information, compile with the -g and -S options, and then
load the resulting .s assembly language file into your editor. Hunt for directives such as .stabs, .stabn, .stabd, and .stabx. For more
information on these directives, read the info stabs pages.

Choose Your Weapon

The GNU debugger is an excellent example of how freely distributed software can produce quality results. By my count from the
debugger’s info pages, more than 60 programmers contributed to the GNU debugger, and the resulting software is top -notch. It’s
hard to imagine any software company, even the biggest, spending as much effort on a commercial debugger.

GNU provides two debugger interfaces, one that runs in console mode and one in X. These aren ’t different debuggers; just
different ways to issue debugging commands and view their output. Which interface to use boils down to whether you prefer to
run a console shell or an X graphical interface. Try them both as the following sections suggest and then use the interface you
prefer. The Emacs editor can also run the GNU debugger. I show all these methods in the next sections.

Tip: You can use the console debugger in a shell window opened under X. This is the method I used to debug most of the sample
programs listed in this book.

Using the gdb Console Debugger

The basic GNU console debugger, gdb, understands numerous commands entered at a shell prompt, and it displays its output on
the console. To begin learning how to use gdb, try the following commands on the welcome.cpp program from the preceding
chapter. First, compile the program and load it into the debugger using the two commands:

$ g++ -g -o welcome welcome.cpp
$ gdb welcome

The first command compiles welcome.cpp for debugging and specifies welcome as the executable code filename. The second
command starts the debugger and loads the compiled welcome code. Onscreen, gdb displays its version number and copyright
notice:

Page 68

This document is created with trial version of CHM2PDF Pilot 2.10.

GNU gdb 4.17

Copyright 1998 Free Software Foundation, Inc. GDB is free
software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under
certain conditions. Type “show copying” to see the
conditions. There is absolutely no warranty for GDB. Type
“show warranty” for details.

This GDB was configured as “i386-redhat-linux”...

(gdb)

The final line (gdb) is the debugger’s command prompt. To prevent the debugger from displaying its wordy preface, you can use
the -quiet option:

$ gdb -quiet welcome
(gdb)

The option -silent, though not listed officially, also works. However you start it, the debugger comes up quickly because it loads
only a minimum amount of information from the specified program. For help with the debugger ’s commands, simply type help like
this:

(gdb) help

That displays an impressive list of debugging commands, organized into categories such as breakpoints, data, and running. For
help on a specific category, type help followed by its name. The following command requests help on the debugger ’s data-
inspection commands:

(gdb) help data

You might want to browse through some of gdb ’s help pages—if you do, you’ll discover that the GNU debugger offers a full suite
of commands for inspecting programs in just about any way imaginable. Now let ’s get back to running welcome, which is paused
inside the debugger, waiting for a command. To run the loaded program, type run:

(gdb) run

Starting program: /src/c05/welcome
Welcome to GNU C++ for Linux programming!
Program exited normally.

Current language: auto; currently c
(gdb)

When you give the run command, the debugger reads the program’s code and debugging information into memory. This takes a
few moments. Eventually, the program runs and, in this case, displays the welcome string shown here on the third line. The
debugger tells you the program exited normally and that the language recognized is auto; currently c. (This is correct for C++.) The
program remains loaded into the debugger. To run it again, type another run command.

Some debugger commands require a source file line number. To find line numbers, use the list command. For example, type

(gdb) 1list
13 int main ()
14 {

15 cout << “Welcome to GNU C++ for Linux programming!” << endl;

To save space, | show only three lines. Onscreen, you see more. Type a second list command to view more lines. Type list n ,
where n is a line number,to center that line in the output. Armed with the program’s line numbers, you can use commands such as
break, which sets a breakpoint. With a breakpoint set, the debugger halts the program just before reaching the specified
breakpoint location. You may set as many breakpoints as you need.

To try out breakpoints, find the line number of the statement where you want to pause execution. To set a breakpoint at line 15,
enter the following command:

Page 69

This document is created with trial version of CHM2PDF Pilot 2.10.

(gdb) break 15
Breakpoint 1 at 0x804868b: file welcome.cpp, line 15.

Previous Table of Contents Next

Page 70

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The debugger tells you the number of the breakpoint (1) and its address in memory. It also identifies the source code filename and
the line number associated with this breakpoint. Run the program by giving the run command:

(gdb) run
Starting program: /home/tswan/mgcc/c05/welcome
Breakpoint 1, main () at welcome.cpp:15

15 cout << “Welcome to GNU C++ for Linux programming!” << endl;

When execution reaches the breakpoint, the program pauses. The debugger tells you that Breakpoint 1 stopped the program, and
you see onscreen the line of code at that location. To execute only that statement, issue a next command:

(gdb) next
Welcome to GNU C++ for Linux programming!
16 return 0;

You first see the result of the executed statement —in this case, the message printed on the console. After that, the debugger
displays line 16, indicating the statement to be executed next. The program is again paused. To make it go on, you could type
another next command to execute this single statement, or you can type continue to run the program normally from this point
onward. Try continue:

(gdb) continue
Continuing.
Program exited normally.

In this case, continuing the program causes it to end. However, if another breakpoint were reached, the program would again halt.
Setting a breakpoint, running the program to that spot, and then single-stepping the program’s statements with next are useful
commands for running a program in slow motion, one step at a time. The commands work like the editing buttons on a video
camera for inspecting a recording one frame at a time. By single -stepping a program, you can often find the cause of a problem
obscured by running at full speed.

Breakpoints and single-stepping are good techniques also for learning C++ programming. A debugger makes a great programming
teacher! Don’t wait for me to suggest using the debugger. Load any of this book ’s sample listings into the debugger and use its
commands to investigate how the program works. To quit the debugger and return to the console, use this command:

(gdb) quit
$

Tip: You can also press Ctrl-D to quit. Or, simply type ¢. The gdb command prompt recognizes tab completion, so you can type ¢
and press Tab to complete the quit command. Many commands require only an initial letter or two. Type r to run, ¢ to continue, n to
execute the next statement, and b 15 to set a breakpoint at line 15. Experiment with these and other abbreviations, and develop your
own shorthand of the debugging commands you use most often.

Using the xxgdb X Window Debugger

The xxgdb program is not a different debugger. It ’s merely a graphical interface for gdb. You must be running X to use xxgdb.
There are two ways to start the debugger using xxgdb. The easiest is to type a command at a console prompt in a shell window.
First compile the program for debugging and then load it into xxgdb. Enter these two commands:

$ g++ -g -o welcome welcome.cpp
$ xxgdb welcome

In a short moment, you see the graphical debugger’s display as shown in Figure 5.1. At top is the program listing. In the middle is
Page 71

This document is created with trial version of CHM2PDF Pilot 2.10.

a window of commands you can select by pointing and clicking with the mouse. At bottom are the commands and messages that
gdb displays. This window resembles a console terminal, but you can’t type into it.

Mometswanimgccisrc ic0SAyelcome.cpp

i
A4 welcome,cpp — A simple CH progran (copled fron COd2
A Ting—stenps £1999-02-10 10;24:17 tsuany

A To eenpile:

A gkt =g usleone welcons.cep

A To rmt

 fwalcons

/4 Copyright €c) 1993 by Tom Swan, ALl rignte resarved,
/i

#includs {ioztresm, b
int reaimd}

cout €€ "Melcowe to GHU C++ for Linue progranningl” €€ endli
returs 0

Reasdy for execution

||:1:|nl:,”ne:<t ||step ||F1nlsh ||I:r'e:'k ||t.|:r*e=‘f< ||dalet.-z-||dum||pr1nt. ||prla'|t tl

||:|1$|:-1a5 ” undizplay ||sh|:m dizplay | | g il locals]l ztack | | edit |fseen:h || interript | | F1EE|

WHGEIE comes with &BSOLUTELY NO URRRANTY.

M) odb 4.17

Copuright 1998 Fres Software Foundation, Inc.

GOB iz Free softuare, covered by the GHU Genaral Public License, and you ara
wzlcone to change it and/or distribute coples of it wider certain conditlonsz,
Type "shou copying” to =ee the conditlons,

There i absolulely ra warrenty Fee GOB, Tupe "shou warranty" foo details,
Thiz GIE uas configured az "iZ336-redhat-limx"...

{wagdh)

Figure 5.1 GNU’s graphical debugger, xxgdb.

Another way to start xxgdb is to select it from the Start menu, or if you don ’t use the Fvwm Windowslike interface, from
whatever program menu your window manager provides. Be prepared to hunt for the debugger ’s parent menu. On my system,
this was Start/Programs/Utilities/Mail. Obviously, the debugger has nothing to do with Mail utilities, and it took me a while to find
it. I think it’s all-around easier just to run xxgdb from the console. In fact, I prefer to run many X programs this way.

Tip: Start xxgdb from a console prompt without specifying a filename. When the debugger ’s window appears, click the File button
and select a compiled program for debugging.

The graphical debugger’s commands are similar to the console commands but are in the form of clickable buttons. To run the
program, click the Run button. To set a breakpoint, click the line in the top window’s source code and then click the Break
button. You see a red hand next to the line—at least, that’s what my version of xxgdb shows.

Click Run to execute up to a breakpoint, and observe the bottom window for any messages. The debugger ’s output is the same
as explained in the preceding section. However, it’s much handier to see the source code at the same time. Click Continue to
continue the program after it halts at a breakpoint.

Running gdb in Emacs

The Emacs editor can run the gdb debugger and show its output along with associated source code files in split windows. For my
money, this is the best way to run the GNU debugger.

To start debugging a program under the control of Emacs, first compile the program with debugging information. It ’s possible to
do this from Emacs, but for simple programs, this is more easFi)g% élc7)r21e at a command prompt:

javascript:displayWindow('images/05-01.jpg',437,450)
javascript:displayWindow('images/05-01.jpg',437,450)

This document is created with trial version of CHM2PDF Pilot 2.10.

$ g++ -g -o welcome welcome.cpp

After compilation finishes, switch back to Emacs and select Tools, Debugger from the menu. At the bottom of the Emacs display,
an incomplete gdb command is shown. Complete it by typing the program’s executable code filename (the one that contains the
debugging information created with the compiler’s -g option). The bottom line looks like this:

Run gdb (like this): gdb welcome

Tip: For best results, load at least one of the program ’s source code file’s into Emacs. This makes the program’s path the current
directory for the preceding gdb command.

Previous Table of Contents Next

Page 73

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Emacs starts gdb and prepares two buffer windows, one showing the program ’s source code and the other showing gdb’s output.
Figure 5.2 shows the Emacs display while debugging welcome.cpp.

b Gud Corpleta IndOut Signals Help

{gda) run
Starting progean: shore/tsuandngoos (5 ue] cone

flre.jhp-;:int L. nein 43 at u:l-:nrm.l:pp:'ld
{gdo}

Hincluda Sicstrean.hs

ine mainll
Heleone to GHU Ce+ For Linws programmingl® <€ endl:
retun
-

—- waloone,ope (LA 14——To |

“Ymgcoesroreisy
GHLI
Lo
g
Breakpoint 1 at 0=BI4ESHB: file uelcoms.cep. lima 14,
|
|

Fgure 5.2 Debugging welcome.cpp in Emacs.

The top Emacs window operates like a console terminal. The other window shows the program’s source code. (The order of the
windows might be reversed.) To issue debugger commands, type them as you do when running gdb in console mode. The
advantage of using Emacs is that it shows you the program’s source code and also highlights the current line and any breakpoints.
Also, you can write, compile, and debug programs without switching away from Emacs.

If you are following along, repeat the steps in “Using the gdb Console Debugger” to see how Emacs displays the results of various
commands. Another advantage of running gdb in Emacs is that the debugger ’s output is saved in a buffer (in this case, named gud -
welcome). Use the buffer to scroll back through commands and their output. You might even save or print the entire debugging
session. When tracking a difficult bug, it ’s helpful to have a record of debugging commands issued.

Useful Debugger Options

Use -h (or --help) to list available options you can specify when starting gdb. Following are explanations of some of the options that
you might find useful.

Specify --command=FILE where FILE is the name of a text file containing gdb commands. This is a great way to repeat debugging
sessions without typing the same commands over and over. For example, create a text file named commands containing the
following two lines:

break 15
run

To debug the welcome.cpp program and execute the file’s commands, type the following at the console prompt (this assumes that
Page 74

javascript:displayWindow('images/05-02.jpg',398,428)
javascript:displayWindow('images/05-02.jpg',398,428)

This document is created with trial version of CHM2PDF Pilot 2.10.

you compiled welcome.cpp using the -g option). This command loads welcome and then executes the break and run commands in
the commands file:

$ gdb --command=commands welcome

If you store your program’s source code in a directory that is different from where you store the executable code, use the --
directory option to tell gdb where to find the source code files. Use a command such as

gdb --directory=/home/you/source yourprogram

You might need to do that when using Emacs to run gdb if the current directory does not contain the compiled program. To send
the program’s output to a terminal that is different from the one you are using to view gdb ’s messages, use the --tty command as
follows:

gdb --tty=/dev/ttyp0 welcome

This works the same in the console, X, and Emacs debugger interfaces. To find the device name of a terminal, type the following
tty command at a shell prompt:

$ tty
/dev/ttyp0

Switch to another terminal—or under X, open a new shell window—and then specify the reported device name to gdb using the --
tty option. The program’s output appears on the other console window. This is particularly useful when debugging programs that
display formatted output. With this option, you can run the debugger in one window and see the program ’s output in another.
Although this works equally well with dumb terminals, and also with Linux virtual terminals selected on supported systems by
pressing Alt-Fn, where Fr is a function key from F1 to F6, it is especially handy under X because you can arrange the two
windows for simultaneous viewing.

Tip: Use the --tty option when debugging from Emacs to send the program’s output to a separate console window instead of an
editor window pane.

For stalwart gurus in the audience who can decipher core dumps, the --core option loads a core file into the debugger for analysis.
For test purposes, I ran a test program that calls the standard abort() function as explained in the preceding chapter and then I
loaded the resulting core dump file into the debugger with the following command:

$ gdb -g --core=core
Core was generated by ‘./testerr’.

Program terminated with signal 6, Aborted.
#0 0x40088781 in 2?2 ()

The reported information indicates what program caused the abnormal termination and how that process was terminated. The final
line in the debugger’s output is a good example of why I don’t like to read core dump files. (Type ¢ to quit the debugger if you are

following along.)

Finally, one of the commands I like best in the GNU debugger is stop. Its help entry tells all you need to know about this
command:

stop -- There is no ‘stop’ command
Only in Linux....
Summary

Like a good mechanic, a skillful GNU C++ programmer needs to master the mechanical aspects of running the compiler and

Page 75

This document is created with trial version of CHM2PDF Pilot 2.10.
++

debugger. This chapter explained the differences between the compiler ’s warning and error messages and showed examples of
several common errors. The chapter also demonstrated a variety of compiler options you can use to create portable code;
optimize runtime performance; separately compile modular programs; halt the preprocessor, compiler, and assembler at
intermediate stages; and perform other useful services. The chapter ended with an introduction to the GNU debugger and included
examples of three debugger interfaces, one for console mode, one for X, and one for the Emacs editor.

For more information on subjects introduced in this chapter, turn to the following:

 Chapter 10, “Creating and Calling Functions”
* Chapter 20, “Customizing I/O Streams”

Previous Table of Contents Next

Page 76

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 6
Creating Data Objects

Data are the facts a program knows or can calculate. A program’s data can take many forms, such as character strings, integers,
floating point values, arrays, and structs. This chapter explores these fundamental types of data objects and also includes
suggestions for debugging a program’s data.

Note: The word “object” as I use it here does not necessarily refer to object-oriented programming. All data items are correctly
called objects. See Part III, “Object-Oriented Programming,” for an introduction to object-oriented programming techniques that use
objects created from C++ classes.

Data Declarations

C++ requires you to declare data objects before their first use in a program. To declare a data object, specify its type and name,
and terminate the declaration with a semicolon. Here’s a sample:

int counter;

That declares a variable named counter of type int. Running the program creates space in memory to hold the variable’s value.
It’sa

variable because, although it can hold only one value at a time, the program is free to change that value as often as necessary.
One way to do that is to use a statement that assigns a value to the variable. The following statement assigns the value 100 to

counter:

counter = 100;

Assigning a value to counter replaces whatever value the variable previously held. It’s especially important to understand that the
equal sign does not state that counter is equal to 100; it performs the runtime action of moving the value 100 into counter (or
technically, into the memory that the program reserves for the variable). You can also assign the results of expressions to
variables. The following statement increases the current value of counter by ten:

counter = counter + 10;

A shorthand way of writing that same statement is

counter += 10;

The shorthand references counter only once, and in some cases this might be more efficient (for example, if counter is a complex
expression and not merely a simple variable). You can also use type-compatible variables in expressions. If you declare another
int variable like this:

int total;

the program can initialize total to 10 and then add counter to it with statements such as the following:

total = 10;
total total + counter;

If counter equals 100 before those statements, total now equals 110. As with all assignments, the result of the expression (total +
Page 77

This document is created with trial version of CHM2PDF Pilot 2.10.
counter total total +

counter) must be of a type that is compatible with the object that receives the value. The preceding statement can also be written
using the shorthand

total += counter;

This simply avoids having to type total twice. Either form is correct, but the shorthand version is popular, and as mentioned,
possibly more efficient.

Type Conversions

An assigned value must be of an appropriate type. If you try to assign a value of one type to a variable of another type, as in the
following statement, the compiler attempts to convert that value to a compatible type. This is important to understand, especially if
you are familiar with other programming languages such as Pascal, in which data types in assignments must strictly match their
target object types. Consider these statements:

double pi = 3.14159;
int counter = pi; // 227

The double type specifies pi as a floating point value. Assigning pi to the int counter variable sets its value to 3, but because the
assignment refers to objects of different types, the compiler issues the following warning:

x.cpp:8: warning: initialization to ‘int’ from ‘double’

It’s possible to “fix” warnings about incompatible data types by using a type cast expression. Changing the preceding assignment
to the following gets rid of the warning:

int count = (int)pi;

Specifying the data type of an object in parentheses this way converts its value to the specified type. It also tells the compiler that
you realize the objects are of different types, and that you are intentionally assigning the one value to the other. However, you
can’t use casts to perform type conversions willy -nilly. For example, you can’t use a type cast expression to convert a string into
an int value—for that, you must call a library function (see “String Conversions” later in this chapter for more information).

Note: The data type double is so named from the term “double precision,” a reference to the internal storage format used for floating
point values.

Identifiers: Good, Bad, and Ugly

An object’s name, or identifier , must conform to certain rules. A properly formed identifier must begin with an alphabetic
character or an underscore, and it must contain only alphabetic characters, digits, and underscores. It may contain upper- and
lowercase letters. Identifiers may be from one to 255 characters long, but the compiler recognizes only the first 32 characters. It ’s
common to use single-letter identifiers such as i and x for general purpose variables, but longer names such as index and
x_coordinate can make programs more understandable.

Tip: Although the legal length limit for identifiers is 255, in practice, identifiers should not be any longer than about 15 to 20
characters.

There are some esoteric, and mostly useless, variations to the GNU C++ identifier naming rules. You can, for example, use dollar
signs in identifiers, but this may or may not be acceptable with other compilers. You are best advised to use only characters,
digits, and underscores. Some examples of good identifiers are

counter
y2k fix
date of birth
Page 78

This document is created with trial version of CHM2PDF Pilot 2.10.

speedOfLight

Many C programmers object to uppercase characters in identifiers and prefer speed of light to speedOfLight. Whatever your
preference, you must be consistent. This is because C++ is case sensitive, and the compiler considers the identifiers
speed_of light, speedOfLight, and speedoflight to be three different objects. Here are some examples of bad identifiers:

10times
user-name
xg29b

The first identifier begins with a digit, and that ’s never allowed. The second includes a hyphen, but only letters, digits, and
underscores are permitted. The third identifier is merely ugly. If you create identifiers like that, when it comes time to debug the
program, you’ll wonder what you could possibly have meant by xq29b. Always choose identifiers that describe their purposes.
Don’t be cryptic; be clear.

Tip: Although identifiers may begin with one or more underscores as in _username and _ _uservalue, this convention is used by the
standard library to avoid conflicts with user -program identifiers. For that reason, do not begin your own identifiers with
underscores.

GNU C++ Reserved Words

C++ reserves 97 identifiers for its own use (this number might differ depending on your compiler version). Table 6.1 lists all
reserved words in GNU C++. Do not use any of the words in the table for your own identifiers.

Previous Table of Contents Next

Page 79

Table 6.1 GNU C++ Reserved Words

__alignof

__alignof

and

and_ eq

_asm

_asm

asm

__attribute

__attribute

auto

bitand

bitor

bool

break

case

catch

char

class

compl

__const

__const

const

const_cast

continue

default

delete

do

double

dynamic_case

else

cnum

explicit

__extension

extern

false

float

for

friend

goto

if

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

__inline

__inline

inline

int

__label

long

mutable

namespace

new

not

not_eq

operator

or

or_eq

overload

private

protected

public

register

reinterpret c

return

short

__signature

signature

__signed

__signed

signed

__sigof

sigof

sizeof

static

static_cast

struct

switch

template

this

throw

true

try

typedef

typeid

typename

__typeof

__typeof

typeof

union

unsigned

using

virtual

void

__volatile

__volatile

volatile

__wchar t

while

Xor

XOr_eq

Tip: If you receive a “parse error” from the compiler but the source code appears to be correct, check whether you have
accidentally used one of the words in Table 6.1.

Simple Data Objects

Page 80

This document is created with trial version of CHM2PDF Pilot 2.10.

Simple data objects hold numerical values such as integers or floating point values. Other simple data types include Boolean values
that represent true or false conditions, characters, and enumerations. An enumeration is simply a set of names given to values in a
series such as the days of the week.

This section introduces C++’s simple data types and lists a few programs that explain related subjects, such as how to determine
the size and type of an object, and how to calculate the results of expressions.

Integer Variables

There are seven numerical data types in C++: char, short, int, long, float, double, and long double. GNU C++ adds an eighth type,
long long, but more on that in the section “Double Wide Integers” later in this chapter.

Note: Although the char type usually represents alphanumeric characters, it is internally just an integer value and can be used to
represent byte values as well as characters.

Listing 6.1 shows how to declare variables of all seven C++ integer data types. The program also demonstrates how to determine
the size of an object using the C++ sizeof operator.

Listing 6.1 integers.cpp

#include <iostream.h>
// Global variables

char c;

short s;

int i;

long 1;

float f£f;

double d;

long double 1d;

int main ()

{

cout << “Sizeof char == " << sizeof(c) << endl;
cout << “Sizeof short == " << sizeof(s) << endl;
cout << “Sizeof int == " << sizeof (i) << endl;
cout << “Sizeof long == " << sizeof(l) << endl;
cout << “Sizeof float == " << sizeof (f) << endl;
cout << “Sizeof double == " << sizeof(d) << endl;
cout << “Sizeof long double == ” << sizeof (ld) << endl;

return 0;

The integers.cpp program declares seven global variables , one for each of the C ++ numerical data types. They are called global
variables because they are declared outside any function and are therefore available for use globally throughout the program.
(Chapter 10, “Creating and Calling Functions,” in the section “Functions and Variables” explains how to create and use local
variables inside functions. See also “Global and Local Variables” later in this chapter.) Global variables are initially zeroed—in
other words, the bytes that compose the variables are set to zero at runtime. Compile and run the integers.cpp program with the
following two commands:

$ g++ integers.cpp
$./a.out

Sizeof char

Sizeof short
Sizeof int

Il
Il
O N

Page 81

This document is created with trial version of CHM2PDF Pilot 2.10.

Sizeof long == 4
Sizeof float == 4
Sizeof double == 8
Sizeof long double == 1

Note: The double equal sign (= =) means “is equal to.” A single equal sign (=) means “assign value to.” Don’t confuse them.

The program’s output shows the size in 8-bit bytes of each numerical object. A char occupies one byte, an int takes 4, and a
double takes 8. A long double variable takes 12 bytes of memory. These sizes are defined by ANSI C ++. Unlike in C, where the
size of fundamental types depends on the whim of the compiler, you can depend on these simple objects taking the same space
with any up-to-date ANSI C++ compiler.

Previous Table of Contents Next

Page 82

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Limits

The size of a numerical data type limits its range of values. The range is further determined by whether it is signed or unsigned.
Signed objects can hold negative and positive values. Unsigned objects can hold only positive values. All numerical objects can
represent the value zero.

Of the seven numerical data types, only char, short, int, and long may be specifically signed or unsigned. Unless specified
otherwise, these four types are signed by default. Floating point objects of the types float, double, and long double are always
signed. To specifically state whether an object is signed or unsigned, precede it by the reserved words signed or unsigned. Here
are some samples:

unsigned int average; // Must be positive or zero

signed long total; // Can be negative, zero, or positive
long total; // Same as preceding declaration
unsigned char byte; // Must be in the range 0 ... 255

The variable average is declared unsigned, and so it might hold only positive int values and zero. The variable total is declared as
signed, so it can hold positive and negative values (and zero), but because the long type is normally signed, there’s no practical
reason to declare it this way, and the third line is more commonly used. The variable byte is declared as an unsigned char, and
because a char is 8-bits in length, the byte object as defined here can hold values in the range of 0 to 255.

Note: Whether char variables are signed by default is an important consideration. Because the rules on this differ among various C
and C++ compilers, this obscure fact is also the source of many frustrating bugs. In ANSI C ++, char is signed by default, and as such
can represent values in the range of -128 to +127 including zero. If you want unsigned chars, you must explicitly declare them so.

The short and long data types are actually abbreviations for short int and long int, respectively. You may declare variables using
these unabbreviated names like this:

short int shorter;
long int longer;

But the following declarations are equivalent and more common:

short shorter;
long longer;

You can combine unsigned and signed With short and long int declarations. For example, the following statements declare two
unsigned variables of types short int and long int:

unsigned short int short n sweet;
unsigned long int long n_ tall;

Constants As Macros

A constant is an object or other value that a program can’t change at runtime. In C++ (and in ANSI C), there are two types of
constants—those defined by macros and those defined as data objects. The simplest constant is a macro created by a #define
directive. For example, this defines a constant named MAXIMUM equal to 100:

#define MAXIMUM 100

A symbol such as MAXIMUM is known as a macro because the C++ preprocessor replaces it with its associated value wherever
the symbol appears (but not inside strings or comments). By gggg%%tion, constants defined this way are written in all uppercase,

This document is created with trial version of CHM2PDF Pilot 2.10.

but that’s not required.

The single most important reason for defining constants such as MAXIMUM is to avoid strewing literal values throughout the
program’s source code. For example, even if MAXIMUM is used in a hundred different places, a simple change to the #define
directive is all that’s needed to change the associated value. Well-named constants also make the program’s source code more
understandable.

You can use a constant such as MAXIMUM anywhere its value (100) is appropriate. By “value,” I do not mean its integer value—
despite appearances, MAXIMUM is not an integer object. It’s a symbolic macro representation of the characters 1, 0, and 0. You
can display MAXIMUM using an output statement such as

cout << “MAXIMUM == " << MAXIMUM << endl;

After preprocessing, that statement is compiled as though it were written this way:

cout << “MAXIMUM == ” << 100 << endl;

In expanding the MAXIMUM macro, the C++ preprocessor inserts the characters 1, 0, and 0 into the program text before
compilation.

When using #define to create constants, there are two other important rules to remember. First, never end the directive with a
semicolon. In GNU C++, that common mistake produces the following warning and error messages:

X.cpp:5: warning: missing white space after ‘#define MAXIMUM'
x.cpp:9: parse error before ';’

Second, keep in mind that a constant created with #define is merely a symbolic representation of whatever follows (ignoring
leading whitespace). It’s up to you to use constants appropriately. Listing 6.2, defines.cpp, shows a few examples of constants of

various types created with #define.

Listing 6.2 defines.cpp

#include <iostream.h>

#define CHARACTER ‘@’

#define STRING “I'd rather be programming!”
#define MAX VALUE 100
#define PI 3.14159

int main ()

{

cout << “CHARACTER == ” << CHARACTER << endl;
cout << “STRING == " << STRING << endl;
cout << “MAX VALUE == ” << MAX VALUE << endl;
cout << “PI == " << PI << endl;

return 0;

Compiling and running defines.cpp produces this output:

CHARACTER ==

STRING == I’'d rather be programming!
MAX VALUE == 100

PI == 3.14159

As this program demonstrates, constants created with #define can represent any kind of data that you can type into the program’s
Page 84

This document is created with trial version of CHM2PDF Pilot 2.10.
#define

text, including characters, strings, integers, and floating point values, just to name a few.
Constants As Objects

Another way to declare a constant value is to precede an object’s declaration by the reserved word, const. This tells the compiler
to disallow the program from attempting to change the constant’s value. The const identifier is a C++ innovation, but it has been
adopted back into ANSI C, so you can now use const in C and C++ programs.

Declaring objects as const throws a force field around them, preventing changes to their values at runtime. If you declare an integer
count to be const like this:

const int count = 1234;

the compiler rejects the statement:

count = count + 100; // 22°?
The initial value of count is locked in, and a later program statement cannot change it.

There are good reasons for using const to create fixed values, and there are some not-so-good reasons. Some authorities would
have you use const in place of any #define-d macros. According to this advice, instead of using this MAX COLORS macro:

#define MAX COLORS 16

you are advised to declare MAX_COLORS using const this way:

const int MAX COLORS = 16;
With MAX_COLORS declared as a const int object instead of a #define-d macro, you gain two supposed advantages:

* The compiler can perform stricter type checking on the constant. C++ knows that MAX COLORS is an integer constant,
but it doesn’t possess any information about the type of a #define-d macro.

* The GNU debugger can examine the value of MAX COLORS. Because the preprocessor expands #define-d macros, the
macro is not entered into the symbol table that the debugger uses to locate the program’s data.

Those are important considerations. However, there’s nothing wrong with using #define-d macros, especially for simple values
such as buffer sizes and title strings. As you learn more about C ++ programming in future chapters, though, you 1l appreciate the
value of const. It can be applied to class objects, function return values, and function parameters, and when used in these ways,
const 1s an invaluable tool for writing robust code that prevents modifying any values that should never change.

Previous Table of Contents Next

Page 85

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Predefined Constants

GNU C++ provides several useful predefined constants. Especially helpful are a set of constants that define the allowable ranges
of values for numerical objects. Listing 6.3, ranges.cpp, uses some of these constants to display the allowable ranges of all integer
and floating point, signed and unsigned, data types. Most of the program is repetitious, so I list only its first two output statements
here (the complete listing is on the CD-ROM). I used the data from this program to create Table 6.2, which shows the range of
values for each standard numerical data type.

Listing 6.3 ranges.cpp (partial)

#include <iostream.h>
#include <limits.h>
#include <float.h>

int main ()
{
cout << “signed char HE
<< SCHAR MIN
<<t Ll
<< SCHAR MAX
<< endl;
cout << “unsigned char : ”
<< 0
<<t Ll
<< UCHAR MAX
<< endl;

return 0;

}

Table 6.2 Integer and Floating Point Ranges

Data Type Minimum Maximum Range
signed char -128 127

unsigned char 0 255

char -128 127

signed short -32768 32767

unsigned short 0 65535

int -2147483648 2147483647
unsigned int 0 4294967295

long -214748364 2147483647

Page 86

This document is created with trial version of CHM2PDF Pilot 2.10.

unsigned long

float

double

long double

1.17549¢e-38

2.22507e-308

3.3621e-4932

4294967295

3.40282e+38

1.79769e+308

1.18973e+493200

Global and Local Variables

A global variable is always declared outside main() or any other function—usually, but not always, in a header file. A local variable
1s declared inside a function, typically immediately after the statement block ’s opening brace. Listing 6.4, default.cpp,
demonstrates some of the differences between global and local variables.

Listing 6.4 default.cpp

#include <iostream.h>

int global = 100;
int globalDefault;

int main ()

{
int local = 200;
int localDefault;

cout << “global....... == ” << global << endl;
cout << “local........ == " << local << endl;
cout << “globalDefault == ” << globalDefault << endl;
cout << “localDefault == " << localDefault << endl;

return O;

There are two key differences between global variables such as global and globalDefault declared outside any function, and local
variables such as local and localDefault, here declared inside main(). The differences are

* Global variables are potentially available to any statement throughout the program. Local variables are available only to
statements inside their declaring function.

* Global variables are automatically initialized to zero when the program is started. Local variables are not initialized until
the program assigns them values.

Compiling and running the sample default.cpp program demonstrates these differences. Enter these lines and take a look at the
program’s output:

$ g++ default.cpp

$./a.out
global....... == 100
local........ == 200
globalDefault ==
localDefault ==1

Function main() can refer to both the global and local variables. However, if there were another function in the program, it would

not be able to refer to the two local variables, local and localDefault, because these are inside main(). The variables’ scope extends
Page 87

This document is created with trial version of CHM2PDF Pilot 2.10.
local localDefault main()

only to their declaring statement block.

Note: See Chapter 10, “Creating and Calling Functions,” for more information on local variables.

Multiple Variable Declarations

When declaring multiple variables of the same type, you can write them one after the other separated by commas this way:
int v1, v2, v3, v4;

Or you can create them individually by stacking their declarations on separate lines:

int vl;

int v2;

int v3;
int v4;

Whichever style you choose, you may assign initial values to variables, or you may leave them uninitialized. (If they are global,
however, remember that they are automatically initialized to zero.) The following statement declares four int variables and initializes
two of them, v2 and v4, to the values 123 and 321, respectively.

int v1, v2 = 123, v3, v4 = 321;

That looks jumbled to me, so as a general rule, I use the shorthand declaration style only for uninitialized variables. If I intend to
assign initial values, I prefer to write them on separate lines as follows:

int v2 = 123;
int v4 321;

Enumerated Types

An enumerated type is a symbolic representation of a series of values such as the colors of the rainbow, the days of the week, or
any other series that can be represented in a program using integers. For instance, suppose that you want to represent a rainbow’s
seven fundamental colors. To give a name to each color, you could define symbolic constants such as these:

#define RED
#define ORANGE
#define YELLOW
#define GREEN
#define BLUE
#define INDIGO
#define VIOLET

oUW NP O

The values are meaningless—they just give the program a convenient way to represent color names as unique integer values that
might be stored in variables, written to disk files, or used in other ways. Given these symbols, a program can declare an int
variable like this:

int color;

and then assign to color any of the color symbols:

color = GREEN;

The compiler replaces GREEN with that symbol’s associated text, in this case the single digit 3. In effect, the statement is compiled
as

color = 3; Page 88

This document is created with trial version of CHM2PDF Pilot 2.10.

Obviously, the symbol GREEN is more meaningful than the literal value 3. But typing a long series of color names and other
relatively fixed symbols (the months of the year, for instance) is drudge work. Also, there ’s nothing in the program to indicate that
the individual color symbols are related.

To make creating such lists easier, C++ provides a helpful device, called an enumerated type. Using the reserved word enum, you
can create the preceding seven color constants using a single declaration:

enum { RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET };

This has the identical effect as the #define directive listed earlier. The enum reserved word is followed by a list of identifiers
(typically in uppercase) separated by commas, delimited by curly braces, and ending with a semicolon. Each symbol is assigned a
sequential integer value, beginning with 0. In this example, RED equals 0, ORANGE is 1, YELLOW is 2, and so on, up to VIOLET,
which equals 6.

Given the preceding declaration, to declare an int variable named color and assign it the color value for BLUE, you can write

int color = BLUE;

Previous Table of Contents Next

Page 89

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Rather than use an object of type int to store enumerated values, it is clearer to give the enumerated type a name. To do that, use
the reserved word typedef (for “type definition”) as in the following enumeration for the colors of the rainbow:

typedef enum

{
RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET
} TColors;

The typedef reserved word creates the new data type name, TColors, associated with the enumerated list of color names. Now that
TColors is defined as a new data type, a program can declare variables of that type like this:

TColors oneColor;

That makes oneColor a variable of type TColors and makes it possible to assign color symbolic constants to oneColor with
statements such as

oneColor = INDIGO;

The compiler automatically enumerates the elements in an enum declaration. Sometimes, however, it’s necessary to take over that
job and assign explicit values to one or more symbols. For example, consider the problem of creating an enumerated type for the
months of the year. You might try this:

enum { JAN, FEB, MAR, APR, MAY, JUN,
JuL, AUG, SEP, OCT, NOV, DEC };

The trouble is, because the first symbol in the enumerated list is assigned the value 0, JAN equals 0 not 1—the normal value
associated with the first month of the year. To fix that problem, you can assign an explicit starting value to a member of the
enumerated list. For example, to set JAN to 1, change the preceding declaration to

enum { JAN = 1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC };

The expression JAN =1 assigns 1 to the symbol JAN. Subsequent symbols continue the sequence from that point, making FEB
equal to 2, MAR to 3, APR to 4, and DEC to 12. You may similarly initialize any elements of an enumerated type.

One fact to keep in mind when using enumerated variables is that symbolic names such as RED, ORANGE, SEP, and DEC are merely
preprocessor symbols, similar to those declared in #define directives. As such, the symbols exist only in the program’s source
code, and they are replaced with their underlying numerical values in the compiled code. Many programmers who are unfamiliar
with enumerations wrongly assume that writing them displays their associated names, but as Listing 6.5, enum.cpp, demonstrates,
that’s not what happens.

Listing 6.5 enum.cpp

#include <iostream.h>

typedef enum

{
RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET
} TColors;

int main ()

{
TColors acolor = INDIGO;

Page 90

This document is created with trial version of CHM2PDF Pilot 2.10.

cout << “acolor == ” << acolor << endl;
return 0;

Compile and run the program with the following commands. The program creates and displays the value of a TColors enumerated
variable, acolor:

$ g++ enum.cpp
$./a.out
acolor ==

As you can see, the program reports that acolor equals 5. It does not write the associated symbolic name INDIGO as you might
expect because that symbol is replaced during compilation by its enumerated value. Enumerated symbols can help clarify a
program’s logic, but the symbols exist only at the source code level.

Tip: This chapter’s section “Initializing Arrays of Strings” explains a technique that you could use to provide alphabetic names for
enumerated types such as TColors.

Boolean Variables

C++ provides the bool data type for representing one of two symbolic values, true or false. Also called Boolean, or true-false,
variables, bools are frequently used as flags to indicate various conditions. They become more important when you learn about
control statements such as while and if in Chapter 9, “Controlling Program Flow.” To create a Boolean variable, use a statement
such as

bool error = false;

That declares a variable error of type bool and assigns it the initial value false. Assuming that error is a global variable, elsewhere in
the program if an error condition is detected, a statement could assign true to error:

error = true;

Back in main(), another statement can inspect error and use it as a flag to select one of two ways to end the program:

int main ()
{
if (error)
return 1;
else
return 0;

You haven’t met if statements yet, but the code’s effect should be obvious. If the error variable is true, the program returns 1 as an
error code; otherwise, it returns 0, signifying no error.

Note: C programs use integer variables to represent true (any nonzero value) and false (0). You may do the same in C ++ however, it
is clearer to use the bool type. Also, the size of a bool variable is one byte. An int takes a relatively wasteful four bytes.

Literal Values

You may specify literal integer values using a decimal, hex, or octal radix. Except for the value 0, decimal constants must begin

with a nonzero digit. Constants that start with a leading 0 are octal values that may include only the digits 0 through 7. Constants

that start with 0x or 0x are hexadecimal and may include the digits 1 though 9 plus A though Z in upper- or lowercase. Listing 6.6,
Page 91

This document is created with trial version of CHM2PDF Pilot 2.10.
0x 0x

literal.cpp, declares int variables initialized with hexadecimal, octal, and decimal literal values.

Listing 6.6 literal.cpp

#include <iostream.h>

int main ()

{
int hexValue = O0xF9AC;
int octalValue = 0724;
int decimalValue = 255;

cout << “hexValue == ” << hexValue << endl;
cout << “octalValue == ” << octalValue << endl;
cout << “decimalValue == ” << decimalValue << endl;

return 0;

Compiling and running literal.cpp effectively converts the octal and hexadecimal values in the sample program to decimal. Enter
these commands to compile and run the program:

$ g++ literal.cpp

$./a.out

hexValue == 63916
octalValue == 468
decimalValue == 255

As the output indicates, the default output format is decimal. Although the literal value 0xF9AC is expressed in hexadecimal,
internally it’s just an integer value like any other. Because the default output format for integers is decimal, writing hexadecimal and
octal values to cout displays them in decimal.

Note: Chapter 8, “Controlling Input and Output,” explains how to display integer values using hexadecimal, octal, and decimal
output formats.

Literal Constant Ranges

In addition to radix, you can specify the data type of a literal value, which is sometimes necessary for ensuring that GNU C ++
internally represents a literal value the way you want. For example, to ensure that the compiler treats 100 as a long int, add the
suffix L. The following declaration assigns the long integer value 1234L to a variable named bigValue:

long bigValue = 1234L;

To specify an unsigned long value, add UL. For example, the following assigns the unsigned long value 1234UL to bigValue. The
values are the same, but internally they are represented in memory according to their specific types:

unsigned long bigValue = 1234UL;

Note: Because GNU C++ normally represents integer constants as long or unsigned long values, the suffixes L and UL are rarely needed.
However, they might be required by other C and C++ compilers that represent integer constants as type int. For better portability,
it’s a good idea to attach L or UL to all constants that should be treated as long or unsigned long values.

Page 92

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 93

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Double Wide Integers

GNU C++ permits a special type of “double wide” integer named long long that can store truly huge values. Listing 6.7,
verybig.cpp, demonstrates how to declare long long integers and determine the minimum and maximum values they can represent.

Listing 6.7 verybig.cpp

#include <iostream.h>

long long min signed, max_ signed;
unsigned long long max unsigned;

main ()
{
// Assign minimum and maximum values to varl and var?2
// Assign maximum value to unsigned var3
min signed 0x8000000000000000LL;
max_signed Ox7FFFFFFFFFFFFFFFLL;
max_unsigned = OxFFFFFFFFFFFFFFFFULL;

cout << “Signed long long range” << endl;
cout << % 7 << min signed << “ ... ”

cout << max_ signed << endl;

cout << “Unsigned long long range” << endl;
cout << * 0 ... ” << max_unsigned << endl;
cout << “long long size in bytes == "

cout << sizeof (max unsigned) << endl;
return 0;

When you compile and run the verybig.cpp program with the following commands, it reports the minimum and maximum values of
signed and unsigned long long integer values, and also shows the size in bytes of a long long variable:

$ g++ verybig.cpp

$./a.out
Signed long long range

-9223372036854775808 ... 9223372036854775807
Unsigned long long range

0 ... 18446744073709551615

long long size in bytes ==

The program’s output shows that a signed long long integer is capable of representing huge values in the range of plus or minus 9 -
thousand trillion and change. Unsigned long long integers double the maximum value to more than 18 thousand trillion. That’s
certainly big enough for my bank balance, with no danger of overflow.

Tip: By assuming a decimal place, long and long long integers are appropriate for accounting and spreadsheet software. (See Chapter
8, “Controlling Input and Output,” for information on formatting values as strings —for example, to insert a decimal point into a long
or long long integer value.)

Because GNU C++ represents literal integer constants as type long or unsigned long, the hexadecimal assignments in the sample
program must end with LL and ULL to prevent an out-of-range warning. Despite appearances, the third constant does not end with
the word “FULL.” That’s a hexadecimal F followed by ULL, })neangizlg unsigned long long:

age

This document is created with trial version of CHM2PDF Pilot 2.10.

min signed 0x8000000000000000LL;
max signed Ox7FFFFFFFFFFFFFEFFLL;
max unsigned = OxFFFFFFFFFFFFFFFFULL;

The constants take advantage of the fact that, in binary, a signed integer ’s minimum value is an initial 1 bit followed by all zeros (in
hexadecimal, 0x80...). A signed integer’s maximum value is a zero bit followed by all ones (in hexadecimal, 0 x7F...). An unsigned
integer value’s maximum value in binary is all ones (in hexadecimal, 0xFF...). Of course, the minimum value for all unsigned
integers is zero.

Warning: Double wide integers of type long long are probably unique to GNU C and C++. Using this type might make your programs
incompatible with other C and C++ compilers.

It’s a Wrap

A trouble area to watch out for, especially with integer variables, is a wrap -around effect that resembles how an odometer returns
to all zeros after reaching its upper limit. It’s a kind of internal Y2K effect that at times is useful, but might cause a bug. Listing 6.8,
wrap.cpp, demonstrates the problem.

Listing 6.8 wrap.cpp

#include <iostream.h>
short int wvalue;
int main ()

{
value = 32767;

cout << “walue == " << value << endl;
value = value + 10;
cout << “walue + 10 == " << value << endl;

return O;

Compile and run wrap.cpp with the commands:

$ g++ wrap.cpp

$./a.out
value == 32767
value + 10 == -32759

The second line of output appears to be a bug. How can 32627 + 10 equal -32759? The apparent problem occurs because
GNU C++ stores integer values in a fixed number of bytes. Because they are fixed in size, the variables ’ bits can represent values
only in a limited range—in this case, -32768 to +32767 for short ints including zero (refer to Table 6.2). Expressions that exceed a
variable’s range cause the value to “wrap around,” just like a typical automobile odometer does upon reaching 999999. Because
this happens at runtime, the compiler is unable to issue a warning or error message for calculations that cause a wrap -around. To
fix the problem, simply choose a larger data type. For example, changing value’s type from short int to int increases the potential
range of values the variable can represent, and the wrap -around no longer occurs.

Warning: Inconsequential code, such as a game, might use wrap-around for some reason (perhaps as a graphics device), but
production software should never rely on this effect. This rule is especially important in C programs because many C compilers
define the same integer types using different internal byte sizes and value ranges.

Page 95

This document is created with trial version of CHM2PDF Pilot 2.10.

Floating Point Variables

A floating point value (sometimes referred to as a real number) is written with a decimal point. Floating point values are best
considered to be approximations. For instance, the currently known value of pi is an unwieldy mass of digits, but the approximate
floating point value 3.14159 is close enough for many applications.

You can also write literal floating point values using scientific notation. The value 3.755E+02 is equivalent to the decimal value
375.5. (Mathematicians would write that same value as 3.755x102.) To form the decimal equivalent of a scientific value, move the
decimal point right for positive exponents, left for negative ones. Thus, 5.123E+03 equals 5123.0, and 6.5E -03 equals 0.0065.

GNU C++ and other ANSI C++ compilers provide three floating point data types: float, double, and long double. (There’s no such
thing as a long float except in a parade.) Table 6.3 lists the memory sizes and approximate value ranges for the three floating point
types. Most programs use the double type for floating point variables, but you can use float to save space at the expense of a loss

of precision, or use long double for more precision and a greater range of values but with a possibly longer execution time for
evaluating complex expressions.

Table 6.3 Floating Point Data Types

Data Type Bytes Bits Minimum Maximum

float 4 32 1.17549¢e-38 3.40282e+38
double 8 64 2.22507e-308 1.79769e+308
long double 12 96 3.3621e-4932 1.18973e+4932

Previous Table of Contents Next

Page 96

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Note: See the standard library header file float.h for exact ranges and other details about GNU C ++ floating point values. The
constants in this file tend to be highly compiler- or machine-specific, and for that reason, float.h is probably not located

in /usr/include along with other standard headers. Use the Linux find or locate commands to find float.h on your system. On my
installation, I found float.h in the following obscure path:

/usr/lib/gcc-1ib/i386-redhat-1linux/egcs-2.90.27/include/

Create floating point variables the same way you do any others, but specify one of the types from Table 6.3. For example, to
declare a variable named balance, use the declaration:

double balance;

As with integer variables, if balance is a global variable, its value is initialized to zero (0.0) at runtime. If balance is declared in a
function’s statement block, it’s your responsibility to assign it an initial value. As with integers, you can do that with a single
statement such as

double balance = 525.49;

Note: Floating point constants such as 525.49 and 99.99 are of the double type unless followed by | or F, in which case they are
represented as floats. The value 3.14159F is type float. Use 1 or L to tell the compiler that a value should be a long double as in 3.14159L.

Listing 6.9, tax.cpp, shows how to use floating point variables to calculate values. The program calculates the amount of tax paid
and the retail price of an item given its total purchase price and the local tax rate. I wrote it because I sometimes need to
backtrack a purchase and figure how much tax I paid. For example, if I come across a bill for $13.96, the program can tell me
how much of that was tax.

Listing 6.9 tax.cpp

#include <iostream.h>

#include <stdio.h> // need printf ()
double list, paid, rate, tax;
main ()

{
cout << “Price paid? ”
cin >> paid;
cout << “Tax rate (ex: .06)? ”
cin >> rate;
list = paid / (1 + rate);
tax = paid - list;
printf (“List price = $%8.2f\n”, list);
printf (“Tax paid = $%8.2f\n”, tax);
return 0;

Compile and run tax.cpp in the usual way, and then enter the price you paid for an item plus your local tax rate. Here ’s a sample
run:

$ g++ tax.cpp
Page 97

This document is created with trial version of CHM2PDF Pilot 2.10.

$./a.out

Price paid? 13.96

Tax rate (ex: .06)? 0.075
List price = $ 12.99
Tax paid $ 0.97

Given a bill of $13.96 and my local tax rate of 7.5%, tax.cpp calculates that I paid $12.99 retail for this item and $0.97 in sales
tax. The program’s source code contains some new elements not yet introduced. This statement reads input into a variable:

cin >> paid;

The cin object is similar to cout, but directs standard input to a variable, in this case, the double paid. The C++ I/O-stream input
operator >> looks like an arrow that “shoots” cin’s input into the target variable. You may use similar statements to read input into
other simple types of variables. (See also Chapter 8, “Controlling Input and Output,” for other ways to read user input.)

After obtaining input values for paid and rate, the program calculates the list price and tax paid by using these statements:

list = paid / (1 + rate);
tax = paid - list;

Parentheses in the first statement’s expression ensure that the addition is performed before the division. This is necessary because
division has a higher precedence than addition and would therefore be performed first in the absence of parentheses. In other
words, the following statement would cause a bug in the program:

list = paid / 1 + rate; // 2272

That incorrectly divides paid by 1 and then adds rate to the intermediate result. Always use parentheses to ensure that your
mathematical calculations are performed as you want. See Appendix B, “C++ Operator Precedence and Associativity,” for details
on GNU C++ operator precedence.

Tip: Extra parentheses never do any harm or add any unnecessary object code to compiled programs. Use parentheses lavishly to
clarify all your program’s expressions—for the compiler and for you.

Character Strings

Strings give computer programs the gift of speech. With strings, programs can display error messages, prompt for input, and
report facts about internal events. Strings can also hold filenames, database search keys, and other text information. The following
sections explain how to create C-style strings and some related topics such as how to convert strings to binary integer and floating
point values.

Note: GNU C++ provides the string class for constructing string objects, explained in Part V, “C++ Class Libraries.” However, many
C++ programmers continue to use C-style strings described in the following section, and it’s good to know how to create strings of
both types.

Characters

Use the char type to create variables that can hold individual characters. For example, the following statement creates a char
variable ¢ and assigns it the letter Q:

char ¢ = Q'

Delimit single literal characters with single quotes (the apostrophe character on most PC keyboards). As mentioned, the char type
is internally just an integer value. Because 81 is the letter Q’s ASCII value, the following is equivalent to the preceding statement:

char ¢ = 81; Page 98

This document is created with trial version of CHM2PDF Pilot 2.10.

C-Style String Constants

A C-style string is a series of one or more chars, each taking one byte in memory, and ending with a null character, equal to
ASCII 0. Quote literal strings using double quote marks. For example, you might define a constant named TITLE associated with a
literal string like this:

#define TITLE “My Program”
You can then write the program’s title to the console, and start a new line, using the following statement:

cout << TITLE << endl;
C-Style String Variables

A C-style string variable typically holds user input—for example, a filename. Use the char type to create a C-style string variable
with a statement such as

char filename[] = “datafile.txt”

The square brackets tell the compiler that filename 1s an array of multiple characters. The size of the array equals the number of
characters in the quoted string plus one for a terminating null. Precede the declaration with const to create a constant string that
cannot be changed at runtime:

const char mypath[] = “/home/yourname”
If you don’t want GNU C++ to calculate a string’s size automatically, specify the size you want in brackets:
char input[128];

That creates an uninitialized string variable named input capable of holding 127 characters plus a terminating null. You may specify
a size and an initial string value:

char input[128] = “/home/yourname”

That sets input to the stated string and makes the variable large enough to hold up to 127 characters. If a string declaration is
global, GNU C++ automatically sets all its bytes to zero. There’s no practical limit to a string’s size, and it’s often useful to use
them for large buffers, perhaps for performing “raw” disk operations. The following declares a buffer of 1,028 bytes:

char buffer[1028];

Previous Table of Contents Next

Page 99

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Warning: Never create large string variables or buffers inside functions! This places the variable on the relatively limited system
stack and is not good programming. See Chapter 11, “Managing Memory with Pointers,” for other ways to create string variables
and large buffers without using global declarations.

Because C-style string variables are actually arrays of individual characters, you cannot assign new strings to them using
assignment statements. The following does not work:

pathname = “/etc/scripts” // 2272

That fails to compile because the assignment operator is not defined for C -style string variables. To copy one C-style string to
another requires calling a standard string function , such as strcpy(). To do that, include the standard string.h header file with the
following directive:

#include <string.h>

You can then call strepy() to copy a string into the variable using a statement such as

strcpy (pathname, “/usr/yourname”) ;

That copies “/usr/yourname” into pathname. Be careful that the source string isn ’t larger than the target variable. A similar, but safer,
function, strncpy(), limits how many characters are copied. If source and destination are the names of C -style string variables, the
following statement copies up to 10 characters from source to destination:

strncpy(destination, source, 10);

Note: Generally, string functions with an extra » in their names declare a numeric parameter that limits the function ’s action in some
way. These functions tend to be safer or more restrictive than their n -less counterparts. Examples include strepy() and strnepy(), streat()
and strncat(), and stremp() and stmemp(). See the info pages for online documentation on these functions.

Size Matters

The size of a string determines how many characters it can hold. The /ength of a string is equal to how many characters the string
currently holds. Listing 6.10 demonstrates the difference between string size and length.

Listing 6.10 prompt.cpp

#include <iostream.h>
#include <string.h> // Need strlen()

char username[64];

main ()

{
cout << “What’s your name? ”
cin >> username;
cout << “Hello ” << username << ‘!’ << endl;
cout << “size == ” << sizeof (username) << endl;
cout << “length == " << strlen(username) << endl;
return 0;

Page 100

This document is created with trial version of CHM2PDF Pilot 2.10.

Compile and run the program in the usual way and enter a string when prompted. Here’s a sample run:

$ g++ prompt.cpp

$./a.out

What’s your name? Rumpelstilzchen
Hello Rumpelstilzchen!

size == 64

length == 15

The size in bytes of the username string variable is 64, the same as its declared size in the program ’s source code. However, the
length of the string depends on how many characters it holds, in this case 15. Use the C++ sizeof operator as shown to determine
the size of a string or any other variable. Call the strlen() function to count the number of characters in a string. The standard
header file string.h declares strlen() along with other C-style string functions.

Note: Chapter 8, “Controlling Input and Output,” discusses other ways to read user input into string variables.

Much to Do About Nothing

All C-style strings must end with an ASCII null character, equal to zero. This marks the end of the string for various string
functions such as strepy() and strlen(). If a string lacks a terminating null, string functions merrily operate on data beyond that
reserved for the string variable, causing a serious bug.

To represent null, you can specify its ASCII value in a character expression like this:

char anull = ‘\0’

The backslash specifies that the following digits represent a character ’s ASCII value. Be sure to use single quotes to specify a
single character. The string “\0” is a two-byte s#ring that contains two null characters.

Another way to represent a null character is to use the standard library’s NULL symbol, written in all uppercase. Unfortunately, the
nature of this symbol is as fickle as the weather. In some ANSI C and C ++ systems, NULL is defined as equivalent to zero usually
with a #define directive such as

#define NULL 0

However, ANSI C declares NULL differently using the following macro definition:

#define NULL ((void *)0)

This makes NULL equal to a “void pointer to zero.” (See Chapter 11, “Managing Memory with Pointers.”) Although GNU C++
appears to make an attempt to redefine NULL as equivalent to zero, other standard headers seem to ignore that effort, causing
NULL to be defined as in ANSI C. As a result, even simple statements such as the following cause GNU C ++ to issue a warning
about the lack of a cast:

char cnull = NULL; // 2°2°?

Many C++ compilers accept that statement, but GNU C++ doesn’t like it. If using NULL causes this trouble, to repair the problem,
after including standard headers, you can try to redefine NULL using the following directives:

#ifdef NULL
#undef NULL
#endif

#define NULL 0

Page 101

This document is created with trial version of CHM2PDF Pilot 2.10.

That’s a lot to do about nothing, but it might be necessary to compile some existing programs that expect NULL to be defined
simply as zero. However, because of the potential for causing trouble in standard library functions that might expect NULL to be
defined differently, it might be best simply to avoid using this symbol in new code. If I need to represent the null character, I make
up my own constant using a directive such as

#define ANULL 0

Or, even better, you can define it as a character constant:

#define CHNULL ‘\O’
Comparing Strings

To compare two strings, call the stremp() function, which returns one of three integer values: -1, 0, or +1. Suppose that you create
two string variables such as the following:

char stringAl[] “Oranges”
char stringB[] = “Apples”

The following statement alphabetically compares “Oranges” to “Apples’
int result = strcmp(stringhA, stringB);

Use the resulting integer, assigned in this case to the int variable result, to determine the results of the comparison according to
these three rules:

* If result equals -1, then stringA is alphabetically less than stringB.
* If result equals 0, then the two strings are identical.
* If result equals +1, then stringA is alphabetically greater than stringB.

Function stremp() 1s case sensitive. It considers lowercase letters to be alphabetically greater than their uppercase equivalents
(because lowercase letters have higher ASCII values than uppercase letters). For a caseless (but not tasteless) comparison
between two strings, call strcasecmp(). The strcasecmp() function works identically to stremp() but ignores differences in case. When
compared using stremp(), “Apple” is alphabetically less than “apple.” When compared using strcasecmp(), “Apple” and “apple” are
considered identical.

To compare only a portion of two strings, use strncmp(). For example, this statement

int result = strncmp(sl, s2, 2);

Previous Table of Contents Next

Page 102

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

sets result to zero only if the first two characters of the strings addressed by s1 and s2 match exactly. For a caseless comparison,
call function strncasecmp().

[7312]
1

Tip: Some other C and C++ standard libraries define functions with an in their names to indicate that they “ignore” case. For
example, stricmp(), sometimes spelled strempi(), is the caseless version of stremp(). GNU C++ uses the word “case” to indicate a caseless
string function. If an older program gives an error for the use of functions such as stricmp(), stmempi(), or similar, simply change the “i”
to “case.”

Concatenating Strings

Concatenating two strings joins them, creating a new, longer string. Given an existing string declared like this:

char original[l128] = “Testing ”

the following statement sets the original string to “Testing one, two, three!”:

strcat (original, “one, two, three!”);

Add spaces as needed to prevent concatenated strings from running together. For example, the first string, “Testing ”, ends with an
extra space.

Searching for Substrings

Often, a program needs to search strings for characters and substrings in C -style string variables. One of the most common uses
for the technique is to examine filenames for a certain extension. For example, after prompting users to enter a filename, you might
want to check whether they entered the extension .txt, and if so, display the file onscreen. Listing 6.11, extension.cpp, uses string
functions to detect a filename extension and, if missing, add a default name.

Listing 6.11 extension.cpp

#include <iostream.h>
#include <string.h> // Need strstr(), strcat()

char filename[128];

int main ()
{
cout << “File name (.txt)? ”
cin >> filename;
cout << “Original input : 7 << filename << endl;
if (!strstr(filename, “.txt”))
strcat (filename, “.txt”);
cout << “Resulting filename : ” << filename << endl;
return 0;

Function strstr() locates a substring in another string. The function returns a pointer to char, written in C and C++ as char*.
(Chapter 11, “Managing Memory with Pointers,” covers pointers thoroughly.) In this case, we don’t care where the substring is
located; we want only to know whether it exists. This statement accomplishes the task:

Page 103

This document is created with trial version of CHM2PDF Pilot 2.10.

if (!strstr(filename, “.txt”))
strcat (filename, “.txt”);

The exclamation point negates the result of strstr() and in effect states that if “.txt” is not found in filename, then the subsequent
statement should be executed. Here, that statement calls another string function, strcat(), to add the missing filename extension.

Character Escape Codes

In addition to the characters you can type, strings and characters may also contain escape codes. These are special symbols that
represent control codes and other ASCII values, which can’t be typed using a text editor, or that conflict with string and character
quote marks. Table 6.4 lists the full set of GNU C ++ character escape codes, most of which are probably recognized by most

ANSI C and C++ compilers.

Table 6.4 String Escape Codes

Code Meaning Decimal ASCII Value(s)Hexadecimal Symbol(s)
\a’ Bell (“alert!”) 7 0x07 BEL
‘\b’ Backspace 8 0x08 BS
AP Form feed 12 0x0C FF
\n’ New line 10 0x0a LF
\r’ Return 13 0x0d CR
Al Horizontal tab 9 0x09 HT
v’ Vertical tab 11 0x0b VT
W Backslash 92 0x5c \

A\ Single quote 39 0x27 ¢

7 Double quote 34 0x22 “

7 Question mark 63 0x3f ?
000’ ASCII octal 000 n/a n/a n/a
%007 ASCII hex 00 n/a n/a n/a

Each of the escape codes in Table 6.4 is a single character, stored internally as an int value and composed of a backslash
followed by a letter, punctuation symbol, or octal digits. The octal and hex codes make it possible to enter any ASCII code into a
string or character constant. For example, the following declaration assigns the ASCII value 0 x27 (a single quote) to cquote:

char cquote = “\x27’

Because a single quote delimits a literal character, that’s one way to assign a single quote character to a variable such as cquote.

Page 104

This document is created with trial version of CHM2PDF Pilot 2.10.
cquote

Another way is to use the single quote escape code like this:

char cquote = ‘\'’

You may use escape codes as individual characters also in strings. As an example, and also to demonstrate a useful technique for
pausing to prompt users to press the Enter key, see Listing 6.12, enter.cpp.

Listing 6.12 enter.cpp

#include <iostream.h>

’

const char prompt[] = “Press the \”Enter\” key now...”

main ()
{
char temp;
cout << prompt; // Display prompt
cin.get (temp) ; // Wait for user to press Enter
return 0;

Compiling and running the program in the usual way results in the program pausing for you to press Enter. Notice that the
program’s output displays “Enter” quoted by virtue of the \” string escape codes in the constant prompt:

$ g++ enter.cpp
$./a.out
Press the “Enter” key now...

String Conversions

As mentioned, you can write statements to read user input directly into integer and floating point variables. For example, the
following statements create a double variable and prompt users to enter a value:

double wvalue;
cout << “Enter value:
cin >> value;

”

That’s not always possible or convenient. In many cases, a program inputs data in text form, perhaps from a file downloaded over
a network. To use the string data in binary form—in calculations, for example—you must convert the strings to binary values.
Listing 6.13, convert.cpp, shows how to do this for integer and floating point values entered in string form.

Previous Table of Contents Next

Page 105

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Listing 6.13 convert.cpp

#include <iostream.h>
#include <stdlib.h>

char input[128];
long lvalue;
double dvalue;

main ()

{

cout << “Enter an integer wvalue: ”

cin >> input;

lvalue = atol (input) ;

cout << “Value in binary == ” << lvalue << endl;
cout << “Enter a floating point wvalue: ”

cin >> input;

dvalue = atof (input);

cout << “Walue in binary == ” << dvalue << endl;

return 0;

Include the stdlib.h header file and call function atol() (ASCII to long) to convert a string into a long int value. The program assigns
the result of atol() to Ivalue, a variable of type long. To the function, pass a C-style string, such as input:

lvalue = atol (input);

Similarly, use atof() (ASCII to float) to convert a floating point value in string form to a double binary value:
dvalue = atof (input);

Another function, atoi() (ASCII to integer), not used in the sample program, converts a string to an int value:

int ivalue = atoi (input);

Note: The stdlib.h declares other string to binary functions such as strtod() (string to double), strtol() (string to long), and strtoul() (string
to unsigned long), described online in Linux info pages. Using these functions requires an understanding of pointers, introduced in
Chapter 11, “Managing Memory with Pointers.”

Stir-Fried Strings
If you like stir-fried vegetables, you’ll love the GNU C++ strfry() function. It scrambles the characters in any string by randomly
shuffling them. Although this might seem frivolous, it might be used in a program to mix up the byte values in a string or other

buffer —for example, to prepare blocks of randomized test data, or for use in encryption algorithms. Listing 6.14, scramble.cpp,
demonstrates the strfry() function.

Note: The strfry() function is probably unique to Linux and the GNU C standard library.

Page 106

This document is created with trial version of CHM2PDF Pilot 2.10.

Listing 6.14 scramble.cpp

#include <iostream.h>
#include <string.h>

// The following three lines may be required if strfry()
// is not declared in string.h.

extern “C” {
char *strfry(char *string);

}
char alphal[] = “abcdefghijklmnopgrstuvwxyz”

main ()

{
cout << “before : ” << alpha << endl;
strfry(alpha);
cout << “after : ” << alpha << endl;
return 0;

Compile and run the program to scramble the alpha character string. Try running it several times as a test of the system ’s random
number generator (but wait a second between trials because the generator uses the current time as a starting seed). Enter these
commands:

$ g++ scramble.cpp

$./a.out
before : abcdefghijklmnopgrstuvwxyz
after : niaoldtpswbgkfejzghvcruymx

Because strfry() is documented as being unique to Linux and GNU C and C++, you probably won’t find the function in other
standard C libraries. Also, it is apparently not declared in the standard string.h header files shipped with the compiler, a bug that
results in this warning in any program that calls strfry():

warning: implicit declaration of function ‘int strfry(...)’

Note: Later versions of GNU C++ apparently do declare the function properly in string.h, so you might not see this warning.

If you receive the warning, the program still works correctly because strfry() is located in a compiled library even though it is not
declared as it should be in string.h. However, you can use the following lines to declare the function and get rid of the warning:

extern “C” {
char *strfry(char *string);

}

Note: The extern “C” directive encases a C function declaration for use in a C ++ program. This is necessary because the C++ compiler
“mangles” function names and other identifiers to create unique symbols during compilation. The extern “C” directive disables name
mangling so that the linker can find the declared C function ’s compiled code.

Arrays and Structs

An array is simply a series of objects, all of the same type, stored next to each other in memory. A struct is a collection of objects
possibly of different types, also stored next to one another. The following sections introduce these types of complex data
Page 107

This document is created with trial version of CHM2PDF Pilot 2.10.

structures.
Single-Dimensional Arrays

You’ve already seen one example of a single -dimensional array—a C-style string declared as

char input[128];

That creates a variable named input as an array of 128 char values. Similarly, you can create arrays of other data types. Here ’s an
array of 10 double objects:

double values[10];

To use the array in a statement, specify the index of the element you want. You can assign a value to an array element:

values|[5] = 3.14159;

You can also use array elements in other ways. The following statement, for example, writes the sixth element of the values array
to the standard output:

cout << wvalues[5] << endl;

Because all C and C++ arrays begin with the first element at index [0], the index value 5 locates the sixth element in the array. The
key to using arrays properly is to remember that an expression such as values[5] is a single object of the array’s stated type—a
double value in this case. As such, an expression such as values[5] may be used in any context where a double value is appropriate.

Note: The maximum array index is always one less than its declared size. For example, the indexes for an 100 -element array range
from 0 through 99.

Multiple-Dimensional Arrays

To create arrays with two or more dimensions, specify an additional size in brackets. For example, the following creates a 10 by
20 matrix of integers:

int matrix[10][207];

To use matrix, specify two index values, as in the following statement:

cout << matrix[4][5];

Multiple-dimensional arrays may have three or more dimensions, but it’s hard to imagine any use for a structure with more than
three. This creates a three-dimensional array of double values:

double cube[4][3]11[8];

Note: Be careful when creating arrays like that—they can take a lot of memory. In this case, cube occupies 768 bytes (4 x 3 x 8 x sizeof
(double)).

Initializing Arrays
A common method for assigning values to arrays is to use a for loop as the following code fragment demonstrates:

int array[1l00];
for (int 1 = 0; 1 < 100; i++)

Page 108

This document is created with trial version of CHM2PDF Pilot 2.10.

array[i] = 1i;

The first line declares a 100 -integer array, named array. The for loop assigns the values 0 through 99 to array[0] through array[99].

(See Chapter 9, “Controlling Program Flow,” for more information on for loops.) You can also individually assign values to arrays
elements this way:

array[3] = 123;

That sets the fourth element of array to the value 123. Again, it’s the fourth element because array[0] is the first.

Tip: Arrays declared as global variables outside any function are automatically initialized to all zero bytes.

Previous Table of Contents Next

Page 109

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Preinitializing Arrays

Another useful method for initializing arrays is to specify initial values in the source code. You ’ve already seen one example of the
technique as demonstrated here:

char title[] = “My Super Encryption Program”

That creates a C-style string variable named title. Actually, title is a single-dimensional array of char values, each initialized to one
character from the quoted string. The compiler creates an array exactly big enough to hold the string, plus one byte for its null
terminator. You may initialize other types of arrays using a similar declaration. For example, the following creates an array of 10
integers and assigns values to each element:

int digits[] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0};

The digits array is sized to hold 10 integer values, each initialized to the literal values in braces. Because no size is specified in
brackets, the compiler calculates the array’s size using the initial values. However, you may specify a different size with a
declaration such as

int digits[10] = {5, 4, 3, 2, 1};

That creates an array of 10 integers but initializes only the first 5. The remaining elements at subscripts 5 through 9 are zeroed if
the array is global or set to unpredictable values if the array is local to a function.

Initializing Arrays of Strings
A common structure stores an array of C-style strings. For example, Listing 6.15 uses an array to hold the names of the months.

Listing 6.15 months.cpp

#include <iostream.h>

char months[12][4] = {
“Jan”, “Feb”, “Mar”, “Apr”,
“May”, “Jun”, “Jul”, “Aug”,
“Sep”, “Oct”, “Nov”, “Dec”

}s

int main ()
{
for (int month = 0; month < 12; month++)
cout << months[month] << ™ 7
cout << endl;
return 0;

Compile and run the program to display the names of the 12 months. Enter these commands:

$ g++ months.cpp
$./a.out
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

To hold the month strings, the program declares months as a r};r‘_}lglel:tildliglensional array with indexes of 12 and 4. It is literally a 12 -

This document is created with trial version of CHM2PDF Pilot 2.10.
months

element array of arrays, each four characters long, room enough for three characters in an abbreviated month name such as Apr
plus a null terminator byte for the string. Although used as a single -dimensional array (see the output statement in the program’s for
loop), months is actually two-dimensional because each string is itself an array of characters.

Tip: Use an array such as months to give string names to enumerated type symbols.

Structures

A structure, called a struct in C and C++, forms a shell around one or more values of the same or different types. To declare a
structure, start with the struct reserved word, and follow with an identifier and a list of declarations (called structure members) in
braces. End the structure and each member declaration with a semicolon. Structures can be complex data types with many
members, or they can be simple, such as this two-member model:

struct coordinate {
int x;
int y;

}i

As declared here, the coordinate structure has two integer members, named x and y, which might represent data points for a chart
or graph. Unlike an array, a structure declaration is merely a schematic that describes the structure’s components. To use a
structure, you first have to declare a variable of the structure ’s type:

struct coordinate point;
C++, but not C, permits dropping the struct reserved word and writing the preceding declaration more simply as:

coordinate point;

Either way, the variable point is a single object that contains two integers. Use dot notation to refer individually to the structure’s
members. For example, to assign values to the two integer components of point, you can write the following:

point.x = 5;
point.y 6;

Technically, the dot in dot notation is called the structure-member operator . It informs the compiler of how and where to find a
structure’s member. The expression point.x refers to the x int member in the structure point and can therefore be used wherever an
int object is allowed.

Note: Member names must be unique within the same structure, but they do not conflict with names used in other contexts. It
would not be an error, for instance, if a program declared other variables named x and y.

Structures can store variables of any and all types, including arrays and even other structures. Here ’s a sample of a complex
structure with members of several different types:

struct complexStruct {
double aFloat;
int anInt;
char aString([8];
char aChar;
long along;

}i

As declared here, complexStruct has five members: a floating point value, an integer, an eight -element char array, a single character,
and a long integer. A variable named data declared as

Page 111

This document is created with trial version of CHM2PDF Pilot 2.10.

complexStruct data;

can store member values of these five types in one handy package. As with all structures, you can store values in data ’s members
using dot notation:

data.aFloat = 3.14159;
data.aChar = X’

Debugging Data Objects

When a program fails to produce expected output, the first place to look for trouble is in any assignments to variables. In this
section, you examine some intentionally buggy code in a program that is supposed to convert a temperature in Fahrenheit to
Celsius. Unfortunately, the program doesn ’t seem to work correctly. Using the GNU debugger’s data-examination commands,
you quickly locate and fix the problem.

Note: The following sections use the console debugger, gdb. You may use a different interface if you prefer —for example, xxgdb
for X, or the Emacs editor’s debugging commands. For basics on running the GNU debugger using these interfaces, see Chapter 5,
“Compiling and Debugging C++ Programs.”

Identifying the Bug

On the CD-ROM is a file, buggy.cpp, in the src/c06 subdirectory. This is a copy of the celsius.cpp program, also located in the
same directory, but with two intentional bugs. To see the problem, compile and run the buggy program using the usual commands:

$ g++ buggy.cpp
S ./a.out

Enter a temperature in Fahrenheit such as 75.5. The program is supposed to convert that temperature to Celsius, but as the
following output shows, it obviously displays an incorrect result:

*** Warning: This program has intentional bugs
Fahrenheit to Celsius conversion

Degrees Fahrenheit? 75.5

Degrees Celsius == -9.44444

Apparently, there is something wrong with the program’s formula. Let’s use the debugger to pinpoint the trouble spot.
Loading the Code

The first step in finding the bug is to compile the program with debugging information. After that, load it into gdb. To follow along,
enter these two commands:

$ g++ -g -o buggy buggy.cpp
$ gdb -silent buggy
(gdb)

The first line selects the default level of debugging information (-g) and specifies the output filename, buggy. The second line loads
the compiled code into the debugger. The -silent option skips the debugger’s wordy welcoming messages. The final line is gdb’s
command prompt. We want to examine data values while the program is paused at convenient locations, so first type L a couple
of times to list the program’s source code (to save space, I list only the relevant lines here):

(gdb) 1

22 cin >> input;
23 fdegrees = atol (input) ;
24 cdegrees (fdegrees - 32.0 * 5.0) / 9.0;

Page 112

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 113

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Because the program reports an incorrect result, the obvious place to look is in the calculation at line 24. So, set a breakpoint
there and run the program to pause before executing that statement:

(gdb) break 24

Breakpoint 1 at 0x80487e7: file buggy.cpp, line 24.
(gdb) run

Starting program: /src/c06/buggy

*** Warning: This program has intentional bugs
Fahrenheit to Celsius conversion

Degrees Fahrenheit? 75.5

After you type 75.5 and press Enter, the debugger pauses the program at the breakpoint and shows the statement next to be

executed:
Breakpoint 1, main () at buggy.cpp:24
24 cdegrees = (fdegrees - 32.0 * 5.0) / 9.0;

Type next and press Enter to execute the suspect statement, and then issue a print command to inspect cdegrees:

(gdb) next

25 cout << “Degrees Celsius == ” << cdegrees << endl;
(gdb) print cdegrees

$1 = =-9.4444444444444446

Tip: Instead of typing mext, you can just type n and press Enter.

The value of cdegrees definitely shows that the program is not computing the correct result, but it doesn 't tell us why. In this case, a
look at the expression reveals the problem to be a missing pair of parentheses:

(fdegrees - 32.0 * 5.0) / 9.0 //??2?

Because multiplication has higher precedence than subtraction, the first part of this expression multiplies 32.0 times 5.0 and
subtracts that result from fdegrees, but the formula calls for subtracting 32.0 from fdegrees before multiplying. Sometimes, however,
the problem in an expression is not so obvious. In that case, it’s often helpful to divide the expression into pieces and use gdb print
commands to inspect the intermediate results. For example, you might comment-out the calculation of cdegrees and replace it with
temporary code such as

double tl1l = fdegrees - 32.0;
double t2 = t1 * 5.0;
doubld t3 = t2 / 9.0;

You can then single step these statements and inspect the t1, t2, and t3 temporary variables, and in this way further investigate the
cause of a faulty expression. You don ’t have to perform these steps now, but keep them in mind for future problems.

If you are following along, quit the debugger (type g and answer yes when prompted whether you intend to exit the running
program). Fix the faulty expression by adding parentheses, changing it to the following:

((fdegrees - 32.0) * 5.0) / 9.0
Compile the modified buggy.cpp and run. You don’t have to load it into the debugger. Again, enter 75.5 when prompted:

$ g++ buggy.cpp

$./a.out Page 114

This document is created with trial version of CHM2PDF Pilot 2.10.

*** Warning: This program has intentional bugs
Fahrenheit to Celsius conversion

Degrees Fahrenheit? 75.5

Degrees Celsius == 23.8889

That looks better. But just to be sure, use a hand calculator to work out the problem and verify the program ’s result. Enter this
expression into your calculator:

((75.5 - 32.0) * 5.0) / 9.0

Uh oh, that gives 24.167 degrees, not 23.8889. There’s another bug in the code, one that’s easily missed if we hadn’t verified the
calculation. Try some other input data—80 and 90.7, for example. Apparently, only fractional values cause the bug to appear.
The program correctly converts whole numbers to Celsius without error. Something is wrong with the program s floating
point data. So, recompile for debugging and load the program into gdb:

$ g++ -g -o buggy buggy.cpp
$ gdb -silent buggy

Set a breakpoint at the assignment to fdegrees, a floating point variable of type double, and then run the code up to that point:

(gdb) break 23

Breakpoint 1 at 0x80487cb: file buggy.cpp, line 23.
(gdb) run

Starting program: /src/c06/buggy

*** Warning: This program has intentional bugs
Fahrenheit to Celsius conversion

Degrees Fahrenheit? 75.5

Tip: You can type b 23 instead of break 23, and r instead of run.

Enter 75.5 when prompted and press Enter. The debugger halts the program at the breakpoint:

Breakpoint 1, main () at buggy.cpp:23
23 fdegrees = atol (input);

Before executing that statement, be sure that the input variable holds the entered value. To inspect the string, type print input:

(gdb) print input
$1 = “75.5”, ‘\000’ <repeats 123 times>

The debugger assigns a pseudo name, $1, to the expression. From now on, you can print $1 to reexamine this value. Or, simply
type p$1 rather than the complete command. You can also use $1 in other expressions—for example, in a display command
(more on that in a moment). In this case, the string “75.5” looks okay. It is correctly followed by a null (expressed in octal here as
4000’). The debugger also tells us that this null repeats 123 times in the string variable. There’s no bug here, so let’s continue.

The program is currently paused at the statement that assigns a value to fdegrees. Issue a next command to execute that statement.

23 fdegrees = atol (input);
(gdb) next

After the program again pauses, print the value of fdegrees:

(gdb) print fdegrees
$2 =175

Again, the debugger assigns a pseudo name ($2) that you can use to inspect fdegrees at other times. The variable’s value is 75, but
it should be 75.5. Something is truncating the floating point value ’s fractional part. Another look at the offending line reveals the
Page 115

This document is created with trial version of CHM2PDF Pilot 2.10.

problem:

23 fdegrees = atol (input);

The program calls atol() (ASCII to long) where it should have called atof() (ASCII to float). Because assignments of long int values
to variables of type double are syntactically allowable, the compiler did not report this as an error. To fix the problem, quit the
debugger and change atol() to atof(). Now the program correctly converts 75.5 degrees Fahrenheit to a balmy 24.1667 degrees
Celsius. Listing 6.16, celsius.cpp, shows the finished program with the intentional bugs repaired.

Listing 6.16 celsius.cpp

#include <iostream.h>
#include <stdlib.h>

double fdegrees, cdegrees;
char input[128];

int main ()
{
cout << “Fahrenheit to Celsius conversion” << endl;
cout << “Degrees Fahrenheit? ”
cin >> input;
fdegrees = atof (input);
cdegrees = ((fdegrees - 32.0) * 5.0) / 9.0;
cout << “Degrees Celsius == ” << cdegrees << endl;
return 0;

Tip: To fix bugs, you first have to find them. In this case, only floating point input caused the bug in celsius.cpp to appear, and a
single test run might have missed the problem. The lesson to learn is this: Always test your programs using a variety of input data.

Other Data Debugging Commands

Following are some other GNU debugger commands that are useful for examining a program ’s variables. To follow along,
compile the tax.cpp program in this chapter using the -g option and load the result into the debugger with the commands

$ g++ -g -0 tax tax.cpp
$ gdb -silent tax

Set a breakpoint and run the program. When prompted, enter the values shown here:

(gdb) break 28

Breakpoint 1 at 0x8048737: file tax.cpp, line 28.
(gdb) run

Starting program: /src/c06/tax

Price paid? 54.67

Tax rate (ex: .006)? .06
List price = $ 51.58
Tax paid =S 3.09

Press Enter and examine the calculated list and tax variables with print commands:

(gdb) print list
$3 = 51.575471698113212
(gdb) print tax
$4 = 3.0945283018867897

Page 116

This document is created with trial version of CHM2PDF Pilot 2.10.

If the values surprise you, remember that floating point binary values are best considered to be approximations. Only integers are
perfectly accurate at all times. Floating point values are subject to round -off errors, which though extremely small, might adversely
affect program results. For this reason, in accounting and similar software, it might be more appropriate to store monetary values
in variables of type long or long long.

Previous Table of Contents Next

Page 117

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Automatically Displaying Variables

To automatically display expressions such as the values of selected variables every time the program pauses, use a display
command and specify the variables to inspect. The following commands tell the debugger to display the values of list and tax every
time it pauses the program—when a breakpoint is reached, for example, or when you issue a next command:

(gdb) display list
1: list = 51.575471698113212
(gdb) display tax
2: tax = 3.0945283018867897

As the following screen output shows, running the program to a breakpoint now automatically displays the values of the two

variables:
Breakpoint 1, main () at tax.cpp:28
28 return 0;

2: tax = 3.0945283018867897
1: list = 51.575471698113212

Assigning Values

Use the gdb set command to assign values to a program’s variables. This is often handier for supplying test data for calculations
than rerunning the program from scratch. For example, to set the rate variable in tax.cpp to 0.075, use the following command
followed by print to verify the new value:

(gdb) set rate = 0.075
(gdb) print rate
$6 = 0.074999999999999997

Notice that the internal binary representation of 0.075 is a close approximation.
Setting the Radix

To set the output radix, use the set-radix command. This command sets the output radix to hexadecimal:

(gdb) set output-radix 16
Output radix now set to decimal 16, hex 10, octal 20.

The confirmation message is a bit strange, but you can now print integer variables and the debugger displays their values in
hexadecimal. For example, to display an int counter equal to 100, type a print command such as the following:

(gdb) print counter
$3 = 0x64

Note: If you are following along, there is no counter variable in the loaded program. Simply type print 100 to see the preceding
output.

To reset radix to decimal, the default, enter the command with no arguments or specify 10 as follows:

(gdb) set output-radix 10
Output radix now set to decimal 10, hex a, octal 12.

Page 118

This document is created with trial version of CHM2PDF Pilot 2.10.

Again, the confirmation is odd, but ignore it—the command seems to work fine. Use the command set input-radix to alter debugger
input values to accept a different radix. Use set radix to alter both the input and output radix.

Note: Changing the radix does not affect the input or output of floating point values, only integers.

Finding a Variable’s Type
To verify the type of an object, use the ptype command. For example, to find the type of the tax variable, enter the command:

(gdb) ptype tax
type = double

This is useful for verifying that an object is of an expected type —an array element, for example—and avoids having to hunt for a
declaration in a lengthy source code file.

Debugging with the assert() Macro

Anther great way to catch bugs that doesn’t require using the GNU debugger is a macro defined in the assert.h standard header
file. The macro performs a simple task —halting a program with an error message upon the failed assertion of any expression. To
use assert(), add this directive to your program’s source file:

#include <assert.h>

Use assert() to test any true or false condition. For example, suppose that you suspect an int variable named waterLevel is falling
below a defined high value. To test for that condition, insert a statement such as

assert (waterLevel < 1000);

At this place in the program, if waterLevel is less than 1000, the expression is true, and the program continues normally. But if
waterLevel 15 greater than or equal to 1000, assert() halts the program with the following error message:

a.out: x.cpp:9: int main(): Assertion ‘waterLevel < 1000’ failed.
Aborted (core dumped)

Warning: If assert() fails, it creates a core dump file. Unless you need that file, remove it as soon as possible to avoid wasting disk
space.
The assert() macro expands into an if statement, in this case, something like this:

if (! (waterLevel < 1000))
abort () ;

The reason for using assert() instead of writing statements like that is so that you can easily remove all such tests. To do that, insert
the following definition above the #include directive that refers to assert.h:

#define NDEBUG
#include <assert.h>

Defining the symbol NDEBUG causes the assert.h header to declare assert() as a do-nothing macro. Because the macro now
expands to nothing, the compiler effectively removes all assert() statements from the code. If problems develop later, simply
comment-out #define NDEBUG and recompile to enable all assertions.

Debugging Variables Roundup

Page 119

This document is created with trial version of CHM2PDF Pilot 2.10.

Following is a roundup of suggestions for debugging variables in C ++ programs. Also examine the help information in gdb for
additional commands you can use (type help data at a gdb prompt). When your code shows incorrect results, try these tips:

* Test your code using a wide range of data. In the case of the buggy Celsius converter, testing with only whole numbers
such as 80 degrees gave correct results. Only fractional values aggravated the bug. Just because one test produces no
errors does not mean that the code is bug free!

» Examine input and output variables. Often, a problem appears to be in a calculation when the true cause is an error in the
input data. That old rule, garbage in; garbage out , remains as true today as ever.

* Ifyou can’t find the error in a complex expression, break it into pieces with temporary statements and use gdb to inspect
the expression’s intermediate results.

* Check the results of all expressions using a hand calculator. Keep in mind, however, that the internal binary formats in
your system and calculator might differ, as might the algorithms used to display rounded values, so don ’t expect the results
to be exactly the same. For example, my calculator shows 75.5 degrees Fahrenheit equal to 24.166666 degrees Celsius.
The celsius.cpp program reports a rounded value of 24.1667.

* Don’t use floating point variables in accounting software to store monetary amounts. Use the long or long long values and
assume two decimal places in the values. (In other words, store monetary values in cents or the lowest practical
denomination in your currency.) Chapter 8, “Controlling Input and Output,” in the section “Lucky Pennies” lists a sample
program, money.cpp, that shows one way to use long and long long values this way.

* When calling functions—especially those that operate on C-style strings—be sure that you don’t mix up the order of any
arguments. The statement strcpy(A, B) does not copy A to B, as might seem intuitively correct. It copies string B to A.
Check the online info and man-page documentation for standard functions, especially the first time you use one.

Summary

GNU C++ provides seven numeric data types: char, short, int, long, float, double, and long double. An eighth type, long long, can
store truly huge integer values but is probably unique to GNU C++. This chapter introduced numeric data types and also explained
how to use C-style strings, composed of one or more characters and ending with a terminating null. The chapter also showed how
to create arrays and structures, and explained GNU debugging commands to investigate a program’s data.

For more information on subjects introduced in this chapter, turn to the following chapters:

* Chapter 5, “Compiling and Debugging C++ Programs”
* Chapter 8, “Controlling Input and Output”

* Chapter 9, “Controlling Program Flow”

 Chapter 10, “Creating and Calling Functions”
 Chapter 11, “Managing Memory with Pointers”

Previous Table of Contents Next

Page 120

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 7
Applying Fundamental Operators

Operators put the compute in “computing.” With operators, programs can manipulate data and calculate the results of
mathematical and logical expressions. You’ve already met some operators. This chapter further explores expressions and the C++
mathematical and logical operators.

Expressions

Any construction that C++ evaluates—that is, treats as having a value—is an expression. Even a simple variable name such as
counter 1s an “expression.” As such, counter equals the value of whatever type of data it holds. Using operators, you create
complex expressions, typically involving two or more subexpressions. For example, if valueB and valueC are int variables, the
following expression equals the sum of the two variables:

valueB + valueC

That’s not a statement—it is merely an expression that has a computed value—in this case, equal to the sum of valueB and valueC.
That value might be used to make a decision as in this code fragment:

if (valueB + valueC > 100)
cout << “Limit reached!” << endl;

Only if the sum of valueB and valueC is greater than 100 is the message displayed. (See Chapter 9, “Controlling Program Flow,”
for more information on if and other flow -control statements.) To save the result of an expression, you can assign it to another
variable of an appropriate type. For example, if valueA is also an int variable, this statement saves the evaluated expression result
1N valueA:

valueA = valueB + wvalueC;

The single equal sign is the C++ assignment operator : It copies into the variable on the left the result of the expression on the
right. After the statement executes, valueA equals the sum of valueB plus valueC. The two variables valueB and valueC are
unchanged.

C-++ uses several kinds of operators, and it’s the rare program that doesn’t use a healthy mix of them. In the following sections,
you meet the C++ arithmetic, relational, logical, negation, increment, decrement, and bitwise operators.

Tip: Be sure to understand the difference between an expression and a statement. An expression has a value. A statement performs
an action such as assigning the result of an expression to a variable.

Arithmetic Operators

In your early school days, you undoubtedly learned how to use the arithmetic operators + (plus), - (minus), * (times), and /
(divide), but probably using the symbols % for times and + for divide. The modulus operator % might be less familiar. It calculates
the remainder of an integer division. For example, the expression 24 % 11 (“24 modulo 11”) equals 2—the remainder after
dividing 24 by 11. The expression 8 % 2 equals 0 because 2 divides evenly into 8. You may use the first four fundamental
operators in Table 7.1 on floating point and integer variables. However, the modulus operator works only with integers.

Table 7.1 C and C++ Arithmetic Operators

Page 121

This document is created with trial version of CHM2PDF Pilot 2.10.

Operater Description Example
* Multiplication (a*b)

/ Division (a/b)

+ Addition (a+b)

- Subtraction (a-b)

% Modulus (a%b)

In general, an expression’s result type equals that of the most complex operand involved. In an expression with all integer
variables, for example, the result is an integer value. But if the expression has a double value, the result is double even if all other
operands are integers. Expressions may refer to variables, or as Listing 7.1, kilo.cpp, demonstrates, they may also use constants.

Listing 7.1 kilo.cpp

#include <iostream.h>

double miles; // Miles to convert
double kilometers; // Result of conversion
char string[128]; // User input

int main ()
{
cout << “How many miles? ”
cin >> miles;
kilometers = miles * 1.609344;
cout << “Kilometers = ” << kilometers << endl;
return 0;

The simple kilo.cpp listing shows one of the most basic uses for C ++ operators—to implement a formula—in this case, one that
computes the equivalent distance in kilometers given a number of miles. Compile and run the program with the following
commands and enter a value in miles to convert:

$ g++ kilo.cpp

$./a.out

How many miles? 8
Kilometers = 12.8748

Associativity and Precedence

When it evaluates an expression, C++ applies operators to operands in either left-to-right or right-to-left order, a property known
as associativity. Most expressions evaluate operands in left to right order, but some go the other way —assignments, for
example, evaluate from right to left.

Precedence dictates which operators apply before others. In complex expressions, subexpressions with operators of higher
precedence evaluate before subexpressions with operators of lower precedence. Appendix B, “C++ Operator Precedence and
Associativity,” documents these characteristics for all C and C++ operators, many of which you meet in this and other chapters.

From Appendix B, it’s evident that multiplication and division have higher precedence than addition and subtraction (see levels 4
Page 122

This document is created with trial version of CHM2PDF Pilot 2.10.

and 5 in Appendix B). Always consider such facts. For example, consider this expression:

A +B*C-0D

Previous Table of Contents Next

Page 123

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Because multiplication has higher precedence than addition and subtraction, C++ evaluates the expression by first multiplying B
times C. It then adds A to the subexpression’s result, after which it subtracts D. The addition is performed before the subtraction
in this case because, although operators + and - are equal in precedence, their associativity is left to right. Use parentheses to
override the default precedence. For example, C++ evaluates the following expression differently:

(A + B) * (C - D)

Although the expression employs the same operators and operands as before, because parentheses have the highest precedence
over all operators (see level 1 in Appendix B), C++ evaluates the subexpressions (A + B) and (C - D) first. It then multiplies the
results of those subexpressions giving, for most input values, very different results than in the absence of parentheses.

In most expressions, common sense and a good helping of parentheses are your best guides to accurate results. You don ’t need
to memorize lots of precedence and associativity rules to understand the evaluation order of expressions such as this:

vy = ((a *x) +Db) / (x+C);

Even though the purpose of the formula might not be obvious (it describes a hyperbolic curve, in case you ’re interested), the
parentheses make perfectly clear which subexpressions belong together. Relying on operator precedence to produce a correct
answer, you could write the preceding statement as

y = (a *x +Db) / (x +C);

Because multiplication and division associate from left to right, one set of parentheses in the former expression isn ’t needed. Even
so, the extra parentheses make the expression perfectly clear, and they cost nothing in performance.

Relational Operators

Not all C++ operators are mathematical in nature. Some are /ogical—that is, they evaluate to a true or false result. For example,
the less-than operator (<) compares the value of two operands in the expression:

(A < B)

That expression’s value is true only if A is less than B; otherwise, the expression is false. In C and C ++, any nonzero value is
equivalent to true; zero is false. However, instead of using integer values, in C ++, the bool data type specifies a true or false value
in relational expressions such as:

bool result = (A < B);

That sets result equal to true if A is less than B; otherwise, result is set to false. Because the bool type is available only in C++, in C,
the preceding statement is typically written using type int:

int result = (A < B);

In relational expressions such as (A < B) both operands must be of data types that can be compared. Typically, the operands are
of types int, long, double, or other numerical types. A and B cannot be C-style strings because relational operators are not defined
for arrays of char. However, they can be string objects, as explained in Chapter 22, “Mastering the Standard string Class.” Table
7.2 lists all C and C++ relational operators.

Table 7.2 C and C++ Relational Operators

Operator Description Example
Page 124

This document is created with trial version of CHM2PDF Pilot 2.10.

< Less than (a<b)
<= Less than or equal (a<=b)
> Greater than (a>b)
>= Greater than or equal (a>=b)
== Equal (a==Db)
1= Not equal (a!=b)

Equal Opportunity Operators

As mentioned in prior chapters, the C and C++ equality operator (==) is a double equal sign (refer to Table 7.2). The operator
literally means “is equal to.” The C and C++ assignment operator is a single equal sign (=). It assigns the value of an expression on
its right to an object on its left. Confusing the two operators is a fertile breeding ground for bugs. Consider, for example, this
statement:

if (A = B) doSomething(); // 2272

Unless you are well versed in C and C++ syntax, that might appear to call function doSomething() if A equals B, but that’s not what
happens! Because all expressions have values—even assignment expressions—C++ evaluates the expression (A = B) as being
equal to the value assigned from B to A. The result of that expression is, in the foregoing if statement, evaluated as true or false.
For example, if B is zero, the statement copies B to A, evaluates (A = B) as zero (false), and therefore does not call doSomething().
Probably, the programmer meant to write the statement like this:

if (A == B) doSomething();

Now, only if the value of A equals B does the program call doSomething(). The values of A and B are unchanged in the expression
(A ==B), but the value of B is copied to A in the expression (A = B). Be sure to understand this important difference.

Previous Table of Contents Next

Page 125

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Compile programs with the -Wall option to have GNU C++ check for the common mistake of using the assignment operator (=)
where the equality operator (==) is probably intended. In cases where an expression of the form (A =B) is found in an if or other
control statement, GNU C++ prints a warning such as

$ g++ -Wall atest.cpp
atest.cpp: In function ‘int main()’:
atest.cpp:10: warning: suggest parentheses around assignment used as truth value

There’s a reason for the wording of this warning. Some programmers intentionally program an assignment and use its value as a
true or false condition. In that case, by tradition, a double set of parentheses indicates that you intend to use the assignment
operator and did not accidentally type one equal sign instead of two:

if ((A = B)) doSomething() ;

GNU C++ does not warn about such statements even for code compiled with the -Wall option. Personally, I regard statements like
that as sloppy programming at best, and I suggest steering clear of such trickery. You ’ll see it in many programs, though. Two
ways follow to write the same code with far less potential for trouble. Here ’s one:

if ((A = B) == 0) doSomething();

If the assignment of B to A equals zero, then the program calls doSomething(). Even better, write the two actions separately. There
is no confusing the intent of this code:

A = B;
if (A == 0) doSomething();
Logical Operators

Two logical operators, && and ||, combine relational expressions according to the rules for logical AND and logical OR. Use the
logical AND operator && in complex relational expressions such as

(A < B) && (B < C)

The result of that expression is true only if A is less than B and B is less than C. Use the logical OR operator | similarly. The
expression

(A <B) |l (B <C)
is true if A is less than B or B is less than C. GNU C++ efficiently evaluates complex logical expressions. Given the expression
(A <= B) && (B <= C)

if A is greater than B, the expression result is known to be false upon evaluating (A <= B); therefore, (B <= C) is not evaluated. This
“short-circuiting” of complex logical expressions helps keep programs running quickly. For any relational expression, only the
minimum number of evaluations is performed to produce an accurate result.

Negation Operator

To negate a logical expression, use the unary NOT operator (). It is “unary” because it applies to only one operand. Applied to
any logical expression, the operator returns the opposite value. For example, consider this expression:

' (A < B)

Page 126

This document is created with trial version of CHM2PDF Pilot 2.10.

The expression is true if A is not less than B. However, it’s clearer to write the preceding as follows, using the greater -than-or-
equal relational operator:

(A >= B)

Similarly, the not-equal operator != is related to !. This expression is true if A is equal to B:
(A == B)

The following statement is true if A is not equal to B:

' (A == B)

Once again, it is far clearer to use the != (not equal) operator to test for inequality. The following expression is true only if A is not
equal to B:

(A !'= B)
Increment and Decrement Operators

Two of the handiest, and perhaps most popular, operators are ++ (increment) and -- (decrement). The ++ operator (pronounced
“plus plus”) adds one to an operand. The -- operator (“minus minus”) subtracts one.

Note: C++ gets its name from the ++ operator. Literally, C++ is one up on C.

A few examples clarify how these important operators work. The following two statements are functionally identical:

i=1+ 1; // Adds one to i
i++; // Same as the preceding statement

The expression i++ in the second line is mere shorthand for the longer addition and assignment in the first. The expression i++ adds
one to the current value of integer i, and stores the result in i. The following two expressions also have identical effects:

i=1i-1; // Subtracts one from i
i--; // Same as the preceding statement

The expression i-- subtracts one from the value stored in i. You may use the ++ and -- operators only on integers, not on floating
point variables. (However, ++ and -- may also be used with pointers. See Chapter 11, “Managing Memory with Pointers.”)

In addition to incrementing and decrementing their operands, expressions such as i++ and i-- also have values, as do all
expressions. But the value of increment and decrement expressions depends on the position of the operators. This is a subtle, but
critical, rule to understand. When ++ or -- follow their operands, the values of the expressions i++ and i-- equal the unmodified
values. In other words, the statement

J o= i++;
assigns to j the unmodified value of i. If i equals 7, after executing that statement, j equals 7 and i equals 8. C++ increments i affer

assigning the evaluated expression to j. A different result occurs when increment and decrement operators precede their operands.
In that case, the expressions equal the modified operand values. The statement

j o= ++i;

increments i and then assigns that incremented value to j. If i equals 7, after executing the preceding statement, j and i both equal 8.
Another way to visualize these effects is to write increment and decrement expressions in long form. The statement

Page 127

This document is created with trial version of CHM2PDF Pilot 2.10.

j = i++;
operates as though it were the two statements:

j = 1i;
i i+ 1;

And the statement
J o= ++1i;
operates as though it were written as:

i=1+ 1;
j = 1i;

Previous Table of Contents Next

Page 128

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Note: The same rules for ++ apply to --. The expression i- equals the value of i before it is decremented by one. The expression --i
equals the decremented value of i.

Bitwise Operators

C and C++ provide several bitwise operators that you can use to perform Boolean logic operations on the individual bits of binary
values. Table 7.3 summarizes the C and C++ bitwise operators.

Table 7.3 Bitwise Operators

Operator Description Example
& Bitwise AND C=A&B;

\ Bitwise inclusive OR C=A|B;

a Bitwise exclusive OR C=A"B;
<< Shift bits left C=A<<B;
>> Shift bits right C=A>>B;
~ One’s complement C=~A;

In expressions, the first three bitwise operators in Table 7.3 combine two operands according to the rules for logical AND (&),
inclusive OR (|), and exclusive OR (»). The next two operators, << and >>, shift bits in values left and right. Don ’t confuse these
with the C++ I/O stream operators, which look the same, but are used differently based on their context.

The final operator, ~, flops bits in its operand value, changing all zero bits to ones and all ones to zeros, and creating a result called
the one’s complement. Operator ~ is a unary operator, requiring a single operand. The others are binary operators, which are
applied to two operands.

One typical use for bitwise operators is to mask values, applying a Boolean operation to the bits in one value using the bits in
another. For example, doing that with the exclusive-OR operator can encrypt text, rendering it unreadable but easily recoverable
simply by repeating the masking operation. Listing 7.2, encrypt.cpp, demonstrates this basic idea.

Listing 7.2 encrypt.cpp

#include <iostream.h>
#include <string.h>

char input[128]; // String to encrypt

char mask; // Exclusive-OR mask
unsigned int 1i; // for-loop control variable
main ()

{
Page 129

This document is created with trial version of CHM2PDF Pilot 2.10.

”

cout << “Enter a string to encrypt: ”;
cin.getline (input, sizeof (input))
cout << “Enter a single-character mask: ”;
cin >> mask;
cout << “Original string == " << input << endl;
for (1 = 0; 1 < strlen(input); i++)

input[i] = input[i] ”~ mask;
cout << “Encrypted string == ” << input << endl;
for (1 = 0; 1 < strlen(input); i++)

input[i] = input[i] ”~ mask;
cout << “Decrypted string ==
return 0;

”

<< input << endl;

Compile the program using the commands:

$ g++ encrypt.cpp
$./a.out

When prompted, enter a string to encrypt, along with a single character mask, as shown in this sample run:

Enter a string to encrypt: Social Security #: 123-45-6789
Enter a single-character mask: @

Original string == Social Security #: 123-45-6789
Encrypted string == r/#)!, ‘r%#52) 49’ cz’ grsmtumvwxy
Decrypted string == Social Security #: 123-45-6789

The encrypted string is gibberish, but as the final line of output shows, the original text is easily recovered. To encrypt the input
string, the program executes this for statement:

for (1 = 0; 1 < strlen(input); i++)

input[i] = input[i] ”~ mask;

(You meet for statements in Chapter 9, “Controlling Program Flow.”) The loop executes the statement on the second line for
every character in the input string. Each character is combined with the mask char using the bitwise exclusive-OR operator (*).
Because the exclusive-OR operator serves as a bit toggle, repeating this loop with the same mask recovers the original data. The
assignment can be written more concisely using the shorthand statement:

A

input[i] "= mask;

This performs the identical operation as the former statement —it applies mask using the exclusive-OR operator to the character
input[i] and assigns the result of that operation to input[i]. However, using the shorthand operator, only one reference to the array
element is needed.

Warning: For several reasons, the encrypt.cpp program in this section is not a secure method for encrypting sensitive data. For
one, it is easy to discover the single character mask by simply writing a program to apply the entire ASCII character set to
encrypted data. For another, any zero bytes in the data encrypt to the mask’s value. However, if all you want is to encrypt text to
keep it from curious eyes, a simple exclusive-OR mask can be an effective encryption technique.

Previous Table of Contents Next

Page 130

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Operator Tips
The following sections contain some tips and shorthand expressions for using the C and C ++ operators introduced in this chapter.
Multiple Assignments

When you need to initialize several variables to the same value, you can use statements such as the following:

int A, B, C;
A =B = C = 451;

That sets A, B, and C to 451. This isn’t a special form of syntax, but simply a result of the way C ++ evaluates expressions.
Because the expression (A = B) equals the value assigned to A, the preceding statement is evaluated as though written using
parentheses to group each subexpression:

(A= (B= (C=451)))

Note: Unlike most operators, the assignment operator’s associativity is right to left. For this reason, expressions such as A=B=C
set B and A equal to C’s value, in that order.

Shorthand Assignments

Assignment statements sometimes do more work than necessary. The following statement refers to A twice:
A = A + 45;

You can write that same statement more concisely using the shorthand operator += this way:

A += 45;

Functionally, the two statements are equivalent. However, the second is potentially more efficient, especially if A is a complex
expression—a calculated address, for example, or a position in an array returned by a function. (More on such cases in future
chapters, especially Chapter 10, “Creating and Calling Functions.”) C and C++ provide several other shorthand assignment
operators, all of which reduce longhand expressions in this form:

i =1 op j;

to the more concisely written

i op= 3j;

The full set of assignment operators is *=, /=, +=, =, %=, <<=, >>=, &=, /=, and |=. They are all near the bottom of the precedence

order list (see Appendix B), so that any expressions on each side are fully evaluated before the shorthand operators are applied.
Following are a few samples of shorthand assignment statements with the equivalent longhand expressions shown in comments:

count += 10; // count = count + 10
count *= 2; // count = count * 2
count /= 3; // count = count / 3
count %= 16; // count = count % 16

The Min and Max Operators
Page 131

This document is created with trial version of CHM2PDF Pilot 2.10.

Newer releases of ANSI C++ compilers, including GNU C++, add two additional operators that many programmers don’t even
know exist. Use the lesser-of and greater -of operators to compare two values, usually in an assignment. They are also known as
the min and max operators. For example, given two integers valuel and value2 (they can be values of other fundamental types), the
following statement assigns the lesser value to result:

result = valuel <? value2; // Assign lesser value to result

Similarly, the following statement assigns the greater of the two values to result:

result = valuel >? value2; // Assign greater value to result

The order of variables in the expressions to the right of the assignment doesn ’t matter. If valuel equals value2, result is set to that
value.

Summary

All expressions have values. Even a simple variable name such as counter is an expression that has a value. With operators,
programs create complex expressions that perform calculations and comparisons. Use parentheses to group subexpressions and
force a different evaluation order. In the absence of parentheses, C ++ evaluates expressions based on operator precedence and
associativity, as detailed in Appendix B.

For more information on subjects introduced in this chapter, turn to the following chapters:

* Chapter 9, “Controlling Program Flow”

 Chapter 10, “Creating and Calling Functions”

 Chapter 11, “Managing Memory with Pointers”

* Chapter 22, “Mastering the Standard string Class”

* Appendix B, “C++ Operator Precedence and Associativity”

Previous Table of Contents Next

Page 132

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 8
Controlling Input and Qutput

It might surprise you that C++ has no native capabilities for input and output (I/O). The same is true of C. In both languages, 1/0 is
provided strictly by library functions. For instance, to read and write data in C ++ programs—whether to and from the console, or
in a disk file—you must include the iostream.h header file and link the program to the compiled I/O stream library.

Not having I/O facilities built into a programming language might seem to be a drawback, but because I/O in C and C ++ is
provided by compiled libraries, programmers who develop code for embedded systems or for special -purpose computers are
free to devise their own I/O functions and techniques. This fact makes C and C ++ well suited to low-level programming.
However, most software application developers might as well take advantage of the standard libraries. They have been tweaked
to the hilt by GNU’s authors, and it would be difficult to outdo their efforts.

This chapter explains how to read and write fundamental data objects and strings using C++ I/O streams, and how to format
strings to produce good-looking output.

Introducing C++ I/O Streams

An I/O stream object behaves much like the standard input and output file streams that are familiar to C programmers. But rather
than call a standard library function such as puts(), C++ programs use the “put-to” operator (<<) for output and the “get-from”
operator (>>) for input operations. For example, in C++, to write a program’s title string to the standard output, you can use a
statement such as

cout << “Fishbowl Screen Saver by Grouper Tom” << endl;

You’ve seen similar statements many times so far in this book. However, the cout object also provides functions you can call to
perform many different tasks. To write a single character variable ¢ to the standard output, you can use the statements:

char ¢ = ‘p’;
cout.put (c) ;

The put() function is a member of the cout object’s class—a new concept that you learn more about in Chapter 12, “Introducing
the Class.” To call an object’s member function, type a period after the object name followed by the function to call. The function
is called in reference to its object, in this case, cout.

Similarly, to read a character from the standard input, use the input stream object, cin, along with the get-from operator, >>. This
statement reads one character from the standard input into a char variable ¢ :

char c;
cin >> c¢;

Notice that the put-to and get-from operators seem to point to their targets. As you can with cout, you can call a member function
in reference to cin. For example, the following performs the identical task as the preceding statement:

cin.get (c);

Listing 8.1, filter.cpp, demonstrates how to use the I/O stream get() and put() member functions to copy the standard input to the
standard output. Although for demonstration only (Linux shells already provide filtering capabilities), the program lends useful
insights into basic character input and output using C++ I/O streams.

Listing 8.1 filter.cpp
Page 133

This document is created with trial version of CHM2PDF Pilot 2.10.

#include <iostream.h>
char ¢; // Holds characters in transit

int main ()

{

while (cin.get(c) != 0)
cout.put (c);

return 0;

}

The program calls the member function cin.get() until it returns false (actually a null reference that, because zero is considered
“false,” is interpreted as such). The while loop states that, as long as cin.get() returns a character in ¢, cout.put() writes that character
to the standard output. (Chapter 9, “Controlling Program Flow,” explains while loops and other control statements.) The program
ends when the standard input file is closed—for example, when the input stream receives an end -of-file character C-z (Ctrl-Z).

After compiling filter.cpp (specify “filter” as the output filename), you can feed a text file to the program using the shell ’s input
redirection symbol <. To try that, compile and run filter.cpp with the commands

$ g++ -o filter filter.cpp
./filter < filter.cpp

Note: Filter waits to receive characters from the standard input. If you run the program without specifying an input source, it
appears to hang. Press C-c (Ctrl-C) to quit.

In this way, filter operates like the cat command. It copies each character from filter.cpp to the standard output, in this example
displaying the program’s own text file. To use filter to send a text file to the printer, type a command such as

./filter < filter.cpp > lpr

It’s not really practical to use filter.cpp like that, but with a little extra effort, you can modify the basic code to perform an action
on characters as they travel in and out of the program. For instance, Listing 8.2, upper.cpp, adds a statement to filter.cpp to
create a utility that converts a text file into all uppercase characters.

Listing 8.2 upper.cpp

#include <iostream.h>
#include <ctype.h> // Need toupper ()

char ¢; // Holds characters in transit

int main ()
{
while (cin.get(c) !'= 0) {
c = toupper(c);
cout.put (c) ;
}
return 0;

}

Tip: Next to an #include directive, I like to write a comment that indicates what function or other declaration the program needs from a
header. (See the second line of upper.cpp.) When I revise a pégéléarlng ‘{he comment helps avoid including header files that are no

This document is created with trial version of CHM2PDF Pilot 2.10.

longer needed.

The toupper() function is declared in the standard library ’s ctype.h header. Actually, toupper() is implemented as a preprocessor
macro, but you use it as you do any other callable function. The while loop calls toupper() to convert each character to uppercase.
To convert to lowercase, you can instead call tolower(). | wrote the while loop the “long” way for clarity, but you can shorten it to

while (cin.get(c) !'= 0)
cout.put (toupper (c));

Previous Table of Contents Next

Page 135

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Reading Native Types

I/O stream statements can read and write objects of any C ++ data type, not only strings and characters. Listing 8.3, getval.cpp,
shows how to use I/O stream statements to read integer and floating point values. The program also demonstrates how to detect
input errors if the program’s user types an illegal character such as a letter when the program expects numerical input.

Listing 8.3 getval.cpp

#include <iostream.h>
#include <stdlib.h>

void test (void); // Function prototype

double fp; // A floating point value
long k; // A long int value

int main ()

{

cout << “Enter a floating point wvalue: ”;
cin >> fp; // Read input into fp

test ()

cout << “Walue entered is: ” << fp << endl;
cout << “Enter an integer value: ”;

cin >> k; // Read input into k

test ()

cout << “Walue entered is: ” << k << endl;
return O;

void test (void)

{

if (!'cin.good()) {
cout << “*** TInput error detected\n”;
exit (1) ;

Compile and run getval.cpp. The program prompts you for a floating point value and then for an integer. It echoes each value you
type, as shown in this sample run:

$ g++ getval.cpp

$./a.out

Enter a floating point value: 3.14159
Value entered is: 3.14159

Enter an integer value: 1234

Value entered is: 1234

Run the program again, but this time, enter an illegal character when prompted for a floating point value:

./a.out
Enter a floating point value: xyz
*** Input error detected

The program detects the error, prints an error message, and halts. In the source code, function test() handles this error condition.
Page 136

This document is created with trial version of CHM2PDF Pilot 2.10.
test()

(For more about functions, see Chapter 10, “Creating and Calling Functions.”) To read a floating point value and test whether an
error occurred, the program executes the statements

cin >> fp;
test (),

Function test() checks whether cin.good() returns true. If not, an error occurred during the most recent input to cin. In that case, the
program prints the error message and then calls exit() :

if (!cin.good()) {
cout << “W*** TInput error detected\n”;
exit (1) ;

}

Rather than halt the program upon detecting an error, you can clear it and continue. To clear errors reported by cin.good() and
allow future I/O to continue normally, execute the statement

cin.clear();
Reading Strings

Many sample programs in this book use simple input statements to read strings such as filenames and test values. The following
statements, for example, prompt users to enter data into a string variable:

char input[32]; // String variable

cout << “Enter data: ”;
cin >> input;

This is adequate for simple programs, but the method doesn ’t provide for editing or command -line completion features that most
Linux users expect from commercial -quality software. Following are two other, and perhaps better, ways to read input strings.

Note: The GNU Readline library provides an extensive set of functions for prompting users for input and providing editing keys,
automatic command-line completion, command history, and other features. The sample program rlprompt.cpp (not listed here) in this
chapter’s directory demonstrates how to incorporate the GNU Readline library into C++ programs.

Reading Strings with cin.getline()

Probably the simplest way to input strings safely in C++ programs is to call the cin object’s getline() member function. Listing 8.4,
getline.cpp, demonstrates the basic technique for prompting users to enter a line of text.

Listing 8.4 getline.cpp

#include <iostream.h>
#define BUFSIZE 128 // Room for a 127-char string
char buffer [BUFSIZE]; // Character buffer

int main ()

{

cout << “Enter a string: ”;

cin.getline (buffer, BUFSIZE);

cout << “buffer == " << buffer << endl;
return 0;

}

Page 137

This document is created with trial version of CHM2PDF Pilot 2.10.

For safety, it’s best to define a constant such as BUFSIZE as shown here, and then use it in declaring the character buffer and in the
cin.getline() statement. The following statement reads a string no longer than BUFSIZE characters into the program’s buffer:

cin.getline (buffer, BUFSIZE);

The statement specifies buffer as the input destination and BUFSIZE as its size in bytes. The last character inserted by cin.getline()
into the buffer is a null (ASCII 0). Because one byte is reserved for the terminating null, as programmed here, buffer can hold up to
a 127-character string. Compile and run the program, and type a string in response to the prompt. The program echoes your

typing and then ends:

$ g++ getline.cpp

$./a.out

Enter a string: Testing: uno, dos, tres
buffer == Testing: uno, dos, tres

Although calling getline() is adequate for many programs, the function ’s drawbacks soon become apparent. It doesn’t recognize
editing keys (however, Del seems to work), and if the user enters more characters than specified, they remain in the system input
stream. Those characters are then read by subsequent input statements and can lead to confusing interactions. Following is an
improved method that avoids these problems and keeps users happy.

Reading Strings with cin.get()

With a special form of the cin.get() member function, you can input character buffers safely, especially when the program ’s user
attempts to type beyond the end of the input buffer. Listing 8.5, getstring.cpp, shows how to use cin.get() this way.

Listing 8.5 getstring.cpp

#include <iostream.h>
#define BUFSIZE 128 // Room for a 127-char string

char buffer [BUFSIZE]; // Character buffer
char c; // For checking buffer limit

int main ()

{

cout << “Enter a string: ”;
cin.get (buffer, BUFSIZE, ‘\n’);

if (cin.get(c) && c != *\n’) {
cout << endl << “*x** Buffer length exceeded” << endl;
while (cin.get(c) && c != *\n’) { } // Throw out excess
}
cout << “puffer == ” << buffer << endl;

return 0;

}

The getstring.cpp program resembles getline.cpp, but it uses a different method to read a string into the char buffer . Again, a
constant BUFSIZE defines the buffer size in bytes. After prompting the user to enter a string, the program calls cin.get() like this:

cin.get (buffer, BUFSIZE, ‘\n’);

Previous Table of Contents Next

Page 138

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

That statement passes to cin.get() the following three arguments:

* The destination name of a char array, in this case, buffer. The resulting string inserted into this array is terminated with a
null character (ASCII 0). The maximum length string, then, is one less than BUFSIZE.

 The size of the array in bytes. Lacking a constant, you can use sizeof(buffer) in place of BUFSIZE.

* The character that, when typed, should end input. If not supplied, this character defaults to “\n’ (newline).

Using cin.get() to input strings requires additional programming because the function leaves the termination character in the input
stream. Consequently, when the user presses Enter, that character remains waiting to be read. Therefore, as the sample program
demonstrates, if the next call to cin.get() reads a newline character, all preceding input must be in the buffer. (This is true even if the
user simply presses Enter, in which case the buffer is empty.)

But if cin.get() returns a character other than newline, input must have been truncated before the user pressed Enter. In that case,
the program displays a warning that the input line length was exceeded, and the following while statement throws away the excess
characters from the input stream:

while (cin.get(c) && c !'= *\n’) { }

This states that, while cin.get(c) successfully reads a character, and while that character is not a newline, simply repeat the loop,
doing nothing in the empty statement block. This method is particularly useful in programs that use many small character buffers
and that prompt for numerous strings. In other cases, cin.getline() is simpler.

Creating Good-Looking Output

Formatting data is like painting. Anyone can slap colors onto a canvas, but creating a good-looking picture takes a good eye and
a generous helping of talent. Similarly, a well -written computer program displays data in neatly aligned columns and formats
information in ways that make it more usable. A programmer ’s utility, for example, might display values in decimal, hexadecimal,
and octal. An accounting program might display data formatted with a certain number of decimal digits. This section explains some
of the ways you can format a program ’s output by using C++ I/O streams.

Formatting Output with I/O Streams

An output stream object such as cout provides a variety of common output -formatting commands, also called manipulators.
Listing 8.6, convert.cpp, shows how to use three manipulators to display an entered value in decimal, hexadecimal, and octal.

Listing 8.6 convert.cpp

#include <iostream.h>
#include <stdlib.h>

#define BUFSIZE 128
char buffer[BUFSIZE]; // Holds user input
int value; // Holds input converted to an integer

int main ()

{

cout << “Enter an integer value: ”;

cin.getline (buffer, BUFSIZE); // Read input from user

value = atoi (buffer); // Convert to integer
cout

<< “Decimal==" << dec << value

<< % Hexadecimal==0x”"” << hex << wvalue

<< % Octal==0" << oct << value << endl;

Page 139

This document is created with trial version of CHM2PDF Pilot 2.10.

return 0;

}

For simplicity, the convert.cpp program calls getline() as described in this chapter to read the user’s input. After that statement, the
standard library function atoi() (ASCII to integer) declared in stdlib.h converts the contents of the character buffer to an integer
value. Near the end of main(), an output stream statement writes the converted value in decimal, hexadecimal, and octal, as shown
in this sample run:

$ g++ convert.cpp

$./a.out

Enter an integer value: 123

Decimal==123 Hexadecimal==0x7b Octal==0173

Output is formatted three ways by using the I/O stream manipulators dec, hex, and oct. Writing these predefined symbols to cout
affects the format of subsequent output. Carefully examine the program ’s output statement:

cout

<< “Decimal==" << dec << value

<< % Hexadecimal==0x"” << hex << value

<< % Octal==0" << oct << value << endl;
Tip: It might be easier to debug individual output statements than a long, cascaded one as listed here. Consider this when writing
your code.

Using 1/0 Stream Manipulators

GNU C++ provides several other manipulators in addition to dec, hex, and oct introduced in the preceding section. These are useful
for formatting output, and also for reading input in a specific format. Table 8.1 lists the manipulators you can use in I/O stream
statements. The middle column indicates whether the manipulator is appropriate in input (I), output (O), or both (I/O) types of
statements.

Tip: Include the iomanip.h header file when using manipulators. This isn’t required for endl, hex, dec, and oct, but is needed for others
such as setprecision() that are implemented as functions.

Table 8.1 I/O Stream Manipulators

Manipulator 1/0 Effect

dec 1/0 Convert to decimal

endl o Start new line and flush stream
ends (0] Write null terminator

flush (0] Flush output stream

hex I/0 Convert to hexadecimal

oct 1/0 Convert to octal

Page 140

This document is created with trial version of CHM2PDF Pilot 2.10.

setbase(int n) 1/0 Set radix (number base) to n (0, 8, 10, or 16)
setfill(int c) O Set the fill character to ¢

setprecision(int n) I/0 Set floating point precision to n

setw(int w) @) Set column width to w

ws I Extract whitespace (input)

Previous Table of Contents Next

Page 141

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

You have already used some of the manipulators in Table 8.1. The endl manipulator, as you know, starts a new line on the output
in a statement such as

cout << “Start a new line” << endl;

Similarly, the ends manipulator inserts a null (end of string) character into the output. The following statement writes three strings
each terminated by a null character and a new line:

cout << “First string” << ends << endl
<< “Second string” << ends << endl
<< “Third string” << ends << endl;

You wouldn’t normally write code like that to display strings, but you might use it to create a file that contains strings in null -
terminated format. Use setw() to set the column width for the next object written. This is useful for aligning columns. For example,
to set the column width to 10 and write a string right-justified within that column space, use a statement such as

cout << setw(l0) << s << endl;

The width manipulator is short-lived, and it affects only the next output object. Combine setw() with setfill() to fill columns with a
character other than a space. The following statement writes an error message in a 40 -character column padded with #
characters:

cout << setfill(“#’) << setw(40)
<< “Error: very dumb mistake” << endl;

Use the flush manipulator to flush the output stream, usually necessary only after detecting an error condition:

if (!cout.good())
{
cout << flush;

cout.clear () ;

}

You may set the input or output number base, or radix, with setbase(n), although it is probably just as well to use hex, dec, and oct.
The following two statements set the input radix to octal (base 8) and read a value into an integer variable, n :

cin >> setbase(8) >> n;
cout << “n == " << n << endl;

If the user types 10, the program displays n==8. You may use hex, oct, dec, and setbase() in output and input statements. The
following statement reads an integer value n in hexadecimal and then displays the value of n in hexadecimal (base 16) preceded by

“OX” :

cout << “Enter hex wvalue: ”;

cin >> hex >> n;

cout << “Walue == 0x” << setbase(l6) << n << endl;

To format floating point values, either for input or output, use the setprecision() manipulator. The value in parentheses indicates how
many digits in the input or output to allow. The resulting value is rounded as necessary. If a double variable f equals 3.14159, the
following statement displays 3.1416:

cout << “f == " << setprecision(5) << f << endl;

You may also use setprecision() in an input statement like this:
Page 142

This document is created with trial version of CHM2PDF Pilot 2.10.

cin >> setprecision(b) >> £;

Finally, use the ws (eat whitespace) manipulator to gobble up blanks. This statement ignores any leading spaces in the input:

cin >> ws >> s;
However, because input statements seem to ignore whitespace anyway, the ws manipulator is rarely used.
Formatting with the sprintf() Family

The C++ output-formatting methods described so far in this chapter are adequate for many programs, but the basic techniques
don’t offer as much control over formatting as sometimes needed. Fortunately, the standard C library provides a set of functions
that can handle formatting requirements of any conceivable complexity. To demonstrate, Listing 8.7, convert2.cpp, uses the
standard library function sprintf() to prepare a string for an output stream statement.

Listing 8.7 convert2.cpp

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>

#define BUFSIZE 128

char in buffer [BUFSIZE]; // User input
char out buffer [BUFSIZE]; // Formatted output string
int value; // Input buffer converted to int

int main ()

{

cout << “Enter an integer value: ”;
cin.getline (in buffer, BUFSIZE); // Get input from user
value = atoi(in buffer); // Convert to integer

// Format output string in out buffer using value
sprintf (out buffer,
“Decimal==%d Hexadecimal==%#x Octal==%#0",
value, value, value);

cout << out_buffer << endl; // Write formatted string
return 0;

}

The convert2.cpp program runs the same and produces the identical output as convert.cpp (refer to Listing 8.6). In the new
program, a call to the standard library function sprintf() (print formatted string) performs the same job as the dec, hex, and oct
manipulators in the original code. After formatting, a relatively simple output stream statement prints the formatted buffer
(out_buffer) and starts a new line. However, this simple program doesn’t reveal the power of sprintf() and related functions. Many
C++ programmers use these standard C library functions to format their programs output, and it’s useful to learn how to use
them.

The sprintf() function, declared in stdlib.h, prepares a character string with values formatted according to various symbolic rules.
To the function, a statement usually passes at least three arguments, separated by commas. These arguments are

* An output char buffer such as out buffer (see convert2.cpp) sufficiently large to hold the function ’s result
* A literal string with one or more embedded formatting instructions, each preceded by %
* One object or value for each embedded formatting instruction in the literal string

Page 143

This document is created with trial version of CHM2PDF Pilot 2.10.

A simple example demonstrates how to use sprintf(). Consider this statement:
sprintf (out buffer, “Decimal == %d”, value);

When executed with those arguments, sprintf() inserts the value converted into decimal text in place of the formatting instruction %
d. The resulting null-terminated string is inserted into out buffer . If value equals 123, sprintf() inserts this string into out buffer :

Decimal == 123

Now, take a look again at the more complex sprintf() statement in the convert2.cpp program (you may write it all on one line, or
divide it as I did here for space reasons):

sprintf (out buffer,
“Decimal==%d Hexadecimal==%#x Octal==%#0",
value, value, value);

Previous Table of Contents Next

Page 144

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

This time, value is inserted three times into the literal string, formatted according to the instructions %d, %#x, and %#o. Those
formatting instructions convert value into decimal, hexadecimal, and octal, and the function stores the result in out buffer . If value
equals 123, after the preceding statement, out buffer contains the string

Decimal==123 Hexadecimal==0x7b Octal==0173

When using sprintf(), you must supply as many values as formatting instructions in the literal string. Following is another sample that
uses two variables as arguments declared as

int custnum = 123; // Customer number
double balance = 541.82; // Customer balance

To create an output string containing these values, a program might call sprintf() this way:

sprintf (out buffer, “Customer # %d balance : $%8.2f",
custnum, balance);

The sprintf() function replaces the formatting instructions %d and %8.2f in the string with the custnum and balance values, and inserts
into out buffer the finished string:

Customer # 123 balance : $ 541.82

The standard C library has related functions such as fprintf() (print a formatted string to a file) and printf() (print a formatted string
to the standard output). They all work the same way, but send their output to different places. However, in C ++ programs, I find it
best to use sprintf() to prepare formatted strings for output and then display them using output stream statements. This avoids
mixing [/O methods in the same code. The next section looks more closely at sprintf() and explains more about the complexities of
formatting instructions.

More About sprintf()

Boasting more options than a Mercedes, sprintf() is one of the most extensive in the standard library. It is also one of the most
confusing to learn how to use. The function is declared as

int sprintf (char *buffer, const char *format, ...);

Careful readers might spot an inherent danger in sprintf() : There is no parameter for specifying the size of the output buffer. If this
is a concern, use the alternate snprintf() function:

int snprintf (char *buffer, int size, const char *format, ...);

The alternate function is the same as sprintf(), but its second parameter specifies the maximum size of the output buffer. In both
functions, buffer is the destination for the function ’s output. Next is a constant string that usually contains one or more formatting
instructions. Finally, the ellipsis indicates that zero or more objects follow, one for each formatting instruction in the preceding
string.

Tip: Compile with the GNU C++ -Wformat option to have the compiler check that all values in sprintf() statements are of the appropriate
types. This option works for all sprintf() family functions such as printf(), scanf(), and fprintf) . Not many compilers provide this helpful
option!

The sprintf() function and others in its family return an integer value equal to the number of characters in the final formatted output
string, not including the string’s terminating null. This value might be useful to fine -tune output—setting a column width, for
Page 145

This document is created with trial version of CHM2PDF Pilot 2.10.

example.
Syntax of Formatting Instructions

Formatting instructions such as %d and %8.2f follow a complex but highly versatile set of rules. All such instructions begin with a
percent sign (%) followed by various digits and symbols selected from a smorgasbord of options. Formatting instructions conform
to the syntax

% [flags] [width] [.precision] [h|1l|L] conversion

The items in square brackets are optional, but their order is fixed. [tems without brackets are required. The following sections
explain each of the elements in the preceding formatting instruction syntax. For reference, the syntax is repeated in each section ’s
title, with the discussed element in boldface.

% [flags] [width] [.precision] [h|1l|L] conversion

Embedded formatting instructions begin with a required percent sign. To insert a percent -sign character into the output, type the
symbol twice like this: %% .

% [flags] [width] [.precision] [h|1l|L] conversion

Optional flags specify justification rules and state whether to output plus and minus signs, decimal points, trailing zeros, and
prefixes in octal or zero-digit characters. If specified, flags can consist of one or more of the characters listed in Table 8.2.

Table 8.2 Flags for the sprintf() Family

Flag Description
Left-justifies output. Fills any remaining space to the right with blanks. Default output is right -justified.
+ Prefaces numeric values with a plus or minus sign.

A space displays a blank in front of positive numeric values, and a minus sign in front of negative ones.
Don’t type the quotes—just type a single space.

Selects an alternate form for some conversion letters. If the conversion is x or X, this prefaces nonzero
arguments with 0x or 0X, respectively. Use it to display hexadecimal values. If the conversion is o, this
prefaces the value with 0. If the conversion is e, E, or f, this forces a decimal point to appear in the
output (normally, a decimal appears only in nonzero fractions). If the conversion is g or G, a decimal
point is forced into the output, and trailing zeros are not truncated as they are normally.

0 Specifies zero padding. Except for the conversion letter n, zeros pad the formatted value to the left
(normally blanks).

Previous Table of Contents Next

Page 146

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

A sprintf() Example

Learning to put all the myriad elements together for a sprintf() statement might seem to take doctorate-level mental gymnastics.
There are so many options, letters, and symbols in a formatting string that it ’s easy to get hung up trying to format output to look
as you want. Following are some sample statements that will help you learn how to use sprintf().

One of the most common uses for sprintf() 1s to format date values. Suppose that your program declares variables to hold the day,
month, and year like this:

int month = 2;
int day = 16;
int year = 2001;

Using sprintf(), the program can format and display the date as a string using statements such as

sprintf (buffer, “Date: %.2d-%.2d-%.4d”, day, month, vyear);
cout << buffer << endl;

That writes the following string to the standard output:

Date: 16-02-2001

In the sprintf() statement, the formatting command %.2d specifies a precision of 2 and that the value is decimal (an integer). Using a
precision value with the conversion letter d pads values with leading zeros within the specified width so that the month value 2 is
written as 02. The command %.4d writes the full date value 2001. (No Y2K problem here.)

The following sample program in Listing 8.8, sprintfex.cpp, gives additional examples for using sprintf() to format integer and
floating point values.

Listing 8.8 sprintfex.cpp

#include <iostream.h>
#include <stdio.h>

#define BUFSIZE 128 // Size of formatting buffer

char buffer [BUFSIZE]; // Holds sprintf () output
// A few sample variables:

int xint = 123;

long xlong = 12345678L;

char xchar = ‘@’;

char *xstring = “This is pretty cool!”;
double xdouble = 3.14159;

long double xlongdouble = xdouble * xdouble;

int main ()

{

cout << “Sample printf () statements” << endl;
cout << “WARIABLE RESULT” << endl;
sprintf (buffer, “xint (decimal) == %d”, xint);
cout << buffer << endl;

sprintf (buffer, “xint (hex) == %$#x”, xint);

cout << buffer << endl;
Page 147

This document is created with trial version of CHM2PDF Pilot 2.10.

sprintf (buffer, “xint (octal) == %#0”, xint):;

cout << buffer << endl;

sprintf (buffer, “xlong == %1d”, xlong);

cout << buffer << endl;

sprintf (buffer, “xchar == %c¢”, =xchar);

cout << buffer << endl;

sprintf (buffer, “xstring == %s”, xstring);

cout << buffer << endl;

sprintf (buffer, “xdouble == $%$1f”, xdouble);
cout << buffer << endl;

sprintf (buffer, “xlongdouble(l) == %Le”, xlongdouble);
cout << buffer << endl;

sprintf (buffer, “xlongdouble(2) == %Lf”, xlongdouble);

cout << buffer << endl;
return 0;

Following is the program’s output. Compare these lines with each statement’s sprintf() formatting commands:

$ g++ sprintfex.cpp

$./a.out

Sample printf () statements
VARIABLE RESULT

xint (decimal) == 123

xint (hex) == 0x7b

xint (octal) == (0173

xlong == 12345678
xchar == (@

xstring == This is pretty cool!
xdouble == 3.141590
xlongdouble (1) == 9.869588e+00
xlongdouble (2) == 9.869588

Lucky Pennies

Years ago, in my brief career as a computer store sales clerk, I had a raging argument with a customer who insisted his computer
didn’t work. The fellow had written some accounting software using floating point variables, and he brought his system in
repeatedly to demonstrate that it “lost pennies.” I was unable to convince him that the trouble was not in his system but in his
method. Floating point values in a computer’s memory are approximations, | said, and they are not appropriate for storing
monetary values. Despite my explanations, the store manager ended up giving the customer his money back, even though his
computer worked perfectly well.

Lucky for you and me, GNU C++ provides long and long long (double wide) integers that are perfect for storing monetary values
down to the last penny. Simply represent all your monetary amounts as long or long long values and assume two decimal places. In
other words, the binary values represent pennies. A long value of 32176 formatted monetarily equals $321.76.

Adding the decimal place is merely a matter of string formatting, not floating point mathematics. To demonstrate one method for
inserting a decimal point into integer values, Listing 8.9, money.cpp, prompts for and formats long integer values entered at a

program prompt.

Listing 8.9 money.cpp

#include <iostream.h>

#include <stdio.h> // Need sprintf ()
#include <string.h> // Need memmove ()

long value; // Value in binary

char buffer[32]; // Value in string form

Page 148

This document is created with trial version of CHM2PDF Pilot 2.10.

main ()

{
// Prompt for value to convert
cout << “WValue? ”;

cin >> value;

// Convert value to string form in buffer
sprintf (buffer, “$ %.3d”, value);
cout << “Unformatted: ” << buffer << endl;

// Move last two characters of buffer down one

int dest = strlen(buffer) - 1;

int src = strlen(buffer) - 2;

memmove (&buffer[dest], &buffer[src], 3); // Including null!

// Insert decimal point and display results
buffer([src] = ‘.’;
cout << “Formatted: 7 << buffer << endl;

return 0;

}

Compile and run money.cpp, and then enter a value to convert. The program displays the unformatted and formatted strings for
comparison, as the following output sample shows:

$ g++ money.cpp

$./a.out

Value? 87691
Unformatted: $ 87691
Formatted: $ 876.91

Two separate operations are needed to insert the decimal place. First, after obtaining a binary long value, the program uses sprintf
() to convert it into string form:

sprintf (buffer, “$ %.3d”, value);

That statement inserts the decimal value into buffer, preceded by a dollar sign (remove that character if you want), in a minimum of
three spaces. The 3 in the formatting specification ensures that small values such as -2 come out as $ -0.02, the value 10 comes
outas $ 0.10, and zero comes out as $ 0.00.

After preparing the raw formatted string, the program calls a library function to make room for inserting a decimal point character.
The memmove() function, declared in the standard string.h header file, moves bytes in a string or other buffer. Before calling
memmove(), the program calculates the destination and source locations in the string using its length with the statements:

int dest strlen (buffer) - 1;
int src = strlen (buffer) - 2;

Using those values, memmove() moves the last two characters in the string down by one character, making room for inserting a
decimal point:

memmove (&buffer[dest], &buffer[src], 3);

The memmove() function requires three arguments: a destination, a source, and the number of bytes to move. The reason for moving
three characters, and not merely two, is to include the string’s null terminator in the operation. The ampersand characters tell the
compiler to pass the locations in memory—in other words, the addresses—of the source and destination for the move operation.
A simple assignment inserts the decimal point and completes the formatting:

buffer[src] = '.';
Page 149

This document is created with trial version of CHM2PDF Pilot 2.10.

Warning: When calling memmove() to shuffle characters in C -style strings, be sure the string buffer is large enough to hold the
resulting string.

Summary

This chapter explained how to use C++ I/O streams to read and write data values and strings. The chapter also showed various C
and C++ methods to format strings for creating good -looking output.

For more information on subjects introduced in this chapter, turn to the following chapters:
* Chapter 9, “Controlling Program Flow”

 Chapter 10, “Creating and Calling Functions”
* Chapter 12, “Introducing the Class”

Previous Table of Contents Next

Page 150

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 9
Controlling Program Flow

A computer program runs like a river. Unless diverted, a river’s water flows in the shortest path to the sea. Likewise, with no
intervention, a C++ program’s statements execute one after the other from top to bottom until the program ends. In C and C ++
programs, flow -control statements operate like dams, channels, water wheels, and aqueducts to direct the program’s execution
along whatever path you want it to follow.

C and C++ provide two basic types of flow -control statements: those that make decisions based on a conditional true or false
argument, and those that create loops for repeatedly executing various operations. This chapter introduces both types of C and
C++ flow-control statements.

Conditional Statements

Conditional statements make decisions by examining true or false expressions. Although simple in concept, directing a program ’s
flow through the use of conditional statements is one of the most powerful programming tools at your disposal. The following
sections introduce C and C++ conditional if and else statements, and also explain how to use conditional expressions—a handy
shorthand if-else.

The if Statement

The if statement operates just as you might expect. If its stated condition is true, the statement performs an action; otherwise,
execution continues with the following statement. A simple if statement in outline form looks like this:

if (condition)
statement;

The condition can be any expression that evaluates to a true or false value. It must be in parentheses. If the condition 1s true
(nonzero), the statement executes. If condition is false (zero), the statement is skipped. The statement can be any valid C or C ++
statement, or it can be a statement block containing one or more statements. For example, this if statement performs two
statements if its condition is true:

if (condition) {
statementl;
statement?2;

}

Note: Indenting statements helps show their relationship in the program’s source code. Many C and C++ programmers indent
statements by pressing the Tab key. Some also indent the braces around a compound statement block. So that I can fit as much
code as possible on the page, however, I use minimal indentation of two spaces in this book ’s listings.

An if statement typically examines a value and performs an associated operation. For example, the following if statement displays
a message if the variable value is greater than 100:

if (value > 100)
cout << “Walue is too large” << endl;

The condition might also be a C++ bool variable, perhaps one named error :

bool error = false;

Page 151

This document is created with trial version of CHM2PDF Pilot 2.10.

Elsewhere, a statement can set error to true to indicate that an error occurred. Back in function main(), an if statement inspects error
and, if true, displays a message and exits the program:

if (error) {
cout << “W*** Error detected. Phone home!” << endl;
exit(l); // Exit with error code == 1

}

You can write the preceding if statement’s condition like this:

if (error == true)...

But the simpler form is perfectly acceptable. Remember, even a variable name is an expression that has a value. The expression
(error) equals true or false, and as such makes a valid if statement condition.

C and C++ programmers typically use that fact to test the zero (false) or nonzero (true) value of other types of expressions. Until
you become used to the technique, it can be confusing. Consider a program that declares an int variable such as

int condition = 1;
Elsewhere, the program executes this if statement:

if (condition)
cout << “Non-zero condition detected” << endl;

Because in C and C++ zero is synonymous with false and nonzero with true, this works, but the code is obscure. This is a
common technique in C and C++, but it is always better, and costs nothing in performance, to clarify a non -bool condition using an
explicit expression such as this:

if (condition == 0)
cout << “Condition detected” << endl;

Complex Conditions

An if statement’s condition often uses complex logical expressions to test more than one parameter. To illustrate, Listing 9.1,
choice.cpp, prompts you to enter a value from 1 to 10. The program uses an if statement to detect an error condition and display
a message if you enter a value not in the expected range.

Listing 9.1 choice.cpp

#include <iostream.h>
int number; // User input

int main ()

{

cout << “Enter a number from 1 to 10: ”;
cin >> number;
if ((number < 1) || (number > 10))

cout << “Incorrect answer!” << endl;
return 0;

}

Compile and run the program, and enter an integer value. If you enter a value outside the expected range, the program voices its
annoyance as the following sample run shows:

Page 152

This document is created with trial version of CHM2PDF Pilot 2.10.

$ g++ choice.cpp

$./a.out

Enter a number from 1 to 10: 11
Incorrect answer!

The program uses an if statement to test input for validity, probably one of the most common uses for this type of statement.
Examine the program’s if statement closely:

if ((number < 1) || (number > 10))
cout << “Incorrect answer!” << endl;

The condition tests whether number is less than 1 or (|) greater than 10. If either condition is true, the entire expression is true and
the program displays an error message. Parentheses group the full expression. Strictly speaking, the inner parentheses aren ’t
needed because the less-than and greater-than operators < and > have higher precedence than the logical OR operator | (see
Appendix B, “C++ Operator Precedence and Associativity”). However, the extra parentheses make the statement perfectly clear.

The else Statement

You might think of the else statement as the if statement’s sidekick. It must follow an if statement to select an alternative action. In
general, use else like this:

if (condition)
statementl;
else
statement2;

If the condition is true, statementl executes; otherwise, statement2 goes into action. The statements may be simple or compound.
Use parentheses to group related statements as shown here:

if (condition) {
statementl;
statement?2;

} else
statement3;

In that code, if the condition is true, statements 1 and 2 execute; otherwise, statement 3 runs. Either or both parts can be
compound statement blocks:

if (condition) {
statementl;
statement2;

} else {
statement3;
statement4;

}

In that code, statements 1 and 2 execute if the condition is true; otherwise, statements 3 and 4 do their stuff. The placement of the
braces is up to you. Some programmers prefer them on separate lines as follows:

}

else

{

Previous Table of Contents Next

Page 153

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Nested if-else Statements

You may nest multiple if-else statements together, creating a multiway decision maker. The following shows the basic outline for a
nested if-else statement:

if (conditionl)
statementl;

else if (condition2)
statement?2;

else

statement3;

Take that a line at a time, and be sure to understand how it works. If condition1 is true, then statement1 executes; otherwise, if
condition?2 1S true, statement2 runs. If both condition1 and condition2 are false, statement3 executes. At least one of the three
Statements is guaranteed to execute. You can carry this idea to extremes, writing code such as this:

if (conditionl)
statementl;
else if (condition2)
statement?2;
else if (condition3)
statement3;
else if (conditionN)
statementN;
else // Optional
defaultStatement; // Optional

Nested if-else statements like that are useful for selecting one of several possible actions. The final else and associated statement
are optional. If you leave out the last two lines in the preceding code, however, it is possible that no statements execute. Be sure
that’s what you intend.

Each statement in the if-else construction may itself be another if-else. But such deeply nested if-else statements can be confusing.
They complicate error handling and are difficult to debug. C ++ imposes no limit on the depth of if-else nesting, but in practice, you
should limit nesting as much as possible.

As a practical example of nested if-else statements, Listing 9.2, leap.cpp, calculates whether a given year is a leap year. Compile
and run the program and then enter a year such as 2001. A new century is a leap year when evenly divisible by 400. Noncentury
dates such as 1996 are leap years if evenly divisible by 4.

Listing 9.2 leap.cpp

#include <iostream.h>

bool leapYear:;
int year;

int main ()
{
cout << “Leap Year Calculator” << endl;
cout << “Year? ”;
cin >> year;
if (year <= 0)
cout << “Year must be greater or equal to 0” << endl;
else {

if ((year % 100) ==)
Page 154

This document is created with trial version of CHM2PDF Pilot 2.10.

leapYear = ((year % 400) ==) ;
else
leapYear = ((year % 4) ==) ;

if (leapYear)

cout << year << “ is a leap year” << endl;
else

cout << year << “ is not a leap year” << endl;

}

return 0;

}

Compile and run leap.cpp using the usual commands:

$ g++ leap.cpp
$./a.out

The program asks for a year and reports whether it ’s a leap year:

Leap Year Calculator
Year? 2000
2000 is a leap year

If you enter an invalid year, the program displays an error message:

Leap Year Calculator
Year? -50
Year must be greater or equal to O

To perform these actions, leap.cpp uses nested if-else statements. The outermost if-else combo tests whether the input year is
greater than or equal to zero. If the input is valid, the following if-else statement sets the bool flag leapYear to true or false according
to the algorithm for determining a leap year:

if ((year % 100) ==)

leapYear = ((year % 400) ==) ;
else

leapYear = ((year % 4) ==) ;

In the first expression, if the year modulo (%) 100 equals zero, then the year is a century, in which case it’s a leap year only if also
evenly divisible by 400. If the year is not a century, then leapYear is set to true only if the year modulo 4 equals zero—that is, if it is
evenly divisible by 4. Following this business, the program checks the value of the bool flag and makes its pronouncement:

if (leapYear)
cout << year << “ is a leap year” << endl;

Note: See “The switch Statement” later in this chapter for an alternative to nested if-else statements.

The Conditional Expression

A conditional expression is a kind of shorthand if-else statement. Conditional expressions follow this general outline:

condition ? expressionl : expression?2

That might look a bit cryptic at first, but it performs a simple job. If the condition is true, the result of the entire expression equals
expressionl. If the condition is false, the result equals expression2. Always remember that a conditional expression is just that—it’s
an expression that has a resulting value; it’s not a statement. Usually, a conditional expression is used in an assignment statement,

such as the following, that saves the expression ’s result in a variable:
Page 155

This document is created with trial version of CHM2PDF Pilot 2.10.

result = condition ? expressionl : expression2;

That statement is equivalent to the following if-else construction. Both statements set result equal to expression! if the condition is
true or to expression2 if the condition is false:

if (condition)

result = expressionl;
else
result = expression?2;

As a practical demonstration of conditional expressions, Listing 9.3, absolute.cpp, converts an entered integer into its absolute
value. If you enter a negative value, it’s converted to positive. Positive values and zero are left untouched.

Listing 9.3 absolute.cpp

#include <iostream.h>
int value, result;

main ()
{
cout << “Walue? ”;
cin >> value;
result = (value >= 0) ? (value) : (value * -1);
cout << “Result == ” << result << endl;
return 0;

The program shows a common use for conditional expressions—testing a value for some condition, and then based on the result
of that test, performing an action on the value. In this case, if value is greater than or equal to zero, it is assigned unchanged to
result ; otherwise, the program assigns (value * -1) to result. To operate directly on the input value, you can replace result with value,
in which case result isn’t needed at all.

Note: Rather than use the technique shown here, to find the absolute value of an integer value, you can more easily include the
stdlib.h header file and call the abs() function. Type info abs for details.

GNU C++ permits a shortened version of conditional expressions such as the one in absolute.cpp. Often, a program needs to
examine whether a variable is true (nonzero), and if so use it as the expression ’s result; otherwise, a different value is needed. This
means referencing the conditional variable twice as in the sample code:

result = a ? a : b;

Because a nonzero value is considered equivalent to true, in long form, that statement is functionally the same as this:
if (a !'= 0)
result = a;

else
result = b;

To avoid the double reference to a, GNU C++ permits a third variation that has the identical effect as the preceding two examples:
result = a ? : Db;

In other words, you may omit the duplicate reference to a. In simple code such as the examples here, the shortened expression
Page 156

This document is created with trial version of CHM2PDF Pilot 2.10.
a

has no practical value. But in cases where evaluating a conditional expression causes a side effect —meaning that the evaluation of
one part of the expression causes another value to change or an action to occur —the shorthand version might be useful. This
feature might be unique to GNU C and C++.

Warning: Side effects are generally not good programming but are sometimes unavoidable. They can occur, for example, if the
evaluation of an expression alters a variable involved in the expression. Try not to write code that exhibits side effects. That might
be a bit like telling a legislator not to create laws with loopholes, but with care, it’s possible to avoid introducing most kinds of side
effects.

Repetitive Statements
Repetitive statements create /oops that execute statements one or more times. Loops save space by repeating statements, often
using altered data on successive executions. Another common use for loops is to iterate over a series of values—examining the

individual characters in a string, for example.

C and C++ offer three repetitive statements for creating loops: while, do-while, and for. The following sections examine each of
these statements and also show how to use the related break and continue statements inside repetitive statement blocks.

Previous Table of Contents Next

Page 157

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The while Statement

Use a while statement to repeatedly execute a statement while a certain condition holds true. A while statement follows this general
outline:

while (condition)
statement;

While condition 1s true, the program executes statement over and over with the assumption that the statement performs some action
that eventually causes the condition to become false. Usually, the statement changes the value of a variable involved in the
controlling condition.

As with other flow -control statements, a while’s statement can be a compound block delimited with braces and containing one or
more statements:

while (condition) {
statementl;
statement2;

}

Listing 9.4, wcount.cpp, uses a while statement to count from 1 to 10. Although simplistic, the program illustrates elements found
in most while loops.

Listing 9.4 wcount.cpp

#include <iostream.h>
int counter;
int main ()

{

cout << “Counting with while” << endl;

counter = 1;

while (counter <= 10) {
cout << “counter == ” << counter << endl;
counter++;

}

return O;

}

For a control variable, the program declares an int object named counter. After displaying the program title, an assignment
statement initializes counter to 1. After that, a while loop executes two statements while

counter 1S less than or equal to 10. The first statement in the while oop’s statement block displays counter’s value. The second
statement is critical—it increments counter by one each time through the loop. In this way, counter eventually reaches 10, causing
the expression (counter <= 10) to be false and ending the while loop.

What is the final value of counter after the end of the while statement in wcount.cpp? Prove your guess by inserting this statement
before main() returns:

cout << “final counter value == ” << counter << endl;

Page 158

This document is created with trial version of CHM2PDF Pilot 2.10.

Does counter ’s final value (11) make sense? What would counter equal if you changed the while ’s condition to (counter < 10) ? Try
also changing counter ’s starting value. What happens if you initialize counter to 11? Does the loop still execute? Pondering those
questions reveals an important property of while loops. A while loop ends immediately if its condition is initially false. Therefore, it ’s
possible for a while loop to execute its statement (or statement block) zero times.

You may use other kinds of control variables in while statements—they don’t have to be of type int. For example, Listing 9.5,
walpha.cpp, displays the alphabet, using a char variable as the loop’s control value.

Listing 9.5 walpha.cpp

#include <iostream.h>
char ch;

int main ()
{
cout << “Alphabet courtesy of while” << endl;
ch = ‘a’;
while (ch <= ‘z’) {
cout << “ 7 << ch;
ch++;
}
cout << endl; // Finish by starting a new line
return 0;

}

Compile and run the program with the following commands. As the output printed here shows, the program displays the alphabet
in lowercase:

$ g++ walpha.cpp

$./a.out

Alphabet courtesy of while
abcdefghijklmnopgrstuvwzsxyz

Examine the program’s while loop closely. It performs two statements while the value of ch is less than or equal to the letter “z.”
The first statement writes the character to the standard output. The second increments ch to the next character using the ++
operator. As in most loops, that final task is essential to ensure that the loop ends after doing its job.

Tricks with the Control Variable

One popular trick is to combine the use and increment of the control variable in a while statement with the ++ operator. Recall from
Chapter 7, “Applying Fundamental Operators, that the expression i++ equals the value of i before the operator increments the
variable. Because of that rule, it’s often possible to shorten a while loop such as this (taken from Listing 9.5 in the preceding
section):

char ch = ‘a’;

while (ch <= ‘z’) {
cout << “ 7 << ch;
ch++;

}

Instead of executing two separate statements, only one is needed in the shortened version shown here:

char ch = ‘a’;
while (ch <= ‘z’)
cout << YV 7 << ch++;

Page 159

This document is created with trial version of CHM2PDF Pilot 2.10.

The expression ch++ equals the value of ch before that variable is incremented to the next character. Also, because the new loop
executes only one statement, braces are not required.

More confusing, but equally common, is a statement that examines and alters the control variable in the conditional expression.
However, the programmer’s first attempt causes a bug:

char ch = ‘a’; /] 2272
while (ch++ < ‘z')
cout << “ 7 << ch;

Because the expression ch++ increments ch before the statement that outputs the variable, that loop prints the alphabet from b to z.
To start at a, the char ch variable must be initialized to one less than that letter. Here’s the bug-free version (char s are just integers,
and as such, may be used as shown here in mathematical expressions):

char ch = ‘a’" - 1; // '
while (ch++ < ‘z')
cout << “ 7 << ch;

This type of mistake—called an “off -by-one error”—is easy to make, especially in loops that examine and alter the control
variable. Even for experienced programmers, off -by-one errors are a common source of bugs. A good way to avoid this trouble
is to write your while and other statements the long way, as in preceding examples.

You can similarly use the decrement operator — (two minus signs) in repetitive statements. For example, this while loop counts
down from 10 to 1:

int 1 = 11;
while (=i > 0)
cout << Wi == 7" << 1 << endl;

The do-while Statement

The do-while (Which sounds to me like a *60s pop-group vocal embellishment—do-while diddy dum diddy do) is a sort of upside -
down while loop. C’s do-while looks like this:

do {
statement;
} while (condition);

The statement executes while the condition is true. Compare this with a plain while, which evaluates its condition before executing
any statements. A plain while loop can never perform any action if the controlling condition is initially false. But a do-while always
performs its action at least once because it doesn ’t get around to evaluating the condition until the end of the loop. This leads to a
general two-part rule for choosing between while and do-while :

Previous Table of Contents Next

Page 160

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

1. Ask yourself: “Is there at least one condition when the statements in the loop should not execute, not even once?” If the
answer is yes, a while loop probably is the correct choice.

2. If the answer to the preceding question is no, a do-while might be appropriate. If the statements in a loop must execute at
least once, regardless of the controlling expression ’s value, use do-while

A do-while statement can be simple or compound. Technically, braces are needed only if two or more statements are in the loop.
However, although you can write do-while statements such as this:

do
statement;
while (condition);

it is more common to surround even a single statement in braces:

do {
statement;
} while (condition);

Inside the braces, you may insert as many statements as you need:

do {
statementl;
statement?2;

} while (expression);

To demonstrate do-while, Listing 9.6, dwcount.cpp, is similar to the wcount.cpp program but uses a do-while loop to count from 1
to 10.

Listing 9.6 dwcount.cpp

#include <iostream.h>
int counter;

int main ()

{

cout << “Counting with do-while” << endl;

counter = 1;

do {
cout << “counter == ” << counter << endl;
counter++;

} while (counter <= 10);

return 0;

}

As you can with while loops, it is often possible to combine the use and increment of the control variable. For example, the do-
while loop in dwcount.cpp can be shortened to the following:

do {
cout << “counter == ” << counter << endl;
} while (++counter <= 10);

Page 161

This document is created with trial version of CHM2PDF Pilot 2.10.

In this case, however, the ++ operator must be applied before counter is evaluated. In other words, the expression ++counter
equals the incremented value of the variable; and, therefore, the loop executes one final time when that value is 10. If the statement
used counter++ as the condition, the loop would count from 1 to 11. (The expression, however, could also be changed to
(counter++ < 10).) Here again, an off -by-one error is easy to make, and the longer version, which costs nothing in performance, is
clear and understandable.

The for Statement

The for statement is one of the most powerful programming tools in C and C ++. When you know, or can calculate in advance, the
number of times a statement block should execute, a for statement is usually the best choice of repetitive statements. In general
outline form, a for statement looks like this:

for (expressionl; condition; expression2) {
statements;

}

Following the reserved word for are three elements in parentheses. To understand the purpose of each element, it ’s helpful to
examine the equivalent while loop:

expressionl;

while (condition) {
statements;
expression?2;

}

Compare the for and while loops. Each executes expression1 exactly one time before entering the loop. Usually, this initializes the
loop’s control variable, but it can be any valid expression. As long as condition s true, one or more statements are executed,
followed by expression2. Typically, expression2 modifies the control variable initialized by expressionl. For example, the following for
loop counts from 1 to 10:

int 1i;
for (1 = 1; 1 <= 10; i++)
cout << Wi == 7" << 1 << endl;

That initializes the int variable i to 1, and while i is less than or equal to 10, writes its value and executes i++ to increment i so the
loop eventually ends. The preceding for loop is functionally equivalent to this while statement:

int 1 = 1;

while (1 <= 10) {
cout << "1 == " << 1 << endl;
i++;

}

C-++ permits variables such as i to be declared and initialized inside a for loop. The preceding for loop can be shorted by one line
as follows:

for (int i1 = 1; 1 <= 10; i++)
cout << Wi == 7" << 1 << endl;

Unfortunately, this leads to a controversial question. Should the integer i belong to the for loop itself, or to the for loop’s parent
(function main(), for example, if that ’s where the loop resides)? Current ANSI C++ rules state that the control variable i in this case
belongs to the for statement—that is, i ’s scope extends only to its declaring statement block. By this rule, a subsequent statement
can define another int i control variable without conflict. However, this isn’t true of all C++ compilers, and for more on this
controversy, see “for Loop Scoping” in this chapter.

Listing 9.7, ascii.cpp, demonstrates how to use a for loop to display the ASCII character set of char values from 32 to 127, the
usual range of common alphanumeric and punctuation characters available on most consoles.

Page 162

This document is created with trial version of CHM2PDF Pilot 2.10.

Listing 9.7 ascii.cpp

#include <iostream.h>
#define NUMCOLS 18 // Number of columns

unsigned char ch;
unsigned int columns;

int main ()
{
for (ch = 32; ch < 128; ch++) {
if ((columns++ % NUMCOLS) ==)
cout << endl; // Start a new line
cout << “ 7 << ch;

}
cout << endl; // End with a new line
return 0;

}

Compile and run ascii.cpp using the following commands. As shown here, the program displays the ASCII character set neatly
arranged into rows and columns:

$ g++ ascii.cpp
$./a.out

'Y 4 S s e N () 4+, - . /01
234567839 ; <=>7? @ ABC
DEFGHIJKLMNOPOQRSTTU
VWXYz [\N] "~ _ abcdefg
hijklmnopgrstuvwzxy
z {1}~

Take a look at the program’s for loop. Minus its statements, the loop is written as follows:
for (ch = 32; ch < 128; ch++) {

}

The first expression in parentheses executes once before the loop begins —it initializes ch to 32, the ASCII value for a blank
character. The second expression is the condition that continues or ends the loop. In this case, the expression (ch < 128) is true so
long as ch ’s value is less than 128. When ch equals 128, the loop ends. To ensure that this happens, the third expression
increments ch using the ++ operator.

Change the value of the NUMCOLS constant to output a different number of columns. The program ’s for statement uses the
following if statement to start a new row when the columns variable modulo (%) NUMCOLS equals zero:

if ((columns++ % NUMCOLS) ==)
cout << endl; // Start a new line

This code demonstrates a general-purpose method that’s useful for performing any action at regular intervals —in this case, starting
a new line at a specified column. This is a common task inside for statements and other repetitive loops. Beginners often
incorrectly program the job like this:

if (columns++ > NUMCOLS) {
cout << endl;
columns = 0; // 2272

}

Page 163

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 164

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

That does not work because of a subtle logical error. On the first iteration of the for loop, because of the if statement’s expression
columns++, columns equals 1 before the program reaches the output statement. Setting columns back to zero after starting a new
line causes an additional column to be printed on lines two and beyond. Even though columns is initially zero because it is a global
variable, it must be reset to 1, not 0, in the preceding if statement:

columns = 1;

This is another good example of a common off -by-one error. To avoid this sort of trouble, when you need to perform an action at
regular intervals, rather than test whether a variable such as columns equals NUMCOLS and then reset that value to zero, it’s easier
and more intuitive to use the modulo operator as shown in the ascii.cpp listing.

The break Statement

It’s sometimes useful to interrupt a while, do-while, or for loop in progress. To do that, use a break statement—for example, if inside
the loop, a statement detects an error. In general, break is typically used as follows to test an additional condition:

while (conditionl) {
statement;
if (condition2)
break;

The loop executes the statement normally while condition1 is true. However, if condition2 becomes true, the break statement
immediately ends the while loop, and the program continues with the next statement. For example, the statement might set an error
flag to true, in which case break ends the loop. Listing 9.8, breaker.cpp, demonstrates the effect of a break statement.

Listing 9.8 breaker.cpp

#include <iostream.h>
int count;

int main ()
{
count = 1;
while (count <= 100) {
if (count > 10)
break;
cout << “count == " << count << endl;
count++;

}

return 0;

}

Despite the fact that the while loop in breaker.cpp tests whether count is less than or equal to 100, the program counts only up to
10. This happens because, inside the while loop, an if statement tests whether count is greater than 10. If so, it executes a break
statement and immediately ends the loop. You may use break also in for and do-while loops. In all cases, executing a break statement
causes the loop to end immediately.

Note: See “The switch Statement” later in this chapter for another use for break.

The continue Statement
Page 165

This document is created with trial version of CHM2PDF Pilot 2.10.

The C and C++ continue statement is similar to break, but instead of ending a loop, continue forces it to start immediately from its
top. The loop doesn’t start over—it merely begins its next iteration without executing any more statements in the loop.

Probably the most common use for continue statements is to prevent awkward nested if statements inside loops. For example, the
following code is confusing due to the nesting of the two if statements:

int i = 1;
while (i++ < 100) {
if (!conditionl) {
statementl;
if (!condition2) {
statement?2;

}

Using continue, the code isn’t so messy:

int 1 = 1;

while (i++ < 100) {
if (conditionl) continue;
statementl;
if (conditionZ2) continue;
statement?2;

}

The two loops are functionally identical. But, in the second, if condition1 is true, a continue statement causes the while loop to begin
its next iteration without executing statement1. Similarly, if condition2 is true, another continue forces the loop to reiterate without
executing statement2. The loop still ends when i reaches 100.

WARNING: When using continue, especially in while and do-while loops, be sure that the loop’s condition performs an action that
eventually ends the loop. In this case, for example, i++ in the while loop’s conditional expression ensures that the value of i
eventually equals 100, ending the loop.

Other Types of Statements

Following are some other types of flow -control statements you might find useful. First is the notorious goto, which most
experienced programmers rightly avoid using. I also show some interesting variations on for loops, and I explain how to use one of
the most powerful of C and C ++ statements, the switch

The goto Statement

A goto statement directs a program to execute another statement and to continue executing subsequent statements starting from
that location. Because a goto can “jump” to any place in a program, using goto is like exiting a highway through a field rather than
at a marked exit. Be prepared for a bumpy ride.

At first glance, goto seems tremendously versatile. In practice, however, the statement gives programmers too much freedom to
jump from here to there and over yonder. At best, it ’s difficult to fathom the results of a program that has several goto statements.

At worst, the code doesn’t work at all.

If you must use goto, insert a label (an unused identifier and colon) above any statement. Execute goto LABEL to direct the program
flow to that location. Listing 9.9, gcount.cpp, demonstrates how to use goto to count from 1 to 10.

Listing 9.9 gcount.cpp

Page 166

This document is created with trial version of CHM2PDF Pilot 2.10.

#include <iostream.h>

int count;

int main ()

{

count = 1;
TOP:
cout << “count == ” << count << endl;
count++;
if (count <= 10)
goto TOP;

return 0;

}

In the sample program, the label TOP: marks a target location for a goto statement. You may specify any unused identifier as a
label. The if statement examines an integer variable count. If count is less than or equal to 10, goto transfers control to TOP:,
executing the output and count++ statements until count becomes larger than 10. When that happens, the if statement does not
execute the goto, and the program continues to the bitter end.

The program works, but it lacks the intuitive clarity of the while, do-while, and for loops described in this chapter. By all means,
learn how to use goto. You might stumble over one in somebody else’s code. But avoid using goto in your own programs. This is
one statement you can do without.

Do-Nothing for Loops

This is not a new kind of C++ statement (I’m tempted to call it a do-for-nothing loop), but is simply a variation of a common for
statement. However, a Do-Nothing for loop is easy to create unintentionally by a misplaced semicolon, as in this faulty code:

for (int 1 = 1; 1 < 100; i++); // 2727
cout << “ 7 << iy

Because of the semicolon before the comment, C ++ “sees” a null statement between the closing parenthesis and semicolon.
Although the for loop iterates variable i from 1 to 100, the loop merely executes the phantom null statement, not the output
statement as the programmer probably intended. Worse, because the output statement does not belong to the for statement, it
executes once after the loop is finished. Fix the code by removing the semicolon before the comment.

Tip: GNU C++ does not warn you about this type of mistake as do some other compilers such as Borland C++. If your code
compiles but a for loop doesn’t seem to operate correctly, check whether you ended it prematurely with a misplaced semicolon.

On rare occasions, a Do-Nothing for loop can be useful if, for example, the conditional expression calls a function or performs
some work of its own. In that case, it is traditional to insert a space between the closing parenthesis and semicolon to indicate that
the construction is intentional. It’s not a bad idea to add a comment as well:

int i;
for (1 = 1; £(i); i++) ; // Semicolon intentional

Previous Table of Contents Next

Page 167

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

This loop calls function f() as long as that function evaluates to true. Presumably, the function uses the value of i in some way and
returns true or false. (See Chapter 10, “Creating and Calling Functions,” for more about functions.)

Warning: Beware of side effects in code such as the preceding. If function f) affects the value of i, it might cause unpredictable
conflicts with the use of the control variable!

Do-Forever for Loops

More practical is a Do-Forever for loop, one that never ends—that is, until some external condition occurs. That condition might
be a hardware interrupt, or in Linux and UNIX, simply the result of the user pressing C -c¢ (Ctrl-C). The loop is typically written
like this:

for (;;) ; // Loop “forever”

This for loop initializes no control variable, specifies no controlling condition, and performs no expression. It also has no
statements. When executed, the statement hangs the program until an external event occurs that breaks the loop’s lock. Again, a
blank between the closing parenthesis and semicolon indicates that this is not a mistake, but intentional. If you try this in a test
program, press C-c (Ctrl-C) to quit.

Although it might seem frivolous, a Do-Forever for loop can be useful. For example, see “The switch Statement” next for how to
use Do-Forever for loops to create program menus. A Do-Forever for loop is also sometimes employed in threaded code that
executes multiple tasks, and in X programs to respond to server events as described in Part VI, “X Window Development.”

The switch Statement

A deeply nested if-clse statement can look as twisted as the plumbing in an old building. Clearer and more easily maintainable code
is possible by replacing the if-else statements with a switch. Consider, for example, the following series of if-else statements, each of
which compares an expression with a value:

if (expression == valuel)
statementl;

else if (expression == value2)
statement2;

else if (expression == value3)
statement3;

else // Optional
defaultStatement; // Optional

Commonly called a multiway decision tree , the construction chooses from among various statements based on a series of
conditions. There is nothing wrong with nested if-else statements, but using a switch often produces clearer code. Using a switch,
you can write the preceding if-else statement this way:

switch (expression) {
case valuel:

statementl; // Executes if expression == valuel
break; // Exit the switch statement
case value2:
statement2; // Executes if expression == value?2
break; // Exit the switch statement
case value3:
statement3; // Executes if expression == value3
break; // Exit the switch statement
default: // Optional

Page 168

This document is created with trial version of CHM2PDF Pilot 2.10.

defaultStatement; // Executes if no values match expression

At first glance, the equivalent switch statement might seem equally complex, but after you become familiar with its construction,
you’ll find switch statements easier to manage than deeply nested if-else statements. Following the switch keyword is an expression
to be compared to a set of values. This is often just the name of a variable —for example, one that holds a character typed by the
program’s user, or an integer value obtained from a calculation. Inside the switch ’s block, case selectors compare the expression
to specified values. The expression

case valuel:

compares valuel for equality with the switch statement’s expression. If the expression matches this case value, the following
statements execute. If the expression does not equal this case’s value, the next case is evaluated. The default: selector at the end
specifies an optional action if no cases match the expression.

Tip: The case and default expressions end with a colon. This is easy to forget, and a common cause of compiler “parse” errors is a
missing colon at the end of a switch case selector.

Notice that in the preceding sample code each case ends with a break statement. As it does in other types of statements, break
ends the switch statement immediately. To understand the purpose of break in switch cases, examine the first case:

case valuel;
statementl;
break;

If the switch statement’s expression equals valuel, the program executes statementl. After that happens, break exits the switch
statement, and the program continues after the switch statement’s closing brace. However, if a case does not end with break, then
the next case ’s statements are executed. Known as “falling through a case,” the absence of a break might be an error but is
sometimes intentional. For example, consider this switch statement:

switch (expression) {
case valuel:
statementl; // Fall through to statement?
case value2:
statement?2;
break; // Exit switch statement
case value3:
statement3;
break; // Not needed but okay

If expression equals valuel, statement] executes. Because no break statement follows, the program continues at statement2, after
which break ends the switch statement. It’s good to add a comment about the intentional “fall-through.” On another iteration, if
expression equals value2, then only statement2 is executed, after which break ends the switch statement. If expression equals value3,
then only statement3 is executed. The break after statement3 isn’t strictly needed because this is the end of the switch statement, but
careful programmers add a break after each case so that a newly added case does not accidentally create a fall -through.

Listing 9.10, menu.cpp, demonstrates a good use for a switch statement. The program prompts users to select from a menu of
commands. It uses a switch statement to execute different statements based on the character entered. The program also
demonstrates a practical use for a Do -Forever for loop.

Listing 9.10 menu.cpp

#include <iostream.h>
#include <ctype.h> // Need toupper ()
#include <stdlib.h> // Need exit ()
Page 169

This document is created with trial version of CHM2PDF Pilot 2.10.
char choice; // User command character

int main ()
{
for (;;) { // Do following switch statement “forever”
cout << “Menu: A(dd D(elete S(ort Q(uit: ”;
cin >> choice; // Get user command
switch (toupper (choice)) {
case ‘A’:
cout << “You selected Add” << endl;
break;
case ‘D’':
cout << “You selected Delete” << endl;
break;
case ‘S’:
cout << “You selected Sort” << endl;
break;
case ‘Q':
cout << “You selected Quit. Good bye!” << endl;
exit(0); // End program
default:
cout << “Wx** No such command!” << endl;
break;
} // switch
} // for
return 0; // Unreachable as currently written

}

Previous Table of Contents Next

Page 170

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The main() function in menu.cpp consists mostly of one Do -Forever for loop. Inside that loop, the program first displays a menu of
commands. Compile and run the program to see this prompt:

$ g++ menu.cpp
$./a.out
Menu: A(dd D(elete S(ort Q(uit:

Enter a letter in upper- or lowercase to select a command (all are just for show, of course). The program ’s switch statement
confirms your selection:

Menu: A(dd D(elete S(ort Q(uit: S
You selected Sort

If you enter an unknown command letter, the program displays an error message:

Menu: A(dd D(elete S(ort Q(uit: x
*** No such command!

To respond to command entries, the program uses a switch statement that begins as follows:

switch (toupper (choice)) {

The toupper() function, declared in the ctype.h standard header, returns the choice char variable converted if necessary to
uppercase. Each case in the switch statement compares this value with a literal character to select from among the program ’s
statements. For example, the first case detects the A(dd command:

case ‘A’:
cout << “You selected Add” << endl;
break;

After displaying the confirming message, break ends the switch. However, because the switch is encased inside a Do-Forever for
loop, after the switch statement ends, the program again displays the menu and waits for another command. When you type ¢ to
quit, the following case ends the program by calling the standard exit() function declared in stdlib.h:

case ‘Q’:
cout << “You selected Quit. Good bye!” << endl;
exit(0); // End program

Note: The return statement in menu.cpp never executes. However, it’s good form to include it in the event a change causes the
program to reach the statement. Some compilers warn about “unreachable” statements such as this, but GNU C++ doesn’t notice
the condition. In all fairness, unreachable statements are not necessarily errors —they just don’t do anything.

for Loop Scoping

Finally in this chapter, some further words about declaring control variables in for statements such as this:

for (int 1 = 1; 1 <= 10; i++)
cout << Wi == " << 1 << endl;

Because the for loop itself declares the int variable i, ANSI C++ rules state that i ’s scope—in other words, its accessibility to
statements—is limited to the for statement in which it is declared. Not all C++ compilers follow this rule, and it’s a good idea to
test how they behave if you plan to rely on this feature. Listing 9.11, forscope.cpp, performs a test that you can use to check how

Page 171

This document is created with trial version of CHM2PDF Pilot 2.10.

any C++ compiler handles the condition.

Listing 9.11 forscope.cpp

#include <iostream.h>

int main ()
{
for (int 1 = 1; 1 <= 10; i++)
cout << “i == " << 1 << endl;
cout << “Final value of i == ” << i << endl; // 2272
return 0;

}

Compiling the forscope.cpp test program with GNU C++ using the following commands produces two warning messages:

$ g++ forscope.cpp

forscope.cpp: In function ‘int main()’:

forscope.cpp:7: warning: name lookup of ‘i’ changed for new ANSI ‘for’ scoping
forscope.cpp:5: warning: using obsolete binding at ‘i’

The compiler issues the warnings because the program’s for loop declares int i inside the loop, and the new ANSI C++ rules state
that in such cases i is available only to statements inside the loop itself. However, the test program refers to i outside the loop as
was permitted in past ANSI C++ drafts. To accommodate older programs that rely on the obsolete specifications, GNU C ++
treats the condition as a warning rather than an error, and it completes the compilation. Other C++ compilers might refuse to
compile this program at all.

To limit the scope of variables to the for loop that declares them, in GNU C++, compile with the option -ffor -scope. With this
option, forscope.cpp does not compile. To use the older specification that places the for loop variable in the outer scope, use the -
fno-for-scope option. Do that only if you are compiling older programs that assume the nonstandard rule. With that option,
forscope.cpp compiles without any warnings or etrors.

Summary
Without intervention, a C or C++ program’s statements execute one after the other like water flowing down a river. C and C ++
provide conditional and repetitive flow -control statements that alter this normal path. Conditional statements include if, if-else,
switch, and conditional expressions. Repetitive statements include while, do-while, and for. In addition, this chapter explained how to
use break, continue, and goto statements, and it explained the controversial subject of declaring control variables inside for loops.
For more information on subjects introduced in this chapter, turn to the following chapters:

 Chapter 6, “Creating Data Objects”

* Chapter 7, “Applying Fundamental Operators”
 Chapter 10, “Creating and Calling Functions”

Previous Table of Contents Next

Page 172

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 10
Creating and Calling Functions

Writing computer programs is like building bridges. You can’t start pouring concrete in midair; you’ve got to anchor the
foundations on land before you can span the water.

Functions are to C and C++ what girders, cable, and stone are to bridge builders. With functions, you can divide a large program
into manageable pieces that you can construct one at a time. You can also create functions that calculate formulas and perform
other actions needed throughout a program.

This chapter introduces functions and shows some “functional” features available only in C++, such as inline functions and default
function parameters. The chapter ends with a look at GNU debugger commands that are useful for debugging function code and
data.

Introducing Functions

As you know, every C and C++ program has at least one function, main(). Most programs, however, have many other functions,
each with a specific task to perform. One of the most common tasks for a function is to calculate the results of a formula. For
example, consider how the kilo.cpp program from Chapter 7, “Applying Fundamental Operators,” calculates the equivalent
distance in kilometers for a given number of miles using this statement:

kilometers = miles * 1.609344;

By converting that formula into a function named kilos(), as Listing 10.1, fnkilo.cpp, demonstrates, it is available for use not just
once, but as many times as needed. In this example, the program calls kilos() several times to display a reference table of miles and
kilometers.

Listing 10.1 fnkilo.cpp

#include <iostream.h>
#include <iomanip.h> // Need setw() manipulator

// Function prototype
double kilos(double miles);

int main ()

{

cout << “Miles Kilometers” << endl;

cout << % W << endl;

for (int miles = 10; miles <= 100; miles += 10) {
cout << setw(5) << miles << “ == ";
cout << kilos(miles) << endl;

}

return 0;

}
// Function implementation (convert miles to kilometers)
double kilos(double miles)

{
double kilometers = miles * 1.609344;
return kilometers; // Function result

}

Page 173

This document is created with trial version of CHM2PDF Pilot 2.10.

Compile and run the program in the usual way. Enter the following commands, and the program displays a reference table
(reduced by a few lines to save space here):

$ g++ fnkilo.cpp

$./a.out
Miles Kilometers
10 == 16.0934
20 == 32.1869
100 == 160.934
Prototyping Functions

The fnkilo.cpp program in Listing 10.1 shows the correct way to declare, implement, and use most kinds of functions. In C and
C++, because items must be declared before they are used, the first step in creating a function is to declare a function prototype.
Here’s the prototype for the kilos() function in the sample code:

double kilos(double miles);
The function prototype includes three important elements that the compiler needs to use the function:

1. The function’s return type—in this case, double. This states that the function returns a value of the indicated type. If the
function returns no value but merely performs an action, its return type might be void. Functions can return an object of any
valid C or C++ type.

2. The function name. This must be a unique identifier formed according to the rules listed in Chapter 6, “Creating Data
Objects.” Try to pick specifically meaningful names for your functions. The name kilos() suggests what this function does. If
I had named it convert(), its specific purpose would be less clear.

3. Any parameters that the function needs as input data. In this case, the parameter miles of type double in parentheses
indicates that the function requires a number of miles to be converted to kilometers. If the function needs no input data,
declare its prototype with an empty pair of parentheses.

Tip: A function prototype always ends with a terminating semicolon.

A program may declare as many function prototypes as it needs. The compiler needs only the functions ’ prototypes to process
statements that call the functions. Because of this, it ’s common to store function prototypes in a header file and to implement those
functions in separate modules (see the section “Functions and Separate Compilation” later in this chapter for an example).
However, for simplicity, this book ’s listings declare and implement most functions in a single source code file.

Note: Technically, function prototypes are optional. You could, for example, fully implement a function ahead of its use in a
program. But doing that is usually impractical, especially in modular programs composed of multiple source and header files. For
best results, declare all functions as prototypes and then implement them elsewhere as described next.

Implementing Functions

Skip to the end of fnkilo.cpp in Listing 10.1. There, you find the kilos() function’s implementation, reprinted here:

double kilos(double miles)

{
double kilometers = miles * 1.609344;

return kilometers; // Function result

The first important rule to memorize is that the function ’s declaration—often called its header—must exactly match its prototype.
The implementation’s header does not, however, end with a semicolon but is followed by a statement block delimited with a pair
Page 174

This document is created with trial version of CHM2PDF Pilot 2.10.

of curly braces. Inside the braces are the statements that perform the function ’s actions.

In this case, two statements convert the input parameter miles to the equivalent kilometers. The first statement performs the
conversion and stores the result in a local variable of type double named kilometers. The second statement returns that value to
the statement that called the function (more on this in a moment).

I purposely wrote the kilos() function using two statements for illustration, but a single statement is all that ’s really needed. Here’s a
simpler version of kilos() that is functionally equivalent to the preceding longer edition:

double kilos(double miles)

{
return miles * 1.609344;

}

In the new, improved model, a single statement converts miles to kilometers and returns that result to the function ’s caller. There’s
no need to perform those actions separately, but there ’s also no harm in doing so.

Calling Functions

To use a function, a statement calls it by name. When a program does this, the function’s statements perform their jobs, after
which the program continues at the next statement after the one that called the function. In the sample fnkilo.cpp program in Listing
10.1, the following for loop calls the kilos() function to create a miles-to-kilometers reference table:

for (int miles = 10; miles <= 100; miles += 10)
{

cout << setw(5) << miles << ™ == 7;

cout << kilos(miles) << endl;

}

The second output statement calls the kilos() function, passing to it a value in miles to be converted to kilometers. The function
returns the value that the output statement displays.

A function’s return type indicates the manner in which it can be used. In this case, kilos() returns a double value, and it can therefore
be used anywhere a double value is appropriate. You can’t assign values to functions—they are not variables. (However, an
exception is a reference function, discussed in the section “Returning References” in this chapter and in Chapter 11, “Managing
Memory with Pointers.”)

Previous Table of Contents Next

Page 175

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Functions and Variables

In performing their actions, functions typically use variables of many different kinds. How you create a variable has important
consequences on its use in a function, as the following sections explain.

Global Variables and Functions

Variables declared outside function main() are available to all statements in a program. For example, if you declare a variable such
as this outside any function:

double balance;
any statement, anywhere, can refer to balance, assign it a value, use it in output statements, and affect its value in other ways.

Experienced programmers avoid using global variables, and with good reason. In a complex program, it is simply too easy for the
global variable to have conflicting uses among multiple functions. But they are useful for large objects —input buffers, for example.

Local Variables and Functions

Local variables are declared and used inside a function ’s statement block. In most cases, they are safer than global variables
because only their own function’s statements may refer to them. To illustrate local variables, Listing 10.2, fncount.cpp, implements
a simple function that counts up from minimum to maximum input values.

Listing 10.2 fncount.cpp (partial)

void countup(int min, int max)
{
int counter; // Local variable
if (min >= max) return; // Ignore bad input values
for (counter = min; counter <= max; counter++)
cout << counter << % 7;
cout << endl; // Start new display line

You met local variables in Chapter 9, “Controlling Program Flow,” but now that you know more about functions, consider some
further characteristics. A local variable, such as int counter in the sample program, exhibits two important features:

* Its scope extends only to its declaring function.
e Itis created and destroyed automatically each time the function is called and returns.

Note: A local variable is also sometimes called an automatic variable because it is automatically created—that is, allocated
memory—when its declaring block becomes active.

In the sample code, the local variable counter is available only to statements in function countup(). Function main() cannot refer to
counter. Only statements in the declaring function may do that. Most important, counter is freshly created on the stack when the
program calls countup(). When the function ends, the local variable is destroyed. For this reason, functions must initialize local
variables before using them. Local variables do not retain their values between calls to their declaring functions.

Page 176

This document is created with trial version of CHM2PDF Pilot 2.10.

Note: Local variables are stored in a limited area of memory, called the stack, along with function return addresses and parameter
values passed to the function. For this reason, it’s not a good idea to create large local variables. See Chapter 11, “Managing
Memory with Pointers,” for advice on creating large objects efficiently.

Scope Conflicts

When local and global variables have the same name, the compiler decides which variable to use based on its scope. For
example, given a global variable named count, a function can declare a local variable of the same name. This is not an error,
although it can lead to confusing code as the following snippet illustrates:

int count; // Global variable
void any function ()

{

int count; // Local variable
cout << count << endl; // 2?2

Inside the function, the output statement refers to the local variable because its scope takes precedence over the global scope of
the outer variable. In another function with no local variable named count, that same statement would refer to the global variable.
A similar situation can arise within the same function and might cause a bug. For example, consider the following code:

void any function ()

{

int i = 100;

for (int 1 = 1; 1 < 10; 1i++) /] 2?27
do_something (i) ;

The function declares a local variable i initialized to 100. But it also declares an identically named variable inside the for statement.
The two variables are separate and distinct. The scope of the innermost i extends only to the block in which it is declared.
Outside the for loop, any statements refer to the int i set equal to 100. Perhaps this is what the programmer intended, but it’s more
likely an error.

Note: In technical terms, a variable declared in an inner scope hides an identically named variable in an outer scope. Any statement
block—a while loop, for example—may define its own local variables, the scope of which extends only to that block.

Previous Table of Contents Next

Page 177

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Resolving Scope Conflicts

Careful programmers never intentionally create scope conflicts as illustrated in the preceding section, but those conflicts can easily
arise when incorporating third-party function libraries into existing programs. Suppose that you have written a 5,000 -line program
with 250 functions, many of which declare and use a local variable named interval. You then add a new function library only to
discover that it declares a global variable also named interval. Now what do you do?

Fortunately, in C++, the solution is simple. Use the double-colon scope resolution operator (::) to refer to the variable in the outer
scope. For example, this statement:

cout << ::interval << endl;

refers to the interval declared in the outer scope. To refer to the local variable, simply use it normally. Here ’s a more complete
example that shows how to resolve scope ambiguities:

int count; // Global variable
void any function ()

{
int count; // Local variable
count = 1234; // Assign value to local count
::count = 4321; // Assign value to global count

The expression count refers to the local variable. The expression ::count refers to the count in the global scope. Problem solved.

Note: C++ offers the concept of a namespace that can help prevent scope conflicts. For more information and a practical example,
see Chapter 23, “Using the Standard Template Library (STL).”

Parameters and Arguments

A function’s parameters provide it with input data. For example, the kilos() function in this chapter declares a parameter named
miles of type double :

double kilos (double miles) ;

A statement such as the following passes a value to kilos() for conversion:

cout << kilos(100) << ™ kilometers” << endl;

The value 100 is called an argument. 1t is passed to the function’s miles parameter. Inside the function, miles equals 100—the
value of the argument. A parameter such as miles resembles a local variable in that its scope extends only to its declaring function.
In this example, the scope of the miles parameter extends only to the kilos() function. Only statements in the function can refer to

miles.

There are three types of function parameters: value, reference, and pointer. The following sections explain how to create and use
these types of parameters.

Note: Although the following sections explain pointer parameters briefly, their intricacies are best canned up with other worms
introduced in Chapter 11, “Managing Memory with Pointers.”

Page 178

This document is created with trial version of CHM2PDF Pilot 2.10.

Value Parameters

A value parameter is so called because only a copy of its value is passed to the function. Declare a value parameter the same
way you declare a variable, but place the declaration inside the function header ’s parentheses:

void f(int 1i);

The prototype for function f() declares a single value parameter, int i. Statements that call f() pass arguments by value to parameter
i, as in these samples:

£(10); // Pass 10 to i
f(x); // Pass value of x to i

In the second case, the value of x —in other words, a copy of its value—is passed to the i parameter. This is important to
understand. Because only a copy of x ’s value is passed to i, any changes to i inside the function do not affect x ’s value.

As a practical example of value parameters, consider how you might calculate the cost of running an appliance for a number of
hours at a certain number of watts. On your electric bill, you find the cost per kilowatt hour (kwh), perhaps 0.0687. Given the
kwh rate, the appliance’s power consumption in watts (note that power x 0.001 converts watts to kilowatts), and a length of time
in hours, the following formula calculates the cost in dollars of running the appliance:

cost = rate * (power * 0.001 * time);
To package this formula as a function, a program can prototype it like this:

double cost (double time, double power, double rate);

The cost() function returns a double value. It declares three value parameters of type double separated by commas—time, power,
and rate. The completed function implements the cost formula:

double cost (double time, double power, double rate)

{

return rate * (power * 0.001 * time);

}

Elsewhere in the program, statements can pass arguments to the function for processing. A simple statement computes the cost of
running a 100-watt appliance for 10 hours at a kwh rate of 0.0687:

double result = cost(10.0, 100.0, 0.0687);

Listing 10.3, electric.cpp, puts the cost() function into action. In addition to demonstrating value function parameters, the program
also shows a general-purpose method for creating a row -and-column reference table.

Listing 10.3 electric.cpp

#include <iostream.h>

#include <stdio.h> // Need sprintf ()
#define MAXROW 12 // Number of rows in table
#define MAXCOL 8 // Number of columns in table

// Function prototypes

double cost (double time, double power, double rate);
void printTable (double startHours, double hourlyIncrement,
double startWatts, double wattsIncrement, double costPerKwh);

int main ()
Page 179

This document

{

is created with trial

version of CHM2PDF Pilot 2.10.

double startHours = 100;

double hourlyIncrement = 10;

double startWatts = 4;

double wattsIncrement = 2;

double costPerKwh = 0.0687;

printTable (startHours, hourlyIncrement,
startWatts, wattsIncrement, costPerKwh);

return 0;

// Return cost of electricity given time,

double cost (double time,

{

return rate * (power *

// Print table using the

void printTable (double startHours,
double wattsIncrement,

double startWatts,

int row, col;
double hours, watts;
char buffer[24];

power, and rate
double power, double rate)

0.001 * time) ;
function

double hourlyIncrement,
double costPerKwh)

cost ()

// Local variables
// Local variables
// Formatted output buffer

// Print top line of table
cout << endl << “Hrs/Watts”;

watts = startWatts;

for (col = 1; col <= MAXCOL; col++) {
sprintf (buffer, “%$8.0f”, watts);
cout << buffer;
watts += wattsIncrement;

} // for

// Print table rows

hours = startHours;

for (row = 1; row <= MAXROW; row++) {
sprintf (buffer, “\n%6.1f - %, hours);
cout << buffer;
watts = startWatts;
for (col = 1; col <= MAXCOL; col++) {

sprintf (buffer, “%$8.2f”, cost (hours, costPerKwh)) ;

cout << buffer;

watts,

watts += wattsIncrement;
}// for
hours += hourlyIncrement;
}// for

cout << endl << endl << “Cost of electricity @ ”;
sprintf (buffer, “$%.4f”", costPerKwh) ;
cout << buffer << ™ per KWH” << endl << endl;

Previous Table of Contents Next

Page 180

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Pointer Parameters

This chapter wouldn’t be complete without a mention of pointer parameters. However, you haven ’t met pointers yet (see Chapter
11, “Managing Memory with Pointers”), so I'll be brief.

A pointer parameter is similar to a reference parameter in that it points to an object of a specified type. However, pointer
parameters require you to specify the object’s address when calling the function. Reference parameters do that automatically.

One common use for pointer parameters is to pass C -style string buffers to and from functions. Listing 10.5, getstr.cpp,
demonstrates the basic technique.

Listing 10.5 getstr.cpp

#include <iostream.h>

// Function prototype
void getstr(char *s);

// Global string buffer
char input[128];

int main ()
{
cout << “Enter a string: ”;
getstr (input) ;
cout << “You entered: ” << input << endl;
return 0;

}

void getstr (char *s)

{

cin >> s;

}

Compile and run the program with the following commands, and then as shown, enter a string, which is displayed on the last line
after you press Enter:

$ g++ getstr.cpp

$./a.out

Enter a string: abcdefg
You entered: abcdefg

The sample program prototypes a function to input a string into a global char buffer. The function ’s prototype shows how to
declare a pointer parameter:

void getstr(char *s);

Parameter s is a pointer to a char. Due to an age-old C specification, pointers and arrays are programmatically equivalent, and
therefore, it’s common to use a pointer to pass the input char array to getstr(). To use the function, the program declares input as
follows and passes it to the function for filling with the user ’s input:

char input[128];
Page 181

This document is created with trial version of CHM2PDF Pilot 2.10.
getstr (input) ;
Function Return Values
As you have seen in this book’s listings, functions can return nothing, or they can return a value of any valid C ++ type. The
following sections explain more about function return values. As a practical example, a sample listing in this section shows how to
create an elapsed event timer using the standard GNU C library’s time functions.

Returning Simple Values

As you have seen in many of this book ’s sample programs, functions might return nothing, or they might return a value of any valid
C++ data type such as int or double. To indicate that a function returns nothing, precede its declaration by void :

void f£();

To indicate that a function returns a value of some other type, replace void with the type name. This declaration

double f();

indicates that calling f() returns a double value. In C and C++, a statement may ignore a function’s return value. Given the preceding
declaration, the following statement calls f() but discards its returned value:

£0; // 222

Although allowed, this technique is rarely useful, and you normally save a function ’s return value in a variable, or use it in a
statement as in the following examples:

double saved value = f();
cout << “Walue == " << f() << endl;

Return values are essential in constructing modular programs. As a practical demonstration, Listing 10.6, stopwatch.cpp, uses the
system clock to create a timer, accurate to 1/10 second (depending, of course, on the system clock ’s accuracy), independent of

the computer processor speed.

Listing 10.6 stopwatch.cpp

#include <iostream.h>

#include <sys/times.h> // need times () function
#include <time.h> // need CLOCKS PER SEC
#include <math.h> // need fabs () function

// Function prototypes
clock t mark time();
double elapsed time(clock t start time, clock t end time);

// Main program
int main ()

{

clock t start, stop; // Variables for mark time() function
cout << “Press enter to start timing...”;

cin.get ();

start = mark time(); // Mark starting time

cout << “Press enter to stop timing...”;

cin.get ();

stop = mark time(); // Mark stopping time

cout << “Elapsed time == "

<< elapsed time(start, stop)
Page 182

This document is created with trial version of CHM2PDF Pilot 2.10.

<< ™ seconds” << endl;
return 0;

}

// Returns current processor time (mark)
clock t mark time()

{

return times (NULL) ;

}

// Calculate elapsed time in seconds
double elapsed time(clock t start time, clock t end time)

{

double t = fabs(end time - start time); // Processor elapsed time
return t / (CLOCKS PER SEC / 10000); // Elapsed time in seconds
}

Compile and run stopwatch.cpp. When prompted, press Enter to start the elapsed timer, wait a few seconds, and then press
Enter again to stop timing and display the results as shown in the following test run:

$ g++ stopwatch.cpp

$./a.out

Press enter to start timing...
Press enter to stop timing...
Elapsed time == 6.8 seconds

The stopwatch.cpp program uses standard time and math functions, one constant, and two data types declared in three header
files included at the beginning of the listing. To mark the beginning of an event, the program prototypes function mark time() like this:

clock t mark time();

The standard clock t type represents the elapsed system time in unspecified units. It is defined by including the time.h header (but
in GNU C++ is actually declared in the types.h header file). A second prototype declares a function that returns a double value and
uses two clock t value parameters:

double elapsed time(clock t start time, clock t end time);

Given start_time and end_time parameters, the function calculates the elapsed time interval. Using the two functions, three simple
statements create an elapsed event timer:

clock t start = mark time();

clock t stop = mark time();
cout << elapsed time(start, stop) << “ seconds” << endl;

The mark_time() function calls the standard times() function to obtain the system time:

return times (NULL) ;

Another way to use times() is to pass a structure to be filled with time values. Here, NULL simply tells times() to return the current
system time as the function return value of type clock t.

Function elapsed time() takes advantage of the fact that subtracting two clock t values equals their elapsed time. These two
statements compute the elapsed time using the start time and end time value parameters:

double t = fabs(end time - start time);
return t / (CLOCKS_PER SEC / 10000);

Page 183

This document is created with trial version of CHM2PDF Pilot 2.10.

Calling fabs() (floating point absolute value) ensures a positive result in case the two times are accidentally reversed. This is far
better than the usual series of if-else statements that reverse pairs of input values. The second statement returns the temporary
double result t divided by the standard constant CLOCKS_PER_SEC over 10,000—giving the elapsed time in seconds.

Previous Table of Contents Next

Page 184

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Returning References

You learned earlier in this chapter how to pass arguments by reference to function parameters. Functions may also return
references to objects provided, however, that those objects persist outside the function ’s scope. In other words, functions may
not return references to local variables or parameters. A function declared as

double &ref();

returns a reference to a double object, presumably one that is declared elsewhere. In cases where you don’t want to give the
function’s caller the right to change a referred -to value, declare the function const like this:

const double &ref();

You may use reference functions on each side of an assignment operator. A statement such as the following stores 3.14159 in
whatever double object to which the ref() function refers:

ref () = 3.14159;

The ref() function itself might be written along these lines:

double d;
double &ref ()
{

return d; // Return reference to d

}

Because ref() merely returns a reference to the global variable d, the reference function is in a sense a synonym for that object. If d
is hidden away in a library module, all references to it are controlled by forcing the data ’s users to call ref(). This hides the inner
nature of the global data and also can aid debugging.

The foregoing sample code is, however, merely for illustration. Similar but more complex programming is invaluable for hiding a
data structure’s internal representation while providing safe access to its information. For example, a reference function might
return a value selected from an array. Reference functions also play a major role in object -oriented programming, the subject of
Part III of this book.

Returning Pointers to Data

As with pointer parameters, this chapter wouldn’t be complete without mentioning also that functions may return pointer values.
But see Chapter 11, “Managing Memory with Pointers,” for more information on this subject.

Other Functionalities
Following are some additional topics about functions, including some features available only in C ++.
Default Function Arguments

A useful C++ innovation provides default argument values to function parameters. This can help clean up code when you need to
supply only some, but not always all, arguments. For illustration, consider a function that returns the sum of four int values:

int sum(int a, int b, int ¢, int d)
{
return a + b + ¢ + d;

}
Page 185

This document is created with trial version of CHM2PDF Pilot 2.10.

To call that function with only two arguments—Iet’s name them v1 and v2 —you need to supply zeros to the unused parameters to
avoid a compiler error:

cout << sum(vl, v2, 0, 0);

This is no great imposition, but it does require you to look up sum() ’s documentation to determine what values to supply to which
unused parameters. Using default arguments, statements like that are unnecessary:

int sum(int a, int b, int ¢ = 0, int d = 0);

Declared that way, sum() now requires only two arguments, but it can have up to four. The default values must come last in the
function’s parameter list. In using the new sum() function, if arguments are not specified for ¢ or d, those parameters are given the
default values. The following statements are now allowed:

cout << sum(l, 2); // a=1, b ==2, ¢c ==10, d ==
cout << sum(l, 2, 3); // a=1, b =2, ¢ ==3,d==0
cout << sum(l, 2, 3, 4); // a==1, b ==2, ¢ == 3, d == 4

In some flavors of C ++, only the function prototype was permitted to declare default function arguments. GNU C ++ permits them
in both places. Given sum() ’s preceding declaration, implement the function like this:

int sum(int a, int b, int ¢ = 0, int d = 0)
{

return a + b + ¢ + d;

}

Note: Any discrepancies between default argument values in the prototype and in the function implementation generate a “default
argument...” compilation error.

Listing 10.7, center.cpp, shows a practical example of default function arguments. The program centers an input string by copying
it to an output string buffer, surrounded by one or two fill characters —useful for creating error messages and dividing lines. Use
the sample program’s center() function to prepare strings such as these two examples:

xx Error: You goofed big time! **
<<<<<<<< Press any key to continue >>>>>>>>

Listing 10.7 center.cpp

#include <iostream.h>
#include <string.h> // Need strlen()

#define SIZE 128 // Character buffer size

// Function prototype
void center (const char *instr, char *outstr,
int width = 0, char 1Fill = ‘-'’, char rFill = ‘-');

int main ()

{
char instr[SIZE]; // Input string
char outstr[SIZE]; // Output string

int length; // Length of string in characters

cout << “Enter a string: “; // Prompt wuser for string
cin.getline(instr, SIZE / 2); // Read into instr

length = strlen(instr); // Get length of entry

Page 186

This document is created with trial version of CHM2PDF Pilot 2.10.

// Prepare output string using some different
// argument values for illustration

center (instr, outstr);

cout << outstr << endl;

center (instr, outstr, length + 8);

cout << outstr << endl;

center (instr, outstr, length + 16, ‘*’/, ‘*7);
cout << outstr << endl;

center (instr, outstr, 78, <', '>');

cout << outstr << endl;

return 0;

// Center a string. Parameters are:

// instr: Input string pointer
// ~outstr: Output string pointer
// width: Final desired output string width
// fill: Fill character for output string

/* Older C++ compilers might have to use this implementation:
void center (const char *instr, char *outstr,

*

int width, char 1Fill, char rFill)
/

void center (const char *instr, char *outstr,

}

int width = 0, char 1Fill = ‘-’, char rFill = '-')

if (outstr == 0) // The output string must not be null
return; // Return immediately if it is null
if (instr == 0) { // If input is null
*outstr = 0; // Make output into null string,
return; // and return.

}
// Calculate variables for filling output string
int len = strlen(instr);
if (width < len)
width = len;
int wd2 (width - len) / 2;

int i; // String index and for-loop control variable

i < wd2; i++)

for (i = 0;
outstr[i] = 1Fill;
for (/*1i = i*/; 1 < wd2 + len; i++)
outstr([i] = instr[i - wd2];
for (/*1i = i*/; 1 < width; i++)
outstr[i] = rFill;
outstr[i] = 0; // Terminate string with null

Previous Table of Contents Next

Page 187

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

When you run the program, it prompts you to enter a string. After you press Enter, the program displays the string centered in four
different patterns (shortened here to fit on the page):

$./a.out
Enter a string: Test
Test

--——- Test ----
*kkkkxkk Tagt *Fxxkkkk*

LLLLL LKL LKL LKL LKL LKL LKLLLLLLLL Test 2355555555555 555555555555>>>

The program declares a prototype for function center() with three default argument values:

void center (const char *instr, char *outstr,
int width = 0, char 1Fill = ‘-’, char rFill = ‘-');

The first two parameters, instr and outstr, address input and output string buffers. The input string is declared const to prevent it
from being changed by the function. The last three parameters are given default argument values. This initializes each parameter if it
is not supplied in calls to center(). As the first such call in the program demonstrates, you can call center() with as few as two
arguments:

center (instr, outstr);

In this case, the default values for width, IFill, and rFill are used. Because width is zero, the resulting output string is the same as the
input—not very useful. The second use of center() supplies a width value:

center (instr, outstr, length + 8);

The resulting string (stored at outstr) is centered in a space eight characters longer, with hyphens to the left and right of the string.
The next statement centers the output string in length plus 16 characters, surrounding it with asterisks:

center (instr, outstr, length + 16, ‘*', ‘*');

Finally, two different fill characters are specified in the last call to center() to bracket a string between < and > characters:
center (instr, outstr, 78, </, ‘>');

Inline Functions

Although calling a function takes place in the barest flutter of an eyelash, numerous function calls can shave points off a program ’s
performance. But avoiding functions is not an acceptable solution to this problem! Functions make programs modular and easier
to maintain. Without functions, it is difficult to write even a medium -sized program that runs correctly.

Inline functions give you the best of both worlds. With this technique, you can write a function but have the compiler insert that
function’s statements directly into the program’s source code. One of the best uses for this method is to speed up a for statement
or other loop. Consider a hypothetical example:

for (int i = 0; i < MAX; i++)
a_ function(i);

If MAX is very large, the numerous calls to a_function() might steal precious time from the program’s overall performance. Suppose
that a_function() executes statements A, B, and C. For better speed, you could insert A, B, and C directly into the loop:

for (int 1 = 0; 1 < MAX; i++)
Page 188

This document is created with trial version of CHM2PDF Pilot 2.10.

The amount of time saved should equal the value of MAX times the amount of time it takes to call and return from a_function().
However, the program has now lost its modularity. If similar loops appear throughout the program, it is simply impractical to
replace a_function() with A, B, and C. Worse, if it becomes necessary to modify those statements in some way, you would have to
do so everywhere they appeared in the program.

With inline functions, you can retain the program ’s modularity and tell the compiler to replace calls to a_function() with its
statements. Simply declare and implement a_function() to be inline like this:

inline void a_ function (int 1)
{

// ... statements in function

}

When you compile the program, C++ replaces every call to a_function() with that function’s statements. Listing 10.8, inline.cpp,
demonstrates how to write and use an inline function.

Listing 10.8 inline.cpp

#include <iostream.h>

// Declare and implement inline function before use
inline int max(int a, int b)
{
if (a >= Db)
return a;
else
return b;

}

// Main program
int main ()

{

int %, y, z; // Input and result variables
cout << “WX? 7;

cin >> Xx;

cout << “y? ”;

cin >> y;

z = max(x, Vy);

cout << “max(a, b) == " << z << endl;
return 0;

The inline function max() 1s declared and implemented before its use in the program. This tells the compiler to expand any calls to
the function by replacing those calls with the function ’s statements. To compile a program with inline functions, and to have the
compiler expand them, in GNU C++ you must compile with at least the first level of optimizations using the -0 option. To compile
the sample inline.cpp program and expand its inline max() function, use this command:

$ g++ -0 inline.cpp

Running the program produces output such as

$./a.out
X? 34

Y? 96
Page 189

This document is created with trial version of CHM2PDF Pilot 2.10.

max (a, b) == 96

Although the program appears to call max(), it actually executes that function’s statements as though they were written in main().
There is nothing special about an inline function’s statements. Anything that can go in a normal function can go in one declared
inline. Usually, inline functions are stored in header files, but you can write them in your program ’s source code files as shown
here. Just be sure to implement inline functions in full before the program uses them.

Previous Table of Contents Next

Page 190

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Function Overloading

All programmers face the demandingly creative job of thinking up new function names. Sure, you can invent any old name for a
function—the compiler greets a function named £29q() with the same enthusiasm as it greets one named batting_average(). Humans,
however, tend to better comprehend the latter name.

In a large program, coming up with good function names is no joking matter. Consider a graphics program that has to draw
umpteen shapes. Each drawing function needs a unique name, leading to programs strewn with functions such as draw_ellipse(),
draw _circle(), draw_square(), and draw_line(). The code probably also has numerous variables named ellipse, circle, square, and line,
and the resulting source code appears to have developed a bad stammer:

draw_ellipse(ellipse);
draw_circle(circle);
draw_square (square) ;
draw_line(line);

Wouldn’t it be great if you could use the same function name—Iet’s call it draw() —to draw all shapes? Then, you could simply
write:

draw
draw
draw
draw

ellipse);
circle);
square) ;
line);

—~ e~~~

This is the kind of clarity that function overloading provides. In C ++, multiple functions may have the same names as long as they
differ in at least one parameter data type. The functions are “overloaded” because, although named the same, they perform distinct
actions. The four draw() functions in our hypothetical graphics program are still separate, and they are written just as other
nonoverloaded functions. However, the C++ compiler recognizes them by the way they are used , not only by their names.

A sample program demonstrates how function overloading can help simplify a program ’s source code. Listing 10.9, overload.cpp,
uses an overloaded function named square() to display the square product of three variables, each of a different data type.

Listing 10.9 overload.cpp

#include <iostream.h>

// Overloaded-function prototypes
int square(int a);

double square (double a);

long double square (long double a);

int main ()

{

// Declare and initialize some variables
int x = 10;

double y = 20.5;

long double z = 30.75;

// Display the variables’ square products
cout << square(x) << endl;

cout << square(y) << endl;

cout << square(z) << endl;

return 0;

Page 191

This document is created with trial version of CHM2PDF Pilot 2.10.

// Returns the square of an int
int square (int a)
{

return a * a;

}

// Returns the square of a double
double square (double a)

{

return a * a;
}
// Returns the square of a long double
long double square (long double a)
{

return a * a;

}

Running the program displays the square of three different types of variables, showing onscreen the following text:

$ g++ overload.cpp
$./a.out

100

420.25

945.562

The program prototypes three overloaded square() functions. Each function has the same name but declares a different type of
parameter. The parameter names don’t matter; only their types must be different.

Overloaded functions can clarify a program ’s meaning. They also help automatically select the correct function to call. In the
sample program, this statement calls the correct function for whatever the argument type (y in this case) happens to be:

cout << square(y) << endl;

Contrast that with the conventional method of creating differently named functions. If, for example, the program has a square_int()
function, the following statement may or may not do what the programmer intends:

cout << square int(y) << endl; // 227

Such code makes the programmer responsible for passing objects of the correct type to square_int(). By overloading the square()

function, the compiler makes the correct choice for you. Of course, it ’s up to you to overload functions that perform more or less
the same jobs. If you haphazardly give many functions the same name, your program will be as comprehensible as a book written
with only one word.

Note: Overloaded functions are essential ingredients in object -oriented programming, introduced in Part III, “Object-Oriented
Programming.”

Recursive Functions

The concept of recursion strikes many as more theoretical than practical, but it is actually a common, everyday event. When you
peer into a mirror with another mirror behind, you see an endless series of images infinitely returning themselves. Each image is a
recursion of light from the one before.

In programming, recursion occurs when a function calls itself —like dialing your own number, although in C++, you don’t get a
busy signal. The return addresses of such calls are stacked in memory like reflections in facing mirrors, until some event causes the
recursions to unwind. Some algorithms are naturally recursive. For example, the factorial of a value equals that value times the
product of its preceding sequential values. The factorial of Snggeilgszl *2*3*%4%5 or 120 —equal to 5 times the factorial of 4.

This document is created with trial version of CHM2PDF Pilot 2.10.

From this observation, you can write a recursive factorial function such as in Listing 10.10, fact.cpp.

Listing 10.10 fact.cpp

#include <iostream.h>
double factorial (int number) ;

int main ()
{
int input = 8;
cout << “Factorial of “ << input << “ == 7";
cout << factorial (input) << endl;
return 0;

}

double factorial (int number)

{
if (number > 1)
return number * factorial (number - 1);
return 1;

Compile and run the demonstration program with these commands:

$ g++ fact.cpp
$./a.out
Factorial of 8 == 40320

To understand the factorial() function, consider the essential fact that the factorial of nequals ntimes the factorial of (7 - 1). In other

words, the factorial of 4 equals 4 * 3 * 2 * 1. The factorial of 3 equals 3 * 2 * 1. So, the factorial of 4 must equal 4 times the
factorial of 3. The factorial() function uses recursion to implement this self -defining algorithm. The statement

d = factorial (8);

sets d equal to 40,320 (8 * 7 * ... * 1).

Previous Table of Contents Next

Page 193

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Mutually Recursive Functions

Because they call themselves directly, functions such as factorial() in the preceding section are said to be inclusively recursive.
Another form of recursion occurs when one function calls another, which eventually ends up calling the first function again. If you
position three mirrors so that mirror 1 reflects mirror 2, which reflects mirror 3, which again reflects mirror 1, you ’d have a graphic
illustration of mutual recursion. Kids call them kaleidoscopes.

Mutual recursion is useful for writing co-routines. These are functions that depend on one another but don 't necessarily require
one function to be called before the other. Listing 10.11, onfirst.cpp, demonstrates mutual recursion in a somewhat frivolous way.
Named for Abbott and Costello ’s famous and comically recursive “Who’s on First?” routine, onfirst.cpp displays the alphabet.
Before continuing, can you figure out how?

Listing 10.11 onfirst.cpp

#include <iostream.h>

// Function prototypes
void A (char c);
void B(char c);

int main ()

{
A(z);
cout << endl;
return 0;

}

void A (char c)

{
if (¢ > ‘A')
B(c);
cout << c¢;

}

void B(char c)

{
A(--c);
}

Compile and run the program using the following commands. As shown here, the program displays the alphabet in uppercase:

$ g++ onfirst.cpp
$./a.out
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The main program starts the recursive ball rolling by calling function A() with the argument ‘7. Function A() examines its parameter
c. If ¢ is alphabetically greater than ‘A’, the function calls B(), which immediately calls A(), passing c-- as an argument. That causes
A() to again examine c, equal to one less than its former value, and then again call B(), until ¢ equals ‘A’. At this point, the recursion
unwinds, executing the output statement 26 times, and displaying the alphabet, one character at a time. Okay, you can laugh now.

Tip: Walk through onfirst.cpp using the GNU debugger ’s next and step commands to see how it works in slow motion.

Page 194

This document is created with trial version of CHM2PDF Pilot 2.10.

Functions and Separate Compilation
It’s often useful to compile functions in separate modules, an especially valuable technique for creating function libraries that
multiple programs can share. To illustrate, the following listings create a modular version of the kilo.cpp program in this chapter.

Listing 10.12, kilos.h, is a header file with a single element: the kilos() function prototype.

Listing 10.12 kilos.h

//

// kilos.h —-- Function kilos () header file

// Copyright (c) 1999 by Tom Swan. All rights reserved.
//

// Function prototype
double kilos(double miles);

In practice, most header files declare several function prototypes along with other items such as constants. They might also declare
global variables. But, in this case, the kilos.h header file merely declares a prototype for the kilos() function. Listing 10.13,
kilos.cpp, implements the function.

Listing 10.13 Kkilos.cpp

//
// kilos.cpp -- Function kilos () implementation module
// Copyright (c) 1999 by Tom Swan. All rights reserved.
//

// Convert miles to kilometers
double kilos(double miles)

{
return miles * 1.609344;

}

This is the same function as in the original program. However, kilos.cpp is a separate module that does not have a main() function.
It is common, and usually wise, to name the header and separate modules files the same—Xkilos.h and kilos.cpp, in this case. This
isn’t required, but helps you keep track of modules and their related header files. To finish the program requires writing another
module with a main() function. Listing 10.14, kilotab.cpp, completes the picture.

Listing 10.14 kilotab.cpp

#include <iostream.h>
#include <iomanip.h> // Need setw() manipulator
#include “kilos.h” // Need kilos () function

int main ()

{

cout << “Miles Kilometers” << endl;

cout << % W << endl;

for (int miles = 0; miles <= 200; miles += 20) {
cout << setw(5) << miles << “ == ";
cout << kilos(miles) << endl;

}

return 0;
Page 195

This document is created with trial version of CHM2PDF Pilot 2.10.

}

The finished program includes the separately compiled kilos() function with this directive:

#include “kilos.h”

The quotes tell the compiler that kilos.h is in the current directory, or in one specified by the option -I (see Chapter 5, “Compiling
and Debugging C++ Programs”). Including the header file declares the kilos() prototype, and that’s all that’s needed for the
program to compile. During the final steps of compilation, the GNU linker searches for an object -code module that contains the
implementation for the prototyped function. The linker must find implementations for all declared functions, or it ends with an
error. To compile the separate kilos.cpp module and the kilotab program, and to link their separate object-code files, enter these
commands:

$ g++ -c kilos.cpp
$ g++ kilotab.cpp kilos.o
$./a.out

Debugging Functions

Finally in this chapter, some words about debugging functions and parameters. As the following sections explain, the GNU
debugger offers several commands that are especially valuable for tracing through function statements.

Previous Table of Contents Next

Page 196

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Stepping over Functions

When single-stepping code using the GNU debugger, the next command executes one statement. Use this command to execute a
function at full speed and pause at the next statement affer the function returns. To see how this works, enter the following
commands to load the electric.cpp program in this chapter into the GNU debugger:

$ g++ -g -o electric electric.cpp
$ gdb --silent electric
(gdb)

When you see the debugger prompt, (gdb), enter a breakpoint to halt the code just before it calls the printTable() function (the line
number refers to the disk file ’s, not the listing as printed in this chapter):

(gdb) b 30
Breakpoint 1 at 0x8048714: file electric.cpp, line 30.

Run the program to the breakpoint with a run command:

(gdb) run

Starting program: /home/tswan/mgcc/src/cl0/electric
Breakpoint 1, main () at electric.cpp:30

30 printTable (startHours, hourlyIncrement,

31 startWatts, wattsIncrement, costPerKwh);

You might see only line 31, but no matter. The program is paused before the call to function printTable(). To execute that function
at full speed and pause at the next statement, type a next command:

(gdb) next

This displays the full table. Type cont to continue and end the program:

(gdb) cont
Stepping into Functions

When you want to trace the statements inside a function, use the stepcommand. If you are following along, type run to again halt
the program just before calling printTable(). (If you exited the debugger, repeat the instructions in the preceding section to load the
electric program and set a breakpoint.) When you type step, the debugger calls the function and immediately pauses execution (I
reformatted the lines to fit here, but they should be similar on your screen):

(gdb) step

printTable (startHours=100, hourlyIncrement=10,
startWatts=4, wattsIncrement=2,
costPerKwh=0.068699999999999997) at electric.cpp:50

50 cout << endl << “Hrs/Watts”;

Stepping into a function pauses execution before the function ’s first statement—in this case, the one at line 50. Above this line the
debugger shows the values assigned to the function’s parameters—useful information that you can inspect to ensure the function ’s
input data is correct. You may now issue additional next and step commands to trace the statements in the function, or type cont
to continue executing at normal speed to the next breakpoint or to the end.

Debugging inline Functions

Debugging inline functions can be difficult because they are ngt ggl}gc} and, therefore, are more difficult to trace. You might

This document is created with trial version of CHM2PDF Pilot 2.10.
inline
experience this problem if you compile the program using a command such as this:

$ g++ -0 -g -o inline inline.cpp
$ gdb inline

The -0 optimization option enables inline function expansion. The -g option adds debugging information to the compiled code file.
Although you can issue the preceding commands to load the inline.cpp program into the GNU debugger, you cannot set a
breakpoint on any inline function calls because they have been replaced by the function ’s statements. Worse, using the next and
step commands to trace inline functions doesn’t always work as expected. (If you are following along, type ¢ to quit.)

To simplify debugging inline functions, you can temporarily disable them. The easiest way to do this is to simply compile without
optimizations using a command such as

$ gt+ =g -0 inline inline.cpp
$ gdb inline

The second line loads the compiled inline.cpp program into the GNU debugger. You can now use the list command to find the line
number of the statement that calls max(), set a breakpoint there (type break n where 7 is the line number), and then type run.
When the breakpoint hits, type step to step inside the max() function. Use next to continue executing max() ’s statements. You can
do this because the program is not optimized, and max() is therefore treated as a callable function and is not expanded inline. Type
¢ to continue; ¢ to quit.

To debug optimized code and still allow tracing inline functions, you must use a different set of options. For example, the following
command compiles inline.cpp with optimizations, but with inline function expansion disabled:

$ g++ -0 -fno-inline -g -o inline inline.cpp
$ gdb inline

Repeat the preceding debugger instructions to verify that you can still step inside max(). You must use -O and -fno-inline together.
Because inline functions are normally not expanded except when optimizing, the following compilation command is pointless:

$ g++ -fno-inline -g inline.cpp // 227
Summary

A typical program contains many functions, each with a specific purpose. Functions modularize a program and make it easier to
write and maintain. Functions can declare value, reference, and pointer parameters to which statements pass arguments. Functions
may also return values of any valid C++ type. Before using a function, a program must declare it using a prototype that states the
function’s return type, its name, and any parameters. In addition to introducing functions, this chapter also explained recursive
functions and how to use C++ features such as default argument values, inline functions, and overloaded functions. The chapter
ended with a look at debugging commands useful for tracing function statements and examining parameter values.

For more information on subjects introduced in this chapter, turn to the following chapters:
* Chapter 5, “Compiling and Debugging C++ Programs”
* Chapter 6, “Creating Data Objects”

* Chapter 11, “Managing Memory with Pointers”
* Chapter 23, “Using the Standard Template Library (STL)”

Previous Table of Contents Next

Page 198

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 11
Managing Memory with Pointers

Modern software can use a bumper crop of memory, and programmers need reliable techniques for managing this space. In this
chapter, you learn how to use C++ memory-management techniques to create dynamic objects such as large bufters for holding
file data and arrays that expand and contract at runtime. These methods help your programs take advantage of the tremendous
amount of memory available on modern PCs and also prepare you for Part III, “Object-Oriented Programming,” in which
memory management plays an even bigger role in software development.

Allocating Memory

Generally, to create an object in memory, you request space from the GNU C++ memory manager. It isn’t necessary to know
beforehand exactly where the memory exists or its organization. If enough memory is available, the memory manager reserves
space for the object and gives you its address. The program uses that address as a pointer to the dynamic object’s value. The
object can be a simple variable, but it is more commonly a complex type such as struct, a string, or an array.

There are two basic ways to create dynamic objects. You can call standard C library functions such as malloc() (memory allocate)
and free(). Or, you can use the C++ operators new and delete. I show both methods in the next sections. You need to know how
the standard C functions work, if only to understand their use in existing programs. However, in new code, you should use the
C++ operators. They are safer and easier to use correctly, and they play a major role in the rest of this book ’s focus on object-
oriented C++ programming.

Memory Management with new and delete

C++ adds two operators to the C language, new and delete. These are not functions. They are native operators. Use new to
allocate space for a dynamic variable. Use delete to free that space after the program is finished using it. Freeing memory returns it
to the memory pool, sometimes called the seap. This makes the space available for use in creating other dynamic variables.

Although most dynamic objects are complex types such as structs and arrays, you may use new to allocate memory for an object
of any data type. For illustration, it ’s useful to run through some examples using a simple type such as double. For example, the
following statement uses the new operator to reserve space for a dynamic double object. It is called “dynamic” because the object
comes and goes under the control of the program:

double *dp = new double;
That statement actually performs three distinct actions:

* It declares a pointer named dp to a double object.
* It uses new to allocate enough memory to hold one double object.
* It assigns to dp the address of the allocated memory.

Following the statement, dp points to a double object in memory. Stored in dp is the address of the first byte of that memory. Like
an arrow pointing to an office in a building, a C ++ pointer refers, or points, to an object in memory.

You don’t have to declare and initialize a pointer in one step. You can declare the pointer ahead of time, and then elsewhere use
new to allocate memory and assign its address to the pointer. This is a common technique for creating a dynamic object,
demonstrated by this code fragment:

double *dp; // Declare a pointer to a double object
// dp is uninitialized here!

dp = new double; // Allocate space for a double object
Page 199

This document is created with trial version of CHM2PDF Pilot 2.10.

Merely declaring the pointer in the first statement does not allocate memory for a double object. That takes place later in the
statement that uses new. Until that second statement executes, the pointer dp is uninitialized , analogous to an arrow in an
unfinished building that points to a room not yet constructed. Following the arrow to its nonexistent destination could be hazardous
to your health. Similarly, using an uninitialized pointer before it is allocated memory is nearly guaranteed to cause a serious bug.

Tip: The phrase “a pointer to a double object” is commonly shortened to “a pointer to double” or “a double pointer.”

The new operator reserves exactly enough space in memory to hold one object of the specified type —in this case, 8§ bytes, the
size of one double variable. Some additional space might be attached to the allocated memory for the memory manager ’s internal
use, and for efficiency reasons, memory might be allocated in certain block sizes. However, as far as the program is concerned,
exactly eight bytes are available for holding one double, floating point value. The exact location of those bytes is usually
unimportant. The pointer dp always locates the allocated memory, wherever it happens to be.

Note: If enough memory is not available, new throws an exception, which if not handled ends the program. Chapter 16, “Handling
Exceptions,” explains how to trap this exception and deal with such errors. Also see “Dealing with Memory Errors™ later in this
chapter.

After allocating memory to a pointer such as dp, you can store a value of its declared type in that memory, and then use it as you
can any other variable of that type. However, dp alone is not a double object. It is a pointer o a double object. To use dp as a
double object requires dereferencing the pointer with the * operator. This statement, for example, assigns a value to the double
object to which dp points:

*dp = 3.14159;

That copies the value 3.14159 into the location in memory addressed by dp. You might think of the dereference operator, *, as a
conduit that creates a channel to the addressed memory location. Using the * operator is like following an arrow to its destination.
Not using the dereferencing operator causes a compilation error:

dp = 3.14159; // 2272

That doesn’t compile because dp is a pointer. It holds a memory address, and 3.14159 is not a memory address value. Again,
using the analogy of an arrow in an office building, the preceding statement is similar to telling a delivery worker to put a chair on a
sign that points to an office. But that ’s ridiculous. You obviously want the worker to put the chair in the office to which the sign
refers. This is exactly how pointers work in C++. You use them to find the locations in memory where you want to read and write
data.

To retrieve the value of an object addressed by a pointer, again use the dereference operator. This statement writes the value of
the addressed double object to the standard output:

cout << “Walue == " << *dp << endl;

Because dp was declared as a double pointer, the expression *dp evaluates to a double object. When you are finished using the
dynamic object, delete it like this:

delete dp;

Previous Table of Contents Next

Page 200

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

That deletes the memory addressed by dp and returns that memory to the heap for use in creating other dynamic objects. Deleting
a pointer might change the addressed object’s contents because of the way the memory manager links together freed blocks. As a
firm rule, after deleting a dynamic object, never use its pointer in any way except to create another object with new . To help
prevent a bug caused by using a deleted pointer, it is a good idea to set deleted pointers to NULL with code such as the following:

delete dp;
dp = 0;

Or, you can set the pointer to the predefined constant NULL:

delete dp;
dp = NULL;

Tip: If dp is already NULL, deleting it does no harm, so it is not necessary to test whether dp equals NULL before applying the delete
operator.

By resetting a deleted pointer to NULL, other statements can test whether dp addresses an object in memory. For example, the
following if statement assigns a value to the dynamic object only if dp is not NULL:

if (dp != NULL)
*dp = 3.14159;

You will often see a statement like that shortened to

if (dp)
*dp = 3.14159;

The expression (dp) equals the value of dp, so if dp is zero, the expression (dp) is equivalent to false. If dp is nonzero, the
expression (dp) evaluates to true. You gain no advantage in using the shorthand expression, but some programmers seem to enjoy,
if not relish, being cryptic. Do yourself a big favor: Use clear expressions such as (dp = NULL) and (dp ==NULL) and leave
shorthand methods to those who actually like to debug code during holiday weekends.

Memory Leaks

After deleting the memory allocated to a pointer, you may reuse that pointer in another allocation statement. For example,
following a delete statement, the program may create another dynamic object and assign its address to dp, after which the pointer
dp 1s again initialized and ready for use:

dp = new double;

Deleting dynamic objects returns their memory to the heap. This is an especially important operation in programs that create many
or very large dynamic objects. If you don ’t religiously delete allocated memory, the heap can become fragmented with formerly
allocated objects, a messy condition called a memory leak . This is a critical problem to be avoided at all costs. Memory leaks
might cause the program to run out of free memory and, in serious cases, can negatively affect the operation of other processes
that have their own memory needs. The most common cause of a memory leak is a poorly written function such as

void £ ()
{
double *dp = new double;
// ... other statements
return; // ??? Memory leak here!

Page 201

This document is created with trial version of CHM2PDF Pilot 2.10.

The function allocates space for a double value using new. Because the function returns without deleting that space, when the
function ends, the local variable dp is destroyed, causing the address of the allocated memory to become lost in space. Fix the
program by writing the function this way:

void f()

{
double *dp = new double;
// ... other statements
delete dp;
return;

Now the function properly deletes the allocated memory before returning. When you need a function to allocate memory and not
delete it, one solution is to return the pointer as the function result. Here ’s a sample:

double *f ()

{
double *dp = new double;
*dp = 3.14159;
return dp; // Return pointer as function result

}

There is no memory leak here because the function preserves the address of the allocated memory by returning it as the function
result. Notice the function’s type is double * (double pointer). Managing the allocated memory is now the responsibility of the
function’s caller. Elsewhere in the program, a statement can declare a double pointer and call f() like this:

double *dynamic dp = £();

The function f() allocates space for a double value, assigns 3.14159 to that object, and returns the pointer, which the program
assigns to dynamic_dp. This plugs the leak, but the memory must still be deleted at some point, using the following statement:

delete dynamic_dp;
Memory Management with malloc() and free()

Many existing C programs use standard library functions to allocate and free memory, and it ’s good to know how to use the
techniques if only so that you can read and understand those programs’ source files. In new code, use the C++ new and delete
operators.

To use C memory management functions, include the stdlib.h header file using the directive

#include <stdlib.h>

This makes the following four functions available to your program:

void *malloc(size_ t size);

void *calloc(size t n, size t size);
void *realloc(void *ptr, size t size);
void free(void *ptr);

Several other memory allocation functions are in the standard C library, but those four are the most commonly used. The first
three functions allocate memory. The free() function deletes previously allocated memory. Memory allocators return type void *,
literally a pointer with no type, that can be assigned to any pointer variable. If enough memory is not available, memory allocation
functions return NULL. The free() function returns no value.

Note: I explain here only how to use malloc(). For online documentation on using calloc(), realloc(), and other standard C library memory
functions, use the command info malloc . For the full ball of wax on C memory management functions, use the command info libc
and step to the node Memory Management. Depending on y%e[éw version, this might be named Memory Allocation.

This document is created with trial version of CHM2PDF Pilot 2.10.

Calling malloc() reserves size bytes of memory. The following statements declare a double pointer dp and then call malloc() to
allocate space for one double value:

double *dp;
dp = (double *) malloc(sizeof (double));

Obviously, using the C++ new operator is simpler. In plain C, the #ype cast expression isn’t needed, and you will find numerous
statements such as the following in C source files:

dp = malloc(sizeof (double));

However, C++ is much more strict about enforcing type compatibility among objects used in assignment statements. To tell the
compiler that you intend to convert malloc()’s return value of type void * into a double *, you must preface the call to malloc() with
the type cast expression (double *). When converting C programs to C++, this is one change you might have to make. (It is
preferable, although possibly more time -consuming, to convert all uses of malloc() to use the new operator.)

Previous Table of Contents Next

Page 203

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

To malloc(), pass the size in bytes of the amount of space to reserve. Usually, the safest course is to use sizeof() along with the data
type of the object. Even so, you might spot an inherent danger here. A simple typing error such as the following allocates an
incorrect amount of space:

dp = (double *) malloc(sizeof(char)); // 222

Oops. The program just reserved a single byte (the size of a char object) and assigned its address to dp. Even with all warning
levels engaged, the compiler is happy to enable you to make this grave error, one more good reason to use the C++ new operator,
which obtains the size of an object from its data type. In C ++, an obviously incorrect statement such as this

double *dp = new char; // 2°2°?
results in the following compiler error:

test.cpp:9: assignment to ‘double *’ from ‘char *’

Getting back to C, if malloc() returns a non-NULL pointer, you may use it in the same way as described in the preceding section.
When you are finished using the dynamic object, delete that memory by calling free():

free(dp);

That returns the allocated memory to the heap for use in creating other dynamic objects. If dp is NULL, deleting it does no harm, so
it is not necessary to include a test for a NULL pointer before calling free(). The same comments from the preceding sections about
deleting pointers apply to standard C memory management. Always free the memory your program allocates.

WARNING: You may combine C and C++ memory techniques in the same program. However, if you allocate space using malloc() or
another standard C library function, always use free() to delete that space. If you allocate space using new, always use delete. Although
you might discover in the GNU source files that new calls malloc(), it is not safe to assume that the two methods are equivalent! As
you learn in Chapter 19, “Overloading Operators,” a C++ program can reprogram the new operator to use an entirely different memory
management system. In such cases, mixing C and C++ memory techniques is begging for disaster. Don’t do it.

Dealing with Memory Errors

When creating dynamic objects, a main concern is whether enough memory is available. If a memory allocation error occurs, one
of three actions takes place:

* new throws an exception.
* new returns NULL.
* new calls a program function (not recommended).

In GNU C++ and most ANSI C++ compilers, new throws an exception if any memory allocation errors occur. Unless the program
itself handles that exception, this causes the program to end. In older versions of C ++, new returns NULL, similar to how the
standard C library function malloc() works. Using GNU C++ and most ANSI C++ compilers, you can also elect to have new call a
program function, although this practice isn ’t recommended.

Exceptions are the best way to handle out-of-memory and other memory allocation problems. However, ending the program in
the event of a memory exception might not be acceptable. Also, many existing programs expect new to return NULL. To
reprogram new, include the new.h header using the directive:

#include <new.h>

Page 204

This document is created with trial version of CHM2PDF Pilot 2.10.

Next, insert this statement into the program:

set new handler (0);

The set_new_handler() function assigns the address of the function that new calls to throw a memory exception. Replacing that
address with 0 causes new instead to return NULL if any errors occur.

Note: Reprogramming new to return NULL works just fine, but it makes your program incompatible with the ANSI C++ standard.

After calling set new handler(), you can write code such as the following to allocate memory and test whether an error occurred:

set new handler (0) ;
double *dp = new double;

if (dp == NULL) {
cerr << “W*** Qut of memory” << endl;
exit (1) ;

The error message is conventionally written to the standard error output object cerr rather than cout. Alternatively, you may pass
the name of a void function to set new handler() using code such as

void my handler();
//

set new handler (my handler);

This works, but exception handling is a much safer approach to dealing with memory allocation problems, so don 't waste your
time developing a custom error handling function. You learn how to use memory management exceptions in Chapter 16,
“Handling Exceptions,” under “Exceptions and Memory Management.”

Tip: Given the option -fecheck-new, GNU C++ adds code that checks new’s return value. If new returns NULL, changes to allocated
memory are prohibited. This option isn’t needed unless the program uses set_new_handler(0) to cause new to return NULL. The option is
probably unique to GNU C++

Pointers for Using Pointers

For convenience, many examples in this chapter allocate dynamic memory space for a double value. In practice, however, you’ll
rarely if ever create simple objects this way —it’s easier simply to create them as variables. Dynamic objects in real-world
software are typically complex types such as strings and arrays. The next sections explain how to use new and delete to manage
these types of dynamic memory objects. (In the coming chapters, you learn how to create dynamic structs as well as their object-
oriented cousins, class objects.)

Previous Table of Contents Next

Page 205

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Dynamic Strings

When created as program variables, character strings are fixed in size and can waste space. For example, code such as the
following creates a string buffer of 128 bytes, big enough for a 127 -character string plus a null terminator:

#define BUF SIZE 128
//
char input buffer[BUF SIZE];

Storing short strings in the fixed -size buffer wastes memory that could be put to better use. Worse, when declared inside a
function, the string is placed on the system stack, which is limited in size and is best kept free of large objects.

A good way to avoid creating large variables that waste memory is to write a function that allocates a dynamic string using just as
much memory as needed. Listing 11.1, newstr.cpp, shows one way to write this kind of function.

Listing 11.1 newstr.cpp

#include <iostream.h>
#include <string.h> // Need strlen(), strcpy()

// Function prototypes
const char *get string(const char *prompt);
size t mem block size(const void *p);

int main ()

{
// Prompt user for and create a dynamic string
const char *cp = get string(“Enter a string: ”);

// Display some statistics

cout << “String : ” << cp << endl;

cout << “Length : ” << strlen(cp) << Y char(s)” << endl;

cout << “Size : 7 << mem _block size(cp) << “ bytes”
<< endl;

// Delete string when finished
delete[] cp; // Notice the brackets!
return 0;

// Prompts user to enter a string. Returns address of a new
// character buffer big enough to hold only that string.

// Be sure to delete the returned pointer!

const char *get string(const char *prompt)

{

const int buf size = 128; // Size of input buffer
char *temp = new char[buf size]; // Create input buffer
cout << prompt; // Prompt user for input
cin.getline (temp, buf size); // Read input from user
char *result = new char[strlen(temp) + 1]; // Create string
strcpy (result, temp):; // Copy buffer to result
delete[] temp; // Delete the buffer
return result; // Return entered string

// Return size in bytes of an allocated memory block

// addressed by pointer p. Tricky but it works.
Page 206

This document is created with trial version of CHM2PDF Pilot 2.10.

size t mem block size(const void *p)

{

char *cp = (char *) p; // Convert void * to
// allow math on p
return *(size_t *)(cp - 4); // Size of chunk is

// four bytes back

The newstr.cpp program declares two function prototypes, get string() and mem_block_size(). In the program, this statement
prompts the user to enter a string:

const char *cp = get_string(“Enter a string: ”);

The const char pointer cp is assigned the result of calling get string(). The literal string parameter passed to the function is the
prompt displayed onscreen. Specifying cp to be const prevents the program from attempting to modify the entered string. This isn ’t
strictly necessary, and you could rewrite the program to use pointers of type char *. However, because the returned string is only
as long as necessary, operations that change the string’s length might be dangerous, and it is best made const for that reason.

When finished using the string, delete it using a special form of the delete operator:

delete[] cp;

The empty brackets inform the compiler that ¢p addresses an array. In this case, the brackets are not strictly needed because the
array contains only simple chars. However, as you learn in the next section, other types of arrays might require special handling
during deletion, and it’s a good idea to get in the practice of using delete[] to delete dynamic arrays.

Now take a look at the get string() function. It begins by declaring a constant integer, buf size, equal to 128. This is the maximum
size string that the function can return. You might want to change the value to 255 or higher, especially when using this method to
read strings from files. Next, the function creates a dynamic buffer of the declared maximum size:

char *temp = new char[buf size];

A couple of I/O statements prompt the user to enter a string into the temporary buffer, read by the cin.getline() function. The
standard C library string functions, strlen() and strcpy(), are used to create an object just big enough to hold the entered string and
to copy the entered string into that location:

char *result = new char[strlen(temp) + 1];
strcpy (result, temp);

The first statement calls strlen() to obtain the length of the input string stored in the temporary buffer. Because this length does not
include the null terminator at the end of the string, the statement adds 1 to the value passed to new. The char * variable result now
addresses a string buffer exactly large enough to hold the entered string, transferred by strepy() into the reserved space. Finally,
get_string() calls delete[] to delete the temporary buffer, and it returns the pointer to the reduced -size dynamic string.

Tip: If get_string() is called frequently, it might be advantageous to create a fixed, global input buffer for use by the function rather
than create a temporary buffer each time the function is called.

When you run the program, it prompts you to enter a string. After you press Enter, the program displays your typing and the
string’s length. It also displays the size of the memory block that new allocated. Here’s a sample run:

$./a.out

Enter a string: Testing, one, two, three
String : Testing, one, two, three

Length : 24 char (s)

Size : 32 bytes
Page 207

This document is created with trial version of CHM2PDF Pilot 2.10.

The string’s length is simply determined by calling strlen(). However, the size of the memory block might surprise you. In this case,
the 24-byte string actually occupies a space in memory of 32 bytes. In the attempt to save memory, the program apparently
wastes 8 bytes. That’s certainly better than wasting 103 as would be the case with a fixed -length 128-byte buffer, but the results
are not perfect. This happens because the GNU C++ memory manager allocates memory only in certain chunk sizes. In cases
where maximum efficiency is needed, you might need to take this fact into consideration (see “Other Memory Matters” later in this
chapter for more information about how the GNU memory manager works).

Previous Table of Contents Next

Page 208

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Pointer Arithmetic

C and C++ permit arithmetic operations on pointer address values. For example, if p is a pointer, p++ increments the pointer to the
next object in memory. Similarly, p-- decrements p to the address of a prior object. It ’s important to understand that an expression
such as p++ increments p not to the next address in memory, but to the next object of the type that p addresses. If p addresses a
double object of 8 bytes, p++ advances the pointer § bytes in memory to point to the next double object. You can also use other
arithmetic operators on pointers. For example, the expression (p + 5) equals the address five objects away from p.

Of course, it’s your responsibility to ensure that an object exists at the new location. Although it is often just as easy to use arrays
to locate successive objects stored together in memory, pointer arithmetic is handy for special circumstances. The next section lists
a practical use for the technique.

Obtaining a Memory Block’s Size

Obtaining a memory block’s size in bytes requires some tricky programming, shown in the newstr.cpp program (refer to Listing
11.1) in function mem block_size(). Pass a pointer to the function as follows to find a memory allocation ’s block size in bytes:

int k = mem block size(cp);

That sets k to the size of the block addressed by cp. You may pass any pointer to mem_block_size(). The returned value is not the
size of the object in that block—it is the size of the memory allocation itself, including overhead bytes added by the memory
manager. In GNU C++ programs, the block’s size is stored in its first four bytes. So, to obtain the size value, mem block size()
looks back four bytes from a given address and returns the integer value located there, using these statements:

char *cp = (char *) p;
return *(size t *) (cp - 4);

That might seem a bit cryptic, but is not as involved as it probably looks. The first statement converts the function ’s void *p
parameter to a char * because ANSI C++ forbids arithmetic on void pointers. The second statement performs several operations.
It subtracts 4 from cp to address the location that many bytes lower in memory. A type cast expression (size_t *) informs the
compiler that an object of type size t is stored at the calculated location. Finally, a pointer dereference operator at the head of the
entire expression obtains the integer value stored there. The function returns this value.

Note: The size_t data type is defined for all C and C ++ programs and, in GNU C++, equates to a long int. It is used in many library
declarations. I use it in mem_block_size() because the GNU memory manager defines chunk sizes using size_t.

The mem block_size() function probably works in all GNU C++ implementations, but it might fail with another C++ compiler or
operating system. Then again, it might work—many compilers use similar internal representations for memory allocations, and
storing the size of a block in its first 4 bytes is fairly standard, at least on small computer systems. If you feel shaky about this
assumption, you can revise the second statement as follows to call sizeof():

return *(size t *) (cp - sizeof(size t));

I show this method strictly for your information. Don ’t rely on it to operate correctly in production code! If you are curious about
how the memory manager works, however, this bit of code might help you to poke around.

Dynamic Arrays
You’re not limited to allocating dynamic strings, which, of course, are merely arrays of characters. You may also use new and

delete[] to create and dispose of dynamic arrays containing objects of any data type. As Listing 11.2, newarray.cpp, demonstrates,
Page 209

This document is created with trial version of CHM2PDF Pilot 2.10.
delete[]

this is a valuable technique for creating arrays of sizes determined at runtime.

Listing 11.2 newarray.cpp

#include <iostream.h>
#include <iomanip.h> // Need setw()

int array size; // User-selected array size

int main ()

{

int *array; // Pointer to array of integers
int i; // Array index
cout << “Array size (1 .. 100) 2 ”;
cin >> array size;
array _size = 100 <? array_size; // Minimum 100 or array size
if (array size > 0) {
array = new int[array sizel; // Create dynamic array
// Fill array with values
for (i = 0; i < array size; i++) // Assign values to array

array = i;
// Display array contents
for (i = 0; i < array size; i++) // Display array contents
cout << setw(8) << array; [i]
cout << endl;
delete[] array; // Notice the brackets!
} // if (array size > 0)
return 0;

Running the program prompts you to enter an array size from 1 to 100. After reading your response, the program uses the C ++<?
(minimum of) operator to restrict this value to the allowed range. This statement, however, might not work with other C ++
compilers:

array size = 100 <? array size;

Use the >? (maximum of) operator to return the greater of two values. If array size is zero or less, the sample program ends.
Otherwise, it creates an array of integers of the specified size using this statement:

int *array;

array = new int[array size];

You can use similar code to create arrays of any data type, and of just about any practical size. Use the dynamic array as you do
one created as a fixed variable. Because arrays and pointers are functionally equivalent in C and C ++, you do not have to
dereference the pointer returned by new. For example, this fills the array with integer values:

for (i = 0; i < array size; i++)
array = 1i;

Be sure, as shown in Listing 11.2, to delete the dynamic array using brackets as in this statement:
delete[] array;
The brackets tell the compiler that array is a collection of, probably, two or more objects. Because this array ’s contents are simple

integers, the special form of delete[] isn’t strictly needed. However, delete[] is needed for arrays of objects that each require their
own cleanups before the entire array is disposed. Chapter 1% , “Czrfgting and Destroying Objects,” demonstrates situations where
age

This document is created with trial version of CHM2PDF Pilot 2.10.

delete[] is required to properly dispose of a dynamic array.

Previous Table of Contents Next

Page 211

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Multidimensional Dynamic Arrays

To create a two- or three-dimensional dynamic array requires a bit more effort. You may use the following techniques to create
arrays of any dimension, but it ’s difficult to imagine a need for more than two or three. Suppose that you want to allocate space
for a 10-by-20 matrix of double values. Begin by declaring the pointer to be used for referencing the array:

int (*matrix) [20];

This states that matrix is a pointer to an array of 20 integers. The size may be variable, or literal as shown here. To create the
multidimensional array, you actually create an array of those pointers, each of which points to 20 integer values. This works
because a multidimensional array is literally an array of arrays—remember, an array and a pointer in C and C++ are one and the
same.

The array’s declaration must use parentheses in the expression (*matrix) because the array brackets have higher precedence than
the pointer symbol *. The array doesn’t yet exist; all you’ve done is tell the compiler that matrix potentially addresses an array of
a certain size and structure. To allocate memory for an actual 10 -by-20 matrix and assign the array’s address to matrix, use this
statement:

matrix = new int[10][20];

That allocates space for a 10-element array of 20 -element int arrays—that is, a 10-by-20 integer matrix. The resulting address is
assigned to the matrix pointer. You may specify constants or variables for the array ’s dimensions. Listing 11.3, newmatrix.cpp,
shows how to create a two-dimensional array sized at runtime.

Listing 11.3 newmatrix.cpp

#include <iostream.h>
#include <iomanip.h>

#define MAX ROWS 9
#define MAX COLS 10

int main ()

{

int rows, cols; // User selectable matrix size

int r, c; // Row and column for-loop indexes
cout << “Rows (1 ... ” << MAX ROWS << %) 7?2 7;

cin >> rows;

cout << “Columns (1 ... ” << MAX COLS << %) 2 7;

cin >> cols;

rows = rows <? MAX ROWS; // Minimum of rows and MAX ROWS
cols cols <? MAX COLS; // Minimum of cols and MAX COLS

if (rows > 0 && cols > 0) {
int (* matrix) [cols]; // Declare matrix pointer
matrix = new int[rows][cols]; // Create the dynamic matrix

// Fill the matrix with integer values

for (r = 0; r < rows; r++)
for (¢ = 0; ¢ < cols; c++)
matrix[r][c] = (r + 1) * (c + 1);

// Display matrix in column order
Page 212

This document is created with trial version of CHM2PDF Pilot 2.10.

for (¢ = 0; ¢ < cols; c++) {
for (r = 0; r < rows; r++)
cout << setw(8) << matrix[r][c]:
cout << endl; // Start new line after each row

}
delete[] matrix; // Notice the brackets!

}

return 0;

Run the program and enter the number of rows and columns you want to create. To declare and create the matrix, the program
executes the following statements:

int (* matrix) [cols];
matrix = new int[rows] [cols];

Note: In some versions of C++, cols is required to be a constant; only rows may be variable. However, GNU C++ permits variables in
creating arrays of any dimensions.

The expression matrix[r][c] refers to a single element in the matrix at row r and column c. For fun, the sample program uses this
expression to fill the matrix with some values, and then writes them to the standard output in column order. Onscreen, you see
something like this:

$ g++ newmatrix.cpp
$./a.out

Rows (1 ... 9) 3
Columns (1 0) 2 4

DSw N
O O DN
N O oy W

More than two dimensions are rarely useful, but C++ places no restriction on the depth of a multidimensional array. To create an
8-by-8-by-8 cube, you could use these statements:

int (* matrix) [8][8];
matrix = new int[8][8]1[8];

Again, in the first line, you are merely declaring matrix as a pointer that potentially addresses a multidimensional array. As declared
here, matrix is literally a pointer (an array) of 8 arrays of § arrays —conceptually, a three-dimensional cube. It’s possible to carry
this idea to extremes, adding additional dimensions, but is there a practical use for a four - or higher-dimensional matrix? If there is,
I’ve never seen it!

Passing Arguments to main()

Using pointers, you can access arguments passed to main(). This is an essential technique for obtaining command -line options,
filenames, and other data entered by users when they run the program. Listing 11.4, cmdline.cpp, shows one way to pick up
command-line arguments.

Listing 11.4 cmdline.cpp

#include <iostream.h>

int main(int argc, char *argvl[])
{
Page 213

This document is created with trial version of CHM2PDF Pilot 2.10.

cout << “Command line arguments:” << endl;
for (int 1 = 1; 1 < argc; 1i++)

cout << argv << endl;
return 0;

Compile and run the program specifying command -line arguments. As the following sample run shows, the program echoes each
argument on a separate line. Enter these commands:

$ g++ cmdline.cpp

$./a.out option filename -x
Command line arguments:
option

filename

-x

Separate each argument with whitespace, usually just a single blank. In the program, argc equals the number of command-line
arguments plus one. (The first argument is a copy of the command issued to run the program.) The argv array points to each
entered command string. A simple for loop prints each of that array ’s entries:

for (int i = 1; 1 < argc; i++)
cout << argv << endl;

That’s certainly intuitive, but you will often come across less clear code, such as the following, which relies on pointer arithmetic to
do the same job:

while (--argc > 0)
cout << *++argv << endl;

The while loop decrements argc and uses the cryptic expression *++argyv to address each command-line string. This uses pointer

arithmetic to advance argv to each char pointer in the argyv array. Although this works, it is functionally equivalent to the former for
loop. (However, the while loop requires no additional integer index.) You might also come across argv declared in main() like this:

int main(int argc, char **argv) // 222

Previous Table of Contents Next

Page 214

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Because pointers and arrays are equivalent in C and C++, the expressions **argv and *argv[] are the same, and you gain nothing
with the more cryptic style. In both instances, argv is literally a pointer to an array of other pointers—of type char * in this case. |
mention this fact only to counter the notion that the two declarations are functionally different. They aren ’t. In all cases, to pick up
command-line arguments in main(), use the following declaration style from the sample cmdline.cpp (refer to Listing 11.4):

int main(int argc, char *argv([])
The getopt() Function

Responding to program options is a common and essential feature of most Linux programs. Your software probably needs several
options to select among the program’s features. Writing code to parse option letters and arguments is unnecessary —just use the
standard library’s getopt() function to do most of the dirty work along with the main() parameters explained in the preceding
section.

The first step in using getopt() s to include the unistd.h header file with the directive:

#include <unistd.h>

That includes various UNIX and Linux standard function prototypes and global variables. In this case, we are interested in the
getopt() function declared in unistd.h as

int getopt(int argc, char *argv[], const char *opts);

The function’s options are the same as received by main() (see the preceding section). Simply pass argc and argv directly to getopt
(- The third option is a constant string that specifies to getopt() the program’s recognized options. To supply this parameter, you
might define a constant such as this:

#define OPTIONS “xy:z::”

Each letter in the OPTIONS string represents a single option. In this case, the program recognizes three option letters: -x, -y, and -z.
A colon indicates that an argument must follow the option. So, in this example, the -y option requires an argument as in the
command -y filename. A double colon indicates that an option may or may not be followed by an argument. Here, -z might be
followed by a string argument as in -z filename, or it may be used alone. However, due to possible ambiguities illustrated in the next
listing, optional arguments should have no preceding spaces. In this case, -yfilename and -y filename are both legitimate options. But,
because of the double colon in the -z option’s definition, only -zfilename is guaranteed to work. The command -z filename with a
space before the argument might be ambiguous.

In addition to defining the getopt() function, including unistd.h defines four related global variables. These are

* int opterr—Equals 1 (false) if getopt() detects an error. In that event, getopt() displays an error message.

* int optind—Equals the index of the argv[] array between calls to getopt().

* int optopt—Equals the value of any unrecognized options.

* char *optarg—Equals a pointer to any argument string following a recognized option—for example, a filename.

The getopt() function returns a value equal to a detected option character, a question mark if an unrecognized option is detected,
or -1 if the function is done parsing the command line. Some versions of getopt() also return a value of “’ if a parameter is missing.

Although the info pages for libc include an example of how to use getopt(), the sample code is written in C, not C++. Also, the
example fails to detect errors properly, and it evades an ambiguity with the double colon specification in an option string. Listing
11.5, options.cpp, fixes these problems and shows how to use getopt() in C++ code.

Listing 11.5 options.cpp Page 215

This document is created with trial version of CHM2PDF Pilot 2.10.

#include <iostream.h>
#include <unistd.h> // Need getopt ()
#include <ctype.h> // Need isprint ()

// Constants.

// - Options must be single letters.

// - A colon means an option requires an argument.

// - A double colon means an option may have an argument.

#define OPTIONS “xy:z::” // Option letters
bool xoption, yoption, zoption; // Program flags
char *yarg = NULL; // yoption argument

char *zarg NULL; // Optional zoption argument

// Function prototypes
void instruct () ;
void results();

int main (int argc, char *argvl([])
{
char c; // Returned by getopt()

// Get known options and any arguments

//
while ((c = getopt(argc, argv, OPTIONS)) != -1)
switch (c) {
case ‘x':
xoption = true; // option -x
break;
case ‘y':
yoption = true; // option -y arg
yarg = optarg; // arg (required)
break;
case ‘z':
zoption = true; // option -z[arg]
if (optarqg)
zarg = optarg; // arg (optional)
break;
case ‘?':
instruct () ; // Display instructions
exit (1) ; // End program
default:
cerr << “Error in getopt () function” << endl;
abort (); // 227
}
results(); // Display results

// Get any other non option entries

//
if (argc > optind) {
cout << “Arguments not found by getopt() :” << endl;
for (int i = optind; 1 < argc; i++)
cout << “ 7 << argv << endl;
}
return 0;

// Display usage instructions
void instruct ()

{
cout << “Options” << endl;
cout << “ -x -- option” << endl;

Page 216

This document is created with trial version of CHM2PDF Pilot 2.10.

cout << “ -y arg -- option and arg” << endl;
cout << “ -z[arg] -- option (no space!)” << endl;
cout << ™ ex. ./options -x -y file -z other strings”;

cout << endl;

// Display flags and arguments
void results()

{

cout << “ xoption == " << xoption << endl;
cout << “ yoption == " << yoption << endl;
if (yoption)

cout << ™ yarg == " << yarg << endl;
cout << “ zoption == " << zoption << endl;
if (zoption && zarq)

cout << “ zarg == " << zarg << endl;

Note: You may use the options.cpp program as a shell for any Linux program to be executed on the command line. After reading the
following descriptions of the getop() function and its use in options.cpp, simply replace the program’s option variables with your
own.

Previous Table of Contents Next

Page 217

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Note: The info example for getopt() shows some rigmarole for displaying errors depending on whether an unrecognized letter is
printable (isprint() from ctype.h returns true). This is unnecessary because GNU ’s getopt() at that stage has already displayed an error
message about the unrecognized option. Perhaps that’s not the case in all UNIX systems, but it is in GNU C++ for Linux. If getopt()
returns a question mark, all you need to do is display instructions and call exit() as shown here.

A final switch-statement case, although recommended by getopt()’s documentation, is also probably unnecessary. It costs little,
however, and is probably wise to include in production code:

default:
cerr << “Error in getopt () function” << endl;
abort (); // 2?27

If the program gets to this code, something is wrong with getopt(). Careful testing ought to ensure those statements never execute,
but it pays to play safe.

Finally, the options.cpp program demonstrates how to recognize any additional nonoption entries such as in the following
command:

$./options -x -z filel file2 file3

The getopt() function does not detect the three filenames—it detects only the -x and -z option letters. Following the while and switch
statements in options.cpp, if argc is greater than the global variable optind (the current argv[] index as set by getopt()), then there are
additional entries still awaiting processing. You can pick them up with a for loop such as this:

for (int i = optind; i < argc; i++)
cout << “ 7 << argv << endl;

Other Memory Matters

Internally, the GNU C++ memory manager keeps track of allocated memory blocks, and it performs the actual task of reserving
memory when the program uses new. The memory manager links deleted blocks into a list, from which new fulfills allocation
requests. Except in programs that reprogram new to use different methods, behind the scenes, the GNU C ++ memory manager
handles all memory allocations and deletions.

There’s no need to understand exactly how the memory manager works, but some of its limitations might be important to you.
You might also want to construct code that examines memory blocks, perhaps for debugging purposes. By digging through the
compiler sources, I found the following limitations in GNU C ++:

* A pointer’s size is fixed at 4 bytes regardless of the system ’s integer or register size.

* Memory blocks are aligned on 8-byte boundaries. This means that a given block’s address is evenly divisible by 8.
Because a memory block’s address is not the same as its associated pointer, this means that pointer address values are not
similarly aligned.

* The minimum size of an allocated memory block is 16 bytes. Of those bytes, 12 are available to the program, and 4 are
reserved for the memory manager’s use.

« The maximum size of an allocated memory block is 2,147,483,640 bytes, or (23! - 8) bytes. This restriction apparently
exists because of the possibility that size t could be signed. What a shame that we can create only two billion byte objects
and not four billion. (Can you see my straight face?)

* The minimum overhead attached to every memory block is 4 bytes. However, because of block alignment, the actual size
of the memory allocation is not equal to four plus the size of the object. It is equal to that value plus whatever amount is
required to fill the allocation to its minimum alignment.

* The size of a memory block is stored in the 4 reserved b t8es just ahead of (at a lower address than) the pointer address
Page 21

This document is created with trial version of CHM2PDF Pilot 2.10.

value that the program receives from new.

Each allocated memory block has a structure defined by a struct, malloc_chunk, declared as follows:

struct malloc_chunk {
size t size; // Size in bytes including overhead
struct malloc chunk* fd; // Forward link; start of user data
struct malloc_chunk* bk; // Backward link
size t unused; // Padding to minimum block size (16 bytes)

bi

When a program calls new to obtain dynamic memory, the returned pointer actually addresses a location 4 bytes into this
structure, at the location of the fd member. While a memory block is in use by the program, only the struct’s size member is valid.
The program’s data fills the rest of the structure starting at fd (except for any unused space at the end of the allocation).

When a program calls delete, the memory manager overwrites the first several bytes of data in the block by creating a record of

struct malloc_chunk that links the block into a circular list. The link addresses are stored in the record’s fd and bk members, and for
this reason, after you delete a dynamic object, the first 8 bytes of its former value are obliterated.

Warning: Never upon pain of serious bugs use a memory allocation after it has been deleted!

Debugging Dynamic Memory
The GNU debugger has several commands that are useful for examining a program ’s dynamic memory allocations. The following

sections explain these commands and show how to use them to poke around in memory. This operation is not for the faint of
heart, but certainly possible. I also explain how to debug a main() function’s argec and argv parameters.

Note: Line numbers mentioned in the following sections might differ on your screen due to additional comments in the files on the
CD-ROM that are not printed in this book’s listings.

Debugging Pointers
Debugging pointers is similar to debugging other kinds of variables, but you often need to consider whether to examine the pointer
value itself or the addressed data. Sometimes you want both. To learn some useful commands for examining pointer data, compile

and load this chapter’s newstr.cpp program with the commands:

$ g++ -g -0 newstr newstr.cpp
$ gdb newstr

Set a breakpoint on the following statement (it ’s at line 21 for me)
const char *cp = get string(“Enter a string: ”);

and then run the program:

(gdb) b 21
Breakpoint 1 at 0x80488le: file newstr.cpp, line 21.
(gdb) run

When the breakpoint hits, the program stops and shows the statement next scheduled to execute.

Breakpoint 1, main () at newstr.cpp:21
21 const char *cp = get_string(“Enter a string: ”);

Execute the statement by typing a next command, and then Sgéeerzpl String when prompted:

This ocumerﬁ istcreated with trial version of CH(JVIZP F Pilot 2.10.
es ,

xecute the statement by typing a next command, and then enter a string when prompted:
(gdb) next
Enter a string: Test string
24 cout << “String : ” << cp << endl;

Previous Table of Contents Next

Page 220

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Again, the program halts, in this case at line 24. To examine the pointer and addressed string assigned to cp, use a print
command:

(gdb) print cp
$1 = 0x8049da8 “Test string”

The debugger assigns a temporary alias $1 to the variable and shows you the address value held in the ¢p pointer. The debugger
also shows you the addressed data—in this case, the string you entered. The debugger knows what type of data to display based
on the pointer’s type. To see that type, use a ptyp command as follows. This tells you that cp is a char pointer (char *):

(gdb) ptyp cp
type = char *

Tip: To repeatedly display a pointer, use the command display cp . Now, every time the program pauses, the debugger shows you
the value of cp and the data it addresses. This works for any type of variable, not only pointers.

Debugging Addressed Data

Another command, tersely named x, inspects data anywhere in memory. The command is particularly useful for looking
microscopically at the bytes in buffers and the characters in strings. If you are following along from the preceding section, skip the
following commands; otherwise, enter them now:

$ g++ -g -0 newstr newstr.cpp
$ gdb newstr

(gdb) b 24

(gdb) run

Enter a string: Test string

As mentioned, you can type a print command to inspect the string assigned to cp at this place in the program:

(gdb) print cp
$1 = 0x8049da8 “Test string”

Note the address that the debugger reports. To inspect in excruciating detail the bytes at that address, use an x command. For
example, to view the addressed string in hexadecimal, enter this command:

(gdb) x/12h cp

0x8049da8: 0x6554 0x7473 0x7320 0x7274 0x6e69
0x0067 0x0251 0x0000
0x8049db8: 0x0000 0x0000 0x0000 0x0000

That displays 12 two-byte words in hexadecimal at the address held in cp. If you want, you can enter the address itself. This is
usually more tedious than entering a variable name, but is useful for poking around. For example, to examine one byte at the
address in cp and display the results in binary, use the following command (instead of the address shown, use the one for cp shown
on your screen):

(gdb) x /1bt 0x8049da8
0x8049da8: 01110100

To display 12 characters at cp, enter the following command:

(gdb) x/12c cp
0x8049da8: 84 ‘T’ 101 ‘e’ 115 ‘s’ 116 ‘5’ %% A
age 221

This document is created with trial version of CHM2PDF Pilot 2.10.

115 ‘s’ 116 ‘t’ 114 ‘r’
0x8049db0: 105 ‘i’ 110 ‘n’ 103 g’ 0 '\000’

The x command follows this general format:
x /FMT ADDRESS

A FMT specification may have up to three parts: a size in bytes, a format letter, and a size letter. Table 11.1 details these
elements.

Table 11.1 Debugger x Command FMT Specifications

Format Letter Format Size Letter Format

a address b byte (1 byte)

c char g giant (8 bytes)
d decimal h halfword (2 bytes)
f floating point w word (4 bytes)
i instruction

0 octal

S string

t binary

u unsigned decimal

X hexadecimal

Previous Table of Contents Next

Page 222

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Use the x command to inspect a number of bytes of memory, in a specific format, and showing each element in a specified size.
For example, to examine eight halfword (2 -byte) values and show the values in decimal, use a command such as

(gdb) x /8dh 0x8049da8
0x8049da8: 25940 29811 29472 29300 28265
103 593 0

Note: The GNU debugger doesn’t permit examining addresses that do not belong to the debugged process. If you enter the
preceding address, it almost certainly fails with a “Cannot access memory” error. Load a program such as newstr.cpp and use a
variable such as cp as explained in this section to experiment with the x options in Table 11.1.

Debugging Program Options

Because the GNU debugger recognizes its own options, as do most Linux programs, attempting to load a program with a
command such as the following fails to produce expected results:

$ gdb options -x -y filename
That causes the debugger to complain with an error message:

-y: No such file or directory.

To compile the options.cpp program and load it with options into the debugger requires additional steps. First compile and load
the program, but do not specify any program options:

$ g++ -g -o options options.cpp
$ gdb options

To gdb’s prompt, enter a run command along with the options you want the loaded program to recognize. For example, type this
command:

(gdb) run -x -y filename
Starting program: /src/cll/options -x -y filename

The GNU debugger responds with the command used to start the process, along with any options and arguments you specify in
the run command. To run the program again, just type run—the debugger reuses the last known set of command -line arguments.
To change arguments, you can specify new ones with another run command, or use the sef args command like this:

(gdb) set args -f -g

(gdb) run
Starting program: /home/tswan/mgcc/src/cll/options -f -g
/home/tswan/mgcc/src/cll/options: invalid option -- f

é%égram exited with code 01.

In this case, I specified unknown arguments -f and -q, causing the program to display an error message and end by calling exit(1).
Debugging main() Arguments

To inspect main()’s arge and argv options, do not set a breakpoint on the main() function’s header—the parameters are at that point
not yet initialized. Instead, set a breakpoint at the first statement inside main(). For example, using the options.cpp program, set a

breakpoint at line 35 and run (or continue) with these commands:
Page 223

This document is created with trial version of CHM2PDF Pilot 2.10.

(gdb) b 35
Breakpoint 2 at 0x804879f: file options.cpp, line 35.
(gdb) run

When the program reaches the specified breakpoint, the GNU debugger halts it and displays something like this:

Breakpoint 2, main (argc=3, argv=0xbffffalc) at options.cpp:35
35 while ((c = getopt(argc, argv, OPTIONS)) != -1)

The value of argc equals the number of command-line arguments plus one because the first argument is always the command that
started the process. The argv address isn’t meaningful, but you can use argv to inspect specific arguments. For example, enter a
display command as follows to inspect the second string addressed by argv:

(gdb) display argv([l]
2: argv[l] = Oxbffffb82 “-f”

Summary

C++ provides the new and delete operators for allocating and deleting dynamic memory objects. Such objects use memory
efficiently and, in general, are preferred over global variables and large local objects in functions. You may use standard C
memory management techniques—calling malloc() for example—in C++ programs; however, you should not mix C and C++
memory techniques. This chapter explained how to use new and delete, and also showed methods for creating dynamic arrays and
strings that take only as much room as needed. The chapter also explained related techniques for accessing arguments passed to
main() and included an example in C++ for sophisticated command-line parsing with the standard C library’s getopt() function. The
chapter ended with suggestions for debugging pointers and dynamically allocated memory.

For more information on subjects introduced in this chapter, turn to the following chapters:

* Chapter 13, “Creating and Destroying Objects”

* Chapter 16, “Handling Exceptions”

Chapter 19, “Overloading Operators”

* Chapter 22, “Mastering the Standard string Class”

Previous Table of Contents Next

Page 224

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Part 111
Object-Oriented Programming

12 Introducing the Class 255

13 Creating and Destroying Objects 275
14 Investing in Inheritance 307

15 Programming with Virtual Functions 331
16 Handling Exceptions 357

17 Creating Class Templates 379

CHAPTER 12
Introducing the Class

You’d have to be living face down in a moon crater not to have heard about object -oriented programming, or OOP, as it is
comically known. OOP is the programming paradigm of the future, the model (some say) upon which all the world ’s software
soon will be built. Whether that’s true or not, there’s no denying the value of OOP in constructing and maintaining complex
software applications, and those who ignore OOP risk missing the major contribution of C ++ to programming—the class.

If this is your initial exposure to OOP, don’t be concerned if its advantages elude you at first. C ++ lets you learn object-oriented
programming techniques at your own speed. Unlike so-called “pure” OOP languages such as Smalltalk, C++ is a hybrid
programming language that combines conventional and object-oriented methods. This means that you can use what you already
know about conventional C and C++ while you learn how to program with classes and objects. Three concepts distinguish OOP
from conventional programming:

* Encapsulation
¢ Inheritance
¢ Virtual functions

In this chapter and the next, you learn how to create classes using encapsulation to marry data and functions in objects. You also
learn some of the reasons classes and object-oriented programming help you write code that works reliably and is easy to
maintain. The rest of the chapters in Part III introduce inheritance and virtual functions along with practical object -oriented
programming techniques using GNU C++.

Why Use Object-Oriented Programming?

Object-oriented programming and C++ classes help reduce complexity, especially in large software applications. One reason this
is true is because OOP encourages programmers to reuse existing code rather than rewrite functions from scratch. Reusing code
doesn’t mean cutting and pasting source code text. With objects, you build new programming by inheriting existing, compiled
C++ classes.

Reusing code is far more difficult with conventional programming languages such as C and Pascal. Conventional C programmers,
for example, typically rewrite the same functions over and over because it’s too much trouble to reuse existing, tested

modules. C++ classes are easy to reuse and extend, and well-written C++ programs tend to evolve from existing modules the way
trees grow by extending their branches. Rather than replant low-level code into every new program, with OOP you write
programs that grow naturally from your current crop of tested modules.

Introducing the Class

Simply stated, a class is an object-oriented tool for creating new data types that you can use in much the same way as native C++
Page 225

This document is created with trial version of CHM2PDF Pilot 2.10.
++

types such as char, int, and double. A class encapsulates data and functions. It is a special kind of struct that specifies data and the
functions that operate on that data.

Comparing a simple struct and a class is a good way to learn the basics of creating classes and objects. Listing 12.1, olddate.cpp,
shows the tried-and-true, but older, conventional way of representing date values using a struct and a function.

Listing 12.1 olddate.cpp

#include <iostream.h>

// Conventional struct
struct date {

int dt month;

int dt day;

int dt year;
}i

// Function prototype
void display date(date &dt);

int main ()
{
// Create and display a date struct conventionally
date dt;
dt.dt day = 4;
dt.dt month 11;
dt.dt year = 2000;
display date(dt);
return 0;

}

// A conventional function that displays dt’s members
void display date(date &dt)
{
cout << “Date: ”
<< dt.dt month << “/” << dt.dt day
<< “/” << dt.dt _year << endl;

The program declares a struct named date with three integer members for holding the month, day, and year. To display this data,
the program also declares a function, display date(), With a date struct reference parameter. The main() program creates a date struct
variable named dt with the following declaration:

date dt;

It then assigns values to the struct’s members and displays the resulting date using statements such as
dt.dt day = 4;

display date (&dt);

Passing the initialized dt struct object by reference to the display date() function writes it to the standard output. Onscreen, after
compiling and running the program, you see the following:

$ g++ olddate.cpp
$./a.out
Date: 11/4/2000

Page 226

This document is created with trial version of CHM2PDF Pilot 2.10.

There’s nothing wrong with conventional programming as demonstrated here. However, the program’s code and data are tightly
intertwined, and this can be a common source of bugs and maintenance woes. For example, if the internal representation of a date
needs changing, every use of the date struct has to be found and fixed. This is one reason the infamous Y2K bug is so difficult to
repair in older software.

Now, take a look at the object-oriented way to create a class for representing and displaying dates. Listing 12.2, newdate.cpp,
produces the same output as olddate.cpp, but it encapsulates date values and an output function into a C++ class.

Listing 12.2 newdate.cpp

#include <iostream.h>

// A class that encapsulates data and functions
class TDhate {
private:
int dt _month;
int dt_day:;
int dt year;
public:
TDate (int month, int day, int year);
void Display();
}i

int main ()

{
TDate dt object(ll, 4, 2000); // Construct a class object
dt object.Display(); // Tell object to display itself!
return 0;

// The TDate class constructor

TDate::TDate (int month, int day, int year)

{
dt _month = month; // Assign values to private data members
dt day = day;
dt year = year;

}

// The TDate class Display member function
void TDate::Display ()
{
cout << dt month << “/” << dt day << “/” << dt_year << endl;
}

The class declaration for TDate looks much like a struct, but it contains a few new elements in addition to the three int members,
dt_month, dt_day, and dt_year. The reserved word class begins the declaration, followed by the class name, TDate, and a pair of
braces that delimit the class’s contents. As do all declarations in C and C++, a class declaration ends with a semicolon. Most
classes follow a similar design, outlined as follows:

class TAnyClass {
private:

// private class members
public:

// public class members

}i

Previous Table of Contents Next

Page 227

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Note: In many of this book’s listings, and in my own programs, I capitalize class names such as TDate and TAnyClass, and precede
them with capital T, meaning “type.” Capitalization is optional, but I like to use it to distinguish object-oriented classes from other
elements.

The word private: with a colon is called an access specifier. It indicates that the following declarations—the three int members in
this case—are private to the class. Only members of this class, and no other statements anywhere else, may read or write the
values of these private members. The word public:, another access specifier, declares items to which users of the class have full
access. Under either access specifier may appear one or more function prototypes or data declarations. (You meet a third access
specifier, protected:, when you learn about inheritance in Chapter 14, “Investing in Inheritance.”) The private, protected, and public
sections in a class may come in any order, and you can repeat sections of the same type as many times as you want.

Note: If no access specifier is stated, class members are private by default. Members of structs and unions are public by default. You
may use access specifiers in C++ structs, but this is rarely of much practical value.

In the sample program, the public: access specifier starts a new section in TDate. In that section, the class prototypes two functions:

public:
TDate (int month, int day, int year);
void Display();

The first function declaration is called a constructor. It is named the same as the class, TDate, but has no return type. Optionally,
as shown here, a constructor may declare parameters that are used to initialize objects of the class. In this case, the TDate
constructor requires values that represent a date’s month, day, and year. The next prototype is Display(), @ member function. Its
form is the same as a conventional function prototype. Like all functions, member functions can return values, receive arguments,
and declare default parameters, and they may have any legal names. They differ from conventional functions in only one way —
they are expected to operate in some fashion on an object of the class. To create such an object, you might use a statement like
this:

TDate dt object (11, 4, 2000);

That constructs an object named dt object of the TDate class. The three integer values are passed to the TDate() constructor, which
performs whatever steps are necessary for initializing the object. Although the sample TDate class has only one constructor, classes
may declare multiple constructors for initializing objects in different ways.

Note: As with functions, in this book, empty parentheses after a class name refer to its constructor. TDate without parentheses
refers to the class declaration as a whole. TDate() refers to the TDate constructor.

The second statement in the sample program displays the value of a TDate object. It uses dot notation to specify the class
member function to call for a specific object, also sometimes called an instance of the class. The following statement calls Display()
in association with

dt _object:
dt _object.Display();

In object-oriented parlance, that statement commands dt_object to display itself. The object can do that because Display() is a
function that a TDate class object knows how to perform. In the coming chapters, you learn how to use this important OOP
concept to create class family trees for building objects that perform actions based on their types, a concept that goes by the fancy
name polymorphism.

Page 228

This document is created with trial version of CHM2PDF Pilot 2.10.

At this point, you might not appreciate the reasons for designating class members private or public and using member functions
instead of conventional code. But these are key principles that make object -oriented programming well-suited for managing large
software projects. By privatizing data, access to that data is isolated and controlled through the class ’s public member functions.
This makes data-prone bugs less likely while also simplifying debugging. If something goes wrong with a private data member, the
cause is almost certainly in a class member function. Even better, changes to internal data representations do not affect the class ’s
users.

Programming with Classes and Objects

Learning to program with classes and objects requires many programmers to take a mental turn around a logical corner, especially
if they are familiar with conventional techniques. For many, the moment of revelation comes with a practical understanding of what
a class is and how to use it to design data types for creating objects.

A good way to think about classes and objects is to envision a class as a unit that specifies what an object is and what it does.
Classes describe the potential capabilities of objects, just as the native type double describes the nature of a floating point value. A
double 1s not itself a floating point value; a double is a fype of value. Similarly, a class describes the type of an object. To use a
class, the program must construct an object of the class, just as it constructs variables of native types. To handle these
construction details, a class implements a constructor.

Constructors

Beneath the hood, constructors are class member functions like any others. However, they have the special purpose of initializing
new objects of a class. As you have seen, the sample newdate.cpp program declares a prototype for the TDate() constructor in the
class’s public section:

class TDhate {
public:

TDate (int month, int day, int year);
bi

Like any function prototype, this one for TDate() states the constructor’s name and any parameters. The constructor code is
implemented elsewhere (but see “Inline Constructors” later in this chapter for another method). Because constructors do not
return values, their implementations might strike you as odd. For example, newdate.cpp implements TDate’s constructor like this:

TDate::TDate (int month, int day, int year)
{

} // No semicolon here
The class name is the first element. It is followed by the C ++ scope resolution operator :: and the constructor’s function name plus

any parameters. Because class and constructor names are always the same, the declaration appears redundant. However, you are
not seeing double—the expression TDate:: TDate() refers unambiguously to the TDate class constructor named TDate().

Previous Table of Contents Next

Page 229

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The constructor’s purpose is to initialize an object of its class. In this case, the TDate() constructor assigns its three integer
parameters—month, day, and year—to the class’s three private data members using these statements:

dt month = month;
dt day = day;
dt year = year;

Each constructed object of the class has its own set of those data members, to which the constructor can refer directly as shown
here. When the program executes this statement

TDate dt object (11, 4, 2000);

the TDate() constructor assigns the three values—11, 4, and 2000—to the dt_object’s data members, dt month, dt day, and
dt year. The program is free to create as many TDate objects as required using statements such as

TDate birthday paul (5, 18, 1962);
TDate birthday susan(8, 12, 1970);

Each object such as birthday paul and birthday susan has its own separate instances of the TDate class data members dt month,
dt day, and dt_year. In each case, the class constructor initializes the objects by copying the specified arguments to the objects’
data members.

Warning: When writing constructors, be careful not to create any objects of the class type in the constructor implementation. If
you do, the constructor might end up calling itself over and over in an endless recursion —endless, that is, until the program runs
out of memory and aborts with a core dump!

Member Functions

A common misconception is that objects contain functions such as Display(). They don’t. Objects contain only data. Constructors
and member functions belong to their classes, and only one copy of each member function and constructor exists in the compiled
program.

A member function’s implementation is similar to that of a conventional function ’s. For example, the newdate.cpp program
implements the TDate class’s Display() member function like this:

void TDate::Display ()

{
cout << dt month << “/” << dt _day << “/” << dt_year << endl;

}

The function return type, void in this example, comes first. Second is the name of the class that declares the function prototype.
The C++ scope resolution operator :: comes next, followed by the function name and any parameters (there are none in this
example). Finally, a pair of braces delimits the function ’s statement block inside of which are the statements that perform the
function’s job.

Except for the class name and scope resolution operator, the member function ’s implementation is the same as a conventional
function’s. The class name and operator uniquely identify this function as belonging to its class. Together, the expression
TDate::Display() fully identifies the member function. Consequently, another class may have a Display() member function without
causing any name conflicts.

Note: To identify a class member function in this book, I use Ft)he fozrr3rb TDate::Display() only when the name of the function alone is
age

This document is created with trial version of CHM2PDF Pilot 2.10.
TDate::Display()
ambiguous.

There’s another less obvious difference between a member function and a conventional one. Because member functions are called
in conjunction with an object of the class, they can operate on that class’s data members without any further qualification. In the
Display() member function, for instance, this statement displays the object ’s three integer members:

cout << dt month << “/” << dt day << “/” << dt_year << endl;

The dt month, dt day, and dt year variables are inside the object for which Display() is called. The statement can refer directly to
the object’s data members because, hidden from view at the source code level, member functions receive a pointer called this that
points to the object. To verify that this exists, and to illustrate its purpose, the following statement calls Display() for dt_object in
which dt_month, dt_day, and dt_year values reside:

dt object.Display();

Less obviously, that statement passes to Display() a this pointer that locates dt object in memory. It is possible to use this in a
member function statement. For example, Display() could execute the following statement:

cout << this->dt month << “/”
<< this->dt day << N/
<< this->dt_year << endl;

The this pointer addresses the object for which a member function or constructor is called. You can compile the preceding
code—this is a reserved word in C++, and you may use it in member functions to refer to objects. However, most often, you can
more simply refer to data members such as dt month without using this. In a member function, if dt month is a member of the class,
the expression dt_month and this->dt_month are equivalent.

Note: A typical use for this is for an object to pass itself to another function, or to return itself as a function result, but these are
advanced techniques to be introduced in Part IV, “Advanced C++ Techniques.”

Constructing Objects

Beginners to OOP and C++ often fret about how to declare class objects. The different methods are easily remembered by
comparing them to the ways for creating variables of native C ++ types. Consider these five common methods for creating floating
point variables of type double, some of which you might not have seen before:

double f1; // Declare simple variable

double f2 = 3.14159; // Declare and initialize variable
double £3(3.14159); // Same as above

double f4 (£3); // Declare f4 and initialize with £3
double f5 = f4; // Declare f5 as a copy of f4

The first declaration declares a variable named f1 of type double. If this declaration is global, fI is initialized to zero. If the
declaration is local to a function, fI is uninitialized. The second declaration assigns a literal value to another double variable, f2. As
you probably know, the first two declarations shown here are the most common ways to create simple variables of native C ++
types, and you’ve seen numerous examples of these techniques in prior chapters.

Previous Table of Contents Next

Page 231

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The third declaration initializes f3 to the literal value 3.14159. The second and third declarations are functionally the same, but the
former is more common. The fourth declaration creates f4 and copies to the new variable the value of f3. The fifth declaration
declares f5 as a copy of f4. The last two declarations are functionally the same.

You may construct class objects in each of these same ways, using nearly identical statements. Listing 12.3, construct.cpp,
demonstrates five ways to construct class objects of a slightly modified TDate class.

Listing 12.3 construct.cpp

#include <iostream.h>

// A class that encapsulates data and functions
class TDhate {
private:
int dt _month;
int dt _day;
int dt_year;
public:
TDate () ;
TDate (int month, int day, int year);
void Display () ;
}i

int main ()

{

Thate t1; // Requires default constructor
TDhate t2 = TDhate (12, 31, 1999); // Impractical, but allowed

Thate t3(1, 1, 2000); // Uses parameterized constructor
TDate t4(t3); // Makes t4 a copy of t3

TDhate t5 = t4; // Copies t4 into t5
tl.Display(); // Call member function for each object
t2.Display();

t3.Display();

t4.Display();

t5.Display() ;

return 0;

}

// The TDate class default constructor
TDate: :TDate ()
{
dt _month =
dt day = 0;
dt _year = 0;
}

0; // Initialize private data members to zero

// The TDate class parameterized constructor

TDate::TDate (int month, int day, int year)

{
dt month = month; // Assign values to private data members
dt day = day;
dt year = year;

}

// The TDate class Display member function

void TDate::Display ()
Page 232

This document is created with trial version of CHM2PDF Pilot 2.10.

{
cout << dt month << “/” << dt day << “/” << dt_year << endl;

}

The program constructs five TDate objects, t1 through t5, and then calls the Display() member function for each. The following
statement constructs an object named t1 of the TDate class:

Thate tl1;

This is one of the most common ways to construct a class object, and the method is exactly the same as declaring an uninitialized
object of any other type such as a double variable:

double f1;

However, when the type is a class, it must have a default constructor to handle the creation of objects declared with no
argument values. (More on this in the section “The Default Constructor” later in this chapter.)

The sample program demonstrates a second, but impractical, way to construct an object. Although it’s unlikely you’ll ever use this
method, it demonstrates the important concept of a temporary object. This statement:

TDate t2 = TDhate (12, 31, 1999); // 222

1s roughly equivalent to the common conventional statement:

double f2 = 3.14159;

That’s a common way to create and initialize objects of simple types such as double, but when using classes, the preceding TDate
object construction causes the program to work harder than necessary. This is because the expression to the right of the
assignment operator creates a temporary TDate object, which is then copied to a new TDate object t2. The temporary object exists
only as long as needed, and it is automatically destroyed after its value is copied to t2. As I explain in Chapter 13, “Creating and
Destroying Objects,” temporary objects are troublesome and can lead to bugs. It’s usually best to avoid creating temporary
objects if possible.

A third way to construct a class object, and one of the most common, is to pass arguments to a parameterized constructor. The
following statement uses this method to construct a TDate object named t3 initialized to the date 1/1/2000:

Thate t3(1, 1, 2000);

That calls the TDate class’s parameterized constructor, which assigns the three integer arguments to the object’s data members—
dt_month, dt_day, and dt_year. The statement is exactly equivalent to the native type declaration:

double £3(3.14159);

As you can with C++ native types, you may also declare and initialize objects using the values of compatible objects. Objects are
assignment-compatible if they are of the same class. (They may also be of related classes, as Chapter 14, “Investing in
Inheritance” explains.) The following statement creates a TDate object named t4 using a copy of 3’s value:

TDate t4(t3);

That creates a new object, t4, and copies to it the value of t3. The statement is equivalent to the following native type declaration,
which creates a double variable f4 and assigns to it the value of f3:

double f4(£3);

The fifth and final method for constructing a class object also copies one object to another:
Page 233

This document is created with trial version of CHM2PDF Pilot 2.10.

Thate t5 = t4;

That creates a new TDate object, t5, equal to the value of t4. This is exactly the same as the preceding method but uses the more
intuitive assignment operator. It is exactly equivalent to the native type statement:

double f5 = f4;
The Default Constructor

A default constructor has no parameters and, like all constructors, is named the same as its class. In the sample construct.cpp
program, the TDate() default constructor is implemented separately as follows (I moved the individual statements to one line to
save space here):

TDate::TDate ()

{
dt month = 0; dt day = 0; dt_year = 0;
}

Elsewhere in the program, creating an object with no arguments calls the default constructor, which assigns zero to each data
member in the object. The default TDate() constructor makes possible declarations such as

Thate tl1;

That calls the TDate() default constructor to initialize the t1 object. Unlike native type variables, however, this happens whether or
not the preceding declaration is inside a function—a subtle but important difference between declarations of class objects and
those of native types. Class objects are always initialized by a constructor. A native type variable that is local to a function is
uninitialized until assigned a value.

The Copy Constructor

Statements that cause one object to be copied to a newly created object call a special constructor known as the copy
constructor. This happens when you create objects using statements such as the following (remember, however, the third
statement, although allowed, is impractical because it wastefully creates a temporary object):

Thate t4(t3);
Thate t5 = t4;
TDate t2 = TDate (12, 31, 1999); // 2?22

Previous Table of Contents Next

Page 234

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

It is the copy constructor’s job to copy an object’s value to a new object. Usually, all that’s needed is to transfer the source
object’s data members to the target’s, and if the class does not explicitly declare a copy constructor, C++ automatically generates
one that does the job. This doesn’t necessarily mean that the compiler writes code for you, but if the class does not declare a

copy constructor, the compiler generates instructions that, in these examples, copy byte for byte the data members from one TDate
object to another.

A related operation occurs when assigning one object to another. For example, this statement:

th = tl;

copies t1’s data members to t5. To do that, the compiler generates instructions that copy all data bytes from the source object to
the target. However, because the two objects were previously constructed, this does nof call the copy constructor. Constructors
are called only the first time a new object comes into being.

Note: For simple classes such as TDate, the automatically generated copy constructor and assignment instructions work just fine.
However, when you need more sophisticated copying mechanisms—for example, if the class has any dynamic -memory pointers—
you must implement a copy constructor explicitly and provide for assignments of one object to another. See “Copy Constructors”
in Chapter 13, “Creating and Destroying Objects,” for more on these topics.

Inline Constructors

A common practice is to declare and implement constructors directly in the class declaration. Rather than prototype constructors
in the class and then implement them separately, the class includes both the function prototype and its statements. Listing 12.4,
inline.cpp, demonstrates how to declare and implement constructors in a new version of the TDate class.

Listing 12.4 inline.cpp

#include <iostream.h>

// A class that encapsulates data and functions
class TDate {
private:
int dt month;
int dt day;
int dt year;
public:
TDate() {dt month = 0; dt day = 0; dt _year = 0;}
TDate (int month, int day, int year)
{
dt _month = month; // Assign values to private members
dt day = day;
dt year = year;
}
void Display();
}i

int main ()

{

TDate t1; // Requires default ctor
TDate t2 = TDate (12, 31, 1999); // Impractical, but allowed
TDate t3(1, 1, 2000); // Uses parameterized ctor
TDate t4(t3); // Makes t4 a copy of t3
TDate t5 = t4; // Copies t4 into t5

Page 235

This document is created with trial version of CHM2PDF Pilot 2.10.

tl.Display(); // Call member function for each object
t2.Display();
t3.Display();
t4.Display();
t5.Display();

return 0;

}

// The TDhate class Display member function
void TDate::Display ()
{
cout << dt month << “/” << dt day << “/” << dt_year << endl;
}

The modified TDate class’s default constructor is declared and implemented directly in the class:

public:
TDate() {dt month = 0; dt day = 0; dt _year = 0;}

This format might seem strange at first, but it is merely a shorthand version of C ++ source code that you could write in long form
like this:

public:
TDate ()
{
dt month =
dt _day = 0;
dt_year = 0;
} // No semicolon here!

0;

Compare both versions character for character and you ’1l see they are identical (except for the comment). Notice especially the
placement of semicolons, which as always, terminate statements, and never follow a compound statement block ’s closing brace.

The parameterized constructor is also declared and implemented directly in the TDate class using the code:

public:

TDate (int month, int day, int year)
{

dt _month = month; // Assign values to private members
dt day = day;
dt year = year;

}

The parameterized constructor implementation assigns its parameter values to the three TDate data members, dt month, dt day,
and dt_year. The function is written in the conventional style with each statement on a separate line.

You might optionally preface constructors and other member functions with the inline reserved word, but when implementing
constructors and functions directly in a class, this isn 't necessary. In GNU C++, inline constructors and member functions are
expanded in line with the program’s code only when compiled with at least the first level of optimization. To enable inline

expansion, compile and run the inline.cpp program using the following commands (the option letter is a capital O, not a zero):

$ g++ -0 inline.cpp
$./a.out

Warning: Inline constructors can produce more efficient code, but it ’s best to limit the technique to relatively simple constructors.
Constructors that perform complex tasks are best prototyped in the class and then implemented separately along with other member
Page 236

This document is created with trial version of CHM2PDF Pilot 2.10.

functions.

Overloaded Constructors

As you can with common functions, you can overload a class’s member functions and constructors by giving them the same names
but declaring parameters of different types. Because all constructors are named the same as their classes, they are overloaded by
default. Most classes have several overloaded constructors that provide different ways to initialize class objects. For example, the
TDate class from the preceding section declares two overloaded constructors in the class ’s public section:

public:
TDate () ;
TDate (int month, int day, int year):;

This is a typical design. The class has a default constructor, in this case named TDate(), and one or more overloaded parameterized
constructors also named the same as the class. The default constructor takes care of initializing objects for which the program
specifies no arguments. Other constructors handle initializations using argument values. For example, the following statements
create two TDate objects:

TDate today;
TDate yesterday (4, 5, 2001);

The first statement calls the TDate() default constructor. The second calls the class’s parameterized constructor. This common class
design is perfectly acceptable, but frequently, you can combine the two types of constructors by using default parameters, as
Listing 12.5, default.cpp, demonstrates. For illustration, the new TDate class also fully declares and implements its constructor and
member function inline.

Previous Table of Contents Next

Page 237

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Note: The word “constructor ” is often abbreviated as “ctor.” This isn’t a reserved word—you can’t use it in programs—but you’ll
often see the abbreviation in references and comments.

Listing 12.5 default.cpp

#include <iostream.h>

// A fully implemented class
class TDate {
private:
int dt month;
int dt day;
int dt year;
public:
TDate (int month = 0, int day = 0, int year = 0)
{dt _month = month; dt day = day; dt year = year;}
void Display ()
{cout << dt month << “/”
<< dt_day << N/
<< dt_year << endl;}
}i

int main ()

{

TDate default date; // Calls default ctor
default date.Display();
TDate tomorrow (4, 5, 2001); // Calls parameterized ctor

tomorrow.Display () ;
return 0;

The revised TDate() constructor serves as both the default and parameterized constructor. The class declares and implements the
constructor like this:

TDate (int month = 0, int day = 0, int year = 0)
{dt _month = month; dt day = day; dt year = year;}

If that seems confusing, write the statements out on separate lines. Because the new constructor declares default values for all
three parameters—month, day, and year—it serves as both the default and parameterized constructors. When main() constructs this
object:

TDate default date;

the program calls the constructor as though that statement were written like this:

TDate default date(0, 0, 0);

Likewise, the program’s second object calls the same constructor, but this time with literal argument values:

Thate tomorrow (4, 5, 2001);

Using default parameter values to create a default class cons‘guct%g i8s a common C ++ technique that you will encounter often.
age

This document is created with trial version of CHM2PDF Pilot 2.10.
++

When using the method in your own programs, be sure to understand that, when all parameters have default values, the class may
not also declare a default constructor with no parameters. The following does not compile:

public:
TDhate () ;
TDate (int month = 0, int day = 0, int year = 0); // 2272

This common error confuses the compiler because it cannot decide which constructor should initialize objects declared as

TDate today; // 222

That fails because of the rule that overloaded constructors and other functions must differ in at least one parameter type. To
resolve the conflict and return to having two separate constructors, one solution is to specify default values for all but one
parameter in the alternate constructor. For example, you can fix the preceding declaration by changing it to

public:
TDhate () ;
TDate (int month, int day = 0, int year = 0);

In the parameterized constructor, the month value is now required, but the day and year are optional. The default and
parameterized constructors differ in at least one parameter, and constructing TDate objects using the following statements is now

possible:

TDate tl1; // Calls default TDate () constructor
TDate t2(4); // Calls parameterized constructor
TDate t3(4, 5); // Calls parameterized constructor
TDate t4 (4, 5, 2000); // Calls parameterized constructor

Debugging Class Objects

The GNU debugger can display the values of class data members, and it can trace member functions, just as well as it can
perform those tasks for conventional variables and functions. Following are sample runthroughs of debugging sessions using one of
the programs in this chapter. Use the commands described here to examine your own class objects, and also for investigating
other object-oriented programs in this book.

Note: Line numbers shown here might differ onscreen if you are following along.
To prepare a sample program for debugging, compile the construct.cpp program from this chapter, and then load it into the GNU

debugger using these commands:

$ g++ -g -o construct construct.cpp
$ gdb construct

Type L (list) until you find the declaration of TDate t1, and notice the line number, probably 27. Set a breakpoint at that line to halt
the code before the object’s construction. Type the command following the (gdb) prompt as shown here:

(gdb) break 27
Breakpoint 1 at 0x80486ce: file construct.cpp, line 27.

Next, run the program up to the breakpoint. The debugger shows you the statement next to be executed (I deleted some
comments to make it fit on this page):

(gdb) run
Starting program: /src/cl2/construct
Breakpoint 1, main () at construct.cpp:27

27 TDhate tl1;

Page 239

This document is created with trial version of CHM2PDF Pilot 2.10.

Examine the value of t1 before it is constructed by using the print command:

(gdb) print tl
$1 = {dt month = 1073783640, dt day = 1, dt year = 0}

You might be surprised to discover that you can examine a class object before it is constructed. This is possible because memory
1s allocated to the local object t1 before that object is initialized. Until then, the three data members in the TDate class have
essentially randomized values that are probably different on your system. To complete the object ’s construction, issue a next
command to execute the statement that constructs the object:

(gdb) next
28 TDhate t2 = TDhate (12, 31, 1999);

Again, the debugger shows you the next statement to be executed. Before continuing, examine t1 again:

(gdb) print tl
$2 = {dt month = 0, dt day = 0, dt_year = 0}

Now, as you can see, the object’s data members are properly initialized. To trace into the constructor for the next object, use the
step command:

(gdb) step

TDate: :TDate (this=0xbffffa70, month=12, day=31, year=1999) \

at construct.cpp:53

53 dt month = month; // Assign values to private data members

Stepping into a constructor is the same as stepping into a conventional function, but you issue the step command at an object’s
creation. The debugger tells you several important pieces of information. It gives the constructor ’s name TDate:: TDate() and shows
all its parameter values. The first value is this, equal to the memory address in hexadecimal of the object ’s location—TDate t2 in
this case. The values of the other parameters are also shown.

Continue with the sample program by typing four next commands to get out of the constructor and return to the main program
(press the up-arrow key to repeat the commands quickly):

(gdb) next

54 dt day = day;

(gdb) next

55 dt year = year;

(gdb) next

56 }

(gdb) next

main () at construct.cpp:29
29 TDhate t3(1, 1, 2000);

Now that object t2 is completely constructed, a print command shows its value:

(gdb) print t2
$3 = {dt month = 12, dt day = 31, dt _year = 1999}

Type cont to continue the program to its end:

(gdb) cont

Continuing.

0/0/0

12/31/1999

1/1/2000

1/1/2000

1/1/2000

Program exited normally.

Page 240

This document is created with trial version of CHM2PDF Pilot 2.10.

You can then quit the debugger and return to a console prompt:

(gdb) quit
$

Summary

This chapter introduced some of the basics and advantages of object -oriented programming, or OOP as it is known. In this
chapter, you learned how to create and use classes to encapsulate data and code. The chapter also explained several different
ways to construct and use class objects, and how to debug their data, constructors, and member functions.

For more information on subjects introduced in this chapter, turn to the following chapters:

Chapter 10, “Creating and Calling Functions”

* Chapter 13, “Creating and Destroying Objects”
* Chapter 14, “Investing in Inheritance”

* Chapter 21, “Honing Your C++ Skills”

Previous Table of Contents Next

Page 241

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 13
Creating and Destroying Objects

The preceding chapter introduced the class and showed several ways to construct class objects. However, the simple classes you
have seen so far are not of much practical use. In the real world of programming, classes need more sophisticated devices for
safely allocating and destroying dynamic memory, and for passing objects efficiently to and from functions.

This chapter introduces those topics, and ends with a version of the TDate class that encapsulates some of the functions and data
types of the standard library ’s date and time routines. Along the way, the chapter explains techniques for using a destructor to
clean up objects when they are destroyed, for managing dynamic memory using copy constructors, and for using something called
the operator=() member function to copy one object to another. Finally, the chapter ends with advice for declaring and
implementing classes in separate modules.

Destroying Class Objects

As the preceding chapter explained, class constructors initialize newly created class objects. On the flipside of that coin, it is also
frequently necessary to destroy objects in a controlled manner. For example, when an object owns a pointer that addresses
dynamic memory, the program must delete that memory when the object itself is destroyed. To perform that and other cleanup
duties, a class declares a destructor.

Introducing the Destructor

Like a constructor, a destructor has the same name as its class but is preceded with the character ~, used in scientific circles and
sometimes in programming as a negation symbol. A destructor is, in a sense, the negation of a constructor—what a constructor
builds, a destructor destroys. To illustrate destructors, the following code fragment declares a bare -bones class with constructor
and destructor prototypes:

class TAnyClass {
public:
TAnyClass () ; // Constructor
~TAnyClass() ; // Destructor
}i

If the program declares a TAnyClass object, as in the following statement, the class constructor is called to initialize that object:

TAnyClass an_object; // Calls the TAnyClass() constructor

When an_object goes out of scope—for example, when its declaring function returns —the object is destroyed. At that time, C++
automatically calls the ~TAnyClass() destructor to give the object the opportunity to perform any cleanup chores before it is tossed
away for good. C++ calls the destructor also if the program creates a dynamic TAnyClass object with new operator and then
deletes the object:

TAnyClass *tp = new TAnyClass; // Calls TAnyClass() ctor
// ... statements that use the object
delete tp; // Calls the ~TAnyClass() dtor

When the program executes the delete statement, C++ calls the ~TAnyClass() destructor. In that function, statements can perform
any cleanup duties needed before the object’s memory is returned to the heap.

Note: Like the word constructor (ctor), destructor is often abbreviated “dtor.” This isn’t a reserved word, but you’ll often see it in
comments and C++ references.
Page 242

This document is created with trial version of CHM2PDF Pilot 2.10.

Using Pointers to Address Objects

Although programs can declare an object as a local or global variable, it is equally if not more common to create an object in
dynamic memory and address it with a pointer. For example, this statement declares a pointer to an object of TAnyClass from the
preceding section:

TAnyClass *object pointer;

That declares object pointer as a pointer to an object of the type TAnyClass. The object does not yet exist—all the program has
done is declare a pointer of a type that can address an object of the stated type. Create the object by using the C++ new operator:

object pointer = new TAnyClass;

Assuming that enough memory is available, object_pointer now addresses an initialized object of type TAnyClass. It’s also common
to combine the preceding two steps into one:

TAnyClass *object pointer = new TAnyClass;

Either way, the class’s constructor initializes the object, after which the object is available for use via the pointer. If TAnyClass has
a member function named DoSomething(), this statement calls the function:

object pointer->DoSomething();

The member-dereference operator -> refers to an item in the object to which object pointer points. Contrast that with a statement
that calls DoSomething() for a global or local class object:

TAnyClass any object; // Declare object
any object.DoSomething(); // Call member function

With a dynamic object addressed by a pointer, use the -> operator to refer to a member of the object ’s class. With a local or
global object, use a period (dot notation). As you must for all dynamic variables, be sure to delete a dynamic class object after
you are finished using it. In general, dynamic objects are created, used, and deleted with code such as this:

TAnyClass *object pointer = new TAnyClass; // Create object
object pointer->DoSomething(); // Use object
delete object pointer; // Delete object

The first statement declares a pointer to a TAnyClass dynamic object and uses the new operator to create that object by calling its
default constructor. The second statement calls a class member function using the pointer to address the dynamic object. The last
statement deletes the object by using the delete operator and specifying the pointer that was earlier assigned the result of new. At
this time, the class’s destructor, if it has one, performs any cleanup operations before the object ’s memory is sent to that great
memory pool in the sky.

Tip: Operator new throws an exception if it can’t fulfill a request for memory. See Chapter 16, “Handling Exceptions,” for advice on
how to deal with this condition.

Dynamic Objects

You may create dynamic objects of any class. For example, Chapter 12, “Introducing the Class,” declared several versions of
TDate for representing the date. Listing 13.1, dynadate.cpp, is similar to the construct.cpp program in Chapter 12, but shows two
of the most common ways for creating, using, and deleting dynamic class objects addressed by pointers. (To save space here, the
listing shows only the class declaration and main() function, not the duplicated code from construct.cpp.)

Listing 13.1 dynadate.cpp (partial listing)
Page 243

This document is created with trial version of CHM2PDF Pilot 2.10.

#include <iostream.h>

// A class that encapsulates data and functions
class Tdate {
private:
int dt month;
int dt day;
int dt year;
public:
Tdate () ;
Tdate (int month, int day, int year);
void Display () ;
}i

int main ()

{

// Construct object and call the default constructor

Tdate *tdpl = new Tdate; // Construct object
tdpl->Display () ; // Call a member function
delete tdpl; // Delete the object

// Construct object and call the parameterized constructor
Tdate *tdp2 = new Tdate(8, 12, 1996); // Construct object
tdp2->Display () ; // Call a member function
delete tdp2; // Delete the object

return O;

Previous Table of Contents Next

Page 244

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The main() function shows the two most common ways to construct dynamic objects. The first method declares a pointer named
tdp1 and assigns to it the address of a new, dynamic object created by the new operator:

Tdate *tdpl = new Tdate;

Because no parameters are specified, that statement calls the Tdate() default constructor to initialize the object, which in this
example, sets the date’s data members to zero. Following that, another statement calls the Display() member function for the
dynamic object:

tdpl->Display () ;

Because a pointer addresses the object, the -> operator is used to access class members. When the program is finished using the
dynamic object, it deletes it using the following statement:

delete tdpl;

Similarly, the sample program creates a second Tdate object, but this time the following statement calls the parameterized
constructor to initialize the object to the date August 12, 1996:

Tdate *tdp2 = new Tdate(8, 12, 1996);

Although shown here as one statement, the two actions of declaring and initializing the pointer tdp2 can be (and often are) divided
into separate steps:

Tdate *tdp2; // Declare pointer
tdp2 = new Tdate (8, 12, 1996); // Construct object

Merely declaring the pointer does not construct an object. To do that, the program calls new as shown and assigns the result to the
pointer. The resulting object is used and then deleted in the same way as before:

tdp2->Display(); // Call a member function
delete tdp2; // Delete the object

In both instances, the delete operator destroys the dynamic object allocated by new. If the Tdate class declares a destructor (the
sample class doesn’t), it is called at this time to perform any cleanup duties before the object ’s memory is linked into the available
memory pool.

As with all pointers, after deleting a pointer to a dynamic class object, never use that pointer except to address a newly
constructed object. For example, you can add this code to the sample program’s main() function just before the return statement:

tdpl = new Tdate(l, 1, 2001);
tdpl->Display () ;
delete tdpl;

The first line reuses the tdp1 pointer to address a newly constructed dynamic object of the Tdate class. Here again, after the
program is finished using the dynamic object, it is deleted. Following the delete statement, the tdp1 pointer must not be used in any
way except to address another newly constructed object.

Using Pointers in Classes

Using pointers to address dynamic class objects is only half the story of classes and dynamic memory. A class object may also
own other dynamic objects of classes with their own rules of creation and destruction. To illustrate, consider the following

hypothetical class, declared and implemented entirely inline:
Page 245

This document is created with trial version of CHM2PDF Pilot 2.10.

class Tanyclass {

private:
Tdate *tdp;

public:
Tanyclass () { tdp = new Tdate(l, 1, 2000); }
~Tanyclass () { delete tdp; }

}i

The class declares a private pointer, tdp, to a Tdate object. Because tdp is private, only statements in the class’s member functions
may refer to tdp. The object that tdp addresses is created when the Tanyclass object is constructed, a task handled in this case by
the Tanyclass() constructor. The constructor’s inline statement uses new to construct a Tdate object and assign it to the private tdp
pointer.

The class destructor deletes the memory that the constructor allocates, and in this way, the memory allocated to tdp is neatly
managed. When the program constructs a Tanyclass object, the constructor allocates memory for a Tdate object addressed by tdp.
When the Tanyclass object goes out of scope or is deleted, the destructor deletes the Tdate object addressed by tdp. The class
carries out its memory management responsibilities so that the users of the class don ’t have to attend to these details.

Note: You may question whether the delete statement shown here might mistakenly delete an uninitialized tdp pointer. However, that
can’t happen because, if new cannot fulfill the request for memory, it throws an exception and the Tanyclass object is not constructed.
(In general, exceptions thrown in a constructor result in the object not being constructed.) Consequently, because the object is not
constructed, its destructor is never called, so even if the use of new fails here, there is no danger of deleting an uninitialized pointer.
See Chapter 16, “Handling Exceptions,” for details on this topic.

Class Memory Management

Listing 13.2, prompt.cpp, puts the preceding concepts to work and shows how to manage dynamic memory owned by a class
object. The program declares a class that encapsulates the get string() function from Chapter 11, “Managing Memory with
Pointers.” The result is a class that you can use to create an object for prompting and storing a line of text entered by the
program’s user. By encapsulating this code in a class, the constructor and destructor automate memory allocations, whereas in the
original code, memory management is the user’s responsibility.

Note: Although the TPrompt class in the prompt.cpp program works, it lacks features that provide for safe copying of objects. The
next section explains how to fix this problem.

Listing 13.2 prompt.cpp

#include <iostream.h>
#include <string.h> // Need strcpy()

// A class that prompts users to enter a string
class Tprompt {

private:

char * tp string; // Addresses the string input
public:

Tprompt (const char *prompt); // Constructor

~Tprompt () ; // Destructor

const char *GetString(); // Returns user’s input

}s

int main ()

{

// Use the class to construct a local object
Tprompt promptl (“Prompt #1: “);

cout << “You entered “ << promptl.GetString() << endl;
Page 246

This document is created with trial version of CHM2PDF Pilot 2.10.

// Use the class to construct a dynamic object

Tprompt * prompt2 = new Tprompt (“Prompt #2: “);

cout << “You entered “ << prompt2->GetString() << endl;
delete prompt2;

return 0;
// Constructor

Tprompt: :Tprompt (const char *prompt)
{

const int buf size = 128; // Size of input buffer
char *temp = new char[buf size]; // Create input buffer
cout << prompt; // Prompt user for input
cin.getline (temp, buf size); // Read input from user
tp string = new char[strlen(temp) + 1]; // Create string
strcpy (tp string, temp); // Copy buffer to result
delete[] temp; // Delete the buffer

// Destructor
Tprompt: :~Tprompt ()
{
cout << “Entering destructor for string
<< tp_string << endl;
delete[] tp string;
}
// Member function
const char *Tprompt::GetString()
{
return tp string;

}

AN

Previous Table of Contents Next

Page 247

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

In the original code from which I created the Tprompt class, the get_string() function returns a pointer to a dynamic string, allocated
in memory by the C++ new operator. Calling the function places the responsibility of deleting that memory on the user. For
example, with the original function, you might use statements such as

const char *cp = get string(“Enter a string: “);
// ... other statements
delete[] cp;

If you forget the delete[] statement, the memory allocated to the string can become lost in space, creating a memory leak that might
cause the program to abort with that lovable old friend, a core dump. By encapsulating get string() in a class, memory management
is automatic, and this type of bug can’t occur.

To encapsulate the original code, the Tprompt class declares one private data member, a char pointer named tp_string. Because the
member is private to the class, only class members may use it. In addition, the class declares a constructor Tprompt() and
destructor ~Tprompt(). The constructor code is the same as in the original get string() function, but instead of returning a char
pointer, it saves the user’s input string in a memory buffer addressed by the private tp string pointer. To use the class, the program
constructs an object in the usual way with the following statement:

Tprompt promptl (“Prompt #1: “);

This creates an object, named prompt1, of the Tprompt class, and calls the class constructor to display a message and wait for the
user to enter a string. Member function GetString() returns a const pointer to the input string, used here to confirm your typing:

cout << “You entered “ << promptl.GetString() << endl;

GetString() returns a const char pointer. This copies the address of the privately owned dynamic memory out of the object, but
because it is declared const, the class user—that is, the preceding two statements—can’t alter that memory.

Warning: GNU C++ reports the modification of data addressed by a const string pointer as a warning rather than an error.
Apparently, this was done to accommodate existing code that uses this questionable technique.

Because the Tprompt class carefully controls the use of its private data, the class assumes all responsibility for managing the
object’s dynamic memory. To ensure that this memory is properly deleted when an object such as promptl goes out of scope or is
deleted, C++ calls the class destructor for that object. Take a look at the destructor ’s programming:

Tprompt: :~Tprompt ()
{
cout << “Entering destructor for string
<< tp_string << endl;
delete[] tp_string;
}

ANY

As with constructors and member functions, the destructor ’s header specifies the class name (Tprompt), the C++ scope resolution
operator (::), and the function’s name, ~Tprompt(). Unlike constructors and member functions, destructors may not declare any
parameters. A destructor also has no return value. You may implement destructors inline directly in the class declaration, or you
can implement a destructor as shown here independently of its prototype in the class.

Tip: A class may have one and only one destructor. If you need to have different ways to destroy class objects, use flags or
values that the destructor’s code can inspect and take action accordingly.

Page 248

This document is created with trial version of CHM2PDF Pilot 2.10.

For illustration, the ~Tprompt() destructor displays a message so that you can trace when it is called in the sample program, but the
second statement is all that’s needed. It deletes the memory allocated to tp string. Because the class destructor is called
automatically when a Tprompt object goes out of scope, the destructor ensures that the allocated memory is also deleted. If you
haven’t done so already, compile and run the program, and observe when the destructor is called for the program ’s two sample
input prompts. Here’s a sample run:

$ g++ prompt.cpp

$./a.out

Prompt #1: aaaa

You entered aaaa

Prompt #2: bbbb

You entered bbbb

Entering destructor for string bbbb
Entering destructor for string aaaa

To the first prompt, I typed aaaa. To the second, I typed bbbb. In both cases, the object’s destructors are called to delete the
memory allocated to the input strings. The last two lines show that, in both cases, the ~Tprompt() destructor cleans up the objects
before they are themselves destroyed.

Copy Constructors

The preceding version of the Tprompt class is not entirely safe for use. To understand why, consider what happens if you create
two dynamic Tprompt objects tp1 and tp2 using the following statements (refer back to Listing 13.2, prompt.cpp):

Tprompt tpl (“Enter first string: “);
Tprompt tp2 (“Enter second string: “);

So far, so good. The statements construct two Tprompt objects, tpl and tp2, and prompt the user to enter two strings. But think
about what happens if the program copies one of those objects to the other:

tpl = tp2; // 2272

That may look innocent enough—it is perfectly acceptable to the compiler—but the assignment causes the tp_string pointer in tp2
to be copied to the tp string pointer in tp1. Now both pointers address the same memory, causing not one but two bugs. The
original tp_string pointer in tp1 is overwritten—its addressed memory is lost in space. Worse, because both pointers now address
the same dynamic memory, when the two objects go out of scope, the ~Tprompt() destructor attempts to delete the identical
dynamic memory block twice. That leads to a dreaded “segmentation error” by attempting to access memory the program doesn’t
own, and the process ends abruptly with—you guessed it—a core dump.

To prevent this kind of problem, as a general rule, any objects that own dynamic memory need to provide programming to handle
the copying of one object to another. There are two times that this can occur:

* When a new object is constructed using another object
* When one object is assigned to another

To handle these situations, the class needs two new functions. The copy constructor creates a new object using the value of
another existing object of the same class. (They may also be of related classes, as Chapter 14, “Investing in Inheritance,”
explains.) The second needed function, named operator=(), handles assignments of one existing object to another that has already
been constructed. Both functions use similar code. In general, a copy constructor has the following form:

Tanyclass (const Tanyclass ©) s

Previous Table of Contents Next

Page 249

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The revised Tprompt class declares a copy constructor and operator=() member function that, together, safely handle copying of
Tprompt objects. The class’s copy constructor uses the new operator, strlen(), and strcpy() functions to create a duplicate of a
dynamic string addressed by copy.tp_string:

tp string = new char[strlen(copy.tp string) + 1];
strcpy (tp_string, copy.tp string);

Inside the copy constructor, the copy parameter refers to the source Tprompt object that is being copied. Each object—the one
being copied and the new one being constructed—has a tp_string pointer. Using strlen() and strepy(), the preceding statements
ensure that each object addresses a fresh copy of dynamic memory.

Note: C programmers might use a single strepy() statement to copy a string, but because that does not use the C++ new operator to
allocate memory, it would require calling free() to dispose of the allocated memory. To use new and delete for memory management, [
used two statements to perform the string copy.

A statement such as the following calls the copy constructor:

Tprompt prompt3 (prompt2); // Calls copy constructor

The prompt2 object, the one being copied, is passed by reference to the copy constructor ’s copy parameter. The copy constructor
in turn passes copy.tp_string to strlen() and strepy() to allocate memory and copy the string. Because there are now two equivalent
strings in memory, when prompt3 and prompt2 go out of scope, the Tprompt destructor deletes their pointers. Because those
pointers address different memory blocks, no segmentation error occurs.

Likewise, the Tprompt::operator=() function handles assignments of one Tprompt object to another. The function is similar to a copy
constructor, but because both objects already exist, the function ’s statements need to perform some additional tasks:

if (this == ©) return; // Avoid copying self to self
delete[] tp_ string; // Delete old data

tp string = new char[strlen(copy.tp string) + 1];

strcpy (tp_string, copy.tp string);

This is one case when the this pointer is needed. As you might recall, this addresses the object for which a constructor, member
function, or destructor is called. In this case, this refers to the object on the left of an assignment operator —in other words, the
target object to which the copy is being assigned. In the preceding code fragment, the if statement tests whether the program is
assigning the same object to itself—a dumb mistake, to be sure, but certainly possible in a complex program with hundreds or
more objects whizzing around in memory. In that case, the operator=() function simply returns because, if both objects are the
same, there’s nothing to copy.

If the two objects are different, the function deletes any existing memory addressed by the target object ’s tp_string pointer. That
pointer is about to be assigned new data from the source object, so its data is no longer needed. The next two statements are the
same as in the copy constructor. They call strlen() and strcpy() to duplicate the copy’s string data. Now statements such as the
following are safe:

promptl = prompt3;

Given that statement, C++ calls the Tprompt::operator=() function to perform the copy. In this case, the operator=() function makes a
fresh copy of the dynamic memory owned by prompt3 and saves that copied data’s address in promptl. When the two objects go
out of scope, C++ calls the ~Tprompt() destructor for each object. Because the objects’ pointers address unique memory blocks,
NO error occurs.

Page 250

This document is created with trial version of CHM2PDF Pilot 2.10.

Note: The preceding discussion shows the most fundamental ways to provide safe construction and copying of objects that own
dynamic memory. The techniques work fine, but they can waste memory by needlessly duplicating equivalent data. Other methods
are possible that work more efficiently but are more difficult to program. For example, rather than duplicating copied memory blocks,
an object can store a reference count of its owners and actually delete the dynamic memory when that count indicates it is the only
referenced copy left. Another variation on this theme is known as the “copy on write method.” For details on programming both
techniques, see Chapter 21, “Honing Your C++ Skills.”

Initializing Data Member Objects

Many classes declare data members that are themselves objects of classes. In general, there are two techniques you can use for
this:

* Declare pointers to class objects
* Declare class objects as variables

Which method to use depends on your needs. So far, you have examined sample classes that use the first method, employing
pointers to address object data members. You may also declare class objects as variables inside classes. For example, the
following hypothetical class declares a Tdate object as a private data member:

class Tanyclass {

private:

Tdate the date; // Class object data member
public:

Tanyclass () ; // Default constructor

}s

As explained, if a class declares a pointer as a data member, it can use the new operator in the constructor to initialize the pointer.
But a different method is required for initializing a class object declared, not as a pointer, but as a variable such as the date. The
technique seems to confuse everyone at first. To clear up the mystery, first take a look at a simple example in Listing 13.5,
coords.cpp, that explains the basics of this method, using a demonstration class, TCoordinate.

Listing 13.5 coords.cpp

#include <iostream.h>

class Tcoordinate {

private:
int tc x, tc_ y;

public:
// Inline constructors
Tcoordinate(): tc_x(0), tc_ y(0) { }
Tcoordinate (int x, int y): tc x(x), tc y(y) { }
// Member function
void Display();

}i

int main ()

{
Tcoordinate tc (100, 200);
tc.Display () ;
return 0;

}

void Tcoordinate::Display()

{

cout << Wx == " << tc x << Ny == " K tc y << endl;

}

Page 251

This document is created with trial version of CHM2PDF Pilot 2.10.
Examine the two constructors in the sample program’s Tcoordinate class, which simply stores two integer values in private data
members tc_x and tc_y. The constructors are written differently from those you have seen so far in this book. The default

constructor is declared and implemented inline as follows:

Tcoordinate(): tc x(0), tc_y(0) { }

Previous Table of Contents Next

Page 252

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The two initializing expressions—tc_x(0) and tc_y(0)—set the two data members to zero. The expressions come between the
constructor name and its statement block, preceded by a colon. Separate two or more initializing expressions with commas. In this
example, the constructor’s statement block is empty, but it may perform other actions. Compare the preceding with a constructor
written in the more familiar way:

Tcoordinate ()
{
tc x = 0;
tc y = 0;

}

Functionally, the two constructors are the same. Each sets the two data members—tc x and tc_y—to zero. Another example
shows how the parameterized constructor uses initializing expressions to assign other values to the class’s private data members:

Tcoordinate (int x, int y): tc x(x), tc_ y(y) { }

Again, a colon precedes the two initializing expressions, separated by a comma, and followed by the constructor ’s statement
block, empty in this example. The initializing expressions set tc x to the value of x, and tc_y to the value of y. The statement block
is empty because the constructor has no other tasks to perform, but it may execute other statements if needed. The equivalent
constructor could be written using the more familiar programming:

Tcoordinate (int x, int y)
{

tc x = x5

tc v = vys
}

In simple classes like Tcoordinate, either method is perfectly acceptable, and both techniques produce the same end results. You
may use initializing expressions or statements to initialize data member values. However, consider again our hypothetical class that
declares a data member as a Tdate object:

class Tanyclass {

private:

Tdate the date; // Class object data member
public:

Tanyclass () ; // Default constructor

}s

The question is, how can the class initialize the date? As you know, all objects must be initialized by calling a class constructor.
But, when you try to implement the Tanyclass constructor, you run head-on into a brick wall:

public:
Tanyclass () { the date //...227

To initialize the date requires calling a Tdate class constructor, but it’s not possible to call constructors as common functions, and
the programmer is stuck. The solution, as you might already suspect, is to use an initializing expression to construct the date. The
completed class follows:

class Tanyclass {

private:

Tdate the date; // A class object data member
public:

Tanyclass () : the date(2, 1, 2001) { }

}s

Page 253

This document is created with trial version of CHM2PDF Pilot 2.10.

The initializing expression (notice the colon) constructs the date, in this case, by calling the Tdate() parameterized constructor. This
is, in fact, the only way you can initialize data members in a class that are themselves objects of classes.

Tip: You may use initializing expressions for data members of any type; they are required, however, only for initializing data
members that are themselves objects of C++ classes.

You may use initializing expressions also when implementing constructors separately from their prototypes. Declare the preceding
class as follows:

class Tanyclass {

private:

Tdate the date; // A class object data member
public:

Tanyclass () ; // Default constructor prototype

}i

Elsewhere in the program, implement Tanyclass() using initializing expressions, typically indented under the constructor declaration
header like this:

Tanyclass::Tanyclass(): // A colon means “initializers follow”
the date(2, 1, 2001) // Initialize the date data member
{

// ... Other statements to initialize this Tanyclass object

}

Here again, the constructor has no other actions to perform, and so its statement block is empty. The second line is all that ’s
needed to initialize the date object. This technique also ensures that objects such as the date are fully constructed before they are
used—for example, in a statement inside the constructor’s body.

Objects of Many Flavors

At this point, you should have a good understanding of how to construct objects as global and local variables, and also how to
create dynamic objects addressed by pointers. You also know how to declare objects and object pointers as class data
members. The following sections introduce a few other ways to construct objects as function parameters and return values, and in
arrays—techniques that require some extra care.

Parameter Class Objects

You may pass class objects to common and class member functions. Suppose that you write a function to which you want to pass
a Tdate object. You might implement the function like this:

void any function(Tdate td)

{
td.Display () ;

}

Function any function() declares a single parameter td of the Tdate class. A statement in the function calls the Tdate class member
function Display() for an object passed in td. The program might construct a Tdate object and call any function() with these
statements:

Tdate today (3, 4, 1999); // Construct object
any function (today); // Pass object by value to function

However, be careful here. Because the Tdate object td is passed by value to the function, behind the scenes, a copy of that object
is passed to the function’s parameter. Worse, that copy is temporary. It is created automatically, and then deleted when

any function() returns. If the Tdate class declares a destructor, it is called when the temporary object is deleted. All these hidden
actions waste many processor cycles merely to pass an objegt {9 gdjnction. If the object is very large, precious stack space is

This document is created with trial version of CHM2PDF Pilot 2.10.

also wasted.

Warning: The creation of temporary objects can cause serious bugs if those objects own any dynamic memory pointers and their
classes do not provide a copy constructor, a mistake that is easy to make when declaring class objects as function parameters.

Although there is nothing technically wrong with passing copies of objects to functions, it is usually safer and more efficient to pass
them as references or pointers. Here ’s a sample function that declares its parameter as a pointer to a Tdate object:

void any function(Tdate *tdp)
{

tdp->Display () ;
}

No matter how large a Tdate object is, this function operates efficiently simply because pointers are relatively small. Inside the
function, however, statements must use pointer dereferencing to access the object ’s public class members. The user must also
pass an address value, not an object, to any function(). For example, the following statements construct an object and then pass it
by address to the function:

Tdate today (3, 4, 1999);
any function (&today) ; // Pass object address to function

The & operator is required to pass the address of today to the function’s Tdate pointer parameter. Alternatively, the Tdate object
could be created dynamically, and its pointer passed directly to any function() using the following code:

Tdate *tdp = new Tdate (3, 4, 1999);
any function (tdp); // Pass object pointer to function
delete tdp;

Previous Table of Contents Next

Page 255

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Although passing objects to a function’s pointer parameters is common, it is often easier to use a reference parameter. Here ’s
another version of any function() that works just as efficiently but is more simply programmed:

void any function(Tdate &tdr)

{
tdr.Display () ;

}

This version of any function() declares its Tdate parameter as a reference. Inside the function, that reference is used exactly the
same as a Tdate object would be without requiring pointer dereferencing. Statements such as the following pass a Tdate object by
reference to the function:

Tdate today (3, 4, 1999);
any function (today); // Pass object by reference to function

The & operator is no longer needed, even though behind the scenes, C++ passes today’s address to any function(). Inside that
function, the reference parameter tdr refers to the today object. This technique is the easiest to program, and it does not create a
temporary object.

Tip: In most cases, class objects are best passed by reference to function parameters. If you don ’t want the function to be able to
alter the object, declare it const—for example, void f(const Tdate &tdr).

Object Function Results

It is often necessary to create functions that pass back objects —you might think of them as object-factory functions. A function
may return a class object in one of three ways: by value, as a pointer, or as a reference. The first method is probably the least
common but is sometimes useful. For example, here’s a function that returns a Tdate object by value:

Tdate any function()

{
Tdate temp (5, 8, 2003);
return temp; // Return copy of object 2?7

}

The function constructs a local Tdate object named temp and then returns that object as the function’s value. Be aware, however,
that this type of code actually returns a copy of temp, which might be assigned to a variable using this statement elsewhere in the
program:

Tdate new_date = any function();

The function works, but consider all the wasted effort that this code produces. First, any function() constructs the temp object.
Next, it returns that object by value, causing another temporary object to be created. Finally, new_date is constructed using the
returned temporary object, which is then finally deleted. That’s three constructor calls and two copies of an object where only one
is needed! And once again, if the objects own any pointers, their class must have a copy constructor and an operator=() function, or
a serious bug could raise its ugly head in even simple code like this.

Often, a better method is to return a pointer to an object. Here ’s a new version of any function() that demonstrates the technique:

Tdate *any function()

{
return new Tdate (5, 8, 2003);

}
Page 256

This document is created with trial version of CHM2PDF Pilot 2.10.

The function uses the new operator to construct a new instance of the Tdate class and then returns the resulting Tdate pointer as the
function result. Elsewhere in the program, a statement can call any function() to obtain a new Tdate object:

Tdate *tdp = any function();

That statement actually performs three actions. It declares tdp as a Tdate pointer, it calls any function() to construct a Tdate object,
and it assigns the resulting object address to tdp. This is more efficient than returning an object by value because only one object is
constructed. However, it’s important to understand that the use of new inside any function() creates an object of global scope.
Somewhere, somehow, that object must be deleted. For example, following the preceding code, the program should eventually
delete tdp with the following statement:

delete tdp;

A third way to return an object uses a reference. This combines the advantages of returning pointers —memory addresses being
smaller than most objects—and does not result in the creation of a temporary object with all its associated ills. Declare the
function as follows:

Tdate &any function ()

{

return today;

}

The function returns a reference to a Tdate object named today that is presumably created elsewhere in the program. It could be
any Tdate object, perhaps one constructed as a global variable with the statement:

Tdate today (5, 8, 2003);

To obtain a reference to this object, the program calls any function() using a statement:

Tdate &date ref = any function();

All this is just by way of illustration—referring to global objects through a reference function works, but is of no practical value
because it is easier just to use the original object. However, by adding another parameter to any_function(), it might return a
reference to a selected object, perhaps from several stored in an array:

Tdate &any function(int selector)

{

return array([selector];

}

A similar function that returns a reference could be used to select objects from another source such as a list or a disk file. The

function might also provide a check on the selector ’s value, ensuring that it is in the proper range. Furthermore, the reference

function hides the nature of the objects * data structure. The objects might be stored in an array, on a linked list in memory, or
provided by a database server over a network connection.

Another common use for returning objects as references is in writing functions that accept reference parameters. For example,
consider a function declared as

void second function (Tdate &tdr);

A statement could call second function() by passing an object reference returned from any function(), using some kind of index
value to select a specific object:

second function(any function (index));

This is highly efficient because only references (address values) are passed to and from the functions. It is also simpler than

equivalent code that uses pointers. No object copies result, and no constructors are called. The preceding code is hypothetical,
Page 257

This document is created with trial version of CHM2PDF Pilot 2.10.

but it demonstrates safe and efficient techniques for passing objects in and out of functions. In a complex program where that
happens many times, efficiency is a major concern.

Warning: Never return a pointer or reference to an object declared as a local variable in a function. All local variables, including
those that are class objects, are destroyed when the function ends.

Arrays of Class Objects

As you know, you can store values and pointers of any types in arrays. You can also store class objects in arrays, either as
variables or as pointers. For example, this creates an array of ten Tdate objects:

Tdate tenDates[10];

Previous Table of Contents Next

Page 258

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

You may use a similar statement inside a function, but this might waste memory by storing the array on the system stack. In any
case, there’s only one hard-and-fast rule to remember: Class objects in arrays must have default constructors. ~ When the
program creates an array such as tenDates, C++ calls the default constructor once for each object in the array. In this case, C++
calls Tdate() ten times to initialize objects tenDates[0] through tenDates[9].

When the tenDates array goes out of scope (if it ’s global, this is just before the program ends), C++ calls the ~Tdate() destructor, if
it has one, for each object in the array. This happens automatically, and you don ’t need to add any statements to ensure the
proper constructor and destructor calls for objects in arrays declared as local and global variables.

Dynamic Arrays of Class Objects

Rather than allocate arrays of objects as local or global variables, you might consider using new to construct a dynamic object
array. For large arrays (or arrays of large objects), this often uses memory more efficiently because many such arrays can be
created and deleted. However, you now have some additional responsibilities to initialize and destroy the array.

Because pointers and arrays are equivalent in C and C++, the first step in creating a dynamic array of class objects is to declare a
pointer to the type of object for storing in the array. The following declares td arrayp as a Tdate pointer:

Tdate *td arrayp; // Declare pointer to dynamic array

That merely declares the pointer. To create the actual array, use new as follows along with an array size in brackets, and assign the
resulting address to td_arrayp:

td arrayp = new Tdate[6];

This statement creates space for six Tdate objects in dynamic memory, and it calls the Tdate() default constructor to initialize each
object. (It might be wiser to #define a constant for the array size, but for simplicity, I use the literal value 6 here.) The pointer
td_arrayp addresses the first object in the array, but because a pointer is an array, statements may use array-index expressions
with the pointer. For example, this for loop calls each object’s Display() member function:

for (int 1 = 0; 1 < 6; 1i++)
td arraypl[i].Display ()’

Although td_arrayp is a pointer, references to objects in the array can use array -index expressions and dot notation to call a
member function such as Display(). As always when using arrays, it is your responsibility to ensure that index values are within the
defined array ’s range. Also, as you must do for all dynamic memory allocated by new, when you are finished using the dynamic
array, delete it with the following statement:

delete[] td arrayp;

The brackets in delete[] ensure that C++ calls the ~Tdate() destructor, if it has one, for each object in the array. In past C ++
versions, you were required to supply delete[] with the number of objects to delete, using a statement such as

delete[6] td arrayp; // 222

This is not an error, but the argument value is no longer required. Compiling a program with such a statement produces the
following GNU C++ warning:

warning: anachronistic use of array size in vector delete

Tip: If you receive this warning when compiling an existing C++ program, perhaps one downloaded from the Internet, simply hunt
for all occurrences of delete[s/ and change them to delete[] with 21 gaer%%@ent value in brackets.

This document is created with trial version of CHM2PDF Pilot 2.10.
for all occurrences of and change them to with no argument value in brackets.

Arrays of Class Object Pointers

Another highly useful type of array is one that contains not objects but pointers to objects. Each element of the array is a pointer,
which requires initializing using new. To create this type of class object array, declare a pointer tdp array like this:

Tdate *tdp arrayl[10];

That creates an array of ten Tdate pointers, each of type Tdate*. It does not, however, create any Tdate objects. To do that, use
new as in the following for loop:

for (int j = 0; J < 10; j++)
tdp array[j] = new Tdate;

It’s important to understand that, because the array contains pointers to objects, it is your responsibility to construct each one
using new. After constructing the objects, you can use them by dereferencing the array ’s pointers. This, for example, calls the
Display() member function for each object:

for (int 3 = 0; j < 10; Jj++)
tdp_array[j]->Display();

Finally, delete each object in the array. Again, because the array contains pointers, not the objects themselves, C++ does not
delete the objects automatically nor does it call any class destructor. You must do that explicitly by applying delete to each array
slot, as in the following for loop:

for (int j = 0; J < 10; j++)
delete tdp arrayl[jl;

Dynamic Arrays of Class Object Pointers

Seeking to use memory as efficiently as possible, and specifically to avoid large global or local variables, programmers are often
tempted to combine the foregoing array techniques to create a dynamic array of dynamically addressed objects. In other words,
the program has a single pointer that addresses a dynamically allocated array of dynamically allocated objects. There ’s nothing
wrong with this, but it’s far easier to accomplish the same results using a class, as the next section demonstrates. I explain the
technique here because you might come across it in published programs, but steer clear of this method in your own programs.

Essentially, the technique uses a pointer to address an array of pointers, created in dynamic memory. Each of those pointers
addresses an object, constructed by new. There are a variety of C and C++ tricks for declaring this kind of dynamic object, but it
is all around easiest to use a struct such as

struct Tdpp_array {
Tdate *the arrayl[10];
}i

That specifies Tdpp_array to be a struct with one member, the array, an array of ten Tdate pointers. Create the struct object using
new like this:

Tdpp array *tdp = new Tdpp array;

At this point, tdp addresses a Tdpp_array struct that contains an array of ten Tdate pointers. Those pointers are not initialized—only
the struct has been created.

To create the dynamic Tdate objects in the array, you might use new as follows:

for (int k = 0; k < 10; k++)
tdp->the arraylk] = new Tdate;

Page 260

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 261

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Now, tdp addresses the struct, which contains the array of ten pointers to initialized Tdate objects. To access the individual objects
requires two uses of the C++ dereference operator ->. For example, this statement calls the Display() member function for each
object in the array:

for (int k = 0; k < 10; k++)
tdp->the arraylk]->Display();

As always when using pointers to objects, it is your responsibility to delete each memory object allocated by new. In this case,
another for loop deletes the dynamic memory occupied by the ten objects:

for (int k = 0; k < 10; k++)
delete tdp->the arraylk];

Finally, the array of pointers itself must be deleted by using the following statement:

delete tdp;

It is not correct here to use delete[] With brackets because tdp is a pointer to a struct; not to an array. As you can see, this
technique is messy and takes a lot of thoughtful programming. A better and more object -oriented way to accomplish the same
results follows.

Object Arrays As Data Members

Structs and classes may declare data members that are arrays of class objects using any of the forms described in this chapter.
Not only is this useful in a variety of situations, it is probably the best and most efficient way to construct dynamic arrays of
objects allocated memory by new. Rather than fuss with pointers to pointers as in the preceding section, simply declare your array
as a member of a class. For example, consider the following hypothetical class that declares a member date array of ten Tdate
objects:

class Tanyclass {

private:

Tdate date arrayl[10];
public:

Tanyclass () { }

bi

When an object of class Tanyclass 1s constructed, C++ automatically calls the default Tdate() constructor for each object in
date_array. Likewise, when a Tanyclass object is destroyed or goes out of scope, C++ calls the ~Tdate() destructor (if it has one) for
each arrayed object. No extra code is needed to guarantee these constructor and destructor calls, regardless of how the program
creates the Tanyclass object. For instance, to create that object as a global variable, declare it in the usual way:

Tanyclass an_object;

This constructs not only an_object, but also the ten Tdate objects in the date array data member. However, as with all large
variables, more efficient memory use is possible using a Tanyclass pointer:

Tanyclass *a pointer;
Initialize, use, and delete the pointer as you would any other:

a pointer = new Tanyclass;
// ... use a pointer here
delete a pointer;

Page 262

This document is created with trial version of CHM2PDF Pilot 2.10.

You’ve seen similar programming many times in this book. Consider, however, that the first statement constructs not only the
Tanyclass object, but also its array of ten Tdate objects. There’s no need to use multiple pointers, loops, and delete statements.
When new constructs the Tanyclass object, C++ automatically calls the Tdate() constructor for each Tdate object in date_array.
Similarly, when the Tanyclass pointer is deleted, C++ automatically calls the ~Tdate() destructor, if there is one, for each arrayed
object.

Tip: In designing your program, try to think in terms of objects rather than function. For example, if you need an array of ten
objects, create a class with such an array. You can then construct the resulting object as you like and let the class handle the
memory management details of initialization, storage, and deletion.

Objects and Modular Programming

Most of the sample programs in this book are necessarily short and, for simplicity, are implemented entirely in single source code
text files. In practice, however, nobody writes real programs that way. Even programs of medium size are best organized into
separately compiled modules. You’ve seen some examples of modular programming in Part II, “C++ Fundamentals.” To
demonstrate how to use similar techniques for class objects, the following sections present yet another version of the Tdate class.
The sample program is more than just an illustration. It shows how to encapsulate existing functions and data using object-
oriented programming. The result is a class, Tdate, that you can use in your own code to simplify access to the GNU C library’s
date and time functions and data types.

The Tdate Header File

A single module can implement one or more classes for use in other modules. You can write each module apart from other code,
and compile it separately. This makes it easy to share the module with many host programs simply by including the class module’s
header file and linking the host to the module’s compiled object code.

The first step in modularizing a class is to write a header file that contains the class declaration. Listing 13.6, tdate.h, demonstrates
a typical header file for a new version of the Tdate class.

Listing 13.6 tdate.h

#ifndef @ Tdate H
#define = Tdate H // Prevent multiple #includes

#include <time.h> // Need time t

class Tdate {

private:

time t tv_time; // Date and time as a time t value
public:

Tdate () ;

Tdate (int month, int day = 0, int year = 0);
void Update();

void Display () ;

const char *AsString();

}i

#endif // _ Tdate H

The header file declares the Tdate class, but it contains no function implementations (however, a header file may contain inline
functions). This version of the Tdate class is similar to others in this and the preceding chapter. However, the new class stores the
date, not as separate month, day, and year values, but using the time t data type declared in the standard library header time.h. To
obtain this data type, the tdate.h header file includes time.h.

Page 263

This document is created with trial version of CHM2PDF Pilot 2.10.

The tdate.h header file begins with two directives that prevent its own text from being included more than once. At the end of the
file is a third directive that corresponds to the first. Examine the three directives together —minus the class in between—to
understand what the directives accomplish:

#ifndef = Tdate H
#define Tdate H

items processed only on the first include
#endif

The first directive (“if not defined ”) states to the compiler (actually the preprocessor) that if the symbol Tdate H is not defined,
then it should process the following statements. The first of those statements is another directive, which #defines the Tdate H
symbol. Sub-sequently, the next time this header is included by another module, the preprocessor recognizes the ~ Tdate H
symbol, and it skips directly from #ifndef to the corresponding #endif at the end of the file. In other words, the header file is
processed fully the first time it is included. If it is included additional times, the preprocessor ignores the file ’s contents. As a result,
the Tdate class is declared only once regardless of how many modules include tdate.h.

Note: A “symbol” such as __Tdate H exists only during compilation. The symbol is not part of the program, nor does it need a value.
All that matters is whether the symbol has been #defined. It is traditional to precede the symbol’s name with two underscores, but
this is not a requirement.

Previous Table of Contents Next

Page 264

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Getting back to Tdate, notice that its two declared constructors are the same as in most other Tdate classes you have seen.
Because of that, you can use the new Tdate class in most of the sample programming in this and the preceding chapter, even
though its internal data representation has drastically changed. This principle points out one of the major advantages of
restricting access to data members in classes. Because Tdate’s data is private to the class, that data representation is easily
changed by merely updating the class module. Users of the class are unaffected by the change.

Tip: By always making data members private and using member functions to read and write the private data, you greatly simplify
future updates to your programs. Follow this advice now, and you will thank yourself many times in the future.

The Tdate Module

The second element of the Tdate module is its implementation. This is best placed in another file, apart from the class declaration
header, and should end with .cpp or another recognized C++ source code filename suffix. Listing 13.7, tdate.cpp, implements the
Tdate class as a separate module.

Note: The tdate.cpp source code file is not a complete program. See the next section for instructions on how to compile and use the
separate module.

Listing 13.7 tdate.cpp

#include <iostream.h>
#include “tdate.h” // Also includes time.h

// Buffer to hold date string. This buffer is used by all
// Tdate objects, and is overwritten by calls to member
// functions.

// String format: Fri 14-May-2004 (15 characters)

#define BUF SIZE 16
char cbuf[BUF SIZE];

// Default constructor implementation
Tdate: :Tdate ()
{
Update(); // Initialize object date to today
}

// Parameterize constructor implementation
Tdate::Tdate (int month, int day = 0, int year = 0)
{

Update(); // Initialize object date to today

// Create a tm struct using tv_time data member
tm t = *localtime (&tv_time);

// Assign argument values if specified to struct
t.tm mon = month - 1;

if (day > 0) t.tm mday = day;

if (year > 0) t.tm year year - 1900;

// Convert struct back into tv_time value
tv_time = mktime (&t);

Page 265

This document is created with trial version of CHM2PDF Pilot 2.10.

// Update time to “now”
void Tdate: :Update ()
{
time (&tv_time); // Calls the standard time () function

}

// Write date and time to the standard output
void Tdate::Display ()
{
cout << AsString () << endl;
}

// Return date and time as a formatted string
const char *Tdate::AsString()

{

tm t = *localtime (&tv_time); // Convert tv_time to struct
strftime (cbuf, BUF SIZE, “%a %d-%b-%Y”, &t); // Create cbuf
return (const char *)&cbuf; // Return pointer to buffer

Together, tdate.h and tdate.cpp, make up a self-contained module for the Tdate class. To compile the module, use the -c compiler
option as follows:

$ g++ -c tdate.cpp

That creates the object code file tdate.o in the current directory. It is useful to understand at this point that, should it become
necessary to build new code into Tdate, a program could inherit the Tdate class into a new class without having to alter the original
module in any way. In fact, only the tdate.h header file is needed —the source code is not required for using and enhancing the
modularized Tdate class. This is a good example of how, by using classes and objects, you can create truly modular programs that
reuse code, rather than requiring you to rewrite code.

The new Tdate class also demonstrates how a class can encapsulate standard functions and data such as those in the GNU C
library, a good way to bring conventional programming into the object-oriented fold. For example, the Tdate class’s Update()
member function calls the standard time() function to assign the current date and time to the class’s private tv_time data member:

time (&tv_time);

Because the class’s default constructor calls Update(), objects created using this constructor are automatically set to today’s date.
Using this fact, a host program can create and display the current date with simple statements such as

Tdate today;
today.Display () ;

How easy! Using a class to encapsulate the often puzzling standard date and time functions has greatly simplified the use of the

library.

Note: The standard library’s time_t value equals the number of elapsed seconds from 00:00:00 Universal Coordinated Time (UTC),
January 1, 1970. The Tdate class shown here can represent dates starting then.

The Tdate class’s parameterized constructor allows programs to construct a Tdate object with an explicit date, using a statement
such as

Tdate future (4, 3, 2005);

Only the month is required; the day and year values are optional, and if not specified, default to today ’s date. In the constructor,
Page 266

This document is created with trial version of CHM2PDF Pilot 2.10.

after calling Update() to initialize the object to the current date, a statement calls the standard localtime() function. This returns a tm
struct With tv_time’s value converted into fields representing the day, month, year, and other values:

tm t = *localtime (&tv_time);

Armed with the initialized struct, the constructor replaces selected fields with month, day, and year parameters (if supplied with
values greater than zero):

t.tm mon = month - 1;
if (day > 0) t.tm mday = day;
if (year > 0) t.tm year year - 1900;

Finally, the constructor converts the modified struct back to a time t value, storing the result in the object’s private tv_time data
member:

tv_time = mktime (&t);

Another interesting member function in the Tdate class is AsString(). This function calls the standard library ’s strftime() function to
convert the object’s date and time to a formatted string. Because this class concerns itself only with the date, strftime() is given a
formatting string that ignores the time information in the tv_time value. The following statements create the string in the module ’s
character buffer cbuf and return it as a const char pointer:

tm t = *localtime (&tv_time); // Convert tv_time to struct
strftime (cbuf, BUF SIZE, “%a %d-%b-%Y”, &t); // Create string
return (const char *) &cbuf; // Return pointer to buffer

Using this function, a host program can display the time with an output stream statement such as

Tdate today;
cout << “Today is “ << today.AsString() << endl;

Tip: The Display() member function in Tdate isn’t necessarily the best way to write object data to the standard output. A better, and
more object-oriented, method is to reprogram the << and >> operators to recognize objects of the Tdate class type. Chapter 20,
“Customizing 1/O Streams,” explains how to do this.

Previous Table of Contents Next

Page 267

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

A Tdate Host Program

As mentioned, the Tdate class module implemented in the preceding sections is not a complete program. To use the class, a host
program with a main() function is needed. The program includes the tdate.h header file and links to the module ’s compiled object-
code file. Listing 13.8, datetest.cpp, tests the Tdate class module and shows how to use the separate class module.

Listing 13.8 datetest.cpp

#include <iostream.h>
#include “tdate.h”

int main ()

{
// Create default Tdate object and display
Tdate today;
today.Display () ;

// Create parameterized Tdate object and display as string
Tdate future(5, 14, 2004);
cout << “Future date: “ << future.AsString() << endl;

// Update future object to today and display as string

future.Update() ;

cout << “Future updated to today:
<< future.AsString() << endl;

AN

// Get a pointer to today object as a string
const char *s = today.AsString();
cout << “Pointer to today as string: “ << s << endl;

return O;

The program includes all the library header files it needs, along with the Tdate class header file using the directive

#include “tdate.h”

Quotation marks indicate that tdate.h is in the current directory, or in a directory specified by an -I option (see Chapter 5,
“Compiling and Debugging C++ Programs”). Including the class’s header file makes the Tdate class declaration available for use in
the program, which shows several ways to create and use Tdate objects. To compile and run the test, use these commands:

$ g++ -c tdate.cpp

$ g++ datetest.cpp tdate.o

$./a.out

Mon 08-Mar-1999

Future date: Fri 14-May-2004

Future updated to today: Mon 08-Mar-1999
Pointer to today as string: Mon 08-Mar-1999

The first command compiles the tdate.cpp module separately, creating the object -code file tdate.o in the current directory (you
might already have completed this step). The second compiles datetest.cpp and links it to the separately compiled tdate.o object
code file. The third command runs the resulting executable code file and displays the current date along with some other test
results.

Page 268

This document is created with trial version of CHM2PDF Pilot 2.10.

Classes and Data Hiding

Any of the Tdate sample listings in this chapter can use the revised Tdate class module. For example, copy dynadate.cpp (refer to
Listing 13.1) to a new file, perhaps named test.cpp, and add this directive:

#include “tdate.h”

Delete the Tdate class declaration from test.cpp along with all Tdate implementation functions, leaving only main(). Compile and run
the result with these commands (assuming you have previously compiled tdate.cpp):

$g++ test.cpp tdate.o
$./a.out

This is a practical demonstration of how, using a class to hide private data, the class ’s internal structure can change without
affecting programs that use the class. It is just one of many powerful aspects of object -oriented programming that can help you
write robust, easy-to-maintain software.

Summary

This chapter introduced many techniques for creating objects of C ++ classes, including dynamic class objects, destructors, copy
constructors, and operator=() member functions. The chapter also showed how to pass objects to functions, return them as function
results, and store objects efficiently in arrays. The chapter ended with a revised Tdate class that encapsulates some of the functions
and data types of standard GNU C library ’s time and date functions.

For more information on subjects introduced in this chapter, turn to the following chapters:
* Chapter 16, “Handling Exceptions”
e Chapter 19, “Overloading Operators”

* Chapter 20, “Customizing I/O Streams”
e Chapter 21, “Honing Your C++ Skills”

Previous Table of Contents Next

Page 269

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 14
Investing in Inheritance

In the preceding two chapters, you learned how classes encapsulate data and functions into a handy package. As you discover in
this chapter, classes can do much more. Using a technique called inheritance, you can build new classes from existing ones. With
inheritance, you write software based on finished, tested modules, instead of creating every new program from scratch.

Classes As Building Blocks

C++ offers two kinds of inheritance: single and multiple. In both cases, a new class inherits one or more existing classes to which
you want to add new capabilities. The new class is called a derived class . For example, you might have a graphics library of
classes that draw various shapes. To add a new shape, instead of reprogramming the library, you simply derive a new class from
an existing one and add code and data to create the new shape.

Using inheritance, you can also develop hierarchies of related classes that resemble family trees. For instance, a hierarchy of
network classes might include high-level classes for downloading specific types of data from a network server, but also provide
low-level classes for accessing the operating system’s telephony functions.

The following sections describe in general terms the concepts of single and multiple inheritance. Following that I show code
examples of both techniques.

Single Inheritance
Single inheritance describes the relationship between one class and the class from which it is derived. The base class may be

any class or struct. The derived class inherits the data and function members of the base class. (The derived class, however, does
not inherit constructors, but more on that later.) Figure 14.1 illustrates single inheritance.

Base Class

Derived Class

Figure 14.1 In single inheritance, the derived class inherits the base class.

You may derive many classes from a single base class. Even so, as Figure 14.2 illustrates, such relationships are still of the single -
inheritance variety because each new class derives from a single base.

Base Class

Derived Class Derived Class Derived Class

Page 270

javascript:displayWindow('images/14-01.jpg',134,183)
javascript:displayWindow('images/14-01.jpg',134,183)
javascript:displayWindow('images/14-02.jpg',358,139)

This document is created with trial version of CHM2PDF Pilot 2.10.

Figure 14.2 Many classes may inherit the same base class.

You’ll come across many terms that describe derived and base classes. Some programmers call the base class the ancestor and
the derived class the descendant. Others call the base class the parent and the derived class the child. Classes that share the
same base class, as in Figure 14.2, are sometimes called siblings. Less common terms include subclass for the base, and
superclass for the derived class.

Multiple Inheritance
Multiple inheritance describes the relationship of one class that is derived from two or more other base classes. This resembles

the way a child inherits properties from his or her parents. In real life, it takes only two to tango, but in C ++, a child class may have
as many parents as needed. Figure 14.3 illustrates multiple inheritance.

Base Class Base Class Base Class

Derived Class

Figure 14.3 In multiple inheritance, a derived class inherits the properties of two or more base classes.
Multiple inheritance seems like a neat idea until it comes time to put it to use. In practice, most tasks can be accomplished using

single inheritance. Although it is sometimes useful, multiple inheritance can create troublesome roadblocks (more on that in
Chapter 15, “Programming with Virtual Functions”).

Tip: Don’t use multiple inheritance unless you have sound reasons for doing so. A reliance on multiple inheritance may indicate a
poor design among class relationships, but see Chapter 15 for solutions to problems that multiple inheritance can cause.

Creating Derived Classes

A few simple examples explain the mechanics of inheritance. Consider a hypothetical base class, TBase, declared as follows (for
simplicity, I implement all functions inline):

class TBase {

private:
int count;
public:
TBase () : count(0) {}
void SetCount (int n) { count = n; }
int GetCount () { return count; }

}s

The TBase class declares a single private data member, an integer named count. The class’s default constructor initializes count to
zero. Two member functions set count to the integer parameter value n, and return count’s current value. Statements might use the
TBase class like this:

TBase base object;
base object.SetCount (123);
cout << base object.GetCount () << endl;

The first line constructs a TBase object named base_object. The second line calls the SetCount() member function to assign a value to
the class’s private data member. The final statement calls GetCount() to obtain the class’s count value. Although hypothetical, the
design of TBase contains elements found in many real -world classes.

Page 271

javascript:displayWindow('images/14-02.jpg',358,139)
javascript:displayWindow('images/14-03.jpg',357,140)
javascript:displayWindow('images/14-03.jpg',357,140)

This document is created with trial version of CHM2PDF Pilot 2.10.

To add new capabilities to TBase, don’t rewrite it; inherit it into a new class and add the new capabilities you need. For example,
suppose you decide that a function to add a value to the object’s count would be useful. To derive a new class from TBase, use a
declaration such as

class TDerived: public TBase {

public:
TDerived () : TBase() {} // constructor
void AddToCount (int n); // member function

}i

The derived class name, TDerived, is followed by a colon and the name of the base class to inherit. The word public states that all
members of TBase should retain their current access specifications—private items in TBase remain private, and public items remain
public in the derived class. If you change public to private, then all inherited members from TBase become private members of
TDerived. To its inheritance, TDerived declares two new items: a constructor and a member function AddToCount(), both in a public
section.

Previous Table of Contents Next

Page 272

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The derived class constructor is, like all constructors, named the same as its class. Because a derived class does not inherit
constructors, it must declare at least one constructor of its own. In this case, the default TDerived() constructor calls the base class
constructor TBase() using an initializing expression. The constructor’s body is empty, but it could perform other statements if
necessary. The design of the TDerived constructor ensures that, when the program constructs an object of the derived class, it calls
not only that class’s constructor but also the constructor in the ancestor base class. In that way, any inherited items are properly
initialized. For example, in this case, the TBase() constructor sets TBase::count to zero.

The derived class member function adds a new capability to the TBase class—function AddToCount(). Given the derived
constructor and new member function, the program can create an object and use the new function to add a value to it:

TDerived derived object;

derived object.SetCount (123);

derived object.AddToCount (456) ;

cout << derived object.GetCount () << endl;

First, the program constructs derived object. This calls the TDerived() constructor, and also the TBase() constructor, to initialize the
object. Next, the program calls the inherited SetCount() to assign a value to the object. It then calls the newly added AddToCount()
function to increment the object’s value. Finally, the inherited GetCount() function returns the object’s value for display. The
TDerived class inherits the SetCount() and GetCount() functions from TBase. Because of that, statements may call those functions for
any TBase Or TDerived object. A good way to think about this is to imagine that a TDerived object is merely an enhanced or
expanded TBase object. A TDerived object can do anything a TBase object can do and more.

The final piece of the inheritance puzzle implements the newly added member function. Although simple, the programming reveals
another important aspect about inheritance:

void TDerived: :AddToCount (int n)

{
SetCount (GetCount() + n);

}

The implementation of AddToCount() is the same as for any class member function. First comes the return type (void), followed by
the class name and the C++ scope resolution operator. The function ’s name, parameters, and statement block follow. The single
statement in that block calls the inherited SetCount() and GetCount() member functions to add the parameter int n to the object’s
value. It’s important to realize that AddToCount() cannot simply use a statement such as

count += n; // ?22°?

That doesn’t compile because count is a private member of the TBase class. Even though TDerived inherits all of TBase’s members,
only the declaring class can access its private data. TDerived must therefore call the GetCount() member function to obtain the
object’s count value, and it must call SetCount() to change that value. Although this might seem to be a great imposition—and in this
simple example it is admittedly a lot of extra work —in large programs, restricting access to private data as illustrated here greatly
increases the security of the program and promotes ease of future maintenance.

The TCoordinate Class

Now that you’ve met some of the basics of classes and inheritance, a practical example illustrates how to create classes that are
useful in real-world programming. Representing locations as (X,y) coordinate values is a common programming technique that
makes a good example of a usable C++ class. Coordinate objects might represent locations of characters on a text terminal, or the
pixels on a graphics display. In this and the next few sections, you investigate a class that stores a coordinate value. You also
create derived classes to add a new functions to the basic design.

To make the class easier to use, I wrote it as a separate module. Listing 14.1 shows the header file for the TCoordinate class.
Page 273

This document is created with trial version of CHM2PDF Pilot 2.10.

Listing 14.1 coordinate.h

class TCoordinate {

private:
int tc_x, tc_y;

public:
TCoordinate(): tc x(0), tc_y(0) { }
TCoordinate (int x, int y): tc x(x), tc_y(y) { }
void Setxy(int x, int y);
int Getx () const;
int Gety () const;

}i

The TCoordinate class contains only one new element you haven’t seen before—the use of const in a function prototype—and you
should be able to understand most of the programming by reading the class declaration. A private section declares two private
data members, tc x and tc_y, both of type int for storing an X/Y location. Two constructors initialize objects of the TCoordinate
class. The default constructor sets tc x and tc_y to zero. The parameterized constructor sets those two private variables to the
values of x and y parameters. The class doesn’t need a destructor.

In addition to its constructors, the TCoordinate class declares three member functions. Setxy() changes the object’s private data
members to new x and y values. Getx() and Gety() return the values of the private data members. The word const following the
function declarations informs the compiler that Getx() and Gety() do not change any data members in an object of this class. In
general, any member function in a class that makes no changes to an object’s data members should be declared const. For
reasons that become clear a little later, this is especially important for functions that return the values of private data members.

Tip: Many classes use member functions to set and get the values of private data members in classes. If you are concerned about
losing efficiency to many function calls, declare the functions inline and compile with an optimization option such as -Ol.

Previous Table of Contents Next

Page 274

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

To complete the module, the TCoordinate class needs implementations for its three member functions. Listing 14.2 shows the result.
This is not a complete program—you can compile it with the -¢ (compile only) option, but you can’t run the code just yet.

Listing 14.2 coordinate.cpp

#include “coordinate.h”
void TCoordinate::Setxy(int x, int vy)
{
tc x = x;
tc vy V2
}

int TCoordinate::Getx () const
{
return tc_ x;

}

int TCoordinate::Gety () const
{
return tc_ y;

}

There’s nothing special about the implementation module, except again for the words const following Getx() and Gety(). The module
implements the class’s three member functions to set and get the values of the private data members tc x and tc y. To test the
class, we need a host program. A sample is in Listing 14.3, tcoord.cpp (test TCoordinate).

Listing 14.3 tcoord.cpp

#include <iostream.h>
#include “coordinate.h”

void display(const char *msg, TCoordinate &tc);
int main ()
{
TCoordinate tl1;
display(“Default object”, tl);
TCoordinate t2 (45, 218);
display(“Parameterized object”, t2);
tl.Setxy (100, 200);
display (“After calling setxy()”, tl);
return 0;

void display(const char *msg, TCoordinate &tc)

{
cout << msg << endl;
cout << “x == " << tc.Getx () << V; y == " <K< tc.Gety();
cout << endl;

Compile the program using the -c option for the coordinate module, and then link the host program to the module ’s object code

Page 275

This document is created with trial version of CHM2PDF Pilot 2.10.
-C

with the following commands:

$ g++ -c coordinate.cpp
$ g++ tcoord.cpp coordinate.o

Run the program to display the results of three tests using two TCoordinate objects:

$./a.out
Default object
x == 0; y ==

Parameterized object
x == 45; y == 218
After calling setxy ()
x == 100; y == 200

Derived Class Constructors

Imagine that you are writing a graphics program, in which you represent coordinates using TCoordinate objects. However, in
addition to location, you need an object that can store a color value. This illustrates a common problem well-suited to an object-
oriented solution. When you discover the need for a new type of data or function, you can often build a new class on an existing
one, and in that way reduce your work load while taking advantage of code that’s already finished. Listing 14.4, color.h, declares
the derived class, TColor.

Listing 14.4 color.h

#include “coordinate.h” // Need Tcoordinate

// Enumerated color names
typedef enum
{
UNKNOWN, RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET
} TColors;

// Class declaration
class TColor: public TCoordinate {

private:

TColors tc color; // Private data

static const char *colornames[]; // Private static data
public:

TColor () : TCoordinate(), tc_color (UNKNOWN) { }

TColor (TColors color, int x, int vy);

void SetColor (TColors color) { tc color = color; }

TColors GetColor() const { return tc color; }

const char *StrColor () const;

The new TColor class, derived from TCoordinate, inherits the base class’s data and member functions. To its inheritance, the new
class adds two private data members—variable tc_color of the enumerated TColors type (also declared in the header file), and
colornames, a static array of string constants.

A static member refers to data that belongs to a class but that you don 't want to duplicate in every class object. In this case, we
want to give string names to TColors symbols such as BLUE and RED, but it would be silly to add those identical strings to every
TColor class object. Declaring the array static indicates that only one copy of colornames exists for all TColor objects. Conversely,
because tc_color 1s not declared static, every TColor object has a distinct copy of that private variable.

Note: Static members can also be functions. For an example, see “Static Member Functions” under “Odds and Ends” in Chapter 21,

Honing Your C++ Skills. Page 276

This document is created with trial version of CHM2PDF Pilot 2.10.

In addition to its private data, the TColor derived class declares several constructors and member functions. The default
constructor initializes objects created with no argument values as in this statement:

TColor color object;

For simplicity, | implemented TColor’s default constructor entirely inline. Its statement block performs no actions. To initialize a
TColor object, the constructor calls the derived constructor TCoordinate(). It also sets the TColor private data member, tc_color, to
the default enumerated value, UNKNOWN.

Two other member functions are also implemented inline. SetColor() changes a TColor object’s color to a new value, and GetColor()
returns the object’s current color. Notice that, as in TCoordinate, member functions that merely return data from a class object but
make no internal changes are declared const. The TColor class also declares a parameterized constructor and a member function
that are implemented in the separate module, Listing 14.5, color.cpp.

Previous Table of Contents Next

Page 277

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Listing 14.5 color.cpp

#include “color.h”

// Define static array of color strings

const char *TColor::colornames[] = {
“Unknown”, “Red”, “Orange”, “Yellow”, “Green”, “Blue”,
“Indigo”, “Wiolet”

}i

// TColor member function implementations
// Parameterized constructor
TColor::TColor (TColors color, int x, int y):
TCoordinate (x, V) // Initialize base class object
{
tc color = color; // Initialize our private data

}

// Return color name as a string using static array
const char *TColor::StrColor() const
{
if (tc_color < RED || tc_color > VIOLET)
return colornames [UNKNOWN] ;
else
return colornames[tc color];

The color.cpp module implements the two members of the TColor class that are not implemented inline. However, first in the
module is the definition of the colornames static array. Although the class declares this member, it must be implemented in a code
module, not in the header file so that other modules can include this same header. This arrangement does not make the colornames
array globally available. Because the array is private to the TColor class, it is accessible only to statements in the class’s member
functions. Creating static objects such as colornames is a great way to limit access to private data on a module level.

The module also implements the TColor parameterized constructor and a member function. The constructor requires three
parameters: a color, and x and y coordinate values. To initialize the base class data, the constructor calls the TCoordinate
parameterized constructor, passing the x and y parameters. The constructor also initializes the tc_color private member to the
specified color. In this way, statements such as the following fully initialize a TColor object:

TColor color object (RED, 450, 87);

The final element in the color.cpp module implements the StrColor() member function. This function returns a constant char*
(character pointer) to one of the strings in the static colornames array. Because the function changes no data in the class, it is
declared const. Inside the function, for safety, a statement checks that tc color is in the allowable range before using it to access the
colornames array. Listing 14.6, tcolor.cpp, tests the completed module.

Listing 14.6 tcolor.cpp

#include <iostream.h>
#include “coordinate.h” // Need TCoordinate
#include “color.h” // Need TColor

// Function prototype
Page 278

This document is created with trial version of CHM2PDF Pilot 2.10.

void display(const char *msg, TColor &tc);

int main ()

{
TColor color object (ORANGE, 45, 67);
display (“Original object”, color object);
color object.SetColor (GREEN) ;
color object.Setxy (125, 250);
display (“After function calls”, color object);
return 0;

}

// Display facts about object tc
void display(const char *msg, TColor &tc)
{
cout << msg << endl;
cout << “x == " << tc.Getx () << %V, y == " <K< tc.Gety();
cout << “; color = " << tc.StrColor();
cout << V% (” << tec.GetColor() << Y)';
cout << endl;

Compile and link the test program with the following commands. You can skip compiling coordinate.cpp if you already did that:

$ g++ -c coordinate.cpp
$ g++ -c color.cpp
$ g++ tcolor.cpp coordinate.o color.o

These commands demonstrate how a new class such as TColor can be derived from an existing class (TCoordinate) simply by
including that class’s header file and linking the program to the class ’s implementation object code file (coordinate.o). This is a
good example of how, using inheritance, you can reuse tested code in new programming. Now, run the compiled program:

$./a.out

Original object

x == 45; y == 67; color = Orange (2)
After function calls

x == 125; y == 250; color = Green (4)

The program’s output shows the x, y, and color values for a TColor object. Because the TColor class inherits the data and member
functions from TCoordinate, it can represent both kinds of data. Furthermore, the TCoordinate class remains usable in its original
form, and the new programming has no effect on any other programs that use TCoordinate.

Derived Class Destructors

It’s the rare program that derives only one class from another. In most programs, many layers of classes are needed to create the
objects you need. As a demonstration, and to show some additional facets about derived classes, let ’s take the TCoordinate and
TColor classes one step further.

Your graphics program is taking shape, but now you discover that not only do you need objects to represent screen locations and
colors, but some of those locations need string labels as well. As before, a good solution to the problem is to derive a new class
and add the data and functions you need. Listing 14.7, label.h, declares a new class derived from TColor.

Listing 14.7 label.h

#include “color.h” // Need TColor

class TLabel: public TColor {

private:
Page 279

This document is created with trial version of CHM2PDF Pilot 2.10.

char *tl label;
public:
TLabel () : TColor() { tl label = NULL; }
TLabel (const char *label, TColors color, int x, int y);
TLabel (const TLabel ©)
~TLabel () { delete tl label; }
const char *GetLabel() const { return tl label; }
void SetLabel (const char *label);
void operator=(const TLabel ©):;

Because TColor is derived from TCoordinate, the new TLabel class inherits the data and function members from both of its
ancestors. To its inheritance, the new TLabel class adds a char* variable tI_label for addressing a string in memory.

Previous Table of Contents Next

Page 280

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The first line is typical in all operator=() functions—it ignores any attempt to copy the same object into itself. The other three
statements initialize the copy by calling the inherited Setxy(), SetColor(), and SetLabel() functions along with Getx(), Gety(), and GetColor
(- The calls to Setxy() and SetColor() illustrate the importance of declaring const member functions. To understand why, take a look
at the operator=() function header:

void TLabel: :operator=(const TLabel ©)

The copy parameter, which refers to the source object being copied, is declared as type const TLabel &—in other words, a
reference to a constant TLabel object. If functions such as Getx(), Gety(), and GetColor() were not declared const, statements that
pass a const object as an argument would give the compiler a dilemma. For example, this statement:

Setxy (copy.Getx (), copy.Gety());

passes to Getx() and Gety() a this pointer for the const object copy. Because the functions are declared as const, there is no danger
that they will inadvertently modify the object. Listing 14.9, tlabel.cpp, tests the implemented TLabel class. The listing contains
nothing new, and you should be able to understand the programming from the source code.

Listing 14.9 tlabel.cpp

#include <iostream.h>
#include “label.h” // Need TLabel

void display(const char *msg, TLabel &tl);

int main ()

{
TLabel test (“Test Label”, RED, 100, 200);
display(“Test object”, test);

TLabel copy object (test);
display (“Copy constructed object”, copy object);

TLabel dest object;
display (“Object before copy”, dest object);
dest object = test;
display (“Object after copy”, dest object);

return 0;

}

// Display facts about object tc
void display(const char *msg, TLabel &tl)
{
cout << msg << endl;
cout << W“x == 7 << tl.Getx () << V; y == " << tl.Gety();
cout << %; color = " << tl.StrColor();
cout << “ (” << tl.GetColor() << Y)’;
cout << “; ” << tl.GetLabel();
cout << endl;

Copying Derived Class Objects

Page 281

This document is created with trial version of CHM2PDF Pilot 2.10.

One other wrinkle in copying derived class objects occurs when a class is derived from another with its own copy constructor and
operator=() function. This is a common problem that many C-++ programmers either ignore or mishandle. Listing 14.10
demonstrates a good way to deal with the situation.

Listing 14.10 copy.cpp
#include <iostream.h>
#include “label.h” // Need TLabel

// Test class
class TTest: public TLabel {

private:
int count;
public:
TTest () : TLabel (), count (123) { }

TTest (const TTest ©)
void operator=(const TTest ©);
int GetCount () const { return count; }

}i

// Function prototype
void display(const char *msg, TTest &tx);

int main ()

{
TTest tx, ty; // Create two objects
display (“New object (tx)”, tx); // Display object values
display (“New object (ty)”, ty);

ty.SetLabel (“test string”); // Change ty data
ty.SetColor (VIOLET) ;

ty.Setxy (456, 789);

display (“Modified (ty)”, ty):; // Display modified data

tx = ty; // Copy ty to tx !
display (“After (tx = ty)”, tx); // Display copied data

TTest tz(ty); // Construct tz using copy constructor
display (“Copy constructed tz”, tz); // Display object

return O;

// Copy constructor
TTest::TTest (const TTest ©) :

TLabel (copy) // Initialize ancestor object
{

count = copy.count; // Initialize our own data
}
// Assignment (=) member function

void TTest::operator=(const TTest ©)

{

if (this == ©) return; // Don’t copy self
* (TLabel *)this = copy; // Copy ancestor object data
count = copy.GetCount () ; // Copy our own data

// Show data in object tx
void display(const char *msg, TTest &tx)
{

cout << msg << endl;
cout << “x == " << tx.Getx () << V; y == " <K< tx.Gety();

Page 282

This document is created with trial version of CHM2PDF Pilot 2.10.

cout << “; color = " << tx.StrColor();
cout << “ (” << tx.GetColor() << VY)’;
cout << V%; 7 << tx.GetLabel () ;

cout << “; count = " << tx.GetCount():;
cout << endl;

Compile and run the program using the following commands. You can skip compiling the coordinate.cpp, color.cpp, and
label.cpp modules if you have already done so.

$ g++ -c coordinate.cpp color.cpp label.cpp
$ g++ copy.cpp coordinate.o color.o label.o
$./a.out

Previous Table of Contents Next

Page 283

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The sample program derives yet another class from TLabel—in this case, named TTest. As with TLabel, our mission is to create a
class with mechanisms for the safe copying of objects —both during construction with statements such as

TTest testl;

TTest test2(testl); // Calls copy constructor

and for cases where two existing objects are copied in an assignment statement:

testl = test2; // Calls operator=() member function

When writing classes to cover these uses, be sure that all ancestor classes have the chance to copy their own data members. For
example, in this case, we want the TCoordinate class to copy its tc x and tc y private data members, and TColor to copy its tc_color
value. The derived class shouldn’t have to do more than copy its own data. Making that happen isn’t difficult after you learn the
tricks. To handle the copying of objects, the TTest class, derived from TLabel, declares a copy constructor and operator=() function:

TTest (const TTest ©);
void operator=(const TTest ©);

You’ve already seen several examples of these functions —they are almost always declared as shown except, of course, for the
class names. Implementing the copy constructor is the easy part—it merely calls the TLabel() copy constructor passing the copy
parameter, which is a reference to the TTest source object:

TTest::TTest (const TTest ©) :
TLabel (copy) // Initialize ancestor object
{

count = copy.count; // Initialize our own data

}

The constructor’s lone statement is simple—it merely copies the source object’s count data member to the target object’s data
member. The operator=() function, however, is not as simple:

void TTest::operator=(const TTest ©)
{

if (this == ©) return; // Don’t copy self
* (TLabel *)this = copy; // Copy ancestor object data
count = copy.GetCount () ; // Copy our own data

As usual, the first statement ignores cases where the program attempts to copy an object onto itself. The second statement is
where many programmers get stuck. We want to have the ancestor operator=() function (or one automatically generated by C++)
handle base class object copying. To do this, the statement assigns copy (the source object reference) to this (the target object to
which we are copying). However, the following statement does not work:

*this = copy; // 227

That would cause the TTest object to be copied to the object addressed by the this pointer—causing a recursive function call to
TTest::operator=() and blowing up the stack. Instead, we want to tell C++ that this addresses an ancestor object of type TLabel.
Using a type cast does the job:

* (TLabel *)this = copy;

The type cast expression, (TLabel *), states that this actually addresses a TLabel object. This is perfectly acceptable because a

TTest object is, after all, just an enhanced TLabel object (see Figure 14.4). The asterisk outside the expression tells the compiler to
Page 284

This document is created with trial version of CHM2PDF Pilot 2.10.
TTest TLabel

dereference the type cast pointer. The result is a call to Tlabel::operator=(), which we can trust to handle the copying of all inherited
data members.

Figure 14.4 shows the relationships of the four classes in the TTest hierarchy. The figure also illustrates an important concept—that
a pointer to an object may be of that object’s class type, or of any derived type. For example, it is perfectly acceptable for a
TColor pointer to address a TLabel object because TLabel is derived from TColor. It wouldn’t make sense, however, for a TLabel
pointer to address a TCoordinate object.

TCoordinate*

TTast TColor*
Object TLabel*

TTest*

TLabel TCoordinate*
Object Ercmm-
TLabel*

TColor =T Coordinale*
Object TColor*

TCoordinate —T Coordinate”
Object

Figure 14.4 Object pointers may be of a class’s type, or of an ancestor type from which a class is derived.
Introducing Protected Members

A protected class member is a cross between a private and a public member. To declare this type of element, use the protected
reserved word followed by a colon:

class TAnyClass {
public:

// public members
protected:

// protected members
private:

// private members

}i

Declaring a variable or member function protected states that other members of this class—and any classes derived from this
class—may directly use those members. Statements outside the class have no access to proctected members. The following rules
describe the effects of private, protected, and public access specifiers:

* A private member is accessible only to members of the class in which the member is declared.
* A protected member is accessible to members of its own class and to any members in a derived class.
* A public member is accessible to all users of the class.

Changing Access Specifiers
You can change an inherited item’s access rules by declaring the ancestor class public, protected, or private. However, you may
only make inherited items more restrictive—you cannot make them less so. For example, you may state that inherited public

members are from now on to be private, but you cannot inherit private members and make them public. Usually, you derive
classes using the public reserved word like this:

class TDerived: public TBase {...};

Page 285

javascript:displayWindow('images/14-04.jpg',500,268)
javascript:displayWindow('images/14-04.jpg',500,268)

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 286

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Using this declaration, in the TDerived class, all members of TBase retain their present access specifications. Public members from
TBase are public members in TDerived. Protected TBase members are protected members of the new class. Private members
remain strictly for TBase’s own use. Using the protected reserved work creates a different effect:

class TDerived: protected TBase {...};

That declaration causes public members of TBase to become protected members in TDerived. Protected and private members in
TBase remain unaffected. This change means that statements outside TDerived can no longer access the formerly public members
TBase. For the utmost in restrictions, inherit a class using the private reserved word:

class TDerived: private TBase {...};

That kind of declaration is highly unusual because it makes all members of TBase private members of TDerived. Statements outside
the TDerived class, as well as statements in any further derived classes based on TDerived, cannot call any functions, not even
constructors, nor refer to any data members, in TBase.

Tip: Making an inherited class private forevermore hides its contents in the derived class. One possible use for this technique is to
help eliminate a class from a complex hierarchy. By hiding the inherited class now, it might be possible to delete it entirely at some
point in the future.

Qualifying Selected Members

In cases where you need to inherit most of a class normally but selectively change the access rules for individual elements, you can
qualify the access rules for selected members. This can be useful, for example, in creating classes that do a better job at protecting
and hiding data than their ancestor classes.

To illustrate the technique, imagine you come across a class in which all members are public. This usually indicates a poor design,
and you want to upgrade the class to improve its safety. Call the original class A, and its derived improvement B. Listing 14.11,

qualify.cpp, shows how to selectively qualify members inherited into B from A.

Listing 14.11 qualify.cpp

#include <iostream.h>
class A {

public:
int x;
A(int n): x(n) { } // Constructor
void Display() { cout << “x == ” << x << endl; }

}s

class B: private A {

public:
B(int n): A(n) { } // Constructor
A::Display; // Selectively qualify Display()

}s

int main ()

{
B object (123); // Construct object of type B
object.Display(); // Call qualified inherited function
return 0;

Page 287

This document is created with trial version of CHM2PDF Pilot 2.10.

The sample program is simple (you don’t even have to run it), but it shows how to change the access rules for selected items
inherited from a class. In this case, class A is the poorly designed one. It declares all of its members public, and as such, is no
safer than a common C struct. Any statement anywhere in the program can read and write the integer x data member’s value in an
object of type A.

To improve the class design, class B inherits A using the private reserved word. As mentioned, this completely hides A inside B.
The public x variable from A becomes a private member of B, thus protecting it from indiscriminate use. However, the Display()
member function also becomes private to B. To retain Display()’s public status so that statements can call it, declare the function as
follows:

public:
A::Display;

The class name and scope resolution operator :: refer to Display, not as a function prototype, but as a symbol without parentheses.
In effect, the declaration states that the symbol Display is to retain its access rules as found in A. The result is that programs can
construct objects of the derived class B, and still call the Display() function, as demonstrated in the sample program’s statements:

B object (123);
object.Display () ;

Debugging Derived Classes

The GNU debugger helps you investigate the values of class data members, and the actions of member functions, constructors,
and destructors. To learn the relevant commands, enter the following commands to compile and load the tlabel.cpp test program
into the debugger:

$ g++ -g -c coordinate.cpp color.cpp label.cpp
$ g++ -g -o tlabel tlabel.cpp coordinate.o color.o label.o
$ gdb --silent tlabel (gdb)

The first two commands compile tlabel.cpp using the options -g (add debugging information), -c (compile only), and -o (output

filename). The third command starts the debugger and skips (--silent) its wordy welcome. Continue to the next section to explore
object creation using debugger commands.

Note: To compile a program or a separate module for debugging, remember to specify the -g compiler option.

Inspecting Object Construction

At the (gdb) prompt, enter a breakpoint at line 21 to pause the program at the creation of a test TLabel object (see tlabel.cpp,
Listing 14.9):

(gdb) b 21
Breakpoint 1 at 0x804884e: file tlabel.cpp, line 21.

The actual line number might be different for you. Run the program up to the breakpoint, pausing just before the test object ’s

construction:

(gdb) run

Starting program: /src/cld/tlabel
Breakpoint 1, main () at tlabel.cpp:21

21 TLabel test (“Test Label”, RED, 100, 200);

To inspect the object’s construction, use a step command to step inside the class’s constructor:

Page 288

This document is created with trial version of CHM2PDF Pilot 2.10.

(gdb) step

TLabel: :TLabel (this=0xbffffa68, label=0x8048e4c “Test Label”,
color=RED, x=100, y=200) at label.cpp:13

13 TLabel: :TLabel (const char *label, TColors color,

int x, int y):

Previous Table of Contents Next

Page 289

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The debugger’s output shows all the parameters passed to the TLabel constructor (notice its name is TLabel::TLabel()). The
debugger shows the this pointer address, which is equal to the object’s address in memory. It also shows the values of the label,
color, x, and y parameters. Strings such as label are shown by address and by value. Enumerated values such as color are shown by
name—a most helpful feature.

At this stage, the program is paused at the call to the TLabel parameterized constructor, giving you the chance to review all
parameter values. The first task in the constructor is to call its ancestor TColor constructor, although this fact might not be obvious
from the debugger’s display (again, consult Listing 14.9). Issue a second step command to step into the TColor constructor:

(gdb) step

TColor::TColor (this=0xbffffa68, color=RED, x=100, y=200)
at color.cpp:21

21 TColor::TColor (TColors color, int x, int y):

Again, the debugger shows the parameter values passed to the constructor. Issue one more step command to step further down
to the TCoordinate constructor:

(gdb) step

TCoordinate: :TCoordinate (this=0xbffffa68, x=100, y=200)
at coordinate.h:15

15 TCoordinate (int x, int y): tc x(x), tc y(y) { }

This reaches the lowest level in the class hierarchy. You could continue to issue next and step commands to further trace the
code, and inspect each level in the initialization process of this object. When you ’re finished exploring, type a continue command
(you can abbreviate it cont) to run the program to completion, and then type ¢ to quit:

(gdb) cont
Continuing.
(gdb) g

Inspecting Object Data Members

Using the debugger, you can peer inside an object to inspect its data member values. To try this, reload the tlabel.cpp program:

$ gdb --silent tlabel
(gdb)

As mentioned in this and prior chapters, providing for safe object copying is a necessary fact of life in C ++ object-oriented
programming. To inspect how the test program does this, set a breakpoint at the statement that copies one object to another:

dest object = test;
Enter the following commands to set the breakpoint (it ’s at line 29 for me):

(gdb) b 29
Breakpoint 1 at 0x80488b7: file tlabel.cpp, line 29.

Next, run the program up to the breakpoint. You should see the assignment statement on the last output line:

(gdb) run
Starting program: /src/cld/tlabel
Breakpoint 1, main () at tlabel.cpp:29

29 dest object = test;
Page 290

This document is created with trial version of CHM2PDF Pilot 2.10.
Use a print command to inspect the data members of dest_object before the assignment statement executes:

(gdb) print dest object
$1 = {<TColor> = {<TCoordinate> = {tc x = 0, tc_y = 0},
tc_color = UNKNOWN,

static colornames = 0x8049f00}, tl label = 0x0}

The debugger assigns a pseudo name $1 to dest_object that you can use in other commands. In the output, braces segment the
object according to its class hierarchy, but this style might seem a bit confusing at first. The innermost braces indicate that the tc x
and tc_y data members are set to zero for the TCoordinate portion of the object. At the next higher level, the TColor class’s tc_color
data member is set to UNKNOWN. Finally, at the dest_object ’s level, t1_label equals NULL (0x0). This format takes some getting used
to, but it shows not only the object’s data member values, but also its class organization.

To inspect the value of the object after assigning another to it, and in that way investigate the integrity of the class copy
constructors and operator=() functions, issue a next command:

(gdb) next
30 display(“Object after copy”, dest object);

Again, print the value of dest object to compare its data members with those listed before:

(gdb) print dest object

$2 = {<TColor> = {<TCoordinate> = {tc_x = 100, tc_y = 200},
tc _color = RED,
static colornames = 0x8049f00},
tl label = 0x804a538 "“Test Label”}

Previous Table of Contents Next

Page 291

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

I rearranged the lines somewhat to fit on this page. They show that each data member has been assigned a value. To compare
those values with the source object, you could enter print test (not shown here).

Another useful method for inspecting object data members is to issue a display command. This prepares the debugger to display
one or more objects each time the program pauses—for example, at a breakpoint or after a next command. If you are following
along, enter these commands (if you quit, reload tlabel, set a breakpoint at line 30, run the program, and reissue the display
command):

(gdb) display dest object.tl label
1: dest object.tl label = 0x804a538 “Test Label”

The debugger shows the value of the object’s tl_label data member each time the program halts. To see this effect, issue a next

command:

(gdb) next

Object after copy

x == 100; y == 200; color = Red (1); Test Label

32 return 0;
1: dest object.tl label = 0x804a538 “Test Label”

The first two lines of output after the command line are from the program itself. The last two lines are from the GNU debugger.
Line 32 shows the next statement to execute. Last is the value of the tl label data member, showing the string value and its address
in memory. By the way, some other debuggers call display expressions “watches” or “watch expressions.”

Tip: Type display with no arguments to see a list of all currently displayed expressions. To erase the display list, type undisplay
and answer yes when prompted, “Delete all auto-display expressions?”’

Calling Member Functions

When debugging a specific member function, it might be useful to call it out of context. This is especially helpful in large programs
when it’s inconvenient to step to a statement merely to call a function.

To follow along, reload the tlabel program if necessary, set a breakpoint on line 30, and type run. Then issue a call command
such as this:

(gdb) call dest object.StrColor ()
$2 = 0x8048ec7 “Red”

The command calls the TColor member function StrColor(), inherited by the TLabel class and therefore available through dest object.
When calling member functions, you must do so in reference to an object of the class. In response to the call command, the
debugger displays the function’s result.

Finding the Type of an Object

To find the type of an object, use a ptyp command as follows:

(gdb) ptyp dest object
type = class TLabel : public TColor {
private:
char *tl label;
public:
TLabel (void) ;
Page 292

This document is created with trial version of CHM2PDF Pilot 2.10.

TLabel (char const *, TColors, int, int);
TLabel (TLabel const &);

~TLabel (void) ;

char * GetLabel (void) const;

void SetLabel (char const *);

void operator=(TLabel const &);

When used with a class object, the ptyp command prints the entire class declaration. Although this is useful for examples such as
this one, very large classes display far too much information to be helpful. For that reason, it ’s probably best to have a copy of the
source files handy to look up class and other large structure declarations.

Summary

Using inheritance, you create new classes from existing ones. The new class is called the derived class. Its ancestor is called the
base class. In a typical C++ program, many classes are derived from others, creating a hierarchy of classes that resembles a family
tree. C++ offers two kinds of inheritance: single and multiple, although in practice, single inheritance is usually adequate. This
chapter introduced inheritance along with related topics such as how to provide for the safe copying of derived -class objects. The
chapter also introduced the protected: access specifier.

For more information on subjects introduced in this chapter, turn to the following chapters:
* Chapter 15, “Programming with Virtual Functions”

* Chapter 19, “Overloading Operators”
e Chapter 21, “Honing Your C++ Skills”

Previous Table of Contents Next

Page 293

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 15
Programming with Virtual Functions

Simply stated, a virtual function is one that is called based on an object’s type. Several related classes, for instance, might declare
a virtual function named Display(), each with a different but similar job to perform. For specific class objects, C ++ decides which
Display() function to call based on the objects’ types. In a sense, with virtual functions, different sorts of objects “know” how to
display themselves and perform other operations.

You might have heard this feature described as polymorphism, a term that weighs higher in exotic appeal than in technical
accuracy. Although it’s one of the backbones of object -oriented design, polymorphism is much easier to understand and use than
many OOP authorities lead programmers to believe. Personally, I try to limit my use of the term. But I have found it useful at

social events for getting away from inquisitive bores. “Excuse me, I have to go check my polymorphisms.” I imagine they think I’'m
off to feed the piranhas or something.

Poly Want a Morphism?

The fuel that fires polymorphism is the pure virtual function . This is literally a placeholder that a base class expects its derived
classes to complete. For example, ignoring other declarations a real class needs, a TShape class might declare a pure virtual
function named Draw():

class TShape {
public:
virtual void Draw() = 0;

}i

The pure virtual function Draw() resembles a common member function, but begins with the reserved word virtual and ends with the
expression =0. The presence of one or more pure virtual functions creates what ’s known as an abstract class. This means that it is
not possible to create a TShape object because, as an abstraction, the class is incomplete.

To use the abstract class, a derived class 1s expected to inherit TShape and complete the pure virtual Draw() function. Again
ignoring other necessary items such as constructors and data members, you might declare the descendant class like this:

class TCircle: public TShape {
public:
virtual void Draw() ;

}i

Because the expression =0 is not specified, Draw() is a normal virtual function that replaces the inherited pure virtual function of the
same name. Somewhere, the program must implement the TCircle::Draw() function, in this case, to draw a circle, perhaps by calling
a subroutine in a graphics library (this is just for illustration):

void TCircle: :Draw()

{

graphicsDrawCircle(); // Or whatever draws a circle

}

The word virtual isn’t needed in the function’s implementation; only in its class prototype. (Virtual functions can also be
implemented inline.) Similarly, another class might inherit TShape using the following declaration:

class TRectangle: public TShape {
public:
virtual void Draw();

bi Page 294

This document is created with trial version of CHM2PDF Pilot 2.10.

As in TCircle, the TRectangle class declares the normal virtual function Draw() without the =0 expression, and the program must
implement that function, in this case, to draw a rectangle:

void TRectangle::Draw ()

{

graphicsDrawRectangle(); // Or whatever draws a rectangle

}

The importance of this code is not in its graphics capabilities but in statements that operate on TShape objects. For example, the
program might have a function with a TShape reference parameter:

void DoDrawing (TShape &shape)

{
shape.Draw(); // !!!
}

Consider this function carefully. It tells the shape object to Draw() itself. But which Draw() function is called? The answer depends
on the object’s type. Ifit’s a TCircle object, C++ calls TCircle::Draw(). If it’s a TRectangle object, C++ calls TRectangle::Draw().

Instead of writing functions that operate on specific shapes such as TCircle and TRectangle, with virtual functions, you can create a
single DoDrawing() function with a reference parameter of the abstract base class TShape. This states that any object of a class
derived from TShape may be passed to the function. The program could, for example, create TCircle and TRectangle objects, and
pass them to DoDrawing() using statements such as

TCircle circle;
TRectangle rect;
DoDrawing (circle) ; /7
DoDrawing (rectangle); // !!!

Through the magic of inheritance, it is perfectly acceptable to pass the circle and rectangle objects to the function’s TShape
reference parameter. After all, TCircle and TRectangle objects are specific types of TShapes, in much the same way that oaks and
maples are types of trees. Inside the function, however, the statement

shape.Draw () ;

calls the Draw() function based on the type of the shape object. This is polymorphism. The preceding statement is completely
generic. It can draw any shape of a class derived from TShape. What’s more, future programming can add another type of TShape
object—a TEllipse class, for instance—and the preceding code recognizes the new shape without modification and, especially
important, without recompiling. You don’t even need the original source code to plug new objects into the program.

Note: You may declare pointers and references to abstract classes such as TShape, but because you cannot create abstract class
objects, it isn’t possible to pass TShape objects by value to function parameters.

Creating a Container Class

A classic and most useful application for virtual functions is the development of container classes. A container is a general
purpose object that can store other objects. To use a container, you simply construct an object of a container class and stuff your
data objects into it. A well-designed container can store, search, sort, and perform other jobs on objects. Because they are
designed using C++ object-oriented classes, containers tend to be far more versatile, and much safer, than other common C and
C++ storage mechanisms such as arrays and linked lists.

In the coming sections, you develop the TContainer class, which can store and sort data objects. The class is usable, but to keep it
within a reasonable size for listing in this book, it is stripped of miscellaneous functions. However, in describing the programming, [
suggest some modifications for creating a practical container class based on TContainer.

Page 295

This document is created with trial version of CHM2PDF Pilot 2.10.

Note: The TContainer class listings are more lengthy than most in this book. To make the programming more comprehensible, I
divided the listings into pieces. The full text is in files container.h, container.cpp, and tcontain.cpp on the CD -ROM.

Previous Table of Contents Next

Page 296

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Abstract Classes

Listing 15.1, container.h, shows about half of the container.h header file. This part of the header file declares the TObject abstract
class as the basis for data objects to be stored in a container.

Listing 15.1 container.h (partial)

#define DEFAULT SIZE 100 // Default container capacity
class TObject; // Incomplete class declaration
typedef TObject * PTObject; // Pointer to a TObject object
typedef PTObject * PPTObject; // Pointer to a TObject pointer

// Bbstract class for items to store in a container

//

class TObject {

public:
virtual ~TObject () { 1}
virtual int Compare (PTObject p) = 0;
virtual void Display() = 0;

}s

After specifying a DEFAULT SIZE constant for the default size of a container object, the header declares three items. First is an
incomplete class declaration in the form

class TObject;

This states that the symbol TObject is a class with an as-yet-unknown body. It allows the program to use the symbol as though
such a class exists. For example, in this case, we need two types of pointers, declared by the next two lines:

typedef TObject * PTObject;
typedef PTObject * PPTObject;

The first line declares PTObject of type TObject * (pointer to a TObject). The second line declares PPTObject as type PTObject *
(pointer to a TObject pointer). I like to include type definitions such as these to make declaring pointers and arrays easier.

Virtual Destructors

Next in container.h (refer to Listing 15.1) is TObject’s class declaration. It states that TObject has three public virtual member
functions. Because no objects are ever created of the TObject abstract class, it has no constructor. However, to provide for the
deletion of objects of classes derived from TObject, the class declares a virtual destructor:

virtual ~TObject () { 1}

The virtual destructor begins with the virtual reserved word, followed by the function name (always equal to the ~ character and
the class name). Destructors may not declare parameters. They may perform statements, but in this case, we want only a
placeholder for future destructors in derived classes, so this destructor ’s body is empty.

Notice that this is not a pure virtual function ending with =0. You may declare pure virtual destructors; however, I wanted to show
the difference between pure and normal virtual function declarations. As mentioned, a pure virtual function requires no
implementation—it is purely a placeholder that a derived class is expected to supply. A normal virtual function such as the TObject

destructor requires an implementation, even if that consists of an empty statement block that does nothing. Both types of virtual
Page 297

This document is created with trial version of CHM2PDF Pilot 2.10.

functions serve similar purposes—they provide the mechanism that C++ uses to call a specific function based on an object ’s type.
Pure Virtual Functions

The TObject class in Listing 15.1 also declares two pure virtual functions, Compare() and Display():

virtual int Compare (PTObject p) = 0;
virtual void Display () = 0;

These are typical types of pure virtual functions. The Compare() function returns an integer value as the result of comparing two
objects. The first object in that comparison is the one for which Compare() is called. The second is an object addressed by pointer
p- You might wonder how TObject can compare two objects of unknown types. It can’t. But it can state, using a pure virtual
function, that TObject is a class that has the capability of comparing two objects of classes derived from TObject. Those classes, as
a later example shows, provide actual Compare() functions.

However, before such classes even exist, the compiler allows statements to call the virtual TObject::Compare() function even though
it is merely a placeholder and contains no real code. At runtime, an actual Compare() is called based on the type of object
involved—an action that goes by the technical term late binding. By that process, the actual binding, or linking, of statements to
functions such as Compare() occurs at runtime instead of during compilation as is the case for a common C or C ++ function.
TObject declares a second pure virtual function, Display(). Here again, a derived class is expected to implement the actual function
that C++ calls based on the type of object involved. Later examples show how to derive a class from TObject and complete its
pure virtual functions. First, however, let’s take a look at the container class.

The TContainer Class

Listing 15.2 shows the rest of the container.h header file and the declaration of the TContainer class.

Listing 15.2 container.h (partial)

class TContainer {

private:
int size; // Capacity of objects array
int count; // Number of object in array
PPTObject objects; // Array of TObject pointers
protected:
void Quicksort(int left, int right);
public:
TContainer (int n = DEFAULT SIZE); // Constructor
~TContainer () ; // Destructor
//
// Inline member functions
//
bool IsFull() const { return (count >= size); }
int GetSize () const { return size; }
int GetCount () const { return count; }
//
// Other public member functions
//

void PutObject (PTObject pto);
void ShowAllObjects (const char *msqg);
void Sort () ;

}i

Like most well-designed classes, TContainer declares all of its data members private. In this case, there are three variables:

int size; Page 298

This document is created with trial version of CHM2PDF Pilot 2.10.

int count;
PPTObject objects;

The integer size equals the capacity of the container—how many objects it can hold. The integer count specifies how many objects
the container actually holds. The third variable, objects, is of type PPTObject. It is literally a pointer to an array of TObject pointers,
the storage mechanism I have chosen for this class.

Note: Because TContainer’s storage mechanism is private to the class, the method used for storing objects in a container can be
changed without affecting programs that use the class.

The TContainer class contains one protected declaration—a function Quicksort() that implements the Quicksort algorithm:

protected: void Quicksort (int left, int right);

Previous Table of Contents Next

Page 299

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Because this function is protected, any classes derived from TContainer may call it. They may also replace the function by
redeclaring it and writing new code for the function ’s implementation. Declaring Quicksort() public seems unwise because program
statements are unlikely to need direct access to the container’s sorting algorithm. For that, the class provides a public function, Sort
(), that calls the protected function.

Note: It is sometimes difficult to decide whether to make a function public, private, or protected. In general, if a function is called
strictly by other member functions, and especially if it depends on the internal nature of the class ’s private data objects, it is best
made private or protected. If a function provides a general operation —such as Display() or Sort)—then it probably should be public.

TContainer declares six public functions. The first three are simple, and for that reason, implemented inline:

bool IsFull() const { return (count >= size); }
int GetSize () const { return size; }
int GetCount () const { return count; }

Function IsFull() returns true if the container’s count equals its size. (The greater-or-equal test is just to cover all base—count
should never be greater than size.) GetSize() and GetCount() merely return their associated private variables. In your classes, resist
making variables such as size and count public in a misguided attempt to eliminate functions that merely return values. Instead,
declare the functions inline and compile with the -O option to have the compiler inject the function statements directly into the code.
This costs you nothing in performance but greatly facilitates future maintenance.

Finally in TContainer are three public member functions that are implemented in a separate module:

void PutObject (PTObject pto);
void ShowAllObjects (const char *msqg);
void Sort();

Function PutObject() inserts a new object into the container. Its parameter pto is of type PTObject (pointer to a TObject). The actual
type of object is determined at runtime, but it must be one of a class derived from TObject. Except for that restriction, PutObject can
insert any type of data into the container. The other two functions have obvious purposes. ShowAllObjects() provides a simple way
to display the container’s contents. Sort() arranges the contained objects. The next section explains more about how it is possible
to write functions such as these before even considering what objects the container actually holds.

Note: The preceding listings describe all aspects of a container class without knowledge of the types of data it may contain. Such
generality is one of the main benefits that object -oriented programming provides.

Calling Virtual Functions

Listing 15.3 shows part of the TContainer class’s implementation module and demonstrates how a program can call virtual
functions that are not yet completed.

Listing 15.3 container.cpp

#include <iostream.h>

#include <stdlib.h> // Need exit ()
#include “container.h” // Need TContainer
// Constructor

TContainer: :TContainer (int n)

{

if (n <= 0) n =1; // Must have at least one element
Page 300

This document is created with trial version of CHM2PDF Pilot 2.10.

size = n; // Remember capacity

count = 0; // Container is empty

//

// Create array of object pointers and set to NULL
//

objects = new PTObject[size];

for (int i = 0; 1 < size; i++)

objects [i] = NULL;
}

// Destructor
// Define DEBUG to display trace

TContainer::~TContainer ()
{
for (int i = 0; 1 < count; 1i++)
delete objects[i]; // Delete contained objects

#ifdef DEBUG

cout << “Deleting container” << endl;
#endif

delete objects; // Delete array of TObject pointers
}

// Insert new object into container
void TContainer::PutObject (PTObject pto)
{

if (IsFull()) {
cout << “Wx** Error: Container is full” << endl;
exit (1),

}

objects[count] = pto;

count++;

The first function implemented in container.cpp is the TContainer() constructor. After initializing the size and count private data
members, the constructor creates the storage mechanism used to hold objects. Examine these statements carefully:

objects = new PTObject[size];
for (int i = 0; i < size; i++)
objects = NULL;

The first line creates an array of PTObject pointers and assigns the result to the private objects pointer. Other storage mechanisms
are certainly possible, but this one is general enough to handle any type of object of a class derived from TObject. The program
can address such objects using a TObject pointer because, at runtime, C++ calls that class’s virtual functions based on the object’s
actual type. The second statement uses a for loop to initialize each TObject pointer in the objects array to NULL. No real objects
exist at this point until the program calls PutObject() to insert them. But the container is constructed and ready to go. In the
program, a statement can construct a container and insert an object using statements such as

TContainer box;
box.PutObject (new TMyClass (data));

Or, the container could also be created using new:

TContainer * pbox = new TContainer (10);
pbox->PutObject (new TMyClass (data)) ;

This hypothetical code assumes that TMyClass is derived from TObject. Specifying a count for the container such as 10 is
optional—the container’s size defaults to 100 if no size is given.

Next in container.cpp is the TContainer destructor. This shows an obscure use for virtual functions that might not be obvious from

Page 301

This document is created with trial version of CHM2PDF Pilot 2.10.
TContainer

the source code, but it is a vital technique to learn for creating general -purpose containers:

for (int i = 0; 1 < count; 1i++)
delete objects[i]; // Delete contained objects
delete objects; // Delete array of TObject pointers

The for loop deletes each object in the array. It can do this because TObject declares a virtual destructor. Because of that, at
runtime, C++ calls the actual destructor for the objects in the array. The only rule is that those objects must be of classes derived
from TObject. After deleting the individual objects, the program deletes the objects pointer itself. This completely frees all allocated
memory when the container itself is destroyed.

Note: The TContainer destructor includes an output statement that you can enable to trace destructor calls at runtime. To enable the
trace, specify the -DDEBUG (define DEBUG) option when compiling the module.

Finally in this portion of the TContainer implementation module is the function PutObject(), which inserts a new object into the
container. The function begins by checking whether the container is full:

if (IsFull()) {
cout << “W*** Frror: Container is full” << endl;
exit (1) ;

Previous Table of Contents Next

Page 302

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

This points out a major deficiency in the TContainer class. Ideally, if the container is full, it would take steps to expand itself to
accommodate new data. Failing that, it would throw an exception to report any errors instead of exiting the program with an error
message. How-ever, the code to improve the class would expand this chapter to unwieldy lengths, and exceptions are for Chapter
16, “Handling Exceptions.”

If the container is not full, two simple statements insert the new object:

objects[count] = pto;
count++;

At this point, TContainer has no specific knowledge of the type of object it holds. All it knows, and all it needs to know, is that pto
of type PTObject addresses an object of a class derived from TObject. The function also increments count to keep track of how
many objects are in the container.

Listing 15.4, container.cpp, completes the TContainer implementation module and shows additional uses of virtual TObject member
functions.

Listing 15.4 container.cpp (partial)

// Call Display() for all objects in container

void TContainer::ShowAllObjects (const char *msqg)

{
cout << msg << endl;
cout << “Number of objects == ” << count << endl;
for (int 1 = 0; 1 < count; i++)

objects[i]->Display(); // Calls virtual function!

cout << endl << endl;

}

void TContainer::Quicksort (int left, int right)
{
int i = left;
int j right;
PTObject test = objects[(left + right) / 2];
PTObject swap;
do {
while (objects[i]->Compare (test) < 0) i++;
while (test->Compare (objects([j]) < 0) j—-—;
if (1 <= 3) {
swap = objects[i];

objects[i] = objects[]j];
objects[]j] = swap;

i++;

j--;

}
} while (i <= j);
if (left < j) Quicksort(left, 73j);
if (i < right) Quicksort (i, right);

// Sort objects in container
void TContainer::Sort ()

{

if (count > 1) Quicksort (0, count - 1);
}
Page 303

This document is created with trial version of CHM2PDF Pilot 2.10.

Function ShowAllObjects() calls the Display() member function for each object in the container using a for loop:

for (int i = 0; i < count; i++)
objects[i]->Display ()

Although apparently simple, this for loop shows the power of a virtual function. The code for TObject::Display() doesn’t even exist
at this point, but C++ allows statements to call it as shown here. It can do that because the pointers in the objects array address
objects of types descended from TObject. Those types implement the actual Display() function that C++ calls. In other words, at
runtime, C++ decides which actual Display() function to call based on the type of object that objects[i] addresses. Even better, if
another module creates an entirely new class based on TObject (or another derivative), the preceding code recognizes the new
type of object without modification and without recompiling!

In a similar way, the class’s protected Quicksort() member function calls the Compare() pure virtual member function declared in
TObject. It does that in the following two while loops:

while (objects[i]->Compare (test) < 0) i++;
while (test->Compare (objects([j]) < 0) j--;

As with the calls to Display(), the calls to actual Compare() functions are routed at runtime. The container possesses no knowledge
of the types of objects it contains. All it knows is that they are of types descended from TObject, and that this class has the
capability of comparing two objects. It is up to the derived classes to define what Compare() really does, but because the function is
virtual, the program can call it in advance of the function ’s implementation.

Finally in the TContainer implementation module, function Sort() calls Quicksort() to sort the container’s contents:

if (count > 1) Quicksort (0, count - 1);

As implemented here, the Quicksort algorithm works only for two or more objects, and it is therefore more convenient to call it
using what you might call a utility function. However, I included this code to show how, by way of a public member function such
as Sort(), the module controls access to its actual sorting mechanism in the protected Quicksort() function. Any changes to the
sorting algorithm do not affect statements that call the public Sort() function.

Note: The Quicksort() function in TContainer moves only TObject pointers, and it is therefore very fast and efficient. Its speed depends
entirely on the efficiency of the Compare() virtual function in classes derived from TObject. The size of objects in the container
otherwise have no direct effect on sorting speed.

Deriving from Abstract Classes

The preceding sections fully implement the TContainer class. To compile the class’s module, container.cpp, with tracing enabled,
use the command

$ g++ -c -DDEBUG container.cpp

You now have two files, container.h and container.o, containing the compiled code for the TContainer class. Most important is to
realize that you may now derive new classes from TObject and insert objects of your classes into the container. To do this requires
only those two files. The original source code in container.cpp isn’t needed, and unless you revise the module, it never needs
recompiling. Virtual functions and object -oriented inheritance make it possible to use and expand the TObject and TContainer
classes to accommodate new data types and operations.

As an example of how this works, Listing 15.5 shows part of a test program that puts TContainer to work. The program
demonstrates how to inherit and complete an abstract class such as TObject that contains one or more pure virtual member
functions. Because of the listing ’s length, I discuss it in pieces here.

Page 304

This document is created with trial version of CHM2PDF Pilot 2.10.

Listing 15.5 tcontain.cpp (partial)

#include <iostream.h>
#include <string.h> // Need strlen(), strcpy()
#include <stdlib.h> // Need free()
#include “container.h” // Need TContainer
class TMyObject: public TObject {
private:
char *sp; // Pointer to a string
public:
TMyObject (const char *s) {
sp = new char([strlen(s) + 1];
strcpy (sp, S):
}
virtual ~TMyObject () ;
virtual int Compare (PTObject p);
virtual void Display();

Previous Table of Contents Next

Page 305

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Because TContainer stores objects of classes descended from TObject, and because TObject is an abstract class with three virtual
functions, the first step in using the container is to derive a new class from TObject. Any name will do—I call my class TMyObject.
Its lone private data member is a pointer to a string—this might be any object or pointer to whatever type of data you want to
store in the container.

As usual, a constructor initializes objects of the TMyObject class. In this case, the inline constructor calls the standard library
functions strlen() and strepy() to copy the string passed to the constructor’s parameter. The other three functions are implemented
separately, as shown in Listing 15.6.

Listing 15.6 tcontain.cpp (partial)

// Destructor
// Define DEBUG to trace
TMyObject: :~TMyObject ()
{
#ifdef DEBUG
cout << “Inside destructor for ” << sp << endl;
#endif
delete[] sp;
}

// Compare two TMyObject objects
int TMyObject: :Compare (PTObject p)
{
return strcmp (sp, ((TMyObject *)p)->sp);

}

// Display contents of this object
void TMyObject::Display ()
{

cout << sp << % 7,

}

These three TMyObject functions are declared exactly the same as the pure virtual member functions in TObject, minus the =0 suffix.
First implemented here is the virtual destructor. It begins by displaying a trace if the DEBUG symbol is defined during compilation.
You can remove this code if you want—I include it only to demonstrate how virtual destructors operate. The destructor uses
delete[] to dispose of the memory the constructor allocates.

The virtual function Compare() calls another standard function, stremp(), to compare two strings in TMyObject objects. Carefully
examine this code:

return strcmp (sp, ((TMyObject *)p)->sp);

Variable sp belongs to the object for which Compare() is called. The other string is in the object addressed by the pointer p passed
to Compare(). The function merely returns the result of the standard comparison function. Recall from earlier that the Quicksort()
function calls Compare(), but consider that the preceding code is written affer the TContainer class and its sorting functions were
compiled. At runtime, C++ calls TMyObject::Compare() to compare two TMyObject objects in the container, and in that way, can sort
objects of which it has no prior knowledge.

The final virtual function in TMyObject, Display(), finishes the completion of the abstract TObject class. Now that all three virtual
member functions are implemented, it is possible to compile a program that creates a container and stores objects inside. Listing

15.7 lists the rest of the program.
Page 306

This document is created with trial version of CHM2PDF Pilot 2.10.

Listing 15.7 tcontain.cpp (partial)

int main ()

{

cout << endl << “Test TContainer class” << endl << endl;
TContainer * container = new TContainer (100);

container->PutObject (new TMyObject (“Peach”));

(()
container->PutObject (new TMyObject (“Mango”)) ;
container->PutObject (new TMyObject (“Lime”)) ;
container->PutObject (new TMyObject (“Banana”)) ;
container->PutObject (new TMyObject (“Kiwi”)) ;
container->PutObject (new TMyObject (“Grapefruit”));
container->PutObject (new TMyObject (“Orange”)) ;
container->PutObject (new TMyObject (“Lemon”)) ;
container->PutObject (new TMyObject (“Apple”));

container->ShowAllObjects (“Before sorting”);
container->Sort () ;
container->ShowAllObjects (“"After sorting”);

delete container;

return 0;

The program’s main() function creates a TContainer object in dynamic memory using new. It doesn’t have to create the container
this way. It could define it as a global variable:

TContainer container;

If you don’t supply a size value, the container defaults to a maximum size of 100 objects. Statements such as the following insert
new objects into the container:

container->PutObject (new TMyObject (“Peach”));
container->PutObject (new TMyObject (“Mango”));

Because PutObject() simply stores a pointer to a TObject-derived object, this code is highly efficient. It uses new to construct a data
object of the TMyObject class. Simply passing the result to PutObject() inserts the object’s pointer into the container. No temporary
objects result from this code. After inserting a bunch of objects, the program displays them by calling the TContainer member
function ShowAllObjects(), and sorts them alphabetically by calling Sort(). The statements are easily understood:

container->ShowAllObjects (“Before sorting”);
container->Sort () ;
container->ShowAllObjects (“After sorting”);

Finally, the program deletes the container with the statement:

delete container;

That line is deceptively simple, as a trace of the program at runtime reveals. Not only does this single statement delete the
container object, it also deletes all objects held in the container by calling the virtual ~TMyObject() destructor. To verify that this is
indeed the case, compile the container.cpp module and tcontain.cpp program with the -D option to specify a symbol named
DEBUG. Enter these commands to compile and run the test:

$ g+ -c -DDEBUG container.c
J PP Page 307

This document is created with trial version of CHM2PDF Pilot 2.10.

$ g+ -DDEBUG tcontain.cpp container.o
$./a.out

The DEBUG symbol enables tracing of the TContainer and TMyObject destructors, producing the following output onscreen (I
deleted a few lines for brevity). As the output shows, deleting the container also deletes all objects stored in the container:

Before
Number
Peach

sorting
of objects ==
Mango Lime Banana Kiwi Grapefruit

After sorting

Number
Apple

Inside
Inside
Inside
Inside

of objects ==

Banana Grapefruit Kiwi Lemon Lime
destructor for Apple

destructor for Banana

destructor for Orange
destructor for Peach

Deleting container

Orange Lemon Apple

Mango Orange Peach

Note: See also Chapter 17, “Creating Class Templates,” for another approach you might use for developing generic classes such as
containers that can store objects of various types.

Multiple Inheritance

As mentioned, multiple inheritance seems like a grand idea until it comes time to use the technique. The topic is appropriate in this
chapter because of a common trouble that arises in using multiple inheritance that resembles a kind of recursion caused by a class
appearing multiple times in the hierarchy. The solution uses something called a virtual base class —but first, let’s take a look at

the basics of multiple inheritance.

Previous Table of Contents Next

Page 308

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Loading the Bases

Deriving a class from multiple base classes is easy. As many C++ books show, simply inherit two or more base classes using a
declaration such as

class D: public A, public B, private C {
// ... class contents
}s

In this example, the new, derived class D inherits three classes, A, B, and C. It specifies that members in A and B retain their
private, protected, and public access status in the new class, but that all members of C are to become private members of D.

The trouble with the foregoing example is that, although technically correct, it doesn ’t take reality into consideration. Chances are,
unless you are the lucky type, some names in A, B, and C will conflict. For instance, suppose that classes A and B each have a
public Display() member function. To decide which function to call requires using the class name and C ++ scope resolution
operator in statements such as these:

Display () ; // 2?2 Ambiguous. Won’t compile.
A::Display(); // Call A’s Display() function
B::Display(); // Call B’s Display() function

Unless class D declares its own Display() function, the first line doesn 't compile. As shown, to resolve the name conflict among
multiple Display() functions, you must use designations such as A:: and B::. This works, but is messy, and it places the responsibility
of calling the correct function on the programmer —a requirement that object-oriented programming is supposed to help you
avoid.

Using Multiple Base Class Constructors

When inheriting from multiple base classes, you must be careful to create constructors that initialize all inherited elements. In
general, you might declare the derived class and its constructor like this:

class D: public A, public B, private C {
public:

DO: A0, BO, CO {}
}i

The constructor D() calls the constructors for the three inherited classes, but in this case, it performs no other actions so its
statement block is empty. Again, the code seems simple enough at first. However, C++ specifies that the constructors are called in
the order listed. If one class object depends on one of the others, the resulting conflict can cause impossibly confusing results. This
can happen particularly when classes declare themselves to be friends of other classes, a topic for Chapter 18, “Overloading Your
Friends” in Part IV, “Advanced C++ Techniques.” To avoid this type of trouble, try to create classes that operate as
independently as possible—good advice whether or not you intend to use multiple inheritance.

Note: In many cases, instead of fussing with multiple inheritance, a class can declare objects of other classes as private data
members and in that way incorporate more than one class into the design of a new one. This technique also gives the class total
control over the order in which the contained objects are initialized.

Using Virtual Base Classes

Derived classes and their bases form a class hierarchy that can grow tremendously complex even in relatively simple programs. A
base class can be inherited by one or more other classes that in turn can become base classes for still more classes. All these

Page 309

This document is created with trial version of CHM2PDF Pilot 2.10.

classes are consequently related by single or multiple inheritance as though they were biblical characters begetting one another until
no one can tell who is related to whom.

It’s easy to understand how conflicts arise in such a complex class family tree, especially when multiple inheritance is involved.
One of the most common conflicts occurs when a derived class inherits too many copies of a particular base —Tlike lottery winners,
for example, who suddenly acquire more “cousins” than they previously knew existed.

To demonstrate how derived classes can get into inheritance trouble, examine the classes from the following program in Listing
15.8, franch.cpp. The program uses familiar relationships between fictitious companies and three fictitious franchisees: Bob, Ted,
and Alice. The program might seem a bit silly, but borrowing familiar relationships from the real world helps to explain a typical

and often exasperating problem with multiple inheritance.

Listing 15.8 franch.cpp

#include <iostream.h>

#include <string.h> // Need strlen(), strcpy()
#include <stdlib.h> // Need free()
class Company {
private:

char *name;
public:

Company (const char *s) {

name = new char[strlen(s) + 1];

strcpy (name, s);
cout << Y In constructor for ”;

Display () ;

}

virtual ~Company () {
cout << Y In destructor for ”;
Display () ;

delete[] name;

}

void Display () { cout << name << endl; }
}i
class Jennys: public Company {
public:

Jennys () : Company (“Jenny’s”) { }
}i

class McDougles: public Company {
public:

McDougles () : Company (“McDougles”) { 1}
}i

class BurgerQueen: public Company {
public:
BurgerQueen () : Company (“BurgerQueen”) { }

}i

class Bob:
public Jennys,
public McDougles {
}i

class Ted:
public McDougles,
public BurgerQueen {

}i

class Alice:
public Jennys,

public McDougles,
Page 310

This document is created with trial version of CHM2PDF Pilot 2.10.

public BurgerQueen {
}s

int main ()

{
Bob *bobp;
Ted *tedp;
Alice *alicep;

cout << endl << “Initializing Bob’s restaurant” << endl;
bobp = new Bob;

cout << “Initializing Ted’s restaurant” << endl;

tedp = new Ted;

cout << “Initializing Alice’s restaurant” << endl;
alicep = new Alice;

cout << endl << “Deleting Bob’s restaurant” << endl;
delete bobp;

cout << “Deleting Ted’s restaurant” << endl;

delete tedp;

cout << “Deleting Alice’s restaurant” << endl;
delete alicep;

return 0;

Figure 15.1 shows the relationships among the classes in Franch.cpp. At the root of the hierarchy is the Company class, which
serves as a base class for three derived classes: Jennys, McDougles, and BurgerQueen. Each of these “company” classes is derived
from Company, and each class therefore inherits a name data member and a Display() member function.

Derived Class Derived Class
Jenmys Bob

Base Class

Company McDougles Ted
BurgerQuesan Alice

Figure 15.1 The three classes Bob, Ted, and Alice are derived using multiple inheritance.

Our three adventurous investors, Bob, Ted, and Alice, are derived using multiple inheritance (refer to Listing 15.8). Class Bob
derives his culinary empire from two Company classes, Jennys and McDougles. Class Ted derives his fortunes from McDougles and
BurgerQueen. Alice, the most enterprising soul in the group, takes on the three Company classes: Jennys, McDougles, and
BurgerQueen. When you compile and run the program with the following commands, you see a report that indicates when the
constructors and destructors are called for objects created of the highest level classes, Bob, Ted, and Alice:

$ g+ franch.cpp
$./a.out

Although I don’t show the program’s lengthy output here, onscreen you see the results of creating objects with a statement such
as

bobp = new Bob;

delete Bob;
Page 311

javascript:displayWindow('images/15-01.jpg',471,222)
javascript:displayWindow('images/15-01.jpg',471,222)

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 312

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

As you see onscreen when you run the program, all the proper constructors and destructors for the complex class hierarchy are
called. So far, so good. But a subtle problem with the class relationships arises if another class is derived from the group of
companies and investors. Suppose that a corporation purchases some of the parent companies and selected franchisees. As in the
real world of corporate finance, the complex relationships among companies and people can easily get out of hand. Consider a
Corporation class that attempts with multiple inheritance to inherit the McDougles company along with franchisees Ted and Alice:

class Corporation:
public McDougles, // 2?7
public Ted,
public Alice {

}i

Refer to Figure 15.1 and you can see why this Corporation can never get off the ground. This is because Ted and Alice already
derive in part from McDougles. When Corporation attempts to do the same, it ends up with multiple McDougles base classes. At this
point, the compiler warns you about the ambiguous and inaccessible base class:

atest.cpp:59: warning: direct base ‘McDougles’ inaccessible
in ‘Corporation’ due to ambiguity

Note: Some compilers report the foregoing condition as an error and do not compile the program. GNU C ++ merely issues a
warning. However, if you receive this warning in code that uses multiple inheritance, ignoring it could lead to serious bugs. The
following section explains how to fix the problem.

Fixing Ambiguous Base Classes

When you receive a warning about an ambiguous base class in a hierarchy of classes related through multiple inheritance, try to
identify those base classes that require only a single object. In the case of Corporation, it makes sense to have only one McDougles
company. Even though Ted is derived from McDougles, it is the same McDougles that Corporation is attempting to inherit. In the
process of acquiring Ted’s assets, the Corporation does not end up with two separate McDougles parent companies. There’s only
one such parent that is related to Corporation directly and indirectly through Ted.

In similar, but less frivolous, situations, in which a multiple -derived class requires only one copy of a multiple -inherited base class,
you can reduce those bases to one instance by declaring them all to be virtual base classes . In a class hierarchy, there is only one
copy of a virtual base class object, even when that object ’s class is inherited more than once. Listing 15.9, conglom.cpp,
demonstrates how to form a Corporation class that uses virtual base classes and solves the problem of a proliferation of McDougles
bases. Compile the program and run it using the commands:

$ g+ conglom.cpp
$./a.out

Listing 15.9 conglom.cpp

#include <iostream.h>
#include <string.h> // Need strlen(), strcpy()
#include <stdlib.h> // Need free ()

class Company {
private:
char *name;
public:
Company (const char *s) {
Page 313

This document is created with trial version of CHM2PDF Pilot 2.10.

name = new char[strlen(s) + 1];
strcpy (name, s);
cout << “ In constructor for ”;

Display () ;

}

virtual ~Company () {
cout << “ In destructor for ”;
Display();

delete[] name;
}
void Display () { cout << name << *\n’; }
bi

class Jennys: public Company {
public:

Jennys () : Company (“Jenny’s”) { }
}i

class McDougles: public Company {
public:

McDougles () : Company (“McDougles”) { }
}i

class BurgerQueen: public Company {
public:

BurgerQueen () : Company (“BurgerQueen”) { }
}i

class Bob:
virtual public Jennys,
virtual public McDougles {
}i

class Ted:
virtual public McDougles,
virtual public BurgerQueen {
}i

class Alice:
virtual public Jennys,
virtual public McDougles,
virtual public BurgerQueen {
}i

class Corporation:
virtual public McDougles,
public Ted,
public Alice {

private:
char *name;
public:
Corporation () : McDougles (), Ted(), Alice()
{ name = “Conglomerate Industries”; }

void Display () { cout << name << endl; }
}i

int main ()

{
cout << endl << “Forming a corporation” << endl;
Corporation *cp;

cp = new Corporation;
cp->Display () ;
delete cp;

return 0;

Page 314

This document is created with trial version of CHM2PDF Pilot 2.10.

In the new program, class Company is unchanged, as are Jennys, McDougles, and BurgerQueen. However, Bob, Ted, and Alice are
modified to prevent future derivations from ending up with too many copies of their parent base classes. For example, Bob is now
declared as

class Bob:
virtual public Jennys,
virtual public McDougles {
}i

Adding the reserved word virtual to the listed base classes tells the compiler that, in a subsequent derivation, there should be only
one instance of those two base classes. Similarly, Ted and Alice declare their base classes virtual. The revised code now permits
the Corporation class to be declared with no ambiguous references to base classes:

class Corporation:
virtual public McDougles,

virtual public Ted,
virtual public Alice {

}s

The Corporation. class inherits McDougles, Ted, and Alice. By specifying McDougles as a virtual base class, only one copy of that
Company class exists in the final result, despite the fact that Ted and Alice are also derived from McDougles. Ted and Alice don’t
strictly need to be virtual in this case, unless another class is derived from Corporation.

Note: Don’t be too concerned if the preceding discussion takes a reading or two to understand—as I mentioned, multiple
inheritance can be more trouble than it first seems. If you need to use multiple inheritance, be prepared for the warning mentioned
here, and if this happens, try making inherited classes virtual bases to fix the problem.

Debugging Classes with Virtual Functions

The GNU debugger has no special support for debugging class objects that have virtual functions. However, when classes are
implemented in separate modules, setting breakpoints and tracing code takes a few extra tricks as explained next.

Debugging Classes in Separate Modules

To follow along, compile the container.cpp module and tcontain.cpp test program for the TContainer, TObject, and TMyObject
classes. Use these commands:

$ g++ -g -c -DDEBUG container.cpp
$ g++ -g -DDEBUG -o tcontain tcontain.cpp container.o

The commands create the executable code file tcontain with debugging information attached. Load the result into the GNU
debugger:

$ gdb --silent tcontain

Previous Table of Contents Next

Page 315

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

To demonstrate a problem when debugging separate modules, type Zist until you find the line that constructs a new TContainer
object and set a breakpoint there (it’s line 31 for me):

(gdb) 1list
31 TContainer * container = new TContainer (100);

(gdb) b 31
Breakpoint 1 at x80489e5: file tcontain.cpp, line 31.

Next, run the program up to the breakpoint:

(gdb) run
Starting program: /src/cl5/tcontain

Breakpoint 1, main () at tcontain.cpp:31
31 TContainer * container = new TContainer (100);

The program is now paused just before it constructs the TContainer object. Unfortunately, attempting to trace into the operation
produces unexpected results. Try a step command:

(gdb) step
strcmp (pl=x80485ff “ environ”, p2=x8048516

“ builtin new”) at ../sysdeps/generic/strcmp.c:30
../sysdeps/generic/strcmp.c:30: No such file or directory.
Current language: auto; currently c

This fails to produce the expected results because, apparently, the debugger attempts to trace into the code for the C ++ new
operator rather than the TContainer() constructor. So, try again. First, delete all breakpoints:

(gdb) delete
Delete all breakpoints? (y or n) y

Then, list the module that implements the TContainer class. For unexplained reasons, it is apparently necessary to give a starting line
number along with the filename:

(gdb) list container.cpp:1l

After specifying a line number the first time, you can simply type list again to display more of the file. Enter list commands until
you find the following lines:

(gdb) 1list

13 // Constructor

14 TContainer::TContainer (int n)
15 {

16 if (n <= 0) n = 1;

Set a breakpoint on the first statement in the constructor, and then run the program (if the debugger asks whether to restart the
program from the beginning, answer yes):

(gdb) b 16
Breakpoint 2 at x8048ecO: file container.cpp, line 16.
(gdb) run

Starting program: /src/cl5/tcontain

Breakpoint 2, TContainer::TContainer (this=X8&§be , n=100)

0
e 316

This document is created with trial version of CHM2PDF Pilot 2.10.

at container.cpp:16
16 if (n <= 0) n = 1; // Must have at least one element

Now the program correctly halts inside the TContainer constructor. The debugger shows the parameter values passed to the
constructor: this (the address of the object being constructed), and the value of n, equal in this case to the requested container
size.

Tip: Type ptyp this to find out the type of object addressed by a this pointer.

Debugging Virtual Function Calls

To debug a virtual function call, set a breakpoint in the base class that calls, for example, a pure virtual function in an abstract
class. To demonstrate, load the tcontain program into the debugger if necessary (or type delete to erase all breakpoints if the
program is currently loaded). Then, Zist the module containing a virtual function call—in this case, container.cpp. Again, supply a
starting line number the first time you type list:

(gdb) list container.cpp:1l

56 for (int 1 = 0; i < count; i+)
57 objects->Display(); // Calls virtual function!

Line 57 calls the pure virtual function Display(). The goal is to find out, using the debugger, which actual Display() the program calls
at runtime. To do that, set a breakpoint on the statement that calls the function:

(gdb) b 57
Breakpoint 3 at x80490b8: file container.cpp, line 57.

When you run the program, it halts at the breakpoint location:

(gdb) run
Starting program: /src/cl5/tcontain

Breakpoint 3, TContainer::ShowAllObjects (this=x804abf0,
msg=x80493fd “Before sorting”) at container.cpp:57
57 objects->Display(); // Calls virtual function!

To trace the virtual function call and discover what object ’s Display() function is bound to the statement, type a step command:

(gdb) step
TMyObject::Display (this=x804ad98) at tcontain.cpp:71
71 cout << sp << N 7,

The resulting output shows that TMyObject::Display() is bound at runtime to the statement that calls the pure virtual function
TObject::Display(). Notice that the only argument passed to Display() 1s the address of the object. At this point, you can type cont to
continue the program to its end (type cont again if this hits any breakpoints), and then type ¢ to quit the debugger.

Summary

This chapter introduced virtual functions, a feature that is sometimes called polymorphism. Using this technique, you can create

abstract classes that declare pure virtual functions. Derived classes inherit one or more abstract classes and provide actual code

for the inherited virtual functions. This enables C ++ to call the actual functions depending on the objects’ types. This chapter also
illustrated a common problem caused by multiple inheritance when a class ends up with multiple inherited copies of a base class,
and explained how to fix the problem using virtual base classes.

For more information on subjects introduced in this chapter, turn to the following chapters:

Page 317

This document is created with trial version of CHM2PDF Pilot 2.10.

* Chapter 16, “Handling Exceptions”
* Chapter 17, “Creating Class Templates”
* Chapter 18, “Overloading Your Friends”

Previous Table of Contents Next

Page 318

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 16
Handling Exceptions

Writing functions that handle errors reliably is always difficult because, for one reason, errors are by nature unpredictable. Worse,
as programs become more complex, and therefore invite more intricate error conditions, functions that handle those errors are
even more difficult to write and maintain.

Recognizing these problems, C++ designers added the concept of an exception. As you learn in this chapter, an exception is an
object that operates with the independence of a satellite in orbit around the earth. It enables a function to report exceptional
conditions apart from the function ’s normal operation. By incorporating exception handling into C++ programs, it’s easy to manage
even the most complex error condition in the most deeply nested chain of function calls.

A Few Good Terms

Exceptions come with their own terminology and concepts. Following are some overviews that help you to read and understand
the information in this chapter:

* An exception is just that—it’s an object that describes an exceptional condition requiring special handling. Exceptions
are best used for a program’s error handling, but they are not limited to that use.

* To create an exception, a function throws an object that describes the nature of the exception. The object can be a
string, an object of a class, or any other object. An exception object is not necessarily a class object, but in practice, it
usually is.

* To handle an exception, a function catches the object thrown as an exception by another function. Statements that catch
exceptions are called exception handlers.

* Programs prepare to catch exceptions by #rying one or more statements that might throw exceptions. In general, to use
exceptions, you #ry one or more statements, and you catch any exceptions those statements throw.

Note: Because exceptions are available only in C++, the standard C function library does not report errors using exceptions.
However, C++ libraries use exceptions extensively. For more examples of exception handling, see Chapter 25, “Applying Standard
Algorithms.”

Introducing Exceptions

Now, let’s see what exceptions look like in C++. Upon detecting an error condition, a function can throw an exception. For
example, it might throw a string that describes an error condition:

throw “overflow”;

Elsewhere in the program, a string exception handler can catch and display the thrown object. The handler specifies the object ’s
type (const char * in this case) in a catch expression like this:

catch (const char * message) {
cout << WH¥**Error! ” << message << endl;
// ... other error response actions

}

The catch statement traps the thrown string exception object and displays it using an output stream statement. What happens next
is up to you. If you take no further action, the program continues normally. Or, the catch statement might call another function, set
a flag, or cause the program to repeat the function call that led to the error. In any case, after the exception is handled, it is

destroyed. An exception is a mechanism for reporting and dealing with exceptional conditions—it does not dictate a course of
Page 319

This document is created with trial version of CHM2PDF Pilot 2.10.

action. That’s still your job.
When a statement throws an exception, three important actions take place that affect the program ’s operation:

* The function containing the statement that throws the exception immediately returns to its caller.

* The exception object overrides any value that the function normally returns.

* The exception causes C++ to search for an exception handler (a catch statement). No other program statements are
allowed to execute until the exception is handled.

The last effect is critical. If the program itself doesn ’t handle an exception, it eventually arrives in a C++ default exception handler.
In most cases, the unhandled exception ends the program. This is advantageous in small programs and tests because it helps
prevent damage that might be caused by an error such as a memory leak or a disk space shortage. When writing small, noncritical
programs, you can simply ignore error conditions, knowing that any serious exceptions simply cause the program to end. For
example, if the C++ new operator cannot fulfill a request for a dynamic memory allocation, it throws an exception that halts the
program. Of course, in production software, all exceptions must be handled to prevent the program from halting unexpectedly.

Throwing Exception Objects

Although any object such as a string or an integer value can be an exception object, an exception is usually an object of a class. In
its simplest form, such a class can be merely a name with no contents declared like this:

class Overflow { };

That’s not just an illustration—it is a complete C++ class. To use it to report an error, throw an instance of the class using the
following statement:

throw Overflow();

That statement constructs an object of the Overflow class, and it throws that object back to the function’s caller. In that function,
the program can trap the exception with code such as

catch (Overflow) {
cout << “Overflow detected” << endl;

}
The Standard exception Class

Usually, exception classes derive from a base class that provides information about a problem. So that your exception handling is
compatible with the C++ default handlers, for best results, base your own exception handlers on the standard C ++ exception class,
declared as

class exception {

public:

exception () { }

virtual ~exception () { }

virtual const char* what () const;

}i

To make the class available in your program, include the standard exception header file, which in this case, does not end in .h.
Also include the standard string header for use in storing descriptive messages in exception objects:

#include <exception>
#include <string>

Previous Table of Contents Next

Page 320

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The exception class declares three public members: a do-nothing default constructor, a virtual destructor, and a virtual function what
() that returns type const char *, and because of the const suffix, states that calling the function makes no changes to the object. To
use the exception class, derive another class, something like this:

class TMyException: public exception {
private:
string what str;
public:
TMyException (const string &what arg):
what str(what arg) { }
virtual const char *what () const {
return what str.c str();
}
}i

The derived class publicly inherits the standard exception class, adding a private string object named what_str. The new class’s
constructor specifies a reference parameter to a C ++ string object, and it uses an initializing expression to assign what _arg to
what_str. The constructor has no other duties to perform, so its statement block is empty. The virtual what() function returns a const
char * to a C-style string by calling the what_str object’s ¢_str() function. Function what() is traditional in exception objects for
obtaining a description of the problem that caused the exception to be thrown.

To use the derived class, a function statement throws an object of the derived class with a string description as an argument. The
function might be written something like this:

int AnyFunction ()

{
if (errorCondition)

throw TMyException (“Underflow”);
else

return aValue;

If an error condition is detected, the function throws an object of the TMyException class; otherwise, it returns a value normally.

Note: For more information on C++ string objects, see Chapter 22, “Mastering the Standard string Class.”

Introducing try Blocks

Now it’s time to toss in another wrinkle—try blocks , which seem to confuse everybody the first time they use them. To prepare
for trapping an exception in a catch statement, using the TMyException class and sample AnyFunction() from the preceding section, a
program enables exception handling with code such as this:

int x;

try {

x = AnyFunction(); // Might throw an exception
cout << “x == ” << x << endl; // May not execute

}

catch (TMyException except) {
cout << except.what() << endl;
exit (1) ;

}

A try block executes one or more statements, some of which might throw an exception. In this case, the sample AnyFunction()
throws an exception of type TMyException if it detects an err%.glef {bat happens, no assignment is made to x, and the output

This document is created with trial version of CHM2PDF Pilot 2.10.
TMyException X

statement does not execute. Instead, the program hops immediately to the first catch statement that matches the exception’s type.
In this case, the sample catch statement traps the exception object, displays its message by calling what(), and then ends the
program by calling exit().

One or more catch statements must follow a try block. You cannot have a try block in one place and its catch statements in
another. That would be like having a ball game’s pitcher on the mound and the catcher in the parking lot. In all cases, you must
follow a try block with one or more catch statements that catch any exceptions thrown by the tried statements.

Multiple catch Statements

A single try block may be followed by multiple catch statements to trap different sorts of errors. For example, to handle a
TMyException object and also exceptions thrown as character strings, the program could use code such as

try {
// .. call functions that might throw exceptions

}
catch (TMyException except) {
cout << except.what() << endl;

}
catch (const char* message) {
cout << message << endl;

}

Any exceptions not trapped explicitly in a catch statement remain alive and are passed upward in the function call chain. The
presence of a live exception disables the program s normal execution until the exception is handled. In this case, if an
exception of an unknown type is thrown in the try block, the unhandled exception is passed to the function that called this one.
This process continues until the exception is handled or the exception object reaches a default C++ exception handler, in which
case the program most likely ends with a rude error message and a core dump.

Don'’t attempt to catch all exceptions to prevent such unexpected events. Code such as the following is extremely dangerous to
the health of your program:

try {
// .. Call functions that might throw exceptions
}

catch (exception e) { // 2272

}

That code might appear to trap all possible errors, but in practice, it does an end run around critical error handlers that are
expected to respond to memory faults, disk problems, and other unforeseen difficulties.

Tip: To use exceptions properly, trap only those exceptions you know a function might throw.

Nesting try Blocks

Multiple try blocks and catch statements can be nested, although the resulting program is often messy. A try block, for example,
can have a nested try block and catch statement as in the following hypothetical example. Assume that TOverflow and TUnderflow
are classes derived from the standard exception class. In this case, if functionA() throws an exception, the program skips the
nested try block entirely:

try {
functionA () ; // Try function (outer block)
try {
functionB(); // Try function (inner block)
}
catch (TOverflow except) {
// handle overflow condition
Page 322

This document is created with trial version of CHM2PDF Pilot 2.10.

}

}
catch (TUnderflow except) {
// handle underflow condition

}

You can usually avoid such unwieldy programming by placing the calls to various functions inside another function, typically written
inline to avoid an extra function call:

inline void £ ()

{
functionA () ;
functionB () ;

}

Previous Table of Contents Next

Page 323

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

This allows the program to use a single try block followed by catch statements to trap any exceptions thrown by functionA() or
functionB() :

try |
£0) 7
}
catch (TOverflow except) {
// handle overflow condition}
catch (TUnderflow except) {
// handle underflow condition

}
Using try Blocks

Some additional examples help clarify what try blocks are and how to use them. A try block may execute multiple statements as in
this code fragment:

int x;

try {
cout << “Here we go!” << endl;
x = AnyFunction () ;
cout << “x == " << x << endl;

}
catch (TMyException except) {
cout << except.what() << endl;

}

The sample try block first displays a message. This is unlikely to cause any exceptions to be thrown, and so it doesn ’t strictly need
to be inside a try block—but there’s no harm in placing it there. Next, the program calls AnyFunction(), assigning the function’s
return value to integer x. However, if AnyFunction() throws an exception, the try block immediately ends and no value is assigned
to x. The output statement following AnyFunction() is also skipped. Because of the exception, the program jumps directly to the
catch statement that lists the type of exception object.

The preceding code also illustrates another subtle aspect of exceptions that helps make error handling easier than in conventional
programming. In C, for example, it is typical to reserve a special value as an error indicator. Using standard error handling
methods, AnyFunction() might return -1 to indicate a problem, detected conventionally with an if statement:

int x = AnyFunction();
if (x == -1)
ErrorHandler (x);

This technique has many problems. For one, the reserved value -1 contains no information about the problem. Also, it isn’t always
convenient to reserve a value as an error indicator. Furthermore, it’s too easy for programmers to ignore an error value returned
from a function. All these troubles are eliminated by using exceptions in C ++.

Programming with Exceptions

Now that you’ve met the basics of exception handling, examine the program in this section for a practical example of how to use
exceptions for reporting errors. The program implements a function, power(), that raises a double floating point value to an
exponent, which may be fractional. An illegal input value, such as a negative base raised to a fractional exponent (-4!->, for
example), throws an exception. So that you can use the function in other programs, I wrote it as a separate module. Listing 16.1,
power.h, declares the power() function and exception class used to report errors.

Listing 16.1 power.h
Page 324

This document is created with trial version of CHM2PDF Pilot 2.10.

#include <exception> // Need exception class
#include <string> // Need string class

class TPowExcept: public exception {

double b; // Base value

double e; // Exponent value

string what str; // Error description
public:

TPowExcept (double b arg, double e arg,
const string &what arg):
b(b_arg), e(e_arg), what str(what arg) { }
virtual const char *what () const {
return what str.c str();
}
void Report();
}i

double power (double b, double e) throw(TPowExcept):;

Take a look first at the end of the header file where the power() function is prototyped. The declaration ends with throw
(TPowExcept), an optional indicator of what kinds of exceptions this function might throw. This is called a declared exception.
Even though it is optional to declare a function’s exceptions, you should almost always do so. This makes perfectly clear the types
of exceptions you need to trap in catch statements after calling the function in a try block.

Also in the power.h header file is the declaration for the TPowExcept class, derived from the standard exception class. Three private
data members hold values that describe the nature of a problem. Doubles b and e are the input values to power() that were found to
be illegal, and what_str further describes the problem. The TPowExcept constructor is written inline. It assigns its three arguments to
the three private data members but performs no other chores. The virtual what() function returns the string value of the what str
private object. Function Report() is implemented in Listing 16.2, power.cpp.

Listing 16.2 power.cpp

#include <iostream.h>
#include <math.h> // Need modf (), fmod()
#include “power.h” // Need TPowExcept, power ()

// Display error message in exception object
void TPowExcept: :Report ()
{
cout << “Domain error: base == " << Db
<< %, exponent == " << e << endl;
cout << what () << endl;
}

// Subfunction called by power ()
double fpower (double b, double e)
{

return exp(e * log(b));

}

// Returns b raised to the e power

// Throws TPowExcept exception for illegal input values

double power (double b, double e) throw(TPowExcept)
{
if (b > 0.0) return fpower (b, e);
if (b < 0.0) {
double ipart;

double fpart = modf (e, &ipart);
Page 325

This document is created with trial version of CHM2PDF Pilot 2.10.

if (fpart == 0) {
if (fmod(ipart, 2) !=0) // i.e. ipart is odd
return -fpower (-b, e);
else
return fpower (-b, e);

} else
throw TPowExcept (b, e, “Result is a complex number”);

} else {
if (e == 0.0) return 1.0;

if (e < 1.0)
throw TPowExcept (b, e, “Exponent must be zero or >= 1.0");

return 0.0;

}

throw TPowExcept (0, 0, “Error in power () function”);

The exception class’s Report() function displays the values of the object ’s b and e double variables, and also writes an additional
message held in what_str. The TPowExcept class not only contains all values that fully describe a problem with the power() function,

but also the means for displaying an error message.

Function power() uses the TPowExcept class to report errors. For example, if you attempt to raise a negative value to a fractional
exponent, the program throws the following exception:

throw TPowExcept (b, e, “Result is a complex number”);

Previous Table of Contents Next

Page 326

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

This is all that power() needs to do to report this type of error. In throwing the exception, the function passes the faulty base and
exponent values and a string message to the TPowExcept() constructor.

Note: The last statement in the power() function is unreachable—it should never execute. I included it, however, to demonstrate how
you can insert internal error-reporting code that might be useful during debugging. To see how this works, comment-out the return
0.0; statement. I sometimes like to use similar programming to make sure that I've covered all the bases, especially in a function that
uses nested if-else statements. However, some C++ compilers complain about the final throw statement—if that happens on your
system, you can delete that line.

Listing 16.3, tpower.cpp, tests the power module and demonstrates how to use try and catch statements to trap a function’s
exceptions.

Listing 16.3 tpower.cpp

#include <iostream.h>
#include “power.h” // Need TPowExcept, power ()
int main ()
{
double base, exponent, result; // Input and result variables
try {
cout << “base? ”;
cin >> base;
cout << “exponent? ”;
cin >> exponent;
result = power (base, exponent); // Exception possible here
cout << “result == ” << result << endl;
}
catch (TPowExcept &except) {
except.Report(); // Display error message
return 1; // Exit with error
}

return 0; // Exit with no error

Compile the power.cpp module and the test program with the following commands:

$ g++ -c power.cpp
$ g++ tpower.cpp power.o

Run the program and enter base and exponent values to test the power() function:

$./a.out

base? 2
exponent? 2.8
result == 6.9644

Try other values to force the function to throw an exception. For example, run the program again and enter these values:

$./a.out

base? -4

exponent? 1.5

Domain error: base == -4, exponent == 1.5

Page 327

This document is created with trial version of CHM2PDF Pilot 2.10.

Result is a complex number

This time, the test program responds to the exception object that power() throws. To make that happen, the main() function’s try
block prompts you for base and exponent values (these statements could also precede the try block). After that, the program calls
power() with the following statement:

result = power (base, exponent);

If power() throws an exception, the assignment to result and the next output statement are skipped. In that event, the program hops
to the catch statement that declares an exception object matching the one that power() throws. There is only one such type of
exception in this example, but there might be others. Handling the error is simple. The program merely calls the exception object’s
Report() function and ends the program by returning from main() :

except.Report () ;
return 1;

Tip: After handling an exception in a catch statement, the exception object is automatically destroyed. You don’t need to take any
additional actions to delete exception objects.

Unhandled Exceptions

Usually, an unhandled exception is bad news. If a function throws an exception, but no catch statement traps it, the exception
object ends up in a default exception handler. As mentioned, this usually halts the program, and worse, dumps memory to a core
file. The exact action depends on the type of exception, and whether the program itself has replaced any of the default handlers.
For an unhandled exception, C++ calls one of three functions:

 Exceptions that are not handled by a catch statement cause the program to call unexpected(). An unexpected exception is
defined as any exception that isn’t handled by a catch statement. By default, unexpected() calls terminate(), explained next.

» Unexpected exceptions for which C++ detects a corrupted stack or that result from a class destructor that throws an
exception (a dangerous practice to be reserved only for the most critical of problems) cause the program to call the
terminate() function. By default, terminate() calls abort(), explained next.

* The abort() function is the lowest on the totem pole. If the program reaches this stage in its exception handling, it ends
immediately and writes memory to a core dump file. To prevent this, you can rewrite the unexpected() and terminate()
functions, and in that way, trap any exceptions that aren 't handled in catch statements.

Replacing unexpected() and terminate()

You can replace unexpected() and terminate() with new code to deal with unhandled exceptions in whatever way you want. For
example, it might make sense during the program’s development to replace unexpected() to simply notify you of any unhandled
exceptions. You can then add appropriate catch statements to trap the exceptions before they become terminal. You might also
replace terminate() With diagnostics for debugging the cause of a corrupted stack or exceptions thrown during the disposal of
objects (which might indicate a problem with memory management).

Usually, however, replacing unexpected() is enough to ensure that the program never halts unexpectedly due to an unhandled
exception. The terminate() function is best used to shut down critical services, save open files, and perform other disaster recovery
before ending the program. If the program ever ends up in terminate(), you should assume the worst, clean up as much as possible,
and end gracefully. You can never replace abort().

Including the exception header file provides two functions you can call to replace the default exception handlers. The functions are
declared as

terminate handler set terminate (terminate handler func);
unexpected handler set unexpected (unexpected handler func);

Page 328

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 329

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

In each case, pass a function that returns void and declares no parameters to the set terminate() and set unexpected() functions. For
example, write your own handler like this:

void MyHandler ()
{

// ... statements in your handler

To use the handler for trapping unexpected exceptions, pass the function name as an argument to set_unexpected() :

set unexpected (MyHandler) ;

Alternatively, you can save the address of the original handler with code such as

unexpected handler saved handle; // Variable
saved handle = set unexpected(MyHandler);

You might then restore the original handler’s address—a good technique to use if several modules install their own custom
handlers. Similarly, set the default terminate() function by calling the following:

set terminate (MyHandler) ;
Trapping All Exceptions

Writing custom exception handlers that safely handle all possible exceptions is not as easy as the basic techniques suggest. This
section shows an example that simulates several types of errors and uses custom handlers to trap them safely. Listing 16.4,
unexpect.cpp, demonstrates how to replace the default exception handlers with custom functions that trap all possible program
errors. It deals with exceptions of unknown types, and it demonstrates how to obtain one last chance to perform critical measures
before ending the program.

Listing 16.4 unexpect.cpp

#include <iostream.h>
#include <exception>

#define MAXERR 10

// Exception class used when errors exceed limit
class MaxError { };

// Normal error exception class
class Error {

private:

static int count; // Count of Error objects
public:

Error () ; // Constructor

void Say () ; // Report static error count

bi

// Prototype for function that throws an exception
void run() throw(Error);

// Prototypes for custom exception handlers
void custom unexpected();
void custom terminate();
Page 330

This document is created with trial version of CHM2PDF Pilot 2.10.

// Global static counter for Error class objects
int Error::count;

void main ()
{
set unexpected(custom unexpected);
set terminate(custom terminate);
for (;;) |
try {
run(); // Throws an exception
}
catch (Error e) {
e.Say ()

}
return 0;
}
// Function that throws an exception
void run() throw(Error)
{
throw Error();
// throw “An unknown exception object”;

// Our unexpected exception handler
void custom unexpected()

{

cout << “Inside custom unexpected function” << endl;
throw Error(); // Continues program

// Our terminate exception handler
void custom terminate ()

{

cout << “Inside terminate function” << endl;
cout << “Exiting program” << endl;
exit(l); // Exits program

// Error class constructor
Error::Error ()

{
count++;
if (count > MAXERR)
throw MaxError(); // Abort object construction!

// Error class reporting function
void Error::Say ()

{

cout << “Error: count = ” << count << endl;

The unexpect.cpp program lists all the elements needed to trap all possible exceptions. The program doesn’t prevent abnormal
termination, but it does take over from the default action of calling abort() with its inevitable core dump. By using similar code, you
can trap every type of exception and, at the very least, have the opportunity to shut down the program in an orderly fashion if it
becomes necessary to end it prematurely. Compile and run the program using these commands:

$ g++ unexpect.cpp
$./a.out

Error: count = 1
Error: count

Il
N

Page 331

This document is created with trial version of CHM2PDF Pilot 2.10.

Error: count = 10

Inside custom unexpected function
Inside terminate function

Exiting program

As the program’s output shows, it forces ten exceptions to occur, all of which are handled normally. After the tenth instance,
however, the program generates a more serious error that results in custom handlers receiving the problem. Finally, the program
ends gracefully with an error message—and despite the unexpected exceptions, no core dump. These actions simulate a typical
situation where one error leads to another, which leads to another, and eventually causes a variety of ills.

To keep track of how many errors have occurred, the program ’s Error class constructor near the end of the listing increments the
class’s static count variable. Because count is static, only one copy of its value exists for all Error objects. Also in Error is a function,
Say(), that displays count’s value.

In the course of constructing an Error object, if count equals or exceeds constant MAXERR, the constructor throws an exception of
type MaxError. Because the program doesn’t catch this type of error, this action kicks in the custom handlers. This simulates what

can happen when calling functions in a third -party library that might throw an exception of an unknown type. It could also happen
in your own code if you neglect to catch a specific type of exception.

Note: When a constructor throws an exception, the object is not constructed. See “Exceptions and Constructors” later in this
chapter for more on this topic.

Function main() in the unexpect.cpp program (refer to Listing 16.4) installs handlers that replace the default unexpected() and
terminate() functions. The program then executes a Do-Forever for loop in which a try block calls a local function, run(). That
function intentionally throws an exception of type Error, trapped back in main() by a catch statement. The first ten times this
happens, the program displays a message by calling the Error object’s Say() member function. After the tenth error, however, the
Error class’s constructor gives up the good fight and throws an exception of type MaxError by executing these statements:

count++;
if (count > MAXERR)
throw MaxError();

This simulates a serious condition in which an object cannot be constructed. In this case, the problem is even more serious than
normal because it occurs in the constructor of the Error class object. Because main()’s try-catch statements do not recognize errors
of type MaxError, this action causes main() to end, and control to pass to our custom unexpected exception handler. In that function,
two statements execute:

Previous Table of Contents Next

Page 332

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

cout << “Inside custom unexpected function” << endl;
throw Error(); // Continues program

The first statement is just so that you can observe when the custom handler is called. The second shows how you can continue the
program at this stage. In a real-life situation, the unexpected handler might examine the state of the program and take steps to
allow the user to close files or reestablish network communication —whatever it takes to get back to normal. The custom handler
now has two options:

* It can call terminate(), in which case the program enters its critical shutdown phase, or
* It can throw an exception of a known type.

The second measure is your first line of defense against an unexpected exception. Throwing an exception from within an
unexpected exception handler in effect franslates unknown exceptions to a known type. Typically, a loop in main() catches an
exception of that type so that the program can continue running after performing its recovery logic.

In this case, however, throwing the Error object causes another unknown exception to be launched into orbit. This simulates the
serious condition when, even after attempting to recover from a problem, the program is unable to continue. The result is a call to
the custom terminate() function, which displays an error message and ends by calling the exit() :

cout << “Inside terminate function” << endl;
cout << “Exiting program” << endl;
exit(l); // Exits program

Although simple, the demonstration program simulates extreme conditions that cause the program to be unable to continue. But at
least it ends as gracefully as possible.

A simple change to the program also demonstrates how to handle unexpected exceptions and still allow the program to continue.
Only when the program is no longer able to construct Error objects does our terminate function end the show. To make this
change, rewrite the run() function to throw a string object:

void run () throw(Error)

{

throw “An unknown exception object”;

}

Compile and run the modified unexpect.cpp program using the same commands as before:

$ g++ unexpect.cpp

$./a.out
Inside custom unexpected function
Error: count = 1

Inside custom unexpected function
Error: count = 10

Inside custom unexpected function
Inside terminate function

Exiting program

This time, because main() doesn’t recognize exceptions of type const char *, each Error exception causes our custom unexpected
exception handler to be called. In effect, the handler translates the unexpected exception into a known type, an object of the Error
class. This allows the program to continue operating despite the presence of the unexpected condition. Eventually, however, the
Error class exceeds its maximum count, and its constructor throws an error of type MaxError. The unexpected handler doesn’t
receive this type of exception—instead, the terminate function is called, and the program ends.

Page 333

This document is created with trial version of CHM2PDF Pilot 2.10.

Exceptions and Local Objects

When a function throws an exception, C++ automatically destroys any local variables created in that function. Be sure that you
understand this effect. It can cause unforeseen consequences when the local variables are themselves objects of classes.

Note: Some compilers have a special option to enable the destruction of local objects in the event their declaring block throws an
exception. GNU does this by default.

A simple example, localexcept.cpp in Listing 16.5, demonstrates how GNU C++ destroys objects in functions that throw
exceptions. You might use the program as a test of how other C++ compilers deal with this critical situation.

Listing 16.5 localexcept.cpp

#include <iostream.h>
#include <exception>

class A {
public:
A() { cout << “A constructor” << endl; }
~A() { cout << “A destructor” << endl; }
i

void f£();

int main ()
{
try {
£(0);
}
catch (const char *s) {
cout << s << endl;

}

return 0;

}

void £ ()

{
A a; // Construct object of class A
throw (“Error condition”);

The program declares a class, A, with only two members: a constructor and a destructor. Each of these functions displays a
message as a trace of when they are called. Function f() constructs an object of type A and then throws an exception using a string
to keep things simple. When you compile and run the program, it shows that the object is properly destroyed before the catch
statement in main() receives the thrown exception:

$ g++ localexcept.cpp
$./a.out

A constructor

A destructor

Error condition

So far, so good. But if the function constructs an object dynamically addressed by a pointer, a very different effect results.
Suppose, for example, that function f() constructs the object like this:

void £ ()

{ Page 334

This document is created with trial version of CHM2PDF Pilot 2.10.

A *p = new A;
throw (“Error condition”); // 227

Because the dynamic object has global scope, as do all objects created with new, the object’s destructor is not called when the
function ends with an exception. Worse, the pointer p is destroyed, leaving the object floating in space and causing a memory
leak. To avoid this problem, before throwing an exception, you must delete any dynamic objects. You might, for example, use a
flag to indicate an error inside the function, and if the flag is set, delete any dynamic objects before throwing the exception:

bool error flag;
if (error flag) {

delete p;
throw (“Error condition”);

This type of mistake can easily happen in functions that return pointers to objects constructed with new. Remember that, if the
function throws an exception, it does not return a value as it does normally.

Previous Table of Contents Next

Page 335

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Exceptions and Constructors

Class constructors may throw exceptions to indicate that they cannot successfully construct an object. This is a relatively new
specification in C++ that some older compilers might not recognize, but GNU C++ is up-to-date in this department. You already
saw one example of the technique in this chapter’s Error class. To throw an exception in a constructor, simply use a statement as in
the following class:

class AnyClass {
public:
AnyClass () {
if (condition) throw Error(); }
~AnyClass(); // Destructor
}i

The key concept here is that if a constructor throws an exception —causing the constructor to end abnormally—the object is not
constructed, and, most important, any class destructor is not called. Only fully constructed objects are destroyed by calling their
destructors, a fact that has especially important consequences in classes that own objects of other classes. Consider this version of
AnyClass:

class AnyClass {
OtherClass x;
public:
AnyClass(): x() {
if (condition) throw Error(); }
~AnyClass(); // Destructor
}i

Object x of type OtherClass (not shown) is initialized by AnyClass’s constructor using the expression x(). If the OtherClass object’s
constructor throws an exception, then the AnyClass object’s constructor is aborted and the destructor is not called. This effect can
be even more crucial in classes that own multiple class objects:

class AnyClass {
OtherClass a, b, c;

public:
AnyClass(): a(), b, c() { }
~AnyClass(); // Destructor

}i

If object b’s constructor throws an exception, object ¢ is not constructed, and neither is the AnyClass object. However, object a’s
destructor is called because that object was fully constructed before the construction of b caused a problem. In cases where
objects have pointers to dynamic memory, it might take a little thought to be sure that, in the event of a constructor throwing an
exception, all objects are properly disposed. In rare cases, it might be necessary to rearrange the initialization order of class -
object data members (a, b, and c in the example) so that everything works as intended.

Classes That Throw Themselves Around

A class can also throw an exception object of its own class type. Usually, this is done in an exception class by a member function,
often called Raise(). You might, for example, design the exception class like this:

class Error {
public:
void Raise () { throw Error(); }

}i

The class might also declare other functions, constructors, a%egsg%éor, and data members. If e is an object of type Error, the

This document is created with trial version of CHM2PDF Pilot 2.10.
e Error

following statement throws another object of the Error class:

e.Raise(); // Throws fresh Error object

Depending on other services in the Error class, this might be a good way to throw an exception after it is initially handled. Doing
this keeps the exception alive, causing C++ to continue searching upward in the function call chain for a matching exception
handler. In many cases, you can do this simply by throwing the same object received by a catch statement:

catch (TError e) {
// .. initially handle this type of error
throw e; // rethrow exception to this function’s caller

}
Exceptions and Memory Management

As mentioned in prior chapters, operator new throws an exception if it can’t fulfill a memory allocation request. In GNU C ++, the
exception is an object of the class bad alloc. Suppose that the program has a function f() that uses new to create a dynamic object
of type TAnyClass :

TAnyClass * f()
{

return new TAnyClass();

}
To trap the exception that new throws if the memory allocation fails, use try and catch statements such as

try {
TAnyClass * p = £(); // Might throw exception
}

catch (bad alloc error) {
cout << error.what () << endl;
exit (1) ;

}

Although the preceding code works, it is inconvenient to trap bad_alloc exceptions at every use of new. Because an out-of-memory
condition usually indicates a serious problem, it’s more common to trap the error at a higher level—for instance, in main(), using
code such as this:

int main ()
{
for (;;) |
try |
run(); // Main program loop

}

catch (bad alloc error) {
cout << “Out of memory” << endl; // 2°2°?
cout << error.what () << endl; // 2?27
exit (1) ;

}

The basic idea is to use a Do-Forever for loop that repeatedly calls a function—run() in this example—that you might refer to as
the main program engine. The catch statement traps all bad_alloc exceptions thrown by run(), or by any other functions that run()
calls. However, the output statements are questionable because, if the system is out of memory, there might not be enough free
bytes left to execute the output statements themselves. If an exception occurs during the output statements, the program calls
terminate() and ends abruptly with a core dump.

A useful trick that can alleviate this kind of trouble is to allocate a pool of memory at the start of the program to be deleted in the
event of a memory allocation failure. For example, you mighF‘[) argeese3r§/7e a block of 2,048 bytes:

This document is created with trial version of CHM2PDF Pilot 2.10.

char *reserve = new char[2048];

That might also be in a try block, but there’s usually some memory available when the program begins running. In the event of a
bad_alloc exception, delete the reserved memory:

delete reserve;
reserve = NULL;

You can then repeat the operation that led to the error in hopes that the use of new will succeed. If not, another bad_alloc
exception is thrown, and you might have to abort the program. One way to do that is to handle and then rethrow the exception:

catch (bad alloc error) {
if (reserve = NULL)
throw (error);

That causes the exception object to remain alive outside the exception handler, and unless there’s another handler higher up in the
function-call chain, the program eventually calls the current unexpected exception handler. In that handler, you could perform an
orderly shutdown, close files, and do whatever else is necessary before ending the program.

Debugging Exceptions

The GNU debugger offers one command for trapping exceptions, but it seems not to work in the release I *m using. However, you
might try it with a newer compiler—perhaps it will work for you. First, compile a program such as unexpect.cpp in this chapter
(refer to Listing 16.4) and load it into the debugger using these commands:

$ g++ —-g -0 unexpect unexpect.cpp
$ gdb --silent unexpect
(gdb)

Set a breakpoint on function main() by specifying its name to the break command (abbreviated simply as b), and then run the

program:

(gdb) b main

Breakpoint 1 at 0x80489ee: file unexpect.cpp, line 40.
(gdb) run

Starting program: /src/cl6/unexpect

Breakpoint 1, main () at unexpect.cpp:40

40 set unexpected(custom unexpected);

The debugger’s catch command is supposed to set a breakpoint on every catch expression in the current context. Type catch to
see whether it works for you. If not, you can search for the words “catch” and “throw,” and then set breakpoints individually on
the reported line numbers. At least this is easier than hunting through a long listing. Repeat the search command until it reports
“Expression not found” (press the up-arrow key to repeat the command without retyping):

(gdb) search catch
47 catch (Error e) {
(gdb) search catch
Expression not found

Do the same for “throw,” and then set the breakpoints on all reported line numbers.
Summary
As this chapter explained, C++ exceptions are objects that functions can throw to report exceptional conditions. To provide

exception handling, programs call functions in try blocks, followed by catch statements for the types of exception objects those
functions might throw. Any unhandled exceptions call low -level unexpected() and terminate() functions that you can replace with

Page 338

This document is created with trial version of CHM2PDF Pilot 2.10.
unexpected() terminate()

custom versions to trap all possible errors and prevent programs from shutting down unexpectedly. This chapter also explained
related topics such as rethrowing an exception, deriving classes from the standard exception class, and writing exception handlers
for out-of-memory errors reported by the C++ new operator.

For more information on subjects introduced in this chapter, turn to the following chapters:

* Chapter 22, “Mastering the Standard string Class”
* Chapter 25, “Applying Standard Algorithms”

Previous Table of Contents Next

Page 339

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 17
Creating Class Templates

Just as a class is a kind of schematic for building objects, a template is a schematic for building functions and classes. Also called
parameterized types , templates provide specifications for general -purpose classes and functions that automatically mold
themselves to new uses.

Note: For more information about using templates, see Chapter 23, “Using the Standard Template Library (STL).”

Introducing Class Templates

Templates are typically used to create general-purpose functions and classes that are not tied to any specific data types. For
example, a sorting function makes a good template because sorting algorithms do not depend directly on the type of data on
which they operate. Implementing the function as a template reduces it to its most general form. When you compile the program,
C++ uses the template to generate, or instantiate, an actual function that works with a specific type of data.

Template classes are similarly generic. One excellent example is a container class that provides searching and other functions but
can work with any data type from the lowliest integers to complex class objects.

Template Functions

A template function describes the generic properties of a function. Most often, you declare template functions in separate header
files and include them in various modules. A template function generally looks like this:

template <class T>
void f(T param)
{

// ... function body

}

The reserved word template begins the show and is always followed by angle brackets with one or more expressions. Each of
those expressions—there’s only one in this example—begins with the word class and is followed by any identifier of your
choosing. In this case, I use T to indicate “type.” The word class here does not necessarily refer to a C++ class, but to any “class”
of data type.

Following the template’s preface is the item being declared in template form. In this example, it ’s a function named f() that returns
void and receives a single parameter of type T. The actual data type is specified later when the program uses the template —here,
T 1s just a placeholder that refers to an as -yet undefined type. A function might also return a value of a placeholder type:

template <class FutureType>
FutureType AnyFunction (FutureType param)

{
// ... function body

}

That declares a template function named AnyFunction() that returns a value of type FutureType and receives a parameter of that
same type. Again, the exact nature of FutureType isn’t known. A template can also declare multiple parameters of different
placeholder types (or the same types):

template <class T1l, class T2>
Tl NewFunction (Tl paraml, T2 param2, T1 paran$29e340

This document is created with trial version of CHM2PDF Pilot 2.10.

{
// ... function body

}

The NewFunction() template declares two placeholder types, T1 and T2. The function returns a value of type T1 and declares three
parameters: two of type T1 and one of type T2. You may specify value parameters and return values as shown here, and also
pointers and references to placeholder type objects. For example, here ’s how you might declare a Copy() template function that
accepts a reference to an object and returns a pointer to an object of the same type:

template <class T>
T * Copy(const T ¶m)

Again, the template is completely generic. It states only its name and that it returns a pointer of some type and accepts a const
parameter reference of that same type. The actual data types are determined later when the function is used. This means that the
same template can be used to create a variety of Copy() functions that operate on many different types of data. To use the template
function, simply declare it in a prototype like this:

template TMyClass * Copy(const TMyClass é¶m) ;

When the compiler processes that function prototype, it uses the template to construct an actual function for the specified data
type TMyClass. In this example, C++ replaces the templates placeholder T with TMyClass, and it creates an actual function that
works with data of that type. Alternatively, you can simply use the function and let the compiler create the actual function based on
its context in the program. However, it’s best to declare a function prototype before its first use in a program.

Tip: GNU C++ seems to require template function prototypes to be prefaced with the keyword template. Some other C++ compilers do
not require this. If the function is implemented in another module —that is, if it is declared in a prototype or used in a statement—
you might also need to preface the prototype with the word extern to prevent C++ from instantiating multiple instances of the same
function.

A complete sample program demonstrates how to create template functions and instantiate them in different ways. Although the
example is simple, I divided it into header and program files because, in most cases, this is how you will write most templates.
Listing 17.1, minmax.h, shows the header file for two template functions, min() and max().

Listing 17.1 minmax.h

#pragma interface

template <class T>
T max (T a, T b)
{
if (a > b)
return a;
else
return b;

}

template <class T>
T min(T a, T b)
{

if (a < b)
return a;
else

return b;

Page 341

This document is created with trial version of CHM2PDF Pilot 2.10.

Note: The #pragma interface directive in minmax.h might no longer be needed. Some versions of GNU C ++ require it to help the linker
resolve uses of template functions and classes.

Take a close look at the declaration of the template function, max():

template <class T>
T max(T a, T b)

The template reserved word comes first, followed by angle brackets containing the placeholder type -name T. The second line
declares max() as a function that returns a value of type T and receives two parameters, a and b, also of type T. The body of the
function is common C++ code:

if (a > b)
return a;
else
return b;

Previous Table of Contents Next

Page 342

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The actual types of a and b aren’t yet known, and we assume only that objects of those types can be compared in the expression
(a <b)—if not, the program simply doesn 't compile. Template function min() is written similarly but, of course, returns the lesser
value of its two parameters.

We now have two functions, min() and max(), that are completely generic in nature. They can operate on any data type provided
that objects of that type can be compared. Listing 17.2, tminmax.cpp, tests the functions and shows how to instantiate templates
for use with different types of data.

Listing 17.2 tminmax.cpp

#include <iostream.h>

#pragma implementation “minmax.h”
#include “minmax.h”

// Instantiate template functions

//

template int min(int, int);

template double min (double, double);
template char min(char, char);

template int max(int, int);
template double max (double, double);
template char max(char, char);

int main ()
{
int i1 = 100, i2 = 200;
double dl = 3.14159, d2 = 9.87654;

char cl = ‘A’, c2 = ‘z';

cout << “max(il, 1i2) == “ << max(il, 1i2) << endl;
cout << “max(dl, d2) == “ << max(dl, d2) << endl;
cout << “max(cl, c2) == “ << max(cl, c2) << endl;
cout << “min(il, i2) == “ << min(il, 12) << endl;
cout << “min(dl, d2) == “ << min(dl, d2) << endl;
cout << “min(cl, c2) == “ << min(cl, c2) << endl;

return 0;

Note: The #pragma implementation directive in tminmax.cpp might no longer be needed. It corresponds to the #pragma interface directive in
the template-function header file, minmax.h, included in the module. Although not strictly required in this small example, the
directives help ensure that only one instance of a function from a template is created. Neither directive is needed with newer
versions of GNU C++.

The test program includes the minmax.h header file. Using the template functions in that file, the compiler explicitly instantiates
actual functions using template prototypes such as

template int min (int, int);

Page 343

This document is created with trial version of CHM2PDF Pilot 2.10.

This causes the compiler to implement a function named min() with type int at every place that class T appears in the template
function. The result is an actual function that returns the minimum of two integer arguments, as though you had written that function
like this:

int max(int a, int b)
{
if (a > b)
return a;
else
return b;

The great thing about templates is that C++ writes this code for you. All you need to do is create the template, declare the function
prototype with actual data types, and then use the function.

Template Classes

Template classes are even more powerful than template functions. A template class provides the skeleton for a generic class that is
later instantiated with user-specified data types. A template class’s declaration is similar to that of a template function ’s. It begins
with the template reserved word followed by one or more placeholder types in angle brackets. In general, template classes are in
this form:

template <class T>
class TAnyClass {
// ... class members

}s

Don’t confuse the two uses of the word class—they have different meanings. The first line states that class T is a placeholder for a
type to be determined later. The rest of the declaration is a C++ class declaration just like any other, except that members may use
the placeholder type as though it were a real data type. For example, the template class might declare a private data member of

type T:

template <class T>
class TAnyClass {
private:
T var;
public:
TAnyClass (T arg): var(arg) { }
}i

The template class is completely generic. It stores a private variable named an_object of type T. Its constructor assigns to var an
argument value also of type T when an object of TAnyClass is constructed. This same class template might store any type of data.
To use the template, simply create an object of the template class type and specify an actual data type to use:

TAnyClass< int > int object (123);

That creates a TAnyClass object named int_object, using the data type int in every place where the placeholder T appears in the
template. The object stores the value 123 in its private var data member. The data type might also be another class:

TAnyClass< TOtherClass > class_object (other object);

That creates an object named class_object from the TAnyClass template, using TOtherClass as the data type where T appears in the
template. The value of other object is copied to the private var data member.

As with template functions, template classes are typically declared in header files. For example, Listing 17.3, db.h, demonstrates

how to create a template class that can store a small database of records. The actual type of those records comes later when the
program creates an object of the template class. At that time, C++ generates an actual class to handle the object’s creation.

Page 344

This document is created with trial version of CHM2PDF Pilot 2.10.

Listing 17.3 db.h

#include <string>

class DBError {

private:
string msg;

public:
DBError (const string &msg_arg): msg(msg_arg) { }
const string & what () const { return msg; }

}s

template<class T>
class TDatabase {

private:
T *rp; // Records pointer
int num; // Number of records
public:
TDatabase (int n): num(n)
{ ro = new T[num]; }
~TDatabase ()

{ deletel] rp; }
T &GetRecord(int recnum) throw (DBError);

}s

template<class T>
T &TDatabase<T>::GetRecord(int recnum) throw (DBError)
{
if (0 <= recnum && recnum < num)
return rpl[recnum];
else
throw DBError (“Bad record number”);

The header file declares two classes. DBError is a normal C++ class that the template class TDatabase uses to report errors. The
template class TDatabase is declared using a single placeholder data type:

template<class T>
class TDhatabase {...

That creates the template, TDatabase, as a template class for an as-yet-unknown type of data, T. The template’s private section
declares a pointer rp to an object of the unknown type, and also an integer variable that counts how many records the database

holds:

private:
T *rp; // Records pointer
int num; // Number of records

Previous Table of Contents Next

Page 345

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Function GetRecord(), a member of the TDatabase<T> template class, returns a reference of type T&. Because the class is
instantiated using the TRecord class, the actual GetRecord() function returns a reference to a TRecord object. Even though the
template class has no knowledge of TRecord, the preceding statement can call TRecord::Assign() because the actual database object
has been molded by the compiler to accommodate objects of type TRecord.

Reference functions such as TDatabase<T>::GetRecord() are particularly handy in template classes for efficiently returning objects of
placeholder types. However, reference functions also bring into play the question of what to do if the function cannot return an
object. What if, for example, the database is empty, or the user specifies an out -of-range record number?

This is where exceptions prove their value. Because exceptions effectively override a function ’s normal return value, they are ideal
in reporting errors from functions that cannot reserve a particular value as an error indicator. For example, a pointer -function can
return NULL to indicate an error, but there is no such animal as a NULL reference, and a reference function is best programmed to
throw an exception to indicate a problem. Take a look at how this mechanism works in the sample database program. After
creating a few sample records, the program prompts you to enter a record number. If you enter an illegal number, the program ’s
exception handler reports the problem:

try {
TRecord &tr = pdb->GetRecord(rn);
cout << rn << “: ” << tr.GetName () << endl;

}
catch (DBError error) {
cout << “W***Error: ” << error.what () << endl;

}

The try block calls reference function GetRecord() for record number rn. If that record number is out of range, the function throws
an exception of type DBError. This causes the assignment to the TRecord reference variable tr not to take place, and the program
also skips the output statement. In the event of an error, the exception handler displays a message, and there ’s no need to include
extra programming to test the function ’s return value.

Template Instantiation

An important issue in any program that uses templates is how and where those templates are instantiated. When the C++ compiler
reads a template’s declaration—usually in a header file—it acquires the information it needs to create actual instances of the
template class or function for specific data types. In programs composed of many modules, it ’s important to consider where the
compiler stores the code it generates for a template instantiation.

To deal with this issue, compiler writers have come up with a number of schemes, some of which are experimental in some
versions of GNU C++. The following sections explain the two most common models of template instantiation, and also explain
how to resolve some problems you might encounter in programs that use templates. First, however, to understand the resolution,
you need to understand the problem that templates pose to the C++ compiler.

Trouble with Templates

When the C++ compiler encounters the use of a template, it generates the actual code for the template class or function based on
the data type at that location. For example, consider a template function f() declared as

template <class T>
void £ (T data);

This probably appears in a header file, included in a module, call it moduleA, that needs to call f() for a specific data type. To
instantiate the template, the module declares a function prototype using an actual data type:

Page 346

This document is created with trial version of CHM2PDF Pilot 2.10.

template void f (int data);

The word template might not be needed. In fact, the prototype itself is possibly unnecessary, and the program can simply use the
function in a statement such as

int count = 100;
f (count) ;

This is called automatic template instantiation , and depending on your version of GNU C++, might or might not require a
preceding function prototype. In any case, using f()’s template declaration, C++ performs two actions:

1. It instantiates the template, meaning that it writes the symbolic code for an actual function based on the data type (int
here) for the placeholder type (T) in the function.
2. It compiles the generated function and stores its code in the current module.

Action number two is where the problem with templates comes into play. Consider now that the program expands into two
modules, moduleA and moduleB. The second module also needs to call () using an integer argument. So, on compiling moduleB,
which also includes the template’s header file, the compiler generates another instance of f(int) and stores its code in moduleB’s
object code file.

Now there are two identical instances of f(int). Obviously, this is wasteful, and it complicates debugging. We want the compiler to
recognize that it has already instantiated the function and to use that instantiation in all modules. But granting that wish isn ’t half as
easy as making it. The following sections discuss some of the solutions currently making the rounds in C ++ compiler design.

The Borland Model

The Borland C++ model offers a simple solution to the proliferation of template instantiations. In this model, the compiler
instantiates a template in each module. Using the example from the preceding section, after compiling, the object -code files
modulea.o and moduleb.o (or any temporary files named similarly) contain identical instances of function f(int). In other words,
under this model, the compiler simply ignores the problem.

However, during linking, the Borland linker recognizes that the same function exists in multiple modules, and it collapses all such
instances into one. This solves the problem but comes with a troublesome disadvantage. In a program with dozens of modules
using the same template classes and functions, the compiler has to generate instances of all of them. This makes the compiler work
harder than necessary, and as a consequence, programs that extensively use templates take longer to compile.

Previous Table of Contents Next

Page 347

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The CFront Model

The AT&T C++ to C translator, CFront, handles template instantiation differently. In this approach, a template repository is
created during compilation of statements that use template classes and functions. The repository doesn ’t contain code, but
symbolic linker names and other information that enable the compiler to create the template instances that the linker needs. In
other words, this is a two-pass system. On pass one, the compiler creates a repository that tells the linker where to find and, if
necessary, how to create any template instances needed to complete the final code file.

There are two main advantages with this approach. One is a decrease in compilation time because template instantiation doesn’t
occur until the program’s modules are linked together. Two is that the operating system’s own linker can handle template
instantiations. The so-called Borland model requires a specially programmed linker. The downside of the CFront model is a large
increase in compiler complexity. It’s not easy for the compiler to generate all the information needed to build the final program
when many of its pieces are missing and require creation during the link stage.

The GNU C++ Model

Depending on your version of GNU C++, template instantiation might take a variety of forms, none of which exactly matches the
preceding descriptions. Your first option is simply to live with multiple template instantiations, especially if you are using a version
of GNU C++ 2.7.2 or earlier. Each module that uses a template gets its own instantiation of the class or template. This works, but
at a cost of efficiency, compiler speed, and obviously, a waste of memory and disk space.

Your second option is to obtain a patched linker, known as the collect2 program (but renamed via a directory link to 1d) that
knows about object repositories. Your system might already use collect2 because of this linker ’s capability to call global class
constructors at the start of a program (before main() is called), and also to call global destructors after main() returns. Normal
UNIX linkers cannot do this, and on those systems, collect? is inserted into the link process to handle these special chores. The
patched version of collect2 also knows about object repositories for linking to template instantiations.

If you have the patched linker, you can compile a module with the -frepo g++ option to generate a repository file ending in .rpo.
Later on, the linker uses this file to generate the template instantiations it needs. Although the stock GNU C ++ compiler can
generate .rpo files, they are useless unless you have the patched linker.

Note: Object repositories are experimental in GNU C++ 2.7.2 and earlier. If you are using an older compiler, check out the following
Web site for updates to GNU C++: http://egcs.cygnus.com .

Frankly, neither solution is all that attractive. Following is another approach that works with all GNU C++ implementations, and
although it takes some additional programming, is the simplest solution of all.

Dealing with Linker Problems

If you try using templates, you might receive linker errors about unresolved functions. This happens because the linker cannot find
the template instantiations that the compiler creates for a particular module. The following listings illustrate the problem.

Listing 17.5, template.h, shows typical declarations for a template class and a template function in a header file that one or more
modules might include.

Listing 17.5 template.h

// A template class
//
Page 348

http://egcs.cygnus.com/

This document is created with trial version of CHM2PDF Pilot 2.10.

template <class T>

class TAnyClass {

private:
T data;

public:
TAnyClass (const T arg): data(arg) { }
const T & GetData () const;

}i

// A template function prototype

//

template <class T>

TAnyClass<T> * MakeObject (const T param);

The template.h header file declares TAnyClass as a template with a private data member of type T, a constructor to initialize that
data, and a function that returns a constant reference to data ’s value. As with all templates, type T is but a placeholder—the real
type is determined later during the template’s instantiation.

The header file also declares a template function MakeObject(). This function receives a constant parameter of type T and returns a
pointer to a new object of type TAnyClass<T>. So far, so good. Listing 17.6, template.cpp, implements the template module.

Listing 17.6 template.cpp

#include “template.h”
#include <string>

// A template class member function
//
template <class T>
const T & TAnyClass<T>::GetData () const
{
return data;

}

// A template function

//

template <class T>

TAnyClass<T> * MakeObject (const T param)
{

return new TAnyClass<T> (param) ;

// ======== (Cut Here =======
// Explicit template instantiations for TAnyClass
//

template class TAnyClass<int>;

template class TAnyClass<double>;

template class TAnyClass<string>;

// Explicit template instantiation for function MakeObject ()
//

template TAnyClass<string> * MakeObject (const string param);

The implementation module provides the contents for the member function GetData() in the TAnyClass template. The member
function is still in template form —it uses placeholder type T—but its statement block provides what the function does—in this
case, simply returning the object’s private data, whatever that happens to be.

Similarly, the template function’s statement uses the C++ new operator to construct an object of type TAnyClass<T>, and it returns
Page 349

This document is created with trial version of CHM2PDF Pilot 2.10.
++ new TAnyClass<T>

a pointer to this object as the function’s result. Again, this is still a template. The actual instantiation of the function happens later
when a data type is supplied for T.

Previous Table of Contents Next

Page 350

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Unfortunately, this is where the trouble begins. Listing 17.7, usetemplate.cpp, attempts to use the template class and template
function by including the header file. The result, however, is a series of confusing linker errors.

Listing 17.7 usetemplate.cpp

#include <iostream.h>
#include <string>
#include “template.h”

int main ()
{
TAnyClass<int> int object (123);
cout << “int object == % << int object.GetData() << endl;

TAnyClass<double> double object (3.14159);
cout << “double object == " << double object.GetData() << endl;

TAnyClass<string> string object (“String object”);
cout << “string object == “ << string object.GetData() << endl;

string s (“Dynamic string object”);
TAnyClass<string> *p = MakeObject (s);
cout << WFp == “ << p->GetData () << endl;
delete p;

return 0;

To see the errors caused by the linker not finding the template instantiations, comment -out or delete the lines in the template.cpp
file (refer to Listing 17.6) from the comment that reads “Cut Here” to the end. Then type the following commands:

$ g++ -c template.cpp

$ g++ usetemplate.cpp template.o

/tmp/cca011931.0: In function ‘main’:
/tmp/cca0l11931.0(.text+0x1le): undefined reference to
‘TAnyClass<int>::GetData(void) const’

The template module (template.cpp) compiles, but attempting to link the main program and module produces undefined

reference errors. Although I show only one such error here, if you are following along, several others appear onscreen. The
problem occurs because GNU C++ doesn’t provide automatic template instantiation, and therefore, although the compiler is

happy with the use of templates, it doesn 't generate the actual class and functions. When the linker looks for these items, it doesn ’t
find them, and the compilation fails in the final act. The solution requires two steps:

1. Explicitly instantiate each instance of the template you need.
2. Declare extern prototypes for each function in every module that uses the template.

The lines you cut from template.cpp earlier perform the first step. The second might may not be needed, but if you still receive
linker errors, try adding extern declarations such as the following in any module that uses a template class or function:

extern template class TAnyClass<int>;

extern template class TAnyClass<double>;

extern template class TAnyClass<string>;

extern template TAnyClass<string> * MakeObject (string param);
Page 351

This document is created with trial version of CHM2PDF Pilot 2.10.
These declarations tell the linker to hunt for the template instantiations in all the modules linked to the program.
Known Template Bug

Template friend functions and inline member functions might not compile correctly. For example, the following declaration in a
template class produces an “internal compiler error 163

template <class T>

friend ostream & operator<< (ostream & ofs, const T ¶m) {
cout << data;
return ofs;

Perhaps a later version of GNU C++ will fix this problem. Until then, a plausible workaround is to derive a new class from ostream
and overload operator<<() as a member function instead of as a friend. Chapter 20, “Customizing I/O Streams,” shows several
examples of this method.

Debugging Templates

Template instantiation occurs behind the curtains during compilation—a tremendous disadvantage when a template function or
class doesn’t work as expected. It’s difficult enough to find errors in programs. It ’s doubly hard when the cause is hidden from
view. Fortunately, the GNU debugger can show exactly how the compiler instantiates a template function or class, and in that
way, help you pinpoint problems with the template’s design.

Viewing Template Class Instantiations

To follow along and view the instantiation of a C ++ template class, compile the tdb.cpp program in this chapter and load it into the
GNU debugger by using these commands:

$ g++ -g -o tdb tdb.cpp
$ gdb --silent tdb
(gdb)

We want to investigate the construction of a template class object and also trace the use of that object. So, the first task is to find
some good places to set breakpoints in the code. Type a few list commands until you find the statement that constructs a
TDatabase object (it’s line 31 for me). Set a breakpoint at the statement and then run the program:

(gdb) b 31
Breakpoint 1 at 0x80492al: file tdb.cpp, line 31.
(gdb) run

Starting program: /src/cl7/tdb

Breakpoint 1, main () at tdb.cpp:31
31 pdb = new TDatabase<TRecord>(3);

At this point, the pdb pointer has been declared as type TDatabase<TRecord>*. This causes the compiler to instantiate the class
template using the specified TRecord data type. To see the results of the template expansion, use a ptyp command:

(gdb) ptyp pdb
type = class TDatabase<TRecord> {
private:
TRecord *rp;
int num;
public:
TDatabase<TRecord> & operator=(TDatabase<TRecord> const &)
TDatabase (TDatabase<TRecord> const &)
TDatabase (int) ;
~TDatabase (void) ;

TRecord & GetRecord(int) ;
Page 352

This document is created with trial version of CHM2PDF Pilot 2.10.
} *

The results are most interesting, especially when compared with the original template (refer to Listing 17.3, db.h). The name of the
instantiated class is now shown as TDatabase<TRecord>. Its pointer data member rp is declared of type TRecord *, and there are a
few new items in the class’s public section. The first two member functions show how C ++ automatically generates an operator=()
function and copy constructor unless these are explicitly provided in the class. In addition to these newcomers, the instantiated
class fleshes out the template ’s destructor and GetRecord() function. The lone asterisk at the end of the debugger ’s output indicates

that pdb is a pointer to the listed class.

Previous Table of Contents Next

Page 353

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Tracing Template Class Functions

To trace how the class is used, you can set breakpoints in class template member functions—even though those functions are
actually constructed by C++ during compilation. In some cases, you might run into oddities because support for C++ templates in
the debugger is not yet operating at full power. However, the necessary commands seem to work well enough to track down
most kinds of template errors. One way to find potential breakpoint locations is to list the template ’s header file. For example, if
you are following along, enter the following command to delete all current breakpoints (reload tdb if you quit the debugger):

(gdb) delete
Delete all breakpoints? (y or n) y

Next, type a list command followed by the filename and line number of the TDatabase template class’s header file. Type L alone a
few more times until you find the line shown here (the line number might be different for you):

(gdb) 1 db.h:1

26 TDhatabase (int n): num(n)

Set a breakpoint on this line to halt the program when it calls the TDatabase constructor and then run the program to the breakpoint
(if the program is already running and you are asked whether to restart it, answer yes):

(gdb) b 26
Breakpoint 2 at 0x804991c: file db.h, line 26.
(gdb) run

Starting program: /src/cl7/tdb

Breakpoint 2, TDatabase<TRecord>::TDatabase (this=0x1,
n=-1073743212)

at db.h:26

26 TDhatabase (int n): num(n)

The debugger’s output shows a problem: The values for parameters this and n are obviously incorrect. Perhaps your version of
gdb is repaired. Despite this trouble, it’s still possible to view the correct values. Type next to enter the constructor, and then use
ptyp to find out the type of member rp (record pointer):

(gdb) next
27 { rp = new T[num]; }

(gdb) ptyp rp
type = class TRecord {

public:
TRecord & operator=(TRecord const &);
TRecord (TRecord const &);

TRecord(basic string<char, string char traits<char>,
default alloc template<true, 0> > const &);

1o
I deleted several lines of the output, which might surprise you. The TDatabase template class’s rp variable is actually of type

TRecord * (pointer to a TRecord object). In addition to the explicitly declared members of this class (refer to Listing 17.4, tdb.cpp),
C++ has added an operator=() function and a copy constructor. Also, the template ’s declaration of its constructor

TRecord(const string &s)

is replaced with an elongated declaration that indicates class string is itself a complex nested template. Chapter 22, “Mastering the

Standard string Class” covers C++ string objects, so I won’t go into the declaration here. But it is highly interesting that you can
Page 354

This document is created with trial version of CHM2PDF Pilot 2.10.
string ++ string

use the GNU debugger to find out exactly how C++ instantiates template and other classes in the compiled program.
Setting Breakpoints in Template Classes

Another useful method for setting breakpoints in template classes is to use the name of an instantiated class function instead of a
source code line number. Reload the tdb program into the debugger, if necessary, and enter the following command to set a
breakpoint in the GetRecord() member function (again, the line number might be different for you):

(gdb) b ‘TDhatabase<TRecord>::GetRecord(int)’
Breakpoint 3 at 0x80496e4: file db.h, line 36.
(gdb)

Actually, you don’t have to type all that. Just type b‘TD (including the apostrophe), press Tab, type ::Get, press Tab again, and
you’re finished. In general, you can use command -line completion this way to enter lengthy identifiers—after all, the debugger
knows all the symbols in the program and can easily search for matches using partial input.

Note: I wonder why other debuggers don’t have handy features such as command-line symbol completion. Probably because you
have to pay for the products!

After setting the breakpoint in GetRecord(), run or continue the program until it halts:

(gdb) cont

Continuing.

Breakpoint 3, TDatabase<TRecord>::GetRecord (this=0x804b680,
recnum=0) at db.h:36

36 if (0 <= recnum && recnum < num)

This time, the parameters to GetRecord() seem to be correct. You can now proceed to step through the instantiated function and
examine the program’s exception handling. Type ¢ when you’re finished.

Tip: When the program is paused in a member function, the command p#yp this displays the type of object for which the function
was called.

Summary

Templates are schematics for creating actual functions and classes. A template specifies one or more placeholder types that C ++
replaces with actual types during compilation. This makes it possible to write completely generic functions and classes that mold
during compilation to accommodate actual types of data. Templates are typically written in header files included into modules.
Some useful examples of templates are sorting functions and container classes.

For more information on subjects introduced in this chapter, turn to the following chapters:
 Chapter 15, “Programming with Virtual Functions”
* Chapter 16, “Handling Exceptions”

 Chapter 22, “Mastering the Standard string Class”
* Chapter 23, “Using the Standard Template Library (STL)”

Previous Table of Contents Next

Page 355

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Part IV
Advanced C++ Techniques

18 Overloading Your Friends 401
19 Overloading Operators 411
20 Customizing I/O Streams 439
21 Honing Your C++ Skills 473

CHAPTER 18
Overloading Your Friends

We all need a little help from our friends, and C ++ friends help solve some tricky problems in object-oriented programming. This
chapter introduces the subjects of friend classes and friend functions, and it sets the stage for Chapter 19, “Overloading
Operators,” in which you learn how to use friends to create overloaded operators . These are special functions that provide for
the evaluation of expressions such as A + B, where A and B are class objects. But first, you need to learn the basics of C++
friends.

What Are Friends For?

One of the main gifts of C ++ object-oriented programming is the encapsulation of data and functions in classes. As many of this
book’s sample programs demonstrate, a typical class provides public functions that access private data. This helps prevent
common errors caused by misuse of data, and it also facilitates maintenance and debugging.

But rules are made to be broken, and in C++, you can break the rules of encapsulation by using friends, although you do so at
some risk to your program’s welfare. Declaring a friend of a class is like giving a pal a copy of your house key. If you go away for
the weekend, don’t be surprised on your return to discover your buddy asleep on the couch and the refrigerator seriously
depleted.

Even so, friends are useful in certain circumstances, and with care, can be put to work safely. C ++ classes can declare two kinds
of friends. An entire class might be a friend of another class, or a single function might be declared as a friend. In general, friends
have special access to the class’s members, even though the friend might not be a member of the class ’s own family.

Note: If friends have a counterpart in conventional C programming, it ’s the goto statement. Like goto, a friend enables you to break
the very rules intended to help you write reliable code. Don’t interpret this chapter as a blanket endorsement of friends. Experienced
C++ programmers use friends only when absolutely necessary.

Friend Classes

A class might declare another class as a friend. The first class (the one that declares the friend) gives another class (the friend)
permission to access all private and protected members of the first class. Public members are always accessible, so you don ’t
need to declare a class as a friend to give it access to public members. You declare a friend so that it can access another class ’s
private and protected declarations.

Typically, a friend class is used when one of two unrelated classes requires access to the other class ’s inner secrets. For example,
you might declare a class such as

class AClass {
private:

double value; Page 356

This document is created with trial version of CHM2PDF Pilot 2.10.

public:
AClass (double arg): value(arg) { }
}s

Class AClass declares a private data member, value, of type double. To that member, the class constructor assigns an argument
value. However, as written here, AClass provides no access to its private data. After value is initialized, the private data member is
as safe from harm as a bear cub by its mother ’s side.

Next, suppose you declare another class that contains an object of AClass as a data member. This is a typical design in which
friends come into play:

class BClass {

private:

AClass anObject; // AClass object data member
public:

BClass (double arg): anObject (arg) { }

double GetValue() { return anObject.value; } // 2?2

}s

The class does not compile because its member function GetValue() attempts to access the private value data member in anObject.
Because value is private to AClass, only members of that class can access the data member.

In cases like this, programmers are sorely tempted to “fix” the problem by changing the original access specifier in AClass from
private to public. This works, but it’s like swatting a fly with a sledgehammer because it makes value available to all users of
AClass. What’s needed is special access to AClass’s private data from inside BClass.

The solution is to make BClass a friend of AClass. This states that BClass objects have special permission to access the private and
protected members inside AClass, without making those members available to statements outside either class. To make this
change, use the friend reserved word inside the class to which the other class needs access. In this example, BClass needs to use
the private value data member inside AClass. So, to give BClass permission to do that, AClass declares BClass as a friend. Here’s
the new AClass declaration:

class AClass {

friend class BClass; // BClass is a friend of AClass
private:

double value; // AClass and BClass may use this member

}i

The only difference from the previous AClass declaration is the addition of friend class BClass just after AClass’s opening line. This
tells the compiler to grant BClass access to AClass’s private and protected members. Other statements in other classes and in the
program are still prevented from using AClass’s restricted members. You may declare any number of classes as friends. The only
restriction is that the friend reserved word must appear inside a class declaration. A few other facts about friends are worth
remembering:

* A class must name all its friends in advance. You cannot create friends at runtime.

* The class containing the private and protected data is the one that declares another class to be a friend, thus giving that
friend special access to the normally hidden members of the declaring class. A class can never declare itself to be a friend
of another class—that would be like inviting yourself to dinner at a stranger ’s house.

* A friend class might be declared before or after the class that declares the friend. The order of declarations is
unimportant, but the friend class is typically declared last so that any member functions in the friend class can refer to the
other class’s private and protected elements.

* Derived classes of the friend do not inherit special access to the original class ’s private and protected members. Only the
specifically named friend class has that permission.

* A derived class might be a friend of its base class, although in such cases, using protected members in the base
accomplishes the same goal of giving the derived class (the friend) access to restricted members in the base class.

Listing 18.1, friend.cpp, demonstrates how a friend class can access another class ’s private and protected members.
age

This document is created with trial version of CHM2PDF Pilot 2.10.

Listing 18.1 friend.cpp

#include <iostream.h>
#include <string> // Need string class

class Pal {

friend class Buddy; // Buddy is a friend of Pal
private:

string label;
protected:

void PutLabel (string arg) { label = arg; }
public:

Pal (string arg): label(arg) { }
}i

class Buddy {

private:
Pal palObject;

public:
Buddy (string arg): palObject (arg) { }
void FriendDemo () ;

}s

int main ()

{
Buddy aBuddy (“First Message”);
aBuddy.FriendDemo () ;
return 0;

// Demonstrate how Buddy object can access Pal private

// and protected members

void Buddy: :FriendDemo ()

{
cout << “Reading private Pal::message from Buddy” << endl;
cout << palObject.label << endl;
cout << “Calling protected Pal:PutlLabel function” << endl;
palObject.PutlLabel (“Second Message”) ;
cout << palObject.label << endl;
cout << “Writing private Pal::message from Buddy” << endl;
palObject.label = “Third Message”
cout << palObject.label << endl;

Previous Table of Contents Next

Page 358

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Compile and run the program in the usual way. Its output shows how a friend class can access a private string label in another
class:

$ g++ friend.cpp

$./a.out

Reading private Pal::message from Buddy
First Message

Calling protected Pal:PutLabel function
Second Message

Writing private Pal::message from Buddy
Third Message

In the friend.cpp program, class Pal declares Buddy as a friend. This gives Buddy access to Pal’s private string label data member
and also its PutLabel() protected member function. The Pal class also declares a constructor, but it provides no other access to its
private and protected members. A program statement could construct a Pal object like this:

Pal palObject (“A String”);

But that’s all it could do. Because Pal provides no functions to read and write its data, the only possible operation is to construct
an object of type Pal. However, because Buddy is a friend of Pal, it can access Pal’s normally hidden declarations. To demonstrate,
the sample program creates an object of type Buddy and calls its FriendDemo() member function:

Buddy aBuddy (“First Message”);
aBuddy.FriendDemo () ;

Inside FriendDemo(), various statements show how Buddy takes advantage of its friendship with Pal. The following statement, for
example, calls Pal’s protected member function PutLabel():

palObject.PutLabel (“Second Message”) ;

Buddy can go even further, writing new values to Pal’s private string data. The following statement stores a new label in the Pal
object:

palObject.label = “Third Message”

Although the sample listing is hypothetical, it demonstrates a practical use for friend classes. In this case, class Pal provides for the
storage of some data, represented by its string object, label. Another class, the friend of Pal, provides access to Pal’s private data,
which remains protected from abuse by other program statements. A similar design might make sense in other cases to divide the
storage of data from its access functions among two separate classes —for instance, if two programming teams need to develop
the individual classes.

Mutual Friend Classes

Two classes can declare each other as friends, giving each class access to the other’s private and protected members. This is the
object-oriented equivalent of two people staying in adjacent hotel rooms and keeping the inner door open. Outsiders can ’t see
what’s going on inside, but the two guests are free to visit each other ’s rooms.

Using mutual friend classes destroys the barriers that normally prohibit access to a class ’s restricted members, and it’s rare that
you’ll use this technique. It is occasionally useful, however, to provide mutual access to static data members among two classes.
Listing 18.2, mutual.cpp, demonstrates the basic technique.

Listing 18.2 mutual.cpp

Page 359

This document is created with trial version of CHM2PDF Pilot 2.10.

#include <iostream.h>
class BClass;

class AClass {
friend BClass;
private:
static int x;
public:
AClass (int arg) { x = arg; }
void AFunction () ;
}i
class BClass {
friend AClass;
private:
static int y;
public:
BClass (int arg) { y = arg; }
void BFunction () ;
}i

int AClass::x;
int BClass::y;

int main ()

’

AClass a(123)
BClass b (456);
a.AFunction () ;
b.BFunction ()
return 0;

’

void AClass::AFunction()

{

cout << “Inside AClass::AFunction()” << endl;
cout << W“x == " << x << " y == “ << BClass::y << endl;

void BClass::BFunction()

{
cout << “Inside BClass::BFunction()” << endl;
cout << “x == “ << AClass::x << V" y == " << y << endl;

Compile and run the program, which displays the values of the x and y private static members of two mutually friendly classes:

$ g++ mutual.cpp

$./a.out

Inside AClass: :AFunction ()
x == 123; y == 456

Inside BClass: :BFunction ()
x == 123; y == 456

An incomplete class declaration is the key to making mutual friend classes cooperate. The sample listing begins by declaring that
symbol BClass is a class:

class BClass;

Page 360

This document is created with trial version of CHM2PDF Pilot 2.10.

This permits AClass to declare BClass as a friend. BClass in turn declares AClass as a friend. This gives each class access to the
other’s private and protected members. As mentioned, a typical application is to access static data members in two different
classes. Here, two integer variables, AClass::x and BClass::y, are declared static in their respective classes. Because they are static,
only one copy of each integer variable exists for all objects created of the two classes. Because they are private, the variables are
normally accessible only from within their declaring classes.

However, because of the close mutual relationship between AClass and BClass, the member functions in those classes can access
the other’s private static data. To do this requires telling the compiler exactly what object to use. For example, in AFunction, the
static variable BClass::y must be referenced using that fully qualified name. Similarly, BFunction() references AClass’s x variable using
the fully qualified name AClass::x.

Note: The sample program in this section proves that mutual friend classes are possible using GNU C ++, but if you find you need
this capability often, it might be an indicator of a poorly designed class hierarchy. Most classes are better off as complete strangers
to one another.

Functions and Friends

A friend function is similar to, but less onerous than, a friend class. Declaring a function as a friend of a class gives that function
access to private and protected members in class objects. The friend function might be a common C ++ function, or a class
member function. The following sections discuss both types.

Note: Friend functions are typically used to implement overloaded operators, the topic for the next chapter.\

Friend Functions

In a typical design, a friend function declares parameters of classes to which the function owes its friendship. Inside the friend
function, statements can access normally hidden members in class object arguments that are passed to the function. Listing 18.3,
friendfn.cpp, demonstrates how to declare and use a friend function for two classes.

Listing 18.3 friendfn.cpp

#include <iostream.h>
#include <string> // Need string class

class Two; // Incomplete class declaration

class One {

friend void Show (One &cl, Two &c2);
private:

string sl; // Accessible to One and Show ()
public:

One() { sl = “Testing “ }
}i

class Two {
friend void Show (One &cl, Two &c2);

private:

string s2; // Accessible to Two and Show ()
public:

Two () { s2 = “one, two, three” }

}i
int main ()
{
One objl;
Two obj2;

Show (objl, obj2):
(ob] 12) Page 361

This document is created with trial version of CHM2PDF Pilot 2.10.

return 0;

}

// Implement the friend function
void Show (One &objl, Two &obj2)

{
cout << objl.sl << obj2.s2 << endl;

Previous Table of Contents Next

Page 362

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

When you compile and run the program with the following commands, it calls a friend function that writes the values of two private
string data members in two separate classes:

$ g++ friendfn.cpp
$./a.out
Testing one, two, three

The friendfn.cpp program declares two classes, One and Two. An incomplete class declaration allows One’s members to refer to
Two before the Two class is declared. Both classes identically declare a friend function named Show() as

friend void Show (One &cl, Two &c2);

Because the friend function prototype appears inside the classes, statements in Show() are granted access to the private and
protected members in One and Two. Function Show() declares reference parameters objl and obj2 of the two class types. Because
Show() 1s a friend of those classes, statements inside Show() can access the private and protected members in its two parameters.
For example, Show() writes the values of the private string variables s1 and s2 using the statement

cout << objl.sl << obj2.s2 << endl;

Other functions that are not friends of One and Two cannot use similar expressions because s1 and s2 are private members of their
respective classes.

Friend Member Functions

A friend function can also be a class member. In a typical case, a class declares a member function of another class as a friend.
The friend member function can access the declaring class ’s private and protected members. Listing 18.4, friendmf.cpp (that ’s mf
for member function), shows the basic strategy for using friend member functions.

Listing 18.4 friendmf.cpp

#include <iostream.h>
#include <string> // Need string class

class One; // Incomplete class declaration

class Two {

private:

string s2; // Accessible to Two’s members
public:

Two () { s2 = “one, two, three” }

void Show (One &cl);
}i

class One {
friend void Two::Show (One &cl);
private:
string sl; // Accessible to One and Two::Show ()
public:
One() { sl = “Testing “ }
}i

void main ()

{

One objl;
Page 363

This document is created with trial version of CHM2PDF Pilot 2.10.

Two obj2;
obj2.Show (objl) ;
}

void Two::Show (One &objl)

{
cout << objl.sl << s2 << endl;

}

The program’s output is the same as friendfn.cpp, but it uses a different technique to provide access to private data. Compile and
run the program with the commands:

$ g++ friendmf.cpp
$./a.out
Testing one, two, three

The new program, friendmf.cpp, is similar to friendfn.cpp but uses a friend member function to access the private members of two
classes. As in the other program, the new code declares two classes—One and Two. In this case, however, class Two declares
Show() as a common public member function. Class One declares that same member function as a friend, using the class name Two
and C++ scope resolution operator to tell the compiler where to find this function:

friend void Two::Show (One é&cl);

Given that declaration, function Two::Show() 1s a friend of class One and can therefore access One’s private and protected
members. The order of the two classes is reversed from the earlier listing because the class that prototypes the member function
must be declared before the class that specifies the member function as a friend. For One to declare Two::Show() as a friend of the
class, the compiler must already have seen Two’s declaration.

Another difference is the way Show() refers to private data in the two classes. (Refer to the function implementation at the end of
Listing 18.4.) The function now declares only one reference parameter, &objl, of the One class. Because Show() is a member of
class Two, it can access all members of Two directly. However, the expression objl.s1 in the output statement is allowed because
Show() 1s a friend of class One, of which s1 is a private data member.

Summary

A class may declare another class or function as a friend. This gives the friend access to the declaring class ’s normally private and
protected members. Because friends break the very rules that help authors write robust C ++ programs, experienced programmers
use them only when absolutely necessary. However, friends are useful in some cases —for example, in creating overloaded
operators, the subject of the next chapter.

For more information on subjects introduced in this chapter, turn to the following chapters:

* Chapter 13, “Creating and Destroying Objects”
* Chapter 19, “Overloading Operators”

Previous Table of Contents Next

Page 364

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 19
Overloading Operators

One goal of object-oriented programming is to make it possible for programmers to create new data types that work exactly the
same as native types. C++ comes very close to achieving this Holy Grail through the use of overloaded operators , introduced in
this chapter.

What Is Operator Overloading?

In a nutshell, an overloaded operator is a function that provides for the evaluation of expressions involving class objects. For
example, the expression A + B, as you know, equals the sum of two objects that might be of types such as int or double. With
operator overloading, A and B can be objects of any C++ class. Most operators can be overloaded so that expressions such as
A++ and statements like C +=B; work for class objects as they do for values of native C and C ++ types.

Note: As you are about to discover, friends and operator overloading cooperate fully with one another -as should all good friends.
If you haven’t read Chapter 18, “Overloading Your Friends,” you might want to do so before continuing.

Introducing Overloaded Operators

Operator overloading can greatly contribute to a program’s organization and clarity. for example, with appropriately overloaded
operators, you can declare a class such as TAnyClass and define some objects of that class type:

TAnyClass cl, c2, c3;

You can then use these objects in statements such as

c3 = cl + c2;

In many cases, a statement like that is more understandable, and potentially easier to write, than the equivalent function call. Using
conventional code, for instance, a statement roughly equivalent to the preceding might be:

c3 = ObjectSum(cl, c2);

Another great use for operator overloading is in providing for the input and output of class objects. Instead of writing a function
that displays an object in a statement like this:

anObject.Display () ;

using operator overloading, you can add anObject’s class to the types of data that the << operator recognizes. By doing that, to
display anObject’s value, you simply write the following:

cout << anObject << endl;

Operator overloading doesn’t always improve the program’s clarity, but when it does, it is a highly useful tool. To understand how
to use operator overloading, it helps to first review what you know about operators in general. The common plus -sign operator
(1), of course, sums two values. The minus sign (-) subtracts two values. These and other symbols are called binary operators
because they require two arguments. Others, such as the not operator (!), are unary operators because they require only one
argument. Unary minus is an example of an operator with both binary and unary forms. The expression -count negates count’s
value the same as if you called a function Negate():

Page 365

This document is created with trial version of CHM2PDF Pilot 2.10.

Negate (count) ;

// Conceptually equivalent to -count

Operator overloading uses functions like that to add new data types to those C ++ normally recognizes in expressions. You have
already seen one example of operator overloading in the class copy function, operator=(). This overloads the assignment operator
(=) to provide for the copying of two objects in statements such as

objA = objB;

Assuming that the two objects are of the same class—Iet’s call it TAnyClass—the preceding statement calls the operator=() function
to perform the actual copying. So that the involved objects can access private data members easily, the overloaded operator
functions are typically declared as friends. The following sections explain how this works for overloaded binary and unary

operator member functions.

Overloaded Friend Operators

A simple example illustrates operator overloading for a hypothetical class named zz:

class 727 {

public:
friend ZZ operator+(Z2Z a, ZZ b);
friend ZZ operator-(ZZ a, ZZ b);
friend ZZ operator*(Z2Z a, ZZ b);
friend ZZ operator/ (ZZ a, 77 Db);
// ... other class declarations

Previous Table of Contents Next

Page 366

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Example of Overloaded Operators

A working example of overloaded operators helps illustrate the preceding concepts. Listing 19.1, strops.cpp, shows the
beginnings of a class that can store integer values in string form. By using overloaded operators, the program evaluates
mathematical expressions for string objects—not something that C++ ordinarily can do.

Listing 19.1 strops.cpp

#include <iostream.h>
#include <stdlib.h> // Need atol ()
#include <string> // Need string class

class TStrOp {

private:
string value;
public:
TStrOp () : value (“0”) { }
TStrOp (string arg): value(arg) { }
long GetValue() { return atol(value.c str()); }

friend long operator+ (TStrOp a, TStrOp b);
friend long operator-(TStrOp a, TStrOp b);
}i

int main ()

{
TStrOp a(“1234");
TStrOp b (“4321”7);

cout << “Walue of a == ” << a.GetValue () << endl;
cout << “Walue of == " << b.GetValue() << endl;
cout << “a + b + == " << (a + b + 6) << endl;
cout << Ya - b + 10 == " << (a - b + 10) << endl;

return O;

}

// Implement operator+() friend function
long operator+ (TStrOp a, TStrOp b)
{

return (atol(a.value.c str()) + atol(b.value.c str()));

}

// Implement operator-() friend function
long operator-(TStrOp a, TStrOp b)
{

return (atol(a.value.c str()) - atol(b.value.c str()));

Before examining the program’s class and overloaded functions, take a look at main(). There, you find two objects created of type
TStrOp:

TStrOp a(“1234");
TStrOp b (“43217);

Each object stores a string value. Even so, the program can add and subtract them using expressions such as the following,

extracted from the program’s output statements: Page 367

This document is created with trial version of CHM2PDF Pilot 2.10.

(a + b + 6);
(a - b + 10);

Now, compile and run the program to see the results of these expressions. Enter these commands:

$ g++ strops.cpp

$./a.out

Value of a == 1234
Value of b == 4321
a + b + == 55061
a - b+ 10 == -3077

Operator overloading makes it possible to add and subtract objects that store integer values in string form. To make this happen,
two friend functions in the TStrOp class overload the plus and minus operators. The two functions are declared as the public
members:

friend long operator+ (TStrOp a, TStrOp b);
friend long operator-(TStrOp a, TStrOp b);

So that TStrOp objects can participate in expressions involving other integer values, each operator returns type long. Each is a
binary operator, so it receives two argument values, both objects of the TStrOp class. Examine the overloaded operator
implementations following main(). Because the functions are friends, they do not require prefacing with their class names but are
implemented as other common C++ functions. Also, because they are friends, they can directly access the private data member
string in the TStrOp class. For example, to convert object a’s value to a long integer, the function uses the following expression:

atol (a.value.c _str());

That passes the C-style string of the string -class object value in object a to the standard atol() function, resulting in the string’s
equivalent integer value. Because the overloaded operator functions are friends of the class, they can access the private data
members a.value and b.value.

Note: The technique for overloading operators in this section is just one of several possible variations. Other methods are
introduced throughout this chapter.

Overloaded Class Member Operators

Overloaded functions also can be members of a class, as Listing 19.2, strops2.cpp, demonstrates. The program is similar to the
strops.cpp demonstration in the preceding section, but illustrates how to overload operators using class member functions instead
of friends.

Listing 19.2 strops2.cpp

#include <iostream.h>
#include <stdlib.h> // Need atol ()
#include <string> // Need string class

class TStrOp {

private:
string value;
public:
TStrOp () : value (“0”) { }
TStrOp (string arg): value(arg) { }
long GetValue() { return atol(value.c str()); }

long operator+ (TStrOp b);
long operator-(TStrOp b);

Page 368

This document is created with trial version of CHM2PDF Pilot 2.10.

int main ()

{
TStrOp a(“1234");
TStrOp b (“4321”");

cout << “Walue of a == ” << a.GetValue() << endl;
cout << “Walue of b == ” << b.GetValue() << endl;
cout << Ya + b+ 6 == " << (a + b + 6) << endl;
cout << Ya - b + 10 == ” << (a - b + 10) << endl;

return 0;

}

// Implement operator+ () member function
long TStrOp::operator+ (TStrOp b)
{

return (atol(value.c str()) + atol(b.value.c str()));

}

// Implement operator-() member function
long TStrOp::operator- (TStrOp b)
{

return (atol(value.c str()) - atol(b.value.c str()));

}

Because the overloaded operator functions in the revised program are members of the TStrOp class, they already have access to
the class’s private members (and any protected members, although there aren’t any in this case). For that reason, the operator
functions do not need to be friends of the class. In addition, the overloaded operator member functions receive a hidden this
pointer to the object for which the functions are called. The functions therefore need only single parameters, not two as before.
They are still binary operator functions because they still receive two parameters —but the this parameter is not explicitly
declared.Compile and run the program as you did the preceding one, using these commands:

$ g++ strops2.cpp

$./a.out

Value of a == 1234
Value of b == 4321
a + b + == 5561
a - b+ 10 == -3077

Using overloaded operator member functions, the program can add and subtract objects of the TStrOp class using values in string
form.

Types of Overloaded Operators

Now that you’ve met the basics of operator overloading, you are ready to explore examples that show how to write functions for
specific operators. Each of the following sections covers a category of operators that you might implement for a C ++ class.

Previous Table of Contents Next

Page 369

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Unary Operators

Unary operators such as unary plus and unary minus require only one argument. For example, the expression -A equals the
negative value of +A. You can overload these and other unary operators with techniques similar to those illustrated in the
preceding sections. As with binary operators, you may declare an overloaded unary operator function as a friend or as a member
of a class. An overloaded unary operator friend function declares only one parameter of the class type because it needs only one
value on which to operate. For example, copy file strops2.cpp to test.cpp, and add to the copy the following declaration in the
public section of class TStrOp:

friend long operator-(TStrOp a);

Even though the class already overloads the minus operator, because the new declaration specifies only one parameter, there is no
conflict. This is not a special rule—C-++ permits overloading of any member function as long as all such functions differ by at least
one parameter data type. Implement the new friend function by adding the following code after main():

long operator-(TStrOp a)
{

return -atol (a.value.c_str());

}

As a friend, the unary operator friend function has access to the private value data member in object a. To negate that string as an
integer, the function calls the standard library ’s atol() function and returns its negative result. To test out the new overloaded
operator, add this statement to main():

cout << “-a == " << -a << endl;

Compile and run the program. As its output shows, it is now possible to evaluate the negative value of a string with the simple
expression -a:

$ g++ test.cpp
$./a.out
Value of a == 1234

-a == -1234

As with overloaded binary operators, you can also declare overloaded unary operators as member functions. Start with a fresh
copy of strops2.cpp, and add the following declaration to the TStrOp class’s public section:

long operator-();

The declaration is similar to the friend but requires no parameters. This is because, as a class member function, it receives a this
pointer to the object for which it is called, and it already has access to the class ’s private data. Implement the function by inserting
the following after main():

long TStrOp: :operator- ()
{

return -atol (value.c str());

}

That’s simpler than the friend function because it can refer directly to value. Again, to return the negative integer value of the
object’s string data, the overloaded operator calls the standard library’s atol() function, passing the C-style string of the value
object and returning the negative result. The member function is used identically to the friend. To test it, add this statement to main
0:

Page 370

This document is created with trial version of CHM2PDF Pilot 2.10.

cout << “-a == " << -a << endl;
Type Conversion Operator

Using operator overloading, you can supply your own type conversion rules for class objects. The results are similar to the way
C++ automatically converts values of some types in expressions. For instance, if A is type double and B is an int, the result of the
expression A + B is a value of type double. To evaluate the expression, C++ converts the int B to a double and then adds it to A.

It is frequently advantageous to define similar conversion rules for C ++ classes. Conversion operators take the following general
form:

operator type();

where type is the data type to which you want to convert objects of the class. This might be any type such as long:

operator long();

The function should return a value of the specified type, using whatever means are necessary to perform the conversion. For
example, using the TStrOp class from the preceding section, instead of repeatedly passing the string data member value to atol(),
you might define an overloaded type conversion operator that automatically translates the object ’s string to a value of type long.
To do that, add this inline member function to the TStrOp class’s public section:

operator long() { return atol(value.c str()); }

With a type conversion rule in place, C++ conversions of TStrOp objects to long values are automatic. The program can create an
object of type TStrOp and assign it to a long integer variable:

TStrOp myValue (“9876");
long x = myValue; // !!!

When the compiler encounters the second statement, it calls the overloaded type conversion operator function for the TStrOp class
to convert myValue to a long integer. C++ already knows how to assign long integers, so when the conversion is finished, the rest of
the job is intrinsic.

Even better, the conversion operator greatly simplifies the implementation of other member functions. Function operator+(), for
example, is now much simpler:

long TStrOp::operator+ (TStrOp b)
{

return (long)*this + (long)b;
}

Previous Table of Contents Next

Page 371

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The type cast expression (long) converts the objects involved in addition expressions to long integer values via the type conversion
operator function. Because this is a member function, the expression (long)*this converts the object for which the operator+()
function was called. The expression (long)b does the same for the function ’s TStrOp parameter. The class’s GetValue() member
function along with other overloaded functions, operator-() and unary operator-(), are similarly simplified by the new type conversion
rule. Listing 19.3, strops3.cpp, shows the finished program, minus function main(), which is unchanged. Compile and run it as you
have the preceding two sample programs.

Listing 19.3 strops3.cpp (partial)

#include <iostream.h>
#include <stdlib.h> // Need atol ()
#include <string> // Need string class

class TStrOp {

private:
string value;
public:
TStrOp () : value (“0”) { }
TStrOp (string arg): value (arg) { }
long GetValue () { return (long) (*this); }
long operator+ (TStrOp b);
long operator-(TStrOp b);
long operator-():;
operator long() { return atol(value.c str()); }

}i

int main ()

{
}

// Implement operator+ () member function
long TStrOp::operator+ (TStrOp b)

{
return (long)*this + (long)b;

}

// Implement operator-() member function
long TStrOp: :operator-(TStrOp b)
{
return (long)*this - (long)b;
}

// Implement unary operator- () member function
long TStrOp: :operator- ()
{

return - (long) (*this);

}

Array Subscript Operator

You can overload the array subscript operator [] to provide array-like access to a class’s data members, even though that data
might be stored as individual members or in a linked list. The technique is particularly useful in creating container classes that
operate like common arrays and are therefore easily used even by relatively inexperienced programmers. A simple example,

Page 372

This document is created with trial version of CHM2PDF Pilot 2.10.

Listing 19.4, ssop.cpp, demonstrates how to overload [] for a class that stores four integer values as separate data members.

Listing 19.4 ssop.cpp

#include <iostream.h>
class TError { };

class PseudoArray {
private:
int valueO;
int valuel;
int value?2;
int value3;
public:
PseudoArray (int v0, int vl, int v2, int v3):
value0 (v0), wvaluel(vl), value2(v2), value3(v3) { }
int &operator|[] (unsigned i) throw (TError);

}i

int main ()

{
PseudoArray pa (10, 20, 30, 40);

try {
for (int 1 = 0; 1 <= 3; 1i++)
cout << “pal” << 1 << V] == " << pal[i] << endl;
pal2] = 123;
cout << “pal2] == " << pal[2] << endl;
// pall0] = 0; // 2272

}
catch (TError) {
cout << “WH¥** Error detected” << endl;

return 0;

}

// Implement overloaded operator[] member function

int &PseudoArray::operator[] (unsigned i) throw (TError)

{

switch (1) {

case 0: return valueO; // Note: breaks not needed
case 1l: return valuel;
case 2: return value?2;

case 3: return value3;

default: throw TError();

The key to implementing an operator[] function is providing safe read and write access to data using array -like expressions. We
want to be able to write statements such as these:

PseudoArray pa;
pal2] = 123;
cout << “pal2] == " << pal[2] << endl;

We also want the program to respond reasonably if users specify an out -of-bounds index. Probably the best way to achieve these
ends is to declare the operator[] function as returning a reference to a value instead of merely a copy of a value stored in the class.

The function also reports errors by throwing an exception. The sample program shows the basic techniques for creating a class
Page 373

This document is created with trial version of CHM2PDF Pilot 2.10.

with a reference operator[] function. Compile and run the program using these commands:

$ g++ ssop.cpp

$./a.out
pal0] == 10
pall] == 20
pal2] == 30
pal3] == 40
pal2] == 123

The Listing 19.4 demonstrates also how the overloaded operator[] function reports errors by throwing an exception. To see this
effect, remove the comment delimiters from the following statement in main():

pall0] = 0; // 2722

This attempts to assign zero using an out-of-bounds array index. Compile and run the modified program, which now displays an
error message:

*** Error detected

In the sample program, class PseudoArray declares four private integer values. To provide array -like access to this data, the class
overloads the [] operator using the member function prototype:

int &operator([] (unsigned i) throw (TError);

This states that function operator[]() returns a reference to an int object, using an unsigned int index, i. The function reports errors by
throwing an object of class TError. (That class is bare-bones simple to keep the listing reasonably short.) The overloaded operator
function’s implementation uses a switch statement to return one of the class ’s private integer variables, or the function throws an
exception if the requested index is out of range. Because the overloaded operator returns a reference to an int object, the program
can read and write values using array-like expressions. For example, main() assigns a value to pa[2] and displays that value using
these statements:

pal2] = 123;
cout << “pal[2] == " << pal[2] << endl;

Although it appears the program is using a simple array, pa is actually an object of the PseudoArray class. This makes pa as easy to

use as a common array but safer because access to the object’s data is carefully controlled. Interestingly, the program has, in
effect, added C ++ exception handling to the common C-language array data structure!

Previous Table of Contents Next

Page 374

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Function Call Operator

Overloading the function call operator—represented by a pair of parentheses (—effectively makes a class object appear to be a
callable function. The overloaded operator()() function may return a typed value, or void, and it may optionally declare parameters.
It must be a nonstatic class member. Here’s a sample class with an overloaded function call operator that returns an int value:

class TAnyClass {

private:
int x;

public:
TAnyClass (int arg): x(arqg) { }
int operator () ();

bi
This example of the overloaded operator()() function declares no parameters. Implement it separately using code such as this:

int TAnyClass::operator () ()
{

return x;

}
Or, you can more simply create an inline function directly in the class:

int operator () () { return x; }

Either way, a program can use an object of the class as though it were a callable function. Statements such as the following are
possible:

TAnyClass object (100);
int g = object(); // Call object as a function

The second statement appears to call a function named object(), but it actually calls the operator()() function of TAnyClass for object.
This technique might be useful to hide the fact that object() is not really a function, or more likely, to upgrade existing code that calls
a function in need of extensive repairs. By converting the original function to a class, and providing it with an overloaded function -
call operator()(), the existing programming can be compiled to take advantage of other features available only with object -oriented
C++ classes.

Class Member Access Operator

Overloading the unary struct- and class member access operator, ->, provides pointer-like access to members. There may be few
if any practical uses for this technique, but it might serve as a debugging device to trace member function calls. Listing 19.5,
access.cpp, demonstrates the basic method.

Listing 19.5 access.cpp

#include <iostream.h>

class TAnyClass {

private:
int x, y;

public:
TAnyClass (int xarg, int yarg): x(xarg), v(yarg) { }
TAnyClass * operator->();

int Getx () const { return x; }
Page 375

This document is created with trial version of CHM2PDF Pilot 2.10.

int Gety () const { return y; }
}i

int main ()

{
TAnyClass test (123, 456);
cout << test->Getx () << endl;
cout << test->Gety () << endl;
return 0;

}

TAnyClass * TAnyClass::operator->()
{
cout << “Accessing member:
return this;

”

To overload the -> operator, insert a prototype such as the following into a class ’s public section:

TAnyClass * operator->();

This states that the operator->() function returns a pointer to an object of its class. Technically, it should be possible to return a
reference or an object value, but GNU C++ seems to recognize only the pointer variety. (There’s no real benefit in using the other
forms, and no need for concern about this minor problem.)

Implement the overloaded operator as shown at the end of Listing 19.5. The function may perform any actions —here it displays a
string that indicates when the function is called. The final statement should always be as shown. Returning this returns a pointer to
the object for which the function is called.

To demonstrate how the overloaded operator works, the sample program constructs a test object of type TAnyClass and then
executes two output statements:

TAnyClass test (123, 456);
cout << test->Getx () << endl;
cout << test->Gety () << endl;

Even though test is constructed as a local variable, because of the overloaded operator->() function, statements may use test as
though it were a pointer to a TAnyClass object. When you compile and run the program using the following commands, its output
shows that the overloaded operator is called before Getx() and Gety() in the expressions test->Getx() and test->Gety():

$ g++ access.cpp

$./a.out

Accessing member: 123
Accessing member: 456

Increment and Decrement Operators

Overloading the ++ and -- operators is particularly intriguing. You might use this method to create operators for advancing a
container from record to record, or for other operations that are sequential in nature. Both prefix (++x and --x) and postfix (x++ and
x--) operators can be overloaded, as demonstrated in Listing 19.6, incdec.cpp.

Listing 19.6 incdec.cpp

#include <iostream.h>

class TAnyClass {

private:
Page 376

This document is created with trial version of CHM2PDF Pilot 2.10.

int x;

public:
TAnyClass (int xarg): x(xarg) { }
int operator++() { return ++x; } // Prefix ++
int operator++(int) { return x++ } // Postfix ++
int operator-- () { return --x; } // Prefix --
int operator--(int) { return x--; } // Postfix --

int Getx () const { return x; }
}s

int main ()
{
TAnyClass t(100);
/*
//
// Demonstrates bug in GNU C++ also found in Borland C++ 4.5
// Following should produce same output as code at end
// of main(), but due to evaluation order of the output
// stream statement, ++t in the first line for example is

// evaluated before t.Getx (). Should be the other way

// around.

//

cout << “t == 7" << t.Getx () << N 4+t == " << ++t << endl;
cout << “t == " << t.Getx () << N tH++ == " << t++ << endl;
cout << “t == " << t.Getx () << N --t == " << --t << endl;
cout << “t == 7" << t.Getx () << N t-- == " <K t-- << endl;
*/

cout << “t == " << t.Getx():;

cout << “; ++t == " << ++t << endl;

cout << “t == " << t.Getx():;

cout << %; t++ == 7 <K< t++ << endl;

cout << “t == " << t.Getx():;

cout << %, —--t == " << --t << endl;

cout << “t == " << t.Getx():;

cout << %; t-- == " << t-- << endl;

return 0;

Previous Table of Contents Next

Page 377

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The overloaded function operator++() defines a prefix increment operator for a class object —in this case, for TAnyClass. To define
a postfix increment operator, declare an int parameter in the function. Usually, you define both operators as follows:

int operator++ () { return ++x; } // Prefix ++
int operator++ (int) { return x++ } // Postfix ++

The int parameter needs no name, and its value is unimportant. This merely takes advantage of the C ++ overloading rule that states
any function may be overloaded (have the same name) as long as all such functions differ in at least one parameter type. This is
how it’s possible to define different ++ operators for the same class. Define decrement operators similarly:

int operator--() { return --x; } // Prefix --
int operator--(int) { return x--; } // Postfix --

What the operators do is up to you. Here, they simply operate on the class’s private x integer variable. In another situation, they
might advance or retard a pointer to objects linked together in a list, or move forward and back through a database. It ’s totally up
to you what the operators do. However, be sure to respect the general nature of prefix and postfix operations. A prefix

expression such as ++object should return object’s value and then perform the increment. A postfix expression such as object++
should return the incremented value of object, whatever that means.

To demonstrate the overloaded operators, the program writes the current value of a test object and then applies each operator in
turn. Compile and run the program with the following commands to see the results as printed here:

$ g++ incdec.cpp

$./a.out

t == 100; ++t == 101
t == 101; t++ == 101
t == 102; --t == 101
t == 101; t-- == 101

Each operator expression such as ++t applies to the value shown at its left. Study each line to verify that prefix and postfix
operations are evaluated correctly. For example, the value of t++ equals the value of t before its value is incremented.

In practice, writing operator++() and operator--() functions might not be as simple as the incdec.cpp program in Listing 19.6 implies.
Later in this chapter, Listing 19.9 shows a more realistic example of how to program these operators for objects other than simple
integer values. See “Increment and Decrement Operators Revisited” for more on this topic.

Note: Listing 19.6, incdec.cpp, demonstrates a subtle bug in GNU C++ that I discovered also in Borland C++ 4.5 (fixed in 5.0). The
output stream statements are written as shown in the listing to force the correct evaluation order of statements such as t.Getx() and
++t, If these are written in a single cascaded output statement:

cout << Wt == " << t.Getx() << N ++t == " << ++t << endl;

the statement ++t is incorrectly evaluated before t.Getx(), and the results are very different. This unintended side effect in output
statements is a serious matter. Until it is fixed, beware of this bug -it is easily missed. Both forms of output statements are in the
incdec.cpp file on the CD-ROM.

Overloaded Output Streams

The default output stream operator << recognizes all native C and C++ data types such as int, double, char, and char *. By
overloading the output stream operator, you can add your own class data types that output statements can write. Instead of
writing a Display() or similar output function, by overloading the << operator, your program can use code such as the following to

Page 378

This document is created with trial version of CHM2PDF Pilot 2.10.
Display()
write the values of any type of object:

TYourClass object;

cout << “object == " << object << endl;

Listing 19.7, pointout.cpp, demonstrates how to overload the << operator for a version of the TCoordinate class from Chapter 14,
“Investing in Inheritance.”

Listing 19.7 pointout.cpp

#include <iostream.h>

class TCoordinate {
private:
int tc x, tc y;
public:
TCoordinate(): tc x(0), tc_y(0) { }
TCoordinate (int x, int y): tc x(x), tc y(y) { }
void Setxy(int x, int vy);
int Getx () const;
int Gety () const;
friend ostream &
operator<< (ostream & os, const TCoordinate &t);
}i

int main ()

{
TCoordinate p (10, 20);
cout << p << endl;
return 0;

// Implement the overloaded << operator friend function

//
ostream &
operator<< (ostream & os, const TCoordinate &t)

{
0s << %"x == " K< t.tc x << Ny =" <KL t.tc y;
return os;

In the sample program, the operator<<() function is declared as a friend of its class so that it can access the private data members
tc x and tc_y. The function returns type ostream &—a reference to an ostream object. The function also declares two parameters: an
ostream reference object os and a const reference to an object of the class for which the operator is being overloaded (TCoordinate
in this example). The TCoordinate reference parameter must be const in GNU C++ (some other compilers do not require this),
which is just as well because writing an object in an output stream statement certainly should not change its value.

Because the overloaded operator function returns an ostream reference, objects of the class may be used in cascaded output
statements. For instance, if p1 and p2 are TCoordinate objects, this simple statement displays their values:

cout << pl << endl
<< p2 << endl;

You can provide the same output capabilities for any class. In the operator<<() function’s implementation, write whatever you want
to the os parameter, as the sample program does in the following statement:

0s << W"x == 7" < t.tc x <K Ny ==" <K< t.tc_ y;
Page 379

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 380

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

The target of the output statement is os, not cout, as you might assume. By writing to the ostream reference object os passed to the
overloaded function, TCoordinate objects can be written to any destination such as a disk file. More on that, however, in Chapter
20, “Customizing I/O Streams.”

Listing 19.7 demonstrates how the overloaded output operator works. The program constructs a TCoordinate object and writes it
to cout with these statements:

TCoordinate p (10, 20);
cout << p << endl;

Compile and run the program using the following commands to see the text that the second statement produces:

$ g++ pointout.cpp
$./a.out
x == 10; y == 20

Overloaded Input Streams

Overloading the input stream operator >> effectively teaches C ++ how to input objects of a class. Listing 19.8, pointin.cpp, is
similar to pointout.cpp, but adds both input and output operators for TCoordinate objects.

Listing 19.8 pointin.cpp

#include <iostream.h>

class TCoordinate {
private:
int tc x, tc_ y;
public:
TCoordinate(): tc_x(0), tc_y(0) { }
TCoordinate (int x, int y): tc x(x), tc y(y) { }
void Setxy(int x, int vy);
int Getx () const;
int Gety () const;
friend ostream &
operator<< (ostream & os, const TCoordinate &t);
friend istream &
operator>>(istream & is, TCoordinate &t);

}s

int main ()

{

TCoordinate p;

cout << “Before: ” << p << endl;
cout << “Enter x and y values (ex. 10 20): ”
cin >> p;
if (!'cin.good())
cout << “W*** TInput error” << endl;
else
cout << “After: 7 << p << endl;

return 0;

}

// Implement the overloaded << operator friend function
Page 381

This document is created with trial version of CHM2PDF Pilot 2.10.
//

ostream &
operator<< (ostream & os, const TCoordinate &t)

{
0s << %x == " << t.tc x << Ny =" <KL t.tc_ y;
return os;

}

// Implement the overloaded >> operator friend function

//
istream &
operator>>(istream & is, TCoordinate &t)

{
is >> t.tc x >> t.tc y;
return is;

The overloaded input stream operator >> function is declared similarly to the output function as a friend of the following class:

friend istream &
operator>>(istream & is, TCoordinate &t);

The operator>>() function returns a reference to an istream (input stream) object so that it can be used in cascaded input statements.
It declares two parameters: an istream reference named is and a reference to a TCoordinate object. In this case, the input object
cannot be constant because the input operator presumably changes its value in some way. In this case, the function’s
implementation simply reads from the input stream parameter is into the TCoordinate object’s tc x and tc_y private data members
using the following statement:

is >> t.tc_x >> t.tc y;
Following this, the function returns the same input stream reference (is). All operator>>() functions should end the same.

The main() program demonstrates how to use the TCoordinate class’s new input capability. The program first constructs a default
object and then prompts you to enter values into it:

TCoordinate p;
cin >> p;

To try this, enter the following commands to compile and run the program, and then type two integer values separated by a blank
as shown here:

$ g++ pointin.cpp

$./a.out

Before: x == 0; y == 0

Enter x and y values (ex. 10 20): 45 62
After: x == 45; y == 62

Note: Chapter 20, “Customizing I/O Streams,” explains more about overloading input and output stream operators, and shows how
to use them to read and write objects in disk files.

Increment and Decrement Operators Revisited
As mentioned, successfully overloading the operator++() and operator--() functions is not as simple as demonstrated earlier in this
chapter in the incdec.cpp program (refer to Listing 19.6). This is so primarily because, to distinguish between prefix and postfix

operations, often requires special care.

Page 382

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Page 383

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Other Operator Overloading Concerns
When overloading operators for your own classes, keep the following restrictions in mind:

e C++ does not “understand” the meaning of an overloaded operator. It’s your responsibility to define meaningful
operations for specific operators.

e C++ 1s unable to derive complex operators from simple ones. For example, in a class with overloaded operator functions
operator*() and operator=(), C++ cannot combine those functions to evaluate expressions in statements such as a *=b. To
handle the shorthand operator, the class must additionally overload the operator*=() function.

* You cannot change the syntax of an overloaded operator. Binary operators must remain binary. Unary operators must
remain unary. It is not possible to create a unary division operator because no such capability exists for C ++.

* You cannot invent new operators. You may overload only the operators listed in Table 19.1.

* You cannot overload preprocessing symbols such as #define.

Overloading and Memory Management

C programs use standard library functions such as malloc() and free() to allocate and deallocate memory. By contrast, C++
programs use operators new and delete. Below the hatch, many C++ compilers implement new and delete by calling malloc() and free
0. It is a mistake, however, to conclude that no significant differences exist between C and C ++ memory management.

One reason that’s so is because new and delete are operators, not functions. As operators, new and delete may be overloaded just
as others such as + and <<. By overloading new and delete, you provide custom memory management for objects of specific
classes. This gives you total control over how objects are allocated memory in a way that malloc() and free() cannot duplicate.

The following sections explain how to overload new and delete and take control over memory management duties. This does not
change the way the operators work for other data types. It changes the storage details only for objects of specific classes.

Overloading the new Operator

To overload the new operator, insert the following function prototype into any class:

void * operator new(size t size);

Regardless of the class type, the new operator is always declared the same. It must return a void pointer, and its lone parameter
equals the size in bytes of the requested memory space. The operator has no access to the class ’s data members. Its only purpose
is to allocate space for an object of the class, but other than possibly setting that space to zero bytes or another preset value, the
overloaded operator should do nothing more than allocate some memory.

How it does that is up to you. You could allocate disk space, use a container object, or simply stuff objects into a global buffer.
Listing 19.10 demonstrates how to overload new and store objects of a class type in a simple C++ array.

Listing 19.10 overnew.cpp

#include <iostream.h>
#include <stddef.h> // Need size t

#define BUFSIZE 512

class BrandNew {
private:
int value; // Represents object’s data
int mylocation; // Objects index in storag&ﬂgqﬁﬁer

This document is created with trial version of CHM2PDF Pilot 2.10.

public:
BrandNew (int arqg);
int GetValue () const { return value; }

int GetLocation() const { return mylocation; }
void * operator new(size t size);

}s

char buf[BUFSIZE]; // Our own memory storage array
int index; // Index into global buf[]

int main ()

{
cout << “Creating local instance” << endl;
BrandNew bl (10);

cout << ™ bl == " << bl.GetValue() << endl;
cout << “Allocating space via new” << endl;
BrandNew *b2 = new BrandNew (20) ;

BrandNew *b3 = new BrandNew (30) ;

BrandNew *b4 = new BrandNew (40) ;

BrandNew *b5 = new BrandNew (50) ;

cout << “W*b2 == 7" << b2->GetValue () << endl;
cout << “W*b3 == " << b3->GetValue () << endl;
cout << “W*b4d == " << bi4d->GetValue () << endl;
cout << “Wxb5 == " << bb5->GetValue () << endl;
int bd4index = b4->GetLocation();

cout << “Location of object b4 == buf[”

<< bdindex << ‘]’ << endl;

return 0;

// Class constructor
BrandNew: :BrandNew (int arg) :
value (arg)

cout << “Inside constructor” << endl;
mylocation = index; // Save global index in object

// Implement overloaded new operator function
void * BrandNew::operator new(size t size)

{

cout << “Inside overloaded new. Size == " << size << endl;
if (index >= BUFSIZE - sizeof (BrandNew))

return 0; // Or throw an exception here
else {

int k = index; // Save global index

index += sizeof (BrandNew); // Increment index

return &buf[k]; // Return reference to object

The sample program implements an extremely simple memory-management scheme by defining two variables—a buffer of size
BUFSIZE and an index into that buffer:

char buf[BUFSIZE];
int index;

Previous Table of Contents Next

Page 385

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

By overloading the new operator, class objects can be stored in the program’s buffer but accessed using pointers. To represent
objects, the program declares class BrandNew and overloads the new operator with the following declaration:

void * operator new(size t size);

Any uses of new to allocate storage for BrandNew objects are now directed to the overloaded operator. In the sample program,
the operator is implemented by these statements:

int k = index;
index += sizeof (BrandNew) ;
return &buf[k];

The first statement saves the global buffer index in a temporary variable. Next, index is incremented by the size of @ BrandNew
object—this is where the next object will be stored. Finally, the overloaded operator function returns the address of the buffer
where memory has been set aside for one BrandNew object. At this point, C++ calls that object’s class constructor to initialize the
memory space.

The main program demonstrates how the overloaded new operator works. This statement, for example, constructs a BrandNew
object:

BrandNew *b4 = new BrandNew (40) ;

Because BrandNew overloads the new operator, the resulting object is placed in the program’s own buffer. Even so, it is used as
though it had been allocated dynamic memory by the C++ memory manager. This statement, for example, displays the object’s
value:

cout << “*b4d == 7" << b4d->GetValue () << endl;

To demonstrate a related and possibly useful technique, the BrandNew class saves its own location in a private variable named
mylocation. With this method, not only do BrandNew pointers locate class objects, but the objects themselves “know” their
locations. Compiling and running the program shows this by displaying the index in the global buffer where object *b4 is stored:

$ g++ overnew.cpp

$./a.out
*b2 == 20
*b3 == 30
*bd == 40
*b5 == 50
Location of object b4 == buf[24]

Overloading the delete Operator

In most cases, when a class overloads the new operator, it should also overload delete. The example in the preceding section
doesn’t bother to do this because all objects are stored in a simple buffer, and therefore no harm comes from simply ending the
program. However, it’s easy to add the delete operator to that program’s class. Although not listed here, the CD-ROM contains
the finished program in file overnew2.cpp.

The revised BrandNew class overloads operator delete using the function prototype

void operator delete(void *p);

The operator returns no value, and it receives a single parameter—a void pointer equal to the address of the object being deleted.
Page 386

This document is created with trial version of CHM2PDF Pilot 2.10.
void

Alternatively, you can add a size parameter to the following declaration:

void operator delete(void *, size t size);

In this case, size equals the size in bytes of the object that is being deleted. This is rarely necessary, however, because the
expression sizeof(T) where T 1s the class name gives the same value. Either way, the program can now delete the objects it created
using the overloaded new operator:

delete b2;
delete b3;
delete b4;
delete b5;

Compiling and running the revised program with the following commands shows the results of those four deletions:

$ g++ overnew2.cpp
$./a.out

Deleting object at 0x804al60
Deleting object at 0x804al68
Deleting object at 0x804al70
Deleting object at 0x804al78

The reported addresses are inside the program’s global buffer. The overnew?2.cpp program implements the overloaded delete
operator as follows:

void BrandNew: :operator delete(void *p)

{
cout << “Deleting object at ” << p << endl;

}

All this does is display a message and the object’s address as a confirmation that the overloaded operator is indeed called. In a
real setting, the program would have to perform some operation to reserve the deleted memory. For example, you might call a
container class’s deletion function, link the object’s memory into a list of disposed memory blocks, or do whatever else is
necessary to free the space allocated by the class’s overloaded new operator. In addition, your overloaded new and delete
operators can throw exceptions to indicate any problems. See Chapter 16, “Handling Exceptions.”

Tip: Saving the object’s location inside the object itself, as demonstrated in overnew.cpp and overnew?2.cpp, can in some cases
help the overloaded delete operator dispose of an object’s memory.

Summary

With overloaded operators, expressions such as (A + B) can be made to work for objects of classes as well as native C and C ++
data types. Most operators can be overloaded. For example, to overload the plus operator for a class, simply provide an
overloaded operator function named operator+(). Overloaded operators can make programs clearer by allowing programmers to
use common expressions that involve class objects. However, it’s up to you to provide operations that make sense.

For more information on subjects introduced in this chapter, turn to the following chapters:

e Chapter 13, “Creating and Destroying Objects”
* Chapter 16, “Handling Exceptions”

 Chapter 18, “Overloading Your Friends”
Chapter 20, “Customizing I/O Streams”

Previous Table of Contents Next
Page 387

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

CHAPTER 20
Customizing I/O Streams

In the preceding chapter, you learned how to overload the I/O (input and output) stream operators << and >> for C++ classes. As
you discover in this chapter, there’s much more to that story. Using operator overloading, you can tap into the C++ I/O stream
library for reading and writing objects of all kinds, not only with the keyboard and console, but also in text and binary files on disk.

This chapter explains how to create, read, and write files containing any type of data. The chapter also includes my classes,
bifstream, bofstream, and bfstream, that you can use to read and write data in native binary form in disk files. I also explain related
topics such as opening and closing files, detecting a file ’s presence, creating temporary files, and searching files for specific
records.

File Streams

C++ file streams provide an object-oriented way to read and write information in disk and other types of files. The trouble is, the
file-stream library is designed to work only with text files. But don ’t let this limitation turn you off from using streams for file
handling. Later in this chapter, I explain how to build new classes for reading and writing data of all types in binary form. First,
however, let’s take a look at the I/O services that C++ file streams provide.

File Stream Class

To use file streams, include the fstream.h header file, usually along with iostream.h if your program also does any console I/O.
Insert these directives into the program:

#include <iostream.h>
#include <fstream.h>

The following overviews explain some essential facts about C ++ file streams:

* All file stream classes except filebuf are ultimately derived from class ios (I/O stream). Because of their heritage, file
streams can use iostream member functions, manipulators, state flags, and other stream -handling techniques.

* Use the ifstream class (input file stream) for reading data from files. The ifstream class is derived from istream. It is literally
an input-stream class expanded to work with files.

* Use the ofstream class (output file stream) for writing to files. The ofstream class is derived from ostream. Similar to ifstream,
ofstream 18 literally an output-stream class expanded to work with files.

 Use the fstream class for reading and writing data in the same file.

* The filebuf class provides buffered I/O services to the ifstream, ofstream, and fstream classes. You’ll rarely, if ever, need to
use the filebuf class. To keep programs portable, it’s best to use the file I/O services provided by higher -level classes
ifstream, ofstream, and fstream .

Text File Streams

Text file streams are simple and easy to use. They also make a great introduction to file stream techniques. There are four main
areas to cover:

* Creating new text files

* Opening existing text files
* Reading from text files

* Writing to text files

Page 388

This document is created with trial version of CHM2PDF Pilot 2.10.

The following sections explain these techniques both for single -character operations and for strings. In most cases, you should use
the ifstream and ofstream classes to carry out text-file I/O. Because text files are usually formatted in variable -length lines, it’s best
not to attempt simultaneous reading and writing in the same file using the fstream class.

Creating Text Files

To create a new text file, define an object of the ofstream class. Pass two arguments to the class constructor—a filename and an
open mode value:

ofstream ofs (“newfile.txt”, ios::out);

Merely constructing the object, named ofs here, creates the named file with a length of zero. If the file already exists, it is
overwritten. This method differs greatly from conventional file handling in C where you need to define a file handle and then call a
function to create the file. With file streams, you simply create a file object and use it.

The actual format, number of characters, and other characteristics of the filename string might differ among various operating
systems. To keep your programs portable, you might want to use a variable instead of a literal string as shown in many of this
chapter’s examples. The second argument, ios::out, selects an access mode for the file. The ios class declares the out mode along
with other out mode enumerated constants as listed in Table 20.1.

Previous Table of Contents Next

Page 389

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Opening Text Files

Opening a file for input is similar to creating or overwriting a new file. Use the ifstream class as in the following sample code to
open a file named oldfile.txt:

ifstream ifs (Yoldfile.txt”, ios:in);

if (!'ifs) |
cerr << “Error: unable to open file” << endl;
exit (1) ;

Object ifs 1s constructed from the ifstream class and initialized with a filename and an open mode constant. The if statement uses the
ios class’s overloaded operator!() function on the object to test whether the operation was a success. If so, the object —and
attached file—are ready for reading; otherwise, the program halts with an error message.

Note: Instead of halting programs on detecting a file error, it is far better to throw an exception. See Chapter 16, “Handling
Exceptions,” for help with this topic.

The preceding sections cover all the basics of creating and opening files. If you are familiar with conventional methods that call
functions to perform these operations, you might think some critical factors are missing. Remember, however, that file streams
are object-oriented. To open a file, simply create an input file stream object, and then as explained in the next sections, use I/O
stream statements to read data. To write to or create a new file, construct an output file stream object and use stream statements
to write data. When the file stream object is deleted or goes out of scope, the file is automatically closed. Trust the C ++ classes to
do their jobs so that you gain time for more important concerns.

Now, let’s examine some sample programs that read and write text files using the techniques described so far. There are four
important methods to master:

* Reading text a character at a time
» Writing text a character at a time
* Reading text a line at a time

» Writing text a line at a time

Reading Text a Character at a Time

Listing 20.1, rchar.cpp, demonstrates how to use a file stream object to read a text file one character at a time. Just to keep things
interesting, the program also counts the number of characters and lines in the file. Such requirements always come with built -in
ambiguities—for example, should the definition of a “character” include the newline symbol at the end of a line? I decided not to
count end-of-line characters; therefore, the total character count that rchar.cpp reports probably doesn ’t match the file’s directory
size.

Listing 20.1 rchar.cpp

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

int main (int argc, char *argvl([])
{
if (argc <= 1) {

cerr << “Error: filename missing” << endl;
Page 390

This document is created with trial version of CHM2PDF Pilot 2.10.

exit (1),
}
ifstream ifs(argv[l], ios::in);
if ('ifs) |
cerr << “Error: unable to open “ << argv[l] << endl;
exit (2);
}
char c;
long nc = 0, nl = 0;
while (ifs.get(c)) {
if (¢ == “\n’)
nl++; // Count number of lines
else
nc++; // Count number of characters

cout.put (c) ;

}
cout << endl << endl << “Total characters : ” << nc;

cout << endl << “Number of lines : ” << nl << endl;
return 0;

Compile and run rchar.cpp using the following two commands. The program can read and display any text file, but here, the
second command tells it to read and display its own source code:

$ g++ -o rchar rchar.cpp
$./rchar rchar.cpp

Note: Because some of the programs in this chapter are dependent on one another, all compilation commands use the -o option to
give the compiled code file a name other than the usual a.out.

The main() function in rchar.cpp begins by checking whether you supplied a filename on the command line. If not (argc is less than
or equal to 1), the program displays an error message and exits. The following statement attempts to open the specified file:

ifstream ifs(argv[1l], dios::in);

If this succeeds, the ifs object is available for use as a source in an input stream statement. A simple while loop, for example, reads
all characters from the file and displays them using an output -stream statement:

while (ifs.get(c))
cout.put (c) ;

Previous Table of Contents Next

Page 391

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Writing Text a Character at a Time
Creating and writing a text file is equally simple, as Listing 20.2, wchar.cpp, demonstrates.

Listing 20.2 wchar.cpp

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

int main (int argc, char *argvl([])
{
if (argc <= 1) {
cerr << “Error: filename missing” << endl;
exit (1) ;
}

ifstream ifs(argv[1l], dios::in);

if (ifs) {
cerr << “Error: “ << argv[l] << ™ already exists” << endl;
cerr << % Specify a different filename” << endl;
exit (2);

}

ofstream ofs(argv[1l], ios::out);

if (lofs) {
cerr << “Error: unable to write to “ << argv[l] << endl;
exit (3);

}

ofs << “1: A string” << endl;
\

ofs.put ('2");
ofs.put (‘:");
ofs.put (" V);

ofs.put ('C’") .put(‘h’).put('a’) .put (‘r’) .put(‘'s’);
ofs << endl;
return 0;

Compile and run the program by issuing the following commands. The program will not overwrite an existing file:

$ g++ -o wchar wchar.cpp
$./wchar test.txt

Assuming test.txt did not previously exist, wchar.cpp writes text to the file. Examine the file ’s contents with the following
command:

$ cat test.txt

1: A string
2: Chars

If you again try to run the program, it detects the presence of test.txt and exits with an error message:

$./wchar test.txt
Error: test.txt already exists
Specify a different filename

Page 392

This document is created with trial version of CHM2PDF Pilot 2.10.

If the specified file does not exist, The program creates a new file using an object of the ofstream class:

ofstream ofs(argv([l], ios::out);
if (lofs) {

}

If the expression (lofs) is true, then an error occurred and the program exits. Otherwise, the program continues on to use output
statements to write text to the file. This statement writes a string and newline character to the file:

ofs << “1: A string” << endl;

And this writes a single character:

ofs.put ('2");

Or, you could use the following statement to do the same:

ofs << ‘2'; // Same as preceding

By the way, because the put() member function returns ostream & (a reference to an object of the ostream class, an ancestor of ios),
you can string together multiple put() function calls in an odd -looking construction such as this:

ofs.put (‘A’) .put ('B’) .put ('C’);

I dislike cryptic and tricky statements such as that, but I mention it here because I’ve seen this technique in C++ programs. The
following is clearer, produces the same results, and is not so unusual -looking:

cout << ‘A’ << B’ << ‘C’;
Reading Text a Line at a Time

Many if not most text files are organized into variable -length lines, punctuated by newline control characters. Use the technique in
this section to read text files a line at a time. As a bonus, this is usually faster than reading files one character at a time, although a
disadvantage is the need to assume a maximum line length from the start. Listing 20.3, rline.cpp, is similar to rchar.cpp, but it reads
a specified text file a line at a time and reports the number of characters and lines in the file:

Listing 20.3 rline.cpp

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>

#define BUFLEN 128

int main (int argc, char *argvl([])
{
if (argc <= 1) {
cerr << “Error: filename missing” << endl;
exit (1),
}
ifstream ifs(argv[1l], dios::in);
if ('ifs) |
cerr << “Error: unable to open ” << argv[l] << endl;
exit (2);
}
char buffer [BUFLEN];
long nc = 0, nl = 0;
Page 393

This document is created with trial version of CHM2PDF Pilot 2.10.

while (!ifs.eof()) {
ifs.getline (buffer, sizeof (buffer), ‘\n’);
if (! (ifs.eof () && strlen (buffer) == 0)) {
nc += strlen (buffer);
nl++;

cout << buffer << endl;
}
}
cout << endl << endl << “Total characters : ” << nc;
cout << endl << “Number of lines : ” << nl << endl;
return 0;

Compile and run the program using the following commands. You can specify the name of any text file to read and display —here,
the second command displays the program’s own source code file:

$ g++ -o rline rline.cpp
$./rline rline.cpp

The program opens a file using the same technique as for reading text a character at a time. To read lines of text, the program calls
the getline() member function using the following statement:

ifs.getline (buffer, sizeof (buffer, *\n’);

The buffer is an array of char. Calling getline() and specifying the destination, buffer size, and line -ending character ensures that the
entire line is read. The following statement reads only the next word (text separated by whitespace):

ifs >> buffer; // 2?2?

Instead of that, it’s a good idea to preset the buffer size with the setw() manipulator. For example, to read a file a word at a time,
include the iomanip.h header file and use a statement such as in the following fragment:

#include <iomanip.h>

ifs >> setw (BUFLEN) >> buffer;

This also ensures that the statement does not overwrite the end of the buffer, although GNU C ++ apparently won’t do that,
anyway.

The sample rline.cpp program also demonstrates one way to detect the end of a file by calling the eof() member function in
reference to a file stream object. This function makes it easy to write a simple while loop that ends after processing every last
smidgen of data in the file:

while (!ifs.eof()) {
ifs.getline (buffer, sizeof (buffer), ‘\n’);
// Process line in buffer

Previous Table of Contents Next

Page 394

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

Writing Text a Line at a Time

The last of the four fundamental text -file techniques in this section explains how to write a text file a line at a time. Listing 20.4,
wline.cpp, demonstrates the method.

Listing 20.4 wline.cpp

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>
#include <string>

#define STR “2: Another literal string”

int main(int argc, char *argv[])
{
if (argc <= 1) {
cerr << “Error: filename missing” << endl;
exit (1) ;
}

ifstream ifs(argv[1l], ios::in);

if (ifs) {
cerr << “Error: ” << argv[l] << ™ already exists” << endl;
cerr << W Specify a different filename” << endl;
exit (2);

}
ofstream ofs(argv([l], ios::out);
if (lofs) {
cerr << “Error: unable to write to ” << argv[l] << endl;
exit (3);
}
ofs << “1: A literal string” << endl;
ofs.write (STR, strlen(STR));
ofs << endl;
char *c = “String addressed by pointer”;
ofs << “3: ” << ¢ << endl;
string string object (“4: A string object”);
ofs << string object << endl;
return 0;

Compile and run the program with these commands:

$ gt++ -o wline wline.cpp
$./wline newfile.txt

Check the contents of the new file by typing the following:

cat newfile.txt

A literal string

Another literal string
String addressed by pointer
A string object

Sw NP

Page 395

This document is created with trial version of CHM2PDF Pilot 2.10.

As in wchar.cpp, if the specified file exists, the program displays an error message and exits. Test this by entering the same
filename again:

$./wline newfile.txt
Error: newfile.txt already exists
Specify a different filename

The code for detecting an existing file and opening a file for output is the same as in wchar.cpp. The program differs in how it
writes lines of text to the output. Basically, there are two choices. You can write a string using an output stream statement such as
this:

ofs << “Write me to disk!” << endl;

Or, you can call the write() member function with two arguments: a pointer to a string and the number of characters to write. For
example, this writes a string addressed by char pointer s and uses the strlen() function declared in the standard string.h header file:

#include <string.h>

ofs.write(s, strlen(s));
That does not write a newline character, however, and is for that reason typically useful only for writing a portion of a string.

The last two statements in the wline.cpp program demonstrate how to construct and write a C++ string object to an output file:

string string object (“4: A string object”);
ofs << string object << endl;

Note: Chapter 22, “Mastering the Standard string Class,” explains more about using string objects.

Binary File Streams

Don’t look for binary file operations in the GNU C ++ file stream library. There aren ’t any. Although you can open a file for binary
access—a capability provided by most disk operating systems, including Linux—reading and writing binary data such as floating
point values in their native form is a summit left for programmers to conquer.

The required steps are rarely covered in books on C++ programming, and to accomplish the task, I developed three new classes
described in this section. The classes provide binary file I/O for all native C ++ data types—and you can easily add new types such
as your own classes. Sample programs in the following sections explain how to use the classes. We need four basic capabilities:

» Write one or more bytes of any object to a file.

* Read one or more bytes of any value from a file to an object.
* Translate an object of any size into bytes.

* Translate a collection of bytes into any object.

Introducing Binary File Streams

Construct a binary file stream object in almost the same way as you construct other file objects —a text file, for example.
However, specify the ios::binary open_mode constant. For example, to create a new binary file, construct an ofstream object using
code such as

ofstream ofs(“newfile.dat”, ios::out | ios::binary);

if (lofs) {
cerr << “Error: unable to create or write file” << endl;
exit (1),

Page 396

This document is created with trial version of CHM2PDF Pilot 2.10.

Note: Older C++ compilers might recognize ios::bin in place of the newer ANSI C++ and GNU C++ constant ios::binary.

To open an existing binary file for reading, construct an ifstream object using similar programming:

ifstream(“Yoldfile.dat”, ios::in | ios::binary);
if ('ifs) {
cerr << “Error: unable to open file” << endl;
exit (1) ;

Unfortunately, although the preceding code opens files for binary input and output, the ofs and ifs objects have no provisions for
reading and writing binary data. To examine this problem, and to understand the solution described in this section, it’s helpful first
to look at the wrong way to proceed.

The Wrong Solution

Note: The programming in this section is on the CD-ROM in file src/c20/wrong.cpp. Because the program demonstrates incorrect
techniques, it isn’t listed here. However, you can run it with the commands g++ wrong.cpp followed by ./a.out .

Constructing input and output file streams as in the preceding section might seem to work —until, that is, you attempt to use the file
objects to read and write binary values in files. Consider what happens, for example, if you create a new file like this:

ofstream ofs(“test.dat”, ios::out | ios::binary);

Thinking that this creates a new file, test.dat, ready for writing data in binary format, you then attempt to output some double
floating point values using statements such as

if (ofs) {
double d = 3.14159;
ofs << d; /] 2?7
ofs << d * d; /] 2?7

}

ofs.close();

Previous Table of Contents Next

Page 397

This document is created with trial version of CHM2PDF Pilot 2.10.

Previous Table of Contents Next

After closing the input file, you then attempt to read the file ’s contents by constructing an input stream object and using statements

such as
ifstream ifs(“test.dat”, ios::in | ios::binary);
if (ifs) {

double d;

ifs >> d; /] 2?27?

cout << “"d == “ << d << endl;

ifs >> d; /] 2?27?

cout << “"d * d == “ << d << endl;

The program seems to run smoothly, but the reported results are obviously wrong. Here’s what the program displays:

$./a.out
d == 3.1416
d * d==0.86959

What’s wrong? The first value seems okay, but pi squared is hardly equal to 0.86959. Examining the file ’s data using the Linux
hexdump utility provides a clue to solving this mysterious bug. If you compiled and ran the wrong.cpp program, enter the following
command to examine the contents of test.dat:

$ hexdump -bc test.dat
0000000 063 056 061 064 061 065 071 071 056 070 066 071 065 071
0000000 3 . 1 4 1 5 9 9 . 8 6 9 5 9

The file’s contents reveals that the data has been stored as text despite the fact that the file was opened for binary I/O. This is
because C++ I/O streams are designed to convert binary values to text, and they do not alter that action in any way based on how
a file is opened. When the program reads the file, the standard input statements perform the reverse task: in this case, reading the
first value as 3.141599 and the second as 0.86959. Because the two values were written one after the other, there is no indication
in the file that the second value should actually be 9.86959, and the input stream incorrectly “assumes” that the decimal point
separates the two values.

This is an interesting problem, but fortunately, as the next section explains, it is not too difficult to solve.
The Right Solution

To read and write binary data requires deriving new classes from ifstream and ofstream. Because a char in C++ is the same as a
byte, an array of char values can be used as a buffer for holding a series of bytes representing any value in binary form. To write a
value in binary, the program copies the value’s bytes to the output buffer and then writes that buffer as a series of bytes to disk.
Similarly, to read a binary value, the program reads bytes into a char array and then copies those bytes to a variable of an

appropriate type.

Actually, the buffer array isn 't needed if we simply pretend that a binary value is a collec-tion of bytes—which, of course,
describes the nature of all data objects. Listing 20.5, wdouble.cpp, demonstrates the basic method of writing some double values
in binary to a disk file.

Note: When using the binary-file methods in this and the next sections, be aware that other C++ compilers may use different
formats for representing binary data. You should not expect to be able to write a file of binary double values and read them correctly
on another operating system.

Listing 20.5 wdouble.cpp
Page 398

This document is created with trial version of CHM2PDF Pilot 2.10.

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

#define FILENAME “test.dat”

class bofstream: public ofstream {
public:
bofstream(const char *fn)
ofstream(fn, ios::out | ios::binary) { }
void writeBytes (const void *, int);
bofstream & operator<< (double);
}i

bofstream & bofstream::operator<< (double d)
{

writeBytes (&d, sizeof (d));

return *this;

int main ()
{
bofstream bofs (FILENAME) ;
if (!bofs) {
cerr << “Error: unable to write to “ << FILENAME << endl;
exit (1) ;
}
cout << “Writing to “ << FILENAME << endl;
double d = 3.14159;
bofs << d;
bofs << d * d;
bofs << 9.9999999;
d = 4.7E-8;
bofs << d;
return 0;

void bofstream::writeBytes (const void *p, int len)

{
if (!'p) return;
if (len <= 0) return;
write ((char *)p, len);

Compile and run the wdouble.cpp program using the following commands. Except for a confirmation message, the program
displays no other output:

$ g++ -o wdouble wdouble.cpp
$./wdouble
Writing to test.dat

To provide for writing double values in binary, the program derives a new class, bofstream (binary-output-file-stream), from
ofstream. The new class provides three member functions. First is a constructor declared and implemented inline as

bofstream(const char *fn):
ofstream(fn, ios::out | ios::binary) { }

The constructor merely calls the ancestor ofstream class constructor with a filename and with the two open_mode constants shown.
To use the constructor, a program simply constructs an object of the bofstream class:

Page 399

This document is created with tria