
www.it-ebooks.info

http://www.it-ebooks.info/

Processing 2:
Creative Programming
Cookbook

Over 90 highly-effective recipes to unleash your
creativity with interactive art, graphics, computer vision,
3D, and more

Jan Vantomme

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Processing 2: Creative Programming
Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2012

Production Reference: 1100912

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-849517-94-2

www.packtpub.com

Cover Image by Jan Vantomme (http://www.cloudswimmers.com/)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Jan Vantomme

Reviewers
Dr. Bryan, Wai-ching CHUNG

Frederik Vanhoutte

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Kedar Bhat

Technical Editors
Madhuri Das

Kirti Pujari

Copy Editor
Brandt D'Mello

Project Coordinator
Yashodhan Dere

Proofreader
Mario Cecere

Indexer
Hemangini Bari

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Jan Vantomme is a computational designer and artist based in Ghent, Belgium. He
runs Cloudswimmers, a small studio with a focus on computational and interaction design.
Jan has been using Processing since the early beta versions. He taught the subject at a
university college both as faculty staff and as a guest professor. He wrote some Processing
libraries to work with colors and shapes in an easy way. Jan also co-founded Processing
Ghent, a community for creative coders in Belgium. They organize free lectures and
workshops on Processing.

Over the past few years, I've grown a lot as an artist and as a programmer.
Without Processing and its amazing community, this book wouldn't have
been possible. I'd like to thank the people I've learned from and those who
inspired and supported me. Here they are, in no particular order:

Golan Levin, Jan Pillaert, Elise Elsacker, Holger Lippmann, Marcin Ignac,
Johan Van Looveren, Ira Greenberg, Andreas Schlegel, Andres Colubri, Stef
Bourdon, Ryan Alexander, Matt Pearson, Bert Balcaen, Daniel Shiffman,
Andreas Schlegel, Joshua Noble, Casey Reas, Julien Deswaef, Matthew
Plummer-Fernandez, Filip Daniels, Jer Thorp, Jessica Rosenkrantz, David
Bollinger, Marie-Laure Delaby, Leander Herzog, Corneel Cannaerts, Kim
Asendorf, Frederik Vanhoutte, Simon Geilfus, Jared Tarbell, Inge Gobert,
Spencer Pieters, Ben Fry, Jonathan McCabe, Andreas Köberle, Marius Watz,
Kasper Jordaens, Robert Hodgin, Karsten Schmidt, and John Maeda.

I would also like to thank iMAL and Timelab for organizing workshops on
Processing and Arduino, and DOK for letting us use their space for the
Processing Ghent meetings.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Dr. Bryan, Wai-ching CHUNG is the Assistant Professor of Interactive Art in the Academy
of Visual Arts, Hong Kong Baptist University. He is also the founding consultant of the interactive
media design company DBIS Interactive (http://www.dbisinteractive.com) in Hong
Kong. Dr. Chung obtained his doctoral degree in Fine Arts, master's degree in Multimedia
Design, and bachelor's degree in Computer Science. Apart from academic and consultation
works, he has produced interactive artworks that have been widely exhibited in Asia and Europe.
Currently, he is developing open source software libraries for the Processing community. His
works are documented on his personal blog at http://www.magicandlove.com.

Frederik Vanhoutte is a medical radiation physicist with a PhD in experimental solid state
physics. When rain hits the windscreen, he sees tracks of alpha particles trace in cells. When
he pulls the plug in the bath tub, he stays to watch the little whirlpool. When he sits at the
kitchen table, he plays with the glasses to see the caustics. At a candlelight dinner, he stares
into the flame. Sometimes at night, he finds himself in front of the computer. When he finally
blinks, a mess of code is drawing random structures on the screen. He spends the rest of the
night staring.

Working with Processing since 2004, creative coding fuels his curiosity of physical, biological,
and computational systems. He shares his constructs on his website wblut.com. Recently,
his hemesh Processing library has been gaining a small following for the creation and
manipulation of 3D meshes.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Getting Started with Processing 2	 7

Introduction	 7
Installing Processing on your computer	 8
Exploring the Processing Development Environment	 9
Installing libraries	 10
Installing tools	 12
Switching modes	 14
Understanding the coordinate system	 15
Writing your first Processing sketch	 16
Using math functions	 19
Responding to mouse events	 22
Responding to keyboard events	 25

Chapter 2: Drawing Text, Curves, and Shapes in 2D	 31
Introduction	 31
Drawing basic shapes	 31
Working with colors	 34
Working with images	 39
Drawing text	 41
Drawing curves	 46
Calculating points on a curve	 49
Drawing custom shapes	 52
Manipulating SVG files	 55
Offscreen drawing	 59

Chapter 3: Drawing in 3D–Lights, Camera, and Action!	 63
Introduction	 63
Understanding 3D space	 63
Drawing 3D primitives	 66

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Using lights	 69
Making polygon soup	 73
Mixing 2D and 3D objects	 76
Drawing triangle and quad strips	 78
Using textures	 80
Using the 3D camera	 83

Chapter 4: Working with Data	 87
Introduction	 87
Loading text files from the hard drive	 87
Parsing CSV	 90
Parsing XML	 92
Converting datatypes	 93
Working with Strings	 96
Working with arrays	 99
Working with ArrayLists	 102
Working with HashMaps	 106

Chapter 5: Exporting from Processing	 109
Introduction	 109
Saving images	 109
Exporting applications	 111
Saving PDF files	 112
Calculating PDF sizes	 114
Saving text files	 115
Exporting 3D files	 116
Saving binary files	 119

Chapter 6: Working with Video	 121
Introduction	 121
Playing a video	 121
Exporting image sequences	 124
Manipulating pixels in a video	 126
Using filters	 128
Controlling the speed of a video	 130
Jumping to a specific frame	 132
Blending video	 134

Chapter 7: Audio Visualization	 137
Introduction	 137
Importing the Minim library	 138
Playing audio files	 138
Using live audio	 142

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Drawing a waveform	 144
Using Fast Fourier Transforms	 146
Audio reactive particles	 148
Creating a drum machine	 153
Creating a synthesizer	 159
Using effects	 163

Chapter 8: Exploring Computer Vision	 165
Introduction	 165
Using a webcam	 165
Thresholding video	 168
Blob tracking	 171
Color tracking	 174
Installing the OpenCV library	 178
Accessing a webcam with OpenCV	 180
Face detection with OpenCV	 182
Defining the region of interest with OpenCV	 184
Manipulating video with OpenCV	 186

Chapter 9: Exploring JavaScript Mode	 189
Introduction	 189
Creating your first Processing sketch for the Web	 190
Creating a custom HTML template	 192
Working with fonts	 196
Working with images/SVG files	 200
Creating 3D sketches for the Web	 202
Using Processing.js without the Processing editor	 204
Writing sketches with JavaScript	 207
Using Processing.js with jQuery	 210
Getting started with the Toxiclibs.js library	 216

Chapter 10: Exploring Android Mode	 221
Introduction	 221
Installing the Android SDK	 222
Running your sketch in the Android Emulator	 224
Running your sketch on an Android device	 228
Accessing screen size and density	 230
Responding to touch interaction	 232
Using the accelerometer	 235
Using the GPS	 239
Creating 3D sketches on Android	 243
Adding an icon to your Android App	 245

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Chapter 11: Using Processing with Other Editors	 249
Introduction	 249
Installing Eclipse	 249
Installing the Processing plugin for Eclipse	 252
Write your first sketch with the Processing Eclipse plugin	 254
Installing the Processing library template in Eclipse	 259
Writing Processing libraries	 265
Installing the Processing tool template	 270
Writing Processing tools	 274
Using Processing with IntelliJ IDEA	 277

Index	 283

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Processing is probably the best-known creative coding environment that helps you bridge the
gap between programming and art. It enables designers, artists, architects, students, and
many others, to explore graphics programming and computational art in an easy way, thus
helping boost creativity.

Processing 2: Creative Programming Cookbook will guide you to explore and experience the
open source Processing language and environment, helping you discover advanced features
and exciting possibilities with this programming environment, like never before. You'll learn
the basics of 2D and 3D graphics programming, and then quickly move up to advanced
topics, such as audio and video visualization, computer vision, and much more, with this
comprehensive guide.

Since its birth in 2001, Processing has grown a lot. What started out as a project by Ben Fry
and Casey Reas has now become a widely used graphics programming language.

Processing 2 has a lot of new and exciting features. This cookbook will guide you through
exploring the completely new and cool graphics engine and video library. Using the recipes in
this cookbook, you will be able to build interactive art for desktop computers, the Internet, and
even Android devices! You don't even have to use a keyboard or mouse to interact with the art
you make. The book's next-gen technologies will teach you how to design interactions with a
webcam or a microphone! Isn't that amazing?

Processing 2: Creative Programming Cookbook will guide you to explore the Processing
language and environment using practical and useful recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

What this book covers
Chapter 1, Getting Started with Processing 2, takes a look at installing Processing on your
computer and creating your first interactive sketch.

Chapter 2, Drawing Text, Curves, and Shapes in 2D, covers the basics of 2D drawing. We'll
take a look at how we can use colors, typography, and images.

Chapter 3, Drawing in 3D—Lights, Camera, and Action!, explores the third dimension. You'll
learn how to draw basic 3D shapes and how you can use lights to add some extra depth to
your 3D scene.

Chapter 4, Working with Data, will teach you how to load data from text files and parse it to
make it useful in your sketch. We also explore some datatypes that will be useful for storing
data.

Chapter 5, Exporting from Processing, covers everything to get your work out in the world.
You'll learn to save your sketches as an image, PDF file, or standalone application.

Chapter 6, Working with Video, explores how you can work with video and how you can
manipulate it to create something interesting.

Chapter 7, Audio Visualization, will show you how to use the Minim library. We'll take a look at
how we can visualize audio, and create some basic instruments.

Chapter 8, Exploring Computer Vision, will teach you how computer vision works with
Processing. We'll take a look at blob tracking and color tracking and will explore the basics of
OpenCV.

Chapter 9, Exploring JavaScript Mode, will show you how you can use your freshly acquired
Processing skills to create interactive sketches for the web.

Chapter 10, Exploring Android Mode, covers how you can use Processing to create interactive
applications for Android smartphones and tablets.

Chapter 11, Using Processing with Other Editors, shows you how you can use Processing with
Eclipse and IntelliJ IDEA. We also take a look at how you can create your own libraries and
tools to use with Processing.

What you need for this book
The software you need for the biggest part of the book is Processing, and can be downloaded
at http://processing.org/.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

For some chapters, you'll need to download some extra software. For Chapter 10, you
need the Android SDK, which can be downloaded at http://developer.android.com/
sdk/index.html. For Chapter 11, you'll need some other editors to work with
Processing. Eclipse can be downloaded at http://eclipse.org/ and IntelliJ
IDEA at http://www.jetbrains.com/idea/.

If you need to download or install extra libraries, fonts, or other files, the recipe will mention
where you can find what you need.

Who this book is for
This book targets creative professionals, visual artists, designers, and students who have
basic knowledge of the Processing development environment and who want to discover the
next level of Processing—anyone with a creative practice who wants to use computation in
their design process. A basic understanding of programming is assumed. However, this book
is also recommended to the non-artistic looking to expand their graphics and artistic skills.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text are shown as follows: "The size() function sets the dimensions of your
sketch window."

A block of code is set as follows:

void setup()
{
 size(640, 480);
 smooth();
}

void draw()
{
 background(255);

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Run button to
start Processing."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1
Getting Started with

Processing 2
In this chapter we will cover:

ff Installing Processing on your computer

ff Exploring the Processing Development Environment

ff Installing libraries

ff Installing tools

ff Switching modes

ff Understanding the coordinate system

ff Writing your first Processing sketch

ff Using math functions

ff Responding to mouse events

ff Responding to keyboard events

Introduction
In this chapter, we'll take a look at the very basics of Processing. You'll learn how to install
Processing on your computer, and extend it with libraries and tools. We'll also take a glimpse
at the different modes that are available in Processing 2. These things aren't very exciting, but
you need to know about them before you can start creating interactive art.

But don't worry, you'll have written your first Processing sketches by the time you reach the
end of the chapter. You will learn more about the structure of a Processing sketch, and we'll
use some math along the way. These sketches will also teach you the basics of interaction
between humans and computers. We'll use the mouse and keyboard to create simple, yet
somewhat useful applications. You'll notice that programming in the Processing language
probably isn't as hard as you may have thought.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

8

Installing Processing on your computer
Processing is an open source programming language and environment. It can be used to
create images, interactive installations, smartphone applications, and even 3D printed
objects. Just about anything you can imagine. In this recipe, we'll take a look at installing
Processing on Mac OS X, Windows, and Linux.

Getting ready
Download Processing 2 for your operating system at http://processing.org/
download/. Processing is available for Windows, Mac OS X, and Linux. Processing for
Windows comes in two flavors, one with Java and one without. Download the one with Java if
you aren't sure which one to choose.

How to do it...
ff Windows: Unzip the file you've downloaded to C:\Program Files. You'll find the

Processing application at C:\Program Files\Processing\. You might want to
create a desktop shortcut to this app so it's easily available.

ff Mac OS X: Unzip the file you've downloaded and drag the Processing application to
your Applications folder.

ff Linux: Unzip the folder to your Documents folder. Processing for Linux is a shell
script. You can double-click this script and click the Run button to start Processing.

How it works...
The Processing language is built on top of Java, so you'll need a Java runtime on your computer
for it to work. All versions of Mac OS X prior to 10.7 had a Java runtime installed by default.
Starting with 10.7, Apple removed this. But don't worry. When you start Processing for the first
time, the OS will ask you to install a Java runtime if you haven't done that already.

Processing for Windows and Linux comes with a java directory that contains everything
you need to run Processing. You can however choose to use another Java runtime if you've
installed one on your machine. But you should only do this if you are an advanced user and
familiar with Java on one of these platforms.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

There's more...
Processing uses a folder called the Sketchbook, where you will keep your sketches, libraries,
and tools. Best practice is to keep this Sketchbook folder in the standard place for your OS.

ff Mac OS X: /username/Documents/Processing/

ff Windows: C:\Documents and Settings\username\My Documents\
Processing\

ff Linux: /home/username/sketchbook/

Exploring the Processing Development
Environment

When you start to work with a new application, it's important to understand the interface.
In this recipe, we'll take a look at the Processing Development Environment, sometimes
referred to as PDE.

How to do it...
This is the easiest thing you'll do in this book. Just open the Processing application. The
following screenshot shows you what the PDE looks like on Mac OS X:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

10

How it works...
When you open the Processing app, you'll notice that the PDE is a very basic programming
environment. If you are an experienced programmer, you might miss a lot of features. The PDE
was designed like this, so that people without any programming experience can get started
with exploring code without having to worry about project settings, or learning a difficult
interface. Let's take a look at the different interface elements.

1.	 This is the run button. If you click this button, it will compile your code, and run your
sketch in a new window. The shortcut for running your code is Cmd + R on the Mac,
and Ctrl + R on Windows and Linux. Alternatively, you can hold down the Shift key
while clicking this button to present your sketch. This will run your sketch centered on
a gray fullscreen background.

2.	 The stop button will terminate your sketch. You can also press the Esc key on your
keyboard.

3.	 Clicking the new button will create a new Processing sketch in the current window. If
you want to create a sketch in a new window, you can use the File | New menu.

4.	 The open button will open a menu with the names of all sketches in your sketchbook
folder. This will open a sketch in the current window. If you want to open a sketch in a
new window, you can use the File | Open menu.

5.	 The save button will open a dialog to save your sketch.

6.	 The export button will compile your sketch as an application. Holding down
the Shift key will export your sketch as a Java Applet. You'll learn more about
exporting your sketches in the Exporting applications in Chapter 5, Exporting
from Processing recipe.

7.	 This is the text editor where you will type your code.

8.	 The message area is used by Processing to display messages when you save or
export our sketch, or when you made a syntax error while coding.

9.	 The console is used to display more detailed error messages. The output of the
print() and println() functions will also appear here. You'll learn more about
these functions in the Using math functions recipe later in this chapter.

Installing libraries
The core functionality of Processing is very basic. This was done by design, to make it easy for
everyone to get started using it. If you need to do something that's not available in Processing,
you can use a library that adds the functionality you need. One of the new features in
Processing 2 is the Library Manager. This allows you to install new libraries in the easy way.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

Getting ready
There is an overview of the available Processing libraries on the Processing website at
http://processing.org/reference/libraries/. You'll find the documentation of the
libraries included with Processing and a list with contributed libraries. There are libraries to
work with 3D, computer vision, geometry, and a lot more.

How to do it...
You can open the library manager by using this menu: Sketch | Import Library… | Add
Library…. This will give you a list of available libraries. To install the library you need to select
it from the list and click on the Install button. Processing will install the library in the libraries
folder of your sketchbook.

Unfortunately, not all libraries are included in this list. Some of the older libraries will probably
still work in Processing 2, but the developer might not have added the new functionality to
install the library through the Library Manager. In that case, you'll need to install the library
manually. Don't worry; this is not as hard as it sounds.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

12

You should download the library from the website of the developer and unzip it. Drag
this folder to the libraries folder inside your sketchbook. Libraries are structured in a
(predefined) way. If the library is not structured like this, it won't work. The main library folder
usually contains four subfolders: examples, library, reference, and src. The examples
folder contains Processing sketches the developer made to show how the library works. The
library folder contains the compiled library code that will be imported into your sketch.
The reference folder stores the documentation on how to use the library. The src folder
contains the source code of the library. This might be handy for advanced users to learn how
the library works and modify it as per their needs.

How it works...
The folder structure for libraries is important for Processing to find the library. The main folder
for the colorLib library is named colorLib. Inside the library folder within that directory, you'll
find a file named colorLib.jar. This JAR file will be included in your applet or application when
you export your sketch. You can add import libraries into your sketch by going to the Sketch |
Import Library… menu and select the library you want.

Installing tools
Processing tools are little applications that extend the PDE. Processing comes with a standard
set of tools: a color selector, a tool to create fonts, a tool to create movies, and some other
useful things.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

Getting ready
There is an overview of available tools on the Processing website at http://processing.org/
reference/tools/. This overview includes all standard tools and tools made by people from
the Processing community. At the moment, there aren't that many tools available, but the number
of quality tools might grow in the future.

How to do it...
Processing 2 has a new feature to install tools in an easy way: the Tool Manager. You can find
the Tool Manager by going to Tools | Add Tool…. The Tool Manager works the same way as
the Library Manager we've discussed in the Installing libraries recipe. Just like with libraries,
not all tools are available in the Tool Manager. If you find a tool online, you can install it
manually in the tools directory. This procedure is the same as installing a library manually.
The Tool Manager looks as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

14

How it works...
Tools are installed in the tools directory in your sketchbook. Each tool directory usually
contains two directories, one for the tool, which contains the tool JAR file, and one with the
Java source code. This JAR file is executed from the tool menu.

Switching modes
When Processing first came out, there was only the standard Java mode. But a lot has
changed over recent years. The Processing language was ported to JavaScript by John
Resig to show the capabilities of the HTML5 canvas element. Processing 2 also enables
you to create apps for the Android operating system.

Getting ready
Open the Processing app. You probably already did that, since you're reading this book.

How to do it...
In the upper-right corner of the PDE, you'll see a button with the text STANDARD. If you click
it, you'll get a small menu to select the other modes. Processing 2 comes with three modes:
Standard, Android, and JavaScript. There is also an Add Mode… option in the menu, which
will open the Mode Manager. This Mode Manager works in a similar way to the Library
Manager and the Tool Manager.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

How it works...
If you run a sketch in Standard mode, the PDE will compile your code and run it as a Java
applet. This mode is useful if you want to create native applications that will run on a
computer. Running a sketch in JavaScript mode will start a local web server on your computer,
and open your default browser so you can see the sketch run within a HTML5
page. Android mode will run the sketch in the Android Emulator or on your Android device.

You'll need to install the Android SDK to make this work. The color
scheme of the PDE is also different in Android mode, so it's a little
easier to see in which mode you are.

See also
This book also covers the new JavaScript and Android modes in depth. You can learn all about
it in Chapter 9, JavaScript Mode, and Chapter 10, Exploring Android Mode.

Understanding the coordinate system
Before you can draw things to the screen, you need to know how the coordinate system works.
Design applications might use a different point for the origin of their drawing surface. For
instance, Photoshop uses the upper-left corner as (0,0), while Illustrator uses the bottom-left
corner as (0,0).

Getting ready
Open Processing and create a new sketch.

How to do it...
Type this line of code in the Processing editor and press the run button. You can also use
Ctrl + R (Windows, Linux) or Cmd + R (Mac OS X) to run your sketch.

size(400, 300);

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

16

How it works...
Processing uses the upper-left corner for the origin of the window. The size() function sets the
dimensions of your sketch window. The first parameter is used to set the value of the system
variable width, the second parameter is used to set the value of the system variable height.

Imagine that you want to draw a point at the bottom-right corner of the window. If you were to
draw that point at (400, 300), you won't see anything on your screen. You need to draw your
point at (width-1, height-1) to make it visible on screen. This may look a little strange, but it's
actually very logical. If you want to draw a point at the origin, you'll use: point(0, 0);. This
line of code will fill the first pixel on the first row. As we start counting at 0, the last pixel on
that row would be 399, or width-1. The same is true for the height. The following screenshot
shows our window of 400 by 300 pixels, divided into squares of 50 x 50 pixels.

Writing your first Processing sketch
In the previous recipes, you've learned all the boring stuff such as installing Processing and
libraries. It's time to get your hands dirty now and write some code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

Getting ready
Create a new Processing sketch and save it as my_first_sketch to your sketch folder.

How to do it...
This is the full code for your first sketch. This sketch will draw some lines and points with
varying stroke weights.

void setup()
{
 size(640, 480);
 smooth();
}

void draw()
{
 background(255);

 strokeWeight(1);
 point(20, height/1.5);
 line(70, 20, 70, height - 20);
 strokeWeight(2);
 point(120, height/1.75);
 line(170, 20, 170, height - 20);
 strokeWeight(4);
 point(220, height/2);
 line(270, 20, 270, height - 20);
 strokeWeight(8);
 point(320, height/3);
 line(370, 20, 370, height - 20);
 strokeWeight(16);
 point(420, height/4);
 line(470, 20, 470, height - 20);
 strokeWeight(32);
 point(520, height/5);
 line(570, 20, 570, height - 20);
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

18

If you run the sketch, you'll see the results of your hard work. It will look as shown in the
following screenshot:

How it works...
In this recipe, you've learned the most basic functions to create a simple Processing sketch.
Let's take a deeper look at what these functions do:

ff The setup() function is called only once when you run your sketch. You'll use this
function to set the size of your sketch, add values to some variables, load images,
and so on.

ff The draw() function is called continuously, at a rate of 60 frames per second.

ff The size() function sets the size of your sketch window. You can use
size(screenWidth, screenHeight) to create a sketch with
dimensions that match the resolution of your computer screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

ff The smooth() function is used to enable anti-aliasing. This means that all your
shapes will have a soft edge. If you don't use this function, the shapes will have a
more jagged edge.

ff The point() function is used to draw a point on the screen. The first parameter is
the x-coordinate, the second one is the y-coordinate of the point you want to draw.

ff The line() function is used to draw a line on the screen. To draw a line, you
basically need two points to define that line, as you might remember from math class
in high school. The first two parameters of this function are the x and y coordinates
of the first point, the third and fourth parameters are the x and y coordinates of the
second point.

ff The strokeWeight() function will change the appearance of the shape you'll draw
to the screen. The parameter will set the width of the stroke. For example, you can
use strokeWeight(4) to draw a line with a thickness of 4 pixels.

There's more...
Processing sketches have a specific folder structure. If you save your sketch as
my_first_sketch, you'll find a folder with this name in your Processing sketchbook.
Inside this folder, you'll find a file named my_first_sketch.pde. Processing uses this
folder structure to keep everything it needs to run the sketch together. This will be very
handy when you write more complicated sketches that use more code files, or other
data such as images or fonts.

Using math functions
You'll likely use some basic math when writing sketches with Processing. Don't worry if
you forgot some of the math you learned in school, the Processing language comes
with some handy functions that can do the hard work for you. But you might need to
sharpen your math skills if you want to use these functions for some more advanced
things such as data visualization.

Getting ready
We're going to write a small sketch that uses some of the math functions. The output
of the app will be logged to the console. Start by creating a new sketch and save it as
math_functions.pde.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

20

How to do it...
This is the full code for the application we are going to write. We'll start by declaring some
integer and float variables. The numbers variable is an array of floats containing the values of
the variables we declared before. This sketch uses the println() function to log the output
of the abs(), ceil(), floor(), round(), sq(), sqrt(), min(), max(), and dist()
functions to the console.

int x = 177;
int y = -189;
float a = 32.75;
float b = -70.38;

float[] numbers = {a, b, x, y};

println("The absolute value of " + a + " is " + abs(a));
println("The absolute value of " + b + " is " + abs(b));
println("The absolute value of " + y + " is " + abs(y));
println("The closest int value greater than (or equal to) " + x + " is
" + ceil(x));
println("The closest int value greater than (or equal to) " + a + " is
" + ceil(a));
println("The closest int value greater than (or equal to) " + b + " is
" + ceil(b));
println("The closest int value less than (or equal to) " + y + " is "
+ floor(y));
println("The closest int value less than (or equal to) " + a + " is "
+ floor(a));
println("The closest int value less than (or equal to) " + b + " is "
+ floor(b));
println("The closest int value to " + a + " is " + round(a));
println("The closest int value to " + b + " is " + round(b));
println("The square number of " + x + " is " + sq(x));
println("The square number of " + b + " is " + sq(b));
println("The square root of " + x + " is " + sqrt(x));
println("The square root of " + a + " is " + sqrt(a));
println("The square root of " + b + " is " + sqrt(b));
println("The smallest number in the list {" + a + "," + b + "," + x +
"," + y + "} is " + min(numbers));
println("The largest number in the list {" + a + "," + b + "," + x +
"," + y + "} is " + max(numbers));
println("The distance between (" + x + ", " + y + ") and (" + a + ", "
+ b + ") is " + dist(x, y, a, b));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

If you run the sketch, you'll see that Processing will show an empty gray window of 100 x 100
pixels. This is the standard window size Processing uses if you don't use the size() function
in a sketch. The output of the application will look as shown in the following screenshot:

How it works...
You've learned a lot of new functions to work with numbers in this recipe. Let's take a look at
what they do:

ff abs() calculates the absolute value of the parameter. The result is always a positive
number, so abs(-189) will return the number 189.

ff ceil() returns the closest integer value, greater than or equal to the value of the
parameter. For instance, ceil(177) will return 177, ceil(-70.38) will return -70.

ff floor() returns the closest integer value, less than or equal to the value of the
parameter. floor(32.75) will return 32, floor(-70.38) will return -71.

ff round() returns the closest integer value to the parameter. round(32.75) will
return the number 33, round(-70.38) will return -70.

ff min() returns the smallest number from the list used as the parameter.

ff max() returns the largest number from the list used as the parameter.

ff sq() returns the square of a number. This is the same as multiplying the value of the
parameter by itself. Using this function will always result in a positive number.

ff sqrt() returns the square root of a number. The value of the parameter
should always be a positive number. sqrt(-70.38) will return NaN
(short for Not a Number).

ff dist() calculates the distance between two points. The first two parameters are
the x and y coordinates of the first point, and the third and fourth parameters are
the x and y coordinates of the second point. The dist() function uses the distance
formula, which is derived from the Pythagorean theorem.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

22

There's more...
The println() function is really handy to debug your sketches. You'll use it a lot to log the
value of a variable to the console. For instance, println(a) will log the value of variable
a to the console. But you can also combine variables and even other functions inside the
println() function, just like we did in the code for this small sketch. Let's take a look at how
you can do this.

println(x + y);

This line will print the number -12 to the console. The + operator has precedence over the
println() function, so the calculation will be performed first, before the println()
function is executed.

println(x + " " + y);

This line will print 177 -189 to the console, and is the easiest way to print the values of the
two variables to the console. In this example, the + sign inside the println() function is
used to combine the values of the two variables together with the space between the two
quotes into a variable of the type String.

Responding to mouse events
When you interact with a computer, you'll probably use a mouse. This is a standard input
device on all computers that use a graphical user interface (GUI). The mouse became
popular in the 1980s when Apple released the Macintosh. Most people know how to use a
mouse, or trackpad, so you can easily use this to create art for people to interact with.

How to do it...
This is the full code for the sketch.

Here, the draw() function is empty, as we'll do all the drawing with the
mouse functions. We do need to add the draw function though, as it is
used to make our app run continuously. If we leave it out of the code, the
code in setup() will only run once and the app won't be interactive.

void setup()
{
 size(640, 480);
 smooth();
 background(255);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

void draw()
{
 // empty, but we need it to create an app that runs in the
continuous mode.
}

void mousePressed()
{
 if (mouseButton == RIGHT) {
 background(255);
 }
}

void mouseMoved()
{
 stroke(0, 64);
 strokeWeight(1);
 fill(255, 32);
 float d = dist(mouseX, mouseY, pmouseX, pmouseY);
 constrain(d, 8, 100);
 ellipse(mouseX, mouseY, d, d);
}

void mouseDragged()
{
 stroke(0);
 float d = dist(mouseX, mouseY, pmouseX, pmouseY);
 constrain(d, 0, 100);
 float w = map(d, 0, 100, 1, 10);
 strokeWeight(w);
 line(mouseX, mouseY, pmouseX, pmouseY);
}

void mouseReleased()
{
 noStroke();
 fill(255, 16);
 rect(0, 0, width, height);
}

void mouseClicked()
{
 fill(255, 0, 0, 128);
 float d = random(20, 200);
 ellipse(mouseX, mouseY, d, d);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

24

After typing this code, you can run your sketch by clicking the run button or using the shortcut
Cmd + R on the Mac or Ctrl + R on Windows and Linux. You can now start drawing with your
mouse. When you move your mouse, you'll leave a trail of circles. When you press the mouse
button and release it, you'll draw a red circle. When you move the mouse while pressing the
left mouse button, you'll draw a black stroke. You can use the right mouse button to erase
the screen and start all over again. The output of the application might look similar to the
following screenshot:

How it works...
There are five functions and six system variables you can use to track mouse interaction in
your sketch:

ff The mouseClicked() function is executed when you click a mouse button. This
means pressing the button and releasing it. In the application you just made, this
function was used to draw the transparent red circle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

ff The mouseDragged() function is executed when you press a mouse button and
move the mouse while the button is pressed. This function is used to draw the lines
in our sketch.

ff The mouseMoved() function is called every time the mouse is moved while no
buttons are pressed. In our sketch, this leaves a trail of white transparent circles with
a transparent black border.

ff The mousePressed() function is called when you press the button on your mouse.
We use this function, together with the system variable mouseButton, to clear the
screen if the right mouse button was pressed.

ff The mouseReleased() function is called when you release the mouse button. We
used this function in our sketch to draw a transparent white rectangle with the size of
the window on top of everything.

ff The system variable mouseX contains the current x coordinate of the mouse within
the sketch window. This variable is updated every frame.

ff The system variable mouseY contains the current y coordinate of the mouse within
the sketch window. This variable is updated every frame.

ff The system variable pmouseX contains the x coordinate of the mouse in the previous
frame. This variable is updated every frame.

ff The system variable pmouseY contains the y coordinate of the mouse in the previous
frame. This variable is updated every frame.

ff The system variable mousePressed is a boolean variable that keeps track if a
mouse button is pressed or not. The value of this variable is true if a mouse button is
pressed and false if no buttons are pressed.

ff The system variable mouseButton is a variable used to keep track of which mouse
button is pressed. The value of this variable can be LEFT, RIGHT, or CENTER.

Responding to keyboard events
Another form of human-computer interaction is the keyboard. Next to the mouse, this is also
one of the best-known devices to interact with computers. You can easily detect when a user
presses a key, or releases it again, with Processing. One of the great things is that you can
assign keys programmatically to execute pieces of code for you. This is one of the easiest ways
to create a simple user-interface with Processing. For instance, you could use the D key to
toggle a debug mode in your app, or the S key to save the drawing you made as an image.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

26

How to do it...
We'll start by declaring some variables and writing the setup() and draw() functions. In
this recipe, we'll write a basic Processing sketch that will change the values of the variables
we've declared when we press certain keys on the keyboard.

int x;
int y;
int r;
color c;
boolean drawStroke;

void setup()
{
 size(480, 320);
 smooth();
 strokeWeight(2);

 x = width/2;
 y = height/2;
 r = 80;
 c = color(255, 0, 0);
 drawStroke = true;
}

void draw()
{
 background(255);

 if (drawStroke == true) {
 stroke(0);
 } else {
 noStroke();
 }

 fill(c);
 ellipse(x, y, r*2, r*2);
}

The next code we'll write are the functions that will take care of the keyboard events. There
are three functions we can use: keyPressed(), keyReleased(), and keyTyped().

void keyPressed()
{
 if (key == CODED) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

 if (keyCode == RIGHT) {
 x += 10;
 } else if (keyCode == LEFT) {
 x -= 10;
 } else if (keyCode == UP) {
 y -= 10;
 } else if (keyCode == DOWN) {
 y += 10;
 }
 }

 x = constrain(x, r, width-r);
 y = constrain(y, r, height-r);

}

void keyReleased()
{
 switch (key) {
 case 'r':
 c = color(255, 0, 0);
 break;
 case 'g':
 c = color(0, 255, 0);
 break;
 case 'b':
 c = color(0, 0, 255);
 break;
 case 'c':
 c = color(0, 255, 255);
 break;
 case 'm':
 c = color(255, 0, 255);
 break;
 case 'y':
 c = color(255, 255, 0);
 break;
 default:
 break;
 }
}
void keyTyped()
{
 if (key == 's') {
 drawStroke = !drawStroke;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Processing 2

28

The result of this application looks as shown in the following screenshot:

You can use the arrow keys to move the ball around. The S key will toggle the stroke. The R, G,
B, C, M, and Y keys will change the color of the ball.

How it works...
There are three different functions that catch key events in Processing: keyPressed(),
keyReleased(), and keyTyped(). These functions behave a little differently. The
keyPressed() function is executed when you press a key. You should use this one when
you need direct interaction with your application. The keyReleased() function is executed
when you release the key. This will be useful when you hold a key and change something in
your running application when the key is released. The keyTyped() function behaves just
like the keyPressed() function, but ignores all special keys such as the arrow keys, Enter,
Ctrl, and Alt.

ff The system variable key contains the value of the last key that was pressed
on the keyboard.

ff The system variable keyCode is used to detect when special keys such as Shift, Ctrl,
or the arrow keys are pressed. You'll most likely use this one within an if-statement
that checks if the key is CODED, just like you did in the keyPressed() function in
the example. The value of keyCode can be UP, DOWN, LEFT, RIGHT, ALT, CONTROL,
SHIFT, BACKSPACE, TAB, ENTER, RETURN, ESC, or DELETE.

ff The system variable keyPressed is a boolean variable. The value of this variable
is true if a key on the keyboard is pressed and false if no keys are pressed. This is a
handy variable to use inside the draw() function.

ff The keyPressed() function is executed once when you press a key.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

ff The keyReleased() function is executed once when you release a key.

ff The keyTyped() function is executed when you type a key. Keys like Alt, Ctrl, or Shift
are ignored by this function.

There's more...
You've just learned how to react to single key presses. If you want to do something when a
user presses multiple keys (shortcuts such as Ctrl + S to save an image), it won't work with
these standard functions. There is an excellent article on the Processing Wiki that describes
strategies for detecting multiple key presses at http://wiki.processing.org/w/
Multiple_key_presses.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

2
Drawing Text, Curves,

and Shapes in 2D
In this chapter we will cover:

ff Drawing basic shapes

ff Working with colors

ff Working with images

ff Drawing text

ff Drawing curves

ff Calculating points on a curve

ff Drawing custom shapes

ff Manipulating SVG files

ff Offscreen drawing

Introduction
Now that you've installed Processing on your computer, and written your first sketches, we'll
take a look at how you can draw stuff to the screen. We will start with rectangles and circles,
and move on to more complex shapes. You'll also learn about working with colors, images,
and text.

Drawing basic shapes
In Chapter 1, Getting Started with Processing 2, you learned how to draw lines and points in
the Writing my first Processing sketch recipe. In this recipe, we'll take a look at how you can
draw the most basic geometric shapes: rectangles, ellipses, triangles, and quads.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

32

How to do it...
The following is the code for drawing the most basic shapes. The first thing you need to do is
to write the setup() function and set the window size to 640 by 480 pixels:

void setup()
{
 size(640, 480);
 smooth();
}

The next piece of code is a function that will draw a grid with squares of 10 by 10 pixels. This
function will be called in the draw() function:

void drawGrid()
{
 stroke(225);
 for (int i = 0; i < 64; i++) {
 line(i*10, 0, i*10, height);
 }

 for (int i = 0; i < 48; i++) {
 line(0, i*10, width, i*10);
 }
}

The last thing you need to do is write the draw() function. We'll start by setting the
background to white, then draw the grid, and finally draw some rectangles, ellipses, triangles,
and quads.

void draw()
{
 background(255);

 drawGrid();

 stroke(0);

 // rectangles (yellow)
 fill(255, 255, 0);
 rect(20, 20, 120, 120);
 rect(180, 20, 120, 120, 20);
 rect(340, 20, 120, 120, 20, 10, 40, 80);
 rect(500, 40, 120, 80);

 // ellipses (red)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

33

 fill(255, 0, 0);
 ellipse(80, 240, 120, 120);
 ellipse(240, 240, 120, 80);
 ellipse(400, 240, 80, 120);

 // triangles (blue)
 fill(0, 0, 255);
 triangle(560, 180, 620, 300, 500, 300);
 triangle(40, 340, 140, 460, 20, 420);

 // quads (cyan)
 fill(0, 255, 255);
 quad(180, 340, 300, 340, 300, 380, 180, 460);
 quad(400, 340, 440, 400, 400, 460, 360, 400);
 quad(500, 340, 620, 400, 500, 460, 560, 400);
}

If you run the code, the result will look as shown in the following screenshot.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

34

How it works...
The drawGrid() function is a custom function we wrote to draw the light gray grid on the
background. It uses two for-loops, one for the horizontal lines, and one for the vertical lines.
We've also learned some new Processing functions to draw the most basic shapes. Let's take
a look at what they do.

ff The rect() function can be used with four, five, or eight parameters. The one with
four parameters is the most common, and is used to draw a normal rectangle. The
first two parameters are the x and y coordinates, the third and fourth parameters
are the width and height of the rectangle. If you want to draw a square, you need
to use the rect() function, and use the same value for the width and height, as
Processing doesn't have a square() function. The rect() function with five or eight
parameters is new in Processing 2, and is used for drawing rounded rectangles. If you
use the rect() function with five parameters, the fifth parameter is used to set the
radius for the rounded corners. The rect() function with eight parameters is used
to set a radius for each corner, starting with the upper left corner, going clockwise for
the other corners.

ff The ellipse() function is similar to the rect() function, as it uses the first two
parameters for the location, and the last two for the width and height. Note that
the ellipse is drawn from the center. If you want to draw a circle, you can use the
ellipse() function with the same value for the width and height. There is no
circle() function in Processing.

ff The triangle() function is used with six parameters. These are three x/y
coordinates for the three points of the triangle. You should try to draw these points
clockwise on the screen to keep things simple.

ff The quad() is similar to the triangle() function, but uses eight parameters, as a
quad has four points.

Working with colors
Color can be a great way to make your artwork more interesting. If you've used tools such as
Photoshop before, you may know that there are different systems to describe a color. There
is CMYK, LAB, HSB, HSV, RGB, XYZ, and so on. In Processing, you can use the RGB and HSB
color modes to change the background, or set the fill or stroke of a shape. In this recipe, we'll
explore how you can do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

How to do it...
The first thing we'll do is declare a color variable named c, right before the setup() function.
We'll set its value to a random color.

color c;

void setup()
{
 size(640, 480);
 smooth();

 c = color(random(255), random(255), random(255));
}

The second thing we'll do is to draw a rectangle with a gradient from black to white. This piece
of code draws 255 rectangles, each with a different fill. This is the first piece of code that goes
inside the draw() function.

Void draw()
{
 colorMode(RGB, 255);
 background(255);

 // grayscale
 noStroke();
 for (int i = 0; i < 255; i++) {
 fill(i);
 rect(i * 2 + 20, 20, 2, 120);
 }

 stroke(0);
 noFill();
 rect(20, 20, 500, 120);
}

Next up is drawing a rectangle next to the grayscale gradient, filled with our random color. This
should be added at the end of the draw() function.

// random color
fill(c);
stroke(0);
rect(540, 20, 80, 120);

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

36

Below our gradient and random color rectangles, we'll draw a series of swatches that will
remind you of the test cards used on televisions. The colors we'll use are red, green, blue,
cyan, magenta, yellow, white, and black. Add this to the end of the draw() function:

// full opaque colors
stroke(0);
fill(255, 0, 0);
rect(20, 160, 75, 60);
fill(0, 255, 0);
rect(95, 160, 75, 60);
fill(0, 0, 255);
rect(170, 160, 75, 60);
fill(0, 255, 255);
rect(245, 160, 75, 60);
fill(255, 0, 255);
rect(320, 160, 75, 60);
fill(255, 255, 0);
rect(395, 160, 75, 60);
fill(255);
rect(470, 160, 75, 60);
fill(0);
rect(545, 160, 75, 60);

For the second row of the test card, we'll use transparent versions of the colors we've
used in the first row. You'll also draw a black rectangle behind those swatches. The
transparency of the swatches is controlled with the mouse. This should be added to
the end of the draw() function.

// black background behind transparent colors
rect(0, 250, width, 70);

float t = map(mouseX, 0, width, 0, 255);

// transparent colors
fill(255, 0, 0, t);
rect(20, 220, 75, 60);
fill(0, 255, 0, t);
rect(95, 220, 75, 60);
fill(0, 0, 255, t);
rect(170, 220, 75, 60);
fill(0, 255, 255, t);
rect(245, 220, 75, 60);
fill(255, 0, 255, t);
rect(320, 220, 75, 60);
fill(255, 255, 0, t);
rect(395, 220, 75, 60);
fill(255, t);
rect(470, 220, 75, 60);
fill(0, t);
rect(545, 220, 75, 60);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

This is the last piece of code we'll add to the draw() function. We will switch to the HSB color
mode. The following code will draw a gradient from black to a color. The hue of the color is
defined by the x position of your mouse, the saturation is defined by the y position.

// HSB color bar
colorMode(HSB, 360, 100, 100, 100);

float h = map(mouseX, 0, width, 0, 360);
float s = map(mouseY, 0, height, 0, 100);

noStroke();
for (int i = 0; i < 100; i++) {
 fill(h, s, i);
 rect(20 + i*6, 340, 6, 120);
}

noFill();
stroke(0);
rect(20, 340, 600, 120);

If you run the example, you'll see the test screen as shown in the following screenshot with
grayscale, RGB, and HSB colors:

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

38

How it works...
The functions we've used in this example are similar to each other. color(), stroke(),
and fill() can be used with the same parameters. If you use only one parameter, for
these functions, you will work in grayscale. The default color mode in Processing is RGB and
takes values between 0 and 255. So color(0) is used for black, and color(255) is used
for white. Anything between these values will give you a gray color. If you use any of these
functions with two parameters, the second one will be used for the transparency of the color.
If you use three parameters, they will be used for the red, green, and blue components of the
color. Adding a fourth parameter will result in a transparent color.

ff The color() function is used to create a variable of the type color. This is handy if
you need to create colors you can use anywhere in your sketch. In this example, I've
declared a color variable named c, before the setup() function.

ff The fill() function is used to set the fill color of the shape you're about to draw. It
can be used with one to four parameters. You can also use a color variable for this.

ff The noFill() function is used to disable the fill before you draw a shape to
the screen.

ff The stroke() is similar to the fill() function, but sets the color for the stroke of
the shape you want to draw.

ff The noStroke() function is used to disable the stroke before you draw a shape to
the screen.

ff The background() function is used to set the background color. This will usually
be the first function you'll use inside the draw() function, as it will clear the screen.
You can't use transparent colors with this function. If you do, the alpha value will
be ignored.

ff The first parameter in colorMode() is used to set the color mode. This can be
either RGB or HSB. The default color mode is RGB, with values between 0 and 255.
You can use colorMode(RGB, 1.0) to use values between 0 and 1 for the color
components. If you want to use HSB colors, you'll usually use colorMode(HSB,
360, 100, 100), as these numbers are used in most graphics applications.

There's more...
If you want to pick colors before using them in your sketch, you can use the color selector tool
that is included with Processing. Go to the Tools | Color Selector menu to open this handy
little app.

See also
The background() function can use transparent colors if you use it for off-screen drawing.
You can learn more about that in the Off-screen drawing recipe at the end of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

Working with images
In the previous recipes, we've drawn vector-based shapes to the screen. Processing can also
be used to manipulate images. In this recipe, we'll take a look at loading an image, displaying
it on the screen, changing the color of a pixel, and copy/paste parts of an image.

Getting ready
Open one of your favorite pictures, resize and crop it with Photoshop so it's 640 x 480
pixels. If you don't have Photoshop, you can use GIMP, an open source image editor. GIMP is
available for Linux, Windows, and Mac OS X. You can get it at http://www.gimp.org/.

How to do it...
Create a new sketch and save it as working_with_images.pde. Once you have done this,
you can drag the picture you've just resized onto the Processing editor. This is the easiest way
to add files to your sketch. If you've completed these steps, you can start typing code. The first
thing we'll do is declare some variables.

PImage img;

// some settings to play with
boolean pixelMode = false;
int copyWidth = 50;
int copyHeight = 3;

Inside the setup() function, you'll set the size of the window, and load the image you've
saved to the data folder into the PImage object:

void setup()
{
 size(640, 480);
 smooth();

 img = loadImage("osaka-fluo.jpg");
}

In the draw() function, we'll calculate some random numbers that will be used to swap pixels
or areas of the image. The if-else part is the pixel-swapping algorithm. Finally, we'll draw
the new image to the screen using the image() function.

void draw()
{
 int x1 = floor(random(width));
 int y1 = floor(random(height));

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

40

 int x2 = floor(random(width));
 int y2 = floor(random(height));

 if (pixelMode == true) {
 color c1 = img.get(x1, y1);
 color c2 = img.get(x2, y2);
 img.set(x1, y1, c2);
 img.set(x2, y2, c1);
 } else {
 PImage crop1 = img.get(x1, y1, copyWidth, copyHeight);
 PImage crop2 = img.get(x2, y2, copyWidth, copyHeight);
 img.set(x1, y1, crop2);
 img.set(x2, y2, crop1);
 }

 image(img, 0, 0);
}

The following screenshot shows you what the result will look like with the default values for
the variables:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

How it works...
When you dragged the image onto the editor, Processing made a copy of that file and stored
it in the data folder of your sketch. You can see this folder by going to the Sketch | Show
Sketch Folder menu.

Before you can use an image in Processing, you need to declare a PImage object. The
loadImage() function is used in the setup() function to load the image from the data
folder in the PImage object.

To copy pixels, or change their colors, you'll be using the get() and set() methods of the
PImage class. These can be used with two or four parameters. If you use the get() method
with two parameters, it will return the color for that specific coordinate. If you use it with four
parameters, it will return a PImage object. The first two parameters are used to define the
x/y coordinates for the upper-left corner, the third and fourth set the width and height of the
region of pixels you want to copy. The set() method is similar to get, but is used to change
the color of a single pixel or rectangular area of pixels.

In the example, I've used a boolean variable called pixelMode to switch between changing
single pixels or areas of pixels. The copyWidth and copyHeight variables are used to
define the size of the region of pixels you want to copy/paste.

There's more...
Use the things you've learned in the Responding to keyboard events recipe in Chapter 1, Getting
Started with Processing 2, to create an interface so that you can change the parameters on the
fly. This might be interesting to create a different kind of artwork.

Drawing text
If you are used to doing typesetting in applications such as InDesign, you'll know that you have
a lot of control over things such as kerning and hyphenation. In Processing, this won't be the
case. The things you can do with typography are somewhat limited, but you can still do quite
a lot.

Getting ready
To get started, you'll need some fonts to work with. I've used Ostrich Sans and Junction, both
open source fonts by The League of Moveable Type. You can download them at http://www.
theleagueofmoveabletype.com. After downloading these fonts, you need to install them
on your machine, so they are available to use.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

42

To use fonts in Processing, you need to convert them from their original file format to the .vlw
file format Processing uses. You can do this with the Create Font tool. Select the font you
need, set a size, and click on the OK button. The .vlw font will be saved to the data folder of
your sketch.

How to do it...
We'll start by declaring two PFont objects, one for each font. Inside the setup() function,
we'll use the loadFont() function to load the .vlw files into the PFont object:

PFont ostrichSans;
PFont junction;

void setup()
{
 size(640, 480);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

 smooth();

 ostrichSans = loadFont("OstrichSans-Bold-48.vlw");
 junction = loadFont("Junction-24.vlw");

 strokeCap(SQUARE);
}

The first thing we'll do is draw two lines of text, each in a different font. The following code
goes inside the draw() function:

Void draw()
{
 background(255);
 fill(128, 0, 0);
 textFont(ostrichSans, 48);
 textAlign(LEFT);
 text("Hello, I'm Ostrich Sans", 20, 50);

 textFont(junction, 24);
 text("I'm a line of text, set in Junction.", 20, 80);

 stroke(128, 0, 0);
 strokeWeight(1);
 line(20, 94, 620, 94);
 line(20, 96, 620, 96);
}

Processing can also resize the text you want to draw if you set the the second parameter of
the textFont() function. The next piece of code will draw three lines of text set in Junction,
each with different size. Add them to the end of the draw() function.

fill(0);
textFont(junction, 24);
text("The quick brown fox jumps over the lazy dog. (24)", 20, 130);
textFont(junction, 18);
text("Pack my box with five dozen liquor jugs. (18)", 20, 154);
textFont(junction, 12);
text("Blowzy red vixens fight for a quick jump. (12)", 20, 172);

stroke(128);
strokeWeight(3);
line(20, 186, 620, 186);

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

44

In the next step, we'll draw a rectangle with a vertical line right in the middle. This line will be
used to align three lines of text to the left-hand side, right-hand side, and center of it. Add
these lines of code to the end of the draw() function.

fill(245);
stroke(128);
strokeWeight(1);
rect(20, 192, 600, 110);

stroke(128);
line(width/2, 192, width/2, 298);

fill(128);
stroke(128);
triangle(width/2-4, 192, width/2+4, 192, width/2, 196);
triangle(width/2-4, 302, width/2+4, 302, width/2, 298);

fill(0);
textFont(junction, 24);
textAlign(LEFT);
text("since I left you", width/2, 225);
textAlign(CENTER);
text("symmetry is boring", width/2, 252);
textAlign(RIGHT);
text("flush to the right", width/2, 280);

Processing can also handle blocks with multiple lines of text. You can even change the leading
for each block of text you'll draw to the screen. This piece of code should be added to the end
of the draw() function.

textFont(junction, 14);
textAlign(LEFT);
String multiline = "In typography, leading refers\n";
multiline += "to the distance between the\n";
multiline += "baselines of successive lines\n";
multiline += "of type.";

float standardLeading = (textAscent() + textDescent()) * 1.275f;

textLeading(standardLeading);
text(multiline, 20, 340);
textLeading(standardLeading * 0.75);
text(multiline, 220, 340);
textLeading(standardLeading * 1.5);
text(multiline, 420, 340);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

In the last piece of code we'll add to the draw() function, we'll use the textWidth()
function to calculate the width of a line of text. We'll use the calculated value to draw a line
below the text.

textFont(ostrichSans, 36);
String s = "textWidth";
float w = textWidth(s);
fill(128, 0, 0);
text(s, 20, 450);
noStroke();
rect(20, 455, w, 8);

If you've used the same fonts, the result of your sketch should look as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

46

How it works...
You've learned everything there is to know about working with typography in Processing. Let's
take a look at the functions we've used in this recipe:

ff text() is used to draw text to the screen. The first parameter is usually a variable
of the String type, but you can also use an array of char variables. The second and
third parameters are the x and y coordinates of the location where you want to draw
the text.

ff loadFont() is used to load a font from the data folder of your sketch into a PFont
variable. You'll need to create a font first using the Create Font… tool.

ff textFont() is usually called right before text() and is used to set the font and
the font size that will be used to draw the text to the screen.

ff textAlign() is used to align the text to the coordinate used in the text() function.
The value of the parameter can be LEFT, RIGHT, or CENTER. In the example, you've
used this function to align three lines of text to the center of the window.

ff textWidth() is used to return the width of a certain text block in pixels.

ff textLeading() is used to set the leading of the text. This is usually used when you
draw a block of text with multiple lines to the screen.

ff textAscent() returns the ascent of the current font.

ff textDescent() returns the descent of the font.

Drawing curves
Straight lines can be boring sometimes, so it might be useful to draw curved lines to make
your artwork look a little more organic. In this recipe, we'll take a look at how you can draw
Bézier curves and Catmull-Rom splines. If you have used vector graphics software such as
Adobe Illustrator or Inkscape before, you might recognize the Bézier curves we'll draw.

How to do it...
The first thing we need to do is to import the OpenGL library. This library is usually used to
draw in 3D. Although we won't be drawing in 3D in this example, we need to import it because
the bezierDetail() and curveDetail() functions don't work with the standard 2D
renderer. You can import the OpenGL library by going to the Sketch | Import Library… |
OpenGL. Once you have done this, you can type the following code into the editor:

import processing.opengl.*;

void setup()
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

 size(640, 480, OPENGL);
 smooth();
}

Inside the draw() function, we'll start with drawing some Bézier curves. The
bezierDetail() function is used to change the appearance of the Bézier curves.

Void draw()
{
 background(255);

 noFill();

 for (int i = 0; i < 15; i++) {
 pushMatrix();
 translate((i * 40) + 20, 0);
 bezierDetail(i + 4);
 stroke(0);
 bezier(0, 20, 50, 10, 80, 100, 30, 200);
 stroke(255, 0, 0, 128);
 line(0, 20, 50, 10);
 line(80, 100, 30, 200);
 popMatrix();
 }
}

The next thing we'll do is draw some Catmull-Rom splines using the curve() function. The x
coordinate of the mouse position is used to set the tightness of the curve. This piece of code
should be added at the end of the draw() function.

float t = map(mouseX, 0, width, -5.0, 5.0);
curveTightness(t);

for (int i = 0; i < 15; i++) {
 pushMatrix();
 translate((i * 40) + 20, 220);
 curveDetail(i + 4);
 stroke(0);
 curve(10, 50, 0, 20, 30, 200, -50, 250);
 stroke(255, 0, 0, 128);
 line(10, 50, 0, 20);
 line(30, 200, -50, 250);
 popMatrix();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

48

The result of the sketch looks as shown in the following screenshot:

How it works...
We've used some new functions to draw different kinds of curves, and change their
appearance. Let's take a look at how they work:

ff bezier() draws a Bézier curve to the screen. The first two parameters are the
coordinates for the first anchor point. The third and fourth parameters are the
coordinates for the first control point. Parameters five and six are the coordinates
for the second control point, and the last two parameters are the coordinates for the
second anchor point.

ff bezierDetail() sets the detail of the Bézier curve. The default value is 20.

ff curve() draws a curve to the screen. This is a Processing implementation of
Catmull-Rom splines. It works in a similar way to the bezier() function, but the
coordinates for the anchor and control points are swapped.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

ff curveDetail() sets the detail level of the curve. This function is similar to the
bezierDetail() function.

ff curveTightness() sets the tightness of the curve. The default value is 0.0. If you
want to connect the points with straight lines, you can use 1.0. You can use values
between -5.0 and 5.0 to create a curve through the same points. Each of these
values will give you a slightly different curve.

Calculating points on a curve
In the Drawing curves recipe, you've learned how to draw Bézier curves and Catmull-
Rom splines. This example will teach you how you can use the bezierPoint() and
curvePoint() functions to calculate points on those curves.

How to do it...
This is the code for the recipe. I've used the noise() function to animate the point as it
moves along the curve. Mouse movement is used to animate the curve drawn with the
curve() function.

float noiseOffset;

void setup()
{
 size(640, 480);
 smooth();

 noiseOffset = 0.0;

 rectMode(CENTER);
}

void draw()
{
 noiseOffset += 0.01;

 background(255);

 // Bézier curve
 stroke(0);
 noFill();
 bezier(40, 200, 120, 40, 300, 240, 600, 40);

 stroke(255, 0, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

50

 line(40, 200, 120, 40);
 line(600, 40, 300, 240);

 fill(255);
 rect(120, 40, 4, 4);
 rect(300, 240, 4, 4);	

 float n = noise(noiseOffset);

 float x = bezierPoint(40, 120, 300, 600, n);
 float y = bezierPoint(200, 40, 240, 40, n);

 stroke(0);
 rect(x, y, 6, 6);

 float t = map(mouseX, 0, width, -5.0, 5.0);
 curveTightness(t);

 // Catmull-Rom spline
 stroke(0);
 noFill();
 curve(120, 240, 40, 400, 600, 240, 300, 440);

 stroke(255, 0, 0);
 line(120, 240, 40, 400);
 line(600, 240, 300, 440);

 fill(255);
 rect(120, 240, 4, 4);
 rect(300, 440, 4, 4);

 x = curvePoint(120, 40, 600, 300, n);
 y = curvePoint(240, 400, 240, 440, n);

 stroke(0);
 rect(x, y, 6, 6);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

The result of this sketch looks as shown in the following screenshot, move your mouse to see
the interaction.

How it works...
You've learned some new functions to calculate points Bézier curves and Catmull-Rom
splines. Let's take a deeper look at what these functions do.

ff The bezierPoint() function takes five parameters. The first four take coordinates
for the anchor and control points of the curve. The fifth parameter is a number
between 0 and 1. I've used the noise() function to generate this number, as it
returns numbers between 0 and 1. If the value of the fifth parameter is close to 0, the
calculated point will be close to the first anchor point, if the value is close to 1, the
point will be closer to the second anchor point. You need to use this function twice,
once for the x coordinate and once for the y coordinate of the new point.

ff The curvePoint() function works in a similar way to the bezierPoint() function.
Take a good look at the code in the example to see which numbers correspond to
each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

52

Drawing custom shapes
Squares and circles might be boring after using them for a while. Luckily for you, Processing
has some functions to draw custom shapes. We'll take a look at how you can write functions
for drawing stars and flowers.

How to do it...
We'll start by writing the code for the setup() function. I've used the frameRate() function
to make the sketch run at one frame per second.

void setup()
{
 size(640, 480);
 smooth();
 frameRate(1);
}

The next thing we'll do is write a function to draw a star. The function takes three parameters:
an integer for the number of spikes on the star, and two float variables for the inner and outer
radius we'll use to calculate the vertices.

void star(int numSpikes, float innerRadius, float outerRadius)
{
 int numVertices = numSpikes * 2;
 float angleStep = TWO_PI / numVertices;

 beginShape();
 for (int i = 0; i < numVertices; i++) {
 float x, y;
 if (i % 2 == 0) {
 x = cos(angleStep * i) * outerRadius;
 y = sin(angleStep * i) * outerRadius;
 } else {
 x = cos(angleStep * i) * innerRadius;
 y = sin(angleStep * i) * innerRadius;
 }
 vertex(x, y);
 }
 endShape(CLOSE);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

The function to draw a flower is similar to the one for the star. The only difference is that we'll
use the bezierVertex() function to draw the organic shape for the leaves of the flower.

void flower(int numLeafs, float innerRadius, float outerRadius)
{
 float angleStep = TWO_PI / numLeafs;

 beginShape();
 float startX = cos(0) * innerRadius;
 float startY = sin(0) * outerRadius;
 vertex(startX, startY);
 for (int i = 0; i < numLeafs; i++) {
 float cx1 = cos(angleStep * i) * outerRadius;
 float cy1 = sin(angleStep * i) * outerRadius;
 float x2 = cos(angleStep * (i + 1)) * innerRadius;
 float y2 = sin(angleStep * (i + 1)) * innerRadius;
 float cx2 = cos(angleStep * (i + 1)) * outerRadius;
 float cy2 = sin(angleStep * (i + 1)) * outerRadius;
 bezierVertex(cx1, cy1, cx2, cy2, x2, y2);
 }
 endShape(CLOSE);
}

Inside the draw() function, we'll use the star() and flower() functions we just wrote.
In each frame, the sketch will draw 75 custom shapes. There's a 50 percent chance for
each shape.

void draw()
{
 background(0);
 noStroke();

 for (int i = 0; i < 75; i++) {
 int numPoints = floor(random(4, 8));
 float innerRadius = random(20, 40);
 float outerRadius = random(50, 100);

 pushMatrix();
 translate(random(width), random(height));
 if (random(100) < 50) {
 fill(255, 255, 0, 64);
 star(numPoints, innerRadius, outerRadius);
 } else {
 fill(255, 0, 0, 64);
 flower(numPoints, innerRadius, outerRadius);
 }
 popMatrix();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

54

The result of the sketch will look somewhat as shown in the following screenshot:

How it works...
The beginShape() function is used together with the endShape() function. If you want
a closed shape, you need to add the CLOSE parameter to the endShape() function.
These functions connect all vertices you add between them. If you use the vertex()
function, these points will be connected with straight lines. The bezierVertex() and
curveVertex() functions can be used to connect the points with a curve. They work just
like the bezier() and curve() functions, but they only take six parameters. The first
anchor point is left out, because the anchor point of the previous point will be used. Note
that you'll need to use the vertex() function first before you can use bezierVertex()
or curveVertex().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

There's more...
Processing uses radians as the unit for angles. This might be a little confusing for people
using the metric system. You can use degrees if you want to, but you'll have to convert them
to radians if you want to calculate the sine or cosine. This can be done using the radians()
function. If you want to convert radians to degrees, you can use the degrees() function.
Processing also has some handy mathematical constants you can use when you are dealing
with trigonometry. In our functions, we've used the TWO_PI constant, which represents
the number of radians to create a full circle. The other constants that are available are
QUARTER_PI, THIRD_PI, HALF_PI, and PI.

Manipulating SVG files
A great thing about Processing is that you don't always have to draw your own shapes. You can
draw just about anything you want in a vector editing program, and export it as an SVG file to
use in Processing.

Getting ready
The first thing you need to do is create an SVG file to use in your sketch. Processing supports
SVG files made with Adobe Illustrator or Inkscape. Inkscape is an open source vector editor,
so it might be useful if you don't have access to an expensive piece of software, such as
Illustrator. You can download it at: http://inkscape.org/.

Create a new sketch and save it as manipulating_svg_files.pde in your sketchbook.
Save your SVG file in the data folder of your sketch. You can do this by dragging the SVG file on
the Processing editor, just like you did in the recipe on working with images.

How to do it...
We'll start with declaring some PShape objects and loading them inside the setup()
function. The snowFlake variable is used to load your SVG file, the other variables will be
used to store individual parts of the main SVG file.

PShape snowFlake;
PShape small1;
PShape small2;
PShape small3;
PShape small4;
PShape small5;
PShape small6;
PShape big1;

void setup()

www.it-ebooks.info

http://inkscape.org/
http://inkscape.org/
http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

56

{
 size(640, 480);
 smooth();

 snowFlake = loadShape("snowflake.svg");

 small1 = snowFlake.getChild("small1");
 small2 = snowFlake.getChild("small2");
 small3 = snowFlake.getChild("small3");
 small4 = snowFlake.getChild("small4");
 small5 = snowFlake.getChild("small5");
 small6 = snowFlake.getChild("small6");
 big1 = snowFlake.getChild("big1");

 shapeMode(CENTER);
}

Inside the draw() function, we'll draw the SVG files to the screen using the shape() function:

void draw()
{
 background(255);

 // regular snowflake
 shape(snowFlake, 160, 120);

 // distorted snowflake
 shape(snowFlake, 480, 120, 160, 80);

 // orange snowflake
 snowFlake.disableStyle();
 fill(255, 128, 0);
 stroke(255);
 strokeWeight(2);
 shape(snowFlake, 160, 360);
 snowFlake.enableStyle();

 // draw separate parts (colorful star)
 strokeWeight(1);
 stroke(0);
 small1.disableStyle();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

 fill(151, 183, 189);
 shape(small1, 480, 360);
 small1.enableStyle();
 small2.disableStyle();
 fill(216, 234, 237);
 shape(small2, 480, 360);
 small2.enableStyle();

 small3.disableStyle();
 fill(151, 183, 189);
 shape(small3, 480, 360);
 small3.enableStyle();

 small4.disableStyle();
 fill(216, 234, 237);
 shape(small4, 480, 360);
 small4.enableStyle();

 small5.disableStyle();
 fill(151, 183, 189);
 shape(small5, 480, 360);
 small5.enableStyle();

 small6.disableStyle();
 fill(108, 223, 234);
 shape(small6, 480, 360);
 small6.enableStyle();

 strokeWeight(2);
 big1.disableStyle();
 fill(251, 0, 95);
 stroke(255);
 shape(big1, 480, 360);
 big1.enableStyle();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

58

The result of this sketch will look somewhat as shown in the following screenshot:

How it works...
An SVG file is basically an XML file. Try opening your drawing in your favorite text editor to see
what it looks like.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

To load an SVG file into your sketch, you'll need to declare a PShape object before
the setup() function. The next thing to do is to load the file into the object with the
loadShape() function. You can draw the SVG file to the screen using the shape() function.
The first parameter of this function is a reference to your PShape object, the second and
third are the x and y coordinates where you want to draw the shape. You can add a fourth and
fifth parameter to resize the shape if you want to. SVG files are normally drawn with their own
styles, you can disable these styles with the disableStyle() method, and use the fill()
and stroke() functions from Processing to change the colors of your PShape object. Make
sure you use the enableStyle() method once you are finished. In the example, you've also
used the getChild() method to access different shapes within the SVG file you've loaded.
You need to use the text from the id attribute of the shape you want to get from the main SVG
file. In our example, the line small4 = snowFlake.getChild("small4"); gets the line
of xml starting with <path id="small4" ….

There's more...
The full SVG specification however, is not implemented in Processing. Patterns for instance,
will not work. So you might see an error message if your SVG file has properties that aren't
supported in Processing.

Offscreen drawing
In some cases, you want to be able to draw things on a blank image, before drawing it to the
screen. This can be easily done in Processing with the PGraphics object.

How to do it...
The first thing you need to do is declare a PGraphics object at the beginning of your sketch,
and initialize it with the createGraphics() function inside setup(). I've added the x
and y variable to add some animation to the sketch. You can clear the background by
clicking the mouse.

PGraphics pg;

float x;
float y;

void setup()
{
 size(640, 480);
 smooth();

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

60

 pg = createGraphics(64, 64, JAVA2D);

 background(255);
 imageMode(CENTER);

 x = 0;
 y = 0;
}

The first thing we'll do inside the draw() function is draw some lines onto the PGraphics
object. The object will then be drawn to the screen using the image() function. The last piece
of code inside the draw function is used to calculate the x and y values to animate the sketch.

void draw()
{
 pg.beginDraw();
 pg.background(255, 0, 0, 8);
 pg.smooth();
 for (int i = 0; i < 8; i++) {
 pg.stroke(random(255), 0, 0);
 pg.line(random(pg.width), random(pg.height), random(pg.width
), random(pg.height));
 }
 pg.endDraw();

 image(pg, x, y);

 x += random(4, 16);
 if (x > width) {
 x = 0;
 y += random(32, 64);
 if (y > height) {
 y = 0;
 fill(255, 32);
 noStroke();
 rect(0, 0, width, height);
 }
 }
}

The mousePressed() function is used to clear the screen. There's a 50 percent chance the
new background will be black or white.

void mousePressed()
{
 if (random(100) < 50) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

61

 background(0);
 } else {
 background(255);
 }
}

The result of the sketch will look as shown in the following screenshot. Press the mouse to see
what happens.

How it works...
The createGraphics() function creates the context you can draw on. Think of it as creating
a new transparent image. The first two parameters are the width and height of the image,
the third one is the renderer. I've used the P2D renderer since I'll draw some 2D lines on the
image. To start drawing on the PGraphics object, you need to start with pg.beginDraw(). To
stop drawing on the image you'll finish with pg.endDraw(). Anything between those lines will
be drawn on the object. All drawing functions from Processing are available, but you'll need to
prefix them with the name of your variable. So if you want to draw a line on your PGraphics
object, you need to use pg.line(), for drawing rectangles, you'll use pg.rect(), and so on
for all other functions. You can use pg.width and pg.height to get the width and height of
your object. Note that I've used a transparent color for the background() function. This only
works with the PGraphics object.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Text, Curves, and Shapes in 2D

62

There's more...
If you need to draw a large amount of text, let's say a thousand words, you'll find that this
can slow your sketch down. You can fix this by drawing those words, each on a different
PGraphics object, in the setup() function. You can then draw those PGraphics objects to
the screen with the image() function, which will speed things up.

www.it-ebooks.info

http://www.it-ebooks.info/

3
Drawing in 3D–Lights,

Camera, and Action!
In this chapter we will cover:

ff Understanding 3D space

ff Drawing 3D primitives

ff Using lights

ff Making polygon soup

ff Mixing 2D and 3D objects

ff Drawing triangle and quad strips

ff Using textures

ff Using the 3D camera

Introduction
In Chapter 2, Drawing Text, Curves, and Shapes in 2D, you learned about drawing shapes and
text in a 2D environment. This chapter will teach you the basics of drawing in a 3D world. We'll
start by taking a look at how the 3D environment is structured and how you can draw some
basic 3D primitives. By the end of this chapter, you will also be able to use lights and textures
to add more character to your 3D artwork.

Understanding 3D space
In Chapter 1, Getting Started with Processing 2, you learned about the coordinate system
in Processing. In this recipe, we'll take a look at the third dimension, and draw objects
in a 3D space.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

64

How to do it...
The first thing you'll need to do is to import the OpenGL library. This will enable you to use the
third dimension. You've done this before in the Drawing curves recipe, in Chapter 2, Drawing
Text, Curves, and Shapes in 2D. Go to Sketch | Import Library | OpenGL to import the library
using the following code:

import processing.opengl.*;

The next thing we need to do is declare two variables, right before the setup() function, and
give them some values. Note that the size() function is a little different from the examples
in Chapter 2.

float depth;
float zSpeed;

void setup()
{
 size(640, 480, OPENGL);

 depth = 0;
 zSpeed = -1;
}

The first thing we'll do inside draw() is change the value of the depth variable, so we can
use it for animation. The following piece of code will change the value, so it goes from 0 to
1000 and back again.

void draw()
{
 depth += zSpeed;

 if (depth <= -1000 || depth >= 0) {
 zSpeed *= -1;
 }
}

The next thing we'll do is clear the background and draw some rectangles in 3D space. These
rectangles don't have a fill color, only a border. Add the following piece of code at the end of
the draw() function.

background(255);

noFill();
stroke(0);
for (int i = 0; i < 10; i++) {
 pushMatrix();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

65

 translate(0, 0, -i * 100);
 rect(0, 0, width, height);
 popMatrix();
}

The last piece of code inside the draw() function is the following one. We'll basically draw
four squares, one in each corner of the window. Each one has a different color.

pushMatrix();
translate(0, 0, depth);
fill(255, 0, 0);
rect(0, 0, 80, 80);
fill(0, 255, 0);
rect(width-80, 0, 80, 80);
fill(255, 255, 0);
rect(width-80, height-80, 80, 80);
fill(0, 255, 255);
rect(0, height-80, 80, 80);
popMatrix();

If you run the example, you'll see the four colored rectangles move away and come closer again.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

66

How it works...
To enable 3D in Processing, you'll need to add a third parameter to the size() function,
to set the renderer. In this case, the parameter will be OPENGL. Don't forget to import the
OpenGL library, or the sketch won't run.

In the previous chapter, you may have noticed that functions such as rect() and
ellipse() only take x and y coordinates. There is no z coordinate to draw the shapes in a
3D environment. If you want to draw these flat 2D shapes in 3D, you'll need to make changes
to the coordinate system using the translate() function. I've wrapped the blocks where I
use the translate() function between pushMatrix() and popMatrix().

The pushMatrix() function saves the current coordinate system. It is always used in
combination with the popMatrix() function, which restores the coordinate system saved by
the pushMatrix() function.

The translate() function uses three parameters when you use it in a 3D environment.
These parameters are the x, y, and z coordinates for the new point of origin you will use. We've
used the depth variable for the z coordinate of the translate() function, to animate the
colored squares. Take a closer look at the red square while your sketch is running: it is always
drawn at (0, 0), yet it doesn't look that way, because we move the point of origin in z-space.

Drawing 3D primitives
In the previous chapter, you learned about drawing basic 2D shapes. Processing also has
some 3D primitives, by default—a box and a sphere. In this recipe, we'll take a look at how you
can draw them.

How to do it...
I'm not going to write the code for the setup() function, in this recipe. You probably know, by
now, how to use it. Import the OpenGL library, just as you did in the Understanding 3D space
recipe and create a window with a resolution of 640 x 480 pixels. Don't forget to add the
OPENGL parameter to the size() function.

Add the following piece of code to the draw() function. We reuse the pushMatrix(),
popMatrix(), and translate() functions from the previous example. We are going to
add the rotateY() function to rotate our 3D primitives. These primitives are drawn to the
screen with the box() and sphere() functions. The sphereDetail() function is used to
manipulate the shape of the sphere.

background(255);
lights();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

67

float angleY = radians(frameCount);

pushMatrix();
translate(width * 0.3, height* 0.3);
rotateY(angleY);
fill(0, 255, 255);
box(100);
popMatrix();
	
pushMatrix();
translate(width * 0.5, height* 0.5);
rotateY(angleY);
fill(0, 255, 0);
box(100, 40, 50);
popMatrix();

pushMatrix();
translate(width * 0.7, height * 0.3);
rotateY(angleY);
fill(255, 0, 0);
sphereDetail(30);
sphere(75);
popMatrix();

pushMatrix();
translate(width * 0.3, height * 0.7);
rotateY(angleY);
fill(255, 255, 0);
sphereDetail(6);
sphere(75);
popMatrix();

pushMatrix();
translate(width * 0.7, height * 0.7);
rotateY(angleY);
fill(255, 0, 255);
sphereDetail(4, 20);
sphere(75);
popMatrix();

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

68

After you've added this code to the draw() function, you can run the sketch. The result
should look like the following screenshot:

How it works...
The box() function can be used with one or three parameters. If you use it with only one
parameter, you'll create a cube. Using the function with three parameters allows you to set
different values for the width, depth, and height of the box.

The sphere() function only takes one parameter: the radius of the sphere. You can change
the appearance of the sphere by using the sphereDetail() function before you call the
sphere() function. The default sphere is quite detailed and has a resolution of 30. If you
use a number lower than 30, the sphere will be less detailed; if you use a higher number,
you'll add more detail. Using two parameters with this function, you can set the horizontal and
vertical resolution of the sphere. If you use a low number for the first one and a higher number
for the second one, you'll get a totally different kind of sphere.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

69

There's more...
In the beginning of the draw() function, we've created a variable named angleY. This
variable is used to rotate each 3D object around its Y-axis. In each frame, the objects will be
rotated by one degree. We've used the frameCount system variable to do this, as the value
of this variable is increased by 1 in each frame. We converted this value to radians, because
Processing uses radians as the measurement unit for angles.

Using lights
If you want to make your 3D scene a little more interesting, you can add light, so your objects
don't look flat. There are different kinds of lights available in Processing. We'll take a look at
how you can use them in this recipe.

How to do it...
The first thing you need to do is import the OpenGL library and set up an OpenGL window with a
resolution of 640 x 480 pixels. Before the setup() function, you need to declare two integers,
lightMode and lightDirection, which will be used to switch between the different types of
lighting. I've assigned these variables a value of 0 inside the setup() function.

lightMode = 0;
lightDirection = 0;

In the first block of code that goes inside the draw() function, we'll configure the different
lights. The lightMode variable is used to switch between lights, and the lightDirection
variable is used to set the direction when we are using directional lighting.

background(0);

switch (lightMode) {
 case 0:
 noLights();
 break;
 case 1:
 lights();
 break;
 case 2:
 if (lightDirection == 0) {
 directionalLight(255, 128, 0, 0, -1, 0); // UP
 } else if (lightDirection == 1) {
 directionalLight(0, 255, 0, 1, 0, 0); // RIGHT
 } else if (lightDirection == 2) {
 directionalLight(255, 0, 255, 0, 1, 0); // DOWN

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

70

 } else if (lightDirection == 3) {
 directionalLight(0, 255, 255, -1, 0, 0); // LEFT
 }
 break;
 case 3:
 ambientLight(0, 255, 255);
 break;
 case 4:
 pointLight(255, 255, 0, 100, height*0.3, 100);
 break;
 case 5:
 spotLight(128, 255, 128, 800, 20, 300, -1, .25, 0, PI,
 2);
 break;
 default:
 noLights();
}

After you've set the lights, it's time to draw some 3D geometry. I've drawn a cube and a sphere
at the same coordinates and have used the rotateY() and rotateX() functions to let
them rotate in a different way.

pushMatrix();
translate(width/2, height/2, 0);

pushMatrix();
rotateY(radians(frameCount));
fill(255);
noStroke();
sphere(100);
popMatrix();

pushMatrix();
rotateZ(radians(frameCount));
rotateX(radians(frameCount/2));
fill(255);
noStroke();
box(150);
popMatrix();

popMatrix();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

The last thing you need to do is to build some kind of keyboard interface to switch between
the different light modes. The following code will allow you to do this. If you want to know
how this works, read the Responding to keyboard events recipe, in Chapter 1, Getting
Started with Processing 2.

void keyPressed()
{
 switch (key) {
 case 'n':
 lightMode = 0; // no lights
 break;
 case 'l':
 lightMode = 1; // lights
 break;
 case 'd':
 lightMode = 2; // directional light
 break;
 case 'a':
 lightMode = 3; // ambient light
 break;
 case 'p':
 lightMode = 4; // point light
 break;
 case 's':
 lightMode = 5; // spot light
 break;
 }

 if (key == CODED) {
 switch (keyCode) {
 case UP:
 lightDirection = 0;
 break;
 case RIGHT:
 lightDirection = 1;
 break;
 case DOWN:
 lightDirection = 2;
 break;
 case LEFT:
 lightDirection = 3;
 break;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

72

When you have finished typing, you can use the N, L, D, A, P, and S keys to switch between the
different light modes. The arrow keys can be used to change the direction of the light when
directional light is used.

How it works...
The lights() function is the easiest one to use. It just enables the default lighting used
in Processing. You can use the noLights() function to disable lighting. The noLights()
function is the first thing you'll see when you run the sketch.

The directionalLight() function is used to send light from one direction. These lights
are placed far away and affect everything in the scene. Think of this light as the sun. The first
three parameters are the r, g, and b values for the color of the light. The last three parameters
are used to set the direction of the light along the x, y, and z axes of your 3D scene. You can
use values between -1 and 1 for these parameters.

The ambientLight() function is used to set the ambient light for your 3D scene. This
light comes from just about every direction. You'll usually use this function together with
other types of lights. You can use this function with three parameters to set the r, g, and b
components for the color of the light. You also have the option to add a location in 3D space
for the ambient light, if you use the function with six parameters.

The pointLight() function is similar to a light bulb. It shines equally in all directions. The
first three parameters are used to set the color, while the last three parameters are the x, y,
and z coordinates for the light in 3D space.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

The spotLight() function is probably the hardest one to use. You need to use eleven
parameters. The first block of three parameters is used for the color, the second block of three
parameters consists of the x, y, and z coordinates for the light. Parameters 7, 8, and 9 are used
to set the direction along the x, y, and z axes, just as you did with the directionalLight()
function. The tenth parameter is used to set the angle of the light cone. Note that you need to
set this angle in radians. The last parameter sets the concentration.

Making polygon soup
In the Drawing 3D primitives recipe, you've learned that Processing comes with two 3D
primitives: the box and the sphere. Although these two shapes can be used to do great things,
you might have more fun creating your own 3D shapes. We'll take a look at how you can create a
flexible function to draw a cylinder in this recipe.

How to do it...
Just like in the previous recipes, you should start by importing the OpenGL library and setting
up a window with a size of 640 x 480 pixels. The next thing we'll do is to write a function that
will draw a cylinder to the screen. The code for the top and bottom of the cylinder should look
familiar; we've used something similar in the Drawing custom shapes recipe, in the previous
chapter. The code for the side of the cylinder is a little different.

void cylinder(int numSegments, float h, float r)
{
 float angle = 360.0 / (float)numSegments;

 // top
 beginShape();
 for (int i = 0; i < numSegments; i++) {
 float x = cos(radians(angle * i)) * r;
 float y = sin(radians(angle * i)) * r;
 vertex(x, y, -h/2);
 }
 endShape(CLOSE);

 // side
 beginShape(QUAD_STRIP);
 for (int i = 0; i < numSegments + 1; i++) {
 float x = cos(radians(angle * i)) * r;
 float y = sin(radians(angle * i)) * r;
 vertex(x, y, -h/2);
 vertex(x, y, h/2);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

74

 endShape();

 // bottom
 beginShape();
 for (int i = 0; i < numSegments; i++) {
 float x = cos(radians(angle * i)) * r;
 float y = sin(radians(angle * i)) * r;
 vertex(x, y, h/2);
 }
 endShape(CLOSE);
}

Now that we have a flexible function, it's time to use it and draw some cylinders to the screen.
Type the following code inside the draw() function:

background(255);

pushMatrix();
translate(width*.3, height*.3, 0);
rotateY(radians(frameCount));
fill(255, 0, 0);
cylinder(30, 100, 50);
popMatrix();

pushMatrix();
translate(width*.7, height*.5, 0);
rotateY(radians(frameCount));
fill(255, 255, 0);
cylinder(4, 200, 50);
popMatrix();

pushMatrix();
translate(width*.3, height*.7, 0);
rotateY(radians(frameCount));
fill(0, 0, 255);
cylinder(3, 200, 30);
popMatrix();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

If everything goes well, the result of your sketch should look like the following screenshot.
You can play around with the parameters of the cylinder() function to create a variety of
different cylinders.

How it works...
Polygon soup is usually referred to as a collection of triangles with no particular order. The
object might look like a real 3D object, but if you were to export this to print, on a 3D printer
for instance, it would fail to print. This is however the easiest way to quickly draw things in a
3D environment.

Our cylinder doesn't have a data structure. The side of the cylinder shares vertices with the
top and bottom, but these vertices are calculated twice. Ideally, you should have an array that
keeps track of the vertices, and one that keeps track of how they are connected to each other.

The only new thing in this example is the use of the QUAD_STRIP parameter in the
beginShape() function. This connects the vertices in a different way. You'll learn more about
this in the Drawing triangle and quad strips recipe, later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

76

There's more...
If you want to draw 3D objects with a decent data structure, you can use the Hemesh
library by Frederik Vanhoutte. This will allow you to draw more 3D primitives, and create
complex 3D objects without having to do too much difficult math. The library is available
at http://hemesh.wblut.com/.

Mixing 2D and 3D objects
On some occasions, you'll want to draw 2D objects on top of your 3D environment. In this
recipe, we'll take a look at how you can do this. This will be handy if you want to draw an
interface or some text on top of everything.

How to do it...
The first thing to do is to set up an OpenGL window of 640 x 480 pixels. You should know this
by now, since you've done it before in the previous recipes. You should also declare a float
variable named n. We'll be using this variable to calculate 3D perlin noise for animating the
size of the cubes in our 3D world. The first part of your sketch looks like the following:

import processing.opengl.*;

float n;

void setup()
{
 size(640, 480, OPENGL);
 n = 0.0f;
}

The next thing we'll do is drawing a grid of cubes. We'll change the value of the n variable by
adding 0.01 to each frame, so we get a different noise value for each cube. Type the following
code inside the draw() function and run it to see what happens.

hint(ENABLE_DEPTH_TEST);
n += 0.01;

background(255);
lights();

noStroke();
fill(255, 128, 0);

pushMatrix();
for (int i = 0; i < 17; i++) {
 for (int j = 0; j < 13; j++) {
 pushMatrix();
 fill(i * 15, 0, j * 19);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

 translate(i * 40, j * 40);
 rotateY(radians(i * 10 + frameCount));
 rotateZ(radians(i * 10 + frameCount));
 box(noise(i, j, n) * 40);
 popMatrix();
 }
}
popMatrix();

The last piece of code we need to add inside the draw() function is needed to draw some
rectangles. Both rectangles will be drawn at the same z coordinate. The first one will intersect
with the cubes, and the second one will be drawn on top of the 3D environment, hiding the
cubes below.

noLights();

fill(0);
stroke(0);
rect(320, 40, 200, 200);

hint(DISABLE_DEPTH_TEST);
fill(255);
rect(320, 240, 200, 200);

Running the sketch will give you the result shown in the following screenshot. You've
probably figured out which lines of code we've used to make the white rectangle appear
on top of everything.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

78

How it works...
The hint() function can be used to set some hacks for the current renderer. It's mostly
used to enable or disable features that are only available for certain renderers. I've used
the ENABLE_DEPTH_TEST parameter at the beginning of the draw() function, so that the
z buffer is enabled when we draw the grid of cubes and the black square. The DISABLE_
DEPTH_TEST parameter is used to disable the z buffer, so that we can draw the white square
on top of the other objects.

Drawing triangle and quad strips
Triangle strips are a series of connected triangles. They share vertices and are used for faster
rendering. Quad strips are similar, but they are a series of connected quads. Triangle and
quad strips are handy if you want to draw circle segments or ribbons in a 3D environment.

How to do it...
Start by importing the OpenGL library, and set up a window of 640 x 480 pixels. The first thing
we're going to do is write some code to draw a triangle strip. Type this piece of code inside
the draw() function. You'll notice that I've used an extra parameter for the beginShape()
function and that I'm adding two vertices with each iteration of the for loop.

background(255);
lights();

pushMatrix();
translate(width/2, height/2, 0);
rotateY(radians(frameCount));

pushMatrix();
rotateZ(radians(frameCount));

fill(255, 0, 0);

beginShape(TRIANGLE_STRIP);
for (int i = 0; i < 20; i++) {
 float x1 = cos(radians(i * 10)) * 100;
 float y1 = sin(radians(i * 10)) * 100;
 float x2 = cos(radians(i * 10 + 5)) * (180 - i * 4);
 float y2 = sin(radians(i * 10 + 5)) * (180 - i * 4);

 vertex(x1, y1, 0);
 vertex(x2, y2, 50 + i);
}
endShape();
popMatrix();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

The next piece of code is used to draw the quad strip to the screen. The code is almost the
same, the only changes being the use of the QUAD_STRIP parameter for beginShape() and
the x, y, and z coordinates of the vertices.

pushMatrix();
translate(0, 0, -100);
rotateZ(radians(-frameCount));

fill(255, 255, 0);

beginShape(QUAD_STRIP);
for (int i = 0; i < 20; i++) {
 float x1 = cos(radians(i * 10)) * (100 + i * 5);
 float y1 = sin(radians(i * 10)) * (100 + i * 5);
 float x2 = cos(radians(i * 10 + 5)) * 180;
 float y2 = sin(radians(i * 10 + 5)) * 180;

 vertex(x1, y1, 0);
 vertex(x2, y2, 80 + i * 2);
}
endShape();
popMatrix();

popMatrix();

If you run the example, you'll see the two strips rotate around the center of the screen. The
yellow strip is made from quads, the red one from triangles.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

80

How it works...
You've used the beginShape() function in the previous chapter to draw custom shapes. If
you don't use a parameter for this function, the vertices are connected with lines in the order
you add them, in the beginShape() function. If you use TRIANGLE_STRIP or QUAD_STRIP
as a parameter, they will be connected with triangles or quads. If you construct these shapes
with a for loop, you'll usually add two vertices in each iteration.

Using textures
Until now, we've only used plain colors for our 3D objects. But, you can also use images to fill
your 3D shape. These images are called textures and can be used to add more character to
your 3D scene.

Getting ready
Create two images of 640 x 640 pixels each, and add them to the data folder of your sketch.
If you have forgotten how to do this, you can take a look at the recipe Working with images, in
Chapter 2, Drawing Text, Curves, and Shapes in 2D.

How to do it...
The first thing you need to do is to import the OpenGL library and declare two PImage objects
for your images.

import processing.opengl.*;
PImage texture1;
PImage texture2;	

In the setup() function, you'll set the size of your window and load the images from the
hard drive.

void setup()
{
 size(640, 480, OPENGL);
 noStroke();

 texture1 = loadImage("stones.jpg");
 texture2 = loadImage("lines.jpg");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

Inside the draw() function, we'll draw two squares. We'll add textures to them, using the
texture() function. For each of these squares, we will map the texture to the vertices in a
different way. The first one will be drawn with the IMAGE texture mode. The following is the
code to draw the square:

background(255);

textureMode(IMAGE);
pushMatrix();
translate(width/4, height/2, 0);
rotateY(radians(frameCount));
beginShape();
texture(texture1);
vertex(-100, -100, 0, 0);
vertex(100, -100, 640, 0);
vertex(100, 100, 640, 640);
vertex(-100, 100, 0, 640);
endShape(CLOSE);
popMatrix();

For the second square, we'll use the NORMALIZED texture mode. The texture image will be
mapped, in another way, to the vertices of our shape. You'll notice that the third and fourth
parameters of the vertex() functions are different.

textureMode(NORMALIZED);
pushMatrix();
translate(width*.75, height/2, 0);
rotateY(radians(-frameCount));
beginShape();
texture(texture2);
vertex(-100, -100, 0, 0);
vertex(100, -100, 1, 0);
vertex(100, 100, 1, 1);
vertex(-100, 100, 0, 1);
endShape(CLOSE);
popMatrix();

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

82

When you have finished, you can run the example; it should look similar to the following
screenshot, depending on the photos you've used.

How it works...
We've learned a few new functions to map the texture images to our shape. Let's take a look
at how they work.

ff The texture() function is used to tell Processing which image should be used as
the texture to fill the shape.

ff The textureMode() function is used to define how Processing should handle
the texture to fill your 3D object. The value of the parameter can be either IMAGE
or NORMALIZED. The default setting is IMAGE and uses the size of the image as
coordinates for the texture mapping. If you use the NORMALIZED texture mode, the
texture coordinates will have values between 0 and 1.

ff The vertex() function has two extra parameters in this example. The first two are
the coordinates of your point; the last two are the coordinates for texture mapping.
In the IMAGE texture mode, the line vertex(100, -100, 640, 0) will draw a
vertex at (100, -100) and map the texture at the image coordinate (640, 0), to that
point, which is the upper-right corner of the image. In the NORMALIZED texture mode,
the value (1, 0) would refer to the upper right corner of the image.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

Using the 3D camera
When you work in 3D, you can move and rotate objects in space, but you can also do this
with the camera. In this example, we'll draw a simple scene and animate the camera with the
camera() function.

How to do it...
You can start by setting up an OpenGL window of 640 x 480 pixels. You also need to declare
two float variables named x and z and assign them a value inside the setup() function.
These variables will be used to animate the camera.

import processing.opengl.*;

float x;
float z;

void setup()
{
 size(640, 480, OPENGL);

 x = 0;
 z = 0;

 noStroke();
}

The next thing we'll do is to draw a simple 3D scene. We'll draw a floor with a cube placed in
the center of it. I've used the fill() function before each vertex to give each corner of the
floor a different color. This is probably the easiest way to draw gradients with Processing.

background(255);
lights();

beginShape();
fill(255, 0, 0);
vertex(0, height, 0);
fill(255, 255, 0);
vertex(0, height, -1000);
fill(0, 255, 0);
vertex(width, height, -1000);
fill(0, 0, 255);
vertex(width, height, 0);
endShape(CLOSE);

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D–Lights, Camera, and Action!

84

fill(255);
pushMatrix();
translate(width/2, height-50, -500);
box(100);
popMatrix();

If you run the sketch, you'll see the scene through the default camera. The next thing we'll
do is to animate the camera so it circles around the object, and zooms in and out. Type the
following code right after the lights() function.

x = cos(radians(frameCount)) * 1000;
z = sin(radians(frameCount)) * 1000;
camera(x, 0, z, width/2, height-50, -500, 0, 1, 0);

If you run the sketch now, you'll see the the scene through the camera we've defined with the
camera() function. Don't be confused by the animation. The camera is animated, and has a
different position in every frame. The scene doesn't move.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

How it works...
The camera() function takes zero or nine parameters. Use the camera() function without
parameters to use the default Processing camera. If you want to place the camera at
another point in your 3D environment, you'll need to use all nine parameters. The first three
parameters are the x, y, and z coordinates for the eye of the camera. The second block of
three parameters consists of the x, y, and z coordinates for the center of the scene. The
camera in our example is pointed at the cube. The last three parameters take values between
-1.0 and 1.0, but you'll usually use -1.0, 0.0, or 1.0. I've used (0, 1, 0) for this, which will be
the most common use. If you changed this to (0, -1, 0), the camera would be rotated 180
degrees over the Y-axis, and the scene would be shown upside down. You can experiment by
changing these values to get a different result.

There's more...
The camera() function is really hard to use and debug. If you really want control over
your scene, you might use the PeasyCam library by Jonathan Feinberg. This library can
be downloaded at http://mrfeinberg.com/peasycam/. Another option is the
Obsessive Camera Direction (OCD) library by Kristian Linn Damkjer, available for
download at http://gdsstudios.com/processing/libraries/ocd/.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

4
Working with Data

In this chapter we will cover:

ff Loading text files from the hard drive

ff Parsing CSV

ff Parsing XML

ff Converting datatypes

ff Working with Strings

ff Working with arrays

ff Working with ArrayLists

ff Working with HashMaps

Introduction
In this chapter, we'll mostly print things to the console. There will be little visual output. You'll
learn how to load XML and CSV and parse them, so that you can use the data stored in those
files. We'll also take a look at some useful data structures, such as ArrayList and HashMap.
This chapter will be very handy if you want to get started with data visualization.

Loading text files from the hard drive
This recipe will cover the basics of loading text files from the hard drive. You will also use this
technique in some of the other recipes in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

88

Getting ready
You'll need a text file with a few lines of text. I've used the poem My life as a progress meter by
fridge. You can read it on the open source poetry website, at http://opensourcepoetry.
org/index.html?poemDisplay.php?poem_id=765. You need to add the text file to the
data folder of your Processing sketch.

How to do it...
We'll start by declaring an array of the type String. The loadStrings() function inside the
setup() function will load the text file from the hard drive into the String array.

String[] textLines;

void setup()
{
 size(640, 200);
 smooth();

 textLines = loadStrings("poem.txt");

 noLoop();
}

In the draw() function, we'll loop through the array and use the number of characters in each
line of text to calculate the diameter for the ellipse we'll draw. Each line of text will also be
printed to the console.

void draw()
{
 background(255);
 translate(20, height/2);

 stroke(128);
 fill(255, 128);

 for (int i = 0; i < textLines.length; i++) {
 float d = textLines[i].length();
 ellipse(i * 30, 0, d, d);
 println(i + ". " + textLines[i]);	
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

89

If you run the sketch, you'll get the following basic visualization of the poem.

If you take a look at the console of the PDE, you'll see that the lines are printed there, each
with their own line number.

How it works...
The loadStrings() function is used to load the text file from the hard drive. It returns an
array of Strings. Each line of text can be accessed individually. If you want to print the first
line of text to the console, you can use println(textLines[0]). If you want to know
how many items are there in the array, you can use textLines.length. The index of the
last item in the array is length - 1. If you want to print the last line to the console, you can use
println(textLines[textLines.length - 1]).

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

90

Parsing CSV
CSV (Comma Separated Values) files are text files, commonly used for storing data. Each line
contains a row of data. The different pieces of data in each row are separated by a comma. If
you open a CSV file in a spreadsheet application such as Microsoft Excel or OpenOffice, you'll
notice that each piece of data will be in its own cell. The file I've used looks like the following,
if you open it in a text editor.

How to do it...
The first piece of code should look familiar. We've used the loadStrings() function in the
first recipe of this chapter, to load a text file. We'll use it to load a CSV file here.

String[] textLines;

void setup()
{
 textLines = loadStrings("processing-websites.csv");

 noLoop();
}

Inside the draw() function, we'll loop through the lines of text. The split() function is used
to split each line into an array with different pieces of data. We'll use a second for loop to
print these pieces of data to the console.

void draw()
{
 background(255);
 translate(20, height/2);

 stroke(128);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

91

 fill(255, 128);

 for (int i = 0; i < textLines.length; i++) {
 String[] currentLine = split(textLines[i], ", ");
 for (int j = 1; j < currentLine.length; j++) {
 println(currentLine[j]);
 }
 println("---");
 }
}

The output of the application should look like the following. I've removed some of the results
here, to save some space.

Processing
http://processing.org/

Processing JS
http://processingjs.org/

OpenProcessing
http://www.openprocessing.org

Processing Ghent
http://www.processingghent.org/

Toxiclibs
http://toxiclibs.org/

How it works...
The most important function to parse CSV files is the split() function. The first parameter of
this function takes a String variable containing a line of comma separated values. The second
parameter is another String variable and contains the characters you want to use to split the
first String. In this case, I'm using , (a comma and a space) as the delimiter. The split()
function will search for these characters in the first String and split it at these points.

There's more...
I've used the noLoop() function inside the setup() function. This function will stop
Processing from continuously executing the code in the draw() function. If you use this
function in the setup() function, this should be on the last line, right before you close the
setup() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

92

If you want to convert data from one format to another, you can use Mr. Data Converter.
This is a useful tool to convert data to CSV, XML, or JSON. This is an open source web
application written by Shan Carter and can be found at http://shancarter.com/data_
converter/.

Parsing XML
XML is used by a variety of applications. It's a really handy file format for structuring data that
can easily be read by humans and machines. I've used the same data as in the CSV example
but converted it to XML. It looks like the following screenshot:

How to do it...
The first thing we need to do is to declare an XML object. The loadXML() function will be
used to load the XML file into this object.

XML xml;

void setup()
{
 xml = loadXML("processing-websites.xml");
 noLoop();
}

Inside the draw() function, we'll loop through the XML document and use the getName(),
getInt(), getString(), and getContent() functions, to get the data out of the structure.

void draw()
{
 XML[] kids = xml.getChildren("website");

 for (int i = 0; i < kids.length; i++) {
 int id = kids[i].getInt("id");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

93

 String url = kids[i].getString("url");
 String txt = kids[i].getContent();
 println(i + ": " + id + " " + url + " " + txt);
 }
}

If you run the sketch, you should see the following output in the console:

0: 1 http://processing.org/ Processing
1: 2 http://processingjs.org/ Processing JS
2: 3 http://www.openprocessing.org/ OpenProcessing
3: 4 http://www.processingghent.org/ Processing Ghent
4: 5 http://www.processingparis.org/ Processing Paris
5: 6 http://www.processingberlin.com/ Processing Berlin
6: 7 http://www.processingcities.org/ Processing Cities
7: 8 http://www.processing-rennes.com/ Processing Rennes
8: 9 http://www.processingbordeaux.org/ Processing Bordeaux
9: 10 http://toxiclibs.org/ Toxiclibs

How it works...
The xml.getChildren("website") method, used on the first line of code inside the
draw() function returns the child nodes named website, as an array of XML objects. We'll
use a for loop to iterate through these objects.

Each website node from our XML file has two attributes: id and url. id is an integer and
can be accessed with the xml.getInt() method. The parameter you need to use for this
function is a String with the name of the XML attribute. The xml.getString() method
is similar to the xml.getInt() method and is used to receive the contents from the url
attribute, as a String.

The xml.getContent() method is used to retrieve the data between the opening tag
(<website>) and closing tag (</website>) of the XML node. This method returns a String.

Converting datatypes
While programming, you might run into a situation where you want to convert a variable of
the integer type to a float, or a float to a String. In this recipe, we'll take a look at some handy
functions you can use to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

94

How to do it...
The code for this example is fairly simple. The functions to convert the data are used within
the println() function, so that we can directly print the value they return to the console.
The following is the full code for the example:

int number1 = 65;
float number2 = 7.537;

void setup()
{
 noLoop();
}

void draw()
{
 // convert int to float
 println(float(number1));

 // convert float to int
 println(int(number2));

 // convert a number to a binary string
 println(binary(number1));

 // convert a binary string to a number
 println(unbinary("0010110011100110"));

 // convert numbers or a string to a boolean
 println(boolean(1));
 println(boolean(number1));
 println(boolean(0));
 println(boolean("true"));

 // convert char to byte
 println(byte('A'));

 // convert byte to char
 println(char(number1));

 // convert number and color to hex string
 println(hex(number1));
 println(hex(color(255, 0, 255)));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

95

 // convert hex string to number
 println(unhex("FF00CC"));

 // convert number to string
 println(str(-number2));	
}

If you run the example, the following lines will be printed to the console:

65.0
7
00000000000000000000000001000001
11494
true
true
false
true
65
A
00000041
FFFF00FF
16711884
-7.537

How it works...
All functions to convert data types take one parameter. The binary() and hex() functions
can also be used with two parameters.

ff The float() function is usually used to convert an integer into a float. In our
example, the integer 65 is converted to 65.0. You can also use it to convert a String
to a float.

ff The int() function is usually used to convert a float to its integer representation. In
our example, the number 7.537 is converted to 7. You can also use it to convert a
String to an integer.

ff The binary() function is used to convert an int, char, or byte to a binary String. If
you use the second parameter, you can specify how many digits the function should
return. In the example, the number 65 is converted to 00000000000000000000000
001000001.

ff The unbinary() function is the opposite of the binary() function. You'll use this
one to convert a binary String into an integer.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

96

ff The boolean() function is used to convert an integer or String to a boolean variable.
If the value of the parameter is 0, the function will return false. Any number that
is higher than 0 will return true. If you use a String for the parameter, you can use
true and false. Note that you need to add the quotes around these words.

ff The char() function is used to convert an integer to a char. In our example, the
number 65 is converted to the letter A.

ff The byte() function is usually used to convert a char or an integer to a byte. The
function returns an integer with a value between -128 and 127.

ff The hex() function can be used to convert an int, char, byte, or a color into a String
with eight hexadecimal digits. If you use the second parameter, you can specify how
many digits you want the function to return.

ff The unhex() function is the opposite of the hex() function. You can use it to
convert a String of hexadecimal digits to an integer.

ff The str() function is the last one we'll cover and is used to convert any of the other
types to a String. In the example, I've used a negative float. The - sign will be added
to the String, in this case.

Working with Strings
When you are working with text, you might need to count the characters of a word or change
all characters to uppercase. In this recipe, we are going to cover some functions that will come
in use when working with text.

How to do it...
The first thing we'll do is declare some String variables and assign some values to them.
Strings are basically a sequence of characters, placed between double quotes.

String word = "Hello";
String[] textArray;
String wordList = "String,theory,is,confusing";

void setup()
{
 textArray = new String[3];
 textArray[0] = "Man";
 textArray[1] = "Bear";
 textArray[2] = "Pig";

 noLoop();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

97

Inside the draw() function, we'll take a look at the methods we can use on our String variables.

println("Word: charAt(1): " + word.charAt(1));
println("Word: length(): " + word.length());
println("Word: substring(2, 4): " + word.substring(2, 4));
println("Word: toLowerCase(): " + word.toLowerCase());
println("Word: toUpperCase(): " + word.toUpperCase());
println("Word: indexOf(\"l\"): " + word.indexOf("l"));

if (word.equals("Hi")) {
 println("Hi there!");
} else {
 println("The word is not Hi");
}

println("---");

Processing also has some functions to work with Strings. You can use these to join an array of
String variables into one String, or split a sentence into an array of words.

String joined = join(textArray, "");
println(joined);

println("---");

String[] words = split(wordList, ",");
println(words);

println("---");
println(trim(" I was a sentence with too much whitespace.	 ")
);

If you run the sketch, the following text will be logged to the console:

Word: charAt(1): e
Word: length(): 5
Word: substring(2, 4): ll
Word: toLowerCase(): hello
Word: toUpperCase(): HELLO
Word: indexOf("l"): 2
The word is not Hi

ManBearPig

[0] "String"
[1] "theory"

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

98

[2] "is"
[3] "confusing"

I was a sentence with too much whitespace.

How it works...
First, we're going to take a look at how the methods for working with Strings work.

ff The charAt() method is used to get the character at a certain index. If you want to
get the first character, you have to use charAt(0).

ff The length() method returns the number of characters in the String, as an integer.

ff The substring() method is used to get a certain part of a String. You can use this
method with one or two parameters. If you use it with one parameter, it will return
a String starting from the index and continuing to the end of the String. If you use it
with two parameters, you can specify the begin index and end index of the part you
want to retrieve. In our example, this function returns the characters ll of the String
Hello, which are at index numbers 2 and 3 in the String. The end index will not be
part of the returned String.

ff The toLowerCase() method converts all characters in the String to lowercase
characters. The toUpperCase() method does the opposite and converts all
characters to uppercase.

ff The indexOf() method returns the first appearance of a substring within a String. In
our example, it returns the number 2, which is the index of the first l character found
in the String Hello. If the character you search for in the String is not found, this
method will return -1.

ff The equals() function is used to compare a String to another String. It returns true
if the Strings are the same and false if they aren't.

There are also some functions available for working with Strings in Processing.

ff The join() function is used to combine an array of Strings into a single String. I've
stitched the words together into one word, but you can use any character or String as
the second parameter.

ff The split() function does the opposite of what the join() function does and
splits a String into an array of Strings. We've also used this function in the example on
parsing CSV files.

ff The trim() function is used to remove excessive whitespace from the beginning or
end of a String.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

99

Working with arrays
If you only need two variables in your sketch, it's ok to declare them as two different float
or int variables. But, if you need lots of variables, this might not be the best option. In this
case, you'll need to use an array. An array is basically a collection of variables of the same
type. In this recipe, we'll cover how you can work with the functions Processing offers for
working with arrays.

How to do it...
The first thing we'll do is to declare two arrays of floats and assign some values to them. You
can easily do this by adding curly braces around a series of comma separated numbers.

float[] array1 = { 1.0, 4.7, 3.08 };
float[] array2 = { 72.86, 48.32 };

void setup()
{
 noLoop();
}

Inside the draw() function, we'll print the output of the functions to the console. The first
thing we'll do is add an extra number to the first array by using the append() function.

println("New Array: Array 1 + new float");
println("------------------------------");
float[] newArray = append(array1, 127.75);
println(newArray);
println();

The next thing we'll do is to copy the second array and paste it into the new array we've
created by using the arrayCopy() function.

println("Copied Array 2 to New Array");
println("------------------------------");
arrayCopy(array2, 0, newArray, 2, 2);
println(newArray);
println();

If you don't want to copy and paste one array into another one, you can also combine two
arrays into a new array using the concat() function.

println("Add array2 to end of array1");
println("------------------------------");
float[] superArray = concat(array1, array2);
println(superArray);
println();

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

100

Another function that might come in handy is increasing the size of an array. We're going to
take superArray, which we've created by combining the first and second array, and use the
expand() function to do this.

println("Increase the size of an array");
println("------------------------------");
println("Length before expanding: " + superArray.length);
superArray = expand(superArray);
// double length of array
println("Length after expanding: " + superArray.length);
// expand array to length of 256
superArray = expand(superArray, 256);
println("Length after expanding: " + superArray.length);
println();

If you want to extract some elements from an array, you can use the subset() function.
You've done something similar in the Working with Strings recipe, when you used the
substring() method.

println("Extract elements from an array");
println("------------------------------");
float[] shortArray = subset(superArray, 1, 4);
println(shortArray);

Of the last two functions we'll use, one is to reverse an array and another is to sort the
numbers from small to big.

println("Reverse the order of the array");
println("------------------------------");
float[] reversed = reverse(shortArray);
println(reversed);

println("Sort the values of the array");
println("------------------------------");
float[] sorted = sort(shortArray);
println(sorted);

When you look at the output of the sketch in the console, you'll see exactly what all these
functions do.

New Array: Array 1 + new float

[0] 1.0
[1] 4.7
[2] 3.08
[3] 127.75
Copied Array 2 to New Array

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

101

[0] 1.0
[1] 4.7
[2] 72.86
[3] 48.32
Add array2 to end of array1

[0] 1.0
[1] 4.7
[2] 3.08
[3] 72.86
[4] 48.32
Increase the size of an array

Length before expanding: 5
Length after expanding: 10
Length after expanding: 256
Extract elements from an array

[0] 4.7
[1] 3.08
[2] 72.86
[3] 48.32
Reverse the order of the array

[0] 48.32
[1] 72.86
[2] 3.08
[3] 4.7
Sort the values of the array

[0] 3.08
[1] 4.7
[2] 48.32
[3] 72.86

How it works...
We've learned some of the basic functions to work with arrays. Let's take a deeper look at
what they do.

ff The append() function is used to add a single element to the end of the array. The
first parameter is the array you want to add a value to, and the second one is the
value you want to add. Note that the value should be of the same type as the other
elements in the array.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

102

ff The arrayCopy() function is used to copy an array, or a part of an array, into
another array. In the example, I've used the function with five parameters. The first
parameter is used for the source array, and the second one is for the starting point
in that array. The third parameter takes the destination array, and the fourth one sets
the position in that array. The last parameter specifies the number of elements that
should be copied.

ff If you have two arrays of the same type, you can use the concat() function to stitch
them together into a new array.

ff The expand() function is used to increase the size of the array. If you use this
function with only one parameter, the size of the array will be doubled. You can
add a second parameter to specify the length of the array, if you don't want the
size to be doubled.

ff The subset() function is used to retrieve a part of the array. The first parameter
is used for the array you want to extract from, the second one specifies the position
where you want to begin, and the third parameter sets the number of values you want
to get.

ff The reverse() function is used to reverse the order of the elements in the array.

ff The sort() function sorts the values of an array. If you have an array with numbers,
just as in our example, they will be sorted from smallest to largest. If you have an
array with String variables, they will be sorted alphabetically.

Working with ArrayLists
In the Working with arrays recipe, you've learned how to deal with arrays, but working with an
array has its limitations. You can't easily add or remove objects. The ArrayList data structure
works in a way similar to a regular array of objects, but here you can add or remove objects in
a very easy way.

How to do it...
You can start by saving your sketch as working_with_arraylists.pde. The next thing
you need to do is to add a new tab to your sketch and save it as MyObject. You can do this by
clicking the arrow icon on top of the PDE or by using the shortcut Shift + Cmd + N on the Mac,
or Shift + Ctrl + N on Windows or Linux.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

103

In this tab, we'll write a simple class with two methods. We'll use this class to create objects to
fill our ArrayList.

class MyObject
{
 float x;
 float y;

 MyObject()
 {
 x = random(width);
 y = random(height);
 }

 void update()
 {
 y--;
 }

 void render()
 {
 ellipse(x, y, 60, 60);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

104

Once you've written the code for the MyObject class, you can switch back to the working_
with_arraylists tab to write the setup() function.

ArrayList<MyObject> myList;

void setup()
{
 size(640, 480);
 smooth();

 myList = new ArrayList<MyObject>();
 for (int i = 0; i < 4; i++) {
 myList.add(new MyObject());
 }
}

Inside the draw() function, we'll loop backwards through the list of objects, update them,
and draw them to the screen. We need to loop backwards through the list, because we are
removing elements dynamically.

void draw()
{
 background(255);

 fill(255, 128);
 stroke(0);

 for (int i = myList.size() - 1; i >= 0; i--) {
 MyObject o = (MyObject)myList.get(i);
 o.update();
 o.render();
 if (o.y <= 0) {
 myList.remove(i);
 }
 }
}

The last part you need to do is to add the mousePressed() function. A new object will be
added to the list, and the number of elements will be printed to the console if you click the
mouse.

void mousePressed()
{
 myList.add(new MyObject());
 println("Total elements in List: " + myList.size());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

105

If you run the sketch, the output will look like the following screenshot:

How it works...
The first thing you need to do is declare an ArrayList before the setup() function. You can
simply do this with the following piece of code:

ArrayList myList;

You can also add a datatype to the list, if you know what objects you'll store in it. I've added
the MyObject datatype in the example.

ArrayList<MyObject> myList;

Inside the setup() function, you need to create an empty ArrayList. The following lines of
code show you how to do it with and without a datatype.

myList = new ArrayList(); // without datatype
myList = new ArrayList<MyObject>(); // with datatype

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

106

You can add objects to the list with the add() method. In the example, I've used a regular
for loop to add four objects. If you want to add a single object, you can do it with the
following code:

myList.add(new MyObject());

If you want to remove an object from the list, you need to use the remove() method. You
need to pass the index of the element you want to remove from the list, with this method. If
you want to remove the first element, you would call myList.remove(0).

There's more...
There are some other ways to loop through an ArrayList. If you add a datatype to your ArrayList,
just as you did in the setup() function, (myList = new ArrayList<MyObject>();),
you can use this simplified notation of the for loop. You don't need to cast the element you
get, to the datatype that you need, any more. This technique also works if you want to loop
through an array of objects.

for (MyObject o : myList) {
 o.update();
 o.render();
}

Another way to loop through the ArrayList is to use an Iterator. You can access this Iterator by
calling the iterator() method on your ArrayList. The hasNext() method of the Iterator
returns true, if there are elements left, and false, if you are at the last element. The
next() method of the Iterator is used to retrieve the next object in the list.

Iterator itr = myList.iterator();
while (itr.hasNext()) {
 MyObject o = (MyObject)itr.next();
 o.update();
 o.render();
}

Working with HashMaps
HashMaps are similar to arrays, but they use a different method for accessing elements.
Arrays use an integer for the index, while HashMaps use a String. HashMaps are really useful
when you need to search for a specific item in a large collection of data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

107

How to do it...
We start by declaring a HashMap object and adding some values to it, inside the
setup() function.

HashMap<String, Float> hm;

void setup()
{
 hm = new HashMap<String, Float>();
 hm.put("Processing", 51.30);
 hm.put("openFrameworks", 30.45);
 hm.put("Cinder", 12.78);

 noLoop();
}

The first thing we'll do inside the draw() function is loop through the HashMap object using
an Iterator and print each entry to the console.

Iterator i = hm.entrySet().iterator();
while (i.hasNext ()) {
 Map.Entry me = (Map.Entry)i.next();
 println("Key: " + me.getKey() + ", Value: " + me.getValue());
}
println("---");

If you want to check whether a HashMap is empty, you can do that with the isEmpty()
method. Accessing a single element from the HashMap can be done with the get() method.

println("Is Empty? " + hm.isEmpty());
println("Get 'Processing': " + hm.get("Processing"));

If you want to check how many elements a HashMap contains, you can use the size()
method. This works the same as with ArrayLists. Removing elements from the HashMap can
be done with the remove() method.

println("Number of Elements (before remove): " + hm.size());
println("Removed: " + hm.remove("openFrameworks"));
println("Number of Elements (after remove): " + hm.size());

The last thing we'll do is search through the HashMap for whether it contains an entry with a
certain key using the containsKey() method.

println("Contains key 'openFrameworks': " + hm.containsKey("openFram
eworks"));

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data

108

If you run the example, the following values will be logged to the console:

Key: Cinder, Value: 12.78
Key: Processing, Value: 51.3
Key: openFrameworks, Value: 30.45

Is Empty? false
Get 'Processing': 51.3
Number of Elements (before remove): 3
Removed: 30.45
Number of Elements (after remove): 2
Contains key 'openFrameworks': false

How it works...
You need to declare a HashMap object, first, and initialize it by calling the constructor of the
class. It's also a good practice to add the data types you'll store in it. Note that you can only
store objects and Strings in a HashMap. This doesn't work for variables of the float or int type.
If you do want to store integers or floats in a HashMap, you can use the Integer and Float
classes from Java. The Integer class wraps an int variable into an object; the Float class
does the same with a float variable.

Hashmap<String, Float> hm;
hm = new HashMap<String, Float>();

Adding elements can be done with the put() method. The first parameter is the key, and
should preferably be a String, so you can easily search for it. The second parameter can be
any kind of object. We've used objects of the Float type in our example. To remove objects,
you need to use the remove() method. The parameter you need to use for this method is the
key from the entry you want to remove.

If you want to check whether a HashMap is empty, you can use the isEmpty() method.
This method returns true if the HashMap is empty and false if it contains entries. If you
want to check whether a HashMap contains an entry with a certain key, you can use the
containsKey() method. The parameter for this function is the key you want to search for.
This method also returns a boolean variable.

Looping through all objects in a HashMap can be done with an Iterator. This is similar to
working with ArrayLists. The Iterator can be accessed with hm.entrySet().iterator().
Individual entries within a while loop can be accessed with Map.Entry me = (Map.
Entry) itr.next(). If you want to get the key or the value for a specific entry, you can use
the getKey() and getValue() methods.

www.it-ebooks.info

http://www.it-ebooks.info/

5
Exporting from

Processing
In this chapter we will cover:

ff Saving images

ff Exporting applications

ff Saving PDF files

ff Calculating PDF sizes

ff Saving text files

ff Exporting 3D files

ff Saving binary files

Introduction
Until now, we've only drawn things to the screen or logged text to the console. But at
some point, you'll want to show your art to the world, so you may need to export your work
in an appropriate format. Processing can be used to create images, movies, or interactive
applications. In this chapter, we'll explore the different ways you can export your work for
print, web, or projection.

Saving images
The easiest way to share your work on the web is to upload images to Flickr or Facebook. You
could take screenshots of your sketches and use those, but there are better ways to do this.
Using the saveFrame() function, you can save the contents of your Processing sketch to
your hard drive.

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting from Processing

110

How to do it...
We'll use a basic sketch to show how saving images works. The following code will generate
1000 transparent white circles on a black background.

void setup()
{
 size(640, 480);
 smooth();
}

void draw()
{
 background(0);
 for (int i = 0; i < 1000; i++) {
 fill(random(255), 64);
 stroke(255, 128);
 ellipse(random(width), random(height), 40, 40);
 }

 if (keyPressed) {
 saveFrame("images/artwork-####.png");
 }
}

The saved image will look somewhat like the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

111

How it works...
Within the draw() function, we'll use the keyPressed system variable. The value of this
variable is true if a key is pressed and false if no keys are pressed. The saveFrame()
function is used to save the contents of the sketch window to the hard drive. The parameter
for this function is a String containing the file name for the image you'll save. I've used
images/ at the beginning of this String to tell Processing to save the image in the images
directory. You'll find this folder in your sketch folder, after you've run the sketch and saved
an image. #### is used to add the current frame number to the image. If you don't use this,
existing files will be overwritten. Choosing a file type is very easy. If you use .png at the end
of the String, Processing will save a PNG file. If you use .jpg, a JPEG file will be saved. The
extensions you can use are .jpg, .png, .tif, and .tga.

If you want to see the images you've saved, you need to check your sketch folder. Go to
Sketch | Show Sketch Folder to open the images.

Exporting applications
If you need to show one of your interactive sketches in an exhibition, you'll most likely show it
on a screen or project it on a wall. But you can't expect the people at the museum to run your
sketch from Processing every day before the exhibition opens. A great thing about Processing,
is that you can use it to create native fullscreen applications that run on Mac OS X, Windows,
or Linux. In the following example, you'll learn how to do this.

How to do it...
You can start by creating a simple animated sketch The size of the sketch will be set
dynamically, depending on the screen resolution of the computer you'll run it on. You can do
this by using the displayWidth and displayHeight system variables as parameters for
the size() function.

float x;
float y;
int b;

void setup()
{
 size(displayWidth, displayHeight);
 smooth();

 x = 0;
 y = 0;

 background(0);

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting from Processing

112

 noFill();
}
	
void draw()
{
 b++;
 if (b > 255) {
 b = 0;	
 }

 x += random(2, 6);
 if (x > width) {
 x = 0;
 y += random(20, 40);
 if (y > height) {
 y = 0;
 }
 }

 stroke(0, random(255), b, 64);
 float r = random(6, 60);
 ellipse(x, y, r, r);
}

Once you've finished coding, you can export the application. Go to the File | Export
Application menu or use the Cmd + E shortcut on the Mac, or Ctrl + E on Windows or Linux.
On the Export Options panel, you can choose any of the three platforms and whether you
want the application to run fullscreen or not. If you click on the Export button, your sketch
folder will open and the applications for each of the chosen platforms will be there.

How it works...
Processing will take the code from your sketch and will wrap it in a Java file. You'll find this
Java file in the source directory next to the application. The file will be compiled by Processing,
using a Java compiler in a native application. This process is done in the background so you
don't have to worry about anything.

Saving PDF files
If you want to print your artwork and you save your sketch as an image, the size of your
print will be based on the resolution of your image. If you want to print your images really
big, you might want to save your sketch as a PDF file. Every shape you draw in Processing
is vector-based and can thus be printed at any size. Note that if you work with pixels in
Processing, you won't be able to save your work as PDF.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

113

How to do it...
The first thing you need to do is to import the PDF library into your sketch. Go to Sketch |
Import Library | pdf to do this. You also need to declare a boolean variable named savePDF.

import processing.pdf.*;

boolean savePDF = false;

void setup()
{
 size(640, 480);
 smooth();
 rectMode(CENTER);
 stroke(0);
}

Inside the draw() function, we'll use the savePDF variable to tell Processing when it needs
to start recording the PDF file. Everything you draw between the beginRecord() and
endRecord() functions will be included in the PDF file. The keyPressed() function is used
to change the value of the savePDF variable.

void draw()
{
 if (savePDF) {
 beginRecord(PDF, "pdf/myartwork-####.pdf");
 }

 background(0);
 for (int i = 0; i < 1000; i++) {
 fill(0, random(255), random(255), 64);
 pushMatrix();
 translate(random(width), random(height));
 rotate(radians(random(360)));
 rect(0, 0, 50, 50);
 popMatrix();
 }

 if (savePDF) {
 endRecord();
 savePDF = false;
 }
}

void keyPressed()

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting from Processing

114

{
 if (key == 's') {
 savePDF = true;
 }
}

If you run the sketch, you can save your work by pressing the S key. You will find the PDF files
in the pdf folder inside your sketch folder.

How it works...
The beginRecord() function is used to tell Processing that it needs to start recording the
data that is drawn to the screen. The first parameter for this function is the renderer; in our
case this will be PDF. The second parameter is a String with the name of the file you want to
save. I've used pdf/myartwork-####.pdf in the example. The files will be saved in the pdf
folder; the #### characters will be replaced with the current frame number. When you are
finished drawing, you need to call the endRecord() function, so that Processing can save
the file to the hard drive.

There's more...
There are different ways to save PDF files from Processing. You can, for instance, save PDF
files with multiple pages or flatten your 3D artwork and save it in a PDF file. As I can only cover
this basic recipe in my book, you should take a look at the Processing reference to find out
how the other techniques work. You can find it at http://processing.org/reference/
libraries/pdf/index.html.

Calculating PDF sizes
Imagine that you need to generate a few thousand vector images to print postcards. To
streamline your process, you probably want to generate PDF files with the exact dimensions,
so that you don't have to crop them manually.

How to do it...
You need to define the size of your final print first. Let's say that you'll use a standard A4
sheet of paper. The dimensions of this piece of paper are 210 x 297 millimeters, or 8.2677 x
11.6929 inches. The final size of your sketch will be 595 x 842 pixels. You can define the size
of an A4 sheet of paper inside the setup() function, as done in the following code:

void setup()
{
 size(595, 842);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

115

How it works...
The only thing you need to know is that Processing displays everything on the screen with a
resolution of 72 dots per inch (DPI). If you use the metric system, you'll need to convert the
size of your final output from millimeters to inches first. One inch is 25.4 millimeters. If you
use the imperial system, you won't need to convert anything. The next thing you need to do is
to convert from inches to pixels. To do this, you need to multiply the number of inches by 72
and round it to the nearest integer value. A standard letter size page is 8.5 x 11 inches. The
calculation to convert these dimensions to pixels is as follows:

8.5 x 72 = 612 pixels

11 x 72 = 792 pixels

Saving text files
In the previous chapter, you learned about opening text files. We'll take a look at how you can
save them.

How to do it...
The first thing you'll need to do is declare an object of the PrintWriter type and initialize it
with the createWriter() function.

PrintWriter textFile;

void setup()
{
 textFile = createWriter("files/randomnumbers.txt");
}

In each cycle of the draw() function, we'll write a random number to the file. When the
frameCount variable reaches 1000, we'll save the file and quit the application.

void draw()
{
 textFile.println(random(200));
 if (frameCount >= 1000) {
 textFile.flush();
 textFile.close();
 exit();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting from Processing

116

How it works...
The createWriter() function is used to create a text file. The parameter for this file is a
String containing the file name. Just like in the example on saving images, I've added a file
directory to the String.

Inside the draw() function, you'll use the textFile.println() method. This method
works just like the println() function but writes the line of text to the file instead of
the console.

Saving the file is done with the flush() method, followed by the close() method. You have
to use both of these methods to ensure that the file is made correctly.

Exporting 3D files
You've already learned that you can save your work as an image or a PDF file. If you want to
generate 3D objects in Processing, and render them in a 3D application such as Cinema 4D
or in a CAD program, you'll need to save that 3D data. We'll take a look at how you can use the
DXF library that comes with Processing to save your generated 3D models.

How to do it...
We'll need to import the DXF and OpenGL libraries first. Go to the Sketch | Import Library
menu, and choose these libraries from there. You'll also need to declare a boolean variable
named saveDXF. We'll use this variable in the same way as we used the savePDF variable in
the recipe on saving PDF files.

import processing.opengl.*;
import processing.dxf.*;

boolean saveDXF = false;

void setup()
{
 size(640, 480, OPENGL);
 smooth();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

117

In the draw() function, we'll use the beginRaw() and endRaw() functions to record the 3D
data we need to save. You need to draw all 3D objects between these functions.

void draw()
{
 if (saveDXF == true) {
 beginRaw(DXF, "files/myCubes.dxf");
 }

 lights();

 background(255);
 fill(128);
 noStroke();

 for (int i = 0; i < 100; i++) {
 pushMatrix();
 translate(random(width), random(height), random(-1000,
0));
 pushMatrix();
 rotateX(radians(random(360)));
 rotateY(radians(random(360)));
 rotateZ(radians(random(360)));
 box(50);
 popMatrix();
 popMatrix();
 }

 if (saveDXF == true) {
 endRaw();
 saveDXF = false;
 }
}

void keyPressed()
{
 if (key == 's') {
 saveDXF = true;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting from Processing

118

How it works...
The beginRaw() and endRaw() functions are used to capture 3D data and write it to a
file. You can use them to write your 3D scene to a PDF file, where it will be flattened. If you
want the actual 3D data, you need to save the data to a .dxf file. The first parameter of the
beginRecord() function is either DXF or PDF, the second one is the name of the file you
want to save.

If you want to see the contents of your DXF file, you can use the free eDrawings
Viewer software, which is available for Windows and Mac OS X. You can download it
at http://www.edrawingsviewer.com/. If you open the file in this application,
it should look somewhat like the following screenshot:

www.it-ebooks.info

http://www.edrawingsviewer.com/
http://www.it-ebooks.info/

Chapter 5

119

There's more...
You can use Hemesh or Toxiclibs to generate 3D geometry and save everything as STL files.
This file format is much more usable for rapid prototyping.

Saving binary files
You've already learned that Processing can save data to a text file. In this recipe, we'll take a
look at how you can write data to a binary file. This might be useful when you want to create
your own proprietary file format.

How to do it...
You need to declare an integer array with a length of 1000 before the setup() function.
When you run the sketch, this array will be filled with some random numbers representing
uppercase and lowercase letters of the alphabet.

int[] numbers = new int[1000];

void setup()
{
 for (int i = 0; i < numbers.length; i++) {
 if (random(100) < 50) {
 // uppercase A - Z
 numbers[i] = floor(random(65, 91));
 } else {
 // lowercase a - z
 numbers[i] = floor(random(97, 123));	
 }
 }
}

Inside the draw() function, we'll convert the integer array into a byte array and use the
saveBytes() method to save the data to the hard drive.

void draw()
{
 if (keyPressed) {
 byte[] bytes = byte(numbers);
 saveBytes("strangefile-"+frameCount+".zzz", bytes
);
 exit();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting from Processing

120

How it works...
The saveBytes() function is used to save an array of bytes to the hard drive. The first
parameter is a String representing the name of the file you want to save, while the second
parameter is the array of bytes.

If you open the saved file in a text editor, you'll see lots of strange characters. If you want
to see the real data, you'll need to open it in a hex editor. I've used HexEdit on Mac OS X;
similar applications are available for Windows or Linux. The following screenshot shows the
contents of the file we've just saved. You'll see that the column on the right-hand side contains
lowercase and uppercase characters.

There's more...
If you want to open the file you've just saved, you can use the loadBytes() function. The
following piece of code will print all characters you see in the right-hand side column of the
hex editor screenshot, to the console. That is, it will if you've used the same file as I did.

byte[] bytes = loadBytes("strangefile-56.zzz");
println(char(bytes));

www.it-ebooks.info

http://www.it-ebooks.info/

6
Working with Video

In this chapter we will cover:

ff Playing a video

ff Exporting image sequences

ff Manipulating pixels in a video

ff Using filters

ff Controlling the speed of a video

ff Jumping to a specific frame

ff Blending video

Introduction
Until now, we've only drawn shapes and images on the screen. In this chapter, we'll take a
look at how you can draw video files, blend them together, or use filters to create a more
interesting effect. You'll also learn how you can export your work as an image sequence, so
that you can create a video file to show your work on websites such as Vimeo or YouTube.

Playing a video
This will be the most basic recipe in this chapter. You'll learn how to load a video file from the
hard drive and play it on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video

122

Getting ready
Start a new Processing sketch, and save it in your sketch folder as playing_video.pde.
Add a video file to the data folder of the sketch by dragging the video file onto the Processing
window. I've used the marbles.mov file for all examples; you can use this one too, if you
like. This video file should be in the data folder of your Processing sketch. You can add it by
dragging the file onto the PDE.

How to do it...
You need to start by importing the video library. Go to Sketch | Import Library | video, to do
this. You also need to declare a Movie object, right before the setup() function. Inside the
setup() function, you'll load the video file from the hard drive, and set the video to loop.

import processing.video.*;

Movie m;

void setup()
{
 size(640, 480);

 m = new Movie(this, "marbles.mov");
 m.loop();
}

The next thing you need to do is write the movieEvent() function to read a new frame from
the video file.

void movieEvent(Movie m)
{
 m.read();
}

The last thing you'll do is draw the current video frame to the screen, using the image()
function.

void draw()
{
 background(0);
 image(m, 0, 0, width, height);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

123

The end result will look like the following screenshot, if you've used the same video file.

How it works...
The first thing you'll do is to declare an object of the type Movie. You need to do this before
the setup() function. Inside the setup() function, we'll load the movie file from the data
folder of the sketch into the object, using the new Movie() method. This constructor takes
two parameters. The first one will be the this keyword. This will pass a reference from the
main PApplet object to the new Movie object. The second parameter is a String with the
name of the video file. I've used the loop() method of the Movie class to continuously play
the video.

The movieEvent() function is called automatically every time a new frame is available. You
need to use the read() method of the Movie class to capture the frame. You can draw this
frame to the screen using the image() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video

124

Exporting image sequences
Processing is a great tool to make videos. In older versions of Processing, there was the
MovieMaker class, which allowed you to render the output of your sketch to a QuickTime
movie. This class has been removed from Processing 2, as it uses the GStreamer framework
now, instead of QuickTime. In this recipe, you'll learn how to export your work as an image
sequence, so that you can create a video file afterwards.

How to do it...
This is the full code for the example. I've used an array of PVector objects to draw lines and
circles to the screen, animated using Brownian motion. When the running sketch reaches
frame 900, the application will quit.

int randomNum;
 l
PVector[] points;

float radius = 2;

void setup()
{
 size(1280, 720)
 smooth();

 background(234, 228, 17);

 points = new PVector[64];
 for (int i = 0; i < points.length; i++) {
 points[i] = new PVector(random(width), random(height));
 }

 frameRate(30);

 randomNum = floor(random(10000, 90000));

 noFill();
 stroke(0, 64);
}
	
void draw()
{
 for (int i = 0; i < points.length; i++) {
 float newX = points[i].x + random(-10, 10);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

125

 float newY = points[i].y + random(-10, 10);

 stroke(i*4, 64);

 line(points[i].x, points[i].y, newX, newY);
 ellipse(newX, newY, radius, radius);

 points[i].x = newX;
 points[i].y = newY;
 }

 radius++;
 if (radius > 10) {
 radius = 2;
 }

 saveFrame("images/export-"+randomNum+"-#####.tga");

 // save 900 frames = 30 sec @ 30 fps
 if (frameCount >= 900) {
 exit();
 }
}

After you run the sketch, you'll find the TGA image sequence in the images folder of your
sketch folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video

126

How it works...
The most important thing, when you create movies, is to set the right size and frame rate
in the setup() function of your sketch. I've used a size of 1280 x 720 pixels and set the
frame rate to 30 frames per second. This will give you a good idea of what the movie will look
like when you run the sketch without saving images. This video format is good for sharing
your video on video websites, such as Vimeo and YouTube. Note that if you do some heavy
calculations each frame, this may slow the sketch down, and the actual frame rate will be less
than the one you've set with the frameRate() function.

Each frame of your sketch will be saved, using the saveFrame() function. I've used a random
integer named randomNum in the filename of the images, so that you'll be able to save more
than one image sequence in the same directory. It might also be a good idea to quit your sketch
after saving the image sequence. You can do this by using the exit() function. If you want
a video of 30 seconds, you need to save 900 frames. Calculating this number is very easy:
number of frames per second x number of seconds = total number of frames.

I've saved the images as a TGA sequence. This is the fastest way of saving images with
Processing, as the TGA file format is uncompressed. Alternatively, you can use PNG or JPEG,
but you'll notice that this will slow down your sketch.

Manipulating pixels in a video
In the first recipe of this chapter, you've learned how to load a video file and display its frames
to the screen using the image() function. In this recipe, we'll take a look at how we can
change the appearance of the movie by changing the color of some of the pixels.

How to do it...
The first part of the sketch will be similar to the example from the first recipe. Import the
video library, declare a Movie object, load the video file, and loop it.

import processing.video.*;

Movie m;
int numPixels;

void setup()
{
 size(640, 480);

 numPixels = width * height;

 m = new Movie(this, "marbles.mov");
 m.loop();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

127

The big changes for this example are in the draw() function. We'll draw each frame of the
movie to the screen, using the image() function. After doing that, we'll change the color of
the pixels with a brightness higher than 245.

void draw()
{
 background(0);
 image(m, 0, 0, width, height);

 loadPixels();
 for (int i = 0; i < numPixels; i++) {
 float b = brightness(pixels[i]);
 if (b > 245) {
 pixels[i] = lerpColor(pixels[i], color(0, 0, 0), map(b, 0, 255,
0, 1));
 }
 }
 updatePixels();
}

void movieEvent(Movie m)
{
 m.read();
}

If you run the sketch, you'll see that a lot of the screen will be black because the movie we've
used is very bright.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video

128

How it works...
After drawing the image to the screen, I've used the loadPixels() function to load all
pixels from the screen to the pixels array. I've used a for loop to go over all pixels, to check
their brightness. If the brightness of a pixel is higher than 245, the pixel color is mixed with
black. After changing the colors, you need to call the updatePixels() function to show the
manipulated image on the screen.

The lerpColor() function is used to mix two colors. The first two parameters of this function
are used for the colors you want to mix, and the third parameter is used to define how these
colors are mixed. This should be a value between 0 and 1. If you use 0.1, the resulting color
will be visually very close to the first color. If you use 0.9, it will look more like the second
color. If you want to mix both colors equally, you can use 0.5.

If you use a video that isn't as bright as this one, you can lower the brightness threshold value.
This will give you a different result. You can also try using the hue() or the saturation()
values of a pixel as a threshold value for coloring the pixels.

Using filters
Filters are probably the easiest way to change the appearance of your video. In this recipe,
you'll learn how to use the filter() function and the different presets you can use with it.

How to do it...
The code for this example is the same as the code you've used in the first recipe from this
chapter. The only difference is that you'll use the filter() function right after you've drawn
the movie to the screen, using the image() function.

import processing.video.*;

Movie m;

void setup()
{
 size(640, 480);

 m = new Movie(this, "marbles.mov");
 m.loop();
}

void draw()
{
 background(0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

129

 image(m, 0, 0, width, height);
 filter(POSTERIZE, 4);
}

void movieEvent(Movie m)
{
 m.read();
}

I've used the filter() function with the POSTERIZE mode, in this example. The result will
look like the following screenshot:

How it works...
The filter() function usually takes one parameter to change the appearance of what is
shown on the screen. Some modes also need a second parameter. The following are modes
you can use with the filter() function:

ff BLUR: This mode applies a Gaussian blur filter to the pixels on the screen. The
second parameter sets the radius of the blur. If you use this mode without specifying
a second parameter, the radius of the blur will be 1 pixel. Note that your sketch will
slow down, if you use a big blur radius.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video

130

ff DILATE: This mode increases the light areas of the image. It is handy if you want
less contrast.

ff ERODE: This one does the opposite of what the DILATE mode does—it decreases
the light areas of the image. You can use this one if you want to add more contrast
to the image.

ff GRAY: This mode converts the video to grayscale.

ff INVERT: This mode converts the image to its negative.

ff OPAQUE: This mode converts the alpha channel of the image to opaque pixels.

ff POSTERIZE: This mode reduces the number of colors in the image. The second
parameter sets the number of colors.

ff THRESHOLD: This mode converts the image to black and white pixels.

Controlling the speed of a video
Playing a video at its normal speed can be boring. In this recipe, we'll take a look at how you
can make a video less boring. You'll learn how to speed up your video, slow it down, and even
play it backwards.

How to do it...
We'll start again with the same code as in the first recipe of this chapter, but we'll declare a
float variable named s, right before the setup() function. We'll use this variable to control
the speed of the movie, so you need to assign it a value of 1.0 in the setup() function.

import processing.video.*;

Movie m;
float s;

void setup()
{
 size(640, 480);

 m = new Movie(this, "marbles.mov");
 m.loop();

 s = 1.0;
}

Inside the draw function, we'll draw the current frame to the screen, using the image()
function. We'll draw the value of the Speed variable to the screen, using the text() function.
The movieEvent() function stays the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

131

void draw()
{
 background(0);
 image(m, 0, 0, width, height);

 fill(0);
 text("Speed: " + s, 20, 20);
}

void movieEvent(Movie m)
{
 m.read();
}

The mousePressed() function will be used to set the speed of the movie. We'll map the
value of the mouseX variable, so it fits within the -2 to 2 range. We'll use the speed()
method of the Movie class to set the playback speed of the movie to this value.

void mousePressed()
{
 s = map(mouseX, 0, width, -2, 2);
 m.speed(s);
}

Run the sketch and click on the screen, to see the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video

132

How it works...
The speed() method of the Movie class is used to set the playback speed of the video.
If you use a speed of 1.0, the video will play back at its normal speed. If you use 0.5, the
video will play at half its normal speed. If you want to play the video faster, you need to use a
number that is higher than 1.0. Negative numbers will play the video backwards.

Jumping to a specific frame
In the previous recipe, you learned how to control the speed of your movie. In this one, we'll
take a look at how you can jump to a specific position inside the video file.

How to do it...
We'll start with the same code as in the first recipe, but we'll add a float variable named w,
which we will use to draw a progress bar to the screen.

import processing.video.*;

Movie m;
float w;

void setup()
{
 size(640, 480);

 m = new Movie(this, "marbles.mov");
 m.loop();
}

void draw()
{
 background(0);
 image(m, 0, 0, width, height);

 fill(0);
 noStroke();
 rect(0, 0, w, 10);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

133

The movieEvent() function looks a little different. We'll map the current time of the movie
to a value between 0 and the width of our sketch window and store it in the w variable.

void movieEvent(Movie m)
{
 m.read();
 w = map(m.time(), 0, m.duration(), 0, width);
}

In the mousePressed() function, we'll map the value of the mouseX variable to a range
between 0 and the duration of the movie and use the jump() method to make the playhead
jump to that time in the movie.

void mousePressed()
{
 float x = map(mouseX, 0, width, 0, m.duration());
 m.jump(x);
}

Run the sketch and click on the window to see what happens. The result will look like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video

134

How it works...
The duration() method of the Movie class returns a float value containing the total
duration of the movie in seconds. The time() method returns the current position of the
playhead in seconds. The jump() method is used to set the playhead to another position
in the movie. The parameter for this function is a float value between 0 and the duration of
the movie. The black bar you see on top of the screen is the progress bar. The width of this
rectangle is calculated in the movieEvent() function.

Blending video
This recipe will be a little different. We'll play two different movies at the same time and
blend them together. You'll learn how to use the different blending modes to get some really
psychedelic results.

How to do it...
We'll start by declaring two Movie objects, one for each video. I've used the original marbles
video and the marbles2 video, which has a kaleidoscope effect applied to it. We'll run this
second video at twice the speed.

import processing.video.*;

Movie m1;
Movie m2;

void setup()
{
 size(640, 480);

 m1 = new Movie(this, "marbles.mov");
 m1.loop();

 m2 = new Movie(this, "marbles2.mov");
 m2.loop();
 m2.speed(2);
}

The movieEvent() function looks a little different. If you have more than one video playing
at the same time, you need to read the frames separately.

void movieEvent(Movie m)
{
 if (m == m1) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

135

 m1.read();
 } else {
 m2.read();
 }
}

Inside the draw() function, we'll draw the first movie to the screen. The second movie will be
drawn on the screen, using the blend() function.

void draw()
{
 background(0);
 image(m1, 0, 0, width, height);

 blend(m2, 0, 0, width, height, 0, 0, width, height, DIFFERENCE);
}

The result of this technique will look somewhat like the following image, depending on the
blending mode you've used.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video

136

How it works...
The blend() function takes a lot of parameters. The first one takes a PImage object, in our
case the current frame of the movie. The next four parameters take the x and y coordinates
and the width and height of the source image. Parameters six to nine do the same for the
destination image. The last parameter is the blending mode. These modes work the same way
as the blending modes in image editors, such as Photoshop. These are the available modes:
ADD, BLEND, BURN, DARKEST, DIFFERENCE, DODGE, EXCLUSION, HARD_LIGHT, LIGHTEST,
MULTIPLY, OVERLAY, SCREEN, SOFT_LIGHT, and SUBTRACT. Go ahead and play around
with these modes to see the effect they have on the final output of your sketch.

www.it-ebooks.info

http://www.it-ebooks.info/

7
Audio Visualization

In this chapter we will cover:

ff Importing the Minim library

ff Playing audio files

ff Using live audio

ff Drawing a waveform

ff Using Fast Fourier Transforms

ff Audio reactive particles

ff Creating a drum machine

ff Creating a synthesizer

ff Using effects

Introduction
In this chapter, we'll take a look at how you can work with audio. You'll learn how to play audio
files and visualize them. You'll also learn how to make simple instruments, such as a drum
computer and a synthesizer. We'll finish the chapter with a recipe on working with effects.

Throughout this chapter, we'll use Minim, the audio library that is included with Processing.
But there are some other libraries available to work with audio that might be better for the
thing you want to do. Here are some of them:

ff Sonia, by Amit Pitaru, can be found at http://sonia.pitaru.com/

ff Beads, by Ollie Bown, can be found at http://www.beadsproject.net/

ff Ess, by Krister Olsson, can be found at http://www.tree-axis.com/Ess/

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

138

Importing the Minim library
The first thing you'll need to do for every sketch in this chapter is to import the minim library.
You'll learn all about Minim in this recipe.

How to do it...
Create a new sketch and go to Sketch | Import Library | minim. The following lines will be
added at the top of your document.

import ddf.minim.*;
import ddf.minim.signals.*;
import ddf.minim.analysis.*;
import ddf.minim.effects.*;

How it works...
The minim library contains four packages. These contain specific classes to work with a
certain aspect of audio. You don't usually need to import all of them into your sketch.

ff ddf.minim.*: This contains the main Minim classes. You'll need to import this one
in every sketch where you want to use the minim library. This package allows you to
play audio files and work with the microphone input of your computer.

ff ddf.minim.signals.*: This contains an oscillator and some wave generators
to create sine waves, saw waves, and so on. This package is mostly used to create
synthesizers.

ff ddf.minim.analysis.*: This contains classes to analyze audio. There's a class to
do some simple beat detection and one to do Fast Fourier Transforms.

ff ddf.minim.effects.*: This contains some classes to add effects to your audio.
These effects are basically filters that allow you to filter out some frequencies from an
audio stream.

Playing audio files
We'll start with the easiest thing you can do with Minim, and that is playing an audio file. But
since this might be a little too easy, we'll add a basic interface, so that you can control the
audio with your keyboard and mouse.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

139

Getting ready
Create a new sketch and save it as playing_audio_files.pde. Import the minim library
to your sketch, just like you learned in the first recipe of this chapter. You also need to add
an MP3 file to your sketch. Go find your favorite song on your hard drive and drag it onto the
Processing editor to add it to the data folder of your sketch.

How to do it...
The first thing we need to do is declare a Minim object and an AudioPlayer object, right
before the setup() function.

Minim minim;
AudioPlayer player;

Inside the setup() function, we'll initialize the minim object, load the MP3 file from the data
folder, and play it.

void setup()
{
 size(640, 480);

 minim = new Minim(this);

 player = minim.loadFile("song.mp3");
 player.play();
}

Inside the draw() function, we'll draw some basic information about the song. There will be a
line that shows the current position of the playhead and some text with the same information.

void draw()
{
 background(255);

 float x = map(player.position(), 0, player.length(), 0, width);

 stroke(0);
 line(x, 0, x, height);

 int totalSeconds = (int)(player.length()/1000) % 60;
 int totalMinutes = (int)(player.length()/(1000*60)) % 60;
 int playheadSeconds = (int)(player.position()/1000) % 60;
 int playheadMinutes = (int)(player.position()/(1000*60)) % 60;

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

140

 String info = "Position: " + playheadMinutes + ":" + nf(
 playheadSeconds, 2) + "/" + totalMinutes + ":" + nf(
 totalSeconds, 2);

 fill(0);
 noStroke();
 text(info, 10, 20);
}

Next up is adding some interaction to the sketch. The code is very straightforward, and you
should be able to read it by now.

void mousePressed()
{
 int pos = floor(map(mouseX, 0, width, 0, player.length()));
 player.play(pos);
}

void keyPressed()
{
 if (key == ' ') {
 if (player.isPlaying()) {
 player.pause();
 } else {
 player.play();
 }
 }

 if (key == CODED) {
 if (keyCode == LEFT) {
 player.rewind();
 }
 }
}

You also need to add the stop() function to your sketch, so the AudioPlayer object can be
closed, and the Minim object can be stopped when we quit the sketch. Don't forget this.

void stop()
{
 player.close();
 minim.stop();
 super.stop();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

141

If you run the sketch, the result will look like the following screenshot. Press the left arrow key
to rewind the song, and click anywhere on the sketch window to move the playhead. You can
use the Space bar to pause/resume the song.

How it works...
If you want to use the minim library, you always need to have a Minim object, with a reference
to the main PApplet class. Playing audio files is done with the AudioPlayer class. You
need to load the audio file into the AudioPlayer object, using the following code:

player = minim.loadFile("song.mp3");

Playing the audio file can be done with the player.play() method, which will play
the audio file only once. If you want to play the song again and again, you can use the
player.loop() method.

We've also added a little keyboard interface to control the playback for the audio file. If
you press the Space bar, the audio file will be paused or resumed. I've used the player.
isPlaying() method to check if the audio file is currently playing. This method returns a
boolean value. If it returns true, playback of the audio is paused with the player.pause()
method, and if it returns false the song starts playing again from the point where it was
paused before. If you press the left arrow key, the song will start all over again. This is done by
using the player.rewind() method.

Inside the draw() function, we've used two methods to draw the playhead. The player.
length() method returns an integer value, which is the length of the audio file in
milliseconds. The player.position() method returns the current location of the playhead,
within the song. We've used the map() function to convert the current playhead position to a
value between 0 and the width of our screen, to draw the playhead line. Milliseconds might
be a little hard to use as an interface element, since we don't use them on a daily basis to
express time, and you'll need to convert them to minutes and seconds. This is done with the
following lines of code:

int seconds = (int)(milliseconds/1000) % 60;
int minutes = (int)(milliseconds/(1000*60)) % 60;

In the mousePressed() function, we've used the same length() and position()
methods to position the playhead when clicking the mouse. You can use the play() method
with an integer to start playing the song from a certain point and not from the beginning.

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

142

The stop() function is used to close the AudioPlayer object
and stop the Minim object. Don't forget to add this function to
each sketch where you use the Minim library.

Using live audio
In the Playing audio files recipe, you've learned how to play an audio file. This recipe will teach
you how to use the microphone input from your computer. This is a great feature of the Minim
library and is really easy to use. You can use this as a starting point to build an art installation
that responds to sound.

How to do it...
The first thing you need to do is import the minim library, declare a Minim object and an
AudioInput object.

import ddf.minim.*;
import ddf.minim.signals.*;
import ddf.minim.analysis.*;
import ddf.minim.effects.*;

Minim minim;
AudioInput in;

Inside the setup() function, we'll use the getLineIn() method from the Minim class to
open the default line-in, on your computer.

void setup()
{
 size(640, 480);
 smooth();

 minim = new Minim(this);

 in = minim.getLineIn(Minim.STEREO, 512);

 background(0);
}

Inside the draw() function, we'll use the bufferSize() method on the AudioInput object
to visualize the incoming sound. We'll also add the stop() function to close the line-in, when
we quit the sketch.

void draw()
{
 fill(0, 16);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

143

 noStroke();
 rect(0, 0, width, height/2);

 stroke(255);
 noFill();

 float r = 0;
 for (int i = 0; i < in.bufferSize(); i++) {
 r += abs(in.mix.get(i)) * 20;
 }

 ellipse(width/2, height/2, r, r);	
}

void stop()
{
 in.close();
 minim.stop();
 super.stop();
}

Run the sketch and start talking or whistling, to see the result. It will look somewhat like
the following screenshot. Depending on your operating system, you may need to enable the
microphone of your computer and set it as the default sound input.

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

144

How it works...
The minim.getLineIn() method returns an AudioInput object. This lets you access the
microphone of your computer. You'll most likely use this function with two parameters, but
there are more options available. The first parameter is the input type. You can use Minim.
STEREO for a stereo channel and Minim.MONO for a mono channel. The second parameter is
the size of the sample buffer; I've used 512, in this case. If you don't use a second parameter,
you'll get a buffer with a size of 1024.

In the draw() function, I've used the bufferSize() method to loop through the audio
buffer and calculate the radius of the circle. This method returns negative and positive
numbers, so I've used the abs() function to get rid of the negative numbers. Looping through
the audio buffer is usually used to draw waveforms. If you want to know how this works, you
should read the next recipe.

Drawing a waveform
If you've used any kind of audio editor before, you'll most likely know that audio is usually
displayed as a waveform. In this recipe, we'll take a look at how we can visualize a song by
drawing its waveform to the screen.

How to do it...
The first part of this sketch should look familiar. It's basically the same as the sketch you
made in the Playing audio files recipe.

import ddf.minim.*;
import ddf.minim.signals.*;
import ddf.minim.analysis.*;
import ddf.minim.effects.*;

Minim minim;
AudioPlayer player;

void setup()
{
 size(1024, 480);
 smooth();

 minim = new Minim(this);

 player = minim.loadFile("song.mp3", 1024);
 player.play();

 strokeWeight(2);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

145

The code that analyses the audio and renders the waveform goes in the draw() function.
Since our song is a stereo audio file, we'll render the left and right channels in different colors,
to the screen. Don't forget to add the stop() function at the end of your sketch.

void draw()
{
 background(255);

 translate(0, height/2);

 // right channel
 stroke(255, 0, 0);
 for (int i = 0; i < player.right.size(); i++) {
 float y = player.right.get(i) * 220;
 point(i, y);
 }

 // left channel
 stroke(0);
 for (int i = 0; i < player.left.size(); i++) {
 float y = player.left.get(i) * 220;
 point(i, y);
 }
}

void stop()
{
 player.close();
 minim.stop();
 super.stop();
}

If you run the sketch, the result will look like the following screenshot. Alternatively, you could
use lines instead of points, to create a more connected wave.

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

146

How it works...
The AudioPlayer object can return three different waves: one for the left channel, one
for the right channel, and a mix of both. You can access them by using the player.left,
player.right, or player.mix methods. Using the size() method on these objects, you
can determine how long the buffer is. This is handy if you need to loop through the buffer. You
can get the individual values from this buffer using the get() method. These values can be
negative or positive and lie between -1 and 1, so you'll need to multiply them with a larger
number to make them visible on the screen.

Using Fast Fourier Transforms
Fast Fourier Transforms (FFT) are used to visualize the frequency spectrum of an audio file.
The Minim library has a class that handles the math for you, so you can focus on drawing the
spectrum. If you want to learn more about Fast Fourier Transforms, you should read this paper
by Paul Bourke, available at http://paulbourke.net/miscellaneous/dft/. While
you are on his website, check out the rest of the things Paul has done. You'll find some really
amazing geometry algorithms.

How to do it...
The first part of this sketch is similar to the previous ones; the only thing we'll add is an FFT
object with the same buffer size and sample rate as the song we'll load.

import ddf.minim.*;
import ddf.minim.signals.*;
import ddf.minim.analysis.*;
import ddf.minim.effects.*;

Minim minim;
AudioPlayer player;
FFT fft;

void setup()
{
 size(1024, 480);

 minim = new Minim(this);

 player = minim.loadFile("song.mp3", 512);
 player.loop();

 fft = new FFT(player.bufferSize(), player.sampleRate());

 background(255);
}

www.it-ebooks.info

http://paulbourke.net/miscellaneous/dft/
http://paulbourke.net/miscellaneous/dft/
http://www.it-ebooks.info/

Chapter 7

147

In the draw() function, we'll loop through the fft buffer and draw each frequency band to the
screen. I didn't use the background() function here, since I wanted to add a fading effect to
show the history of the frequency spectrum. This fading effect can be done by setting the fill
color to a very low opacity and drawing a rectangle with the same dimensions as the window.

void draw()
{
 fill(255, 8);
 noStroke();
 rect(0, 0, width, height);

 fft.forward(player.mix);

 strokeWeight(4);
 strokeCap(SQUARE);
 stroke(0);

 for (int i = 0; i < fft.specSize(); i++) {
 line(i*4, height, i*4, height - fft.getBand(i) * 20);
 }
}

void stop()
{
 player.close();
 minim.stop();
 super.stop();
}

The result of the sketch looks like the following screenshot. You'll see that the song we're
using has many low frequencies and few high frequencies.

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

148

How it works...
To use FFT, you need to create an FFT object with the same buffer size and sample rate as
your audio player. You can pass the values of the AudioPlayer object into the constructor,
using the following code:

fft = new FFT(player.bufferSize(), player.sampleRate());

Inside the draw() function, you need to do a forward transform on the buffer, using the
following line of code. I've used both channels, but you can also use the player.left or
player.right methods, if you want to visualize the audio spectrum of the two channels
separately.

fft.forward(player.mix);

To draw the frequency bands to the screen, you need to loop through the FFT object, using
the fft.specSize() method. The size of this spectrum is calculated in the FFT object as
player.bufferSize() / 2 + 1. You can get the value of each frequency band, using the fft.
getBand() method. Since these values are small, you also need to multiply them with a
number so you'll see them on the screen.

Audio reactive particles
In this recipe, we'll take a look at how we can create interesting audio reactive visuals. This
sketch might be a good start, if you want to create your own software to do performances.
This sketch is similar to the FFT example, but the visual output is a lot more interesting.

How to do it...
We'll start by importing the minim library and will declare a Minim object, an AudioPlayer
object, and an FFT object. We also need an array to store our Particle objects and a
boolean variable to use the fading effect or to draw a background in each frame. This is the
code for the first part of the sketch.

import ddf.minim.*;
import ddf.minim.signals.*;
import ddf.minim.analysis.*;
import ddf.minim.effects.*;

Minim minim;
AudioPlayer player;
FFT fft;

Particle[] particles;

boolean fade = false;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

149

void setup()
{
 size(640, 480);
 smooth();

 background(0);

 colorMode(HSB, 360, 100, 100, 100);

 minim = new Minim(this);

 player = minim.loadFile("song.mp3", 512);
 player.loop();

 fft = new FFT(player.bufferSize(), player.sampleRate());

 particles = new Particle[fft.specSize()];
 for (int i = 0; i < fft.specSize(); i++) {
 particles[i] = new Particle(i);
 }
}

The draw() function looks a little different from the FFT example. I've used the
pushStyle() and popStyle() combo to switch to the RGB color mode, so that we can
easily draw the black background or the transparent black rectangle, when fading is enabled.
We'll use a for loop to loop through the frequency spectrum, to update and render the
particles to the screen.

void draw()
{
 pushStyle();
 colorMode(RGB, 255);
 if (fade) {
 noStroke();
 fill(0, 8);
 rect(0, 0, width, height);
 } else {
 background(0);
 }
 popStyle();

 fft.forward(player.mix);

 for (int i = 0; i < fft.specSize() - 1; i++) {
 particles[i].update(fft.getBand(i), player.mix.get(i*2));
 particles[i].render();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

150

The next thing you need to do is to add a small interface to toggle the fading. You can do this
by adding the keyPressed() function to your sketch. As always with Minim, you need to add
the stop() function to the sketch.

void keyPressed()
{
 if (key == 'f') {
 fade = !fade;
 }
}

void stop()
{
 player.close();
 minim.stop();
 super.stop();
}

The final thing we'll do is create a Particle class. This will allow us to keep track of the
location, radius, and color of each particle. Create a new tab using the Cmd + Shift + N
shortcut on Mac OS X, or Ctrl + Shift + N on Windows and Linux, and add the following code.

class Particle
{
 PVector loc;
 PVector vel;

 float radius;
 float h;
 float s;
 float b;

 Particle(int id)
 {
 loc = new PVector(map(id, 0, fft.specSize(), 0, width),
 height/2);
 vel = new PVector(random(-1, 1), random(-1, 1));

 h = map(id, 0, fft.specSize(), 0, 360);
 s = 100;
 b = 100;
 }

 void update(float _r, float _b)
 {
 loc.add(vel);

 if (loc.x < 0 || loc.x > width) {
 vel.x *= -1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

151

 }

 if (loc.y < 0 || loc.y > height) {
 vel.y *= -1;
 }

 radius = _r;
 radius = constrain(radius, 2, 100);

 b = map(_b, -1, 1, 0, 100);
 }

 void render()
 {
 stroke(h, s, b, 50);
 fill(h, s, b, 20);
 ellipse(loc.x, loc.y, radius*2, radius*2);
 }
}

If you run the sketch, you'll see the particles move around the screen. Each particle reacts
to a different band of the audio spectrum. If you press the F key, you can disable/enable the
fading effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

152

How it works...
The code from the main sketch should be clear to you, if you've made it to this part of the
book. The Particle class uses some new things, so we'll take a look at how it's constructed.
The first things you'll see, right before the constructor, are the variables we need for each
Particle object. We need a PVector object for the location and another one for the velocity
of the particle. These will be used to animate the particles. You can learn more about the
PVector class at http://processing.org/reference/PVector.html. We also need
some float variables for the hue, saturation, and brightness—to color the particle—and another
one for the radius.

PVector loc;
PVector vel;

float radius;
float h;
float s;
float b;

The constructor of the Particle class takes an integer as a parameter. This integer will be
used to set the initial location and color of the particle. I've used a random number between
-1 and 1 for the x and y components of the velocity vector.

Particle(int id)
{
 loc = new PVector(map(id, 0, fft.specSize(), 0, width),
 height/2);
 vel = new PVector(random(-1, 1), random(-1, 1));

 h = map(id, 0, fft.specSize(), 0, 360);
 s = 100;
 b = 100;
}

The update() method of the Particle class takes two parameters, one to update the
radius and one to update the brightness of our particle. These are passed into the object
when we loop through the particles in the draw() function of our main sketch. The first thing
we'll do in the update() method is adding the velocity vector to the location vector. Right
after that, we'll do a quick check to see if the location of the particle is still inside our sketch
window. If the particle goes offscreen, we'll change the x or y components of the velocity
vector, so the particle will bounce against the edges of the window. Finally, the radius and
brightness are set from the values coming from the parameters of the method.

void update(float _r, float _b)
{
 loc.add(vel);

 if (loc.x < 0 || loc.x > width) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

153

 vel.x *= -1;
 }

 if (loc.y < 0 || loc.y > height) {
 vel.y *= -1;
 }

 radius = _r;
 radius = constrain(radius, 2, 100);

 b = map(_b, -1, 1, 0, 100);
}

Drawing the particles to the screen is done with the render() method. This method sets the
stroke and fill color for the particle, and draws an ellipse based on the particle radius.

void render()
{
 stroke(h, s, b, 50);
 fill(h, s, b, 20);
 ellipse(loc.x, loc.y, radius*2, radius*2);
}

Creating a drum machine
Now that you know how to analyze audio and visualize it, we'll take a look at how we
can create instruments. We'll start with building a programmable drum machine with a
16-step sequencer, such as the famous TR-808 and TR-909 drum machines from Roland.
You can find out everything about these classic drum machines at Vintage Synth Explorer,
at http://www.vintagesynth.com/roland/808.php.

How to do it...
You can start by creating an empty sketch and saving it as drum_machine.pde. Add a new
tab to the sketch and save it as Button.pde. We'll write a simple Button class so you can
toggle buttons on and off. This class will also keep track of playing sounds.

class Button
{
 float x;
 float y;
 float w;
 float h;

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

154

 boolean isOn;

 Button(float _x, float _y)
 {
 x = _x;
 y = _y;
 w = 20;
 h = 20;

 isOn = false;
 }

 void render()
 {
 if (isOn == true) {
 fill(255, 0, 0);
 } else {
 fill(255);
 }
 rect(x, y, w, h);	
 }

 void pressButton(int _x, int _y)
 {
 if (_x > x && _x < x + w && _y > y && _y < y + h) {
 isOn = !isOn;
 }
 }
}

In the main sketch window, you need to import the minim library and declare some variables.
I've used the AudioSample class instead of the AudioPlayer class to load the sounds,
because it can be used to trigger samples on command. For each sound, we also need an
array with Button objects. Inside the setup() function, we'll load the sounds and fill the
button arrays with a common drum rhythm.

import ddf.minim.*;
import ddf.minim.signals.*;
import ddf.minim.analysis.*;
import ddf.minim.effects.*;

Minim minim;
AudioSample samples[];

Button[] bd;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

155

Button[] sn;
Button[] oh;
Button[] ch;

int playhead;

void setup()
{
 size(640, 200);

 minim = new Minim(this);

 samples = new AudioSample[4];
 samples[0] = minim.loadSample("bd.aif");
 samples[1] = minim.loadSample("sn.aif");
 samples[2] = minim.loadSample("oh.aif");
 samples[3] = minim.loadSample("ch.aif");

 frameRate(8);

 playhead = 0;

 bd = new Button[16];
 for (int i = 0; i < bd.length; i++) {
 bd[i] = new Button(125 + i * 30, 50);
 if (i % 4 == 0) {
 bd[i].isOn = true;
 }
 }

 sn = new Button[16];
 for (int i = 0; i < sn.length; i++) {
 sn[i] = new Button(125 + i * 30, 80);
 if (i % 8 - 4 == 0) {
 sn[i].isOn = true;
 }
 }

 oh = new Button[16];
 for (int i = 0; i < oh.length; i++) {
 oh[i] = new Button(125 + i * 30, 110);
 if (i % 2 == 1) {
 oh[i].isOn = true;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

156

 }

 ch = new Button[16];
 for (int i = 0; i < ch.length; i++) {
 ch[i] = new Button(125 + i * 30, 140);
 if (i % 2 == 0) {
 ch[i].isOn = true;
 }
 }
}

In the draw() function, we'll start with drawing the playhead for our sequencer, followed by
the buttons. Once this is finished, we'll trigger the samples if the button is in the on position.
Finally, we'll move the playhead to its new position.

void draw()
{
 background(255);

 // draw playhead
 fill(0);
 rect(120 + playhead * 30, 45, 30, 120);

 // draw buttons
 fill(0);
 text("*** PROCESSING DRUM MACHINE v1.0 ***", 125, 30);
 text("Bassdrum", 20, 65);
 text("Snare", 20, 95);
 text("Open Hi-hat", 20, 125);
 text("Closed Hi-hat", 20, 155);

 for (int i = 0; i < bd.length; i++) {
 bd[i].render();
 }

 for (int i = 0; i < sn.length; i++) {
 sn[i].render();
 }

 for (int i = 0; i < oh.length; i++) {
 oh[i].render();
 }

 for (int i = 0; i < ch.length; i++) {
 ch[i].render();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

157

 }

 // play samples
 if (bd[playhead].isOn) {
 samples[0].trigger();
 }

 if (sn[playhead].isOn) {
 samples[1].trigger();
 }

 if (oh[playhead].isOn) {
 samples[2].trigger();
 }

 if (ch[playhead].isOn) {
 samples[3].trigger();
 }

 // move playhead
 playhead++;
 if (playhead >= 16) {
 playhead = 0;
 }
}

The mousePressed() function is used to toggle the buttons. Each time you click the mouse,
we'll loop through all button arrays and use the pressButton() method from our Button
object to check whether the button has been pressed. If this is the case, this method will
change the state of the button.

void mousePressed()
{
 for (int i = 0; i < bd.length; i++) {
 bd[i].pressButton(mouseX, mouseY);
 }

 for (int i = 0; i < sn.length; i++) {
 sn[i].pressButton(mouseX, mouseY);
 }

 for (int i = 0; i < oh.length; i++) {
 oh[i].pressButton(mouseX, mouseY);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

158

 for (int i = 0; i < ch.length; i++) {
 ch[i].pressButton(mouseX, mouseY);
 }
}

The last thing we need to do is close all samples and stop the Minim object with the
stop() function.

void stop()
{
 samples[0].close();
 samples[1].close();
 samples[2].close();
 samples[3].close();
 minim.stop();
 super.stop();
}

If you run the example, you'll see a fully working drum machine. Click the buttons to change
the pattern and start composing your own rhythms.

How it works...
We've used the AudioSample class instead of the AudioPlayer class, in this example. This
class is a little different, as it keeps the entire file in memory, and thus should only be used for
short samples. This is the ideal format for short drum sounds. To play the file, you need to use
the trigger() method.

Inside the setup() function, I've set the frameRate variable of the sketch to 8. If you use a
lower number, the drum rhythm will be slower, and if you use a higher number, the rhythm will
speed up. This is ok for now, as we only created a very basic instrument. If you want to make
a more professional instrument, you'll need to trigger the samples on a time-based interval,
which is much harder to implement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

159

The playhead moves each frame and is set to 0 again if it reaches the last step in our
sequencer. The following code checks whether the button for the current playhead position is
on and triggers the file when it is on.

if (bd[playhead].isOn) {
 samples[0].trigger();
}

Inside the Button class, there is a method named pressButton(). This method is triggered
on all button arrays, when we press the mouse. The code in the if statement is a basic check
to see if the _x and _y points lie within the area of the button. The values of _x and _y are
actually the mouseX and mouseY variables, passed in via the mousePressed() function.

void pressButton(int _x, int _y)
{
 if (_x > x && _x < x + w && _y > y && _y < y + h) {
 isOn = !isOn;
 }
}

Creating a synthesizer
The second instrument we'll create is a synthesizer. We'll use a sine wave and a saw wave to
generate an interesting sound. The keyboard will be used to hit notes, and the mouse will pan
the sound from left to right.

How to do it...
You need to start by importing the minim library and declare a Minim object and an
AudioOutput object. We also need a SineWave and a SawWave object to generate the
sound. In the setup() function, we'll create both waves and add them to the output so you'll
hear them.

import ddf.minim.*;
import ddf.minim.signals.*;
import ddf.minim.analysis.*;
import ddf.minim.effects.*;

Minim minim;
AudioOutput out;
SineWave sine;
SawWave saw;

void setup()
{

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

160

 size(1024, 480);
 smooth();

 strokeWeight(2);

 minim = new Minim(this);

 out = minim.getLineOut(Minim.STEREO);

 sine = new SineWave(130.816, 0.5, out.sampleRate());
 out.addSignal(sine);

 saw = new SawWave(65.4064, 1.0, out.sampleRate());
 out.addSignal(saw);
}

You'll probably recognize the code inside the draw() function. This is more or less the same
code that you've used in the Drawing a waveform recipe.

void draw()
{
 background(255);

 translate(0, height/2);

 for (int i = 0; i < out.bufferSize(); i++) {
 float y1 = out.left.get(i) * 100;
 float y2 = out.right.get(i) * 100;
 stroke(0);
 point(i, y1);
 stroke(255, 0, 0);
 point(i, y2);	
 }
}

The mouseMoved() function is used to pan the sound. When the mouseX value is 0, the sine
wave will play through the left speaker and the saw wave through the right speaker. When your
mouse cursor is at the other side of the window, it will be the other way around.

void mouseMoved()
{
 float pan = map(mouseX, 0, width, -1, 1);
 sine.setPan(pan);
 saw.setPan(-pan);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

161

The keyPressed() function is used to change the frequency of each wave. I've used the
second row of keys on my AZERTY keyboard, but you can easily change this to any range of
keys if you like.

void keyPressed()
{
 if (key == 'q') {
 sine.setFreq(130.813); // C3
 saw.setFreq(65.4064); // C2
 }

 if (key == 's') {
 sine.setFreq(146.832); // D3
 saw.setFreq(73.4162); // D2
 }

 if (key == 'd') {
 sine.setFreq(164.814); // E3
 saw.setFreq(82.4069); // E2
 }

 if (key == 'f') {
 sine.setFreq(174.614); // F3
 saw.setFreq(87.3071); // F2
 }

 if (key == 'g') {
 sine.setFreq(195.998); // G3
 saw.setFreq(97.9989); // G2
 }

 if (key == 'h') {
 sine.setFreq(220); // A3
 saw.setFreq(110); // A2
 }

 if (key == 'j') {
 sine.setFreq(246.942); // B3
 saw.setFreq(123.471); // B2
 }
}

void stop()
{
 out.close();
 minim.stop();
 super.stop();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

162

Run the sketch, press some keys, and move the mouse to create some wonderful tunes.

How it works...
The first thing you need to do, if you want to build a synthesizer, is to create an AudioOutput
object. You can do this with only one line of code:

out = minim.getLineOut(Minim.STEREO);

Minim has a few different kinds of waves available for you to use. In this example, we've used
a sine wave and a saw wave. These constructors take three parameters. The first one is the
frequency of the wave, the second one is the amplitude, and the third one is the sample rate.
Once you have created these waves, you need to add them as a signal to the AudioOutput
example. If you don't do this, you won't hear the sound.

sine = new SineWave(130.816, 0.5, out.sampleRate());
out.addSignal(sine);
saw = new SawWave(65.4064, 1.0, out.sampleRate());
out.addSignal(saw);

The keyPressed() function is used to change the frequencies of each wave. This is done
by using the wave.setFreq() method. Every note on a piano keyboard has a specific
frequency. If you press the C3 key on a piano, you would generate a tone with a frequency of
130.813Hz. I've used the octave starting with the C3 note for the sine wave, and the octave
starting with the C2 note for the saw wave. If you take a look at these numbers, you'll notice
that the frequency of the C3 note is equal to the frequency of the C2 x 2. The frequency of the
C4 note is also double the C3 frequency, so you can easily calculate the frequency for every
note. A full overview of piano notes and their corresponding frequencies can be found on
Wikipedia, at http://en.wikipedia.org/wiki/Piano_key_frequencies.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

163

Using effects
In the last recipe of this chapter, you'll learn how to use effects. These effects can be used to
shape the waves of a synthesizer you are creating or to change the sound of an audio file.

How to do it...
The beginning of this sketch is the same as that of most of the sketches we've made in this
chapter. You'll load an audio file and play it. The only difference is that we'll create a low pass
and a high pass filter and add these effects to the AudioPlayer object.

import ddf.minim.*;
import ddf.minim.signals.*;
import ddf.minim.analysis.*;
import ddf.minim.effects.*;

Minim minim;
AudioPlayer player;

LowPassSP lowpass;
HighPassSP highpass;

void setup()
{
 size(640, 480);

 minim = new Minim(this);

 player = minim.loadFile("song.mp3");
 player.play();

 lowpass = new LowPassSP(440, 44100);
 player.addEffect(lowpass);

 highpass = new HighPassSP(440, 44100);
 player.addEffect(highpass);

}

void draw()
{
 background(255);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Audio Visualization

164

void stop()
{
 player.close();
 minim.stop();
 super.stop();
}

Run the sketch to hear what filters do to your sound. Try commenting the player.
addEffect() method to hear the difference between a low pass and a high pass filter.

How it works...
To create the filters, you need to declare them before the setup() function. I've used a
lowpass and a highpass filter. There are some other filters, such as a bandpass filter and
a notch filter, available in Minim. You can find out more about them in the documentation
at http://code.compartmental.net/minim/javadoc/. Creating these filters is easy.
The high pass and low pass filters take two parameters, one for the frequency, and a second
one for the sample rate. Once created, you need to add them to the player using the player.
addEffect() method.

www.it-ebooks.info

http://www.it-ebooks.info/

8
Exploring Computer

Vision
In this chapter we will cover:

ff Using a webcam

ff Thresholding video

ff Blob tracking

ff Color tracking

ff Installing the OpenCV library

ff Accessing a webcam with OpenCV

ff Face detection with OpenCV

ff Defining the region of interest with OpenCV

ff Manipulating video with OpenCV

Introduction
You've already learned how you can use standard input devices such as a mouse or a
keyboard. In the previous chapter, we used a microphone to visualize audio on the screen. In
this chapter, we'll take a look at how we can use a webcam as an input device. Webcams are
probably the most ideal devices to use in interactive art installations. They are cheap and can
be used to track colors or detect faces.

Using a webcam
The first thing you need to learn is displaying the video from your webcam, on the screen.
Processing makes this very easy for you. You'll be up and running in no time, by writing a few
lines of code.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

166

How to do it...
The code for this example is really short. You need to start by importing the video library that
is included with Processing. Go to Sketch | Import Library | video, to do this. You also need
to declare an object of the Capture type. This object will be used to access the webcam on
your computer.

import processing.video.*;

Capture webcam;

Inside the setup() function, you need to initialize the Capture object with the settings
you need and start capturing. In the draw() function, we'll draw the current image from the
webcam to the screen.

void setup()
{
 size(640, 480);
 smooth();

 println(Capture.list());

 webcam = new Capture(this, width, height, 30);
 webcam.start();
}

void draw()
{
 background(255);
 image(webcam, 0, 0);
}

The last function you need to add is, the captureEvent() function. This function is called
every time a new frame is available.

void captureEvent(Capture webcam)
{
 webcam.read();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

167

If you run the sketch, the result will look like the following screenshot:

How it works...
The first thing you need to do is to initialize the Capture object. You can do this with this line
of code:

webcam = new Capture(this, width, height, 30);

The Capture() function can be used with three to five parameters. The first one will always
be this. The second and third ones are the width and height of the video. I've used the
same width and height as the sketch window, but you can specify a different size as well. In
the example, I've used an optional fourth parameter—the frame rate.

If your computer has multiple webcams, you can specify which camera you want to use. You
can print all available cameras to the console, using the Capture.list() method. You can
add the name of the camera as the fourth parameter, like this:

webcam = new Capture(this, width, height, "Logitech Camera", 30);

The second thing you need to do is to start capturing frames, using the start() method. If
you don't do this, nothing will be displayed. In the draw() function, you can draw the webcam
image to the screen, using the image() function.

The captureEvent() function is called every time a new frame is available from the
webcam. Inside this function, you need to use the webcam.read() method to update the
webcam image.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

168

Thresholding video
Applying a threshold filter to a webcam feed is a handy technique to use in computer vision.
You'll need this to do some basic blob tracking. This technique is very simple. You compare
the brightness of every pixel in the webcam feed to a threshold value. Pixels with a higher
brightness get a white color, pixels with a lower brightness will be colored black. The end
result is an image that consists solely of black and white pixels.

How to do it...
You'll start by importing the video library. You've learned how to do this in the Using
a webcam recipe. Next to our Capture object, we also need integer variables named
numPixels and threshold.

import processing.video.*;

Capture webcam;

int numPixels;
int threshold;

In the setup() function, we'll start the webcam, just like in the Using a webcam recipe. The
numPixels variable will be used to store the total number of pixels from the webcam image.
This will be handy if we need to loop through them in the draw() function. We'll assign an
initial value of 127 to the threshold variable.

void setup()
{
 size(640, 480);
 smooth();

 webcam = new Capture(this, width, height, 30);
 webcam.start();

 numPixels = webcam.width * webcam.height;
 threshold = 127;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

169

Inside the draw() function, we'll use the webcam.available() method before reading
the new image and displaying it on the screen. The code between the loadPixels() and
updatePixels() functions is the threshold algorithm. We'll also draw a red rectangle with
white text, to show the current threshold value.

void draw()
{
 if (webcam.available()) {
 webcam.read();
 image(webcam, 0, 0);

 loadPixels();
 for (int i = 0; i < numPixels; i++) {
 float b = brightness(webcam.pixels[i]);
 if (b > threshold) {
 pixels[i] = color(255);
 } else {
 pixels[i] = color(0);
 }
 }
 updatePixels();

 }

 fill(255, 0, 0);
 noStroke();
 rect(10, 10, 110, 20);
 fill(255);
 text("Threshold: " + threshold, 14, 24);
}

The keyPressed() function is used as an interface to change the threshold value. The up
arrow will increase the threshold value, while the down arrow will decrease it.

void keyPressed()
{
 if (key == CODED) {
 if (keyCode == UP) {
 threshold++;
 }
 if (keyCode == DOWN) {
 threshold--;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

170

Run the sketch and press the up and down arrows to see what happens.

How it works...
You've probably noticed that I didn't use the captureEvent() function in this sketch. Inside
the draw() function, I've used the webcam.available() method, which returns a boolean
value. The value of this boolean is true if a new frame is available. If you use this method with
an if statement, the code within this statement will only be executed when a new frame is
available. I've read the new image using the webcam.read() method and displayed it on the
screen with the Processing image() function.

The next thing to do is to load the current image from the screen into the pixels array, using the
loadPixels() function. I've used a for loop to loop through the pixel array and compare the
brightness of each pixel to the threshold value. If the brightness is greater than the threshold
value, the color of the pixel is changed to white. The other pixels are set to black.

for (int i = 0; i < numPixels; i++) {
 float b = brightness(webcam.pixels[i]);
 if (b > threshold) {
 pixels[i] = color(255);
 } else {
 pixels[i] = color(0);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

171

By pressing the up and down arrows, you can change the threshold value. A larger value for
the threshold will result in more black pixels, while a smaller value will result in more white
pixels. The result of the image will depend a lot on the lighting in the room you are in.

Blob tracking
Now that you know how to apply a thresholding algorithm on a webcam feed, it's time to do
some analysis on those pixels. We'll draw a rectangle around all white pixels in the image. This
is a very basic brightness tracking algorithm and is useful when you want to create a simple
interactive installation with a webcam.

How to do it...
We'll start by importing the video library and declaring some variables. We need a Capture
object to access the webcam and an integer variable to use as a threshold value. The other
integer variables are used to track the boundaries around the white pixels in the image.

import processing.video.*;

Capture webcam;
int threshold;

int topLeftX;
int topLeftY;
int bottomRightX;
int bottomRightY;

void setup()
{
 size(640, 480);

 webcam = new Capture(this, width, height, 30);
 webcam.start();

 threshold = 127;

 topLeftX = width;
 topLeftY = height;

 bottomRightX = 0;
 bottomRightY = 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

172

Inside the draw() function, we'll apply the threshold algorithm, just like we did in the
Thresholding video recipe. We'll loop through the pixel array with a nested for loop, because
we need to know the exact location of the white pixels, so that we can update the boundary
variables. The rest of the code is the same as the threshold video sketch.

void draw()
{
 if (webcam.available()) {
 webcam.read();
 image(webcam, 0, 0);

 loadPixels();

 int counter = 0;
 for (int j = 0; j < webcam.height; j++) {
 for (int i = 0; i < webcam.width; i++) {
 color c = webcam.pixels[counter];
 float b = brightness(c);
 if (b > threshold) {
 pixels[counter] = color(255);
 if (i < topLeftX) {
 topLeftX = i;
 }
 if (j < topLeftY) {
 topLeftY = j;
 }
 if (i > bottomRightX) {
 bottomRightX = i;
 }
 if (j > bottomRightY) {
 bottomRightY = j;
 }
 } else {
 pixels[counter] = color(0);
 }
 counter++;
 }
 }

 updatePixels();

 noFill();
 stroke(255, 0, 0);
 strokeWeight(2);
 rect(topLeftX, topLeftY, bottomRightX - topLeftX,
 bottomRightY - topLeftY);

 // reset tracking points
 topLeftX = width;
 topLeftY = height;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

173

 bottomRightX = 0;
 bottomRightY = 0;

 fill(255, 0, 0);
 noStroke();
 rect(10, 10, 110, 20);
 fill(255);
 text("Threshold: " + threshold, 14, 24);
 }
}

void keyPressed()
{
 if (key == CODED) {
 if (keyCode == UP) {
 threshold++;
 }
 if (keyCode == DOWN) {
 threshold--;
 }
 }
}

If you run the sketch, you'll see a red rectangle around the white pixels. This algorithm works
best in a dark room where you put light on your subject.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

174

How it works...
The tracking algorithm is quite easy. If the brightness of a pixel is greater than the threshold
value, we set the pixel to white. In each frame, the values for the top, left-hand side and
bottom, right-hand side corner of the boundary box are calculated. Let's take a look at how
this works for the top, left-hand side corner.

At the beginning of each frame, the value of the topLeftX variable is equal to the width of
the sketch window. The topLeftY variable is equal to the height of the window. These two
variables point to the bottom, right-hand side corner of the sketch window.

topLeftX = width;
topLeftY = height;

The for loop with the i counter is used to loop through the horizontal lines of pixels. If the
pixel is white, we compare the position to the topLeftX value. If it is smaller, we change the
value of the topLeftX variable. This way, we'll always end up with the x coordinate of the
white pixel closest to the left-hand side of the window. The for loop with the j counter is used
to loop through the vertical lines of pixels. We use the same idea to get the y coordinate of the
white pixel that is closest to the top of the window. I've used the min() function to do this.
The following function returns the smallest value for the two variables passed:

topLeftX = min(i, topLeftX);
topLeftY = min(j, topLeftY);

The i and j counter variables are also compared to the bottomRightX and bottomRightY
values, to calculate the top, left-hand side corner of the sketch window. But this time, they
have to be bigger. I've used the max() function to do this. This function does the opposite of
the min() function and returns the largest number of the two variables you've passed. Once
we have found the coordinates we need, we can draw a rectangle around the white pixels with
this line:

rect(topLeftX, topLeftY, bottomRightX - topLeftX, bottomRightY -
topLeftY);

After drawing the rectangle, it's important to set the coordinates of the rectangle to their initial
values, so that we can calculate them again for the next video frame.

Color tracking
In the blob tracking example, you've learned a basic brightness tracking algorithm. In this
recipe, we'll up the ante and write an algorithm to track colored pixels. This technique will be
useful if you want to create an installation that more than one person can interact with. For
instance, you can give each participant a brightly colored ball they can use to wave at the
camera to control something on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

175

How to do it...
The code for this example is similar to the blob tracking sketch from the previous recipe. The
only difference is that we need a color variable named trackColor that we'll use to track,
and three integer variables, each for its red, green, and blue values. The threshold variable is
gone, and we use an integer variable named maxColorDifference, instead.

import processing.video.*;

Capture webcam;

color trackColor;
int trackR;
int trackG;
int trackB;

int topLeftX;
int topLeftY;
int bottomRightX;
int bottomRightY;

int maxColorDifference;

void setup()
{
 size(640, 480);

 webcam = new Capture(this, width, height);
 webcam.start();

 trackColor = color(255);
 trackR = (trackColor >> 16) & 0xff;
 trackG = (trackColor >> 8) & 0xff;
 trackB = trackColor & 0xff;
 maxColorDifference = 40;

 topLeftX = width;
 topLeftY = height;

 bottomRightX = 0;
 bottomRightY = 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

176

Inside the draw() function, we'll use a similar technique to the brightness tracking
algorithm. Instead of using the brightness() function, we'll separate the color of each pixel
into a red, green, and blue value and calculate the distance between those with the dist()
function. This distance is then compared to the maxColorDifference variable, so that we
can calculate the bounding box around the colored pixels.

void draw()
{
 if (webcam.available()) {
 webcam.read();
 image(webcam, 0, 0);

 loadPixels();

 int counter = 0;
 for (int j = 0; j < webcam.height; j++) {
 for (int i = 0; i < webcam.width; i++) {
 color c = webcam.pixels[counter];
 int r = (c >> 16) & 0xff;
 int g = (c >> 8) & 0xff;
 int b = c & 0xff;
 float colorDifference = dist(r, g, b, trackR, trackG,
 trackB);
 if (colorDifference < maxColorDifference) {
 if (i < topLeftX) {
 topLeftX = i;
 }
 if (j < topLeftY) {
 topLeftY = j;
 }
 if (i > bottomRightX) {
 bottomRightX = i;
 }
 if (j > bottomRightY) {
 bottomRightY = j;
 }
 }
 counter++;
 }
 }

 updatePixels();

 // draw tracking color
 fill(trackColor);
 noStroke();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

177

 rect(0, 0, 20, 20);

 noFill();
 stroke(0);
 strokeWeight(2);
 rect(topLeftX, topLeftY, bottomRightX - topLeftX,
 bottomRightY - topLeftY);

 // reset tracking points
 topLeftX = width;
 topLeftY = height;
 bottomRightX = 0;
 bottomRightY = 0;
 }
}

The mousePressed() function is used to set the track color. Hold a brightly colored object in
front of the camera, and click on it with the mouse.

void mousePressed()
{
 trackColor = webcam.get(mouseX, mouseY);
 trackR = (trackColor >> 16) & 0xff;
 trackG = (trackColor >> 8) & 0xff;
 trackB = trackColor & 0xff;
}

If all goes well, you'll see something similar to the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

178

How it works...
The only important difference in the brightness tracking algorithm from the previous recipe is
the following piece of code:

color c = webcam.pixels[counter];
int r = (c >> 16) & 0xff;
int g = (c >> 8) & 0xff;
int b = c & 0xff;
float colorDifference = dist(r, g, b, trackR, trackG, trackB);

We'll take the color of the current pixel, and store it in a variable named c. We separate
this color into its red, green, and blue components, with a technique called bit shifting. The
line int r = (c >> 16) & 0xff; does the same as int r = red(c) does but is
a lot faster. The following lines do the same as the green() and blue() functions. This
code is a little hard to read, but it will give your sketch a small speed bump, when you iterate
over a lot of pixels. You can learn more about this technique in the Processing reference at
http://processing.org/reference/rightshift.html.

The dist() function is usually used to calculate the distance between two points in a 2D
or 3D space. I used the red, green, and blue components from the colors as the x, y and z
coordinates of a point in a 3D space. The dist() function is used in this case to calculate
the difference between the tracking color and the color of the current pixel. The smaller this
number, the more similar the colors are. If the value of the colorDifference variable is
smaller than the value of the maxColorDifference variable, the color is similar enough to
the tracking color and can be used to calculate the bounding box. The algorithm to calculate
the top, left-hand side and bottom, right-hand side coordinates of this box is the same as in
the brightness tracking example.

Installing the OpenCV library
Until now, we've only used the standard Processing video library to do some basic computer
vision. If you want to do some more advanced stuff, such as face recognition, you'll need to
use the OpenCV library.

How to do it...
OpenCV for Processing and Java is available for Mac OS X, Windows, and Linux. Everything
you need to install the library can be found at http://ubaa.net/shared/processing/
opencv/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

179

The first thing you need to do is install OpenCV. On Windows, you need to download the OpenCV
release version 1.0 package and install everything on your computer. For Mac OS X, there is an
OpenCV framework 1.1 available. Download the DMG file, open it, and install the package. On
Linux, you need to download the OpenCV archive and compile/install everything yourself.

The second step in this process is to download the OpenCV Processing library, unzip it, and
drag the folder to your Processing libraries folder. The folder structure should look like the
following screenshot:

How it works...
OpenCV (Open Source Computer Vision) was originally developed by Intel and is now
supported by Willow Garage. The Processing library uses OpenCV 1.0 on Windows and
version 1.1 on Mac OS X. These versions were released between 2006 and 2008, which is a
long time ago. The current version of OpenCV is 2.3.1, and it has more and better functions.
OpenCV 1.0 is written in C. Version 2.0 and later uses C++ and has wrappers for C#, Ruby,
and Java. Unfortunately for us, the Processing library works with the older version of OpenCV
and not everything is implemented in the library.

The OpenCV library won't work if you run your sketches in 64-bit
mode. You need to run your sketches in 32-bit mode for it to work.
Go to Processing | Preferences and make sure the radio button
for Launch programs is set to 32-bit mode.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

180

There's more...
If you really want to use OpenCV 2, you may check out the openFrameworks toolkit at
http://www.openframeworks.cc/. This is a library for creative coding written in C++. It
works in a similar way to Processing, but the learning curve is a little harder.

Accessing a webcam with OpenCV
The first thing we'll do is use the webcam with OpenCV. This will be a little different from using
the webcam with the Processing video library.

How to do it...
You need to start by importing the OpenCV library. Go to Sketch | Import Library | OpenCV.
You'll see that the following line will be imported at the top of your sketch:

import hypermedia.video.*;

The next thing you need to do is to declare an OpenCV object. In the setup() function, we'll
create the object and set up the camera with the capture() method.

OpenCV opencv;

void setup()
{
 size(640, 480);

 opencv = new OpenCV(this);
 opencv.capture(width, height);
}

In the draw() function, we'll read the image from the camera, flip it, and display it using the
image() function.

void draw()
{
 opencv.read();
 opencv.flip(OpenCV.FLIP_HORIZONTAL);
 image(opencv.image(), 0, 0);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

181

The result of the sketch will look like the following screenshot:

How it works...
You'll start by importing the OpenCV library into your sketch. This makes all the functionality of
the library available for you to use in your sketch. You need to declare an OpenCV object right
before the setup() function, so you can use this object throughout your sketch.

 import hypermedia.video.*;
 OpenCV opencv;

In the setup() function, you need to create an instance of the OpenCV class, using the
OpenCV constructor. This constructor is used with the this keyword as a parameter and
refers to the main PApplet class. The capture() method is used by the openCV object to
access the webcam. The first parameter of this method is the width of the video you want to
capture, and the second one is the height. I've used the width and height of my Processing
sketch, but you can use other numbers.

opencv = new OpenCV(this);
opencv.capture(width, height);

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

182

Inside the draw() function, we'll start by using the read() method. This method grabs a new
frame from the webcam. The flip() method is used in this example to mirror the webcam
feed. This method can be used with three values: OpenCV.FLIP_HORIZONTAL, OpenCV.
FLIP_VERTICAL, and OpenCV.FLIP_BOTH. The opencv.image() method returns the
current webcam frame as a PImage object, which can be displayed on the screen using the
standard Processing image() function.

opencv.read();
opencv.flip(OpenCV.FLIP_HORIZONTAL);
image(opencv.image(), 0, 0);

Face detection with OpenCV
One of the greatest features of OpenCV is that it allows you to do face detection. In this recipe,
we'll take a look at how you can do this with a minimum amount of code.

How to do it...
You need to start by importing the OpenCV library, just like you did in previous OpenCV
recipes. You also need to import the java.awt.Rectangle class, because the face
detection algorithm returns rectangle objects. You'll need to type this line yourself, since this
is not available from a menu. Inside the setup() function, we'll configure OpenCV and use
the cascade() method to configure how face tracking works.

import hypermedia.video.*;
import java.awt.Rectangle;

OpenCV opencv;

void setup()
{
 size(640, 480);

 opencv = new OpenCV(this);
 opencv.capture(320, 240);
 opencv.cascade(OpenCV.CASCADE_FRONTALFACE_ALT);
}

In the draw() function, we'll read a new frame from the webcam, flip it, convert it to a
grayscale image, and display it on the screen. The detect() method is used to detect faces
in the image. I've drawn a black rectangle where a face is detected.

void draw()
{
 background(0);

 opencv.read();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

183

 opencv.flip(OpenCV.FLIP_HORIZONTAL);
 opencv.convert(GRAY);
 scale(2);
 image(opencv.image(), 0, 0);

 Rectangle[] faces = opencv.detect();

 noStroke();
 fill(0);
 for (int i = 0; i < faces.length; i++) {
 rect(faces[i].x, faces[i].y, faces[i].width, faces[i].height
);
 }
}

If you run the sketch, the result should look like the following screenshot:

How it works...
The first thing you need to do is pick a detection method for OpenCV to use with the cascade()
method. I've used the OpenCV.CASCADE_FRONTALFACE_ALT haar cascade classifier. This is
basically an XML file with a description for OpenCV, so that it can detect faces.

opencv.cascade(OpenCV.CASCADE_FRONTALFACE_ALT);

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

184

There are some other cascades available for you to use if the CASCADE_FRONTALFACE_ALT
one doesn't work for you. You can also use OpenCV to detect the profile of a face or the body
of a person. This is the full list:

ff OpenCV.CASCADE_FRONTALFACE_ALT_TREE

ff OpenCV.CASCADE_FRONTALFACE_ALT

ff OpenCV.CASCADE_FRONTALFACE_ALT2

ff OpenCV.CASCADE_FRONTALFACE_DEFAULT

ff OpenCV.CASCADE_PROFILEFACE

ff OpenCV.CASCADE_FULLBODY

ff OpenCV.CASCADE_LOWERBODY

ff OpenCV.CASCADE_UPPERBODY

Face tracking works best on smaller, grayscale images. Large images only slow your sketch
down. That's why I've set the webcam size to 320 x 240 pixels, and used scale(2) to
display everything on the screen.

The detect() method checks the current OpenCV image to see if it contains faces. It returns
an array of rectangle objects. These rectangle objects can be used to draw something on the
screen at the position of the face.

Rectangle[] faces = opencv.detect();

Defining the region of interest with OpenCV
Sometimes it might be a good thing to let OpenCV know where to search for something. In
this recipe, we'll take a look at how we can set the Region of Interest (ROI). We'll set the ROI
to the right part of the screen and use the face detection algorithm from the previous recipe.
OpenCV will only be able to detect faces in this region.

How to do it...
The code for this sketch is basically the same as the code from the previous recipe. The
only difference is that we use the ROI() method in the draw() function to set the region of
interest.

import hypermedia.video.*;
import java.awt.Rectangle;

OpenCV opencv;

void setup()
{
 size(640, 480);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

185

 opencv = new OpenCV(this);
 opencv.capture(320, 240);
 opencv.cascade(OpenCV.CASCADE_FRONTALFACE_ALT);
}

void draw()
{
 background(0);

 opencv.read();
 opencv.flip(OpenCV.FLIP_HORIZONTAL);
 opencv.convert(GRAY);
 opencv.ROI(160, 0, 160, 240);

 scale(2);
 image(opencv.image(), 0, 0);

 Rectangle[] faces = opencv.detect();

 noStroke();
 fill(0);
 for (int i = 0; i < faces.length; i++) {
 rect(faces[i].x + 160, faces[i].y, faces[i].width,
 faces[i].height);
 }
}

Run the sketch and move your head around. You'll see that your face will only be detected on
the right-hand side of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Computer Vision

186

How it works...
The ROI() method sets the region of interest. This method takes four parameters. The first two
are the x and y coordinates for the region. The last two set the width and height of the region.
Any OpenCV method called after the ROI() method will only be applied to that specific region.
This is why face tracking only works on the right-hand side of the screen, in this example.

Manipulating video with OpenCV
In the last recipe of this chapter, we'll take a look at how we can manipulate the incoming
video from the webcam. We'll use brightness and contrast filters and blur a part of the image
set by the ROI() method you've learned about in the previous recipe.

How to do it...
The beginning of the sketch is similar to the ones you've written in previous recipes. You
should recognize the following piece of code.

import hypermedia.video.*;

OpenCV opencv;

void setup()
{
 size(640, 480);

 opencv = new OpenCV(this);
 opencv.capture(width, height);
}

In the draw() function, we'll use some new methods to change the brightness and contrast
of the webcam image. We'll also flip the image so that it appears upside-down and blurs part
of the image.

void draw()
{
 background(0);

 opencv.read();
 opencv.flip(OpenCV.FLIP_BOTH);
 opencv.convert(GRAY);

 opencv.brightness(20);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

187

 opencv.contrast(80);

 opencv.ROI(160, 120, 320, 240);
 opencv.blur(OpenCV.GAUSSIAN, 41);

 image(opencv.image(), 0, 0);
}

The result of the sketch looks like the following screenshot. Play around with the parameters
to achieve some different looks.

How it works...
The brightness() method changes the overall brightness of the image. The contrast()
method changes the contrast of the image. You can use a number between -128 and 128.
Both of these methods can be used in environments with bad lighting to create a better image
for tracking.

The blur() method is used to blur the image. The first parameter sets the type of blur. You
can use OpenCV.CV_BLUR, OpenCV.CV_GAUSSIAN, OpenCV.CV_MEDIAN or OpenCV.CV_
BILATERAL. The second parameter sets the amount of blur; you should use an odd number
for this, so that the blur area around each pixel stays symmetrical.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

9
Exploring JavaScript

Mode
In this chapter we will cover:

ff Creating your first Processing sketch for the Web

ff Creating a custom HTML template

ff Working with fonts

ff Working with images/SVG files

ff Creating 3D sketches for the Web

ff Using Processing.js without the Processing editor

ff Writing sketches with JavaScript

ff Using Processing.js with jQuery

ff Getting started with the Toxiclibs.js library

Introduction
The new JAVASCRIPT mode in Processing 2 uses Processing.js, a JavaScript port of the
Processing language. This port uses the HTML5 canvas element to render your Processing
sketches. In this chapter, we'll take a look at drawing some simple 2D and 3D sketches with
Processing.js. In the more advanced examples, we'll take a look at how we can combine
Processing.js with regular JavaScript and the jQuery library.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

190

Creating your first Processing sketch for the
Web

In this first recipe, we'll take a look at the new JAVASCRIPT mode. You'll learn about the
differences between the STANDARD and the JAVASCRIPT modes.

Getting ready
The first thing you need to do is switch to JAVASCRIPT mode. You already know how to
do this, as you've learned about it a while ago. If you can't remember, go take a look at the
Switching modes recipe in Chapter 1, Getting Started with Processing 2.

How to do it...
Once you're in JAVASCRIPT mode, type the following code in the editor. This is just a basic
sketch with a line that runs around the screen. You should be able to understand the code.

float x, y;
float prevX, prevY;

void setup()
{
 size(640, 480);
 smooth();
 background(0);

 x = random(width);
 y = random(height);
 prevX = x + random(-10, 10);
 prevY = y + random(-10, 10);
}

void draw()
{
 stroke(random(192));
 strokeWeight(1);
 line(x, y, prevX, prevY);

 prevX = x;
 prevY = y;
 x += random(-10, 10);
 y += random(-10, 10);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

191

 if (x < 0) {
 x = width;
 } else if (x > width) {
 x = 0;
 }

 if (y < 0) {
 y = height;
 } else if (y > height) {
 y = 0;
 }
}

If you run the code, you'll notice that your default browser will start up and will show the
sketch running inside a webpage. You can see what the sketch looks like in Google Chrome,
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

192

How it works...
When you run this sketch in JAVASCRIPT mode, you'll notice some differences. Processing
doesn't compile the code in an executable file, and you won't see your sketch running in a
separate window. Instead, Processing starts a web server on an available port, opens your
default web browser, and shows a webpage with your sketch. Take a good look at the URL in
your browser, it should look like this: 127.0.0.1:59792. The 127.0.0.1 bit is the local
IP (Internet Protocol) address for your computer, also known as localhost. The part :59792
refers to the port number used to connect to the Web server. Normal web servers usually use
port 80. Processing uses a really high number, so it doesn't interfere with the standard web
server, if you are running one on your machine.

If you take a look at your sketch folder, you'll see that there is a web-export folder. This
folder contains the HTML page, the Processing.js JavaScript file, and the .pde document with
your code.

To render your sketch, this webpage uses Processing.js, a JavaScript port of the Processing
language. This project was initially started by John Resig, the creator of jQuery, to show the
power of the HTML5 canvas element. Processing.js interprets the code from your sketch and
uses native JavaScript to draw it to a canvas element. You can find out more about Processing.
js on the project's website, at http://processingjs.org/.

There's more...
Since Processing.js is JavaScript-based, it can be used in just about any web application.
Sketchpad is an online Processing editor that uses Processing.js. This might be a handy web
application to code anywhere you like, even if you don't have Processing installed. You can
learn more about Sketchpad at http://sketchpad.cc/.

Creating a custom HTML template
Now that you know how the JAVASCRIPT mode works, it's time to create your own HTML
template. This is really handy if you want to take full control of the layout of the web page
before showing it on the Internet. The standard HTML might be handy for testing, but it may
not be the best way to display your art.

Getting ready
For our template, we'll use the HTML5 Reset Stylesheet made by Richard Clark. This
CSS file will reset margins, paddings, and some other CSS properties, to ensure that
you'll have a blank slate to start building your own CSS file. This is a good practice to
make sure your website looks the same in every browser. This CSS file can be found at
http://html5doctor.com/html-5-reset-stylesheet/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

193

How to do it...
I won't show you any Processing code in this recipe. You can use the code from the previous
recipe. We'll take a look at the HTML and CSS codes we need to create a custom template
that you can use for your sketches. To create a new template, go to JavaScript | Start Custom
Template. Processing will create a template folder inside your sketch folder and open it
for you. Inside this folder, you'll find two files: template.html and processing.js. Open
the template.html file in your favorite text editor, remove the code, and replace it with the
following code:

<!DOCTYPE html>
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-
 8" />
 <title>@@sketch@@ : Built with Processing and Processing.js
 </title>
 <meta name="Generator" content="Processing" />

 <link rel="stylesheet" href="reset.css" media="screen" />
 <link rel="stylesheet" href="style.css" media="screen" />

 <script src="processing.js" type="text/javascript"></script>
 @@scripts@@
 </head>
 <body>
 <div id="container">
 <div>
 <canvas id="@@id@@" data-processing-sources="@@sketch@@.pde"
 width="@@width@@" height="@@height@@">
 <p>Your browser does not support the canvas tag.</p>
 </canvas>
 <noscript>
 <p>JavaScript is required to view the contents of this
 page.</p>
 </noscript>
 <!--[if lt IE 9]>
 <p>Your browser does not support the canvas tag.</p>
 <![endif]-->
 </div>

 <h1>@@sketch@@</h1>
 <p id="description">@@description@@</p>
 <p id="sources">Source code: @@source@@</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

194

 <p>Built with <a href="http://processing.org"
 title="Processing">Processing and <a
 href="http://processingjs.org"
 title="Processing.js">Processing.js</p>
 </div>
 </body>
</html>

You also need to copy the reset.css file you've downloaded from the HTML5 doctor website
into the template folder. The next thing you need to do is to create a new document with
your text editor and save it as style.css in the template folder. This is the CSS code you
need to add to the style.css file:

body {
 background: #fff;
 color: #000;
 font-family: Helvetica, Arial, sans-serif;
 font-size: 12px;
 line-height: 1.4em;
}

#container {
 width: 640px;
 margin: 40px auto;
}

h1 {
 font-size: 2em;
 line-height: 1em;
 margin-bottom: 0.5em;
}

p {
 margin-bottom: 1.4em;
}

canvas {
 margin-bottom: 30px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

195

If you run the sketch in the browser, the result should look like the following screenshot:

How it works...
If Processing detects a template folder in your sketch folder, it will use these files as the
template to create the final files for the Web.

The original template.html file uses internal CSS, which isn't a good idea. I moved all CSS
files to external files, since this is better if you want to reuse your CSS files.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

196

There are a few variables you can use in your HTML template document. When Processing
creates the files for the Web, it converts these to their appropriate values.

ff @@scripts@@: This will add some extra JavaScript to the final document. You should
place this variable after loading the processing.js file.

ff @@sketch@@: This is the name of your sketch. In our case, this is custom_html_
template.pde. This variable is used to load your code so Processing can render it
on the canvas element. In this case, it's used on the data-processing-sources
attribute of the canvas element.

ff @@source@@: This will be replaced with a link to the original source code of your
sketch.

ff @@id@@: This is used for the ID attribute of the <canvas> tag. This is basically the
name of your sketch, all lowercase and no special characters.

ff @@width@@ and @@height@@: These variables return the width and height of your
sketch. You've set these with the size() function in your sketch. These can be used
to set the width and height of the canvas element.

ff @@description@@: This variable will be replaced with a description of your sketch.
To set this description, you need to add a comment block at the beginning of your
sketch. The comment block should look like this:
/**
 * This is a short description of the sketch.
 */

Working with fonts
In Chapter 2, Drawing Text, Curves, and Shapes in 2D, you've learned how to use fonts in
your sketches. In JAVASCRIPT mode, you can't use the .vlw fonts you've made with the
Create Font tool. To make fonts work on the web, we'll need a different technique. You'll learn
everything you need to know in this recipe.

Getting ready
I've used the Chunk typeface for this example. Chunk is an open source font made by
The League of Moveable Type. You can get it from their website, at http://www.
theleagueofmoveabletype.com/chunk. Download the font, and add the Chunk.ttf
file to your sketch folder, by dragging it onto the Processing editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

197

How to do it...
Once you've added the font to your sketch folder, you can type this code into your editor. The
text will scroll from bottom to top, just like in the movies, while a yellow rectangle is animated
in the background.

PFont font;

float x;
float y;

void setup()
{
 size(640, 480);

 font = createFont("Chunk.ttf", 60);

 textFont(font);

 x = 0;
 y = height + 60;
}

void draw()
{
 background(255);

 noStroke();

 fill(255, 225, 0);

 rect(x, 0, random(width/2), height);

 String txt = "This is Chunk!";
 float tw = textWidth(txt);

 fill(0);
 text(txt, (width-tw)/2, y);

 x += noise(mouseY * 0.02, y * 0.02);
 if (x >= width) {
 x = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

198

 }

 y--;
 if (y <= -60) {
 y = height + 60;	
 }
}

If you run the sketch, you'll notice that you can't see the font. This is because we forgot an
important step. Go to JavaScript | Playback Settings (Directives), to open the Directives
Editor dialog box.

The first text field on this window can be used to make a list of fonts that should be loaded
when the sketch runs. If you click on the scan button, you'll notice that Chunk.ttf is added
to that text field. If you use more than one font, these will also be added, separated with
commas. If the scan button doesn't find your fonts, you can also add them manually. If you
click on the OK button, the Directives Editor dialog box will close, and the following line will be
added to the top of your sketch:

/* @pjs font="Chunk.ttf"; */

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

199

If you run the sketch, you'll see that the font is now rendered on the canvas element.

How it works...
STANDARD mode Processing sketches load the files they need from the data folder. But since
Processing.js runs in a browser, we need to tell it which files it should request from the server
to use in the sketch. That's what the comment on the first line of your sketch is for.

/* @pjs font="Chunk.ttf"; */

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

200

This comment block is called a directive. The @pjs part tells Processing.js that everything
within this comment block holds instructions for it to use. The font="Chunk.ttf" part is an
instruction for Processing.js to load the Chunk.ttf file from the web server, so that it can be
used in the sketch.

There's more...
You can't just use any font with Processing.js; you need to be sure that you have the right to
use them. That's why I've used the open source font Chunk, in this example. If you've bought
some commercial fonts, chances are that you will not be allowed to use them on the web. You
should check the license that comes with the font for this purpose. Some font foundries have
special licenses for their fonts, so that you can use them on the web, but you'll have to pay,
even if you already bought the font to use it in a desktop publishing environment.

Working with images/SVG files
In this example, we'll take a look at how we can display images and SVG files. You've learned
all about this in Chapter 2, Drawing Text, Curves, and Shapes in 2D, but just like the fonts
example, we'll need to do some extra things to make it work.

Getting ready
Add an image and an SVG file to the data folder of your Processing sketch, by dragging them
on the Processing editor.

How to do it...
This is the full code for the sketch. We'll just load the image and the SVG file and display them
on the canvas element.

PImage img;
PShape shapes;

void setup()
{
 size(640, 480);

 img = loadImage("osaka-fluo.jpg");

 shapes = loadShape("shapes.svg");

 shapeMode(CENTER);
}

void draw()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

201

{
 background(255);

 image(img, 0, 0);

 translate(width/2, height/2);
 shape(shapes, 0, 0);
}

Before you run the sketch, you need to add a directive to preload the image. Go to JavaScript
| Playback Settings (Directives) and open the Directives Editor dialog box. Click on the
second scan button to add your images to the text field. If you click on OK, a directive for
loading the images will be added at the top of your sketch. The result of the sketch will look
like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

202

How it works...
The directive to load images works the same way as the one that loads the fonts. You've
learned about this in the Working with fonts recipe, earlier in this chapter. The directive to
load images looks like this:

/* @pjs preload="osaka-fluo.jpg"; */

If you want to load more images, you can add the file names to this directive, separated
by a comma.

There's more...
If you want to load both fonts and images, you can add both the directives to the same
comment block. The following block of code shows you how you can load two fonts and three
images to use in your sketch.

/* @pjs preload="image1.jpg,image2.png,image3.png";
 font="font1.ttf,font2.ttf";
*/

Creating 3D sketches for the Web
In this recipe, we'll take a look at the third dimension. Processing.js can be used to display 3D
content, so everything that you've learned in Chapter 3, Drawing in 3D–Lights, Camera, and
Action, can be used on the web.

How to do it...
This is the full code for our 3D sketch. You need to import the OpenGL library and add
the OPENGL parameter to the size() function. This sketch will render a yellow box in
the middle of the screen. You can manipulate the rotation in the direction of the Y axis
by moving your mouse.

import processing.opengl.*;

void setup()
{
 size(640, 480, OPENGL);
 smooth();

 noStroke();
}

void draw()
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

203

 background(255);

 lights();

 translate(width/2, height/2);

 rotateX(radians(frameCount));
 rotateY(map(mouseX, 0, width, -PI, PI));

 fill(255, 225, 23);
 box(200);
}

The sketch looks like the following screenshot when it runs in your browser:

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

204

How it works...
The 3D engine that renders your Processing sketch is implemented using WebGL. WebGL is
based on OpenGL ES 2.0, a subset of OpenGL. The ES in OpenGL ES stands for Embedded
Systems. This version of OpenGL is used in smartphones and is also implemented in
most modern browsers. You can find out more about which browsers are supported, from
Wikipedia, at http://en.wikipedia.org/wiki/WebGL#Desktop_Browsers.

The only thing you need to do to is import the OpenGL library and set the third parameter of
the size() function to OPENGL. Processing.js will actually ignore the import statement, since
Java libraries can't be used in JAVASCRIPT mode. But, it might be handy to include it if you
want to run the sketch in the STANDARD mode.

Using Processing.js without the Processing
editor

It's time to leave our beloved Processing editor and do something different. We'll take a look
at how we can use Processing.js with a regular text editor. This helps you learn about the
JavaScript version of Processing and gives you more control over what you do.

Getting ready
Download the latest version of Processing.js at http://processingjs.org/download/.
You can use the Production version, which is a minified version of the full Development
version. The size of this file is a lot smaller, so it is ideal to use on your website. The
Processing.js file should be placed in the js folder. You also need the reset.css file
we've used in the Creating a custom HTML template recipe.

How to do it...
We'll start by creating an HTML file with links to the CSS files and will then include the
Processing.js file with a <script> tag. This is the full code for the HTML file. You need to save
it in a new folder, as index.html.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Using Processing.js without the Processing
 editor</title>

 <link rel="stylesheet" href="css/reset.css"
 media="screen" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

205

 <link rel="stylesheet" href="css/style.css"
 media="screen" />

 <script src="js/processing-1.3.6.min.js"
 type="text/javascript"></script>
 </head>
 <body>
 <div id="container">
 <canvas data-processing-
 sources="processingjs_no_editor.pde"></canvas>
 </div>
 </body>
</html>

The reset.css and style.css files are the same as the ones we've used in the Creating a
custom HTML template recipe. You need to place them in the css folder, next to the index.
html file. You can type the following code in your text editor and save it as processingjs_
no_editor.pde.

void setup()
{
 size(640, 480);
}

void draw()
{
 background(225);
 translate(width/2, height/2);
 fill(255, 0, 0);
 noStroke();
 ellipse(0, 0, 200, 200);
}

The directory structure for this small website should look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

206

If you open the index.html file with your browser, the result should look like the following
screenshot. If you don't see the sketch, something has gone wrong, but it may not be your
fault. Some browsers may have trouble displaying the sketch when you load it locally.

How it works...
The first thing you need to do for your sketches to run is include Processing.js in your HTML
document, using the <script> tag. This is the line you'll use to do this:

<script src="js/processing-1.3.6.min.js" type="text/javascript"></
script>

The second line of HTML you need is to render a canvas element. In the data-processing-
sources file, you'll specify the name of your Processing sketch.

<canvas data-processing-sources="processingjs_no_editor.pde"></canvas>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

207

If you open the HTML file in your browser, you should see the sketch. If you don't see the
sketch, there may be a problem with your browser. Firefox and Safari usually don't have
problems displaying the sketch when you load it locally. Google Chrome, on the other hand,
doesn't display the sketch. If you want to see your sketch with this browser, you'll need to save
your files on a web server and surf to the URL.

Writing sketches with JavaScript
Since Processing.js is actually JavaScript, you can use it as a library to write Processing
sketches with pure JavaScript. In this recipe, we'll take a look at how you can do this. You'll
need the minified Processing.js file you'd downloaded for the previous recipe.

How to do it...
You need to start by creating an HTML file that links the reset.css and style.css files we
created in the Using Processing.js without the Processing editor recipe. We also need to link
the minified Processing.js file and a new JavaScript file named mysketch.js. Note that the
<canvas> tag doesn't have a data-processing-sources attribute.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Using Processing.js without the Processing editor</title>

 <link rel="stylesheet" href="css/reset.css" media="screen" />
 <link rel="stylesheet" href="css/style.css" media="screen" />

 <script src="js/processing-1.3.6.min.js"
 type="text/javascript"></script>
 <script src="js/mysketch.js"
 type="text/javascript"></script>

 </head>
 <body>
 <div id="container">
 <canvas id="mycanvas"></canvas>
 </div>
 </body>
</html>

We won't write any native Processing code in this recipe. Create a new file in your text editor
and save it as mysketch.js in the js folder. This is the JavaScript code you'll need to type
into that new document:

window.onload = function() {
 function mySketch(processing)

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

208

 {
 processing.setup = function()
 {
 processing.size(640, 480);
 processing.background(255, 225, 4);
 }

 processing.draw = function()
 {
 processing.stroke(0);
 processing.fill(0, 64);
 processing.ellipse(processing.random(processing.width),
 processing.random(processing.height), 20, 20);
 }
 }

 var canvas = document.getElementById("mycanvas");
 var processingInstance = new Processing(canvas, mySketch);
}

If you open the example in your browser, you'll see something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

209

How it works...
The HTML code in this example should be clear to you, as we explained how it works in the
previous recipe. We'll take a deeper look at the JavaScript code, because that's where all the
magic happens.

window.onload = function() {}

This first line of code is basically a wrapper around all the other code we need. This function
gets executed only when the full page is loaded in the browser. If we don't put all our code
between these curly braces, the sketch won't run.

function mySketch(processing)
{
 processing.setup = function()
 {
 processing.size(640, 480);
 processing.background(255, 225, 4);
 }

 processing.draw = function()
 {
 processing.stroke(0);
 processing.fill(0, 64);
 processing.ellipse(processing.random(processing.width),
 processing.random(processing.height), 20, 20);
 }
}

The mySketch() function is our actual Processing sketch. We'll pass a reference to the
main processing variable created by Processing.js. The line processing.setup()
= function(){} overrides the setup() function from Processing.js, so you can define
the size of the sketch and some other variables, here. As you may have guessed, the
processing.draw = function(){} line overrides the draw() function, so you can do
your custom drawing here. You can use any Processing function inside the mySketch()
function, as long as you put the processing variable in front of it. So, if you want to use
stroke(), you need to write processing.stroke().

The document.getElementById() function returns the canvas element from the DOM
tree of the web page as shown in the following code:

var canvas = document.getElementById("mycanvas");

This last line of code creates a new Processing object. You need to pass the canvas object
and your sketch function to the constructor as shown in the following code:

var processingInstance = new Processing(canvas, mySketch);

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

210

Using Processing.js with jQuery
In this recipe, we'll take a look at how we can combine Processing.js with jQuery. We'll also
use jQuery UI (User Interface), a user interface library built on top of jQuery. This library will
enable us to use sliders to control our Processing sketch.

Getting ready
Before you start to write code, you need to download jQuery and jQuery UI. You can get
everything on the websites for both projects:

ff http://jquery.com/

ff http://jqueryui.com/

Place minified jQuery and jQuery UI files in the js directory, together with the minified
Processing.js file. Add the reset.css and style.css files to the css folder. The base
folder you can see in the following screenshot contains CSS files and some images needed for
jQuery UI to work properly. You can find the base folder inside the themes folder of the jQuery
UI download file.

How to do it...
If all files are in place, it's time to get started. The HTML file looks a little different compared
to the one from the Writing sketches with JavaScript recipe. I've linked the new CSS and
JavaScript files and added a few empty div elements that will be used to create the sliders.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Using Processing.js with jQuery</title>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

211

 <link rel="stylesheet" href="css/reset.css"
 media="screen" />
 <link rel="stylesheet" href="css/base/jquery.ui.all.css">
 <link rel="stylesheet" href="css/style.css"
 media="screen" />

 <script src="js/jquery-1.7.2.min.js"
 type="text/javascript"></script>
 <script src="js/jquery-ui-1.8.18.custom.min.js"
 type="text/javascript"></script>

 <script src="js/processing-1.3.6.min.js"
 type="text/javascript"></script>
 <script src="js/mysketch.js"
 type="text/javascript"></script>

 </head>
 <body>
 <div id="container">
 <canvas id="mycanvas"></canvas>

 <p>Use these sliders to change the background color.</p>
 <div id="red"></div>
 <div id="green"></div>
 <div id="blue"></div>

 <p>Use this slider to change the radius of the ball.</p>
 <div id="radius"></div>
 </div>
 </body>
</html>

In the CSS file, I've added some selectors to change the appearance of the red, green, and
blue sliders. The full CSS code should look like this:

body {
 background: #fff;
 color: #000;
 font-family: Helvetica, Arial, sans-serif;
 font-size: 12px;
 line-height: 1.4em;
}

#container {
 width: 640px;
 margin: 40px auto;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

212

h1 {
 font-size: 2em;
 line-height: 1em;
 margin-bottom: 0.5em;
}

p {
 margin-bottom: 1.4em;
}

canvas {
 margin-bottom: 30px;
}

#red,
#green,
#blue {
 margin-bottom: 20px;
}

#red .ui-slider-range {
 background: #f00;
}

#green .ui-slider-range {
 background: #0f0;
}

#blue .ui-slider-range {
 background: #00f;
}

And now, the difficult part—writing the JavaScript code we need to connect the sliders to our
Processing sketch:

$(document).ready(function() {

 $("#red, #green, #blue").slider({
 orientation: "horizontal",
 range: "min",
 max: 255,
 value: 0,
 slide: updateBackground,
 change: updateBackground
 });

 $("#radius").slider({

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

213

 orientation: "horizontal",
 range: "min",
 min: 40,
 max: 160,
 value: 80,
 slide: updateRadius,
 change: updateRadius
 });

 var red = 0, green = 0, blue = 0;
 var radius = 80;

 function updateBackground()
 {
 red = $("#red").slider("value");
 green = $("#green").slider("value");
 blue = $("#blue").slider("value");
 }

 function updateRadius()
 {
 radius = $("#radius").slider("value");
 }

 function mySketch(processing)
 {
 var x;
 var y;
 var velX = 1;
 var velY = 1;

 processing.setup = function()
 {
 processing.size(640, 480);
 processing.background(red, green, blue);
 processing.noStroke();
 processing.fill(255);

 x = processing.width/2;
 y = processing.random(processing.height);
 }

 processing.draw = function()
 {
 x += velX;
 if (x < radius || x > processing.width - radius) {
 velX *= -1;

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

214

 }

 y += velY;
 if (y < radius || y > processing.height - radius) {
 velY *= -1;
 }

 processing.background(red, green, blue);
 processing.ellipse(x, y, radius * 2, radius * 2);
 }
 }

 var canvas = $("#mycanvas")[0];
 var processingInstance = new Processing(canvas, mySketch);
});

If all goes well, the end result should look like the following screenshot. The red, green, and
blue sliders can be used to change the background color of the sketch; the bottom slider
changes the radius of the bouncing ball.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

215

How it works...
Let's break down the JavaScript code into smaller blocks of code, to find out what happens in
this sketch.

$(document).ready(function() {});

This first line is similar to the window.onload function in the Writing sketches with
JavaScript recipe. It's a wrapper function that will only execute once the page has loaded. All
your code should go inside the curly braces.

$("#red, #green, #blue").slider({
 orientation: "horizontal",
 range: "min",
 max: 255,
 value: 0,
 slide: updateBackground,
 change: updateBackground
});

This block of code will create a slider from the empty div elements we added to the HTML file.
The settings inside the curly braces specify that it will be a horizontal slider, with a maximum
value of 255 and an initial value of 0. The slide and change settings refer to a callback
function named updateBackground. The block of code starting with $("#radius"
).slider() will set up the slider that changes the radius of the bouncing ball.

var red = 0, green = 0, blue = 0;
var radius = 80;

We also need to declare some variables for the red, green, and blue values, and one for the
radius. This should be done outside the mySketch() function, so that we can access these
variables anywhere.

function updateBackground()
{
 red = $("#red").slider("value");
 green = $("#green").slider("value");
 blue = $("#blue").slider("value");
}

function updateRadius()
{
 radius = $("#radius").slider("value");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

216

The updateBackground() and updateRadius() functions are called when the user drags
the handle of the slider. In the updateBackground() function, we'll assign the current
value of the sliders to the red, green, and blue variables. The updateRadius() function
will change the value of the radius variable. If we take a good look at the draw() function
inside our mySketch() function, we'll see that the variables are used to set the background
color and draw an ellipse with the radius size.

The last difference is in the way we access the canvas object with jQuery. The following
line does the same as document.getElementById(), which you learned about in the
previous recipe:

var canvas = $("#mycanvas")[0];

Getting started with the Toxiclibs.js library
Toxiclibs, made by Karsten Schmidt, is probably the most widely used Processing library. It has
some really good classes to work with 2D and 3D geometry, physics, colors, audio, and more.
In this recipe, we'll take a look at the JavaScript port made by Kyle Philips. You can find out
more about Toxiclibs.js at http://haptic-data.com/toxiclibsjs/.

Getting ready
Before we start coding, you need to download the toxiclibs.js library. You can find it on GitHub,
at https://github.com/hapticdata/toxiclibsjs/.

Find the toxiclibs.min.js file and place it in the js folder of a new project. The directory
structure for this recipe looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

217

How to do it...
The HTML code for this sketch is very straightforward. It just links the toxiclibs.js
 and Processing.js libraries, the CSS files we've used throughout this chapter, and a
Processing sketch.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Getting Started with Toxiclibs.js</title>

 <link rel="stylesheet" href="css/reset.css"
 media="screen" />
 <link rel="stylesheet" href="css/style.css"
 media="screen" />

 <script src="js/toxiclibs.min.js"
 type="text/javascript"></script>
 <script src="js/processing-1.3.6.min.js"
 type="text/javascript"></script>

 </head>
 <body>
 <div id="container">
 <canvas id="mycanvas" data-processing-
 sources="toxiclibs_js.pde"></canvas>
 </div>
 </body>
</html>

The following is the full code for the Processing sketch. You should recognize most of the
code. This example will render four 2D polygons. If you move your mouse over these shapes,
their color will change.

var Vec2D = toxi.geom.Vec2D,
 ToxiclibsSupport = toxi.processing.ToxiclibsSupport,
 Polygon2D = toxi.geom.Polygon2D;

import toxi.geom.*;
import toxi.processing.*;

ToxiclibsSupport gfx;
Polygon2D[] polygons;

void setup() {

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

218

 size(640, 480);
 smooth();
 noStroke();

 polygons = new Polygon2D[4];
 for (int j = 0; j < 4; j++) {
 int randomNum = floor(random(3, 8));
 float angle = TWO_PI / randomNum;

 Vec2D[] vertices = new Vec2D[randomNum];
 for (int i = 0; i < randomNum; i++) {
 float x = 100 + (j*150) + cos(i * angle) * 60;
 float y = height/2 + sin(i * angle) * 60;
 vertices[i] = new Vec2D(x, y);
 }

 polygons[j] = new Polygon2D(vertices);
 }

 gfx = new ToxiclibsSupport(this);
}

void draw() {
 background(255, 225, 3);

 for (int i = 0; i < 4; i++) {
 Vec2D m = new Vec2D(mouseX, mouseY);

 if (polygons[i].containsPoint(m)) {
 fill(255, 64, 0);
 } else {
 fill(0);
 }
 gfx.polygon2D(polygons[i]);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

219

If you open the HTML page in your browser, the result will look similar to the following screenshot:

How it works...
The first few lines in the sketch are used to map some of the JavaScript prototypes to the real
class names as they would be used in a regular Processing sketch. We do this to make the
code compatible with the Java version of Toxiclibs. If you place the following piece of code in a
comment block, you can use the sketch within Processing if you've installed Toxiclibs:

var Vec2D = toxi.geom.Vec2D,
 ToxiclibsSupport = toxi.processing.ToxiclibsSupport,
 Polygon2D = toxi.geom.Polygon2D;

We've also added some import statements for the toxi.geom and toxi.processing
packages. These import statements will be ignored in the JavaScript version but are needed if
we want to use the code within Processing.

Right before the setup() function, we declared a ToxiclibsSupport object and an array
to store our Polygon2D objects. ToxiclibsSupport is a helper class to draw the custom
geometry datatypes from Toxiclibs, with Processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring JavaScript Mode

220

Inside the setup() function, we used a Vec2D array to store the vertices of our polygon. The
Vec2D class is similar to the PVector class from Processing, but it has some extra methods.
The polygons are created by using the Polygon2D constructor with the vertex array as a
parameter. We've also initialized the ToxiclibsSupport object with this line of code:

gfx = new ToxiclibsSupport(this);

Inside the draw() function, we use a for loop to draw the four polygons. In the first line
of the code within the for loop, we store the mouse position in a new Vec2D object. We
use this object to check if the mouse position lies within the area of the polygon using the
containsPoint() method. If this method returns true, we set the fill color to red, if it
returns false, the fill color will be black. The gfx.polygon2D() method is used to draw the
polygon to the screen.

for (int i = 0; i < 4; i++) {
 Vec2D m = new Vec2D(mouseX, mouseY);

 if (polygons[i].containsPoint(m)) {
 fill(255, 64, 0);
 } else {
 fill(0);
 }
 gfx.polygon2D(polygons[i]);
}

www.it-ebooks.info

http://www.it-ebooks.info/

10
Exploring Android Mode

In this chapter we will cover:

ff Installing the Android SDK

ff Running your sketch in the Android Emulator

ff Running your sketch on an Android device

ff Accessing screen size and density

ff Responding to touch interaction

ff Using the accelerometer

ff Using the GPS

ff Creating 3D sketches on Android

ff Adding an icon to your Android App

Introduction
A few years ago, there was a great initiative called Mobile Processing. This was a good
starting point to get your Processing sketches to run on cheap Java powered mobile devices,
such as cellphones. This project isn't actively developed anymore, because smartphones have
gained a lot of the market.

In Processing 2, there is a better method to get your Processing sketches to run on a mobile
device: Android mode. This new mode enables you to run your sketches in the Android
Emulator or on an Android device. You can also access the global positioning system (GPS)
or the accelerometer from Processing, and make your sketch react to the touchscreen. In this
chapter, we'll take a look at how we can create Android apps with Processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

222

Installing the Android SDK
Before we can create Android apps, you need to do some preparations. We'll start by installing
the Android SDK on our machine, and tell Processing where to find it. This is the most
important step. If we don't do this, we won't be able to use the new Android mode.

How to do it...
The first thing you need to do is point your browser at http://developer.android.com/
sdk/index.html, and download the Android Software Development Kit (SDK) for your
platform. When the SDK has finished downloading, you need to unzip it, and place it on your
hard drive. I've placed it in the Documents folder in my home directory.

Go to the tools directory in the android-sdk folder, and double-click the android file.
This is a Unix executable file. A terminal window will open, and the Android SDK manager will
launch. Check the Android SDK Platform-tools and Android 2.3.3 (API 10) checkboxes and
click the Install 22 packages… button, as shown in the following screenshot. Depending on
your system, there may be less or more packages to install.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

223

Now that we've installed we need, it's time to launch Processing. In the Processing editor,
you need to switch to Android mode. If you don't remember how to do this, take a look at the
Switching modes recipe from Chapter 1, Getting Started with Processing 2, in this book. You'll
get an alert window that says Android SDK may not be installed. Click the Yes button to move
to the next step:

In the file selection window, you need to navigate to the location where you've installed the
Android SDK. Select the folder, and click on the Choose button.

If everything went well, you are now in Android mode. You'll notice that the color of the
Processing editor has changed. It now has a green color scheme.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

224

How it works...
In order to use the Android SDK, Processing needs to know where the SDK is installed. We've
installed Android 2.3.3 (API 10), because this is the version Processing will use. You can
install newer versions of the API if you need them for regular Android development.

We also went through some steps to locate the Android SDK within Processing. These steps
modify your Processing preferences file. On Mac OS X, the file is located in this directory:

 ~/Users/username/Library/Processing/preferences.txt

If you open this file in a text editor, you'll find a line that starts with android.sdk.path.
Processing loads this preferences file when it starts, and uses this line to locate the Android
SDK. On Mac OS X, it should look as follows if you've placed the Android SDK in your
Documents folder:

android.sdk.path=/Users/username/Documents/android-sdk-macosx

Processing needs the location of the SDK to launch the emulator, or to compile your sketch to
a file that can be installed on your device.

Running your sketch in the Android Emulator
Now that you've installed the Android SDK, it's time to get your hands dirty and write some
code. We'll start by writing a simple sketch and run it inside the Android Emulator. If you don't
have access to an Android device, the emulator is a great application to test your apps.

How to do it...
The code for this app is very straightforward. It leaves a trace of colored circles across
the screen. You'll notice that the size() function looks a little different. We don't set the
dimensions of the sketch window in pixels, as we don't know the screen resolution of the
device that our app will run on.

float x;
float y;
float prevX;
float prevY;
float d;
float h;

void setup()
{
 size(displayWidth, displayHeight);
 background(0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

225

 smooth();

 x = random(width);
 y = random(height);
 prevX = x;
 prevY = y;

 stroke(255, 128);

 colorMode(HSB, 360, 100, 100, 100);
}

void draw()
{
 x += random(-30, 30);
 y += random(-30, 30);

 x = constrain(x, 0, width);
 y = constrain(y, 0, height);

 d = dist(x, y, prevX, prevY);

 h = map(d, 0, 42, 0, 360);

 fill(h, 100, 100, 50);
 ellipse(x, y, d, d);

 prevX = x;
 prevY = y;
}

To run your sketch in the Android Emulator, you can click the play button on the Processing
IDE, go to the Sketch | Run in Emulator menu, or press the Cmd + R on your keyboard when
you use Mac OS X, or Ctrl + R on Windows and Linux. The emulator will start, and run your
sketch. This may take a while, as the emulator is rather slow.

Processing can lose the connection with the emulator if you start
your sketch for the first time, so you may have to run it again
when the emulator is running.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

226

The result should look as shown in the following screenshot:

How it works...
Let's start by taking a look at how the size() function works in Android mode. In the desktop
version we use this function to set the width and height of the window. A third parameter is
used to set the rendering mode, either 2D or 3D.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

227

In Android mode, the size() function is ignored. But it might be handy to use it as an easy
way to set the render mode to 3D. When you run your sketch, the code from your .pde file
is converted to a .java file, and then compiled to an application that can run in the Android
Emulator. Let's take a closer look at this piece of code:

void setup()
{
 size(displayWidth, displayHeight, P3D);
}

When this piece of code is converted to a .java file, Processing will convert it to
following code:

void setup() {}

public int sketchWidth() {
 return displayWidth;
}

public int sketchHeight() {
 return displayHeight;
}

public String sketchRenderer() {
 return P3D;
}

The reason why you can't set the size of your sketch is that there are a lot of different Android
devices out there. Tablets, top of the line smartphones with a high-resolution screen, and
cheap devices with a small screen. So you can't really know where your application will end
up. That's why the Android operating system will set the width and height of the sketch for you.

If you take a look at your sketch folder, you'll notice that sketch.properties and
AndroidManifest.xml are added. The sketch.properties file is used to tell the
Processing editor that it needs to use Android mode for this sketch. The AndroidManifest.
xml file is required for every Android application and contains entries for things such as
permissions.

If you want to stop your sketch, you should press the stop button in the Processing IDE. Don't
quit the Emulator. If you make changes to your code, and run it again, it will be installed faster,
and you won't have to wait for the Emulator to start up again.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

228

Running your sketch on an Android device
As you are reading this chapter, you probably want to get started with the exciting stuff, and
run your sketches on your Android device. The Android Emulator is great for testing, but if
you run your app on a real device, you have access to the accelerometer, the GPS, or the
touchscreen. Let's take a look at how you can install your sketches on your device.

How to do it...
To run a sketch on your device, you first need to enable USB debugging. To do this, go to
Settings | Applications | Development on your device, and touch the checkbox next to
USB debugging:

We'll use the same code as in the previous recipe. Here it is again:

float x;
float y;
float prevX;
float prevY;
float d;
float h;

void setup()
{
 size(displayWidth, displayHeight);
 background(0);
 smooth();

 x = random(width);
 y = random(height);
 prevX = x;
 prevY = y;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

229

 stroke(255, 128);

 colorMode(HSB, 360, 100, 100, 100);
}

void draw()
{
 x += random(-30, 30);
 y += random(-30, 30);

 x = constrain(x, 0, width);
 y = constrain(y, 0, height);

 d = dist(x, y, prevX, prevY);

 h = map(d, 0, 42, 0, 360);

 fill(h, 100, 100, 50);
 ellipse(x, y, d, d);

 prevX = x;
 prevY = y;	
}

To run your sketch on your device, go to the menu Sketch | Run on Device.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

230

How it works...
The first thing you need to do is to enable USB debugging on your device and connect it to
your computer with a USB cable. By doing this, you'll be able to use the standard debugging
tools that come with the Android SDK to check your apps. This also enables Processing to
install sketches on your device. If you choose the Run on Device option from the Sketch
menu, Processing will compile your code, and install it on the device.

Accessing screen size and density
In the Running your sketch in the Android Emulator recipe, you've learned that the Android OS
sets the size of your sketch window. In this recipe, we'll take a look at how we can access the
width, height, DPI, and density values of the screen. There are a lot of Android devices with
different screen sizes and resolutions. These values can be used to make your app look good
on all of these devices.

Getting ready
I've used the font Junction in this example, an open source font made by The League of Moveable
Type. You can download the font from http://www.theleagueofmoveabletype.com/
junction. Drag the font file Junction.otf onto the Processing editor so you can use it in
your sketch.

How to do it...
We'll start by importing the Android DisplayMetrics class, and declare some String
variables and one variable for the font we'll use to display these strings on the screen:

import android.util.DisplayMetrics;

String density;
String dpi;
String w;
String h;

PFont junction;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

231

Inside the setup() function, we'll get the values we need from the DisplayMetrics class,
and add them to our String variables. We'll also load the Junction font at a size of 32 pixels:

void setup()
{
 size(displayWidth, displayHeight);
 smooth();

 DisplayMetrics metrics = new DisplayMetrics();
 getWindowManager().getDefaultDisplay().getMetrics(metrics);

 density = "Density: " + metrics.density;
 dpi = "DPI: " + metrics.densityDpi;
 w = "Width: " + width;
 h = "height: " + height;

 junction = createFont("Junction.otf", 32);

 textFont(junction, 32);

 println(PFont.list());
}

In the draw() function, we'll draw our String variables to the screen:

void draw()
{
 background(255, 225, 23);
 fill(0);

 textAlign(CENTER);

 text(density, width/2, 300);
 text(dpi, width/2, 360);
 text(w, width/2, 420);
 text(h, width/2, 480);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

232

The sketch looks as shown in the following screenshot, running on an HTC desire smartphone.
If you have another device, the values will be different.

How it works...
The DisplayMetrics class is a general Android class that can access general information
about the display of your device. You can initialize this information by declaring a
DisplayMetrics object as follows:

DisplayMetrics metrics = new DisplayMetrics();
getWindowManager().getDefaultDisplay().getMetrics(metrics);

After declaring the object, you can access the values you need as in the following piece of
code, and use them in your sketch.

metrics.density;
metrics.densityDpi;

The full overview with accessible fields and methods of the DisplayMetrics class
can be found at http://developer.android.com/reference/android/util/
DisplayMetrics.html.

Responding to touch interaction
People have become used to interacting with a device by tapping and swiping on a
touchscreen. In this recipe, we'll take a look at how you can detect when a user is touching
the screen, and let your sketch respond to that interaction. We'll make a simple drawing
application to see how it's done.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

233

How to do it...
We'll start by writing the setup() function and declare a boolean variable. If the value of this
variable is true, we'll draw some things on the screen.

boolean touching = false;

void setup()
{
 size(displayWidth, displayHeight);
 smooth();

 background(0);
}

To respond to a user touching the screen, we'll override the surfaceTouchevent() method.
If we detect a touch we'll set the touching variable to true:

public boolean surfaceTouchEvent(MotionEvent event)
{
 if (event.getAction() == 2) {
 touching = true;
 } else {
 touching = false;
 }

 return super.surfaceTouchEvent(event);
}

In the draw() function, we'll add the mouseX, mouseY, pmouseX, and pmouseY system
variables to draw circles and lines when the user is touching the screen:

void draw()
{
 if (touching) {
 stroke(255, 128);
 noFill();
 float d = dist(mouseX, mouseY, pmouseX, pmouseY);
 float s = map(d, 0, 200, 1, 10);
 strokeWeight(s);
 line(mouseX, mouseY, pmouseX, pmouseY);
 fill(255, 255, 0, 16);
 stroke(0, 128);
 strokeWeight(1);
 ellipse(mouseX, mouseY, motionPressure * 100, motionPressure *
100);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

234

If you run your sketch on your device, you can start drawing. The result should look as shown
in the following screenshot:

How it works...
Responding to events in Android mode works a little differently than in the Standard mode
of Processing. On a desktop computer, you can respond to the keyboard and mouse. These
functions are not available on a handheld device. To respond to events, you'll need to override
the surfaceTouchEvent() function:

public boolean surfaceTouchEvent(MotionEvent event) {}

Inside this function, you can use all methods of the MotionEvent class. The getAction()
method returns the type of action being performed on the device as an integer. If this action is
equal to 2, you've detected a touch:

if (event.getAction() == 2) {
 touching = true;
} else {
 touching = false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

235

To make sure everything works properly, we need to call the super.surfaceTouchEvent()
method in the last line of the function:

return super.surfaceTouchEvent(event);

Inside the draw() function we've used the motionPressure variable to set the size of
the circles. This variable stores the size of the touch area, and is only updated when the
screen is touched.

There's more...
In this recipe, we've only detected a single touch. Most Android devices support multitouch. If
you want to use multitouch, there's a simple piece of code to access the data from the screen.
In the surfaceTouchEvent() function, you need to retrieve the number of touches by
calling the event.getPointerCount() method. If you loop through these pointer objects,
you can easily get the x and y coordinates and the size of the touch. The code looks as follows:

public boolean surfaceTouchEvent(MotionEvent event)
{
 int numTouches = event.getPointerCount();

 for (int i = 0; i < numTouches; i++) {
 int touchID = event.getPointerId(i);
 float x = event.getX(i);
 float y = event.getY(i);
 float r = event.getSize(i);
 }
 return super.surfaceTouchEvent(event);
}

Using the accelerometer
Most Android devices have an accelerometer. This chip is used to detect the orientation of
your device. It will return different values if you hold your device in portrait, landscape, or
upside down. In this recipe, we'll take a look at how we can access this chip, and use those
values to move a ball across the screen.

Getting ready
Create a new sketch and save it as accelerometer.pde. Go to the File | Examples menu,
search for the Sensors folder on this panel, and open the accelerometer example. You'll notice
that there is a second tab in this sketch, the AccelerometerManager.java class. Copy
this file into your new sketch. We'll need it to make our example work.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

236

How to do it...
We'll start by declaring some variables and assigning values to them in the setup() function:

AccelerometerManager acc;
float ax;
float ay;
float az;
float r;

PVector loc;
color bgcolor;

void setup()
{
 acc = new AccelerometerManager(this);

 size(displayWidth, displayHeight);
 orientation(PORTRAIT);
 smooth();

 loc = new PVector(width/2, height/2);

 r = 40;

 bgcolor = color(255, 0, 0);
}

The next thing we'll do is override the accelerationEvent() function. This function will be
called every time the values of the accelerometer change. We also need to call the redraw()
function to see the changes:

public void accelerationEvent(float x, float y, float z) {
 ax = x;
 ay = y;
 az = z;
 redraw();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

237

Inside the draw() function, we'll use the ax and ay variables to change the location of the
ball. When the ball hits one of the edges of the screen, we'll change the background color.

void draw()
{
 float speedX = -(ax / 2);
 float speedY = ay / 2;

 loc.x += speedX;
 loc.y += speedY;

 if (loc.x < r) {
 bgcolor = color(255, 128, 0, 32);
 }

 f (loc.x > width - r) {
 bgcolor = color(128, 255, 0, 32);
 }

 if (loc.y < r) {
 bgcolor = color(0, 225, 255, 32);
 }

 if (loc.y > height - r) {
 bgcolor = color(255, 0, 128, 32);
 }

 loc.x = constrain(loc.x, r, width - r);
 loc.y = constrain(loc.y, r, height - r);

 fill(bgcolor);
 rect(0, 0, width, height);

 fill(255);
 noStroke();
 ellipse(loc.x, loc.y, r*2, r*2);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

238

Run the sketch on your device and start tilting it. You'll see that the ball will react to gravity,
and go to the lowest point. The result should look as shown in the following screenshot:

How it works...
The easiest way to get started using the accelerometer is to use the
AccelerometerManager class that comes with the Processing examples. The
accelerationEvent() function in the main sketch is used to map the values of the
accelerometer to the ax, ay, and az variables.

The first four lines in the draw() function are used to move the ball.

I inverted the value of ax here to make sure the ball goes in the right
direction. I had to do this because the ball was going up when I tilted my
device to the left. Depending on your device, you might need to change
the ax or ay variables so the ball follows the laws of gravity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

239

There's more…
If you want better support for using sensors in your Android sketches, there's a great library
named Ketai to do those things. You can use the library to add support for the accelerometer,
gyroscope, location manager, and cameras to your sketches. You can get it on Google Code:
https://code.google.com/p/ketai/.

Using the GPS
Most smartphones have a GPS chip. This will enable you to create location-aware
applications. In this recipe, we'll take a look at how we can obtain the location of a device, and
show it on the screen.

Getting ready
I've used the font Junction in this example, an open source font made by The League of Moveable
Type. You can download the font from http://www.theleagueofmoveabletype.com/
junction. Drag it onto the Processing editor so you can use it in your sketch.

How to do it...
We'll start by importing some of the core android packages, and declare some variables we
need to make it work:

import android.content.Context;
import android.location.*;
import android.os.Bundle;

LocationManager manager;
GPSLocationListener gps;

float latitude;
float longitude;
float accuracy;
String provider;

PFont junction;

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

240

The next thing you need to do is to create a new tab, and name it GPSLocationListener.
pde. We'll write a class in this tab that implements the LocationListener interface.

class GPSLocationListener implements LocationListener
{
 void onLocationChanged(Location _loc)
 {
 latitude = (float) _loc.getLatitude();
 longitude = (float) _loc.getLongitude();
 accuracy = (float) _loc.getAccuracy();
 provider = _loc.getProvider();
 }

 void onProviderDisabled(String _provider)
 {
 provider = "";
 }

 void onProviderEnabled(String _provider)
 {
 provider = _provider;
 }

 void onStatusChanged(String _provider, int status, Bundle xtras)
 {
 }
}

Inside the setup() function, we'll set some initial values to our variables, and load the font
for displaying the information on the screen:

void setup()
{
 orientation(PORTRAIT);

 latitude = 0;
 longitude = 0;
 accuracy = 0;
 provider = "";

 junction = createFont("Junction.otf", 32);
 textFont(junction, 32);	
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

241

In the draw() function, we'll create a String variable with the latitude, longitude, accuracy,
and provider variables. This info will be drawn at the center of the screen:

void draw()
{
 background(5, 10, 85);
 fill(250, 255, 13);
 noStroke();

 translate(width/2, height/2);

 String msg = "Latitude: " + latitude + "\n";
 msg += "Longitude: " + longitude + "\n";
 msg += "Accuracy: " + accuracy + "\n";
 msg += "Provider: " + provider;

 textAlign(CENTER, CENTER);

 text(msg, 0, 0);
}

We also need to override the onResume() and onPause() functions to set up the GPS, and
read the values:

void onResume()
{
 super.onResume();

 gps = new GPSLocationListener();
 manager = (LocationManager) getSystemService(Context.LOCATION_
SERVICE);

 manager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER,
0, 0, gps);
}

void onPause()
{
 super.onPause();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

242

One last thing you need to do before running your sketch is to make sure that your Android
app has permission to access the GPS. Go to the Android | Sketch Permissions menu, and
check the ACCESS_FINE_LOCATION checkbox:

If you run the app on your device, you should see something as shown in the following
screenshot. The latitude and longitude values will be different, depending on your location.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

243

How it works...
The GPSLocationListener class we wrote implements the Android LocationListener
interface. An interface in Java is an abstract class, which can't be instantiated. Interfaces
have to be implemented in other classes. If you implement an Interface, you have to
make sure that you write all methods from the Interface, even if you don't use them.
The LocationListener interface has four methods: onLocationChanged(),
onProviderDisabled(), onProviderEnabled(), and onStatusChanged(). In our
implementation, the onStatusChanged() method does nothing at all, but we need it for our
sketch to work. The onLocationChanged() method from our class is used to set the values
of the latitude, longitude, accuracy, and provider variables from our main sketch.
The onProviderDisabled() and onProviderEnabled() methods only change the value
of the provider variable.

In the onResume() function, we'll create a new GPSLocationListener object, set up our
LocationManager object, and request the location with the following piece of code:

manager = (LocationManager) getSystemService(Context.LOCATION_SERVICE
);
 manager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, 0,
0, gps);

There's more...
Note that we actually "cheated" in this example. We are using the Android Network Location
Provider, which determines the location using cell tower and Wi-Fi signals, rather than the
GPS. This is less accurate, but it is faster, uses less battery power, and also works indoors. If
you want to access the real GPS, you only need to change LocationManager.NETWORK_
PROVIDER to LocationManager.GPS_Provider to make it work.

Creating 3D sketches on Android
In Chapter 3, Drawing in 3D–Lights, Camera, and Action! you've learned everything about
drawing stuff in 3D. In this recipe, we'll take a look at how the third dimension works on your
Android device.

How to do it...
You can start by typing the following code into a new sketch. The code is very straightforward.
It's a white cube and a colorful quad, rotating at the center of the screen.

void setup()
{
 size(displayWidth, displayHeight, P3D);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

244

void draw()
{
 background(0);

 translate(width/2, height/2, 0);

 pushMatrix();
 rotateY(radians(frameCount));
 fill(255);
 noStroke();
 box(100);
 popMatrix();

 pushMatrix();
 rotateY(radians(frameCount));
 rotateX(radians(frameCount));
 beginShape();
 fill(255, 0, 255);
 vertex(-200, -200);
 fill(0, 255, 0);
 vertex(200, -200);
 fill(0, 0, 255);
 vertex(200, 200);
 fill(255, 255, 0);
 vertex(-200, 200);
 endShape(CLOSE);
 popMatrix();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

245

How it works...
As you've learned in the Running your sketch in the Android Emulator recipe, the size()
method is converted to the sketchWidth(), sketchHeight(), and sketchRenderer()
functions. If we don't use the size() function, the sketch will start with the default 2D
renderer. If we use size(sketchWidth, sketchHeight, P3D);, the renderer will
be set to the 3D renderer. You should be able to use everything you learned in Chapter 3 on
Android. But be careful using complex geometry or lots of particles, as this might slow down
your sketch, as your Android device isn't as powerful as your computer.

Adding an icon to your Android App
If you want your app to stand out from the crowd, you'll need a great icon, so people can easily
find it on their device. This is probably the easiest recipe from this chapter, but you'll need to
know about it if you want to distribute your app via the Android Market.

How to do it...
For this recipe, I made a really conceptual piece of software art, inspired by the visuals of
ANBB. It's a red background with a white shape on top of it:

void setup()
{
 size(displayWidth, displayHeight);
 smooth();
}

void draw()
{
 // draw red background with white shape.
 background(255, 0, 0);

 fill(255);
 noStroke();

 beginShape();
 vertex(width/2, 0);
 vertex(width, height/2);
 vertex(width/2, height);
 vertex(0, height/2);
 endShape(CLOSE);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Android Mode

246

The icon I've designed is also red, with the same white shape. Go ahead and create something
similar. Fire up your favorite image editor, design an icon of 72 x 72 pixels, and save it as
icon-72.png in the root of your sketch folder. You also need the same icon at 48 x 48 pixels
and at 36 x 36 pixels, and save these files as icon-48.png and icon-36.png. The folder
structure of your sketch should look as shown in the following screenshot:

If you install your sketch on your device, you'll see that the application now has your icon. I've
installed the apps in a folder on my phone, together with some of the other sketches.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

247

How it works...
Android uses the icons of different resolutions, depending on the context they are used in. If
your app is on the home screen of your phone, it will use an icon of a different resolution than
when it's displayed in a list. The icons should be saved as PNG files with an alpha channel.
I didn't use the alpha channel in my icon, because I wanted it to resemble the concept of
the application. If you want to create apps to sell, you should probably follow the Android UI
Guidelines. You can find them at http://developer.android.com/guide/practices/
ui_guidelines/icon_design.html.

If you don't add icons to your sketch folder, Processing will use the standard icon. If you add
all three icons, with the right names, Processing will use these when it compiles your app, and
package it to run on your device. The filenames should always be icon-72.png, icon-48.
png, and icon-36.png.

The image files should be in the root directory of your sketch,
not in the data folder.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11
Using Processing with

Other Editors
In this chapter we will cover:

ff Installing Eclipse

ff Installing the Processing plugin for Eclipse

ff Writing your first sketch with the Processing Eclipse plugin

ff Installing the Processing Library Template in Eclipse

ff Writing Processing Libraries

ff Installing the Processing Tool Template

ff Writing Processing tools

ff Using Processing with IntelliJ IDEA

Introduction
The PDE we've used until now is really basic. It doesn't have autocompletion of code or
line numbers feature. It's a very good environment for beginners, or if you want to sketch
out something really quickly. But if your sketches start growing bigger, and you have a lot
of tabs and classes, the PDE might be a little limited. As Processing is based on Java, you
can also use it with another IDE. In this chapter we'll take a look at how we can use editors
such as Eclipse and IntelliJ IDEA to create Processing sketches, and we'll take a look at how
Processing libraries and tools are made.

Installing Eclipse
The first thing you need to do to get started is install Eclipse. Eclipse is available for Mac OS X,
Windows, and Linux.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

250

Getting ready
Point your browser to http://www.eclipse.org/downloads/ to download Eclipse
for your operating system. You'll see that there are a lot of available downloads. There are
versions of Eclipse for Java developers, C/C++ developers, JavaScript, and so on. Pick the
Eclipse Classic 4.2 version, and download the 32-bit or the 64-bit versions if your operating
system supports it.

How to do it...
Once you've downloaded Eclipse, you can extract the contents of the .zip file. Drag the
eclipse folder to your Applications folder on Mac OS X, or the Program Files folder on
Windows. If you launch Eclipse for the first time, you'll get a message that you need to select a
workspace. Eclipse will give you a default location for this folder; you should use this one if you
aren't sure what you are doing. If you click OK, you'll find a folder named workspace in your
Documents directory:

The first thing you'll see after setting up the eclipse workspace is the Welcome window,
where you'll find an overview of eclipse, and some tutorials and samples. You can click the
Workbench icon to go to the Eclipse environment. If you ever need the Welcome screen
again, you can go to the Help | Welcome menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

251

The Eclipse environment looks a lot different than the PDE you've used until now. It might be a
little overwhelming at first. But don't worry; we'll take you through the things you need to know
when we need them.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

252

How it works...
When you started Eclipse for the first time, you set the default workspace for Eclipse to work
with. This folder has been saved in your Documents folder. This workspace folder is where
we'll save our files when we create libraries or tools. Eclipse needs this directory, because it
also saves some hidden files, such as project metadata and settings.

Installing the Processing plugin for Eclipse
In the early days of Processing, it was a little harder to use Processing with Eclipse. You had to
start by creating a Java project, and manually add the core Processing .jar file to the project.
The Processing team has made it really easy to work with Processing and Eclipse now. They
made a plugin for Eclipse that will help you run Processing sketches within the environment.

How to do it...
Start Eclipse if you haven't already, and go to the Help | Install New Software menu item.
You'll get to see the Install window. If you click the Add button on this window, the Add
Repository dialog will show up. Enter these values into this dialog and click on OK:

ff Name: Processing Plug-in

ff Location: http://eclipse.processing.org/plugin/site.xml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

253

You now get to see the details for the Processing plugin. Click the Next button and wait; you'll
see a progress bar at the bottom of the window. This process may take a while.

When everything is ready to install, you need to review the license. Click the radio button I
accept the terms of the license agreement, and click the Finish button right after that.

During the install process, you will see a dialog with a security warning. Click OK on this
window, to continue the installation. Once the installation is complete, you'll have to restart
Eclipse to be able to use the Processing plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

254

How it works...
The plugin you've just installed will enable you to write Processing sketches with Eclipse. This
plugin consists of several .jar files. If you go to the eclipse folder in your Applications, you'll
find a plugins folder. At the bottom, you'll find two .jar files and a folder with a name that
starts with processing.plugin.

There's more…
While we've used the official Processing plugin for Eclipse, there's another plugin named
Proclipsing available. This plugin works a little differently, but offers good integration with
Eclipse. You can get it at http://code.google.com/p/proclipsing/.

Write your first sketch with the Processing
Eclipse plugin

Now that you've installed Eclipse and the Processing plugin, it's time to start writing code.
We'll use both to write sketches, just as you would do with the PDE.

How to do it...
The first thing you need to do before you can use the plugin is set up the environment you'll
work in. Go to the Window | Open Perspective | Other… menu, select Processing, and click
OK. The interface of Eclipse will change a little.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

255

You can now create a new Processing sketch by going to the File | New | Processing Sketch
menu. You'll get a dialog where you can name your sketch, and pick the sketchbook folder.
You should preferably use the default Processing sketchbook, but you can pick another
directory if you want. Click the Finish button to create the sketch.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

256

Your new sketch will be added to the Sketch Navigator on the left-hand side of the screen. If
you open this folder, you'll find the code and data folders, as well as a .pde file with the name
of your sketch. If you double-click the .pde file, it you'll see that the plugin already added
some code for you to start with, as shown in the following screenshot:

The code in the .pde file will only draw an ellipse, which is quite boring. Change the code in
the .pde file to something different. I wrote this little sketch.

void setup()
{
 size(640, 480);
 smooth();
 background(0);
}

void draw()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

257

{
 float d = random(20, 40);
 noFill();
 stroke(255, 64);
 ellipse(random(width), random(height), d, d);
}

To run the sketch, select your .pde file in the Sketch Navigator, right-click on the sketch, and
go to the Run As | Processing Sketch (Applet) menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

258

The Applet will start, and the result should look as shown in the following screenshot if you've
used the same code as I did:

How it works...
When you changed the perspective in Eclipse, you'll have noticed that the interface changed.
Eclipse now shows only the things you need to write Processing sketches. The plugin also
added a menu item to create a new sketch from the File menu, so you can easily start
working on new projects, just as you would do in the PDE.

To run the sketch, you had to select the .pde file and select Run As | Processing Sketch
from the menu. This does the same thing as clicking the play button in the PDE.

There's more...
The Sketch Navigator will only show projects that Eclipse is aware of, not all sketches from
your sketchbook folder. If you want to work on one of your existing sketches in Eclipse, you
can easily import it. Go to the menu File | Import, pick the Import Sketch Wizard from the
Processing folder, and click the Next button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

259

On the Import Sketch Wizard dialog, you need to select the sketch folder you want to import.
If you click the Finish button, your sketch will appear in the Sketch Navigator.

Installing the Processing library template in
Eclipse

Before we start writing libraries, we need to install the Processing library template in Eclipse.
This template will help us to package our library so we can easily distribute it to our audience.

Getting ready
Making libraries used to be a little painful, as setting up the project in Eclipse takes some
knowledge of the environment and the build process. The Processing team has made a lot
of effort in creating a template for Eclipse to streamline this process. You can download the
template at http://code.google.com/p/processing/downloads, but you don't need
to unzip the file.

How to do it...
Now that you've downloaded the Library template, it's time to install it in Eclipse so you can
create your own library. If you are still in the Processing perspective, you'll need to switch back
to the Java perspective. Go to the Window | Open Perspective | Other… menu, select the
Java (default) perspective, and click the OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

260

Create a new Java Project by going to the File | New | Java Project menu. Enter the name of
your library in the Project Name field. I've named the library MyLib. You'll notice that Eclipse
will create a directory in your workspace with the name of your library. Click the Finish button
to create the project.

Right-click on the MyLib folder, and select Import… from the menu. In the Import window,
select Archive File in the General folder and click the Next button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

261

Click the Browse… button and select the library template .zip file you've downloaded. Click
the Finish button to import all the files from this archive into your project.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

262

The next thing we need to do is to import the core.jar file from Processing to the project.
On Windows, you can find this file in the lib directory next to the Processing app. On the Mac,
you'll need to open the Processing app, because the file is somewhere in there. To do this,
select the Processing app in the finder, right-click it, and select Show Package Contents in
the menu. You'll find the core.jar file in the Contents | Resources | Java folder. Select the
file, and copy it to your desktop. Don't remove it or the Processing app won't work anymore.

Go to your Eclipse workspace folder, and create a new folder with the name libs. Drag the
core.jar file you've copied from your desktop to this folder. Your workspace folder should
look as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

263

The next thing we need to do is to add the core.jar file to our project. Right-click the MyLib
folder and select Properties from the menu. Select Java Build Path in the list on the left-hand
side of the window and click the Libraries tab at top of the window, just like in the following
screenshot. Click the Add External JARs… button and select the core.jar file from the /
workspace/libs folder. Click the Open button to add the file to your project.

Go to the resources folder from your library project in the Package Explorer, and double-click
the build.properties file to open it. This file contains some properties the build process
needs to compile the library, and generate the documentation for the library. If you've used the
default directories for your Processing sketchbook and Eclipse workspace, you don't need to
change a lot of things in this file. Just read through the comments in this file and check if the
directories for the sketchbook.location, classpath.local.location, classpath.
local.include, and classpath.libraries.location are correct. You also need to
change your project name to MyLib. You'll find this property under (4) in the document.

 project.name=MyLib

You should also change the properties under (5) in the build.properties file. These
are used to set some general information for your library such as your name, website, and
description of the library.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

264

We've reached the end of this recipe. The library template is installed. There's one more thing
we need to do: compile the library to see if everything is ok. Go to the Window | Show View
| Ant menu. You'll see the Ant tab appear on the right-hand side. Drag the build.xml file
from the resources folder of your project onto the Ant tab. You'll see a ProcessingLibs item
appears in the window, which contains all steps needed to compile your library, generate the
documentation, and so on. Select the ProcessingLibs item, and click the play button on the
Ant tab.

If everything goes well, you'll see a lot of text appearing in the console panel at the bottom
of the screen. The last line should be BUILD SUCCESSFUL. If this line says BUILD FAILED,
something went wrong, and you'll have to dig through the messages in the console to figure
out the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

265

How it works...
When I first started writing libraries, this template didn't exist. I was using a basic text editor to
write code, and the command-line for compiling the files, and had to collect the files manually,
and package for distribution. Using Eclipse to make libraries made life a little easier, as you
could export your code as a *.jar file. This library template takes all those complicated
things away, and lets you focus on creating a great library. Let's take a deeper look at what
this template does for you.

If you browse your project in the Package Explorer, you'll see a lot of folders. All these folders
contain files needed to create the library, and make it ready for distribution. This is what they
are used for:

ff The src folder contains the Java source code for the library.

ff The JRE System Library folder contains links to the files from the Java Runtime
Environment needed to compile our library.

ff The Referenced Libraries contains a link to the Processing core.jar file
we've added.

ff The data folder is used to store images, sounds, or any other file your library may use.

ff The distribution folder is used to collect everything you need to distribute your library.

ff The examples folder is used to store example sketches for your library. These
examples will be very handy for your users to figure out how they can use your library.

ff The lib is used to store third party .jar files needed by your library, if you've
used them.

ff The resources folder contains some files needed for the build process. You've used
the build.properties and build.xml files in the installation process. The
stylesheet.css file is used to make the JavaDoc documentation of your library look
good. Standard Java documentation files look really dull.

ff The web directory contains an html template. This template is used to create a small
website for your library, based on the info you've provided under (5) in the build.
properties file.

If the build process went ok, you'll find the MyLib folder inside the distribution folder. When
your library is finished, you can upload the contents of this folder to your web server, so people
can download the library, and check the documentation and examples.

Writing Processing libraries
Now that you've installed the library template, it's time to get your hands dirty and write
some Java. We'll write a small library that can draw hexagons and stars. Nothing fancy, just
something small to give you an idea of how libraries are made.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

266

Getting ready
If you haven't installed the Processing library template, you should do this first. The process is
explained in the previous recipe, Installing the Processing library template in Eclipse.

How to do it...
Go to the src directory of your library project in the Package Explorer in Eclipse. You can
delete everything in that folder. Select the src directory, and go to the File | New | Class
menu to create a new Java class. In the package field, you can type the URL of your website
backwards. This will be useful when you import the library into your Processing sketch. In the
Name field, you can type MyLib, the name of the class we'll write. Once you have done this,
you can create the new file by clicking the Finish button.

If you open the file, you'll see that Eclipse has added some code:

package be.vormplus;
public class MyLib {
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

267

We'll start by importing the Processing core library into our Java class, declare a PApplet
variable and a String variable, and write the constructor for our class. We've imported
this library because we're going to use some of Processing's functions in our library. If you
don't need to use Processing functions in your library, you don't need to import it. We'll also
implement the PConstants interface, so we can use the constants defined in Processing.
The code should look as follows:

package be.vormplus;

import processing.core.*;

public class MyLib implements PConstants {
 PApplet p;

 public final static String VERSION = "##library.prettyVersion##";

 public MyLib(PApplet _p)
 {
 p = _p;
 }
}

Our class is almost finished now, we only need to write the methods to draw the hexagon and
the star. Type the following code after the constructor:

public void drawHexagon(float radius)
{
 p.beginShape();
 for (int i = 0; i < 6; i++) {
 float x = p.cos(i * THIRD_PI) * radius;
 float y = p.sin(i * THIRD_PI) * radius;
 p.vertex(x, y);
 }
 p.endShape(CLOSE);	
}

public void drawStar(float radius)
{
 float angle = PI / 5;

 p.beginShape();
 for (int i = 0; i < 10; i++) {

 float x, y;

 if (i % 2 == 0) {
 x = p.cos(i * angle) * radius;
 y = p.sin(i * angle) * radius;
 } else {
 x = p.cos(i * angle) * radius/2;

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

268

 y = p.sin(i * angle) * radius/2;
 }

 p.vertex(x, y);
 }
 p.endShape(CLOSE);
}

Now that we've finished writing our little library, it's time to compile. Click the play button on
the Ant tab, just like you did in the previous recipe. If everything goes well, you should see
the BUILD SUCCESSFUL message in the console at the bottom of the window. If something
went wrong, and you don't see the BUILD SUCCESSFUL message, you should read through
the error messages in the console. They may help you figure out what went wrong. Eclipse has
compiled the library, generated the documentation, and made the little website for our library.
During this process, Eclipse also installed a version of the library in the libraries folder
inside your sketchbook folder. If you open Processing now, you'll see that you can import the
MyLib library, import it into a new sketch, and type the following code in the PDE:

import be.vormplus.*;

MyLib m;

void setup()
{
 size(640, 480);
 smooth();

 m = new MyLib(this);
}

void draw()
{
 background(0);

 fill(255, 255, 0);
 noStroke();

 translate(200, 240);
 m.drawHexagon(100);

 translate(240, 0);
 m.drawStar(100);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

269

If you run the sketch, you should see a black window with two yellow shapes, just like in the
following screenshot:

How it works...
We started by creating a new class, and importing the Processing core library. By importing
this library, we can use all Processing functions in our library. We also implemented the
PConstants interface. By doing this, we can use all constants from Processing, in our library.
This is really handy because we need PI, THIRD_PI, and CLOSE to draw our shapes.

If we create a MyLib object in our sketch, we use m = new MyLib(this); in the
setup() function. The this keyword is a reference to the main PApplet object. We need
to pass this with the constructor so our library can use it. In the constructor, we assign the
passed PApplet object (_p) to an internal PApplet object (p).

public MyLib(PApplet _p)
{
 p = _p;
}

If we want to use Processing functions in our library, we need to call them on the PApplet
object. So, if you would use vertex(x, y); in a normal sketch, we need to write
p.vertex(x, y); in our library.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

270

When you click the play button on the Ant tab, Eclipse compiles your code into a library. It also
collects all the files into the right directories, generates documentation, and creates a small
website for your library. You'll find everything in the distribution folder of your library project.
During this process, Eclipse also installs the library in the libraries folder of your Processing
sketchbook. This is really useful, as you can just open Processing, and start testing your library.

Installing the Processing tool template
We've covered installing the library template earlier in this chapter. The Processing team
has also made a tool template for Eclipse. This template will let you create Processing
tools in a more efficient way. In this recipe, we'll take a look at how you can install this
template in Eclipse.

Getting ready
You'll need to download the tool template before you can get started with the installation.
Download the tool template from http://code.google.com/p/processing/
downloads/list. You don't have to unzip this file, as we'll import it into our Eclipse project.

How to do it...
You need to start by creating a new Java project in Eclipse. Go to the File | New | Java Project
menu. Enter the text MyTool into the Project name text field, and click the Finish button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

271

Right-click on the MyTool project in the Package Explorer, and select Import… from the
menu. Select the Archive File import source under General, and click the Next button. Click
the Browse… button and select the template tool .zip file you've just downloaded. Click on
Finish to import the contents of the file into your project:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

272

The next thing we need to do is import the pde.jar and core.jar of Processing into our
new project. These .jar files should be placed in the libs folder of your Eclipse workspace
folder. On Windows, these .jar files can be found in the lib directory, next to the Processing
app. On the Mac, these files are located within the Processing app, so we'll need to get
them out of there. Right-click the Processing app in the Finder, and select Show Package
Contents. You'll find both .jar files in the Contents | Resources | Java folder. Copy them
into the libs directory of your Eclipse workspace folder.

To add the extra .jar files to your project, you need to right-click your project folder in the
Package Explorer, and select Properties from the menu. Select the Java Build Path option
on the left-hand side of the properties window, and click on the Libraries tab. You should
now click the Add External Jars… button, and select pde.jar and core.jar from the libs
folder and click on OK to add them to your project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

273

The next thing we'll do is to edit the build.properties file you can find in the resources
folder. All settings will be okay if you've used the default locations for your Processing
sketchbook and Eclipse workspace folders. The only things you need to edit are the project
details you'll find under (4) and (5) at the bottom of the file. Make sure that project.name
is set to MyTool.

The last thing we need to do is open the Ant tab by going to the Window | Show View | Ant
menu. You can drag the build.xml file from the resources folder onto the Ant window.
You'll see that this file contains a lot of instructions for Eclipse to compile your tool and create
the folders needed for distribution.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

274

How it works...
If you browse your project in the Package Explorer, you'll see a lot of folders. All these
folders contain files needed to create our tool, and make it ready for distribution. This project
structure is similar to the one from the library template. This is what they are used for:

ff The src folder contains the Java source code for the Processing tool.

ff The JRE System Library folder contains links to the files from the Java Runtime
Environment needed to compile our Processing tool.

ff The Referenced Libraries contains links to the Processing pde.jar and core.jar
files we've added.

ff The data folder is used to store images, sounds, or any other file your tool may use.

ff The distribution folder is used to collect everything you need to distribute your tool.

ff The examples folder is used to store example sketches for your tool.

ff The lib** is used to store third party .jar files needed by your tool.

ff The resources folder contains some files needed for the build process. You've used
the build.properties and build.xml files in the installation process.

ff The web directory contains an html template. This template is used to create a small
website for your Processing tool, based on the info you've provided under (5) in the
build.properties file.

Writing Processing tools
In this recipe, we'll take a look at how you can create Processing tools. These tools are small
applications that can interact with the Processing editor. You can use them to insert code at
the caret position, or display a message in the status bar. You can also create extra windows
with Java's Swing GUI library. The Color Selector tool was made this way.

Getting ready
Before you can start writing code, you need to install the Processing tool template. This is
explained in the previous recipe, Installing the Processing tool template.

How to do it...
You can start by deleting everything in the src directory. We don't need the HelloTool.
java file, as we are going to write our own class. Select the src folder in the Package
Explorer and go to the File | New | Class menu. The name of this file should be MyTool.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

275

Open the file by double-clicking it. Type the following code into the file, we'll explain everything
in the How it works section of the recipe.

package be.vormplus.tools;

import processing.app.*;
import processing.app.tools.*;

public class MyTool implements Tool {

 Editor editor;

 public void init(Editor _editor)
 {
 editor = _editor;
 }

 public String getMenuTitle()
 {
 return "MyTool";
 }

 public void run()
 {
 String templateCode;
 templateCode = "void setup() {\n";
 templateCode += " size(640, 480);\n";
 templateCode += " smooth();\n}\n\n";
 templateCode += "void draw() {\n";

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

276

 templateCode += " background(0);\n}";

 editor.setText(templateCode);
 }
}

How it works...
The first thing we did is import some of the Processing classes we need to create a tool:

import processing.app.*;
import processing.app.tools.*;

Our class implements the Tool interface. This means we need to implement all functions that
are available in that interface.

public class MyTool implements Tool {
 public void init(Editor _editor) {}
 public String getMenuTitle() {}
 public void run() {}
}

Let's take a look at the methods we've implemented in our class:

ff The init() method is called when an editor window first opens. This function is
used to assign the Processing Editor object passed as a parameter to the internal
Editor object for our class.

ff The getMenuTitle() method returns the text that you'll see in the Tools menu
in Processing.

ff The run() method is called when you select the tool from the Tools menu. This is the
place where you should create a GUI with Swing if your tool requires one.

In our run() method, we've created a String that contains some basic Processing code. The
editor.setText() method is used to replace all text in the current Processing window with
our templateCode String.

public void run()
{
 String templateCode;
 templateCode = "void setup() {\n";
 templateCode += " size(640, 480);\n";
 templateCode += " smooth();\n}\n\n";
 templateCode += "void draw() {\n";
 templateCode += " background(0);\n}";

 editor.setText(templateCode);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

277

Once you have finished coding, you can click the play button on the Ant tab. Eclipse will
compile your tool, and collect all files in the right folders so you can easily distribute it to your
users. It will also install the tool in the tools directory in your Processing sketchbook. If you
open Processing, you should see that your tool is available from the Tools menu. If you run it,
the template code will be inserted in the PDE.

Using Processing with IntelliJ IDEA
Eclipse isn't the only IDE you can use to create Processing sketches. Just about any
environment that supports Java can be used. In this recipe, we'll take a look at how you can
use IntelliJ IDEA to create Processing sketches. This is a very popular environment for doing
Java and Android development.

Getting ready
Before we can get started, you need to download and install the IntelliJ IDEA Community
Edition. This is a free version of the IDE. There's also a commercial version available to do
advanced Java stuff, but we don't need those features. You can get IntelliJ IDEA right over
here: http://www.jetbrains.com/idea/download/index.html.

How to do it...
Once you've installed IntelliJ IDEA, it's time to get started and configure our project to
write some Processing sketches. We'll start by creating a new project. Go to File | New
Project to show the new project wizard. Pick the Create project from scratch option,
and click the Next button:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

278

On the next page, we need to fill out some details about our new project. I named my project
MyProcessingSketch. The type should be set to Java Module. IntelliJ IDEA will take care
of the location for your project files. It will create the IdeaProjects folder for this in your
home directory.

The next thing you'll do is to create the source directory for your project. This is where your
Java files will be saved. This directory is usually named src.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

279

We need to select the right Java Development Kit (JDK) for our project now. Click the
Configure… button. On the next screen, you need to click the New button, and select JSDK
from the drop-down menu that will appear. On the next window, you just need to click the
Choose button. IntelliJ IDEA will have selected the directory for the right JSDK for you. The
screen should now look like the following screenshot. Click the Next button to go to the last
screen. You don't need to do anything here but click the Finish button.

The next thing we need to do is to add the Processing core.jar to our project. Go to the File
| Project Structure menu to show the Project Structure window. Pick the Global Libraries
option from the left-hand side of the screen. Click the yellow + icon on the top of the screen
and select the core.jar file to add it to the project. We discussed how to get this file from
the Processing app in the recipes on creating libraries and tools earlier in this chapter. I've
placed a copy of the core.jar file in a libs directory in my IdeaProjects folder. Once
you've added this file, the window should look like the following screenshot. Click the OK
button to finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Processing with Other Editors

280

All is done; we can start coding now. Select the src directory on the left-hand side in your
project, and right-click on it to bring up a menu. Select New | Java Class to add a new Java
file to the project. We'll start by importing the processing.core.PApplet package. Our
MySketch class should extend the PApplet class, so we can use all the functionality from
Processing in our sketch.

import processing.core.*;

public class MySketch extends PApplet {

 public void setup()
 {
 size(640, 480);
 smooth();
 background(0);
 }

 public void draw()
 {
 noFill();
 stroke(255, random(128, 255), 0, 64);
 strokeWeight(random(1, 4));

 ellipse(random(width), random(height), 30, 30);
 }
}

Once you've finished writing the code, you can run the sketch going to the Run | Run
'MySketch' menu. The result should look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

281

How it works...
The process of creating sketches with IntelliJ IDEA is similar to how we used Processing with
Eclipse, before the Processing plug in for Eclipse was made. The only thing you need to do is
set up your project, and make sure the Processing core.jar file is linked to it. Let's take a
look at some of the code we wrote and see how it works.

The first thing we did was import the Processing core, so we access all Processing functions in
our sketch.

import processing.core.*;

We made sure that our MySketch class extends the PApplet class. This will enable us to run
our app as a Processing applet.

public class MySketch extends PApplet {}

You may have noticed that we used the public keyword at the beginning of the setup() and
draw() methods in our class. If we don't make these methods public, our sketch won't run.
All other Processing functions can be used just like you would use them in the PDE.

public void setup() {}
public void draw() {}

These are the main differences to writing a sketch within the PDE. Actually, when you
run a sketch from Processing, your sketch.pde file will be converted to a Java class.
Processing will add the public keywords to your setup() and draw() functions, and
wrap your sketch in a class that extends PApplet. When writing sketches in IntelliJ IDEA,
you have to do this manually.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
2D and 3D objects

mixing 76-78
3D camera

using 83, 84
working 85

3D files
exporting 116-119

3D primitives
drawing 66, 68
working 68

3D scene
lights, using 69-72

3D shapes
polygon soup, making 73-75

3D sketches
creating, for web 202-204
creating, on Android 243, 245

3D space
about 63-65
enabling 66

<canvas> tag 207
@@description@@ variable 196
@@height@@ variable 196
@@id@@ variable 196
@@scripts@@ variable 196
@@sketch@@ variable 196
@@source@@ variable 196
.vlw file format 42
@@width@@ variable 196

A
abs() function 21, 144
accelerationEvent() function 236, 238

accelerometer
about 221
using 235-238
working 238

AccelerometerManager class 238
add() method 106
ambientLight() function 72
Android

3D sketches, creating 243, 245
Android App

icon, adding 245-247
Android device

sketch, running 228, 230
working 230

Android Emulator
about 221
sketch, running 224, 225
working 226, 227

Android mode
about 15, 221
accelerometer, using 235-238
GPS, using 239-242
screen size and density, accessing 230, 232
touch interaction, responding 232-234

Android Network Location Provider 243
Android SDK

downloading 222
installing 222, 223
using 224
working 224

Android UI Guidelines
URL 247

append() function 99, 101
applications

exporting 111, 112
arrayCopy() function 99, 102

www.it-ebooks.info

V413HAV
Typewritten Text
V413HAV

http://www.it-ebooks.info/

284

ArrayList data structure 102
ArrayLists

working with 102-105
arrays

working with 99-102
audio files

playing 138-141
working 141

AudioInput object 142
AudioPlayer object 139
audio reactive particles

about 148-151
working 152, 153

AudioSample class 158
audio, working with

audio reactive particles 148-151
drum machine, creating 153-158
effects, using 163, 164
FFT, using 146-148
live audio, using 142-144
synthesizer, creating 159-162
waveform, drawing 144-146

B
background() function 38, 61, 147
bandpass filter 164
basic shapes

drawing 31-33
Beads

URL 137
beginRaw() function 117
beginRecord() function 113, 114, 118
beginShape() function 54, 78
bezierDetail() function 46-48
bezier() function 48
bezierPoint() function 49, 51
bezierVertex() function 53, 54
binary files

saving 119, 120
binary() function 95
blend() function 135
blob tracking

about 171-173
working 174

blue() function 178
blur() method 187

boolean() function 96
boolean variable 148
bottomRightX 174
bottomRightY 174
box() function 66
brightness() function 176
brightness() method 187
bufferSize() method 142, 144
byte() function 96

C
camera() function 85
captureEvent() function 166, 170
Capture() function 167
Capture.list() method 167
ceil() function 21
charAt() method 98
char() function 96
close() method 116
color() function 38
colorMode() function 38
colors

working with 34-37
Color Selector tool 274
color tracking

about 174-177
working 178

color variable 175
Comma Separated Values. See CSV
concat() function 99
containsKey() method 107, 108
containsPoint() method 220
contrast() method 187
coordinate system

about 15
working 16

copyHeight variable 41
copyWidth variable 41
createGraphics() function 59, 61
createWriter() function 115
CSV

about 90
parsing 90, 91

curveDetail() function 46, 49
curve() function 48
curvePoint() function 49, 51

www.it-ebooks.info

http://www.it-ebooks.info/

285

curves
drawing 46, 47

curveTightness() function 49
curveVertex() function 54
custom HTML template

creating 192-194
variables 196
working 195

custom shapes
drawing 52-54

D
datatypes

converting 93, 95
ddf.minim.* 138
ddf.minim.analysis.* 138
ddf.minim.effects.* 138
ddf.minim.signals.* 138
degrees() function 55
directionalLight() function 72, 73
disableStyle() method 59
DisplayMetrics class 232
dist() function 21, 176, 178
document.getElementById() function 209
draw() function 18, 64, 88, 90, 113, 116, 127
drawGrid() function 34
drum machine

creating 153-158
working 158

duration() method 134

E
Eclipse

downloading 250
installing 249-251
Processing library template, installing 259
Processing plugin, installing 252
Processing tool template, installing 270
working 252

editor.setText() method 276
effects

using, in audio 163, 164
working 164

ellipse() function 34, 66
Embedded Systems(ES) 204
enableStyle() method 59

endRaw() function 117
endRecord() function 113, 114
endShape() function 54
equals() function 98
Ess

URL 137
event.getPointerCount() method 235
exit() function 126
expand() function 100, 102

F
face detection

OpenCV used 182-184
Fast Fourier Transforms. See FFT
FFT

using 146, 147
working 148

fft buffer 147
fft.getBand() method 148
fft.specSize() method 148
fill() function 38
filter() function

about 128
modes 129

filters
using, in video 128, 129

float() function 95
float variable 108
floor() function 21
flush() method 116
fonts

working with 196-200
for loop 174
frameRate() function 52, 126

G
getAction() method 234
getChild() method 59
getContent() function 92
getInt() function 92
getLineIn() method 142
getMenuTitle() method 276
get() method 146
getName() function 92
getString() function 92
gfx.polygon2D() method 220

www.it-ebooks.info

http://www.it-ebooks.info/

286

GitHub 216
global positioning system. See GPS
GPS

about 221
using 239-242
working 243

GPSLocationListener class 243
graphical user interface (GUI) 22
green() function 178

H
HashMaps

working with 106, 108
hasNext() method 106
hex() function 95, 96
highpass filter 164

I
icon

adding, to Android App 245-247
image() function 39, 60, 123, 126, 128, 167,

170
images

saving 109, 111
working with 39, 40

image sequences
exporting 124-126

images/SVG files
working with 200-202

indexOf() method 98
init() method 276
Inkscape

about 55
URL 55

Integer class 108
IntelliJ IDEA

about 277
Processing, using with 277
used, for creating Processing sketches 277
working 281

int() function 95
isEmpty() method 108
iterator() method 106

J
JavaScript

used, for writing sketches 207
JavaScript mode

about 15, 190
exploring 189

join() function 98
jQuery

using, with Processing.js 210-215
jump() method 133

K
keyPressed() function 26, 28, 113, 150, 161,

169
keyReleased() function 26, 28
keyTyped() function 26, 28

L
League of Moveable Type

downloading 239
length() method 98, 141
lerpColor() function 128
libraries. See Processing libraries
Library Manager 10
lights

using, in 3D scene 69-72
working 72

line() function 19
Linux

Processing, installing 8
live audio

using 142-144
loadBytes() function 120
loadFont() function 46
loadImage() function 41
loadPixels() function 128, 169, 170
loadShape() function 59
loadStrings() function 88, 89
loadXML() function 92
localhost 192
LocationListener interface

about 243
onLocationChanged() method 243

www.it-ebooks.info

http://www.it-ebooks.info/

287

onProviderDisabled() method 243
onProviderEnabled() method 243
onStatusChanged() method 243

loop() method 123
lowpass filter 164

M
Mac OS X

Processing, installing 8
map() function 141
math functions

abs() 21
ceil() 21
dist() 21
floor() 21
max() 21
min() 21
println() function 20
round() 21
sq() 21
sqrt() 21
using 19, 20, 21

maxColorDifference variable 175, 176
max() function 21, 174
min() function 21, 174
Minim 137
minim.getLineIn() method 144
Minim library

Beads 137
ddf.minim.* 138
ddf.minim.analysis.* 138
ddf.minim.effects.* 138
ddf.minim.signals.* 138
Ess 137
importing 138
Sonia 137

Mobile Processing 221
modes, filter() function

BLUR 129
DILATE 130
ERODE 130
GRAY 130
INVERT 130
OPAQUE 130
POSTERIZE 130
THRESHOLD 130

modes, Processing
Android mode 15
JavaScript mode 15
Standard mode 15
switching 14

MotionEvent class 234
motionPressure variable 235
mouseButton system variable 25
mouseClicked() function 24
mouseDragged() function 25
mouseMoved() function 25, 160
mousePressed() function 25, 60, 104, 131,

133, 141, 157, 177
mousePressed system variable 25
mouseReleased() function 25
mouseX system variable 25
mouseY system variable 25
movieEvent() function 122, 123, 130, 133,

134
my_first_sketch

creating 17
working 18, 19

MyObject class 104
mySketch() function 209

N
new Movie() method 123
next() method 106
noFill() function 38
noLights() function 72
noLoop() function 91
NORMALIZED texture mode 81
noStroke() function 38
notch filter 164
numPixels variable 168

O
onLocationChanged() method 243
onPause() function 241
onProviderDisabled() method 243
onProviderEnabled() method 243
onResume() function 241, 243
onStatusChanged() method 243
OpenCV

about 179
ROI, defining with 184, 185

www.it-ebooks.info

http://www.it-ebooks.info/

288

used, for accessing webcam 180
used, for face detection 182
video, manipulating with 186

OpenCV library
installing 178
working 179

OPENGL parameter 66

P
PApplet object 123
PDE

about 9
exploring 9
working 10

PDF files
saving 112-114

PDF sizes
calculating 114

PeasyCam library 85
pg.beginDraw() 61
PGraphics object 59, 61
PImage object 41
pixelMode 41
pixels

manipulating, in video 126-128
player.addEffect() method 164
player.isPlaying() method 141
player.length() method 141
player.loop() method 141
player.pause() method 141
player.play() method 141
player.position() method 141
player.rewind() method 141
play() method 141
pmouseX system variable 25
pmouseY system variable 25
point() function 19
pointLight() function 72
points

calculating, on curve 49, 51
Polygon2D constructor 220
polygon soup

making 73-75
working 75

popMatrix() function 66
popStyle() method 149

position() method 141
pressButton() method 157
println() function 22, 94, 116
Processing

3D files, exporting 116-118
3D sketches, creating 202-204
about 7, 8
applications, exporting 111, 112
audio, working with 137
basic shapes, drawing 31-33
binary files, saving 119, 120
blob tracking 171-173
colors, working with 34-37
color tracking 174-178
coordinate system 15
curves, drawing 46-49
custom HTML template, creating 192-194
custom shapes, drawing 52-55
exporting from 109
face detection, with OpenCV 182-184
fonts, working with 197-200
for Linux 8
for Mac OS X 8
for Windows 8
images, saving 109-111
images/SVG files, working with 200-202
images, working with 39-41
installing 8
keyboard interaction, tracking 25-28
math functions, using 19
modes, switching 14
mouse interaction, tracking 22-24
offscreen drawing 59-61
OpenCV library, installing 178, 179
PDF files, saving 112-114
PDF sizes, calculating 114, 115
points, calculating on curve 49-51
ROI, defining with OpenCV 184-186
Sketchbook 9
sketches, writing with JavaScript 207, 209
SVG files, manipulating 55-59
text, drawing 41-45
text files, exporting 115, 116
using, with IntelliJ IDEA 277-280
video, manipulating with OpenCV 186, 187
video, playing 121-123
video, thresholding 168, 169

www.it-ebooks.info

http://www.it-ebooks.info/

289

webcam, accessing with OpenCV 180-182
webcam, using 165, 166
working 8

Processing 2
about 7
downloading 8

Processing Development Environment. See
PDE

processing.draw = function(){} line 209
Processing functions

about 34
drawGrid() function 34
ellipse() function 34
quad() 34
rect() function 34
triangle() function 34

Processing.js
downloading 204
URL 192
using, with jQuery 210-215
using, without Processing editor 204-207

Processing libraries
installing 10-12
working 269, 270
writing 265-268

Processing library template
downloading 259
installing, in Eclipse 259-264
working 265

Processing plugin
first sketch, writing 254-258
installing, for Eclipse 252-254

processing.setup() = function(){} 209
Processing sketch

creating 17
creating, for web 190-192
running, in Android Emulator 224, 225
running, in JAVASCRIPT mode 192
running, on Android device 228, 230

Processing tools. See tools
Processing tool template

downloading 270
installing 270-273
working 274

pushMatrix() function 66
pushStyle() method 149
put() method 108

Q
quad() 34
QUAD_STRIP parameter 79
quad strips

about 78
drawing 78, 79

R
radians() function 55
read() method 123
rect() function 34, 66
Region of Interest. See ROI
remove() method 106, 108
render() method 153
reverse() function 102
RGB and HSB color modes

using 34-37
RGB color mode 149
ROI

about 184
setting, OpenCV used 184-186
working 186

ROI() method 184
rotateY() function 66
round() function 21
run() method 276

S
saveBytes() function 119, 120
saveFrame() function 111 126
savePDF variable 116
screen size and density

accessing 230, 231
setup() function 18, 52, 64, 88, 104, 122,

158, 166
shape() function 56
size() function 18, 16, 64, 111, 202
size() method 146
Sketchbook 9
sketches

writing, with JavaScript 207, 209
sketchHeight() function 245
Sketchpad

about 192
URL 192

www.it-ebooks.info

http://www.it-ebooks.info/

290

sketchRenderer() function 245
sketchWidth() function 245
smooth() function 19
snowFlake variable 55
Software Development Kit (SDK) 222
Sonia

URL 137
sort() function 102
specific frame, video

jumping to 132-134
speed() method 131
speed, of video

controlling 130, 132
sphereDetail() function 66, 68
sphere() function 66
split() function 90, 98
spotLight() function 73
sq() function 21
sqrt() function 21
Standard mode 15
STANDARD mode Processing sketches 199
start() method 167
stop() function 150
str() function 96
Strings

working with 96-98
stroke() function 38
strokeWeight() function 19
subset() function 100, 102
substring() method 98, 100
superArray 100
super.surfaceTouchEvent() method 235
surfaceTouchevent() method 233, 234
SVG files

manipulating 55-59
synthesizer

creating 159-162
working 162

T
text

drawing 41-45
textAlign() function 46
textAscent() function 46
textDescent() function 46
textFile.println() method 116

text files
exporting 115
loading, from hard drive 87-89

textFont() function 43, 46
text() function 46, 130
textLeading() function 46
texture() function 81
textureMode() function 82
textures

using 80, 81
working 82

textWidth() function 46
time() method 134
toLowerCase() method 98
Tool Manager 13
tools

installing 12
working 14, 276, 277
writing 274, 275

topLeftX variable 174
topLeftY variable 174
touch interaction

responding to 232, 233
toUpperCase() method 98
Toxiclibs

about 216-219
downloading 216
working 219

translate() function 66
triangle() function 34
TRIANGLE_STRIP parameter 80
triangle strips

about 78
drawing 78, 79

trigger() method 158
trim() function 98

U
unbinary() function 95
unhex() function 96
update() method 152
updatePixels() function 128, 169

V
variables, HTML template

@@description@@ 196

www.it-ebooks.info

http://www.it-ebooks.info/

291

@@height@@ 196
@@id@@ 196
@@scripts@@ 196
@@sketch@@ 196
@@source@@ 196
@@width@@ 196

Vec2D array 220
Vec2D class 220
vertex() function 54, 81, 82
video

blending 134-136
manipulating, OpenCV used 186, 187
playing 121-123
thresholding 168-170

video, creating
filters, using 128, 129
image sequences, exporting 124-126
pixels, manipulating 126-128
specific frame, jumping to 132-134
speed, controlling 130, 132

W
waveform

drawing 144, 145
working 146

wave.setFreq() method 162
webcam

accessing, OpenCV used 181
using 165, 166
working 167

webcam.available() method 169, 170
webcam.read() method 167, 170

X
XML

about 92
parsing 92, 93

xml.getString() method 93

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

Processing 2: Creative Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenCV 2 Computer Vision
Application Programming
Cookbook
ISBN: 978-1-849513-24-1 Paperback: 304 pages

Over 50 recipes to master this library of programming
functions for real-time computer vision

1.	 Teaches you how to program computer vision
applications in C++ using the different features of
the OpenCV library

2.	 Demonstrates the important structures and
functions of OpenCV in detail with complete
working examples

3.	 Describes fundamental concepts in computer
vision and image processing

WebGL Beginner's Guide
ISBN: 978-1-849691-72-7 Paperback: 376 pages

Become a master of 3D web programming in WebGL and
JavaScript

1.	 Dive headfirst into 3D web application
development using WebGL and JavaScript

2.	 Each chapter is loaded with code examples and
exercises that allow the reader to quickly learn
the various concepts associated with 3D web
development

3.	 The only software that the reader needs to run
the examples is an HTML5 enabled modern web
browser. No additional tools needed

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Android Database
Programming
ISBN: 978-1-849518-12-3 Paperback: 212 pages

Exploit the power of data-centric and data-driven Android
applications with this practical tutorial

1.	 Master the skills to build data-centric Android
applications

2.	 Go beyond just code by challenging yourself to
think about practical use-cases with SQLite and
others

3.	 Focus on flushing out high level design concepts,
before drilling down into different code examples

Adobe Flash 11 Stage3D
(Molehill) Game Programming
Beginner’s Guide
ISBN: 978-1-849691-68-0 Paperback: 412 pages

A step-by-step guide for creating stunning 3D games in
Flash 11 Stage3D (Molehill) using AS3 and AGAL

1.	 The first book on Adobe's Flash 11 Stage3D,
previously codenamed Molehill

2.	 Build hardware-accelerated 3D games with a
blazingly fast frame rate

3.	 Full of screenshots and ActionScript 3 source
code, each chapter builds upon a real-world
example game project step-by-step

4.	 Light-hearted and informal, this book is your trusty
sidekick on an epic quest to create your very own
3D Flash game

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Started with Processing 2
	Introduction
	Installing Processing on your computer
	Exploring the Processing Development Environment
	Installing libraries
	Installing tools
	Switching modes
	Understanding the coordinate system
	Writing your first Processing sketch
	Using math functions
	Responding to mouse events
	Responding to keyboard events

	Chapter 2:
Drawing Text, Curves, and Shapes in 2D
	Introduction
	Drawing basic shapes
	Working with colors
	Working with images
	Drawing text
	Drawing curves
	Calculating points on a curve
	Drawing custom shapes
	Manipulating SVG files
	Offscreen drawing

	Chapter 3:
Drawing in 3D–Lights, Camera, and Action!
	Introduction
	Understanding 3D space
	Drawing 3D primitives
	Using lights
	Making polygon soup
	Mixing 2D and 3D objects
	Drawing triangle and quad strips
	Using textures
	Using the 3D camera

	Chapter 4:
Working with Data
	Introduction
	Loading text files from the hard drive
	Parsing CSV
	Parsing XML
	Converting datatypes
	Working with Strings
	Working with arrays
	Working with ArrayLists
	Working with HashMaps

	Chapter 5:
Exporting from Processing
	Introduction
	Saving images
	Exporting applications
	Saving PDF files
	Calculating PDF sizes
	Exporting text files
	Exporting 3D files
	Saving binary files

	Chapter 6:
Working with Video
	Introduction
	Playing a video
	Exporting image sequences
	Manipulating pixels in a video
	Using filters
	Controlling the speed of a video
	Jump to a specific frame
	Blending video

	Chapter 7:
Audio Visualization
	Introduction
	Importing the Minim library
	Playing audio files
	Using live audio
	Drawing a waveform
	Using Fast Fourier Transforms
	Audio reactive particles
	Creating a drum machine
	Creating a synthesizer
	Using effects

	Chapter 8:
Exploring Computer Vision
	Introduction
	Using a webcam
	Thresholding video
	Blob tracking
	Color tracking
	Installing the OpenCV library
	Accessing a webcam with OpenCV
	Face detection with OpenCV
	Defining the region of interest with OpenCV
	Manipulating video with OpenCV

	Chapter 9:
Exploring JavaScript Mode
	Introduction
	Creating your first Processing sketch for the Web
	Creating a custom HTML template
	Working with fonts
	Working with images/SVG files
	Creating 3D sketches for the Web
	Using Processing.js without the Processing editor
	Writing sketches with JavaScript
	Using Processing.js with jQuery
	Getting started with the Toxiclibs.js library

	Chapter 10:
Exploring Android Mode
	Introduction
	Installing the Android SDK
	Running your sketch in the Android Emulator
	Running your sketch on an Android device
	Accessing screen size and density
	Responding to touch interaction
	Using the accelerometer
	Using the GPS
	Creating 3D sketches on Android
	Adding an icon to your Android App

	Chapter 11:
Using Processing with Other Editors
	Introduction
	Installing Eclipse
	Installing the Processing plugin for Eclipse
	Write your first sketch with the Processing Eclipse plugin
	Installing the Processing library template in Eclipse
	Writing Processing libraries
	Installing the Processing tool template
	Writing Processing tools
	Using Processing with IntelliJ IDEA

	Index

