
www.allitebooks.com

http://www.allitebooks.org

IPython Interactive
Computing and
Visualization
Cookbook

Over 100 hands-on recipes to sharpen your skills in
high-performance numerical computing and data
science with Python

Cyrille Rossant

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

IPython Interactive Computing and
Visualization Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-481-8

www.packtpub.com

Cover image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Cyrille Rossant

Reviewers
Chetan Giridhar
Robert Johansson
Maurice HT Ling
Jose Unpingco

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Greg Wild

Content Development Editor
Sriram Neelakantan

Technical Editors
Madhuri Das
Taabish Khan
Pratik More

Copy Editors
Janbal Dharmaraj
Deepa Nambiar
Karuna Narayanan

Project Coordinator
Judie Jose

Proofreaders
Simran Bhogal
Martin Diver
Maria Gould
Ameesha Green
Paul Hindle
Lucy Rowland

Indexer
Tejal Soni

Graphics
Sheetal Aute
Ronak Dhruv
Disha Haria

Production Coordinators
Melwyn D'sa
Adonia Jones
Manu Joseph
Saiprasad Kadam
Nilesh R. Mohite
Komal Ramchandani
Alwin Roy
Nitesh Thakur

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Cyrille Rossant is a researcher in neuroinformatics, and is a graduate of Ecole Normale
Supérieure, Paris, where he studied mathematics and computer science. He has worked at
Princeton University, University College London, and Collège de France.

As part of his data science and software engineering projects, he gained experience
in machine learning, high-performance computing, parallel computing, and big data
visualization. He is one of the developers of Vispy, a high-performance visualization
package in Python. He is the author of Learning IPython for Interactive Computing and Data
Visualization, Packt Publishing, a beginner-level introduction to data analysis in Python, and
the prequel of this book.

I would like to thank the IPython development team for their support.
I am also deeply grateful to Nick Fiorentini and his partner Darbie Whitman
for their invaluable help during the later stages of editing.

Finally, I would like to thank my relatives and notably my wife Claire.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Chetan Giridhar is an open source evangelist and Python enthusiast. He has been invited
to talk at international Python conferences on topics such as filesystems, search engines, and
real-time communication. He is also working as an associate editor at Python editorial, The
Python Papers Anthology.

Chetan works as a lead engineer and evangelist at BlueJeans Network
(http://bluejeans.com/), a leading video conferencing site on Cloud Company.

He has co-authored an e-book, Design Patterns in Python, Testing Perspective, and has
reviewed books on Python programming at Packt Publishing.

I'd like to thank my parents (Jayant and Jyotsana Giridhar), my wife Deepti,
and my friends/colleagues for supporting and inspiring me.

Robert Johansson has a PhD in Theoretical Physics from Chalmers University of
Technology, Sweden. He is currently working as a researcher at the Interdisciplinary
Theoretical Science Research Group at RIKEN, Japan, focusing on computational
condensed-matter physics and quantum mechanics.

Maurice HT Ling completed his PhD in Bioinformatics and BSc (Hons) in Molecular and
Cell Biology from The University of Melbourne, Australia. He is currently a research fellow
in Nanyang Technological University, Singapore, and an honorary fellow in The University of
Melbourne, Australia. Maurice coedits The Python Papers and cofounded the Python User
Group (Singapore), where he has served as an executive committee member since 2010.
His research interests lies in life—biological and artificial life, and artificial intelligence—using
computer science and statistics as tools to understand life and its numerous aspects. His
personal website is http://maurice.vodien.com.

www.allitebooks.com

http://www.allitebooks.org

Jose Unpingco is the author of the Python for Signal Processing blog and the
corresponding book. A graduate from University of California, San Diego, he has spent almost
20 years in the industry as an analyst, instructor, engineer, consultant, and technical director
in the area of signal processing. His interests include time-series analysis, statistical signal
processing, random processes, and large-scale interactive computing.

Unpingco has been an active member of the scientific Python community for over a decade,
and developed some of the first video tutorials on IPython and scientific Python. He has also
helped fund a number of scientific Python efforts in a wide variety of disciplines.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: A Tour of Interactive Computing with IPython 9

Introduction 9
Introducing the IPython notebook 13
Getting started with exploratory data analysis in IPython 22
Introducing the multidimensional array in NumPy for fast array computations 28
Creating an IPython extension with custom magic commands 32
Mastering IPython's configuration system 36
Creating a simple kernel for IPython 39

Chapter 2: Best Practices in Interactive Computing 45
Introduction 45
Choosing (or not) between Python 2 and Python 3 46
Efficient interactive computing workflows with IPython 50
Learning the basics of the distributed version control system Git 53
A typical workflow with Git branching 56
Ten tips for conducting reproducible interactive computing experiments 59
Writing high-quality Python code 63
Writing unit tests with nose 67
Debugging your code with IPython 74

Chapter 3: Mastering the Notebook 79
Introduction 79
Teaching programming in the notebook with IPython blocks 84
Converting an IPython notebook to other formats with nbconvert 89
Adding custom controls in the notebook toolbar 94
Customizing the CSS style in the notebook 96
Using interactive widgets – a piano in the notebook 99

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Creating a custom JavaScript widget in the notebook – a spreadsheet
editor for pandas 103
Processing webcam images in real time from the notebook 108

Chapter 4: Profiling and Optimization 115
Introduction 115
Evaluating the time taken by a statement in IPython 116
Profiling your code easily with cProfile and IPython 117
Profiling your code line-by-line with line_profiler 121
Profiling the memory usage of your code with memory_profiler 124
Understanding the internals of NumPy to avoid unnecessary array copying 127
Using stride tricks with NumPy 133
Implementing an efficient rolling average algorithm with stride tricks 135
Making efficient array selections in NumPy 138
Processing huge NumPy arrays with memory mapping 140
Manipulating large arrays with HDF5 and PyTables 142
Manipulating large heterogeneous tables with HDF5 and PyTables 146

Chapter 5: High-performance Computing 149
Introduction 149
Accelerating pure Python code with Numba and Just-In-Time compilation 154
Accelerating array computations with Numexpr 158
Wrapping a C library in Python with ctypes 159
Accelerating Python code with Cython 163
Optimizing Cython code by writing less Python and more C 167
Releasing the GIL to take advantage of multi-core processors
with Cython and OpenMP 174
Writing massively parallel code for NVIDIA graphics cards (GPUs)
with CUDA 175
Writing massively parallel code for heterogeneous platforms
with OpenCL 181
Distributing Python code across multiple cores with IPython 185
Interacting with asynchronous parallel tasks in IPython 189
Parallelizing code with MPI in IPython 192
Trying the Julia language in the notebook 195

Chapter 6: Advanced Visualization 201
Introduction 201
Making nicer matplotlib figures with prettyplotlib 202
Creating beautiful statistical plots with seaborn 205
Creating interactive web visualizations with Bokeh 208
Visualizing a NetworkX graph in the IPython notebook with D3.js 211
Converting matplotlib figures to D3.js visualizations with mpld3 215

iii

Table of Contents

Getting started with Vispy for high-performance interactive
data visualizations 218

Chapter 7: Statistical Data Analysis 225
Introduction 225
Exploring a dataset with pandas and matplotlib 229
Getting started with statistical hypothesis testing – a simple z-test 233
Getting started with Bayesian methods 236
Estimating the correlation between two variables with a contingency
table and a chi-squared test 241
Fitting a probability distribution to data with the maximum
likelihood method 245
Estimating a probability distribution nonparametrically with
a kernel density estimation 251
Fitting a Bayesian model by sampling from a posterior distribution
with a Markov chain Monte Carlo method 255
Analyzing data with the R programming language in the
IPython notebook 261

Chapter 8: Machine Learning 267
Introduction 267
Getting started with scikit-learn 273
Predicting who will survive on the Titanic with logistic regression 281
Learning to recognize handwritten digits with a K-nearest
neighbors classifier 285
Learning from text – Naive Bayes for Natural Language Processing 289
Using support vector machines for classification tasks 293
Using a random forest to select important features for regression 298
Reducing the dimensionality of a dataset with a principal
component analysis 302
Detecting hidden structures in a dataset with clustering 306

Chapter 9: Numerical Optimization 311
Introduction 311
Finding the root of a mathematical function 314
Minimizing a mathematical function 317
Fitting a function to data with nonlinear least squares 323
Finding the equilibrium state of a physical system by minimizing
its potential energy 326

Chapter 10: Signal Processing 333
Introduction 333
Analyzing the frequency components of a signal with
a Fast Fourier Transform 337

iv

Table of Contents

Applying a linear filter to a digital signal 343
Computing the autocorrelation of a time series 349

Chapter 11: Image and Audio Processing 353
Introduction 353
Manipulating the exposure of an image 355
Applying filters on an image 358
Segmenting an image 362
Finding points of interest in an image 367
Detecting faces in an image with OpenCV 370
Applying digital filters to speech sounds 373
Creating a sound synthesizer in the notebook 377

Chapter 12: Deterministic Dynamical Systems 381
Introduction 381
Plotting the bifurcation diagram of a chaotic dynamical system 383
Simulating an elementary cellular automaton 387
Simulating an ordinary differential equation with SciPy 390
Simulating a partial differential equation – reaction-diffusion systems
and Turing patterns 394

Chapter 13: Stochastic Dynamical Systems 401
Introduction 401
Simulating a discrete-time Markov chain 402
Simulating a Poisson process 406
Simulating a Brownian motion 410
Simulating a stochastic differential equation 412

Chapter 14: Graphs, Geometry, and Geographic
Information Systems 417

Introduction 417
Manipulating and visualizing graphs with NetworkX 421
Analyzing a social network with NetworkX 425
Resolving dependencies in a directed acyclic graph with
a topological sort 430
Computing connected components in an image 434
Computing the Voronoi diagram of a set of points 438
Manipulating geospatial data with Shapely and basemap 442
Creating a route planner for a road network 446

Chapter 15: Symbolic and Numerical Mathematics 453
Introduction 453
Diving into symbolic computing with SymPy 454
Solving equations and inequalities 457

v

Table of Contents

Analyzing real-valued functions 458
Computing exact probabilities and manipulating random variables 460
A bit of number theory with SymPy 462
Finding a Boolean propositional formula from a truth table 465
Analyzing a nonlinear differential system – Lotka-Volterra
(predator-prey) equations 467
Getting started with Sage 470

Index 473

Preface
We are becoming awash in the flood of digital data from scientific research, engineering,
economics, politics, journalism, business, and many other domains. As a result, analyzing,
visualizing, and harnessing data is the occupation of an increasingly large and diverse set
of people. Quantitative skills such as programming, numerical computing, mathematics,
statistics, and data mining, which form the core of data science, are more and more
appreciated in a seemingly endless plethora of fields.

My previous book, Learning IPython for Interactive Computing and Data Visualization,
Packt Publishing, published in 2013, was a beginner-level introduction to data science and
numerical computing with Python. This widely-used programming language is also one of the
most popular platforms for these disciplines.

This book continues that journey by presenting more than 100 advanced recipes for data
science and mathematical modeling. These recipes not only cover programming and
computing topics such as interactive computing, numerical computing, high-performance
computing, parallel computing, and interactive visualization, but also data analysis topics
such as statistics, data mining, machine learning, signal processing, and many others.

All of this book's code has been written in the IPython notebook. IPython is at the heart of
the Python data analysis platform. Originally created to enhance the default Python console,
IPython is now mostly known for its widely acclaimed notebook. This web-based interactive
computational environment combines code, rich text, images, mathematical equations, and
plots into a single document. It is an ideal gateway to data analysis and high-performance
numerical computing in Python.

Preface

2

What this book is
This cookbook contains in excess of a hundred focused recipes, answering specific questions
in numerical computing and data analysis with IPython on:

 f How to explore a public dataset with pandas, PyMC, and SciPy

 f How to create interactive plots, widgets, and Graphical User Interfaces in the
IPython notebook

 f How to create a configurable IPython extension with custom magic commands

 f How to distribute asynchronous tasks in parallel with IPython

 f How to accelerate code with OpenMP, MPI, Numba, Cython, OpenCL, CUDA, and the
Julia programming language

 f How to estimate a probability density from a dataset

 f How to get started using the R statistical programming language in the notebook

 f How to train a classifier or a regressor with scikit-learn

 f How to find interesting projections in a high-dimensional dataset

 f How to detect faces in an image

 f How to simulate a reaction-diffusion system

 f How to compute an itinerary in a road network

The choice made in this book was to introduce a wide range of different topics instead of delving
into the details of a few methods. The goal is to give you a taste of the incredibly rich capabilities
of Python for data science. All methods are applied on diverse real-world examples.

Every recipe of this book demonstrates not only how to apply a method, but also how and why
it works. It is important to understand the mathematical concepts and ideas underlying the
methods instead of merely applying them blindly.

Additionally, each recipe comes with many references for the interested reader who wants to
know more. As online references change frequently, they will be kept up to date on the book's
website (http://ipython-books.github.io).

What this book covers
This book is split into two parts:

Part 1 (chapters 1 to 6) covers advanced methods in interactive numerical computing,
high-performance computing, and data visualization.

Part 2 (chapters 7 to 15) introduces standard methods in data science and mathematical
modeling. All of these methods are applied to real-world data.

Preface

3

Part 1 – Advanced High-Performance Interactive
Computing
Chapter 1, A Tour of Interactive Computing with IPython, contains a brief but intense
introduction to data analysis and numerical computing with IPython. It not only covers
common packages such as Python, NumPy, pandas, and matplotlib, but also advanced
IPython topics such as interactive widgets in the notebook, custom magic commands,
configurable IPython extensions, and new language kernels.

Chapter 2, Best Practices in Interactive Computing, details best practices to write reproducible,
high-quality code: task automation, version control with Git, workflows with IPython, unit testing
with nose, continuous integration, debugging, and other related topics. The importance of these
subjects in computational research and data analysis cannot be overstated.

Chapter 3, Mastering the Notebook, covers advanced topics related to the IPython notebook,
notably the notebook format, notebook conversions, and CSS/JavaScript customization.
The new interactive widgets available since IPython 2.0 are also extensively covered. These
techniques make data analysis in the notebook more interactive than ever.

Chapter 4, Profiling and Optimization, covers methods to make your code faster and more
efficient: CPU and memory profiling in Python, advanced optimization techniques with NumPy
(including large array manipulations), and memory mapping of huge arrays with the HDF5 file
format and the PyTables library. These techniques are essential for big data analysis.

Chapter 5, High-performance Computing, covers advanced techniques to make your code
much faster: code acceleration with Numba and Cython, wrapping C libraries in Python with
ctypes, parallel computing with IPython, OpenMP, and MPI, and General-Purpose Computing
on Graphics Processing Units (GPGPU) with CUDA and OpenCL. The chapter ends with an
introduction to the recent Julia language, which was designed for high-performance numerical
computing and can be easily used in the IPython notebook.

Chapter 6, Advanced Visualization, introduces a few data visualization libraries that go beyond
matplotlib in terms of styling or programming interfaces. It also covers interactive visualization
in the notebook with Bokeh, mpld3, and D3.js. The chapter ends with an introduction to
Vispy, a library that leverages the power of Graphics Processing Units for high-performance
interactive visualization of big data.

Part 2 – Standard Methods in Data Science and Applied
Mathematics
Chapter 7, Statistical Data Analysis, covers methods for getting insight into data. It
introduces classic frequentist and Bayesian methods for hypothesis testing, parametric and
nonparametric estimation, and model inference. The chapter leverages Python libraries such
as pandas, SciPy, statsmodels, and PyMC. The last recipe introduces the statistical language
R, which can be easily used in the IPython notebook.

Preface

4

Chapter 8, Machine Learning, covers methods to learn and make predictions from data.
Using the scikit-learn Python package, this chapter illustrates fundamental data mining and
machine learning concepts such as supervised and unsupervised learning, classification,
regression, feature selection, feature extraction, overfitting, regularization, cross-validation,
and grid search. Algorithms addressed in this chapter include logistic regression, Naive Bayes,
K-nearest neighbors, Support Vector Machines, random forests, and others. These methods
are applied to various types of datasets: numerical data, images, and text.

Chapter 9, Numerical Optimization, is about minimizing or maximizing mathematical
functions. This topic is pervasive in data science, notably in statistics, machine learning, and
signal processing. This chapter illustrates a few root-finding, minimization, and curve fitting
routines with SciPy.

Chapter 10, Signal Processing, is about extracting relevant information from complex and
noisy data. These steps are sometimes required prior to running statistical and data mining
algorithms. This chapter introduces standard signal processing methods such as Fourier
transforms and digital filters.

Chapter 11, Image and Audio Processing, covers signal processing methods for images and
sounds. It introduces image filtering, segmentation, computer vision, and face detection with
scikit-image and OpenCV. It also presents methods for audio processing and synthesis.

Chapter 12, Deterministic Dynamical Systems, describes dynamical processes underlying
particular types of data. It illustrates simulation techniques for discrete-time dynamical
systems as well as for ordinary differential equations and partial differential equations.

Chapter 13, Stochastic Dynamical Systems, describes dynamical random processes
underlying particular types of data. It illustrates simulation techniques for discrete-time
Markov chains, point processes, and stochastic differential equations.

Chapter 14, Graphs, Geometry, and Geographic Information Systems, covers analysis and
visualization methods for graphs, social networks, road networks, maps, and geographic data.

Chapter 15, Symbolic and Numerical Mathematics, introduces SymPy, a computer algebra
system that brings symbolic computing to Python. The chapter ends with an introduction to
Sage, another Python-based system for computational mathematics.

What you need for this book
You need to know the content of this book's prequel, Learning IPython for Interactive
Computing and Data Visualization: Python programming, the IPython console and notebook,
numerical computing with NumPy, basic data analysis with pandas as well as plotting with
matplotlib. This book tackles advanced scientific programming topics that require you to be
familiar with the scientific Python ecosystem.

Preface

5

In Part 2, you need to know the basics of calculus, linear algebra, and probability theory.
These chapters introduce different topics in data science and applied mathematics (statistics,
machine learning, numerical optimization, signal processing, dynamical systems, graph theory,
and others). You will understand these recipes better if you know fundamental concepts such as
real-valued functions, integrals, matrices, vector spaces, probabilities, and so on.

Installing Python
There are many ways to install Python. We highly recommend the free Anaconda distribution
(http://store.continuum.io/cshop/anaconda/). This Python distribution contains
most of the packages that we will be using in this book. It also includes a powerful packaging
system named conda. The book's website contains all the instructions to install Anaconda
and run the code examples. You should learn how to install packages (conda install
packagename) and how to create multiple Python environments with conda.

The code of this book has been written for Python 3 (more precisely, the code has been tested
on Python 3.4.1, Anaconda 2.0.1, Windows 8.1 64-bit, although it definitely works on Linux
and Mac OS X), but it also works with Python 2.7. We mention any compatibility issue when
required. These issues are rare in this book, because NumPy does the heavy lifting in most
cases. NumPy's interface hasn't changed between Python 2 and Python 3.

If you're unsure about which Python version you should use, pick Python 3. You should only
pick Python 2 if you really need to (for example, if you absolutely need a Python package that
doesn't support Python 3, or if part of your user base is stuck with Python 2). We cover this
question in greater detail in Chapter 2, Best Practices in Interactive Computing.

With Anaconda, you can install Python 2 and Python 3 side-by-side using conda environments.
This is how you can easily run the couple of recipes in this book that require Python 2.

GitHub repositories
A home page and two GitHub repositories accompany this book:

 f The main webpage at http://ipython-books.github.io

 f The main GitHub repository, with the codes and references of all recipes, at
https://github.com/ipython-books/cookbook-code

 f Datasets used in certain recipes at https://github.com/ipython-books/
cookbook-data

The main GitHub repository is where you can:

 f Find all code examples as IPython notebooks

 f Find all up-to-date references

 f Find up-to-date installation instructions

 f Report errata, inaccuracies, or mistakes via the issue tracker

www.allitebooks.com

http://www.allitebooks.org

Preface

6

 f Propose fixes via Pull Requests

 f Add notes, comments, or further references via Pull Requests

 f Add new recipes via Pull Requests

The online list of references is a particularly important resource. It contains many links to
tutorials, courses, books, and videos about the topics covered in this book.

You can also follow updates about the book on my website (http://cyrille.rossant.
net) and on my Twitter account (@cyrillerossant).

Who this book is for
This book targets students, researchers, teachers, engineers, data scientists, analysts,
journalists, economists, and hobbyists interested in data analysis and numerical computing.

Readers familiar with the scientific Python ecosystem will find many resources to sharpen
their skills in high-performance interactive computing with IPython.

Readers who need to implement algorithms for domain-specific applications will appreciate
the introductions to a wide variety of topics in data analysis and applied mathematics.

Readers who are new to numerical computing with Python should start with the prequel of
this book, Learning IPython for Interactive Computing and Data Visualization, Cyrille Rossant,
Packt Publishing, 2013. A second edition is planned for 2015.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Notebooks can be run in an interactive session via %run notebook.ipynb."

A block of code is set as follows:

def do_complete(self, code, cursor_pos):
 return {'status': 'ok',
 'cursor_start': ...,
 'cursor_end': ...,
 'matches': [...]}

Any command-line input or output is written as follows:

from IPython import embed

embed()

Preface

7

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The simplest option is to
launch them from the Clusters tab in the notebook dashboard."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Downloading the color images
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from the following link: https://www.packtpub.com/sites/
default/files/downloads/4818OS_ColoredImages.pdf.

Preface

8

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
A Tour of Interactive

Computing with IPython

In this chapter, we will cover the following topics:

 f Introducing the IPython notebook

 f Getting started with exploratory data analysis in IPython

 f Introducing the multidimensional array in NumPy for fast array computations

 f Creating an IPython extension with custom magic commands

 f Mastering IPython's configuration system

 f Creating a simple kernel for IPython

Introduction
This book targets intermediate to advanced users who are familiar with Python, IPython, and
scientific computing. In this chapter, we will give a brief recap on the fundamental tools we will
be using throughout this book: IPython, the notebook, pandas, NumPy, and matplotlib.

In this introduction, we will give a broad overview of IPython and the Python scientific stack for
high-performance computing and data science.

A Tour of Interactive Computing with IPython

10

What is IPython?
IPython is an open source platform for interactive and parallel computing. It offers powerful
interactive shells and a browser-based notebook. The notebook combines code, text,
mathematical expressions, inline plots, interactive plots, and other rich media within a
sharable web document. This platform provides an ideal framework for interactive scientific
computing and data analysis. IPython has become essential to researchers, data scientists,
and teachers.

IPython can be used with the Python programming language, but the platform also supports
many other languages such as R, Julia, Haskell, or Ruby. The architecture of the project is
indeed language-agnostic, consisting of messaging protocols and interactive clients (including
the browser-based notebook). The clients are connected to kernels that implement the
core interactive computing facilities. Therefore, the platform can be useful to technical and
scientific communities that use languages other than Python.

In July 2014, Project Jupyter was announced by the IPython developers. This project will focus
on the language-independent parts of IPython (including the notebook architecture), whereas
the name IPython will be reserved to the Python kernel. In this book, for the sake of simplicity,
we will just use the term IPython to refer to either the platform or the Python kernel.

A brief historical retrospective on Python as a
scientific environment

Python is a high-level general-purpose language originally conceived by Guido van Rossum in
the late 1980s (the name was inspired by the British comedy Monty Python's Flying Circus).
This easy-to-use language is the basis of many scripting programs that glue different software
components (glue language) together. In addition, Python comes with an extremely rich
standard library (the batteries included philosophy), which covers string processing, Internet
Protocols, operating system interfaces, and many other domains.

In the late 1990s, Travis Oliphant and others started to build efficient tools to deal with
numerical data in Python: Numeric, Numarray, and finally, NumPy. SciPy, which implements
many numerical computing algorithms, was also created on top of NumPy. In the early
2000s, John Hunter created matplotlib to bring scientific graphics to Python. At the same
time, Fernando Perez created IPython to improve interactivity and productivity in Python. All
the fundamental tools were here to turn Python into a great open source high-performance
framework for scientific computing and data analysis.

Chapter 1

11

It is worth noting that Python as a platform for scientific computing was
built slowly, step-by-step, on top of a programming language that was not
originally designed for this purpose. This fact might explain a few minor
inconsistencies or weaknesses of the platform, which do not preclude
it from being one of the most popular open frameworks for scientific
computing at this time. (You can also refer to http://cyrille.
rossant.net/whats-wrong-with-scientific-python/.)

Notable competing open source platforms for numerical computing and
data analysis include R (which focuses on statistics) and Julia (a young,
high-level language that focuses on high performance and parallel
computing). We will see these two languages very briefly in this book, as
they can be used from the IPython notebook.

In the late 2000s, Wes McKinney created pandas for the manipulation and analysis of
numerical tables and time series. At the same time, the IPython developers started to
work on a notebook client inspired by mathematical software such as Sage, Maple, and
Mathematica. Finally, IPython 0.12, released in December 2011, introduced the HTML-based
notebook that has now gone mainstream.

In 2013, the IPython team received a grant from the Sloan Foundation and a donation from
Microsoft to support the development of the notebook. IPython 2.0, released in early 2014,
brought many improvements and long-awaited features.

What's new in IPython 2.0?
Here is a short summary of the changes brought by IPython 2.0 (succeeding v1.1):

 f The notebook comes with a new modal user interface:

 � In the edit mode, we can edit a cell by entering code or text.

 � In the command mode, we can edit the notebook by moving cells around,
duplicating or deleting them, changing their types, and so on. In this mode,
the keyboard is mapped to a set of shortcuts that let us perform notebook
and cell actions efficiently.

 f Notebook widgets are JavaScript-based GUI widgets that interact dynamically with
Python objects. This major feature considerably expands the possibilities of the IPython
notebook. Writing Python code in the notebook is no longer the only possible interaction
with the kernel. JavaScript widgets and, more generally, any JavaScript-based
interactive element, can now interact with the kernel in real-time.

A Tour of Interactive Computing with IPython

12

 f We can now open notebooks in different subfolders with the dashboard, using the
same server. A REST API maps local URIs to the filesystem.

 f Notebooks are now signed to prevent untrusted code from executing when notebooks
are opened.

 f The dashboard now contains a Running tab with the list of running kernels.

 f The tooltip now appears when pressing Shift + Tab instead of Tab.

 f Notebooks can be run in an interactive session via %run notebook.ipynb.

 f The %pylab magic is discouraged in favor of %matplotlib inline
(to embed figures in the notebook) and import matplotlib.pyplot
as plt. The main reason is that %pylab clutters the interactive namespace
by importing a huge number of variables. Also, it might harm the reproducibility
and reusability of notebooks.

 f Python 2.6 and 3.2 are no longer supported. IPython now requires Python 2.7
or >= 3.3.

Roadmap for IPython 3.0 and 4.0
IPython 3.0 and 4.0, planned for late 2014/early 2015, should facilitate the use of non-Python
kernels and provide multiuser capabilities to the notebook.

References
Here are a few references:

 f The Python webpage at www.python.org

 f Python on Wikipedia at http://en.wikipedia.org/wiki/
Python_%28programming_language%29

 f Python's standard library present at https://docs.python.org/2/library/

 f Guido van Rossum on Wikipedia at http://en.wikipedia.org/wiki/
Guido_van_Rossum

 f Conversation with Guido van Rossum on the birth of Python available at
www.artima.com/intv/pythonP.html

 f History of scientific Python available at http://fr.slideshare.net/
shoheihido/sci-pyhistory

 f What's new in IPython 2.0 at http://ipython.org/ipython-doc/2/
whatsnew/version2.0.html

 f IPython on Wikipedia at http://en.wikipedia.org/wiki/IPython

 f History of the IPython notebook at http://blog.fperez.org/2012/01/
ipython-notebook-historical.html

Chapter 1

13

Introducing the IPython notebook
The notebook is the flagship feature of IPython. This web-based interactive environment
combines code, rich text, images, videos, animations, mathematics, and plots into a single
document. This modern tool is an ideal gateway to high-performance numerical computing
and data science in Python. This entire book has been written in the notebook, and the
code of every recipe is available as a notebook on the book's GitHub repository at
https://github.com/ipython-books/cookbook-code.

In this recipe, we give an introduction to IPython and its notebook. In Getting ready, we also
give general instructions on installing IPython and the Python scientific stack.

Getting ready
You will need Python, IPython, NumPy, pandas, and matplotlib in this chapter. Together
with SciPy and SymPy, these libraries form the core of the Python scientific stack
(www.scipy.org/about.html).

You will find full detailed installation instructions on the book's
GitHub repository at https://github.com/ipython-books/
cookbook-code.

We only give a summary of these instructions here; please refer to
the link above for more up-to-date details.

If you're just getting started with scientific computing in Python, the simplest option is to
install an all-in-one Python distribution. The most common distributions are:

 f Anaconda (free or commercial license) available at http://store.continuum.
io/cshop/anaconda/

 f Canopy (free or commercial license) available at www.enthought.com/products/
canopy/

 f Python(x,y), a free distribution only for Windows, available at
https://code.google.com/p/pythonxy/

We highly recommend Anaconda. These distributions contain everything you need to get
started. You can also install additional packages as needed. You will find all the installation
instructions in the links mentioned previously.

Throughout the book, we assume that you have installed
Anaconda. We may not be able to offer support to readers
who use another distribution.

A Tour of Interactive Computing with IPython

14

Alternatively, if you feel brave, you can install Python, IPython, NumPy, pandas, and matplotlib
manually. You will find all the instructions on the following websites:

 f Python is the programming language underlying the ecosystem. The instructions are
available at www.python.org/.

 f IPython provides tools for interactive computing in Python. The instructions for
installation are available at http://ipython.org/install.html.

 f NumPy/SciPy are used for numerical computing in Python. The instructions for
installation are available at www.scipy.org/install.html.

 f pandas provides data structures and tools for data analysis in Python. The
instructions for installation are available at http://pandas.pydata.org/
getpandas.html.

 f matplotlib helps in creating scientific figures in Python. The instructions for
installation are available at http://matplotlib.org/index.html.

Python 2 or Python 3?

Though Python 3 is the latest version at this date, many people are
still using Python 2. Python 3 has brought backward-incompatible
changes that have slowed down its adoption. If you are just getting
started with Python for scientific computing, you might as well choose
Python 3. In this book, all the code has been written for Python 3,
but it also works with Python 2. We will give more details about this
question in Chapter 2, Best Practices in Interactive Computing.

Once you have installed either an all-in-one Python distribution (again, we highly recommend
Anaconda), or Python and the required packages, you can get started! In this book, the IPython
notebook is used in almost all recipes. This tool gives you access to Python from your web
browser. We covered the essentials of the notebook in the Learning IPython for Interactive
Computing and Data Visualization book. You can also find more information on IPython's
website (http://ipython.org/ipython-doc/stable/notebook/index.html).

To run the IPython notebook server, type ipython notebook in a terminal (also called
the command prompt). Your default web browser should open automatically and load the
127.0.0.1:8888 address. Then, you can create a new notebook in the dashboard or open
an existing notebook. By default, the notebook server opens in the current directory (the
directory you launched the command from). It lists all the notebooks present in this directory
(files with the .ipynb extension).

On Windows, you can open a command prompt by pressing the
Windows key and R, then typing cmd in the prompt, and finally
by pressing Enter.

Chapter 1

15

How to do it...
1. We assume that a Python distribution is installed with IPython and that we are

now in an IPython notebook. We type the following command in a cell, and press
Shift + Enter to evaluate it:
In [1]: print("Hello world!")
Hello world!

Screenshot of the IPython notebook

A notebook contains a linear succession of cells and output areas. A cell contains
Python code, in one or multiple lines. The output of the code is shown in the
corresponding output area.

2. Now, we do a simple arithmetic operation:
In [2]: 2+2
Out[2]: 4

The result of the operation is shown in the output area. Let's be more precise. The
output area not only displays the text that is printed by any command in the cell, but it
also displays a text representation of the last returned object. Here, the last returned
object is the result of 2+2, that is, 4.

3. In the next cell, we can recover the value of the last returned object with the _
(underscore) special variable. In practice, it might be more convenient to assign
objects to named variables such as in myresult = 2+2.
In [3]: _ * 3
Out[3]: 12

4. IPython not only accepts Python code, but also shell commands. These commands
are defined by the operating system (mainly Windows, Linux, and Mac OS X). We first
type ! in a cell before typing the shell command. Here, assuming a Linux or Mac OS X
system, we get the list of all the notebooks in the current directory:
In [4]: !ls *.ipynb
notebook1.ipynb ...

On Windows, you should replace ls with dir.

www.allitebooks.com

http://www.allitebooks.org

A Tour of Interactive Computing with IPython

16

5. IPython comes with a library of magic commands. These commands are convenient
shortcuts to common actions. They all start with % (the percent character). We can
get the list of all magic commands with %lsmagic:
In [5]: %lsmagic
Out[5]: Available line magics:
%alias %alias_magic %autocall %automagic %autosave %bookmark
%cd %clear %cls %colors %config %connect_info %copy %ddir
%debug %dhist %dirs %doctest_mode %echo %ed %edit %env
%gui %hist %history %install_default_config %install_ext
%install_profiles %killbgscripts %ldir %less %load %load_ext
%loadpy %logoff %logon %logstart %logstate %logstop %ls
%lsmagic %macro %magic %matplotlib %mkdir %more %notebook
%page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2
%popd %pprint %precision %profile %prun %psearch %psource
%pushd %pwd %pycat %pylab %qtconsole %quickref %recall
%rehashx %reload_ext %ren %rep %rerun %reset %reset_
selective %rmdir %run %save %sc %store %sx %system %tb
%time %timeit %unalias %unload_ext %who %who_ls %whos %xdel
%xmode

Available cell magics:
%%! %%HTML %%SVG %%bash %%capture %%cmd %%debug %%file
%%html %%javascript %%latex %%perl %%powershell %%prun
%%pypy %%python %%python3 %%ruby %%script %%sh %%svg %%sx
%%system %%time %%timeit %%writefile

Cell magics have a %% prefix; they concern entire code cells.

6. For example, the %%writefile cell magic lets us create a text file easily. This magic
command accepts a filename as an argument. All the remaining lines in the cell are
directly written to this text file. Here, we create a file test.txt and write Hello
world! in it:
In [6]: %%writefile test.txt
 Hello world!
Writing test.txt
In [7]: # Let's check what this file contains.
 with open('test.txt', 'r') as f:
 print(f.read())
Hello world!

7. As we can see in the output of %lsmagic, there are many magic commands in IPython.
We can find more information about any command by adding ? after it. For example, to
get some help about the %run magic command, we type %run? as shown here:
In [9]: %run?
Type: Magic function
Namespace: IPython internal

Chapter 1

17

...
Docstring:
Run the named file inside IPython as a program.
[full documentation of the magic command...]

8. We covered the basics of IPython and the notebook. Let's now turn to the rich display
and interactive features of the notebook. Until now, we have only created code cells
(containing code). IPython supports other types of cells. In the notebook toolbar,
there is a drop-down menu to select the cell's type. The most common cell type after
the code cell is the Markdown cell.

Markdown cells contain rich text formatted with Markdown, a popular plain text-
formatting syntax. This format supports normal text, headers, bold, italics, hypertext
links, images, mathematical equations in LaTeX (a typesetting system adapted to
mathematics), code, HTML elements, and other features, as shown here:
New paragraph
This is *rich* **text** with [links](http://ipython.org),
equations:

$$\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x)\,
 \mathrm{e}^{-i \xi x}$$

code with syntax highlighting:
```python
print("Hello world!")
``` 
and images:
![This is an image](http://ipython.org/_static/IPy_header.png)

Running a Markdown cell (by pressing Shift + Enter, for example) displays the output,
as shown in the following screenshot:

Rich text formatting with Markdown in the IPython notebook

A Tour of Interactive Computing with IPython

18

LaTeX equations are rendered with the MathJax library. We can
enter inline equations with $...$ and displayed equations with
$$...$$. We can also use environments such as equation,
eqnarray, or align. These features are very useful to
scientific users.

By combining code cells and Markdown cells, we can create a standalone interactive
document that combines computations (code), text, and graphics.

9. IPython also comes with a sophisticated display system that lets us insert rich web
elements in the notebook. Here, we show how to add HTML, SVG (Scalable Vector
Graphics), and even YouTube videos in a notebook.

First, we need to import some classes:
In [11]: from IPython.display import HTML, SVG, YouTubeVideo

We create an HTML table dynamically with Python, and we display it in the notebook:
In [12]: HTML('''
 <table style="border: 2px solid black;">
 ''' +
 ''.join(['<tr>' +
 ''.join(['<td>{row},{col}</td>'.format(
 row=row, col=col
) for col in range(5)]) +
 '</tr>' for row in range(5)]) +
 '''
 </table>
 ''')

An HTML table in the notebook

Similarly, we can create SVG graphics dynamically:
In [13]: SVG('''<svg width="600" height="80">''' +
 ''.join(['''<circle cx="{x}" cy="{y}" r="{r}"
 fill="red"

Chapter 1

19

 stroke-width="2"
 stroke="black">
 </circle>'''.format(x=(30+3*i)*(10-i),
 y=30,
 r=3.*float(i)
) for i in range(10)]) +
 '''</svg>''')

SVG in the notebook

Finally, we display a YouTube video by giving its identifier to YoutubeVideo:

In [14]: YouTubeVideo('j9YpkSX7NNM')

YouTube in the notebook

10. Now, we illustrate the latest interactive features in IPython 2.0+, namely JavaScript
widgets. Here, we create a drop-down menu to select videos:
In [15]: from collections import OrderedDict
 from IPython.display import (display,
 clear_output,
 YouTubeVideo)
 from IPython.html.widgets import DropdownWidget
In [16]: # We create a DropdownWidget, with a dictionary
 # containing the keys (video name) and the values
 # (Youtube identifier) of every menu item.
 dw = DropdownWidget(values=OrderedDict([

A Tour of Interactive Computing with IPython

20

 ('SciPy 2012', 'iwVvqwLDsJo'),
 ('PyCon 2012', '2G5YTlheCbw'),
 ('SciPy 2013', 'j9YpkSX7NNM')]
)
)

 # We create a callback function that displays the
 # requested Youtube video.
 def on_value_change(name, val):
 clear_output()
 display(YouTubeVideo(val))

 # Every time the user selects an item, the
 # function `on_value_change` is called, and the
 # `val` argument contains the value of the selected
 # item.
 dw.on_trait_change(on_value_change, 'value')

 # We choose a default value.
 dw.value = dw.values['SciPy 2013']

 # Finally, we display the widget.
 display(dw)

An interactive widget in the notebook

Chapter 1

21

The interactive features of IPython 2.0 bring a whole new dimension to the notebook, and we
can expect many developments in the future.

There's more...
Notebooks are saved as structured text files (JSON format), which makes them easily
shareable. Here are the contents of a simple notebook:

{
 "metadata": {
 "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
 {
 "cells": [
 {
 "cell_type": "code",
 "collapsed": false,
 "input": [
 "print(\"Hello World!\")"
],
 "language": "python",
 "metadata": {},
 "outputs": [
 {
 "output_type": "stream",
 "stream": "stdout",
 "text": [
 "Hello World!\n"
]
 }
],
 "prompt_number": 1
 }
],
 "metadata": {}
 }
]
}

IPython comes with a special tool, nbconvert, which converts notebooks to other formats such as
HTML and PDF (http://ipython.org/ipython-doc/stable/notebook/index.html).

A Tour of Interactive Computing with IPython

22

Another online tool, nbviewer, allows us to render a publicly available notebook directly in the
browser and is available at http://nbviewer.ipython.org.

We will cover many of these possibilities in the subsequent chapters, notably in Chapter 3,
Mastering the Notebook.

Here are a few references about the notebook:

 f Official page of the notebook available at http://ipython.org/notebook

 f Documentation of the notebook available at http://ipython.org/
ipython-doc/dev/notebook/index.html

 f Official notebook examples present at https://github.com/ipython/
ipython/tree/master/examples/Notebook

 f User-curated gallery of interesting notebooks available at https://github.com/
ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks

 f Official tutorial on the interactive widgets present at http://nbviewer.ipython.
org/github/ipython/ipython/tree/master/examples/Interactive%20
Widgets/

See also
 f The Getting started with data exploratory analysis in IPython recipe

Getting started with exploratory data
analysis in IPython

In this recipe, we will give an introduction to IPython for data analysis. Most of the subject has
been covered in the Learning IPython for Interactive Computing and Data Visualization book,
but we will review the basics here.

We will download and analyze a dataset about attendance on Montreal's bicycle tracks.
This example is largely inspired by a presentation from Julia Evans (available at
http://nbviewer.ipython.org/github/jvns/talks/blob/master/mtlpy35/
pistes-cyclables.ipynb). Specifically, we will introduce the following:

 f Data manipulation with pandas

 f Data visualization with matplotlib

 f Interactive widgets with IPython 2.0+

Chapter 1

23

How to do it...
1. The very first step is to import the scientific packages we will be using in this recipe,

namely NumPy, pandas, and matplotlib. We also instruct matplotlib to render the
figures as inline images in the notebook:
In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline

2. Now, we create a new Python variable called url that contains the address to a CSV
(Comma-separated values) data file. This standard text-based file format is used to
store tabular data:
In [2]: url = "http://donnees.ville.montreal.qc.ca/storage/f/
2014-01-20T20%3A48%3A50.296Z/2013.csv"

3. pandas defines a read_csv() function that can read any CSV file. Here, we pass the
URL to the file. pandas will automatically download and parse the file, and return a
DataFrame object. We need to specify a few options to make sure that the dates are
parsed correctly:
In [3]: df = pd.read_csv(url, index_col='Date',
 parse_dates=True, dayfirst=True)

4. The df variable contains a DataFrame object, a specific pandas data structure that
contains 2D tabular data. The head(n) method displays the first n rows of this table.
In the notebook, pandas displays a DataFrame object in an HTML table, as shown in
the following screenshot:
In [4]: df.head(2)

First rows of the DataFrame

Here, every row contains the number of bicycles on every track of the city, for every
day of the year.

A Tour of Interactive Computing with IPython

24

5. We can get some summary statistics of the table with the describe() method:
In [5]: df.describe()

Summary statistics of the DataFrame

6. Let's display some figures. We will plot the daily attendance of two tracks. First, we
select the two columns, Berri1 and PierDup. Then, we call the plot() method:
In [6]: df[['Berri1', 'PierDup']].plot()

Chapter 1

25

7. Now, we move to a slightly more advanced analysis. We will look at the attendance of
all tracks as a function of the weekday. We can get the weekday easily with pandas:
the index attribute of the DataFrame object contains the dates of all rows in the
table. This index has a few date-related attributes, including weekday:
In [7]: df.index.weekday
Out[7]: array([1, 2, 3, 4, 5, 6, 0, 1, 2, ..., 0, 1, 2])

However, we would like to have names (Monday, Tuesday, and so on) instead of
numbers between 0 and 6. This can be done easily. First, we create a days array
with all the weekday names. Then, we index it by df.index.weekday. This
operation replaces every integer in the index by the corresponding name in days.
The first element, Monday, has the index 0, so every 0 in df.index.weekday is
replaced by Monday and so on. We assign this new index to a new column, Weekday,
in DataFrame:

In [8]: days = np.array(['Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday',
 'Sunday'])
 df['Weekday'] = days[df.index.weekday]

8. To get the attendance as a function of the weekday, we need to group the table
elements by the weekday. The groupby() method lets us do just that. Once
grouped, we can sum all the rows in every group:
In [9]: df_week = df.groupby('Weekday').sum()
In [10]: df_week

Grouped data with pandas

www.allitebooks.com

http://www.allitebooks.org

A Tour of Interactive Computing with IPython

26

9. We can now display this information in a figure. We first need to reorder the table by
the weekday using ix (indexing operation). Then, we plot the table, specifying the
line width:
In [11]: df_week.ix[days].plot(lw=3)
 plt.ylim(0); # Set the bottom axis to 0.

10. Finally, let's illustrate the new interactive capabilities of the notebook in IPython 2.0.
We will plot a smoothed version of the track attendance as a function of time (rolling
mean). The idea is to compute the mean value in the neighborhood of any day. The
larger the neighborhood, the smoother the curve. We will create an interactive slider
in the notebook to vary this parameter in real time in the plot. All we have to do is add
the @interact decorator above our plotting function:

In [12]: from IPython.html.widgets import interact
 @interact
 def plot(n=(1, 30)):
 pd.rolling_mean(df['Berri1'], n).dropna().plot()
 plt.ylim(0, 8000)
 plt.show()

Chapter 1

27

Interactive widget in the notebook

There's more...
pandas is the right tool to load and manipulate a dataset. Other tools and methods
are generally required for more advanced analyses (signal processing, statistics, and
mathematical modeling). We will cover these steps in the second part of this book, starting
with Chapter 7, Statistical Data Analysis.

Here are some more references about data manipulation with pandas:

 f Learning IPython for Interactive Computing and Data Visualization, Packt Publishing,
our previous book

 f Python for Data Analysis, O'Reilly Media, by Wes McKinney, the creator of pandas

 f The documentation of pandas available at http://pandas.pydata.org/
pandas-docs/stable/

See also
 f The Introducing the multidimensional array in NumPy for fast array

computations recipe

A Tour of Interactive Computing with IPython

28

Introducing the multidimensional array in
NumPy for fast array computations

NumPy is the main foundation of the scientific Python ecosystem. This library offers a specific
data structure for high-performance numerical computing: the multidimensional array.
The rationale behind NumPy is the following: Python being a high-level dynamic language,
it is easier to use but slower than a low-level language such as C. NumPy implements the
multidimensional array structure in C and provides a convenient Python interface, thus
bringing together high performance and ease of use. NumPy is used by many Python libraries.
For example, pandas is built on top of NumPy.

In this recipe, we will illustrate the basic concepts of the multidimensional array. A more
comprehensive coverage of the topic can be found in the Learning IPython for Interactive
Computing and Data Visualization book.

How to do it...
1. Let's import the built-in random Python module and NumPy:

In [1]: import random
 import numpy as np

We use the %precision magic (defined in IPython) to show only three decimals in
the Python output. This is just to reduce the number of digits in the output's text.

In [2]: %precision 3
Out[2]: u'%.3f'

2. We generate two Python lists, x and y, each one containing 1 million random
numbers between 0 and 1:
In [3]: n = 1000000
 x = [random.random() for _ in range(n)]
 y = [random.random() for _ in range(n)]
In [4]: x[:3], y[:3]
Out[4]: ([0.996, 0.846, 0.202], [0.352, 0.435, 0.531])

3. Let's compute the element-wise sum of all these numbers: the first element of x plus
the first element of y, and so on. We use a for loop in a list comprehension:
In [5]: z = [x[i] + y[i] for i in range(n)]
 z[:3]
Out[5]: [1.349, 1.282, 0.733]

Chapter 1

29

4. How long does this computation take? IPython defines a handy %timeit magic
command to quickly evaluate the time taken by a single statement:
In [6]: %timeit [x[i] + y[i] for i in range(n)]
1 loops, best of 3: 273 ms per loop

5. Now, we will perform the same operation with NumPy. NumPy works on
multidimensional arrays, so we need to convert our lists to arrays. The np.array()
function does just that:
In [7]: xa = np.array(x)
 ya = np.array(y)
In [8]: xa[:3]
Out[8]: array([0.996, 0.846, 0.202])

The xa and ya arrays contain the exact same numbers that our original lists, x and
y, contained. Those lists were instances of the list built-in class, while our arrays
are instances of the ndarray NumPy class. These types are implemented very
differently in Python and NumPy. In this example, we will see that using arrays instead
of lists leads to drastic performance improvements.

6. Now, to compute the element-wise sum of these arrays, we don't need to do a for
loop anymore. In NumPy, adding two arrays means adding the elements of the arrays
component-by-component. This is the standard mathematical notation in linear
algebra (operations on vectors and matrices):
In [9]: za = xa + ya
 za[:3]
Out[9]: array([1.349, 1.282, 0.733])

We see that the z list and the za array contain the same elements (the sum of the
numbers in x and y).

7. Let's compare the performance of this NumPy operation with the native Python loop:
In [10]: %timeit xa + ya
100 loops, best of 3: 10.7 ms per loop

We observe that this operation is more than one order of magnitude faster in NumPy
than in pure Python!

8. Now, we will compute something else: the sum of all elements in x or xa. Although
this is not an element-wise operation, NumPy is still highly efficient here. The pure
Python version uses the built-in sum() function on an iterable. The NumPy version
uses the np.sum() function on a NumPy array:
In [11]: %timeit sum(x) # pure Python
 %timeit np.sum(xa) # NumPy
100 loops, best of 3: 17.1 ms per loop
1000 loops, best of 3: 2.01 ms per loop

We also observe an impressive speedup here also.

A Tour of Interactive Computing with IPython

30

9. Finally, let's perform one last operation: computing the arithmetic distance between
any pair of numbers in our two lists (we only consider the first 1000 elements to
keep computing times reasonable). First, we implement this in pure Python with two
nested for loops:
In [12]: d = [abs(x[i] - y[j])
 for i in range(1000) for j in range(1000)]
In [13]: d[:3]
Out[13]: [0.230, 0.037, 0.549]

10. Now, we use a NumPy implementation, bringing out two slightly more advanced
notions. First, we consider a two-dimensional array (or matrix). This is how we deal with
the two indices, i and j. Second, we use broadcasting to perform an operation between
a 2D array and 1D array. We will give more details in the How it works... section.
In [14]: da = np.abs(xa[:1000,None] - ya[:1000])
In [15]: da
Out[15]: array([[0.23 , 0.037, ..., 0.542, 0.323, 0.473],
 ...,
 [0.511, 0.319, ..., 0.261, 0.042, 0.192]])
In [16]: %timeit [abs(x[i] - y[j])
 for i in range(1000) for j in range(1000)]
 %timeit np.abs(xa[:1000,None] - ya[:1000])
1 loops, best of 3: 292 ms per loop
100 loops, best of 3: 18.4 ms per loop

Here again, we observe significant speedups.

How it works...
A NumPy array is a homogeneous block of data organized in a multidimensional finite grid.
All elements of the array share the same data type, also called dtype (integer, floating-point
number, and so on). The shape of the array is an n-tuple that gives the size of each axis.

A 1D array is a vector; its shape is just the number of components.

A 2D array is a matrix; its shape is (number of rows, number of columns).

Chapter 1

31

The following figure illustrates the structure of a 3D (3, 4, 2) array that contains 24 elements:

A NumPy array

The slicing syntax in Python nicely translates to array indexing in NumPy. Also, we can add an
extra dimension to an existing array, using None or np.newaxis in the index. We used this
trick in our previous example.

Element-wise arithmetic operations can be performed on NumPy arrays that have the same
shape. However, broadcasting relaxes this condition by allowing operations on arrays with
different shapes in certain conditions. Notably, when one array has fewer dimensions than
the other, it can be virtually stretched to match the other array's dimension. This is how we
computed the pairwise distance between any pair of elements in xa and ya.

How can array operations be so much faster than Python loops? There are several reasons,
and we will review them in detail in Chapter 4, Profiling and Optimization. We can already say
here that:

 f In NumPy, array operations are implemented internally with C loops rather than
Python loops. Python is typically slower than C because of its interpreted and
dynamically-typed nature.

 f The data in a NumPy array is stored in a contiguous block of memory in RAM. This
property leads to more efficient use of CPU cycles and cache.

There's more...
There's obviously much more to say about this subject. Our previous book, Learning IPython
for Interactive Computing and Data Visualization, contains more details about basic array
operations. We will use the array data structure routinely throughout this book. Notably,
Chapter 4, Profiling and Optimization, covers advanced techniques of using NumPy arrays.

A Tour of Interactive Computing with IPython

32

Here are some more references:

 f Introduction to the ndarray on NumPy's documentation available at
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html

 f Tutorial on the NumPy array available at http://wiki.scipy.org/
Tentative_NumPy_Tutorial

 f The NumPy array in the SciPy lectures notes present at http://scipy-lectures.
github.io/intro/numpy/array_object.html

See also
 f The Getting started with exploratory data analysis in IPython recipe

 f The Understanding the internals of NumPy to avoid unnecessary array copying recipe
in Chapter 4, Profiling and Optimization

Creating an IPython extension with custom
magic commands

Although IPython comes with a wide variety of magic commands, there are cases where we
need to implement custom functionality in a new magic command. In this recipe, we will show
how to create line and magic cells, and how to integrate them in an IPython extension.

How to do it...
1. Let's import a few functions from the IPython magic system:

In [1]: from IPython.core.magic import (register_line_magic,
 register_cell_magic)

2. Defining a new line magic is particularly simple. First, we create a function that
accepts the contents of the line (except the initial %-prefixed name). The
name of this function is the name of the magic. Then, we decorate this function
with @register_line_magic:
In [2]: @register_line_magic
 def hello(line):
 if line == 'french':
 print("Salut tout le monde!")
 else:
 print("Hello world!")
In [3]: %hello
Hello world!
In [4]: %hello french
Salut tout le monde!

Chapter 1

33

3. Let's create a slightly more useful %%csv cell magic that parses a CSV string and
returns a pandas DataFrame object. This time, the arguments of the function
are the characters that follow %%csv in the first line and the contents of the cell
(from the cell's second line to the last).
In [5]: import pandas as pd
 #from StringIO import StringIO # Python 2
 from io import StringIO # Python 3

 @register_cell_magic
 def csv(line, cell):
 # We create a string buffer containing the
 # contents of the cell.
 sio = StringIO(cell)
 # We use pandas' read_csv function to parse
 # the CSV string.
 return pd.read_csv(sio)
In [6]: %%csv
 col1,col2,col3
 0,1,2
 3,4,5
 7,8,9
Out[6]:
 col1 col2 col3
0 0 1 2
1 3 4 5
2 7 8 9

We can access the returned object with _.
In [7]: df = _
 df.describe()
Out[7]:
 col1 col2 col3
count 3.000000 3.000000 3.000000
mean 3.333333 4.333333 5.333333
...
min 0.000000 1.000000 2.000000
max 7.000000 8.000000 9.000000

4. The method we described is useful in an interactive session. If we want to use the
same magic in multiple notebooks or if we want to distribute it, then we need to
create an IPython extension that implements our custom magic command. The first
step is to create a Python script (csvmagic.py here) that implements the magic.
We also need to define a special function load_ipython_extension(ipython):
In [8]: %%writefile csvmagic.py
 import pandas as pd
 #from StringIO import StringIO # Python 2
 from io import StringIO # Python 3

A Tour of Interactive Computing with IPython

34

 def csv(line, cell):
 sio = StringIO(cell)
 return pd.read_csv(sio)

 def load_ipython_extension(ipython):
 """This function is called when the extension
 is loaded. It accepts an
 IPython InteractiveShell instance.
 We can register the magic with the
 `register_magic_function` method."""
 ipython.register_magic_function(csv, 'cell')
Overwriting csvmagic.py

5. Once the extension module is created, we need to import it into the IPython session.
We can do this with the %load_ext magic command. Here, loading our extension
immediately registers our %%csv magic function in the interactive shell:
In [9]: %load_ext csvmagic
In [10]: %%csv
 col1,col2,col3
 0,1,2
 3,4,5
 7,8,9
Out[10]:
 col1 col2 col3
0 0 1 2
1 3 4 5
2 7 8 9

How it works...
An IPython extension is a Python module that implements the top-level load_ipython_
extension(ipython) function. When the %load_ext magic command is called, the
module is loaded and the load_ipython_extension(ipython) function is called. This
function is passed the current InteractiveShell instance as an argument. This object
implements several methods we can use to interact with the current IPython session.

The InteractiveShell class
An interactive IPython session is represented by a (singleton) instance of the
InteractiveShell class. This object handles the history, interactive namespace,
and most features available in the session.

Within an interactive shell, we can get the current InteractiveShell instance with the
get_ipython() function.

Chapter 1

35

The list of all methods of InteractiveShell can be found in the reference API (see link at
the end of this recipe). The following are the most important attributes and methods:

 f user_ns: The user namespace (a dictionary).

 f push(): Push (or inject) Python variables in the interactive namespace.

 f ev(): Evaluate a Python expression in the user namespace.

 f ex(): Execute a Python statement in the user namespace.

 f run_cell(): Run a cell (given as a string), possibly containing IPython magic
commands.

 f safe_execfile(): Safely execute a Python script.

 f system(): Execute a system command.

 f write(): Write a string to the default output.

 f write_err(): Write a string to the default error output.

 f register_magic_function(): Register a standalone function as an IPython
magic function. We used this method in this recipe.

Loading an extension
The Python extension module needs to be importable when using %load_ext. Here, our
module is in the current directory. In other situations, it has to be in the Python path. It can
also be stored in ~\.ipython\extensions, which is automatically put in the Python path.

To ensure that our magic is automatically defined in our IPython profile, we can instruct
IPython to load our extension automatically when a new interactive shell is launched. To do
this, we have to open the ~/.ipython/profile_default/ipython_config.py file
and put 'csvmagic' in the c.InteractiveShellApp.extensions list. The csvmagic
module needs to be importable. It is common to create a Python package that implements
an IPython extension, which itself defines custom magic commands.

There's more...
Many third-party extensions and magic commands exist, notably cythonmagic,
octavemagic, and rmagic, which all allow us to insert non-Python code in a cell. For
example, with cythonmagic, we can create a Cython function in a cell and import it in the
rest of the notebook.

Here are a few references:

 f Documentation of IPython's extension system available at http://ipython.org/
ipython-doc/dev/config/extensions/

 f Defining new magic commands explained at http://ipython.org/
ipython-doc/dev/interactive/reference.html#defining-magics

www.allitebooks.com

http://www.allitebooks.org

A Tour of Interactive Computing with IPython

36

 f Index of IPython extensions at https://github.com/ipython/ipython/wiki/
Extensions-Index

 f API reference of InteractiveShell available at http://ipython.org/
ipython-doc/dev/api/generated/IPython.core.interactiveshell.html

See also
 f The Mastering IPython's configuration system recipe

Mastering IPython's configuration system
IPython implements a truly powerful configuration system. This system is used throughout
the project, but it can also be used by IPython extensions. It could even be used in entirely
new applications.

In this recipe, we show how to use this system to write a configurable IPython extension. We will
create a simple magic command that displays random numbers. This magic command comes
with configurable parameters that can be set by the user in their IPython configuration file.

How to do it...
1. We create an IPython extension in a random_magics.py file. Let's start by importing

a few objects.

Be sure to put the code in steps 1-5 in an external text file named
random_magics.py, rather than in the notebook's input!

from IPython.utils.traitlets import Int, Float, Unicode, Bool
from IPython.core.magic import (Magics, magics_class, line_magic)
import numpy as np

2. We create a RandomMagics class deriving from Magics. This class contains a few
configurable parameters:
@magics_class
class RandomMagics(Magics):
 text = Unicode(u'{n}', config=True)
 max = Int(1000, config=True)
 seed = Int(0, config=True)

Chapter 1

37

3. We need to call the parent's constructor. Then, we initialize a random number
generator with a seed:
 def __init__(self, shell):
 super(RandomMagics, self).__init__(shell)
 self._rng = np.random.RandomState(self.seed or None)

4. We create a %random line magic that displays a random number:
 @line_magic
 def random(self, line):
 return self.text.format(n=self._rng.randint(self.max))

5. Finally, we register that magic when the extension is loaded:
def load_ipython_extension(ipython):
 ipython.register_magics(RandomMagics)

6. Let's test our extension in the notebook:
In [1]: %load_ext random_magics
In [2]: %random
Out[2]: '635'
In [3]: %random
Out[3]: '47'

7. Our magic command has a few configurable parameters. These variables are meant
to be configured by the user in the IPython configuration file or in the console when
starting IPython. To configure these variables in the terminal, we can type the
following command in a system shell:
ipython --RandomMagics.text='Your number is {n}.' --RandomMagics.
max=10 --RandomMagics.seed=1

In this session, we get the following behavior:

In [1]: %load_ext random_magics
In [2]: %random
Out[2]: u'Your number is 5.'
In [3]: %random
Out[3]: u'Your number is 8.'

8. To configure the variables in the IPython configuration file, we have to open the
~/.ipython/profile_default/ipython_config.py file and add the
following line:
c.RandomMagics.text = 'random {n}'

After launching IPython, we get the following behavior:
In [4]: %random
Out[4]: 'random 652'

A Tour of Interactive Computing with IPython

38

How it works...
IPython's configuration system defines several concepts:

 f A user profile is a set of parameters, logs, and command history, which are specific to a
user. A user can have different profiles when working on different projects. A xxx profile
is stored in ~/.ipython/profile_xxx, where ~ is the user's home directory.

 � On Linux, the path is generally /home/yourname/.ipython/profile_xxx
 � On Windows, the path is generally C:\Users\YourName\.ipython\

profile_xxx

 f A configuration object, or Config, is a special Python dictionary that contains
key-value pairs. The Config class derives from Python's dict.

 f The HasTraits class is a class that can have special trait attributes. Traits
are sophisticated Python attributes that have a specific type and a default value.
Additionally, when a trait's value changes, a callback function is automatically and
transparently called. This mechanism allows a class to be notified whenever a trait
attribute is changed.

 f A Configurable class is the base class of all classes that want to benefit from
the configuration system. A Configurable class can have configurable attributes.
These attributes have default values specified directly in the class definition. The
main feature of Configurable classes is that the default values of the traits can
be overridden by configuration files on a class-by-class basis. Then, instances of
Configurables can change these values at leisure.

 f A configuration file is a Python or JSON file that contains the parameters of
Configurable classes.

The Configurable classes and configuration files support an inheritance model. A
Configurable class can derive from another Configurable class and override its
parameters. Similarly, a configuration file can be included in another file.

Configurables
Here is a simple example of a Configurable class:

from IPython.config.configurable import Configurable
from IPython.utils.traitlets import Float

class MyConfigurable(Configurable):
 myvariable = Float(100.0, config=True)

By default, an instance of the MyConfigurable class will have its myvariable attribute
equal to 100. Now, let's assume that our IPython configuration file contains the following lines:

c = get_config()
c.MyConfigurable.myvariable = 123.

Chapter 1

39

Then, the myvariable attribute will default to 123. Instances are free to change this default
value after they are instantiated.

The get_config() function is a special function that is available in any configuration file.

Additionally, Configurable parameters can be specified in the command-line interface, as
we saw in this recipe.

This configuration system is used by all IPython applications (notably console, qtconsole,
and notebook). These applications have many configurable attributes. You will find the list of
these attributes in your profile's configuration files.

Magics
The Magics class derives from Configurable and can contain configurable attributes.
Moreover, magic commands can be defined by methods decorated by @line_magic or
@cell_magic. The advantage of defining class magics instead of function magics
(as in the previous recipe) is that we can keep a state between multiple magic calls
(because we are using a class instead of a function).

There's more...
Here are a few references:

 f Configuring and customizing IPython at http://ipython.org/ipython-doc/
dev/config/index.html

 f Detailed overview of the configuration system at http://ipython.org/
ipython-doc/dev/development/config.html

 f Defining custom magics available at http://ipython.org/ipython-doc/dev/
interactive/reference.html#defining-magics

 f The traitlets module available at http://ipython.org/ipython-doc/dev/api/
generated/IPython.utils.traitlets.html

See also
 f The Creating an IPython extension with custom magic commands recipe

Creating a simple kernel for IPython
The architecture that has been developed for IPython and that will be the core of Project
Jupyter is becoming increasingly language independent. The decoupling between the client
and kernel makes it possible to write kernels in any language. The client communicates
with the kernel via socket-based messaging protocols. Thus, a kernel can be written in any
language that supports sockets.

A Tour of Interactive Computing with IPython

40

However, the messaging protocols are complex. Writing a new kernel from scratch is not
straightforward. Fortunately, IPython 3.0 brings a lightweight interface for kernel languages
that can be wrapped in Python.

This interface can also be used to create an entirely customized experience in the IPython
notebook (or another client application such as the console). Normally, Python code has to be
written in every code cell; however, we can write a kernel for any domain-specific language.
We just have to write a Python function that accepts a code string as input (the contents
of the code cell), and sends text or rich data as output. We can also easily implement code
completion and code inspection.

We can imagine many interesting interactive applications that go far beyond the original use
cases of IPython. These applications might be particularly useful for nonprogrammer end
users such as high school students.

In this recipe, we will create a simple graphing calculator. The calculator is transparently
backed by NumPy and matplotlib. We just have to write functions as y = f(x) in a code
cell to get a graph of these functions.

Getting ready
This recipe has been tested on the development version of IPython 3.0. It should work on the
final version of IPython 3.0 with no or minimal changes. We give all references about wrapper
kernels and messaging protocols at the end of this recipe.

How to do it...

Warning: This recipe works only on IPython >= 3.0!

1. First, we create a plotkernel.py file. This file will contain the implementation
of our custom kernel. Let's import a few modules:

Be sure to put the code in steps 1-6 in an external text file named
plotkernel.py, rather than in the notebook's input!

from IPython.kernel.zmq.kernelbase import Kernel
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
import urllib, base64

Chapter 1

41

2. We write a function that returns a base64-encoded PNG representation of
a matplotlib figure:
def _to_png(fig):
 """Return a base64-encoded PNG from a
 matplotlib figure."""
 imgdata = BytesIO()
 fig.savefig(imgdata, format='png')
 imgdata.seek(0)
 return urllib.parse.quote(
 base64.b64encode(imgdata.getvalue()))

3. Now, we write a function that parses a code string, which has the form y = f(x),
and returns a NumPy function. Here, f is an arbitrary Python expression that can use
NumPy functions:
_numpy_namespace = {n: getattr(np, n)
 for n in dir(np)}
def _parse_function(code):
 """Return a NumPy function from a string 'y=f(x)'."""
 return lambda x: eval(code.split('=')[1].strip(),
 _numpy_namespace, {'x': x})

4. For our new wrapper kernel, we create a class that derives from Kernel. There are a
few metadata fields we need to provide:
class PlotKernel(Kernel):
 implementation = 'Plot'
 implementation_version = '1.0'
 language = 'python' # will be used for
 # syntax highlighting
 language_version = ''
 banner = "Simple plotting"

5. In this class, we implement a do_execute() method that takes code as input and
sends responses to the client:
def do_execute(self, code, silent,
 store_history=True,
 user_expressions=None,
 allow_stdin=False):

 # We create the plot with matplotlib.
 fig = plt.figure(figsize=(6,4), dpi=100)
 x = np.linspace(-5., 5., 200)
 functions = code.split('\n')
 for fun in functions:
 f = _parse_function(fun)
 y = f(x)
 plt.plot(x, y)
 plt.xlim(-5, 5)

A Tour of Interactive Computing with IPython

42

 # We create a PNG out of this plot.
 png = _to_png(fig)

 if not silent:
 # We send the standard output to the client.
 self.send_response(self.iopub_socket,
 'stream', {
 'name': 'stdout',
 'data': 'Plotting {n} function(s)'. \
 format(n=len(functions))})

 # We prepare the response with our rich data
 # (the plot).
 content = {
 'source': 'kernel',

 # This dictionary may contain different
 # MIME representations of the output.
 'data': {
 'image/png': png
 },

 # We can specify the image size
 # in the metadata field.
 'metadata' : {
 'image/png' : {
 'width': 600,
 'height': 400
 }
 }
 }

 # We send the display_data message with the
 # contents.
 self.send_response(self.iopub_socket,
 'display_data', content)

 # We return the execution results.
 return {'status': 'ok',
 'execution_count': self.execution_count,
 'payload': [],
 'user_expressions': {},
 }

6. Finally, we add the following lines at the end of the file:
if __name__ == '__main__':
 from IPython.kernel.zmq.kernelapp import IPKernelApp
 IPKernelApp.launch_instance(kernel_class=PlotKernel)

Chapter 1

43

7. Our kernel is ready! The next step is to indicate to IPython that this new kernel is
available. To do this, we need to create a kernel spec kernel.json file and put
it in ~/.ipython/kernels/plot/. This file contains the following lines:
{
 "argv": ["python", "-m",
 "plotkernel", "-f",
 "{connection_file}"],
 "display_name": "Plot",
 "language": "python"
}

The plotkernel.py file needs to be importable by Python. For example, we could
simply put it in the current directory.

8. In IPython 3.0, we can launch a notebook with this kernel from the IPython notebook
dashboard. There is a drop-down menu at the top right of the notebook interface that
contains the list of available kernels. Select the Plot kernel to use it.

9. Finally, in a new notebook backed by our custom plot kernel, we can simply write the
mathematical equation, y = f(x). The corresponding graph appears in the output
area. Here is an example:

Example of our custom plot wrapper kernel

How it works...
We will give more details about the architecture of IPython and the notebook in Chapter 3,
Mastering the Notebook. We will just give a summary here. Note that these details might
change in future versions of IPython.

The kernel and client live in different processes. They communicate via messaging protocols
implemented on top of network sockets. Currently, these messages are encoded in JSON, a
structured, text-based document format.

A Tour of Interactive Computing with IPython

44

Our kernel receives code from the client (the notebook, for example). The do_execute()
function is called whenever the user sends a cell's code.

The kernel can send messages back to the client with the self.send_response() method:

 f The first argument is the socket, here, the IOPub socket
 f The second argument is the message type, here, stream, to send back standard

output or a standard error, or display_data to send back rich data
 f The third argument is the contents of the message, represented as a Python dictionary

The data can contain multiple MIME representations: text, HTML, SVG, images, and others. It
is up to the client to handle these data types. In particular, the HTML notebook client knows
how to represent all these types in the browser.

The function returns execution results in a dictionary.

In this toy example, we always return an ok status. In production code, it would be a good
idea to detect errors (syntax errors in the function definitions, for example) and return an error
status instead.

All messaging protocol details can be found at the links given at the end of this recipe.

There's more...
Wrapper kernels can implement optional methods, notably for code completion and code
inspection. For example, to implement code completion, we need to write the following method:

def do_complete(self, code, cursor_pos):
 return {'status': 'ok',
 'cursor_start': ...,
 'cursor_end': ...,
 'matches': [...]}

This method is called whenever the user requests code completion when the cursor is at a
given cursor_pos location in the code cell. In the method's response, the cursor_start
and cursor_end fields represent the interval that code completion should overwrite in the
output. The matches field contains the list of suggestions.

These details might have changed by the time IPython 3.0 is released. You will find all
up-to-date information in the following references:

 f Wrapper kernels, available at http://ipython.org/ipython-doc/dev/
development/wrapperkernels.html

 f Messaging protocols, available at http://ipython.org/ipython-doc/dev/
development/messaging.html

 f KernelBase API reference, available at http://ipython.org/ipython-doc/
dev/api/generated/IPython.kernel.zmq.kernelbase.html

2
Best Practices in

Interactive Computing

In this chapter, we will cover the following topics:

 f Choosing (or not) between Python 2 and Python 3

 f Efficient interactive computing workflows with IPython

 f Learning the basics of the distributed version control system Git

 f A typical workflow with Git branching

 f Ten tips for conducting reproducible interactive computing experiments

 f Writing high-quality Python code

 f Writing unit tests with nose

 f Debugging your code with IPython

Introduction
This is a special chapter about good practices in interactive computing. If the rest of the
book is about the content, then this chapter is about the form. It describes how to work
efficiently and properly with the tools this book is about. We will cover the essentials of the
version control system Git before tackling reproducible computing experiments (notably with
the IPython notebook).

We will also cover more general topics in software development, such as code quality,
debugging, and testing. Attention to these subjects can greatly improve the quality of our end
products (for example, software, research, and publications). We will only scratch the surface
here, but you will find many references to learn more about these important topics.

www.allitebooks.com

http://www.allitebooks.org

Best Practices in Interactive Computing

46

Choosing (or not) between Python 2
and Python 3

In this first recipe, we will briefly cover a transverse and kind of a prosaic subject: Python 2
or Python 3?

Python 3 has been available since 2008, but many Python users are still stuck with Python 2.
By improving many aspects of Python 2, Python 3 has broken compatibility with the previous
branch. Migrating to Python 3 may therefore require a significant investment.

Even if there aren't that many compatibility-breaking changes, a program that works perfectly
fine in Python 2 may not work at all in Python 3. For example, your very first Hello World
Python 2 program doesn't work anymore in Python 3; print "Hello World!" raises a
SyntaxError in Python 3. Indeed, print is now a function rather than a statement. You
should write print("Hello World!"), which also works fine in Python 2.

Whether you start a new project or need to maintain an old Python library, the question of
choosing between Python 2 and Python 3 arises. Here, we give some arguments and pointers
that should let you make an informed decision.

When we refer to Python 2, we especially mean Python 2.6 or Python
2.7, as these last versions of the Python 2.x branch are closer to
Python 3 than Python 2.5 and earlier versions. It is more complicated
to support Python 2.5+ and Python 3.x at the same time.
Similarly, when we refer to Python 3 or Python 3.x, we especially
mean Python 3.3 or above.

How to do it...
First, what are the differences between Python 2 and Python 3?

Main differences in Python 3 compared to Python 2
Here is a partial list of differences:

 f Instead of a statement, print is a function (parentheses are compulsory).

 f Division of integers yields floating-point numbers and not integers.

 f Several built-in functions return iterators or views instead of lists. For example,
range behaves in Python 3 like xrange in Python 2, and the latter no longer
exists in Python 3.

 f Dictionaries do not have the iterkeys(), iteritems(), and itervalues()
methods anymore. You should use the keys(), items(), and values()
functions instead.

Chapter 2

47

 f The following is a quote from the official Python documentation:

"Everything you thought you knew about binary data and Unicode
has changed."

 f String formatting with % is deprecated; use str.format instead.

 f Instead of a statement, exec is a function.

Python 3 brings many other improvements and new features regarding syntax and standard
library content. You will find more details in the references at the end of this recipe.

Now, you have basically two options for your project: stick with a single branch (Python 2 or
Python 3), or maintain compatibility with both branches.

Python 2 or Python 3?
It is natural to have a preference for Python 3; it is the future, whereas Python 2 is the past.
Why bother supporting a deprecated version of Python? Here are a few situations where you
might want to keep compatibility with Python 2:

 f You need to maintain a large project written in Python 2, and it would be too costly to
update it to Python 3 (even if semiautomatic updating tools exist).

 f Your project has dependencies that do not work with Python 3.

Most libraries we will be using in this book support both Python 2 and
Python 3. This book's code is also compatible with both branches.

 f Your end users work on environments that do not support Python 3 well. For example,
they may work in a large institution where deploying a new version of Python on many
servers would be too costly.

In these situations, you may choose to stick with Python 2, with the risk that your code
becomes obsolete in the near future. Otherwise, you could pick Python 3 and its shiny new
features, with the risk of leaving behind Python 2 users. You could also write your code in
Python 2 and make it ready for Python 3. Thus, you can reduce the number of changes that
will be required during a subsequent port to Python 3.

Fortunately, you don't necessarily have to choose between Python 2 and Python 3. There are
ways to support both versions at the same time. Even if this involves slightly more work than
just sticking to a single branch, it can be quite interesting in certain cases. Note, however, that
you may miss many Python 3-only features if you go down this road.

Supporting both Python 2 and Python 3
There are basically two ways to support both branches in your code: use the 2to3 tool, or write
code that just works in both branches.

Best Practices in Interactive Computing

48

Using 2to3
2to3 is a program in the standard library that automatically converts Python 2 code to
Python 3. For example, run 2to3 -w example.py to migrate a single Python 2 module
to Python 3. You can find more information on the 2to3 tool at https://docs.python.
org/2/library/2to3.html.

You can configure your installation script so that 2to3 runs automatically when users install your
package. Python 3 users will get the automatically-converted Python 3 version of your package.

This solution requires your program to be well-covered by a solid testing suite and a continuous
integration system that tests both Python 2 and Python 3 (see the recipes about unit testing
later in this chapter). This is how you can ensure that your code works fine in both versions.

Writing code that works in Python 2 and Python 3
You can also write code that works in Python 2 and Python 3. This solution is simpler if you
start a new project from scratch. A widely-used method is to rely on a lightweight and mature
module called six, developed by Benjamin Petersons. This module is only a single file, so you
can easily distribute it with your package. Wherever you would use a function or feature that is
only supported in one Python branch, you need to use a specific function implemented in six.
This function either wraps or emulates the corresponding functionality, thus it can work in both
branches. You can find more information on six at http://pythonhosted.org/six/.

This method requires you to change some habits. For example, to iterate over all items of a
dictionary in Python 2, you would write the following code:

for k, v in d.iteritems():
 # ...

Now, instead of the preceding code, you write the following code with six:

from six import iteritems
for k, v in iteritems(d):
 # ...

The iteritems() method of dictionaries in Python 2 is replaced by items() in Python 3.
The six module's iteritems function internally calls one method or the other, depending on
the Python version.

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Chapter 2

49

There's more...
As we have seen, there are many options you can choose regarding the Python 2 or Python 3
question. In brief, you should consider the following options:

 f Decide very carefully whether you absolutely need to support Python 2 or not:

 � If so, prepare your code for Python 3 by avoiding Python 2-only syntax or
features. You can use six, 2to3, or similar tools.

 � If not, stick to Python 3.

 f In all cases, make sure your project has a solid testing suite, an excellent code
coverage (approaching 100 percent), and a continuous integration system that tests
your code against all versions of Python that you officially support

Here are several references on the subject:

 f An excellent free book about porting code to Python 3, by Lennart Regebro, available
at http://python3porting.com/

 f Official recommendations on porting code to Python 3, available at https://docs.
python.org/3/howto/pyporting.html

 f Official wiki page about the Python 2/Python 3 question, available at https://
wiki.python.org/moin/Python2orPython3

 f Python 3 questions and answers, by Nick Coghlan, available at http://python-
notes.curiousefficiency.org/en/latest/python3/questions_and_
answers.html

 f What's new in Python 3, available at https://docs.python.org/3.3/
whatsnew/3.0.html

 f Ten awesome features of Python that you can't use because you refuse to upgrade
to Python 3, a presentation by Aaron Meurer, available at http://asmeurer.
github.io/python3-presentation/slides.html

 f Using the __future__ module when writing the compatibility code, available at
https://docs.python.org/2/library/__future__.html

 f Key differences between Python 2 and Python 3, available at https://
sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

See also
 f The Writing high-quality Python code recipe

 f The Writing unit tests with nose recipe

Best Practices in Interactive Computing

50

Efficient interactive computing workflows
with IPython

There are multiple ways of using IPython for interactive computing. Some of them are better in
terms of flexibility, modularity, reusability, and reproducibility. We will review and discuss them
in this recipe.

Any interactive computing workflow is based on the following cycle:

 f Write some code

 f Execute it

 f Interpret the results

 f Repeat

This fundamental loop (also known as Read-Eval-Print Loop or REPL) is particularly useful
when doing exploratory research on data or model simulations, or when building a complex
algorithm step by step. A more classical workflow (the edit-compile-run-debug loop) would
consist of writing a full-blown program, and then performing a complete analysis. This is
generally more tedious. It is more common to build an algorithmic solution iteratively, by doing
small-scale experiments and tweaking the parameters, and this is precisely what interactive
computing is about.

Integrated Development Environments (IDEs), providing comprehensive facilities for
software development (such as a source code editor, compiler, and debugger), are widely
used for classical workflows. However, when it comes to interactive computing, alternatives to
IDEs exist. We will review them here.

How to do it...
Here are a few possible workflows for interactive computing, by increasing order of complexity.
Of course, IPython is at the core of all of these methods.

The IPython terminal
IPython is the de facto standard for interactive computing in Python. The IPython terminal
(the ipython command) offers a command-line interface specifically designed for REPLs. It
is a much more powerful tool than the native Python interpreter (the python command). The
IPython terminal is a convenient tool for quick experiments, simple shell interactions, and to
find help. Forgot the input arguments of NumPy's savetxt function? Just type in numpy.
savetxt? in IPython (you will first need to use import numpy, of course). Some people
even use the IPython terminal as a (sophisticated) calculator!

Chapter 2

51

Yet, the terminal quickly becomes limited when it is used alone. The main issue is that
the terminal is not a code editor, and thus entering more than a few lines of code can be
inconvenient. Fortunately, there are various ways of solving this problem, as detailed in the
following sections.

IPython and text editor
The simplest solution to the not-a-text-editor problem is, perhaps unsurprisingly, to use
IPython along with a text editor. The %run magic command then becomes the central
tool in this workflow:

 f Write some code in your favorite text editor and save it in a myscript.py
Python script file.

 f In IPython, assuming you are in the right directory, type in %run myscript.py.

 f The script is executed. The standard output is displayed in real time in the IPython
terminal along with possible errors. Top-level variables defined in the script are
accessible in the IPython terminal at the end of the script's execution.

 f If code changes are required in the script, repeat the process.

The IPython-text editor workflow can be made yet more efficient with adequate
keyboard shortcuts. You can, for instance, automate your text editor such that,
when pressing F8, the following command is executed in the running IPython
interpreter:
%run <CURRENT_FILE_NAME>

This approach is described here (on Windows, with Notepad++ and
AutoHotKey):
http://cyrille.rossant.net/python-ide-windows/

With a good text editor, this workflow can be quite efficient. As the script is reloaded when you
execute %run, your changes will be taken into account automatically. Things become more
complicated when your script imports other Python modules that you modify, as these won't
be reloaded with %run. You can use a deep reload to solve this problem:

import myscript
from IPython.lib.deepreload import reload as dreload
dreload(myscript)

Modules imported in myscript will then be reloaded. A related IPython magic command is
%autoreload (you first need to execute %load_ext autoreload). This command tries to
automatically reload the modules imported in the interactive namespace, but it is not always
successful. You may need to reload the changed modules explicitly with reload(module)
(in Python 2) or imp.reload(module) (Python 3).

Best Practices in Interactive Computing

52

The IPython notebook
The IPython notebook plays a central role in efficient interactive workflows. It is a well-designed
mix between a code editor and a terminal, bringing the best of both worlds within a
unified environment.

You can start writing all your code in your notebook's cells. You write, execute, and test your
code at the same place, thereby improving your productivity. You can put long comments in
Markdown cells and structure your notebook with Markdown headers.

Once portions of your code become mature enough and do not require further changes, you
can (and should) refactor them into reusable Python components (functions, classes, and
modules). This will clean up your notebooks and facilitate future reuse of your code. Let's
emphasize the fact that it is very important to refactor your code constantly into reusable
components. IPython notebooks are currently not easily reusable by third-party code, and they
are not designed for this. Notebooks are convenient for preliminary analyses and exploratory
research, but they should not preclude you from regularly cleaning and refactoring your code
into Python components.

A major advantage of notebooks is that they give you documents retracing everything you did
with your code. They are extremely useful for reproducible research. Notebooks are saved in
human-readable JSON documents, thus they work relatively well with version control systems
such as Git.

Integrated Development Environments
IDEs are particularly well-adapted for classic software development, but they can also be used
for interactive computing. A good Python IDE combines a powerful text editor (for example,
one that includes features such as syntax highlighting and tab completion), an IPython
terminal, and a debugger within a unified environment.

There are multiple commercial and open-source IDEs for most platforms. Eclipse/PyDev is a
popular (although slightly heavy) open source cross-platform environment. Spyder is another
open source IDE with good integration of IPython and matplotlib. PyCharm is one of many
commercial environments that support IPython.

Microsoft's IDE for Windows, Visual Studio, has an open source plugin named Python Tools
for Visual Studio (PTVS). This tool brings Python support to Visual Studio. PTVS natively
supports IPython. You don't necessarily need a paid version of Visual Studio; you can
download a free package bundling PTVS with Visual Studio.

There's more...
Here are a few links to various IDEs for Python:

 f http://pydev.org for PyDev for Eclipse

 f http://code.google.com/p/spyderlib/ for Spyder, an open source IDE

Chapter 2

53

 f www.jetbrains.com/pycharm/ for PyCharm

 f http://pytools.codeplex.com for PyTools for Microsoft Visual Studio
on Windows

 f http://code.google.com/p/pyscripter/ for PyScripter

 f www.iep-project.org for IEP, the Interactive Editor for Python

See also
 f The Learning the basics of the distributed version control system Git recipe

 f The Debugging your code with IPython recipe

Learning the basics of the distributed
version control system Git

Using a distributed version control system is so natural nowadays that if you are reading this
book, you are probably already using one. However, if you aren't, read this recipe carefully. You
should always use a version control system for your code.

Getting ready
Notable distributed version control systems include Git, Mercurial, and Bazaar. In this
chapter, we chose the popular Git system. You can download the Git program and Git GUI
clients from http://git-scm.com. On Windows, you can also install msysGit (http://
msysgit.github.io) and TortoiseGit (https://code.google.com/p/tortoisegit/).

Distributed systems tend to be more popular than centralized systems
such as SVN or CVS. Distributed systems allow local (offline) changes
and offer more flexible collaboration systems.

Online providers supporting Git include GitHub (https://github.com), Bitbucket
(https://bitbucket.org), Google code (https://code.google.com), Gitorious
(https://gitorious.org), and SourceForge (https://sourceforge.net). At the
time of writing this book, creating an account is free on all these websites. GitHub offers
free unlimited public repositories, while Bitbucket offers free unlimited public and private
repositories. GitHub offers special features and discounts to academics (https://github.
com/edu). Synchronizing your Git repositories on such a website is particularly convenient
when you work on multiple computers.

Best Practices in Interactive Computing

54

You need to install Git (and possibly a GUI) for this recipe (see http://git-scm.com/
downloads). We also suggest that you create an account on one of these websites. GitHub
is a popular choice, notably for its user-friendly web interface and its well-developed social
features. GitHub also provides a very good GUI on Windows (https://windows.github.
com) and Mac OS X (https://mac.github.com). Most Python libraries we will be using
in this book are being developed on GitHub.

How to do it…
We will show two methods to initialize a repository.

Creating a local repository
This method is best when starting to work locally. This can be with using the following steps:

1. The very first thing to do when starting a new project or computing experiment is
create a new folder locally:
$ mkdir myproject

$ cd myproject

2. We initialize a Git repository:
$ git init

3. Let's set our name and e-mail address:
$ git config --global user.name "My Name"

$ git config --global user.email "me@home"

4. We create a new file, and tell Git to track it:
$ touch __init__.py

$ git add __init__.py

5. Finally, let's create our first commit:

$ git commit -m "Initial commit."

Cloning a remote repository
This method is best when the repository is to be synchronized with an online provider such as
GitHub. Let's perform the following steps:

1. We create a new repository on the web interface of our online provider.

2. On the main webpage of the newly created project, we click on the Clone button with
the repository URL and we type in a terminal:
$ git clone /path/to/myproject.git

Chapter 2

55

3. We set our name and e-mail address:
$ git config --global user.name "My Name"

$ git config --global user.email "me@home"

4. Let's create a new file and tell Git to track it:
$ touch __init__.py

$ git add __init__.py

5. We create our first commit:
$ git commit -m "Initial commit."

6. We push our local changes to the remote server:

$ git push origin

When we have a local repository (created with the first method), we can synchronize it with a
remote server using a git remote add command.

How it works…
When you start a new project or a new computing experiment, create a new folder on your
computer. You will eventually add code, text files, datasets, and other resources in this folder.
The distributed version control system keeps track of the changes you make to your files as
your project evolves. It is more than a simple backup, as every change you make on any file
can be saved along with the corresponding timestamp. You can even revert to a previous state
at any time; never be afraid of breaking your code anymore!

Specifically, you can take a snapshot of your project at any time by doing a commit. The
snapshot includes all staged (or tracked) files. You are in total control of which files and
changes will be tracked. With Git, you specify a file as staged for your next commit with git
add, before committing your changes with git commit. The git commit -a command
allows you to commit all changes in the files that are already being tracked.

When committing, you need to provide a message describing the changes you made. This
makes the repository's history considerably more informative.

How often should you commit?
The answer is very often. Git only takes responsibility of your work when
you commit changes. What happens between two commits may be
lost, so you'd better commit very regularly. Besides, commits are quick
and cheap as they are local; that is, they do not involve any remote
communication with an external server.

www.allitebooks.com

http://www.allitebooks.org

Best Practices in Interactive Computing

56

Git is a distributed version control system; your local repository does not need to synchronize
with an external server. However, you should synchronize if you need to work on several
computers, or if you prefer to have a remote backup. Synchronization with a remote repository
can be done with git push (send your local commits on the remote server), git fetch
(download remote branches and objects), or git pull (synchronize the remote changes on
your local repository).

There's more…
The simplistic workflow shown in this recipe is linear. In practice though, workflows with Git
are typically nonlinear; this is the concept of branching. We will describe this idea in the next
recipe, A typical workflow with Git branching.

Here are some excellent references on Git:

 f Hands-on tutorial, available at https://try.github.io

 f Git Guided Tour, at http://gitimmersion.com

 f Atlassian Git tutorial, available at www.atlassian.com/git

 f Online course, available at www.codeschool.com/courses/try-git

 f Git tutorial by Lars Vogel, available at www.vogella.com/tutorials/Git/
article.html

 f GitHub Git tutorial, available at http://git-lectures.github.io

 f Git tutorial for scientists, available at http://nyuccl.org/pages/
GitTutorial/

 f GitHub help, available at https://help.github.com

 f Pro Git by Scott Chacon, available at http://git-scm.com

See also
 f The A typical workflow with Git branching recipe

A typical workflow with Git branching
A distributed version control system such as Git is designed for complex and nonlinear
workflows typical in interactive computing and exploratory research. A central concept is
branching, which we will discuss in this recipe.

Getting ready
You need to work in a local Git repository for this recipe (see the previous recipe, Learning the
basics of the distributed version control system Git).

Chapter 2

57

How to do it…
1. We create a new branch named newidea:

$ git branch newidea

2. We switch to this branch:
$ git checkout newidea

3. We make changes to the code, for instance, by creating a new file:
$ touch newfile.py

4. We add this file and commit our changes:
$ git add newfile.py

$ git commit -m "Testing new idea."

5. If we are happy with the changes, we merge the branch to the master branch
(the default):

$ git checkout master

$ git merge newidea

Otherwise, we delete the branch:

$ git checkout master

$ git branch -d newidea

Other commands of interest include:

 f git status: Find the current status of the repository

 f git log: Show the commit logs

 f git branch: Show the existing branches and highlight the current one

 f git diff: Show the differences between commits or branches

Stashing
It may happen that while we are halfway through some work, we need to make some other
change in another commit or another branch. We could commit our half-done work, but this
is not ideal. A better idea is to stash our working copy in a secured location so that we can
recover all of our uncommitted changes later. Here is how it works:

1. We save our uncommitted changes with the following command:
$ git stash

Best Practices in Interactive Computing

58

2. We can do anything we want with the repository: checkout a branch, commit changes,
pull or push from a remote repository, and so on.

3. When we want to recover our uncommitted changes, we type the following command:
$ git stash pop

We can have several stashed states in the repository. More information about stashing can be
found with git stash --help.

How it works…
Let's imagine that in order to test a new idea, you need to make non-trivial changes to your
code in multiple files. You create a new branch, test your idea, and end up with a modified
version of your code. If this idea was a dead end, you switch back to the original branch of
your code. However, if you are happy with the changes, you merge it into the main branch.

The strength of this workflow is that the main branch can evolve independently from the
branch with the new idea. This is particularly useful when multiple collaborators are working
on the same repository. However, it is also a good habit to have, especially when there is a
single contributor.

Merging is not always a trivial operation, as it can involve two divergent branches with
potential conflicts. Git tries to resolve conflicts automatically, but it is not always successful.
In this case, you need to resolve the conflicts manually.

An alternative to merging is rebasing, which is useful when the main branch has changed
while you were working on your branch. Rebasing your branch on the main branch allows
you to move your branching point to a more recent point. This process may require you to
resolve conflicts.

Git branches are lightweight objects. Creating and manipulating them is cheap. They are
meant to be used frequently. It is important to perfectly grasp all related notions and git
commands (notably checkout, merge, and rebase). The previous recipe contains many
excellent references.

There's more…
Many people have thought about effective workflows. For example, a common but complex
workflow, called git-flow, is described at http://nvie.com/posts/a-successful-git-
branching-model/. However, it may be preferable to use a simpler workflow in small and
mid-size projects, such as the one described at http://scottchacon.com/2011/08/31/
github-flow.html. The latter workflow elaborates on the simplistic example shown in
this recipe.

Chapter 2

59

A related notion to branching is forking. There can be multiple copies of the same repository
on different servers. Imagine that you want to contribute to IPython's code stored on GitHub.
You probably don't have the permission to modify their repository, but you can make a copy
into your personal account—this is called forking. In this copy, you can create a branch and
propose a new feature or a bug fix. Then, you can propose the IPython developers to merge
your branch into their master branch with a pull request. They can review your changes,
propose suggestions, and eventually merge your work (or not). GitHub is built around this
idea and thereby offers a clean, modern way to collaborate on open source projects.

Performing code reviews before merging pull requests leads to higher code quality in a
collaborative project. When at least two people review any piece of code, the probability
of merging bad or wrong code is reduced.

There is, of course, much more to say about Git. Version control systems are complex
and quite powerful in general, and Git is no exception. Mastering Git requires time and
experimentation. The previous recipe contains many excellent references.

Here are a few further references about branches and workflows:

 f Git workflows available at www.atlassian.com/git/workflows

 f Learn Git branching at http://pcottle.github.io/learnGitBranching/

 f The Git workflow recommended on the NumPy project (and others), described
at http://docs.scipy.org/doc/numpy/dev/gitwash/development_
workflow.html

 f A post on the IPython mailing list about an efficient Git workflow, by Fernando Perez,
available at http://mail.scipy.org/pipermail/ipython-dev/2010-
October/006746.html

See also
 f The Learning the basics of the distributed version control system Git recipe

Ten tips for conducting reproducible
interactive computing experiments

In this recipe, we present ten tips that can help you conduct efficient and reproducible
interactive computing experiments. These are more guidelines than absolute rules.

First, we will show how you can improve your productivity by minimizing the time spent doing
repetitive tasks and maximizing the time spent thinking about your core work.

Best Practices in Interactive Computing

60

Second, we will demonstrate how you can achieve more reproducibility in your computing
work. Notably, academic research requires experiments to be reproducible so that any
result or conclusion can be verified independently by other researchers. It is not uncommon
for errors or manipulations in methods to result in erroneous conclusions that can have
damaging consequences. For example, in the 2010 research paper in economics Growth in
a Time of Debt, by Carmen Reinhart and Kenneth Rogoff, computational errors were partly
responsible for a flawed study with global ramifications for policy makers (see http://
en.wikipedia.org/wiki/Growth_in_a_Time_of_Debt).

How to do it…
1. Organize your directory structure carefully and coherently. The specific structure

does not matter. What matters is to be consistent throughout your projects regarding
file-naming conventions, folders, subfolders, and so on. Here is a simple example:

 � my_project/

 � data/

 � code/

 � common.py

 � idea1.ipynb

 � idea2.ipynb

 � figures/

 � notes/

 � README.md

2. Write notes in text files using a lightweight markup language such as Markdown
(http://daringfireball.net/projects/markdown/) or reStructuredText
(reST). All meta-information related to your project, files, data sets, code, figures, lab
notebooks, and so on, should be written down in text files.

3. Relatedly, document everything non-trivial in your code with comments, docstrings,
and so on. You can use a documentation tool such as Sphinx (http://sphinx-
doc.org). However, do not spend too much time documenting unstable and
bleeding-edge code while you are working on it; it might change frequently and your
documentation may soon be out of date. Write your code in such a way that it's
easily understandable without comments (name your variables and functions well,
use Pythonic patterns, and so on). See also the next recipe, Write high-quality
Python code.

Chapter 2

61

4. Use a distributed version control system such as Git for all text-based files, but not
binary files (except maybe for very small ones when you really need to). You should
use one repository per project. Synchronize the repositories on a remote server, using
a free or paid hosting provider (such as GitHub or Bitbucket) or your own server (your
host institution might be able to set up one for you). Use a specific system to store
and share binary data files, such as figshare.com or datadryad.org.

5. Write all your interactive computing code in IPython notebooks first and refactor it into
standalone Python components only when it is sufficiently mature and stable.

6. For full reproducibility, make sure that you record the exact versions of all components
in your entire software stack (operating system, Python distribution, modules, and so
on). A possibility is to use virtual environments with virtualenv or conda.

7. Cache long-to-compute intermediary results using Python's native pickle module, dill
(https://pypi.python.org/pypi/dill), or Joblib (http://pythonhosted.
org/joblib/). Joblib notably implements a NumPy-aware memoize pattern (not to
be confused with memorize), which allows you to cache the results of computationally
intensive functions. See also the ipycache IPython extension (https://github.
com/rossant/ipycache); it implements a %%cache cell magic in the notebook.

Saving persistent data in Python

For purely internal purposes, you can use Joblib, NumPy's save and savez
functions for arrays, and pickle for any other Python object (prefer native
types such as lists and dictionaries rather than custom classes). For sharing
purposes, prefer text files for small datasets (less than 10k points), for
example, CSV for arrays, and JSON or YAML for highly structured data. For
larger datasets, you can use HDF5 (see the Manipulating large arrays with
HDF5 and PyTables and Manipulating large heterogeneous tables with HDF5
and PyTables recipes of Chapter 4, Profiling and Optimization).

8. When developing and trying out algorithms on large data sets, run them and compare
them on small portions of your data first, before moving to the full sets.

9. When running jobs in a batch, use parallel computing to take advantage of your
multicore processing units, for example, with IPython.parallel, Joblib, Python's
multiprocessing package, or any other parallel computing library.

10. Automate your work as much as possible with Python functions or scripts. Use
command-line arguments for user-exposed scripts, but prefer Python functions over
scripts when possible. On Unix systems, learn terminal commands to improve your
productivity. For repetitive tasks on Windows or GUI-based systems, use automation
tools such as AutoIt (www.autoitscript.com/site/autoit/) or AutoHotKey
(www.autohotkey.com). Learn keyboard shortcuts in the programs you use a lot, or
create your own shortcuts.

Best Practices in Interactive Computing

62

For example, you can create a keyboard shortcut to launch an IPython
notebook server in the current directory. The following link contains an
AutoHotKey script, which does this in Windows Explorer:
http://cyrille.rossant.net/start-an-ipython-notebook-
server-in-windows-explorer/

How it works…
The tips given in this recipe ultimately aim to optimize your workflows, in terms of human
time, computer time, and quality. Using coherent conventions and structure for your code
makes it easier for you to organize your work. Documenting everything saves everyone's
time, including (eventually) yours! Should you be hit by a bus tomorrow, which I really hope
you are not, you should ensure that your substitute can take over quickly, thanks to your
conscientiously-written documentation. (You can find more information about the bus factor
at http://en.wikipedia.org/wiki/Bus_factor.)

Using a distributed version control system with an online hosting service makes it easy for
you to work on the same code base from multiple locations, without ever worrying
about backups. As you can go back in time in your code, you have very little chance of
unintentionally breaking it.

The IPython notebook is an excellent tool for reproducible interactive computing. It lets you
keep a detailed record of your work. Also, the IPython notebook's ease of use means that you
don't have to worry about reproducibility; just do all of your interactive work in notebooks,
put them under version control, and commit regularly. Don't forget to refactor your code into
independent reusable components.

Be sure to optimize the time you spend in front of your computer. When working on an
algorithm, this cycle frequently happens: you do a slight modification, you launch the code,
get the results, make another change, and so on and so forth. If you need to try out a lot
of changes, you should ensure that the execution time is fast enough (no more than a few
seconds). Using advanced optimization techniques is not necessarily the best option at this
stage of experimentation. You should cache your results, try out your algorithms on data
subsets, and run your simulations with shorter durations. You can also launch batch jobs in
parallel when you want to test different parameter values.

Finally, desperately try to avoid doing repetitive tasks. It is worth spending time automating
such tasks when they occur frequently in your day-to-day work. It is more difficult to automate
tasks that involve GUIs, but it is feasible thanks to free tools such as AutoIt or AutoHotKey.

Chapter 2

63

There's more...
Here are a few references about reproducibility in computing:

 f An efficient workflow for reproducible science, a talk by Trevor Bekolay, available at
http://bekolay.org/scipy2013-workflow/.

 f Ten Simple Rules for Reproducible Computational Research, Sandve et al., PLoS
Computational Biology, 2013, available at http://dx.doi.org/10.1371/
journal.pcbi.1003285.

 f Konrad Hinsen's blog at http://khinsen.wordpress.com.

 f Software Carpentry, a volunteer organization running workshops for scientists; the
workshops cover scientific programming, interactive computing, version control,
testing, reproducibility, and task automation. You can find more information at
http://software-carpentry.org.

See also
 f The Efficient interactive computing workflows with IPython recipe

 f The Writing high-quality Python code recipe

Writing high-quality Python code
Writing code is easy. Writing high-quality code is much harder. Quality is to be understood both
in terms of actual code (variable names, comments, docstrings, and so on) and architecture
(functions, modules, and classes). In general, coming up with a well-designed code
architecture is much more challenging than the implementation itself.

In this recipe, we will give a few tips about how to write high-quality code. This is a particularly
important topic in academia, as more and more scientists without prior experience in software
development need to program.

The references given at the end of this recipe contain much more details than what we could
mention here.

How to do it...
1. Take the time to learn the Python language seriously. Review the list of all modules in

the standard library—you may discover that functions you implemented already exist.
Learn to write Pythonic code, and do not translate programming idioms from other
languages such as Java or C++ to Python.

Best Practices in Interactive Computing

64

2. Learn common design patterns; these are general reusable solutions to commonly
occurring problems in software engineering.

3. Use assertions throughout your code (the assert keyword) to prevent future bugs
(defensive programming).

4. Start writing your code with a bottom-up approach; write independent Python
functions that implement focused tasks.

5. Do not hesitate to refactor your code regularly. If your code is becoming too
complicated, think about how you can simplify it.

6. Avoid classes when you can. If you can use a function instead of a class, choose
the function. A class is only useful when you need to store persistent state between
function calls. Make your functions as pure as possible (no side effects).

7. In general, prefer Python native types (lists, tuples, dictionaries, and types from
Python's collections module) over custom types (classes). Native types lead to more
efficient, readable, and portable code.

8. Choose keyword arguments over positional arguments in your functions. Argument
names are easier to remember than argument ordering. They make your functions
self-documenting.

9. Name your variables carefully. Names of functions and methods should start with a
verb. A variable name should describe what it is. A function name should describe
what it does. The importance of naming things well cannot be overstated.

10. Every function should have a docstring describing its purpose, arguments, and return
values, as shown in the following example. You can also look at the conventions
chosen in popular libraries such as NumPy. The important thing is to be consistent
within your code. You can use a markup language such as Markdown or reST:
def power(x, n):
 """Compute the power of a number.

 Arguments:
 * x: a number.
 * n: the exponent.

 Returns:
 * c: the number x to the power of n.

 """
 return x ** n

Chapter 2

65

11. Follow (at least partly) Guido van Rossum's Style Guide for Python, also known as
Python Enhancement Proposal number 8 (PEP8), available at www.python.org/
dev/peps/pep-0008/. It is a long read, but it will help you write well-readable
Python code. It covers many little things such as spacing between operators,
naming conventions, comments, and docstrings. For instance, you will learn that it
is considered a good practice to limit any line of your code to 79 characters (or 99
exceptionally if that improves readability). This way, your code can be correctly displayed
in most situations (such as in a command-line interface or on a mobile device) or side
by side with another file. Alternatively, you can decide to ignore certain rules. In general,
following common guidelines is beneficial on projects involving many developers.

12. You can check your code automatically against most of the style conventions in PEP8
with the pep8 Python package. Install it with pip install pep8 and execute it
with pep8 myscript.py.

13. Use a tool for static code analysis such as Pylint (www.pylint.org). It lets you find
potential errors or low-quality code statically, that is, without running your code.

14. Use blank lines to avoid cluttering your code (see PEP8). You can also demarcate
sections in a long Python module with salient comments like this:
Imports

import numpy

Utility functions

def fun():
 pass

15. A Python module should not contain more than a few hundreds lines of code.
Having too many lines of code in a module may be a sign that you need to split it
into several modules.

16. Organize important projects (with tens of modules) into subpackages, for example:

 � core/

 � io/

 � utils/

 � __init__.py

17. Take a look at how major Python projects are organized. For example, IPython's code
is well-organized into a hierarchy of subpackages with focused roles. Reading the
code itself is also quite instructive.

Best Practices in Interactive Computing

66

18. Learn best practices to create and distribute a new Python package. Make sure that
you know setuptools, pip, wheels, virtualenv, PyPI, and so on. Also, you are highly
encouraged to take a serious look at conda (http://conda.pydata.org), a
powerful and generic packaging system created by Continuum Analytics. Packaging
is a chaotic and rapidly evolving topic in Python, so read only the most recent
references. There are a few references in the There's more… section.

How it works...
Writing readable code means that other people (or you in a few months or years) will
understand it quicker and will be more willing to use it. It also facilitates bug tracking.

Modular code is also easier to understand and to reuse. Implementing your program's
functionality in independent functions that are organized as a hierarchy of packages and
modules is an excellent way of achieving high code quality.

It is easier to keep your code loosely coupled when you use functions instead of classes.
Spaghetti code is really hard to understand, debug, and reuse.

Iterate between bottom-up and top-down approaches while working on a new project. Starting
with a bottom-up approach lets you gain experience with the code before you start thinking
about the overall architecture of your program. Still, make sure you know where you're going
by thinking about how your components will work together.

There's more...
Much has been written on how to write beautiful code—see the following references. You can
find many books on the subject. In the next recipe, we will cover standard techniques to make
sure that our code not only looks nice but also works as expected: unit testing, code coverage,
and continuous integration.

Here are a few references:

 f Python Cookbook, by David Beazley and Brian K. Jones, with many Python 3 advanced
recipes, available at http://shop.oreilly.com/product/0636920027072.do

 f The Hitchhiker's Guide to Python!, available at http://docs.python-guide.
org/en/latest/

 f Design patterns on Wikipedia, available at http://en.wikipedia.org/wiki/
Software_design_pattern

 f Design patterns in Python, described at https://github.com/faif/python-
patterns

 f Coding standards of Tahoe-LAFS, available at https://tahoe-lafs.org/trac/
tahoe-lafs/wiki/CodingStandards

Chapter 2

67

 f How to be a great software developer, by Peter Nixey, available at http://
peternixey.com/post/83510597580/how-to-be-a-great-software-
developer

 f Why you should write buggy software with as few features as possible, a talk by Brian
Granger, available at www.youtube.com/watch?v=OrpPDkZef5I

 f The Hitchhiker's Guide to Packaging, available at http://guide.python-
distribute.org

 f Python Packaging User Guide, available at http://python-packaging-user-
guide.readthedocs.org

See also
 f The Ten tips for conducting reproducible interactive computing experiments recipe

 f The Writing unit tests with nose recipe

Writing unit tests with nose
Manual testing is essential to ensuring that our software works as expected and does not
contain critical bugs. However, manual testing is severely limited because bugs may be
introduced every time a change is made in the code. We can't possibly expect to manually
test our entire program at every commit.

Nowadays, automated testing is a standard practice in software engineering. In this recipe, we
will briefly cover important aspects of automated testing: unit tests, test-driven development,
test coverage, and continuous integration. Following these practices is absolutely necessary in
order to produce high-quality software.

Getting ready
Python has a native unit-testing module that you can readily use (unittest). Other third-
party unit testing packages exist, such as py.test or nose, which we have chosen here. nose
makes it a bit easier to write a test suite, and it has a library of external plugins. Your users
don't need that extra dependency unless they want to run the test suite themselves. You can
install nose with pip install nose.

How to do it...
In this example, we will write a unit test for a function that downloads a file from a URL. A
testing suite should run and successfully pass even in the absence of a network connection.
We take care of that by fooling Python's urllib module with a mock HTTP server.

Best Practices in Interactive Computing

68

The code snippets used in this recipe have been written for Python
3. A few changes are required to make them work with Python 2, and
we have indicated these changes in the code. The versions for Python
2 and Python 3 are both available on the book's website.

You may also be interested in the requests module; it provides
a much simpler API for HTTP requests (http://docs.python-
requests.org/en/latest/).

1. We create a file named datautils.py with the following code:
In [1]: %%writefile datautils.py
Version 1.
import os
from urllib.request import urlopen # Python 2: use urllib2

def download(url):
 """Download a file and save it in the current folder.
 Return the name of the downloaded file."""
 # Get the filename.
 file = os.path.basename(url)
 # Download the file unless it already exists.
 if not os.path.exists(file):
 with open(file, 'w') as f:
 f.write(urlopen(url).read())
 return file
Writing datautils.py

2. We create a file named test_datautils.py with the following code:
In [2]: %%writefile test_datautils.py
Python 2: use urllib2
from urllib.request import (HTTPHandler, install_opener,
 build_opener, addinfourl)
import os
import shutil
import tempfile
from io import StringIO # Python 2: use StringIO
from datautils import download

TEST_FOLDER = tempfile.mkdtemp()
ORIGINAL_FOLDER = os.getcwd()

class TestHTTPHandler(HTTPHandler):

Chapter 2

69

 """Mock HTTP handler."""
 def http_open(self, req):
 resp = addinfourl(StringIO('test'), '',
 req.get_full_url(), 200)
 resp.msg = 'OK'
 return resp

def setup():
 """Install the mock HTTP handler for unit tests."""
 install_opener(build_opener(TestHTTPHandler))
 os.chdir(TEST_FOLDER)

def teardown():
 """Restore the normal HTTP handler."""
 install_opener(build_opener(HTTPHandler))
 # Go back to the original folder.
 os.chdir(ORIGINAL_FOLDER)
 # Delete the test folder.
 shutil.rmtree(TEST_FOLDER)

def test_download1():
 file = download("http://example.com/file.txt")
 # Check that the file has been downloaded.
 assert os.path.exists(file)
 # Check that the file contains the contents of
 # the remote file.
 with open(file, 'r') as f:
 contents = f.read()
 print(contents)
 assert contents == 'test'
Writing test_datautils.py

3. Now, to launch the tests, we execute the following command in a terminal:
$ nosetests

.

Ran 1 test in 0.042s

OK

4. Our first unit test passes! Now, let's add a new test. We add some code at the end of
test_datautils.py:
In [4]: %%writefile test_datautils.py -a

 def test_download2():

Best Practices in Interactive Computing

70

 file = download("http://example.com/")
 assert os.path.exists(file)
Appending to test_datautils.py

5. We launch the tests again with the nosetests command:
$ nosetests

.E

ERROR: test_datautils.test_download2

Traceback (most recent call last):

 File "datautils.py", line 12, in download

 with open(file, 'wb') as f:

IOError: [Errno 22] invalid mode ('wb') or filename: ''

Ran 2 tests in 0.032s

FAILED (errors=1)

6. The second test fails. In a real-world scenario, we might need to debug the program.
This should be easy because the bug is isolated in a single test function. Here, by
inspecting the traceback error and the code, we find that the bug results from the
requested URL not ending with a proper file name. Thus, the inferred file name,
os.path.basename(url), is empty. Let's fix this by replacing the download
function in datautils.py with the following function:
In [6]: %%file datautils.py
Version 2.
import os
from urllib.request import urlopen # Python 2: use urllib2

def download(url):
 """Download a file and save it in the current folder.
 Return the name of the downloaded file."""
 # Get the filename.
 file = os.path.basename(url)
 # Fix the bug, by specifying a fixed filename if the
 # URL does not contain one.
 if not file:
 file = 'downloaded'
 # Download the file unless it already exists.
 if not os.path.exists(file):
 with open(file, 'w') as f:
 f.write(urlopen(url).read())
 return file
Overwriting datautils.py

Chapter 2

71

7. Finally, let's run the tests again:

$ nosetests

..

Ran 2 tests in 0.036s

OK

By default, nosetests hides the standard output (unless
errors occur). If you want the standard output to show up,
use nosetests --nocapture.

How it works...
A test_xxx.py module should accompany every Python module named xxx.py. This
testing module contains functions (unit tests) that execute and test functionality implemented
in the xxx.py module.

By definition, a given unit test must focus on one very specific functionality. All unit tests
should be completely independent. Writing a program as a collection of well-tested, mostly
decoupled units forces you to write modular code that is more easily maintainable.

However, sometimes your module's functions require preliminary work to run (for example,
setting up the environment, creating data files, or setting up a web server). The unit testing
framework can handle this; just write setup() and teardown() functions (called fixtures),
and they will be called at the beginning and at the end of the test module, respectively. Note
that the state of the system environment should be exactly the same before and after a testing
module runs (for example, temporarily created files should be deleted in teardown).

Here, the datautils.py module contains a single function, download, that accepts a
URL as an argument, downloads the file, and saves it locally. This module comes with a
testing module named test_datautils.py. You should choose the same convention in
your program (test_<modulename> for the testing module of modulename). This testing
module contains one or several functions prefixed with test_. This is how nose automatically
discovers the unit tests across your project. nose also accepts other similar conventions.

nose runs all tests it can find in your project, but you can, of course, have
more fine-grained control over the tests to run. Type nosetests --help
to get the list of all options. You can also check out the documentation at
http://nose.readthedocs.org/en/latest/testing.html.

Best Practices in Interactive Computing

72

The testing module also contains the setup and teardown functions, which are
automatically detected as fixtures by nose. A custom HTTP handler object is created within the
setup function. This object captures all HTTP requests, even those with fictional URLs. The
setup function then moves into a test folder (created with the tempfile module) to avoid
potential conflicts between downloaded files and existing files. In general, unit tests should
not leave any trace; this is how we ensure that they are fully reproducible. Likewise,
the teardown function deletes the test folder.

In Python 3.2 and higher versions, you can also use
tempfile.TemporaryDirectory to create a
temporary directory.

The first unit test downloads a file from a mock URL and checks whether it contains the
expected contents. By default, a unit test passes if it does not raise an exception. This is
where assert statements, which raise exceptions if the statement is False, are useful. nose
also comes with convenient routines and decorators for precisely determining the conditions
under which a particular unit test is expected to pass or fail (for example, it should raise a
particular exception to pass, or it should run in less than X seconds, and so on).

Further convenient assert-like functions are provided by NumPy (see
http://docs.scipy.org/doc/numpy/reference/routines.
testing.html). They are especially useful when working with arrays. For
example, np.testing.assert_allclose(x, y) asserts that the x
and y arrays are almost equal, up to a given precision that can be specified.

Writing a full testing suite takes time. It imposes strong (but good) constraints on your code's
architecture. It's a real investment, but it is always profitable in the long run. Also, knowing
that your project is backed by a full testing suite is a real load off your mind.

First, thinking about unit tests from the beginning forces you to think about a modular
architecture. It is really difficult to write unit tests for a monolithic program full of
interdependencies.

Second, unit tests make it easier for you to find and fix bugs. If a unit test fails after
introducing a change in the program, isolating and reproducing the bugs becomes trivial.

Third, unit tests help you avoid regressions, that is, fixed bugs that silently reappear in a later
version. When you discover a new bug, you should write a specific failing unit test for it. To
fix it, make this test pass. Now, if the bug reappears later, this unit test will fail and you will
immediately be able to address it.

Let's say that you write a complex program in several layers, with an n+1 layer based on an n
layer. Having a battery of successful unit tests for the n layer makes you confident that it works
as expected. When working on the n+1 layer, you can focus on this layer instead of constantly
worrying whether the layer below works or not.

Chapter 2

73

Unit testing is not the whole story, as it just concerns independent components. Further
levels of testing are required in order to ensure good integration of the components within
the program.

There's more...
Unit testing is a wide topic, and we only scratched the surface in this recipe. We give some
further information here.

Test coverage
Using unit tests is good. However, measuring test coverage is even better: it quantifies how
much of our code is being covered by your testing suite. Ned Batchelder's coverage module
(http://nedbatchelder.com/code/coverage/) does precisely this. It integrates very
well with nose.

First, install coverage with pip install coverage. Then run your testing suite with the
following command:

$ nosetests --with-cov --cover-package datautils

This command instructs nose to launch your testing suite with coverage measurement for the
datautils package only.

The coveralls.io service brings test-coverage features to a continuous integration server
(refer to the Unit testing and continuous integration section). It works seamlessly with GitHub.

Workflows with unit testing
Note the particular workflow we have used in this example. After writing our download
function, we created a first unit test that passed. Then we created a second test that failed.
We investigated the issue and fixed the function. The second test passed. We could continue
writing more and more complex unit tests, until we are confident that the function works as
expected in most situations.

Run nosetests --pdb to drop into the Python debugger on failures.
This is quite convenient to find out quickly why a unit test fails.

This is test-driven development, which consists of writing unit tests before writing the actual
code. This workflow forces us to think about what our code does and how one uses it, instead
of how it is implemented.

Best Practices in Interactive Computing

74

Unit testing and continuous integration
A good habit to get into is running the full testing suite of our project at every commit. In fact,
it is even possible to do this completely transparently and automatically through continuous
integration. We can set up a server that automatically runs our testing suite in the cloud at
every commit. If a test fails, we get an automatic e-mail telling us what the problem is so that
we can fix it.

There are many continuous integration systems and services: Jenkins/Hudson, https://
drone.io, http://stridercd.com, https://travis-ci.org, and many others.
Some of them play well with GitHub projects. For example, to use Travis CI with a GitHub
project, create an account on Travis CI, link your GitHub project to this account, and then add
a .travis.yml file with various settings in your repository (see the additional details in the
following references).

In conclusion, unit testing, code coverage, and continuous integration are standard practices
that should be used for all significant projects.

Here are a few references:

 f Test-driven development, available at http://en.wikipedia.org/wiki/Test-
driven_development

 f Untested code is broken code: test automation in enterprise software delivery, by
Martin Aspeli, available at www.deloittedigital.com/eu/blog/untested-
code-is-broken-code-test-automation-in-enterprise-software-
deliver

 f Documentation of Travis CI in Python, at http://about.travis-ci.org/docs/
user/languages/python/

Debugging your code with IPython
Debugging is an integral part of software development and interactive computing. A
widespread debugging technique consists of placing print statements in various places in
the code. Who hasn't done this? It is probably the simplest solution, but it is certainly not the
most efficient (it's the poor man's debugger).

IPython is perfectly adapted for debugging, and the integrated debugger is quite easy to
use (actually, IPython merely offers a nice interface to the native Python debugger pdb). In
particular, tab completion works in the IPython debugger. This recipe describes how to debug
code with IPython.

Chapter 2

75

Earlier versions of the IPython notebook did not support the debugger,
that is, the debugger could be used in the IPython terminal and Qt
console, but not in the notebook. This issue was fixed in IPython 1.0.

How to do it...
There are two not-mutually exclusive ways of debugging code in Python. In the post-mortem
mode, the debugger steps into the code as soon as an exception is raised so that we
can investigate what caused it. In the step-by-step mode, we can stop the interpreter at a
breakpoint and resume its execution step by step. This process allows us to check carefully
the state of our variables as our code is executed.

Both methods can actually be used simultaneously; we can do step-by-step debugging in the
post-mortem mode.

The post-mortem mode
When an exception is raised within IPython, execute the %debug magic command to launch
the debugger and step into the code. Also, the %pdb on command tells IPython to launch the
debugger automatically as soon as an exception is raised.

Once you are in the debugger, you have access to several special commands, the most
important ones being listed here:

 f p varname prints the value of a variable

 f w shows your current location within the stack

 f u goes up in the stack

 f d goes down in the stack

 f l shows the lines of code around your current location

 f a shows the arguments of the current function

The call stack contains the list of all active functions at a given location in the code's
execution. You can easily navigate up and down the stack to inspect the values of the function
arguments. Although quite simple to use, this mode should let you resolve most of your bugs.
For more complex problems, you may need to do step-by-step debugging.

Step-by-step debugging
You have several options to start the step-by-step debugging mode. First, in order to put a
breakpoint somewhere in your code, insert the following commands:

import pdb; pdb.set_trace()

Best Practices in Interactive Computing

76

Second, you can run a script from IPython with the following command:

%run -d -b extscript.py:20 script

This command runs the script.py file under the control of the debugger with a breakpoint
on line 20 in extscript.py (which is imported at some point by script.py). Finally, you
can do step-by-step debugging as soon as you are in the debugger.

Step-by-step debugging consists of precisely controlling the course of the interpreter. Starting
from the beginning of a script or from a breakpoint, you can resume the execution of the
interpreter with the following commands:

 f s executes the current line and stops as soon as possible afterwards
(step-by-step debugging, that is, the most fine-grained execution pattern)

 f n continues the execution until the next line in the current function is reached

 f r continues the execution until the current function returns

 f c continues the execution until the next breakpoint is reached

 f j 30 brings you to line 30 in the current file

You can add breakpoints dynamically from within the debugger using the b command or with
tbreak (temporary breakpoint). You can also clear all or some of the breakpoints, enable
or disable them, and so on. You can find the full details of the debugger at https://docs.
python.org/3/library/pdb.html.

There's more...
To debug your code with IPython, you typically need to execute it first with IPython, for example,
with %run. However, you may not always have an easy way of doing this. For instance, your
program may run with a custom command-line Python script, it may be launched by a complex
bash script, or it may be integrated within a GUI. In these cases, you can embed an IPython
interpreter at any point in your code (launched by Python), instead of running your whole
program with IPython (which may be overkill if you just need to debug a small portion of
your code).

To embed IPython within your program, simply insert the following commands somewhere
in your code:

from IPython import embed

embed()

Chapter 2

77

When your Python program reaches this code, it will pause and launch an interactive IPython
terminal at this specific point. You will then be able to inspect all local variables, run any code
you want, and possibly debug your code before resuming normal execution.

rfoo, available at https://code.google.com/p/rfoo/,
lets you inspect and modify the namespace of a running
Python script remotely.

GUI debuggers
Most Python IDEs offer graphical debugging features (see the Efficient interactive computing
workflows with IPython recipe). A GUI can sometimes be more convenient than a command-
line debugger. Let's also mention Winpdb (winpdb.org), a graphical platform-independent
Python debugger.

3
Mastering the Notebook

In this chapter, we will cover the following topics:

 f Teaching programming in the notebook with IPython blocks

 f Converting an IPython notebook to other formats with nbconvert

 f Adding custom controls in the notebook toolbar

 f Customizing the CSS style in the notebook

 f Using interactive widgets – a piano in the notebook

 f Creating a custom JavaScript widget in the notebook – a spreadsheet
editor for pandas

 f Processing webcam images in real time from the notebook

Introduction
In this chapter, we will see many features of the notebook, including the interactive widgets
that have been brought by IPython 2.0. As we have only seen basic features in the previous
chapters, we will dive deeper into the architecture of the notebook here.

Mastering the Notebook

80

What is the notebook?
The notebook was released in 2011, ten years after the creation of IPython. Its development
has a long and complex history that is nicely summarized by Fernando Perez on his blog,
http://blog.fperez.org/2012/01/ipython-notebook-historical.html.
Inspired by mathematical software such as Maple, Mathematica, or Sage, the notebook really
fostered the popularity of IPython.

By mixing together code, text, images, plots, hypertext links, and mathematical equations in a
single document, the notebook brings reproducibility to interactive computing. The notebook,
when used correctly, can radically change workflows in scientific computing. Prior to the
notebook, one had to juggle between a text editor and an interactive prompt; now, one can
stay focused within a single unified environment.

The notebook is not only a tool but also a powerful and robust architecture. Furthermore, this
architecture is mostly language independent, so it's no longer tied to Python. The notebook
defines a set of messaging protocols, APIs, and JavaScript code that can be used by other
languages. In effect, we are now seeing non-Python kernels that can interact with the
notebook such as IJulia, IHaskell, IRuby, and others.

At the SciPy conference in July 2014, the IPython developers even announced their decision to
split the project into the following two parts:

 f The new Project Jupyter will implement all language-independent parts: the
notebook, the messaging protocol, and the overall architecture. For more details, visit
http://jupyter.org.

 f IPython will be the name of the Python kernel.

In this book, we do not make that semantic distinction, and we will use the term IPython to
refer to the project as a whole (language-independent parts and Python kernel).

The notebook ecosystem
Notebooks are represented as JavaScript Object Notation (JSON) documents. JSON is a
language-independent, text-based file format for representing structured documents. As such,
notebooks can be processed by any programming language, and they can be converted to
other formats such as Markdown, HTML, LaTeX/PDF, and others.

An ecosystem is being built around the notebook, and we can expect to see more and more
usage in the near future. For example, Google is working on bringing the IPython notebook to
Google Drive for collaborative data analytics. Also, notebooks are being used to create slides,
teaching materials, blog posts, research papers, and even books. In fact, this very book is
entirely written in the notebook.

Chapter 3

81

IPython 2.0 introduced interactive widgets in the notebook. These widgets bring Python
and the browser even closer. We can now create applications that implement bidirectional
communication between the IPython kernel and the browser. Also, any JavaScript interactive
library can be, in principle, integrated within the notebook. For example, the D3.js JavaScript
visualization library is now being used by several Python projects to enable interactive
visualization capabilities to the notebook. We are probably going to see many interesting uses
of these interactive features in the near future.

Architecture of the IPython notebook
IPython implements a two-process model, with a kernel and a client. The client is the
interface offering the user the ability to send Python code to the kernel. The kernel executes
the code and returns the result to the client for display. In the Read-Evaluate-Print Loop
(REPL) terminology, the kernel implements the Evaluate, whereas the client implements the
Read and the Print of the process.

The client can be a Qt widget if we run the Qt console, or a browser if we run the notebook. In
the notebook, the kernel receives entire cells at once, and thus has no notion of a notebook.
There is a strong decoupling between the linear document containing the notebook, and the
underlying kernel. This is a very strong constraint that may limit the possibilities, but that
nevertheless leads to great simplicity and flexibility.

Another fundamental assumption in the whole architecture is that there can be at most one
kernel connected to a notebook. However, IPython 3.0 offers the possibility of choosing the
language kernel for any notebook.

It is important to keep these points in mind when thinking about new use-case scenarios for
the notebook.

In the notebook, in addition to the Python kernel and the browser client, there is a Python
server based on Tornado (www.tornadoweb.org). This process serves the HTML-based
notebook interface.

All communication procedures between the different processes are implemented on top of the
ZeroMQ (or ZMQ) messaging protocol (http://zeromq.org). The notebook communicates
with the underlying kernel using WebSocket, a TCP-based protocol implemented in modern
web browsers.

The browsers that officially support the notebook in IPython 2.x are as follows:

 f Chrome ≥ 13

 f Safari ≥ 5

 f Firefox ≥ 6

The notebook should also work on Internet Explorer ≥ 10. These requirements are essentially
those for WebSocket.

Mastering the Notebook

82

Connecting multiple clients to one kernel
In a notebook, typing %connect_info in a cell gives the information we need to connect a
new client (such as a Qt console) to the underlying kernel:

In [1]: %connect_info
{
 "stdin_port": 53978,
 "ip": "127.0.0.1",
 "control_port": 53979,
 "hb_port": 53980,
 "signature_scheme": "hmac-sha256",
 "key": "053...349",
 "shell_port": 53976,
 "transport": "tcp",
 "iopub_port": 53977
}
Paste the above JSON code into a file, and connect with:
 $> ipython <app> --existing <file>
or, if you are local, you can connect with just:
 $> ipython <app> --existing kernel-6e0...b92.json
or even just:
 $> ipython <app> --existing
if this is the most recent IPython session you have started.

Here, <app> is console, qtconsole, or notebook.

It is even possible to have the kernel and the client running on different machines. You
will find the instructions to run a public notebook server in the IPython documentation,
available at http://ipython.org/ipython-doc/dev/notebook/public_server.
html#running-a-public-notebook-server.

Security in notebooks
It is possible for someone to put malicious code in an IPython notebook. Since notebooks may
contain hidden JavaScript code in a cell output, it is theoretically possible for malicious code
to execute surreptitiously when the user opens a notebook.

Chapter 3

83

For this reason, IPython 2.0 introduced a security model where HTML and JavaScript code
in a notebook can be either trusted or untrusted. Outputs generated by the user are always
trusted. However, outputs that were already there when the user first opened an existing
notebook are untrusted.

The security model is based on a cryptographic signature present in every notebook. This
signature is generated using a secret key owned by every user.

You can find further references on the security model in the following section.

References
The following are some references about the notebook architecture:

 f The IPython two-process model, explained at http://ipython.org/ipython-
doc/stable/overview.html#decoupled-two-process-model

 f Documentation of the notebook, available at http://ipython.org/ipython-
doc/stable/interactive/notebook.html

 f Security in the notebook, described at http://ipython.org/ipython-doc/
dev/notebook/security.html

 f The notebook server, described at http://ipython.org/ipython-doc/dev/
interactive/public_server.html

 f The IPython messaging protocol, at http://ipython.org/ipython-doc/dev/
development/messaging.html

 f Tutorial about how to write a custom kernel for the notebook, at http://andrew.
gibiansky.com/blog/ipython/ipython-kernels/

Here are a few (mostly experimental) kernels in non-Python languages for the notebook:

 f IJulia, available at https://github.com/JuliaLang/IJulia.jl

 f IRuby, available at https://github.com/isotope11/iruby

 f IHaskell, available at https://github.com/gibiansky/IHaskell

 f IGo, available at https://github.com/takluyver/igo

 f IScala, available at https://github.com/mattpap/IScala

Mastering the Notebook

84

Teaching programming in the notebook with
IPython blocks

The IPython notebook is not only a tool for scientific research and data analysis but also a
great tool for teaching. In this recipe, we show a simple and fun Python library for teaching
programming notions: IPython Blocks (available at http://ipythonblocks.org). This
library allows you or your students to create grids of colorful blocks. You can change the color
and size of individual blocks, and you can even animate your grids. There are many basic
technical notions you can illustrate with this tool. The visual aspect of this tool makes the
learning process more effective and engaging.

In this recipe, we will notably perform the following tasks:

 f Illustrate matrix multiplication with an animation

 f Display an image as a block grid

This recipe is partly inspired by the example at http://nbviewer.ipython.org/gist/
picken19/b0034ba7ec690e89ea79.

Getting ready
You need to install IPython Blocks for this recipe. You can just type in a terminal pip
install ipythonblocks. Note that you can also execute this shell command from the
IPython notebook by prefixing this command with !.

In [1]: !pip install ipythonblocks

For the last part of this recipe, you also need to install Pillow, available at http://pillow.
readthedocs.org/en/latest/; you will find more instructions in Chapter 11, Image and
Audio Processing. With Anaconda, you can execute conda install pillow in a terminal.

Finally, you need to download the Portrait dataset from the book's website (https://
github.com/ipython-books/cookbook-data) and extract it in the current directory.
You can also play with your own images!

How to do it...
1. First, we import some modules as follows:

In [1]: import time
 from IPython.display import clear_output
 from ipythonblocks import BlockGrid, colors

Chapter 3

85

2. Now, we create a block grid with five columns and five rows, and we fill each block in
purple:
In [2]: grid = BlockGrid(width=5, height=5,
 fill=colors['Purple'])
 grid.show()

3. We can access individual blocks with 2D indexing. This illustrates the indexing syntax
in Python. We can also access an entire row or line with a : (colon). Each block is
represented by an RGB color. The library comes with a handy dictionary of colors,
assigning RGB tuples to standard color names as follows:
In [3]: grid[0,0] = colors['Lime']
 grid[-1,0] = colors['Lime']
 grid[:,-1] = colors['Lime']
 grid.show()

Mastering the Notebook

86

4. Now, we are going to illustrate matrix multiplication, a fundamental notion in linear
algebra. We will represent two (n,n) matrices, A (in cyan) and B (lime) aligned with
C = A B (yellow). To do this, we use a small trick of creating a big white grid of size
(2n+1,2n+1). The matrices A, B, and C are just views on parts of the grid.
In [4]: n = 5
 grid = BlockGrid(width=2*n+1,
 height=2*n+1,
 fill=colors['White'])
 A = grid[n+1:,:n]
 B = grid[:n,n+1:]
 C = grid[n+1:,n+1:]
 A[:,:] = colors['Cyan']
 B[:,:] = colors['Lime']
 C[:,:] = colors['Yellow']
 grid.show()

Chapter 3

87

5. Let's turn to matrix multiplication itself. We perform a loop over all rows and columns,
and we highlight the corresponding rows and columns in A and B that are multiplied
together during the matrix product. We combine IPython's clear_output()
method with grid.show() and time.sleep() (pause) to implement the
animation as follows:
In [5]: for i in range(n):
 for j in range(n):
 # We reset the matrix colors.
 A[:,:] = colors['Cyan']
 B[:,:] = colors['Lime']
 C[:,:] = colors['Yellow']
 # We highlight the adequate rows
 # and columns in red.
 A[i,:] = colors['Red']
 B[:,j] = colors['Red']
 C[i,j] = colors['Red']
 # We animate the grid in the loop.
 clear_output()
 grid.show()
 time.sleep(0.25)

6. Finally, we will display an image with IPython Blocks. We import the JPG image with
Image.open() and we retrieve the data with getdata() as follows:
In [6]: from PIL import Image
 imdata = Image.open('data/photo.jpg').getdata()

Mastering the Notebook

88

7. Now, we create a BlockGrid instance with the appropriate number of rows
and columns, and we set each block's color to the corresponding pixel's color
in the image. We use a small block size, and we remove the lines between the
blocks as follows:

In [7]: rows, cols = imdata.size
 grid = BlockGrid(width=rows, height=cols,
 block_size=4, lines_on=False)
 for block, rgb in zip(grid, imdata):
 block.rgb = rgb
 grid.show()

There's more...
As demonstrated in this recipe, the notebook is an ideal platform for education activities
at all levels.

This library has been developed prior to the interactive notebook features brought by IPython
2.0. We can now expect even more interactive developments.

Chapter 3

89

Converting an IPython notebook to other
formats with nbconvert

An IPython notebook is saved in a JSON text file. This file contains the entire contents of the
notebook: text, code, and outputs. The matplotlib figures are encoded as base64 strings
within the notebooks, resulting in standalone, but sometimes big, notebook files.

JSON is a human-readable, text-based, open standard format that
can represent structured data. Although derived from JavaScript, it
is language independent. Its syntax bears some resemblance with
Python dictionaries. JSON can be parsed in many languages including
JavaScript and Python (the json module in Python's standard library).

IPython comes with a tool called nbconvert that can convert notebooks to other formats: raw
text, Markdown, HTML, LaTeX/PDF, and even slides with the reveal.js library. You will find
more information about the different supported formats on the nbconvert documentation.

In this recipe, we will see how to manipulate the contents of a notebook and how to convert it
to other formats.

Getting ready
You need to install pandoc, available at http://johnmacfarlane.net/pandoc/, which is
a tool for converting files from one markup language to another.

To convert a notebook to PDF, you need a LaTeX distribution, which is available at
http://latex-project.org/ftp.html. You also need to download the Notebook
 dataset from the book's website (https://github.com/ipython-books/cookbook-
data), and extract it in the current directory.

On Windows, you may need the pywin32 package. If you use Anaconda, you can install it with
conda install pywin32.

How to do it...
1. Let's open the test notebook in the data folder. A notebook is just a plain text file

(JSON), so we open it in the text mode (r mode) as follows:
In [1]: with open('data/test.ipynb', 'r') as f:
 contents = f.read()
 print(len(contents))
3787

Mastering the Notebook

90

Here is an excerpt of the test.ipynb file:

{
 "metadata": {
 "celltoolbar": "Edit Metadata",
 "name": "",
 "signature": "sha256:50db..."
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
 {
...
 "source": [
 "# First chapter"
]
 },
 ...
],
 "metadata": {}
 }
]
}

2. Now that we have loaded the notebook in a string, let's parse it with the json module
as follows:
In [3]: import json
 nb = json.loads(contents)

3. Let's have a look at the keys in the notebook dictionary:
In [4]: print(nb.keys())
 print('nbformat ' + str(nb['nbformat']) +
 '.' + str(nb['nbformat_minor']))
[u'nbformat', u'nbformat_minor', u'worksheets', u'metadata']
nbformat 3.0

The version of the notebook format is indicated in nbformat and
nbformat_minor. Backwards-incompatible changes in the notebook
format are to be expected in future versions of IPython. This recipe has
been tested with the IPython 2.x branch and the notebook format v3.

Chapter 3

91

4. The main field is worksheets; there is only one by default. A worksheet contains a
list of cells and some metadata. The worksheets field may disappear in a future
version of the notebook format. Let's have a look at the contents of a worksheet:
In [5]: nb['worksheets'][0].keys()
Out[5]: [u'cells', u'metadata']

5. Each cell has a type, optional metadata, some contents (text or code), possibly one or
several outputs, and other information. Let's look at a Markdown cell and a code cell:
In [6]: nb['worksheets'][0]['cells'][1]
Out[6]: {u'cell_type': u'markdown',
 u'metadata': {u'my_field': [u'value1', u'2405']},
 u'source': [u"Let's write ...:\n", ...]}
In [7]: nb['worksheets'][0]['cells'][2]
Out[7]: {u'cell_type': u'code',
 u'collapsed': False,
 u'input': [u'import numpy as np\n', ...],
 u'language': u'python',
 u'metadata': {},
 u'outputs': [
 {u'metadata': {},
 u'output_type': u'display_data',
 u'png': u'iVB...mCC\n',
 u'prompt_number': 1}]}

6. Once parsed, the notebook is represented as a Python dictionary. Manipulating it is
therefore quite convenient in Python. Here, we count the number of Markdown and
code cells as follows:
In [8]: cells = nb['worksheets'][0]['cells']
 nm = len([cell for cell in cells
 if cell['cell_type'] == 'markdown'])
 nc = len([cell for cell in cells
 if cell['cell_type'] == 'code'])
 print(("There are {nm} Markdown cells and "
 "{nc} code cells.").format(nm=nm, nc=nc))
There are 2 Markdown cells and 1 code cells.

7. Let's have a closer look at the image output of the cell with the matplotlib figure:
In [9]: png = cells[2]['outputs'][0]['png']
 cells[2]['outputs'][0]
Out[9]: {u'metadata': {},
 u'output_type': u'display_data',
 u'png': u'iVBORwoAAAANSUhE...ErAAAElTkQmCC\n'}

Mastering the Notebook

92

8. In general, there can be zero, one, or multiple outputs. Additionally, each output can
have multiple representations. Here, the matplotlib figure has a PNG representation
(the base64-encoded image) and a text representation (the internal representation of
the figure).

9. Now, we are going to use nbconvert to convert our text notebook to other formats. This
tool can be used from the command line. Note that the API of nbconvert may change in
future versions. Here, we convert the notebook to an HTML document as follows:
In [10]: !ipython nbconvert --to html data/test.ipynb
[NbConvertApp] Writing 187617 bytes to test.html

10. Let's display this document in an <iframe> (a small window showing an external
HTML document within the notebook):
In [11]: from IPython.display import IFrame
 IFrame('test.html', 600, 200)

11. We can also convert the notebook to LaTeX and PDF. In order to specify the title and
author of the document, we need to extend the default LaTeX template. First, we
create a file called mytemplate.tplx that extends the default article.tplx
template provided by nbconvert. We specify the contents of the author and title
blocks as follows:
In [12]: %%writefile mytemplate.tplx
 ((*- extends 'article.tplx' -*))

 ((* block author *))
 \author{Cyrille Rossant}
 ((* endblock author *))

Chapter 3

93

 ((* block title *))
 \title{My document}
 ((* endblock title *))
Writing mytemplate.tplx

12. Then, we can run nbconvert by specifying our custom template as follows:

In [13]: !ipython nbconvert --to latex --template mytemplate data/
test.ipynb
 !pdflatex test.tex
[NbConvertApp] PDF successfully created

We used nbconvert to convert the notebook to LaTeX, and pdflatex (coming
with our LaTeX distribution) to compile the LaTeX document to PDF. The following
screenshot shows the PDF version of the notebook:

How it works...
As we have seen in this recipe, an .ipynb file contains a structured representation of the
notebook. This JSON file can be easily parsed and manipulated in Python.

nbconvert is a tool for converting a notebook to another format. The conversion can be
customized in several ways. Here, we extended an existing template using jinja2, a
templating package. You will find more information in the documentation of nbconvert.

Mastering the Notebook

94

There's more...
There is a free online service, nbviewer, that lets us render IPython notebooks in
HTML dynamically in the cloud. The idea is that we provide to nbviewer a URL to a raw
notebook (in JSON), and we get a rendered HTML output. The main page of nbviewer
(http://nbviewer.ipython.org) contains a few examples.

This service is maintained by the IPython developers and is hosted on Rackspace
(www.rackspace.com).

Here are some more references:

 f Documentation of nbconvert, at http://ipython.org/ipython-doc/dev/
interactive/nbconvert.html

 f A list of conversion examples with nbconvert, at https://github.com/ipython/
nbconvert-examples

 f JSON on Wikipedia, available at http://en.wikipedia.org/wiki/JSON

Adding custom controls in the notebook
toolbar

The CSS and JavaScript of the HTML notebook can be customized through the files in
~/.ipython/profile_default/static/custom, where ~ is your home directory,
and default is your IPython profile.

In this recipe, we will use these customization options to add a new button in the notebook
toolbar that linearly renumbers all code cells.

How to do it...
1. First, we are going to inject JavaScript code directly in the notebook. This is useful for

testing purposes, or if we don't want the changes to be permanent. The JavaScript
code will be loaded with that notebook only. To do this, we can just use the
%%javascript cell magic as follows:
In [1]: %%javascript
 // This function allows us to add buttons
 // to the notebook toolbar.
 IPython.toolbar.add_buttons_group([
 {
 // The button's label.
 'label': 'renumber all code cells',

Chapter 3

95

 // The button's icon.
 // See a list of Font-Awesome icons here:
 // http://fortawesome.github.io/Font-
 // Awesome/icons/
 'icon': 'icon-list-ol',

 // The callback function.
 'callback': function () {

 // We retrieve the lists of all cells.
 var cells = IPython.notebook.get_cells();

 // We only keep the code cells.
 cells = cells.filter(function(c)
 {
 return c instanceof IPython.CodeCell;
 })

 // We set the input prompt of all code
 // cells.
 for (var i = 0; i < cells.length; i++) {
 cells[i].set_input_prompt(i + 1);
 }
 }
 }]);

2. Running the preceding code cell adds a button in the toolbar as shown in the
following screenshot. Clicking on this button automatically updates the prompt
numbers of all code cells.

Adding a Renumber toolbar button

3. To make these changes permanent, that is, to add this button on every notebook in
the current profile, we can open the ~/.ipython/profile_default/static/
custom/custom.js file and add the following lines of code:

$([IPython.events]).on('app_initialized.NotebookApp',
 function(){
 // Copy the JavaScript code (in step 1) here.
 });

The preceding code will be automatically loaded in the notebook, and the renumber
button will appear on top of every notebook in the current profile.

Mastering the Notebook

96

There's more...
The IPython notebook JavaScript API that allowed us to add a button to the notebook toolbar is
still unstable at the time of writing. It may change at any time, and it is not well documented.
This recipe has only been tested with IPython 2.0. You may nevertheless find a not-so-official
and partial API documentation on this page: http://ipjsdoc.herokuapp.com.

We should expect a more stable API in the future.

See also
 f The Customizing the CSS style in the notebook recipe

Customizing the CSS style in the notebook
In this recipe, we show how to customize the CSS in the notebook interface and in an exported
HTML notebook.

Getting ready
You are expected to know a bit of CSS3 for this recipe. You can find many tutorials online
(see the references at the end of this recipe).

You also need to download the Notebook dataset from the book's website
(http://ipython-books.github.io), and extract it in the current directory.

How to do it...
1. First, we create a new IPython profile to avoid cluttering our default profile as follows:

In [1]: !ipython profile create custom_css

2. In Python, we retrieve the path to this profile (~/.ipython) and to the custom.css
file (empty by default).
In [2]: dir = !ipython locate profile custom_css
 dir = dir[0]
In [3]: import os
 csspath = os.path.realpath(os.path.join(
 dir, 'static/custom/custom.css'))
In [4]: csspath
Out[4]: '~\.ipython\profile_custom_css\static\
 custom\custom.css'

Chapter 3

97

3. We can now edit this file here. We change the background color, the font size of code
cells, the border of some cells, and we highlight the selected cells in edit mode.
In [5]: %%writefile {csspath}

 body {
 /* Background color for the whole notebook. */
 background-color: #f0f0f0;
 }

 /* Level 1 headers. */
 h1 {
 text-align: right;
 color: red;
 }

 /* Code cells. */
 div.input_area > div.highlight > pre {
 font-size: 10px;
 }

 /* Output images. */
 div.output_area img {
 border: 3px #ababab solid;
 border-radius: 8px;
 }

 /* Selected cells. */
 div.cell.selected {
 border: 3px #ababab solid;
 background-color: #ddd;
 }

 /* Code cells in edit mode. */
 div.cell.edit_mode {
 border: 3px red solid;
 background-color: #faa;
 }
Overwriting C:\Users\Cyrille\.ipython\profile_custom_css\static\
custom\custom.css

Mastering the Notebook

98

Opening a notebook with the custom_css profile (with the ipython notebook
--profile=custom_css command) leads to a custom style as follows:

Custom CSS in the interactive notebook interface

4. We can also use this style sheet with nbconvert. We just have to convert a notebook
to a static HTML document, and copy the custom.css file in the current directory.
Here, we use a test notebook that has been downloaded from the book's website
(see Getting ready):
In [6]: !cp {csspath} custom.css
 !ipython nbconvert --to html data/test.ipynb
[NbConvertApp] Writing 187617 bytes to test.html

5. Here is what this HTML document looks like:
In [7]: from IPython.display import IFrame
 IFrame('test.html', 600, 650)

Chapter 3

99

There's more...
Here are a few tutorials and references about CSS:

 f CSS tutorial on w3schools, at www.w3schools.com/css/DEFAULT.asp

 f CSS tutorial on Mozilla Developer Network, at https://developer.mozilla.
org/en-US/docs/Web/Guide/CSS/Getting_started

 f Blog post by Matthias Bussonnier about how to customize the notebook CSS, at
http://nbviewer.ipython.org/github/Carreau/posts/blob/master/
Blog1.ipynb

See also
 f The Adding custom controls in the notebook toolbar recipe

Using interactive widgets – a piano in the
notebook

Starting with IPython 2.0, we can put interactive widgets in notebooks to create rich GUI
applications that interact with our Python kernel. IPython comes with a rich set of graphical
controls such as buttons, sliders, and drop-down menus. We have full control of their
placement and appearance. We can combine different widgets to form complex layouts.
We can even create our own interactive widgets from scratch as we will see in the next recipe,
Creating a custom Javascript widget in the notebook – a spreadsheet editor for pandas.

In this recipe, we will show many possibilities offered by the interactive widget API in IPython
2.0+. We will create a very basic piano in the notebook.

Getting ready
You need to download the Piano dataset from the book's website (http://ipython-books.
github.io). This dataset contains synthetic sounds of piano notes obtained on archive.
org (CC0 1.0 Universal license). It is available at https://archive.org/details/
SynthesizedPianoNotes.

Mastering the Notebook

100

How to do it...
1. Let's import a few modules as follows:

In [1]: import numpy as np
 import os
 from IPython.display import (Audio, display,
 clear_output)
 from IPython.html import widgets
 from functools import partial

2. To create a piano, we will draw one button per note. The corresponding note plays
when the user clicks on the button. This is implemented by displaying an <audio>
element as follows:
In [2]: dir = 'data/synth'
In [3]: # This is the list of notes.
 notes = 'C,C#,D,D#,E,F,F#,G,G#,A,A#,B,C'.split(',')
In [4]: def play(note, octave=0):
 """This function displays an HTML Audio element
 that plays automatically when it appears."""
 f = os.path.join(dir,
 "piano_{i}.mp3".format(i=note+12*octave))
 clear_output()
 display(Audio(filename=f, autoplay=True))

3. We are going to place all buttons within a container widget. In IPython 2.0, widgets
can be organized hierarchically. One common use case is to organize several widgets
in a given layout. Here, piano will contain 12 buttons for the 12 notes:
In [5]: piano = widgets.ContainerWidget()

The API for creating container widgets such as horizontal or vertical
boxes has changed in IPython 3.0. Refer to IPython's documentation
for more details.

4. We create our first widget: a slider control that specifies the octave (0 or 1 here):
In [6]: octave_slider = widgets.IntSliderWidget()
 octave_slider.max = 1
 octave_slider

Chapter 3

101

5. Now, we create the buttons. There are several steps. First, we instantiate a
ButtonWidget object for each note. Then, we specify a callback() function
that plays the corresponding note (given by an index) at a given octave (given by the
current value of the octave slider). Finally, we set the CSS of each button, notably the
white or black color.
In [7]: buttons = []
 for i, note in enumerate(notes):
 button = widgets.ButtonWidget(description=note)

 def on_button_clicked(i, _):
 play(i+1, octave_slider.value)

 button.on_click(partial(on_button_clicked, i))

 button.set_css({
 'width': '30px',
 'height': '60px',
 'padding': '0',
 'color':
 ('black', 'white')['#' in note],
 'background':
 ('white', 'black')['#' in note],
 'border': '1px solid black',
 'float': 'left'})

 buttons.append(button)

6. Finally, we arrange all widgets within the containers. The piano container contains
the buttons, and the main container (container) contains the slider and the piano.
This can be implemented:
In [8]: piano.children = buttons
In [9]: container = widgets.ContainerWidget()
 container.children = [octave_slider,
 piano]

Mastering the Notebook

102

7. By default, widgets are organized vertically within a container. Here, the octave
slider will be above the piano. Within the piano, we want all notes to be arranged
horizontally. We do this by replacing the default vbox CSS class by the hbox class.
The following screenshot shows the piano in the IPython notebook:
In [10]: display(container)
 piano.remove_class('vbox')
 piano.add_class('hbox')

How it works...
The IPython widgets are represented by rich objects that are shared between the Python
kernel and the browser. A widget contains special attributes called trait attributes. For
example, the value trait attribute of SliderWidget is dynamically and automatically linked
to the value that is selected by the user in the notebook's slider.

This link is bidirectional. Changing this attribute in Python updates the slider in the notebook.

The placement of the widgets is controlled by container widgets and with CSS classes. You will
find more information in the documentation.

This architecture enables the creation of rich graphical applications in the notebook that are
backed by Python code.

There's more...
 f Widget examples at http://nbviewer.ipython.org/github/ipython/

ipython/blob/master/examples/Interactive%20Widgets/Index.ipynb

See also
 f The Creating a custom JavaScript widget in the notebook – a spreadsheet editor for

pandas recipe

Chapter 3

103

Creating a custom JavaScript widget in the
notebook – a spreadsheet editor for pandas

We have previously introduced the new interactive features of the IPython notebook 2.0. In
this recipe, we dive deeper into the subject by showing how to go beyond the existing widgets
provided by IPython 2.0. Specifically, we will create a custom JavaScript-based widget that
communicates with the Python kernel.

Specifically, we will create a basic interactive Excel-like data grid editor in the IPython notebook,
compatible with pandas' DataFrame. Starting from a DataFrame object, we will be able to edit
it within a GUI in the notebook. The editor is based on the Handsontable JavaScript library
(http://handsontable.com). Other JavaScript data grid editors could be used as well.

Getting ready
You will need both IPython 2.0+ and the Handsontable JavaScript library for this recipe. The
following are the instructions to load this Javascript library in the IPython notebook:

1. First, go to https://github.com/handsontable/jquery-handsontable/
tree/master/dist.

2. Then, download jquery.handsontable.full.css and jquery.
handsontable.full.js, and put these two files in ~\.ipython\profile_
default\static\custom\.

3. In this folder, add the following line in custom.js:
require(['/static/custom/jquery.handsontable.full.js']);

4. In this folder, add the following line in custom.css:
@import "/static/custom/jquery.handsontable.full.css"

5. Now, refresh the notebook!

How to do it...
1. Let's import a few functions and classes as follows:

In [1]: from IPython.html import widgets
 from IPython.display import display
 from IPython.utils.traitlets import Unicode

Mastering the Notebook

104

2. We create a new widget. The value trait will contain the JSON representation of the
entire table. This trait will be synchronized between Python and JavaScript, thanks to
the IPython 2.0's widget machinery.
In [2]: class HandsonTableWidget(widgets.DOMWidget):
 _view_name = Unicode('HandsonTableView',
 sync=True)
 value = Unicode(sync=True)

3. Now, we write the JavaScript code for the widget. The three important functions that
are responsible for the synchronization are as follows:

 � render is for the widget initialization

 � update is for Python to JavaScript update

 � handle_table_change is for JavaScript to Python update

In [3]: %%javascript
var table_id = 0;
require(["widgets/js/widget"], function(WidgetManager){
 // Define the HandsonTableView
 var HandsonTableView = IPython.DOMWidgetView.extend({

 render: function(){
 // Initialization: creation of the HTML elements
 // for our widget.

 // Add a <div> in the widget area.
 this.$table = $('<div />')
 .attr('id', 'table_' + (table_id++))
 .appendTo(this.$el);

 // Create the Handsontable table.
 this.$table.handsontable({
 });

 },

 update: function() {
 // Python --> Javascript update.

 // Get the model's JSON string, and parse it.
 var data = $.parseJSON(this.model.get('value'));

Chapter 3

105

 // Give it to the Handsontable widget.
 this.$table.handsontable({data: data});

 return HandsonTableView.__super__.
 update.apply(this);
 },

 // Tell Backbone to listen to the change event
 // of input controls.
 events: {"change": "handle_table_change"},

 handle_table_change: function(event) {
 // Javascript --> Python update.

 // Get the table instance.
 var ht = this.$table.handsontable('getInstance');

 // Get the data, and serialize it in JSON.
 var json = JSON.stringify(ht.getData());

 // Update the model with the JSON string.
 this.model.set('value', json);

 this.touch();
 },
 });

 // Register the HandsonTableView with the widget manager.
 WidgetManager.register_widget_view(
 'HandsonTableView', HandsonTableView);
});

4. Now, we have a synchronized table widget that we can already use. However, we
would like to integrate it with pandas. To do this, we create a light wrapper around a
DataFrame instance. We create two callback functions for synchronizing the pandas
object with the IPython widget. Changes in the GUI will automatically trigger a change
in DataFrame, but the converse is not true. We'll need to re-display the widget if we
change the DataFrame instance in Python:
In [4]: from io import StringIO
 import numpy as np
 import pandas as pd
In [5]: class HandsonDataFrame(object):
 def __init__(self, df):
 self._df = df

Mastering the Notebook

106

 self._widget = HandsonTableWidget()
 self._widget.on_trait_change(
 self._on_data_changed, 'value')
 self._widget.on_displayed(self._on_displayed)

 def _on_displayed(self, e):
 # DataFrame ==> Widget (upon initialization)
 json = self._df.to_json(orient='values')
 self._widget.value = json

 def _on_data_changed(self, e, val):
 # Widget ==> DataFrame (called every time the
 # user changes a value in the widget)
 buf = StringIO(val)
 self._df = pd.read_json(buf, orient='values')

 def to_dataframe(self):
 return self._df

 def show(self):
 display(self._widget)

5. Now, let's test all that! We first create a random DataFrame instance:
In [6]: data = np.random.randint(size=(3, 5),
 low=100, high=900)
 df = pd.DataFrame(data)
 df
Out[6]:
352 201 859 322 352
326 519 848 802 642
171 480 213 619 192

6. We wrap it in HandsonDataFrame and show it as follows:
In [7]: ht = HandsonDataFrame(df)
 ht.show()

Chapter 3

107

7. We can now change the values interactively, and they will be changed in Python
accordingly:

In [8]: ht.to_dataframe()
Out[8]:
352 201 859 322 352
326 519 848 1024 642
171 480 213 619 192

How it works...
Let's explain briefly the architecture underlying the interactive Python-JavaScript
communication in IPython 2.0+.

The implementation follows the Model-View-Controller (MVC) design pattern, which is
popular in GUI applications. There is a model in the backend (Python kernel) that holds some
data. In the frontend (browser), there are one or several views of that model. Those views
are dynamically synchronized with the model. When an attribute of the model changes on
Python's side, it also changes on JavaScript's side, and vice versa. We can implement Python
and JavaScript functions to respond to model changes. These changes are generally triggered
by a user action.

In Python, dynamic attributes are implemented as traits. These special class attributes
automatically trigger callback functions when they are updated. In JavaScript, the Backbone.
js MVC library is used. The communication between Python and the browser is done via
Comms, a special communication protocol in IPython.

To create a new widget, we need to create a class deriving from DOMWidget. Then, we define
trait attributes that can be synchronized between Python and JavaScript if sync=True is
passed to the trait constructors. We can register callback functions that react to trait changes
(from either Python or JavaScript), using widget.on_trait_change(callback, trait_
name). The callback() function can have one of the following signatures:

 f callback()

 f callback(trait_name)

 f callback(trait_name, new_value)

 f callback(trait_name, old_value, new_value)

In JavaScript, the render() function creates the HTML elements in the cell's widget area
upon initialization. The update() method allows us to react to changes in the model in the
backend side (Python). In addition, we can use Backbone.js to react to changes in the
frontend (browser). By extending the widget with the {"change": "callback"} events,
we tell Backbone.js to call the callback() JavaScript function as soon as the HTML input
controls change. This is how we react to user-triggered actions here.

Mastering the Notebook

108

There's more...
The following are the ways this proof-of-concept could be improved:

 f Synchronizing only changes instead of synchronizing the whole array every time
(the method used here would be slow on large tables)

 f Avoiding recreating a new DataFrame instance upon every change, but updating the
same DataFrame instance in-place

 f Supporting named columns

 f Hiding the wrapper, that is, make it so that the default rich representation of
DataFrame in the notebook is HandsonDataFrame

 f Implementing everything in an easy-to-use extension

Here are a few references about the widget architecture in the IPython notebook 2.0+:

 f Official example about custom widgets, available at http://nbviewer.ipython.
org/github/ipython/ipython/tree/master/examples/Interactive%20
Widgets

 f MVC pattern in Wikipedia, at https://en.wikipedia.org/wiki/Model%E2%80
%93view%E2%80%93controller

 f Backbone.js, available at http://backbonejs.org/

 f Course on Backbone.js, available at www.codeschool.com/courses/
anatomy-of-backbonejs

 f IPEP 21: Widget Messages (comms), available at https://github.com/
ipython/ipython/wiki/IPEP-21%3A-Widget-Messages

 f IPEP 23: IPython widgets, available at https://github.com/ipython/ipython/
wiki/IPEP-23%3A-Backbone.js-Widgets

See also
 f The Processing webcam images in real time from the notebook recipe

Processing webcam images in real time
from the notebook

In this recipe, we show how to let the notebook and the Python kernel communicate in
both directions.

Chapter 3

109

Specifically, we will retrieve the webcam feed from the browser using HTML5's <video>
element, and pass it to Python in real time using the interactive capabilities of the
IPython notebook 2.0+. Then, we will process the image in Python with an edge detector
(implemented in scikit-image), and display it in the notebook in real time.

Most of the code for this recipe comes from Jason Grout's example, available at
https://github.com/jasongrout/ipywidgets.

Getting ready
You need Pillow and scikit-image for this recipe. (For more information, refer to Chapter 11,
Image and Audio Processing.)

You also need a recent browser supporting the HTML5 capture API. You can find the
specification at http://dev.w3.org/2011/webrtc/editor/getusermedia.html.

How to do it...
1. We need to import several modules as follows:

In [1]: from IPython.html.widgets import DOMWidget
 from IPython.utils.traitlets import (Unicode, Bytes,
 Instance)
 from IPython.display import display

 from skimage import io, filter, color
 import urllib
 import base64
 from PIL import Image
 from io import BytesIO # to change in Python 2
 import numpy as np
 from numpy import array, ndarray
 import matplotlib.pyplot as plt

2. We define two functions to convert images from and to base64 strings.
This conversion is a common way to pass binary data between processes
(in our case, the browser and Python):
In [2]: def to_b64(img):
 imgdata = BytesIO()
 pil = Image.fromarray(img)
 pil.save(imgdata, format='PNG')
 imgdata.seek(0)
 return urllib.parse.quote(
 base64.b64encode(
 imgdata.getvalue()))

Mastering the Notebook

110

In [3]: def from_b64(b64):
 im = Image.open(BytesIO(
 base64.b64decode(b64)))
 return array(im)

3. We define a Python function that will process the webcam image in real time. It
accepts and returns a NumPy array. This function applies an edge detector with the
roberts() function in scikit-image as follows:
In [4]: def process_image(image):
 img = filter.roberts(image[:,:,0]/255.)
 return (255-img*255).astype(np.uint8)

4. Now, we create a custom widget to handle the bidirectional communication of the
video flow between the browser and Python:
In [5]:
class Camera(DOMWidget):
 _view_name = Unicode('CameraView', sync=True)

 # This string contains the base64-encoded raw
 # webcam image (browser -> Python).
 imageurl = Unicode('', sync=True)

 # This string contains the base64-encoded processed
 # webcam image(Python -> browser).
 imageurl2 = Unicode('', sync=True)

 # This function is called whenever the raw webcam
 # image is changed.
 def _imageurl_changed(self, name, new):
 head, data = new.split(',', 1)
 if not data:
 return

 # We convert the base64-encoded string
 # to a NumPy array.
 image = from_b64(data)

 # We process the image.
 image = process_image(image)

 # We convert the processed image
 # to a base64-encoded string.
 b64 = to_b64(image)

 self.imageurl2 = 'data:image/png;base64,' + b64

Chapter 3

111

5. The next step is to write the JavaScript code for the widget. The code is long, so we
just highlight the important parts here. The full code is on the book's website:
In [6]: %%javascript

var video = $('<video>')[0];
var canvas = $('<canvas>')[0];
var canvas2 = $('')[0];
[...]

require(["widgets/js/widget"], function(WidgetManager){
 var CameraView = IPython.DOMWidgetView.extend({
 render: function(){
 var that = this;

 // We append the HTML elements.
 setTimeout(function() {
 that.$el.append(video).
 append(canvas).
 append(canvas2);}, 200);

 // We initialize the webcam.
 [...]

 // We initialize the size of the canvas.
 video.addEventListener('canplay', function(ev){
 if (!streaming) {
 height = video.videoHeight / (
 video.videoWidth/width);
 video.setAttribute('width', width);
 video.setAttribute('height', height);
 [...]
 streaming = true;
 }
 }, false);

 // Play/Pause functionality.
 var interval;
 video.addEventListener('play', function(ev){
 // We get the picture every 100ms.
 interval = setInterval(takepicture, 100);
 })
 video.addEventListener('pause', function(ev){
 clearInterval(interval);
 })

Mastering the Notebook

112

 // This function is called at each time step.
 // It takes a picture and sends it to the model.
 function takepicture() {
 canvas.width = width; canvas.height = height;
 canvas2.width = width; canvas2.height = height;

 video.style.display = 'none';
 canvas.style.display = 'none';

 // We take a screenshot from the webcam feed and
 // we put the image in the first canvas.
 canvas.getContext('2d').drawImage(video,
 0, 0, width, height);

 // We export the canvas image to the model.
 that.model.set('imageurl',
 canvas.toDataURL('image/png'));
 that.touch();
 }
 },

 update: function(){
 // This function is called whenever Python modifies
 // the second (processed) image. We retrieve it and
 // we display it in the second canvas.
 var img = this.model.get('imageurl2');
 canvas2.src = img;
 return CameraView.__super__.update.apply(this);
 }
 });

 // Register the view with the widget manager.
 WidgetManager.register_widget_view('CameraView',
 CameraView);
});

6. Finally, we create and display the widget as follows:

In [7]: c = Camera()
 display(c)

Chapter 3

113

How it works...
Let's explain the principle of this implementation. The model has two attributes: the incoming
(raw) image from the browser and the outgoing (processed) image from Python. Every 100
milliseconds, JavaScript makes a capture of the webcam feed (in the <video> HTML element)
by copying it to a first canvas. The canvas image is serialized in base64 and assigned to the first
model attribute. Then, the Python function _imageurl_changed() is called. The image is
deserialized, processed by scikit-image, and reserialized. The second attribute is then modified
by Python, and is set to the serialized processed image. Finally, the update() function in
JavaScript deserializes the processed image and displays it in a second canvas.

There's more...
The speed of this example could be greatly improved by capturing the webcam image from
Python rather than from the browser. Here, the bottleneck probably stems from the two
transfers that occur at every time step from the browser to Python and conversely.

It would be more efficient to capture the webcam's image from Python using a library such
as OpenCV or SimpleCV. However, since these libraries may be difficult to install, it is much
simpler to let the browser access the webcam device.

See also
 f The Creating a custom JavaScript widget in the notebook – a spreadsheet editor for

pandas recipe

4
Profiling and
Optimization

In this chapter, we will cover the following topics:

 f Evaluating the time taken by a statement in IPython

 f Profiling your code easily with cProfile and IPython

 f Profiling your code line-by-line with line_profiler

 f Profiling the memory usage of your code with memory_profiler

 f Understanding the internals of NumPy to avoid unnecessary array copying

 f Using stride tricks with NumPy

 f Implementing an efficient rolling average algorithm with stride tricks

 f Making efficient array selections in NumPy

 f Processing huge NumPy arrays with memory mapping

 f Manipulating large arrays with HDF5 and PyTables

 f Manipulating large heterogeneous tables with HDF5 and PyTables

Introduction
Although Python is generally known (a bit unfairly) as a slow language, it is possible to achieve
very good performance with the right methods. This is the objective of this chapter and
the next. This chapter describes how to evaluate (profile) what makes a program slow, and
how this information can be used to optimize the code and make it more efficient. The next
chapter will deal with more advanced high-performance computing methods that should only
be tackled when the methods described here are not sufficient.

Profiling and Optimization

116

The recipes of this chapter are organized into three parts:

 f Time and memory profiling: Evaluating the performance of code

 f NumPy optimization: Using NumPy more efficiently, particularly with large arrays

 f Memory mapping with arrays: Implementing memory mapping techniques for
out-of-core computations on huge arrays, notably with the HDF5 file format

Evaluating the time taken by a statement in
IPython

The %timeit magic and the %%timeit cell magic (that applies to an entire code cell) allow
you to quickly evaluate the time taken by one or several Python statements. For more extensive
profiling, you may need to use more advanced methods presented in the next recipes.

How to do it...
We are going to estimate the time taken to calculate the sum of the inverse squares of all
positive integer numbers up to a given n:

1. Let's define n:
In [1]: n = 100000

2. Let's time this computation in pure Python:
In [2]: %timeit sum([1. / i**2 for i in range(1, n)])
10 loops, best of 3: 131 ms per loop

3. Now, let's use the %%timeit cell magic to time the same computation written on
two lines:
In [3]: %%timeit s = 0.
 for i in range(1, n):
 s += 1. / i**2
10 loops, best of 3: 137 ms per loop

4. Finally, let's time the NumPy version of this computation:
In [4]: import numpy as np
In [5]: %timeit np.sum(1. / np.arange(1., n) ** 2)
1000 loops, best of 3: 1.71 ms per loop

Chapter 4

117

How it works...
The %timeit command accepts several optional parameters. One such parameter is the
number of statement evaluations. By default, this number is chosen automatically so that
the %timeit command returns within a few seconds. However, this number can be specified
directly with the -r and -n parameters. Type %timeit? in IPython to get more information.

The %%timeit cell magic also accepts an optional setup statement in the first line (on
the same line as %%timeit), which is executed but not timed. All variables created in this
statement are available inside the cell.

There's more...
If you are not in an IPython interactive session, you can use timeit.timeit(). This
function, defined in Python's timeit module, benchmarks a Python statement stored in
a string. IPython's %timeit magic command is a convenient wrapper around timeit(),
useful in an interactive session. For more information on the timeit module, refer to
https://docs.python.org/3/library/timeit.html.

See also
 f The Profiling your code easily with cProfile and IPython recipe

 f The Profiling your code line-by-line with line_profiler recipe

Profiling your code easily with cProfile
and IPython

The %timeit magic command is often helpful, yet a bit limited when you need detailed
information about what takes most of the execution time in your code. This magic command
is meant for benchmarking (comparing the execution times of different versions of a function)
rather than profiling (getting a detailed report of the execution time, function by function).

Python includes a profiler named cProfile that breaks down the execution time into the
contributions of all called functions. IPython provides convenient ways to leverage this tool in
an interactive session.

Profiling and Optimization

118

How to do it...
IPython offers the %prun line magic and the %%prun cell magic to easily profile one or
multiple lines of code. The %run magic command also accepts a -p flag to run a Python script
under the control of the profiler. These commands accept a lot of options, and you may want
to take a look at their documentation with %prun? and %run?.

In this example, we will profile a numerical simulation of random walks starting at the
origin. We will cover these kinds of simulations in more detail in Chapter 13, Stochastic
Dynamical Systems.

1. Let's import NumPy and matplotlib:
In [1]: import numpy as np
 import matplotlib.pyplot as plt
In [2]: %matplotlib inline

2. Let's create a function generating random +1 and -1 values in an array:
In [3]: def step(*shape):
 # Create a random n-vector with +1 or -1
 # values.
 return 2 * (np.random.random_sample(shape)
 < .5) - 1

3. Now, let's write the simulation code in a cell starting with %%prun in order to profile
the entire simulation. The various options allow us to save the report in a file and
to sort the first 10 results by cumulative time. We will explain these options in more
detail in the How it works… section.
In [4]: %%prun -s cumulative -q -l 10 -T prun0
 n = 10000
 iterations = 50
 x = np.cumsum(step(iterations, n), axis=0)
 bins = np.arange(-30, 30, 1)
 y = np.vstack([np.histogram(x[i,:], bins)[0]
 for i in range(iterations)])

4. The profiling report has been saved in a text file named prun0. Let's display it
(the following output is a stripped down version that fits on this page):
In [5]: print(open('prun0', 'r').read())
 2960 function calls in 0.075 seconds
Ordered by: cumulative time
ncalls cumtime percall function
 50 0.037 0.001 histogram
 1 0.031 0.031 step
 50 0.024 0.000 sort

Chapter 4

119

 1 0.019 0.019 rand
 1 0.005 0.005 cumsum

Here, we observe the time taken by the different functions involved, directly or
indirectly, in our code.

5. If we run the exact same simulation with 500 iterations instead of 50, we obtain the
following results:
 29510 function calls in 1.359 seconds
 ncalls cumtime percall function
 500 0.566 0.001 histogram
 1 0.388 0.388 cumsum
 1 0.383 0.383 step
 500 0.339 0.001 sort
 1 0.241 0.241 rand

We can observe that the number of iterations has a big influence on the relative
performance cost of the involved functions (notably cumsum here).

How it works...
Python's profiler creates a detailed report of the execution time of our code, function by
function. Here, we can observe the number of calls of the functions histogram, cumsum,
step, sort, and rand, and the total time spent in those functions during the code's execution.
Internal functions are also profiled. For each function, we get the total number of calls, the
total and cumulative times, and their per-call counterparts (division by ncalls). The total
time represents how long the interpreter stays in a given function, excluding the time spent
in calls to subfunctions. The cumulative time is similar but includes the time spent in calls to
subfunctions. The filename, function name, and line number are displayed in the last column.

The %prun and %%prun magic commands accept multiple optional options (type %prun? for
more details). In the example, -s allows us to sort the report by a particular column, -q to
suppress (quell) the pager output (which is useful when we want to integrate the output in a
notebook), -l to limit the number of lines displayed or to filter the results by function name
(which is useful when we are interested in a particular function), and -T to save the report
in a text file. In addition, we can choose to save (dump) the binary report in a file with -D, or
to return it in IPython with -r. This database-like object contains all information about the
profiling and can be analyzed through Python's pstats module.

Every profiler brings its own overhead that can bias the
profiling results (probe effect). In other words, a profiled
program may run significantly slower than a non-profiled
program. That's a point to keep in mind.

Profiling and Optimization

120

"Premature optimization is the root of all evil"
As Donald Knuth's well-known quote suggests, optimizing code prematurely is generally
considered a bad practice. Code optimization should only be conducted when it's really
needed, that is, when the code is really too slow in normal situations. Additionally, we should
know exactly where we need to optimize your code; typically, the vast majority of the execution
time comprises a relatively small part of the code. The only way to find out is by profiling your
code; optimization should never be done without preliminary profiling.

I was once dealing with some fairly complicated code that was
slower than expected. I thought I had a pretty good idea of what
was causing the problem and how I could resolve it. The solution
would involve significant changes in the code. Fortunately, I first
profiled my code, just to be sure. My diagnostic appeared to
be utterly wrong; I had written somewhere max(x) instead of
np.max(x) by mistake, where x was a very large vector. It was
Python's built-in function that was called, instead of NumPy's
heavily optimized routine for arrays. If I hadn't profiled my code, I
would probably have missed this mistake forever. The program was
working perfectly fine, only 150 times slower!

For more general advice on programming optimization, see http://en.wikipedia.org/
wiki/Program_optimization.

There's more...
Profiling code in IPython is particularly simple (especially in the notebook), as we have seen
in this recipe. However, it may be undesirable or difficult to execute the code that we need
to profile from IPython (GUIs, for example). In this case, we can use cProfile directly. It is
slightly less straightforward than with IPython.

1. First, we call the following command:
$ python -m cProfile -o profresults myscript.py

The file profresults will contain the dump of the profiling results of myscript.py.

2. Then, we execute the following code from Python or IPython to display the profiling
results in a human-readable form:
import pstats
p = pstats.Stats('profresults')
p.strip_dirs().sort_stats("cumulative").print_stats()

Chapter 4

121

Explore the documentation of the cProfile and pstats modules to discover all of the
analyses that you can perform on the profiling reports.

The repository at https://github.com/rossant/easy_profiler
contains a simple command-line tool that facilitates the profiling of
Python scripts.

There are a few GUI tools for exploring and visualizing the output of a profiling session. For
example, RunSnakeRun allows you to view profile dumps in a GUI program.

Here are a few references:

 f Documentation of cProfile and pstats, available at https://docs.python.
org/3/library/profile.html

 f RunSnakeRun, at www.vrplumber.com/programming/runsnakerun/

 f Python profiling tools, available at http://blog.ionelmc.ro/2013/06/08/
python-profiling-tools/

See also
 f The Profiling your code line-by-line with line_profiler recipe

Profiling your code line-by-line with
line_profiler

Python's native cProfile module and the corresponding %prun magic break down the
execution time of code function by function. Sometimes, we may need an even more fine-
grained analysis of code performance with a line-by-line report. Such reports can be easier to
read than the reports of cProfile.

To profile code line-by-line, we need an external Python module named line_profiler
created by Robert Kern, available at http://pythonhosted.org/line_profiler/. In
this recipe, we will demonstrate how to use this module within IPython.

Getting ready
To install line_profiler, type pip install line_profiler in a terminal, or type !pip
install line_profiler in IPython (you need a C compiler).

On Windows, you can use Chris Gohlke's unofficial package available at www.lfd.uci.
edu/~gohlke/pythonlibs/#line_profiler.

Profiling and Optimization

122

How do to it...
We will profile the same simulation code as in the previous recipe, line-by-line:

1. First, let's import NumPy and the line_profiler IPython extension module that
comes with the package:
In [1]: import numpy as np
In [2]: %load_ext line_profiler

2. This IPython extension module provides a %lprun magic command to profile a
Python function line-by-line. It works best when the function is defined in a file and
not in the interactive namespace or in the notebook. Therefore, here we write our
code in a Python script using the %%writefile cell magic:
In [3]: %%writefile simulation.py
 import numpy as np
 def step(*shape):
 # Create a random n-vector with +1 or -1
 # values.
 return (2 * (np.random.random_sample(shape)
 < .5) - 1)
 def simulate(iterations, n=10000):
 s = step(iterations, n)
 x = np.cumsum(s, axis=0)
 bins = np.arange(-30, 30, 1)
 y = np.vstack([np.histogram(x[i,:], bins)[0]
 for i in range(iterations)])
 return y

3. Now, let's import this script into the interactive namespace so that we can execute
and profile our code:
In [4]: import simulation

4. We execute the function under the control of the line profiler. The functions to be
profiled need to be explicitly specified in the %lprun magic command. We also save
the report in a file, lprof0:
In [5]: %lprun -T lprof0 -f simulation.simulate simulation.
simulate(50)

5. Let's display the report (the following output is a stripped-down version that fits
in the page):
In [6]: print(open('lprof0', 'r').read())
File: simulation.py
Function: simulate at line 7
Total time: 0.114508 s
Line # % Time Line Contents

Chapter 4

123

 7 def simulate(iterations, n=10000):
 8 36.3 s = step(iterations, n)
 9 5.6 x = np.cumsum(s, axis=0)
 10 0.1 bins = np.arange(-30, 30, 1)
 11 58.1 y = np.vstack([np.histogram(...)])
 12 0.0 return y

6. If we perform the same analysis with 10 times the previous number of iterations
(simulation.simulate(500)), we get the following report:
Total time: 1.28704 s
 7 def simulate(iterations, n=10000):
 8 29.2 s = step(iterations, n)
 9 30.9 x = np.cumsum(s, axis=0)
 10 0.0 bins = np.arange(-30, 30, 1)
 11 39.9 y = np.vstack([np.histogram(...)])
 12 0.0 return y

How it works...
The %lprun command accepts a Python statement as its main argument. The functions to
profile need to be explicitly specified with -f. Other optional arguments include -D, -T, and
-r, and they work in a similar way to their %prun magic command counterparts.

The line_profiler module displays the time spent on each line of the profiled functions,
either in timer units or as a fraction of the total execution time. These details are essential
when we are looking for hotspots in our code.

There's more...
As in the previous recipe, there may be a need to run the line-by-line profiler on a standalone
Python program that cannot be launched easily from IPython. The procedure is a bit convoluted.

1. We download the kernprof file from https://github.com/rkern/line_
profiler/blob/master/kernprof.py, and save it in your code's directory.

2. In the code, we decorate the functions we wish to profile with @profile. We need
to remove these decorators at the end of the profiling session, as they will raise
NameError exceptions if the code is executed normally (that is, not under the control
of the line profiler):
@profile
def thisfunctionneedstobeprofiled():
 pass

Profiling and Optimization

124

See also the http://stackoverflow.com/
questions/18229628/python-profiling-
using-line-profiler-clever-way-to-
remove-profile-statements link for a clever
way to remove profile statements.

3. We execute the following command in a terminal:
python -m kernprof -l -v myscript.py > lprof.txt

The myscript.py script will be executed, and the report will be saved in lprof.txt.

The repository at https://github.com/rossant/
easy_profiler offers a slightly simpler way of using
the line-by-line profiler.

Tracing the step-by-step execution of a Python program
Let's also talk about tracing tools for Python, which can be useful for profiling or debugging
a program, or for educational purposes.

Python's trace module allows us to trace program execution of Python code. That's extremely
useful during in-depth debugging and profiling sessions. We can follow the entire sequence of
instructions executed by the Python interpreter. More information on the trace module
is available at https://docs.python.org/3/library/trace.html.

In addition, the Online Python Tutor is an online interactive educational tool that can help
us understand what the Python interpreter is doing step-by-step as it executes a program's
source code. The Online Python Tutor is available at http://pythontutor.com/.

See also
 f The Profiling your code easily with cProfile and IPython recipe

 f The Profiling the memory usage of your code with memory_profiler recipe

Profiling the memory usage of your code
with memory_profiler

The methods described in the previous recipe were about CPU time profiling. That may be
the most obvious factor when it comes to code profiling. However, memory is also a critical
factor. For instance, running np.zeros(500000000) is likely to instantaneously crash your
computer! This command may allocate more memory than is available on your system; your
computer will then reach a nonresponsive state within seconds.

Chapter 4

125

Writing memory-optimized code is not trivial and can really make your program faster.
This is particularly important when dealing with large NumPy arrays, as we will see later
in this chapter.

In this recipe, we will look at a simple memory profiler. This library, unsurprisingly called
memory_profiler, was created by Fabian Pedregosa. Its usage is very similar to
line_profiler, and it can be conveniently used from IPython. You can download it from
https://pypi.python.org/pypi/memory_profiler.

Getting ready
You can install memory_profiler with pip install memory_profiler.

On Windows, you also need psutil, which is available at https://pypi.python.
org/pypi/psutil. You can install it with pip install psutil, or by downloading
the package from https://code.google.com/p/psutil/. You can also download an
installer from Chris Gohlke's webpage at www.lfd.uci.edu/~gohlke/pythonlibs/.

The example in this recipe is the continuation of the previous recipe.

How to do it...
1. Assuming that the simulation code has been loaded as shown in the previous recipe,

we load the memory profiler IPython extension:
In [9]: %load_ext memory_profiler

2. Now, let's run the code under the control of the memory profiler:
In [10]: %mprun -T mprof0 -f simulation.simulate simulation.
simulate(50)

3. Let's show the results:
In [11]: print(open('mprof0', 'r').read())
Filename: simulation.py
Line # Mem usage Increment Line Contents
 7 39.672 MB 0.000 MB def simulate(...):
 8 41.977 MB 2.305 MB s = step(iterations, n)
 9 43.887 MB 1.910 MB x = np.cumsum(...)
 10 43.887 MB 0.000 MB bins = np.arange(...)
 11 43.887 MB 0.000 MB y = np.vstack(...)
 12 43.887 MB 0.000 MB return y

4. Finally, here is the report with 500 iterations:
Line # Mem usage Increment Line Contents
 7 40.078 MB 0.000 MB def simulate(...):
 8 59.191 MB 19.113 MB s = step(iterations, n)

Profiling and Optimization

126

 9 78.301 MB 19.109 MB x = np.cumsum(...)
 10 78.301 MB 0.000 MB bins = np.arange(...)
 11 78.301 MB 0.000 MB y = np.vstack(...)
 12 78.301 MB 0.000 MB return y

How it works...
The memory_profiler package checks the memory usage of the interpreter at every line.
The increment column allows us to spot those places in the code where large amounts of
memory are allocated. This is especially important when working with arrays. Unnecessary
array creations and copies can considerably slow down a program. We will tackle this issue in
the next few recipes.

There's more...
We can use memory_profiler without IPython, and we can also use a quick memory
benchmark in IPython for single commands.

Using memory_profiler for standalone Python programs
Using the memory profiler with standalone Python programs is similar but slightly simpler than
with line_profiler.

1. First, in our Python scripts, we decorate the functions we wish to profile
with @profile.

2. Then, we run:
$ python -m memory_profiler myscript.py > mprof.txt

The profiling report will be saved in myprof.txt.

Using the %memit magic command in IPython
The memory_profiler IPython extension also comes with a %memit magic command that
lets us benchmark the memory used by a single Python statement. Here is a simple example:

In [14]: %memit np.random.randn(1000, 1000)
maximum of 1: 46.199219 MB per loop

Other tools
There are other tools to monitor the memory usage of a Python program, notably Guppy-PE
(http://guppy-pe.sourceforge.net/), PySizer (http://pysizer.8325.org/), and
Pympler (https://code.google.com/p/pympler/). Used in conjunction with IPython
and Python's introspection capabilities, these tools allow you to analyze the memory usage of
a namespace or a particular object.

Chapter 4

127

See also
 f The Profiling your code line-by-line with line_profiler recipe

 f The Understanding the internals of NumPy to avoid unnecessary array copying recipe

Understanding the internals of NumPy to
avoid unnecessary array copying

We can achieve significant performance speedups with NumPy over native Python code,
particularly when our computations follow the Single Instruction, Multiple Data (SIMD)
paradigm. However, it is also possible to unintentionally write non-optimized code with NumPy.

In the next few recipes, we will see some tricks that can help us write optimized NumPy code.
In this recipe, we will see how to avoid unnecessary array copies in order to save memory. In
that respect, we will need to dig into the internals of NumPy.

Getting ready
First, we need a way to check whether two arrays share the same underlying data buffer
in memory. Let's define a function id() that returns the memory location of the underlying
data buffer:

def id(x):
 # This function returns the memory
 # block address of an array.
 return x.__array_interface__['data'][0]

Two arrays with the same data location (as returned by id) share the same underlying data
buffer. However, the opposite is true only if the arrays have the same offset (meaning that
they have the same first element). Two shared arrays with different offsets will have slightly
different memory locations, as shown in the following example:

In [1]: id(a), id(a[1:])
Out[1]: (71211328, 71211336)

In the next few recipes, we'll make sure to use this method with arrays that have the same
offset. Here is a more general and reliable solution for finding out whether two arrays share
the same data:

In [2]: def get_data_base(arr):
 """For a given Numpy array, finds the
 base array that "owns" the actual data."""
 base = arr
 while isinstance(base.base, np.ndarray):

Profiling and Optimization

128

 base = base.base
 return base

 def arrays_share_data(x, y):
 return get_data_base(x) is get_data_base(y)

In [3]: print(arrays_share_data(a,a.copy()),
 arrays_share_data(a,a[1:]))
False True

Thanks to Michael Droettboom for pointing this out and proposing this alternative solution.

How to do it...
Computations with NumPy arrays may involve internal copies between blocks of memory.
These copies are not always necessary, in which case they should be avoided, as we will see
in the following tips:

1. We may sometimes need to make a copy of an array; for instance, if we need to
manipulate an array while keeping an original copy in memory:
In [3]: a = np.zeros(10); aid = id(a); aid
Out[3]: 65527008L
In [4]: b = a.copy(); id(b) == aid
Out[4]: False

2. Array computations can involve in-place operations (the first example in the following
code: the array is modified) or implicit-copy operations (the second example: a new
array is created):
In [5]: a *= 2; id(a) == aid
Out[5]: True
In [6]: a = a*2; id(a) == aid
Out[6]: False

Be sure to choose the type of operation you actually need. Implicit-copy operations
are significantly slower, as shown here:

In [7]: %%timeit a = np.zeros(10000000)
 a *= 2
10 loops, best of 3: 23.9 ms per loop
In [8]: %%timeit a = np.zeros(10000000)
 a = a*2
10 loops, best of 3: 77.9 ms per loop

Chapter 4

129

3. Reshaping an array may or may not involve a copy. The reasons will be explained in
the How it works... section. For instance, reshaping a 2D matrix does not involve a
copy, unless it is transposed (or more generally, non-contiguous):
In [9]: a = np.zeros((10, 10)); aid = id(a)
In [10]: b = a.reshape((1, -1)); id(b) == aid
Out[10]: True
In [11]: c = a.T.reshape((1, -1)); id(c) == aid
Out[11]: False

Therefore, the latter instruction will be significantly slower than the former.

4. Both the flatten and the ravel methods of an array reshape it into a 1D vector
(a flattened array). However, the flatten method always returns a copy, and the
ravel method returns a copy only if necessary (thus it's faster, especially with large
arrays).
In [12]: d = a.flatten(); id(d) == aid
Out[12]: False
In [13]: e = a.ravel(); id(e) == aid
Out[13]: True
In [14]: %timeit a.flatten()
1000000 loops, best of 3: 1.65 µs per loop
In [15]: %timeit a.ravel()
1000000 loops, best of 3: 566 ns per loop

5. Broadcasting rules allow us to make computations on arrays with different but
compatible shapes. In other words, we don't always need to reshape or tile our arrays
to make their shapes match. The following example illustrates two ways of doing an
outer product between two vectors: the first method involves array tiling, the second
one (faster) involves broadcasting:
In [16]: n = 1000
In [17]: a = np.arange(n)
 ac = a[:, np.newaxis] # Column vector.
 ar = a[np.newaxis, :] # Row vector.
In [18]: %timeit np.tile(ac, (1, n)) * np.tile(ar, (n, 1))
10 loops, best of 3: 25 ms per loop
In [19]: %timeit ar * ac
100 loops, best of 3: 4.63 ms per loop

How it works...
In this section, we will see what happens under the hood when using NumPy, and how this
knowledge allows us to understand the tricks given in this recipe.

Profiling and Optimization

130

Why are NumPy arrays efficient?
A NumPy array is basically described by metadata (notably the number of dimensions, the
shape, and the data type) and the actual data. The data is stored in a homogeneous and
contiguous block of memory, at a particular address in system memory (Random Access
Memory, or RAM). This block of memory is called the data buffer. This is the main difference
when compared to a pure Python structure, such as a list, where the items are scattered across
the system memory. This aspect is the critical feature that makes NumPy arrays so efficient.

Why is this so important? Here are the main reasons:

 f Computations on arrays can be written very efficiently in a low-level language such
as C (and a large part of NumPy is actually written in C). Knowing the address of the
memory block and the data type, it is just simple arithmetic to loop over all items, for
example. There would be a significant overhead to do that in Python with a list.

 f Spatial locality in memory access patterns results in performance gains notably
due to the CPU cache. Indeed, the cache loads bytes in chunks from RAM to the
CPU registers. Adjacent items are then loaded very efficiently (sequential locality, or
locality of reference).

 f Finally, the fact that items are stored contiguously in memory allows NumPy to take
advantage of vectorized instructions of modern CPUs, such as Intel's SSE and AVX,
AMD's XOP, and so on. For example, multiple consecutive floating point numbers can
be loaded in 128, 256, or 512 bits registers for vectorized arithmetical computations
implemented as CPU instructions.

Additionally, NumPy can be linked to highly optimized linear
algebra libraries such as BLAS and LAPACK through ATLAS
or the Intel Math Kernel Library (MKL). A few specific matrix
computations may also be multithreaded, taking advantage of
the power of modern multicore processors.

In conclusion, storing data in a contiguous block of memory ensures that the architecture
of modern CPUs is used optimally, in terms of memory access patterns, CPU cache, and
vectorized instructions.

What is the difference between in-place and implicit-copy
operations?
Let's explain the example in step 2. An expression such as a *= 2 corresponds to an in-place
operation, where all values of the array are multiplied by two. By contrast, a = a*2 means
that a new array containing the values of a*2 is created, and the variable a now points to this
new array. The old array becomes unreferenced and will be deleted by the garbage collector.
No memory allocation happens in the first case, contrary to the second case.

Chapter 4

131

More generally, expressions such as a[i:j] are views to parts of an array; they point to the
memory buffer containing the data. Modifying them with in-place operations changes the
original array. Hence, a[:] = a*2 results in an in-place operation, unlike a = a*2.

Knowing this subtlety of NumPy can help you fix some bugs (where an array is implicitly and
unintentionally modified because of an operation on a view), and optimize the speed and
memory consumption of your code by reducing the number of unnecessary copies.

Why can't some arrays be reshaped without a copy?
We explain the example in step 3 here, where a transposed 2D matrix cannot be flattened
without a copy. A 2D matrix contains items indexed by two numbers (row and column), but
it is stored internally as a 1D contiguous block of memory, accessible with a single number.
There is more than one way of storing matrix items in a 1D block of memory: we can put the
elements of the first row first, then the second row, and so on, or the elements of the first
column first, then the second column, and so on. The first method is called row-major order,
whereas the latter is called column-major order. Choosing between the two methods is only a
matter of internal convention: NumPy uses the row-major order, like C, but unlike FORTRAN.

How the array is represented in Numpy How the array is stored in memory

Row Major
Order (C)

(default in NumPy)

Column Major
Order (Fortran)

Internal array layouts: row-major and column-major orders

More generally, NumPy uses the notion of strides to convert between a multidimensional
index and the memory location of the underlying (1D) sequence of elements. The specific
mapping between array[i1, i2] and the relevant byte address of the internal data is
given by:

offset = array.strides[0] * i1 + array.strides[1] * i2

When reshaping an array, NumPy avoids copies when possible by modifying the strides
attribute. For example, when transposing a matrix, the order of strides is reversed, but
the underlying data remains identical. However, flattening a transposed array cannot be
accomplished simply by modifying strides (try it!), so a copy is needed (thanks to Chris
Beaumont for clarifying an earlier version of this paragraph).

Profiling and Optimization

132

Internal array layout can also explain some unexpected performance discrepancies
between very similar NumPy operations. As a small exercise, can you explain the following
benchmarks?

In [20]: a = np.random.rand(5000, 5000)
In [21]: %timeit a[0,:].sum()
100000 loops, best of 3: 17.9 µs per loop
In [22]: %timeit a[:,0].sum()
10000 loops, best of 3: 60.6 µs per loop

What are NumPy broadcasting rules?
Broadcasting rules describe how arrays with different dimensions and/or shapes can be
used for computations. The general rule is that two dimensions are compatible when they
are equal, or when one of them is 1. NumPy uses this rule to compare the shapes of the two
arrays element-wise, starting with the trailing dimensions and working its way forward. The
smallest dimension is internally stretched to match the other dimension, but this operation
does not involve any memory copy.

There's more...
Here are a few references:

 f Broadcasting rules and examples, available at http://docs.scipy.org/doc/
numpy/user/basics.broadcasting.html

 f Array interface in NumPy, at http://docs.scipy.org/doc/numpy/reference/
arrays.interface.html

 f Locality of reference, at http://en.wikipedia.org/wiki/Locality_of_
reference

 f Internals of NumPy in the SciPy lectures notes, available at http://scipy-
lectures.github.io/advanced/advanced_numpy/

 f 100 NumPy exercises by Nicolas Rougier, available at www.loria.fr/~rougier/
teaching/numpy.100/index.html

See also
 f The Using stride tricks with NumPy recipe

Chapter 4

133

Using stride tricks with NumPy
In this recipe, we will dig deeper into the internals of NumPy arrays, by generalizing the notion
of row-major and column-major orders to multidimensional arrays. The general notion is that
of strides, which describe how the items of a multidimensional array are organized within a
one-dimensional data buffer. Strides are mostly an implementation detail, but they can also
be used in specific situations to optimize some algorithms.

Getting ready
We suppose that NumPy has been imported and that the id function has been defined
(see the previous recipe, Understanding the internals of NumPy to avoid unnecessary
array copying).

How to do it...
1. Strides are integer numbers describing the byte step in the contiguous block of

memory for each dimension.
In [3]: x = np.zeros(10); x.strides
Out[3]: (8,)

This vector x contains double-precision floating point numbers (float64, 8 bytes); one
needs to go 8 bytes forward to go from one item to the next.

2. Now, let's look at the strides of a 2D array:
In [4]: y = np.zeros((10, 10)); y.strides
Out[4]: (80, 8)

In the first dimension (vertical), one needs to go 80 bytes (10 float64 items) forward
to go from one item to the next, because the items are internally stored in row-major
order. In the second dimension (horizontal), one needs to go 8 bytes forward to go
from one item to the next.

3. Let's show how we can revisit the broadcasting rules from the previous recipe
using strides:
In [5]: n = 1000; a = np.arange(n)

We will create a new array, b, pointing to the same memory block as a, but with a
different shape and different strides. This new array will look like a vertically-tiled
version of a. We use a special function in NumPy to change the strides of an array:
In [6]: b = np.lib.stride_tricks.as_strided(a, (n, n),
 (0, 4))

Profiling and Optimization

134

Out[7]: array([[0, 1, 2, ..., 997, 998, 999],
 ...,
 [0, 1, 2, ..., 997, 998, 999]])
In [8]: b.size, b.shape, b.nbytes
Out[8]: (1000000, (1000, 1000), 4000000)

NumPy believes that this array contains one million different elements, whereas the
data buffer actually contains the same 1000 elements as a.

4. We can now perform an efficient outer product using the same principle as with
broadcasting rules:
In [9]: %timeit b * b.T
100 loops, best of 3: 5.03 ms per loop
In [10]: %timeit np.tile(a, (n, 1)) \
 * np.tile(a[:, np.newaxis], (1, n))
10 loops, best of 3: 28 ms per loop

How it works...
Every array has a number of dimensions, a shape, a data type, and strides. Strides describe
how the items of a multidimensional array are organized in the data buffer. There are many
different schemes for arranging the items of a multidimensional array in a one-dimensional
block. NumPy implements a strided indexing scheme, where the position of any element is
a linear combination of the dimensions, the coefficients being the strides. In other words,
strides describe, in any dimension, how many bytes we need to jump over in the data buffer to
go from one item to the next.

The position of any element in a multidimensional array is given by a linear combination of its
indices, as follows:

()

()

()

0 1

1

0 1
0

0 1

1 1

0 1

an array one item
ndim indices ,...,

shape ,..., position

strides ,...,
 itemsize

examples: column-major and row-major orders

s , s

N

N

N k k
k

N

k N
column row
k j k j

j j k

N i i

d d s i

s s

d d

α

α α

−

−

−
=

−

− −

= = +

= =

= =

=

=

= =

∑

∏ ∏

Chapter 4

135

Artificially changing the strides allows us to make some array operations more efficient than
with standard methods, which may involve array copies. Internally, that's how broadcasting
works in NumPy.

The as_strided method takes an array, a shape, and strides as arguments. It creates a
new array, but uses the same data buffer as the original array. The only thing that changes
is the metadata. This trick lets us manipulate NumPy arrays as usual, except that they may
take much less memory than what NumPy thinks. Here, using 0 in the strides implies that any
array item can be addressed by many multidimensional indices, resulting in memory savings.

Be careful with strided arrays! The as_strided function does not
check whether you stay inside the memory block bounds. This means
that you need to handle edge effects manually; otherwise, you may
end up with garbage values in your arrays.

We will see a more useful application of stride tricks in the next recipe.

See also
 f The Implementing an efficient rolling average algorithm with stride tricks recipe

Implementing an efficient rolling average
algorithm with stride tricks

Stride tricks can be useful for local computations on arrays, when the computed value at a
given position depends on the neighboring values. Examples include dynamical systems,
digital filters, and cellular automata.

In this recipe, we will implement an efficient rolling average algorithm (a particular type
of convolution-based linear filter) with NumPy stride tricks. A rolling average of a 1D vector
contains, at each position, the average of the elements around this position in the original
vector. Roughly speaking, this process filters out the noisy components of a signal so as to
keep only the slower components.

Getting ready
Make sure to reuse the id() function from the Understanding the internals of NumPy to
avoid unnecessary array copying recipe. This function returns the memory address of the
internal data buffer of a NumPy array.

Profiling and Optimization

136

How to do it...
The idea is to start from a 1D vector, and make a virtual 2D array where each line is a shifted
version of the previous line. When using stride tricks, this process is very efficient as it does
not involve any copy.

1. Let's generate a 1D vector:
In [1]: import numpy as np
 from numpy.lib.stride_tricks import as_strided
In [2]: n = 5; k = 2
In [3]: a = np.linspace(1, n, n); aid = id(a)

2. Let's change the strides of a to add shifted rows:
In [4]: as_strided(a, (k, n), (8, 8))
Out[4]: array([[1e+00, 2e+00, 3e+00, 4e+00, 5e+00],
 [2e+00, 3e+00, 4e+00, 5e+00, -1e-23]])

The last value indicates an out-of-bounds problem: stride tricks can be dangerous as
memory access is not checked. Here, we should take edge effects into account by
limiting the shape of the array.

In [5]: as_strided(a, (k, n-k+1), (8, 8))
Out[5]: array([[1., 2., 3., 4.],
 [2., 3., 4., 5.]])

3. Now, let's implement the computation of the rolling average. The first version
(standard method) involves explicit array copies, whereas the second version
uses stride tricks:
In [6]: def shift1(x, k):
 return np.vstack([x[i:n-k+i+1] for i in
 range(k)])
In [7]: def shift2(x, k):
 return as_strided(x, (k, n-k+1),
 (x.itemsize,)*2)

4. These two functions return the same result, except that the array returned by the
second function refers to the original data buffer:
In [8]: b = shift1(a, k); b, id(b) == aid
Out[8]: (array([[1., 2., 3., 4.],
 [2., 3., 4., 5.]]), False)
In [9]: c = shift2(a, k); c, id(c) == aid
Out[9]: (array([[1., 2., 3., 4.],
 [2., 3., 4., 5.]]), True)

Chapter 4

137

5. Let's generate a signal:
In [10]: n, k = 100, 10
 t = np.linspace(0., 1., n)
 x = t + .1 * np.random.randn(n)

6. We compute the signal rolling average by creating the shifted version of the signal,
and averaging along the vertical dimension. The result is shown in the next figure:
In [11]: y = shift2(x, k)
 x_avg = y.mean(axis=0)

A signal and its rolling average

7. Let's evaluate the time taken by the first method:
In [15]: %timeit shift1(x, k)
10000 loops, best of 3: 163 µs per loop
In [16]: %%timeit y = shift1(x, k)
 z = y.mean(axis=0)
10000 loops, best of 3: 63.8 µs per loop

8. And by the second method:
In [17]: %timeit shift2(x, k)
10000 loops, best of 3: 23.3 µs per loop
In [18]: %%timeit y = shift2(x, k)
 z = y.mean(axis=0)
10000 loops, best of 3: 35.8 µs per loop

In the first version, most of the time is spent in the array copy, whereas in the stride
trick version, most of the time is instead spent in the computation of the average.

See also
 f The Using stride tricks with NumPy recipe

Profiling and Optimization

138

Making efficient array selections in NumPy
NumPy offers several ways of selecting slices of arrays. Array views refer to the original data
buffer of an array, but with different offsets, shapes, and strides. They only permit strided
selections (that is, with linearly spaced indices). NumPy also offers specific functions to
make arbitrary selections along one axis. Finally, fancy indexing is the most general selection
method, but it is also the slowest as we will see in this recipe. Faster alternatives should be
chosen when possible.

Getting ready
We suppose that NumPy has been imported and that the id function has been defined (see
the Understanding the internals of NumPy to avoid unnecessary array copying recipe).

How to do it...
1. Let's create an array with a large number of rows. We will select slices of this array

along the first dimension:
In [3]: n, d = 100000, 100
In [4]: a = np.random.random_sample((n, d)); aid = id(a)

2. Let's select one row from every 10 rows, using two different methods (array view and
fancy indexing):
In [5]: b1 = a[::10]
 b2 = a[np.arange(0, n, 10)]
In [6]: np.array_equal(b1, b2)
Out[6]: True

3. The view refers to the original data buffer, whereas fancy indexing yields a copy:
In [7]: id(b1) == aid, id(b2) == aid
Out[7]: (True, False)

4. Let's compare the performance of both methods:
In [8]: %timeit a[::10]
100000 loops, best of 3: 2.03 µs per loop
In [9]: %timeit a[np.arange(0, n, 10)]
10 loops, best of 3: 46.3 ms per loop

Fancy indexing is several orders of magnitude slower as it involves copying a large array.

Chapter 4

139

5. When nonstrided selections need to be done along one dimension, array views are
not an option. However, alternatives to fancy indexing still exist in this case. Given a
list of indices, NumPy's take() function performs a selection along one axis:
In [10]: i = np.arange(0, n, 10)
In [11]: b1 = a[i]
 b2 = np.take(a, i, axis=0)
In [12]: np.array_equal(b1, b2)
Out[12]: True

The second method is faster:
In [13]: %timeit a[i]
10 loops, best of 3: 50.2 ms per loop
In [14]: %timeit np.take(a, i, axis=0)
100 loops, best of 3: 11.1 ms per loop

Performance of fancy indexing has been improved in recent
versions of NumPy; this trick is especially useful on older
versions of NumPy.

6. When the indices to select along one axis are specified by a vector of Boolean masks,
the compress() function is an alternative to fancy indexing:
In [15]: i = np.random.random_sample(n) < .5
In [16]: b1 = a[i]
 b2 = np.compress(i, a, axis=0)
In [17]: np.array_equal(b1, b2)
Out[17]: True
In [18]: %timeit a[i]
1 loops, best of 3: 286 ms per loop
In [19]: %timeit np.compress(i, a, axis=0)
10 loops, best of 3: 41.3 ms per loop

The second method is also faster than fancy indexing.

How it works...
Fancy indexing is the most general way of making completely arbitrary selections of an array.
However, more specific and faster methods often exist and should be preferred when possible.

Array views should be used whenever strided selections have to be done, but we need to be
careful about the fact that views refer to the original data buffer.

Profiling and Optimization

140

There's more...
Here are a few references:

 f The complete list of NumPy routines is available in the NumPy Reference Guide, at
http://docs.scipy.org/doc/numpy/reference/

 f The list of indexing routines is available at http://docs.scipy.org/doc/
numpy/reference/routines.indexing.html

Processing huge NumPy arrays with
memory mapping

Sometimes, we need to deal with NumPy arrays that are too big to fit in the system memory.
A common solution is to use memory mapping and implement out-of-core computations.
The array is stored in a file on the hard drive, and we create a memory-mapped object to this
file that can be used as a regular NumPy array. Accessing a portion of the array results in
the corresponding data being automatically fetched from the hard drive. Therefore, we only
consume what we use.

How to do it...
1. Let's create a memory-mapped array:

In [1]: import numpy as np
In [2]: nrows, ncols = 1000000, 100
In [3]: f = np.memmap('memmapped.dat', dtype=np.float32,
 mode='w+', shape=(nrows, ncols))

2. Let's feed the array with random values, one column at a time because our system's
memory is limited!
In [4]: for i in range(ncols):
 f[:,i] = np.random.rand(nrows)

We save the last column of the array:

In [5]: x = f[:,-1]

3. Now, we flush memory changes to disk by deleting the object:
In [6]: del f

Chapter 4

141

4. Reading a memory-mapped array from disk involves the same memmap function. The
data type and the shape need to be specified again, as this information is not stored
in the file:
In [7]: f = np.memmap('memmapped.dat', dtype=np.float32,
 shape=(nrows, ncols))
In [8]: np.array_equal(f[:,-1], x)
Out[8]: True
In [9]: del f

This method is not the most adapted for long-term storage of
data and data sharing. The following recipes in this chapter will
show a better way based on the HDF5 file format.

How it works...
Memory mapping lets you work with huge arrays almost as if they were regular arrays. Python
code that accepts a NumPy array as input will also accept a memmap array. However, we need to
ensure that the array is used efficiently. That is, the array is never loaded as a whole (otherwise,
it would waste system memory and would dismiss any advantage of the technique).

Memory mapping is also useful when you have a huge file containing raw data in a
homogeneous binary format with a known data type and shape. In this case, an alternative
solution is to use NumPy's fromfile() function with a file handle created with Python's
native open() function. Using f.seek() lets you position the cursor at any location and load
a given number of bytes into a NumPy array.

There's more...
Another way of dealing with huge NumPy matrices is to use sparse matrices through SciPy's
sparse subpackage. It is adapted when our matrices contain mostly zeros, as is often the
case with simulations of partial differential equations, graph algorithms, or specific machine
learning applications. Representing matrices as dense structures can be a waste of memory,
and sparse matrices offer a more efficient compressed representation.

Using sparse matrices in SciPy is not straightforward as multiple implementations exist. Each
implementation is best for a particular kind of application. Here are a few references:

 f SciPy lecture notes about sparse matrices, available at http://scipy-lectures.
github.io/advanced/scipy_sparse/index.html

 f Reference documentation on sparse matrices, at http://docs.scipy.org/doc/
scipy/reference/sparse.html

 f Documentation of memmap, at http://docs.scipy.org/doc/numpy/
reference/generated/numpy.memmap.html

Profiling and Optimization

142

See also
 f The Manipulating large arrays with HDF5 and PyTables recipe

 f The Manipulating large heterogeneous tables with HDF5 and PyTables recipe

Manipulating large arrays with HDF5 and
PyTables

NumPy arrays can be persistently saved on disk using built-in functions in NumPy such as
np.savetxt, np.save, or np.savez, and loaded in memory using analogous functions.
These methods are best when the arrays contain less than a few million points. For larger
arrays, these methods suffer from two major problems: they become too slow, and they
require the arrays to be fully loaded in memory. Arrays containing billions of points can be too
big to fit in system memory, and alternative methods are required.

These alternative methods rely on memory mapping: the array resides on the hard drive, and
chunks of the array are selectively loaded in memory as soon as the CPU needs them. This
technique is memory-efficient, at the expense of a slight overhead due to hard drive access.
Cache mechanisms and optimizations can mitigate this issue.

The previous recipe showed a basic memory mapping technique using NumPy. In this recipe,
we will use a package named PyTables, which is specifically designed to deal with very large
datasets. It implements fast memory-mapping techniques via a widely-used and open file
format specification called Hierarchical Data Format, or HDF5. An HDF5 file contains one or
several datasets (arrays or heterogeneous tables) organized into a POSIX-like hierarchy. Any
part of the datasets can be accessed efficiently and easily without unnecessarily wasting the
system memory.

As we will see later in this recipe, an alternative for PyTables is h5py. It is more lightweight and
more adapted than PyTables in some situations.

In this recipe, we will see how to manipulate large arrays using HDF5 and PyTables. The next
recipe will be about pandas-like heterogeneous tables.

Getting ready
You need PyTables 3.0+ for this recipe and the next one. With Anaconda, you can install
PyTables using conda install tables. You will also find binary installers at http://
pytables.github.io/usersguide/installation.html. Windows users can find
installers on www.lfd.uci.edu/~gohlke/pythonlibs/#pytables.

Chapter 4

143

Prior to version 3.0, PyTables used a camel case convention
for the names of attributes and methods. The latest versions
use the more standard Python convention using underscores.
So, for example, tb.open_file is tb.openFile in
versions prior to 3.0.

How to do it...
1. First, we need to import NumPy and PyTables (the package's name is tables):

In [1]: import numpy as np
 import tables as tb

2. Let's create a new empty HDF5 file:
In [2]: f = tb.open_file('myfile.h5', 'w')

3. We create a new top-level group named experiment1:
In [3]: f.create_group('/', 'experiment1')
Out[3]: /experiment1 (Group) u''
 children := []

4. Let's also add some metadata to this group:
In [4]: f.set_node_attr('/experiment1', 'date', '2014-09-01')

5. In this group, we create a 1000*1000 array named array1:
In [5]: x = np.random.rand(1000, 1000)
 f.create_array('/experiment1', 'array1', x)
Out[5]: /experiment1/array1 (Array(1000L, 1000L))

6. Finally, we need to close the file to commit the changes on disk:
In [6]: f.close()

7. Now, let's open this file. We could have done this in another Python session since the
array has been saved in the HDF5 file.
In [7]: f = tb.open_file('myfile.h5', 'r')

8. We can retrieve an attribute by giving the group path and the attribute name:
In [8]: f.get_node_attr('/experiment1', 'date')
Out[8]: '2014-09-01'

Profiling and Optimization

144

9. We can access any item in the file using attributes, replacing slashes with dots
in the paths, and starting with root (corresponding to the path /). IPython's tab
completion is particularly useful in this respect when exploring a file interactively.
In [9]: y = f.root.experiment1.array1
 # /experiment1/array1
 type(y)
Out[9]: tables.array.Array

10. The array can be used as a NumPy array, but an important distinction is that it is
stored on disk instead of system memory. Performing a computation on this array
automatically loads the requested section of the array into memory, thus it is more
efficient to access only the array's views.
In [10]: np.array_equal(x[0,:], y[0,:])
Out[10]: True

11. It is also possible to get a node from its absolute path, which is useful when the path
is only known at runtime:
In [11]: f.get_node('/experiment1/array1')
Out[11]: /experiment1/array1 (Array(1000, 1000))

12. We're done for this recipe, so let's do some clean-up:
In [12]: f.close()
In [13]: import os
 os.remove('myfile.h5')

How it works...
In this recipe, we stored a single array in the file, but HDF5 is especially useful when many arrays
need to be saved in a single file. HDF5 is generally used in big projects, when large arrays have
to be organized within a hierarchical structure. For example, it is largely used at NASA, NOAA,
and many other scientific institutions (see www.hdfgroup.org/users.html). Researchers
can store recorded data across multiple devices, multiple trials, and multiple experiments.

In HDF5, the data is organized within a tree. Nodes are either groups (analogous to folders in
a file system) or datasets (analogous to files). A group can contain subgroups and datasets,
whereas datasets only contain data. Both groups and datasets can contain attributes
(metadata) that have a basic data type (integer or floating point number, string, and so on).
HDF5 also supports internal and external links; a given path can refer to another group or
dataset within the same file, or within another file. This feature may be useful if you need
different files for the same experiment or project.

Chapter 4

145

Being able to access a chunk of a single array without loading the rest of the array and the
file in memory is quite convenient. Moreover, a loaded array can be polymorphically accessed
using standard NumPy's slicing syntax. Code that accepts a NumPy array as an argument can,
in principle, accept a PyTables array object as an argument as well.

There's more...
In this recipe, we created a PyTables Array object to store our NumPy array. Other similar
types of objects include CArrays that store large arrays in chunks and support lossless
compression. Also, an EArray object is extendable in at most one dimension, which is useful
when the dimensions of the array are not known when creating the array in the file. A common
use case is recording data during an online experiment.

The other main type of HDF5 object is Table, which stores tabular data in a two-dimensional
table with heterogeneous data types. In PyTables, a Table is to an Array what a pandas
DataFrame is to a NumPy ndarray. We will see those in the next recipe.

An interesting feature of HDF5 files is that they are not tied to PyTables. As HDF5 is an open
format specification, libraries exist in most languages (C, FORTRAN, MATLAB, and many
others), so it's easy to open an HDF5 file in these languages.

In HDF5, a dataset may be stored in a contiguous block of memory, or in chunks. Chunks
are atomic objects and HDF5/PyTables can only read and write entire chunks. Chunks are
internally organized within a tree data structure called a B-tree. When we create a new array
or table, we can specify the chunk shape. It is an internal detail, but it can greatly affect
performance when writing and reading parts of the dataset.

The optimal chunk shape depends on how we plan to access the data. There is a trade-off
between many small chunks (large overhead due to managing lots of chunks) and a few large
chunks (inefficient disk I/O). In general, the chunk size is recommended to be smaller than 1
MB. The chunk cache is also an important parameter that may affect performance.

Relatedly, we should specify as an optional argument the expected number of rows when we
create an EArray or a Table object so as to optimize the internal structure of the file. You
can find more information in the PyTables users guide section on optimization (see the link
mentioned in the following references), which is a must-read if you plan to do anything slightly
complex on large HDF5 files (more than 100 MB).

Finally, we should mention another HDF5 library in Python named h5py. This lightweight library
offers an easy interface to HDF5 files, with emphasis on arrays rather than tables. It provides
very natural access to HDF5 arrays from NumPy, and may be sufficient if you do not need the
database-like features of PyTables. For more information on h5py, refer to www.h5py.org.

Profiling and Optimization

146

Here are a few references:

 f HDF5 chunking, at www.hdfgroup.org/HDF5/doc/Advanced/Chunking/

 f PyTables optimization guide, available at http://pytables.github.io/
usersguide/optimization.html

 f Difference between PyTables and h5py, from the perspective of h5py, at
https://github.com/h5py/h5py/wiki/FAQ#whats-the-difference-
between-h5py-and-pytables

 f Difference between PyTables and h5py, from the perspective of PyTables,
at www.pytables.org/moin/FAQ#HowdoesPyTablescomparewiththeh5pypr
oject.3F

See also
 f The Processing huge NumPy arrays with memory mapping recipe

 f The Manipulating large heterogeneous tables with HDF5 and PyTables recipe

 f The Ten tips for conducting reproducible interactive computing experiments recipe in
Chapter 2, Best Practices in Interactive Computing

Manipulating large heterogeneous tables
with HDF5 and PyTables

PyTables can store homogeneous blocks of data as NumPy-like arrays in HDF5 files. It can
also store heterogeneous tables, as we will see in this recipe.

Getting ready
You need PyTables for this recipe (see the previous recipe for installation instructions).

How to do it...
1. Let's import NumPy and PyTables:

In [1]: import numpy as np
 import tables as tb

2. Let's create a new HDF5 file:
In [2]: f = tb.open_file('myfile.h5', 'w')

Chapter 4

147

3. We will create an HDF5 table with two columns: the name of a city (a string with 64
characters at most), and its population (a 32-bit integer). We can specify the columns
by creating a complex data type with NumPy:
In [3]: dtype = np.dtype([('city','S64'),
 ('population', 'i4')])

4. Now, we create the table in /table1:
In [4]: table = f.create_table('/', 'table1', dtype)

5. Let's add a few rows:
In [5]: table.append([('Brussels', 1138854),
 ('London', 8308369),
 ('Paris', 2243833)])

6. After adding rows, we need to flush the table to commit the changes on disk:
In [6]: table.flush()

7. There are many ways to access the data from a table. The easiest but not particularly
efficient way is to load the entire table in memory, which returns a NumPy array:
In [7]: table[:]
Out[7]: array([('Brussels', 1138854),
 ('London', 8308369),
 ('Paris', 2243833)],
 dtype=[('city', 'S64'),
 ('population', '<i4')])

8. It is also possible to load a particular column (with all rows):
In [8]: table.col('city')
Out[8]: array(['Brussels', 'London', 'Paris'],
 dtype='|S64')

9. When dealing with a large number of rows, we can make a SQL-like query in the table
to load all rows that satisfy particular conditions:
In [9]: [row['city'] for row in
 table.where('population>2e6')]
Out[9]: ['London', 'Paris']

10. Finally, if their indices are known, we can access specific rows:
In [10]: table[1]
Out[10]: ('London', 8308369)

Profiling and Optimization

148

How it works...
A table can be created from scratch like in this recipe, or from either an existing NumPy
array or a pandas DataFrame. In the first case, the description of the columns can be
given with a NumPy data type as shown here, with a dictionary, or with a class deriving from
IsDescription. In the second case, the table description will be automatically inferred from
the given array or table.

Rows can be added efficiently at the end of the table using table.append(). To add a
single row, first get a new row instance with row = table.row, set the fields of the row
as if it were a dictionary, and then call row.append() to add the new row at the end of
the table. Calling flush() after a set of writing operations ensures that these changes
are synchronized on disk. PyTables uses complex cache mechanisms to ensure maximum
performance when writing and reading data in a table; thus, new rows are not immediately
written to the disk.

PyTables supports highly efficient SQL-like queries called in-kernel queries. The string
containing the query expression is compiled and evaluated on all rows. A less-efficient method
consists of iterating over all rows with table.iterrows() and using an if statement on
the rows' fields.

There's more...
Here are a few references:

 f In-kernel queries, at http://pytables.github.io/usersguide/condition_
syntax.html.

 f An alternative to PyTables and HDF5 might come from the Blaze project, still in
early development at the time of writing. For more information on Blaze, refer to
http://blaze.pydata.org.

See also
 f The Manipulating large arrays with HDF5 and PyTables recipe

5
High-performance

Computing

In this chapter, we will cover the following topics:

 f Accelerating pure Python code with Numba and Just-In-Time compilation

 f Accelerating array computations with Numexpr

 f Wrapping a C library in Python with ctypes

 f Accelerating Python code with Cython

 f Optimizing Cython code by writing less Python and more C

 f Releasing the GIL to take advantage of multi-core processors with Cython and
OpenMP

 f Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA

 f Writing massively parallel code for heterogeneous platforms with OpenCL

 f Distributing Python code across multiple cores with IPython

 f Interacting with asynchronous parallel tasks in IPython

 f Parallelizing code with MPI in IPython

 f Trying the Julia language in the notebook

Introduction
The previous chapter presented techniques for code optimization. Sometimes, these
methods are not sufficient, and we need to resort to advanced high-performance
computing techniques.

High-performance Computing

150

In this chapter, we will see three broad, but not mutually exclusive categories of methods:

 f Just-In-Time compilation (JIT) of Python code

 f Resorting to a lower-level language, such as C, from Python

 f Dispatching tasks across multiple computing units using parallel computing

With Just-In-Time compilation, Python code is dynamically compiled into a lower-level
language. Compilation occurs at runtime rather than ahead of execution. The translated code
runs faster since it is compiled rather that interpreted. JIT compilation is a popular technique
as it can lead to fast and high-level languages, whereas these two characteristics used to be
mutually exclusive in general.

JIT compilation techniques are implemented in packages such as Numba, Numexpr, Blaze,
and others. In this chapter, we will cover the first two packages. Blaze is a promising project
but it is still in its infancy at the time of writing this book.

We will also introduce a new high-level language, Julia, which uses JIT compilation to achieve
high performance. This language can be used effectively in the IPython notebook, thanks to
the IJulia package.

PyPy (http://pypy.org), successor of Psyco, is another
related project. This alternative implementation of Python
(the reference implementation being CPython) integrates a
JIT compiler. Thus, it is typically much faster than CPython.
However, at the time of writing this book, PyPy does not fully
support NumPy yet. Additionally, PyPy and SciPy tend to form
distinct communities.

Resorting to a lower-level language such as C is another interesting method. Popular libraries
include ctypes, SWIG, or Cython. Using ctypes requires writing C code and having access to a
C compiler, or using a compiled C library. By contrast, Cython lets us write code in a superset
of Python, which is translated to C with various performance results. Unfortunately, it is not
always easy to write efficient Cython code. In this chapter, we will cover ctypes and Cython,
and we will see how to achieve interesting speedups on complex examples.

Finally, we will cover two classes of parallel computing techniques: using multiple CPU cores with
IPython and using massively parallel architectures such as Graphics Processing Units (GPUs).

Here are a few references:

 f A blog post on PyPy and NumPy by Travis Oliphant available at http://
technicaldiscovery.blogspot.com/2011/10/thoughts-on-porting-
numpy-to-pypy.html

 f Interfacing Python with C, a tutorial in the scikit lectures notes available at
http://scipy-lectures.github.io/advanced/interfacing_with_c/
interfacing_with_c.html

Chapter 5

151

CPython and concurrent programming
Python is sometimes criticized for its poor native support of multi-core processors.
Let's explain why.

The mainstream implementation of the Python language is CPython, written in C. CPython
integrates a mechanism called the Global Interpreter Lock (GIL). As mentioned at
http://wiki.python.org/moin/GlobalInterpreterLock:

The GIL facilitates memory management by preventing multiple native threads from
executing Python bytecodes at once.

In other words, by disabling concurrent threads within one Python process, the GIL
considerably simplifies the memory management system. Memory management is therefore
not thread-safe in CPython.

An important implication is that with CPython, a pure Python program cannot be easily
executed in parallel over multiple cores. This is an important issue as modern processors
contain more and more cores.

What possible solutions do we have in order to take advantage of multi-core processors?

 f Removing the GIL in CPython. This solution has been tried but has never made it into
CPython. It would bring too much complexity in the implementation of CPython, and it
would degrade the performance of single-threaded programs.

 f Using multiple processes instead of multiple threads. This is a popular solution; it can
be done with the native multiprocessing module or with IPython. We will cover the
latter in this chapter.

 f Rewriting specific portions of your code in Cython and replacing all Python variables
with C variables. This allows you to remove the GIL temporarily in a loop, thereby
enabling use of multi-core processors. We will cover this solution in the Releasing the
GIL to take advantage of multi-core processors with Cython and OpenMP recipe.

 f Implementing a specific portion of your code in a language that offers better support
for multi-core processors and calling it from your Python program.

 f Making your code use the NumPy functions that benefit from multi-core processors,
such as numpy.dot(). NumPy needs to be compiled with BLAS/LAPACK/ATLAS/MKL.

A must-read reference on the GIL can be found at http://www.dabeaz.com/GIL/.

Compiler-related installation instructions
In this section, we will give a few instructions for using compilers with Python. Use-cases
include using ctypes, using Cython, and building C extensions for Python.

High-performance Computing

152

Linux
On Linux, you can install the GCC (GNU Compiler Collection) compiler. On Ubuntu or Debian,
you can install GCC with the sudo apt-get install build-essential command.

Mac OS X
On Mac OS X, you can install Apple XCode. Starting with XCode 4.3, you must manually
install command-line tools from XCode's menu through Preferences | Downloads |
Command Line Tools.

Windows
On Windows, using compilers with Python is notoriously tedious. It is generally difficult to find
all the necessary instructions online. We detail these instructions here (you'll also find them
on the book's GitHub repository):

The instructions differ according to whether you use a 32-bit or 64-bit version of Python, and
whether you use Python 2.x or Python 3.x. To quickly find out this information in a Python
terminal, type the following:

import sys

print(sys.version)

print(64 if sys.maxsize > 2**32 else 32)

Python 32-bit
1. First, you need to install a C compiler. With Python 32-bit, you can download and

install MinGW from http://www.mingw.org, which is an open source distribution
of GCC.

2. Depending on your version of the distutils library, you may need to
manually fix a bug in its source code. Open C:\Python27\Lib\distutils\
cygwinccompiler.py in a text editor (or a similar path depending on your specific
configuration), and replace all occurrences of -mno-cygwin with an empty string.

3. Open or create a text file named distutils.cfg in C:\Python27\Lib\
distutils\ and add the following lines:
[build]
compiler = mingw32

Python 64-bit
1. With Python 2.x, you need Visual Studio 2008 Express. With Python 3.x, you need

Visual Studio 2010 Express.

Chapter 5

153

2. You also need the Microsoft Windows SDK (2008 or 2010 according to your
Python version):

 � Python 2.x: Microsoft Windows SDK for Windows 7 and .NET Framework
3.5 available at http://www.microsoft.com/en-us/download/
details.aspx?id=3138

 � Python 3.x: Microsoft Windows SDK for Windows 7 and .NET Framework
4 available at http://www.microsoft.com/en-us/download/
details.aspx?id=8279

3. Make sure that the path to the folder containing cl.exe is in the system's PATH
environment variable. This path should look like C:\Program Files (x86)\
Microsoft Visual Studio 9.0\VC\bin\amd64 (using Visual Studio 2008's
C compiler available with the Microsoft Windows SDK for Windows 7 and .NET
Framework 3.5).

4. You need to execute a few commands in Windows' command-line terminal
every time you want to use the compiler with Python (for example, before
typing ipython notebook):
call "C:\Program Files\Microsoft SDKs\Windows\v7.0\Bin\SetEnv.Cmd"
/x64 /release

set DISTUTILS_USE_SDK=1

DLL hell
When using compiled packages, particularly those obtained on Chris Gohlke's webpage at
http://www.lfd.uci.edu/~gohlke/pythonlibs/, you may get obscure DLL-related
errors. To fix those problems, you can open the spurious DLLs in Dependency Walker available
at http://www.dependencywalker.com. This program can tell you that a DLL is missing.
You can search for it in your computer and add its location to the PATH environment variable.

References
Here are a few references:

 f Installing Cython on Windows, at http://wiki.cython.org/
InstallingOnWindows

 f Cython on Windows 64-bit, at https://github.com/cython/cython/wiki/64B
itCythonExtensionsOnWindows

 f Building Python wheels for Windows, at http://cowboyprogrammer.org/
building-python-wheels-for-windows/

High-performance Computing

154

Accelerating pure Python code with Numba
and just-in-time compilation

Numba (http://numba.pydata.org) is a package created by Continuum Analytics
(http://www.continuum.io). At the time of writing, Numba is still a young and relatively
experimental package, but its technology is promising. Numba takes pure Python code
and translates it automatically (just-in-time) into optimized machine code. In practice, this
means that we can write a non-vectorized function in pure Python, using for loops, and have
this function vectorized automatically by using a single decorator. Performance speedups
when compared to pure Python code can reach several orders of magnitude and may even
outmatch manually-vectorized NumPy code.

In this section, we will show how to accelerate pure Python code generating the
Mandelbrot fractal.

Getting ready
The easiest way to install Numba is to use the Anaconda distribution (also maintained by
Continuum Analytics), and type in a terminal conda install numba. On Windows, an
alternative is to download a binary installer from Chris Gohlke's webpage at http://www.
lfd.uci.edu/~gohlke/pythonlibs/#numba. In this case, there are dependencies
(Numpy-MKL, LLVMPy, llvmmath, and Meta), all available on the same page.

How to do it…
1. Let's import NumPy and define a few variables:

In [1]: import numpy as np
In [2]: size = 200
 iterations = 100

2. The following function generates the fractal in pure Python. It accepts an empty array
m as argument.
In [3]: def mandelbrot_python(m, size, iterations):
 for i in range(size):
 for j in range(size):
 c = -2 + 3./size*j + 1j*(1.5-3./size*i)
 z = 0
 for n in range(iterations):
 if np.abs(z) <= 10:

Chapter 5

155

 z = z*z + c
 m[i, j] = n
 else:
 break

3. Let's run the simulation and display the fractal:
In [4]: m = np.zeros((size, size))
 mandelbrot_python(m, size, iterations)
In [5]: import matplotlib.pyplot as plt
 %matplotlib inline
 plt.imshow(np.log(m), cmap=plt.cm.hot)
 plt.xticks([]); plt.yticks([])

The Mandelbrot fractal

4. Now, we evaluate the time taken by this function:
In [6]: %%timeit m = np.zeros((size, size))
 mandelbrot_python(m, size, iterations)
1 loops, best of 1: 6.18 s per loop

5. Let's try to accelerate this function using Numba. First, we import the package:
In [7]: import numba
 from numba import jit, complex128

6. Next, we add the @jit decorator right above the function definition. Numba tries
to automatically infer the type of the local variables, but we can also specify the
types explicitly:
In [8]: @jit(locals=dict(c=complex128, z=complex128))
 def mandelbrot_numba(m, size, iterations):
 for i in range(size):
 for j in range(size):
 c = -2 + 3./size*j + 1j*(1.5-3./size*i)
 z = 0

High-performance Computing

156

 for n in range(iterations):
 if np.abs(z) <= 10:
 z = z*z + c
 m[i, j] = n
 else:
 break

7. This function works just like the pure Python version. How much faster is it?
In [10]: %%timeit m = np.zeros((size, size))
 mandelbrot_numba(m, size, iterations)
1 loops, best of 10: 44.8 ms per loop

The Numba version is more than 100 times faster than the pure Python version here!

How it works…
Python bytecode is normally interpreted at runtime by the Python interpreter (for example,
CPython). By contrast, a Numba function is parsed and translated directly to machine code
ahead of execution, using a powerful compiler architecture named LLVM (Low Level Virtual
Machine). Citing the official documentation:

Numba is aware of NumPy arrays as typed memory regions and so can speedup
code using NumPy arrays. Other, less well-typed code will be translated to
Python C-API calls effectively removing the "interpreter" but not removing the
dynamic indirection.

Numba is not able to compile any Python functions. There are also some subtle restrictions
on the type of local variables. Numba tries to infer the type of the function's variables
automatically, but it is not always successful. In this case, we can specify the types explicitly.

Numba generally gives the most impressive speedups on functions that involve tight loops on
NumPy arrays (such as in this recipe).

Blaze, another project from Continuum Analytics, is the next
generation of NumPy. It will offer data structures with much
more flexibility than NumPy arrays, and it will support out-of-core
computations. Together with Numba, Blaze will form a highly
efficient compiler-like infrastructure for big data algorithms and
complex numerical simulations. We can expect Blaze to play an
important role in the future, as it should combine the nice and
easy syntax of Python with the performance of native code and
parallel processing techniques (notably multi-core processors
and Graphical Processing Units). Other worthwhile related
projects, but slightly older than Blaze and Numba, include
Theano and Numexpr (which we will see in the next recipe).

Chapter 5

157

There's more…
Let's compare the performance of Numba with manually-vectorized code using NumPy,
which is the standard way of accelerating pure Python code such as the code given in this
recipe. In practice, it means replacing the code inside the two loops over i and j with
array computations. This is relatively easy here as the operations closely follow the Single
Instruction, Multiple Data (SIMD) paradigm:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline
In [2]: def initialize(size):
 x, y = np.meshgrid(np.linspace(-2, 1, size),
 np.linspace(-1.5, 1.5, size))
 c = x + 1j*y
 z = c.copy()
 m = np.zeros((size, size))
 return c, z, m
In [3]: size = 200
 iterations = 100

 def mandelbrot_numpy(c, z, m, iterations):
 for n in range(iterations):
 indices = np.abs(z) <= 10
 z[indices] = z[indices]**2 + c[indices]
 m[indices] = n
In [4]: %%timeit -n1 -r10 c, z, m = initialize(size)
 mandelbrot_numpy(c, z, m, iterations)
1 loops, best of 10: 245 ms per loop

Here, Numba beats NumPy. However, we cannot draw any firm conclusion from this single
experiment. Whether Numba or NumPy is faster depends on the particular implementation of
the algorithm, simulation parameters, machine characteristics, and so on.

Here are a few references:

 f Documentation of Numba available at http://numba.pydata.org/doc.html

 f Types supported by Numba available at http://numba.pydata.org/numba-
doc/dev/types.html

 f Numba examples available at http://numba.pydata.org/numba-doc/dev/
examples.html

 f Blaze available at http://blaze.pydata.org

 f Theano available at http://deeplearning.net/software/theano/

High-performance Computing

158

See also
 f The Accelerating array computations with Numexpr recipe

Accelerating array computations with
Numexpr

Numexpr is a package that improves upon a weakness of NumPy; the evaluation of complex
array expressions is sometimes slow. The reason is that multiple temporary arrays are created
for the intermediate steps, which is suboptimal with large arrays. Numexpr evaluates algebraic
expressions involving arrays, parses them, compiles them, and finally executes them faster
than NumPy.

This principle is somewhat similar to Numba, in that normal Python code is compiled
dynamically by a JIT compiler. However, Numexpr only tackles algebraic array expressions
rather than arbitrary Python code. We will see how that works in this recipe.

Getting ready
You will find the instructions to install Numexpr in the documentation available at
http://github.com/pydata/numexpr.

How to do it…
1. Let's import NumPy and Numexpr:

In [1]: import numpy as np
 import numexpr as ne

2. Then, we generate three large vectors:
In [2]: x, y, z = np.random.rand(3, 1000000)

3. Now, we evaluate the time taken by NumPy to calculate a complex algebraic
expression involving our vectors:
In [3]: %timeit x + (y**2 + (z*x + 1)*3)
10 loops, best of 3: 48.1 ms per loop

4. Let's perform the same calculation with Numexpr. We need to give the expression as
a string:
In [4]: %timeit ne.evaluate('x + (y**2 + (z*x + 1)*3)')
100 loops, best of 3: 11.5 ms per loop

Chapter 5

159

5. Numexpr can use multiple cores. Here, we have 2 physical cores and 4 virtual
threads with Intel's Hyper-Threading Technology. We can specify how many cores we
want Numexpr to use using the set_num_threads() function:
In [5]: ne.ncores
Out[5]: 4
In [6]: for i in range(1, 5):
 ne.set_num_threads(i)
 %timeit ne.evaluate('x + (y**2 + (z*x + 1)*3)')
10 loops, best of 3: 19.4 ms per loop
10 loops, best of 3: 14 ms per loop
10 loops, best of 3: 12.8 ms per loop
10 loops, best of 3: 11.5 ms per loop

How it works...
Numexpr analyzes the array expression, parses it, and compiles it into a lower-level language.
Numexpr is aware of CPU-vectorized instructions as well as CPU cache characteristics. As
such, Numexpr can optimize vectorized computations dynamically.

There is some overlap between Numexpr, Numba, and Blaze. We can probably expect some
crosstalk between these projects in the future.

See also
 f The Accelerating pure Python code with Numba and just-in-time compilation recipe

Wrapping a C library in Python with ctypes
Wrapping a C library in Python allows us to leverage existing C code or to implement a critical
part of the code in a fast language such as C.

It is relatively easy to use externally-compiled libraries with Python. The first possibility is to
call a command-line executable with an os.system command, but this method does not
extend to compiled libraries (on Windows, Dynamically Linked Libraries, or DLLs). A more
powerful method consists of using a native Python module called ctypes. This module allows
us to call functions defined in a compiled library (written in C) from Python. The ctypes
module takes care of the data type conversions between C and Python. In addition, the
numpy.ctypeslib module provides facilities to use NumPy arrays wherever data buffers are
used in the external library.

In this example, we will rewrite the code of the Mandelbrot fractal in C, compile it in a shared
library, and call it from Python.

High-performance Computing

160

Getting ready
The code of this recipe is written for Windows. It can be adapted to other systems with
minor changes.

A C compiler is required. You will find all compiler-related instructions in this
chapter's introduction. In particular, for the C compiler to work on Windows, you need to
execute a sequence of instructions in the Windows terminal before launching the IPython
notebook. You will find a batch script with the appropriate instructions on the book's repository
(in the folder containing the code for this chapter).

How to do it…
The first step is to write and compile the Mandelbrot example in C. The second step is
to access the library from Python using ctypes. If you are only interested in discovering
how to access an existing compiled library, you can go straight to step 3, assuming that
mandelbrot.dll is a compiled library defining a function named mandelbrot().

1. Let's write the code of the Mandelbrot fractal in C:
In [1]: %%writefile mandelbrot.c

 // Needed when creating a DLL.
 #define EXPORT __declspec(dllexport)

 #include "stdio.h"
 #include "stdlib.h"

 // This function will be available in the DLL.
 EXPORT void __stdcall mandelbrot(int size,
 int iterations,
 int *col)
 {
 // Variable declarations.
 int i, j, n, index;
 double cx, cy;
 double z0, z1, z0_tmp, z0_2, z1_2;

 // Loop within the grid.
 for (i = 0; i < size; i++)
 {
 cy = -1.5 + (double)i / size * 3;
 for (j = 0; j < size; j++)
 {
 // We initialize the loop of the

Chapter 5

161

 // system.
 cx = -2.0 + (double)j / size * 3;
 index = i * size + j;
 // Let's run the system.
 z0 = 0.0;
 z1 = 0.0;
 for (n = 0; n < iterations; n++)
 {
 z0_2 = z0 * z0;
 z1_2 = z1 * z1;
 if (z0_2 + z1_2 <= 100)
 {
 // Update the system.
 z0_tmp = z0_2 - z1_2 + cx;
 z1 = 2 * z0 * z1 + cy;
 z0 = z0_tmp;
 col[index] = n;
 }
 else
 {
 break;
 }
 }
 }
 }
 }

2. Now, let's build this C source file into a DLL with Microsoft Visual Studio's cl.exe.
The /LD option specifies that a DLL is to be created:
In [2]: !cl /LD mandelbrot.c
/out:mandelbrot.dll
Creating library mandelbrot.lib and object mandelbrot.exp

3. Let's access the library with ctypes:
In [3]: import ctypes
In [4]: # Load the DLL file in Python.
 lb = ctypes.CDLL('mandelbrot.dll')
 lib = ctypes.WinDLL(None, handle=lb._handle)
 # Access the mandelbrot function.
 mandelbrot = lib.mandelbrot

4. NumPy and ctypes allow us to wrap the C function defined in the DLL:
In [5]: from numpy.ctypeslib import ndpointer
In [6]: # Define the types of the output and arguments.

High-performance Computing

162

 mandelbrot.restype = None
 mandelbrot.argtypes = [ctypes.c_int, ctypes.c_int,
 ndpointer(ctypes.c_int)]

5. To use this function, we first need to initialize an empty array and pass it as an
argument to the mandelbrot() wrapper function:
In [7]: import numpy as np
 # We initialize an empty array.
 size = 200
 iterations = 100
 col = np.empty((size, size), dtype=np.int32)
 # We execute the C function.
 mandelbrot(size, iterations, col)
In [8]: %timeit mandelbrot(size, iterations, col)
100 loops, best of 3: 12.5 ms per loop

6. We free the library at the end of the script:
In [9]: from ctypes.wintypes import HMODULE
 ctypes.windll.kernel32.FreeLibrary.argtypes = [HMODULE]
 ctypes.windll.kernel32.FreeLibrary(lb._handle)

How it works…
In the C code, the __declspec(dllexport) command declares the function visible in the
DLL. The __stdcall keyword declares the standard calling convention on Windows.

As arguments, the mandelbrot() function accepts:

 f The size of the col buffer (the col value is the last iteration where the
corresponding point is within a disc around the origin)

 f The number of iterations

 f A pointer to the buffer of integers

mandelbrot() does not return any value; rather, it updates the buffer that was passed by
reference to the function (it is a pointer).

To wrap this function in Python, we need to declare the types of the input arguments.
The ctypes module defines constants for the different data types. In addition, the numpy.
ctypeslib.ndpointer() function lets us use a NumPy array wherever a pointer is
expected in the C function. The data type given as argument to ndpointer()needs to
correspond to the NumPy data type of the array passed to the function.

Once the function has been correctly wrapped, it can be called as if it was a standard Python
function. Here, the initially-empty NumPy array is filled with the Mandelbrot fractal after the
call to mandelbrot().

Chapter 5

163

There's more…
SciPy contains a module called weave that provides similar functionality. We can write C code
in a Python string and let weave compile and execute it at runtime using a C compiler. This
module does not seem well-maintained and appears to be incompatible with Python 3. Cython
or ctypes are probably better options.

A more recent alternative to ctypes is cffi (http://cffi.readthedocs.org), which
may be a bit faster and more convenient to use. You can also refer to http://eli.
thegreenplace.net/2013/03/09/python-ffi-with-ctypes-and-cffi/.

Accelerating Python code with Cython
Cython is both a language (a superset of Python) and a Python library. With Cython, we start
from a regular Python program and we add annotations about the type of the variables.
Then, Cython translates that code to C and compiles the result to a Python extension module.
Finally, we can use this compiled module in any Python program.

While dynamic typing comes with a performance cost in Python, statically-typed variables in
Cython generally lead to faster code execution.

Performance gains are most significant in CPU-bound programs, notably in tight Python
loops. By contrast, I/O-bound programs are not expected to benefit much from a Cython
implementation.

In this recipe, we will see how to accelerate the Mandelbrot code example with Cython.

Getting ready
A C compiler is required. You will find all compiler-related instructions in the introduction of
this chapter.

You also need to install Cython from http://www.cython.org. With Anaconda, you can
type conda install cython in a terminal.

How to do it…
We assume that the variables size and iterations have been defined as in the
previous recipes.

1. To use Cython in the IPython notebook, we first need to import the cythonmagic
extension provided by IPython:
In [6]: %load_ext cythonmagic

High-performance Computing

164

2. As a first try, let's just add the %%cython magic before the definition of the
mandelbrot() function. Internally, this cell magic compiles the cell into a
standalone Cython module, hence the need for all required imports to occur within
the same cell. This cell does not have access to any variable or function defined in
the interactive namespace:
In [6]: %%cython
 import numpy as np
 def mandelbrot_cython(m, size, iterations):
 # The exact same content as in
 # mandelbrot_python (first recipe of
 # this chapter).

3. How fast is this version?
In [7]: %%timeit -n1 -r1 m = np.zeros((size, size),
 dtype=np.int32)
 mandelbrot_cython(m, size, iterations)
1 loops, best of 1: 5.7 s per loop

We get virtually no speedup here. We need to specify the type of our Python variables.

4. Let's add type information using typed memory views for NumPy arrays (we explain
these in the How it works… section). We also use a slightly different way to test
whether particles have escaped from the domain (if test):
In [8]: %%cython
 import numpy as np
 def mandelbrot_cython(int[:,::1] m,
 int size,
 int iterations):
 cdef int i, j, n
 cdef complex z, c
 for i in range(size):
 for j in range(size):
 c = -2 + 3./size*j + 1j*(1.5-3./size*i)
 z = 0
 for n in range(iterations):
 if z.real**2 + z.imag**2 <= 100:
 z = z*z + c
 m[i, j] = n
 else:
 break

5. How fast is this new version?
In [9]: %%timeit -n1 -r1 m = np.zeros((size, size),
 dtype=np.int32)
 mandelbrot_cython(m, size, iterations)
1 loops, best of 1: 230 ms per loop

Chapter 5

165

All we have done is specified the type of the local variables and function arguments and
bypassed NumPy's np.abs() function when computing the absolute value of z. These
changes have helped Cython to generate more optimized C code from Python code.

How it works…
The cdef keyword declares a variable as a statically-typed C variable. C variables lead to
faster code execution because the overhead from Python's dynamic typing is mitigated.
Function arguments can also be declared as statically-typed C variables.

In general, variables used inside tight loops should be declared with cdef. To ensure that our
code is well-optimized, we can use annotations. We just add the -a flag after the %%cython
magic and the non-optimized lines will be shown in a gradient of yellow (white lines are faster,
yellow lines are slower). This is shown in the following screenshot. The color depends on the
relative number of Python API calls at each line.

Annotations in Cython

There are two ways of declaring NumPy arrays as C variables with Cython: using array buffers
or using typed memory views. In this recipe, we used typed memory views. We will cover array
buffers in the next recipe.

Typed memory views allow efficient access to data buffers with a NumPy-like indexing syntax.
For example, we can use int[:,::1] to declare a C-ordered 2D NumPy array with integer
values, with ::1 meaning a contiguous layout in this dimension. Typed memory views can be
indexed just like NumPy arrays.

However, memory views do not implement element-wise operations like NumPy. Thus,
memory views act as convenient data containers within tight for loops. For element-wise
NumPy-like operations, array buffers should be used instead.

High-performance Computing

166

We could achieve a significant performance speedup by replacing the call to np.abs with a
faster expression. The reason is that np.abs is a NumPy function with a slight call overhead.
It is designed to work with relatively large arrays, not scalar values. This overhead results in a
significant performance hit in a tight loop such as here. This bottleneck can be spotted with
Cython annotations.

There's more…
Using Cython from IPython is very convenient with the %%cython cell magic. However, it is
sometimes necessary to create a reusable C extension module with Cython. This is actually
what IPython's %%cython cell magic does under the hood.

1. The first step is to write a standalone Cython script in a .pyx file. This should
correspond exactly to the entire contents of a %%cython cell magic.

2. The second step is to create a setup.py file that we will use to compile the Cython
module. Here is a basic setup.py file, assuming a mandelbrot.pyx file:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
 cmdclass = {'build_ext': build_ext},
 ext_modules = [Extension("mandelbrot",
 ["mandelbrot.pyx"])]
)

3. The third step is to execute this setup script with Python:
In [3]: !python setup.py build_ext --inplace
running build_ext
cythoning mandelbrot.pyx to mandelbrot.c
building 'mandelbrot' extension

4. Two files have been created during the build process: the C source file and a compiled
Python extension. The file extension is .pyd on Windows (DLL files) and .so on UNIX:
In [4]: !dir mandelbrot.*
mandelbrot.c
mandelbrot.pyd
mandelbrot.pyx

5. Finally, we can load the compiled module as usual (using from mandelbrot
import mandelbrot).

Chapter 5

167

With this technique, Cython code can also be integrated within a Python package. Here are a
few references:

 f Distributing Cython modules, explained at http://docs.cython.org/src/
userguide/source_files_and_compilation.html

 f Compilation with Cython, explained at http://docs.cython.org/src/
reference/compilation.html

See also
 f The Optimizing Cython code by writing less Python and more C recipe

 f The Releasing the GIL to take advantage of multicore processors with Cython
and OpenMP recipe

Optimizing Cython code by writing less
Python and more C

In this recipe, we will consider a more complicated Cython example. Starting from a
slow implementation in pure Python, we will use different Cython features to speed it up
progressively.

We will implement a very simple ray tracing engine. Ray tracing consists of rendering a scene
by simulating the physical properties of light propagation. This rendering method leads to
photorealistic scenes, but it is computationally intensive.

Here, we will render a single sphere with diffuse and specular lighting. First we'll give the
example's code in pure Python. Then, we will accelerate it incrementally with Cython.

The code is long and contains many functions. We will first
give the full code of the pure Python version. Then, we will just
describe the changes required to accelerate the code with
Cython. The entire scripts are available on the book's website.

How to do it…
1. First, let's implement the pure Python version:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
In [2]: %matplotlib inline
In [3]: w, h = 200, 200 # Size of the window in pixels.

High-performance Computing

168

We create a normalization function for vectors:
def normalize(x):
 # This function normalizes a vector.
 x /= np.linalg.norm(x)
 return x

Now, we create a function that computes the intersection of a ray with a sphere:
def intersect_sphere(O, D, S, R):
 # Return the distance from O to the intersection
 # of the ray (O, D) and the sphere (S, R), or
 # +inf if there is no intersection.
 # O and S are 3D points, D (direction) is a
 # normalized vector, R is a scalar.
 a = np.dot(D, D)
 OS = O - S
 b = 2 * np.dot(D, OS)
 c = np.dot(OS, OS) - R*R
 disc = b*b - 4*a*c
 if disc > 0:
 distSqrt = np.sqrt(disc)
 q = (-b - distSqrt) / 2.0 if b < 0 \
 else (-b + distSqrt) / 2.0
 t0 = q / a
 t1 = c / q
 t0, t1 = min(t0, t1), max(t0, t1)
 if t1 >= 0:
 return t1 if t0 < 0 else t0
 return np.inf

The following function traces a ray:
 def trace_ray(rayO, rayD):
 # Find first point of intersection with the scene.
 t = intersect_sphere(rayO, rayD, position, radius)
 # No intersection?
 if t == np.inf:
 return
 # Find the point of intersection on the object.
 M = rayO + rayD * t
 N = normalize(M - position)
 toL = normalize(L - M)
 toO = normalize(O - M)
 # Ambient color.
 col = ambient
 # Diffuse color.

Chapter 5

169

 col += diffuse * max(np.dot(N, toL), 0) * color
 # Specular color.
 col += specular_c * color_light * \
 max(np.dot(N, normalize(toL + toO)), 0) \
 ** specular_k
 return col

Finally, the main loop is implemented in the following function:
def run():
 img = np.zeros((h, w, 3))
 # Loop through all pixels.
 for i, x in enumerate(np.linspace(-1.,1.,w)):
 for j, y in enumerate(np.linspace(-1.,1.,h)):
 # Position of the pixel.
 Q[0], Q[1] = x, y
 # Direction of the ray going through the
 # optical center.
 D = normalize(Q - O)
 depth = 0
 rayO, rayD = O, D
 # Launch the ray and get the
 # color of the pixel.
 col = trace_ray(rayO, rayD)
 if col is None:
 continue
 img[h - j - 1, i, :] = np.clip(col, 0, 1)
 return img

Now, we initialize the scene and define a few parameters:
In [4]: # Sphere properties.
 position = np.array([0., 0., 1.])
 radius = 1.
 color = np.array([0., 0., 1.])
 diffuse = 1.
 specular_c = 1.
 specular_k = 50

 # Light position and color.
 L = np.array([5., 5., -10.])
 color_light = np.ones(3)
 ambient = .05

 # Camera.
 O = np.array([0., 0., -1.]) # Position.
 Q = np.array([0., 0., 0.]) # Pointing to.

High-performance Computing

170

Let's render the scene:
In [5]: img = run()
In [6]: plt.imshow(img)
 plt.xticks([]); plt.yticks([])

Ray tracing with Python and Cython. Left: the outcome of this recipe. Right: outcome of an extended version.

2. How slow is this implementation?
In [7]: %timeit run()
1 loops, best of 1: 3.58 s per loop

3. If we just use the %%cython magic with the adequate import numpy as np and
cimport numpy as np commands at the top of the cell, we only get a modest
improvement, only a tenth of a second quicker.

4. We could do better by giving information about the type of the variables. Since we
use vectorized computations on NumPy arrays, we cannot easily use memory views.
Rather, we will use array buffers. First, at the very beginning of the Cython module (or
%%cython cell), we declare NumPy data types as follows:
import numpy as np
cimport numpy as np
DBL = np.double
ctypedef np.double_t DBL_C

Then, we declare a NumPy array with cdef np.ndarray[DBL_C, ndim=1] (in this
example, a 1D array of double precision floating point numbers). There is a difficulty
here because NumPy arrays can only be declared inside functions, not at the top
level. Thus, we need to slightly tweak the overall architecture of the code by passing
some arrays as function arguments instead of using global variables. However, even
by declaring the type of all variables, we gain virtually no speedup at all.

Chapter 5

171

5. In the current implementation, we incur a performance hit because of the large number
of NumPy function calls on tiny arrays (three elements). NumPy is designed to deal with
large arrays, and it does not make much sense to use it for arrays that small.

In this specific situation, we can try to bypass NumPy by rewriting some functions
using the C standard library. We use the cdef keyword to declare a C-style function.
These functions can yield significant performance speedups. Here, we get a 2-3x
speedup by replacing the normalize() Python function with the following C function:

from libc.math cimport sqrt
cdef normalize(np.ndarray[DBL_C, ndim=1] x):
 cdef double n
 n = sqrt(x[0]*x[0] + x[1]*x[1] + x[2]*x[2])
 x[0] /= n
 x[1] /= n
 x[2] /= n
 return x

6. To get the most interesting speedups, we need to completely bypass NumPy. Where
do we use NumPy precisely?

 � Many variables are NumPy arrays (mostly one-dimensional vectors with three
elements).

 � Element-wise operations yield implicit NumPy API calls.

 � We also use a few NumPy built-in functions such as numpy.dot().

In order to bypass NumPy in our example, we need to reimplement all these features
for our specific needs. The first possibility is to use a native Python type for vectors
(for example, tuples), and write C-style functions that implement operations on tuples
(always assuming they have exactly three elements). For example, the addition
between two tuples can be implemented as follows:

cdef tuple add(tuple x, tuple y):
 return (x[0]+y[0], x[1]+y[1], x[2]+y[2])

We get an interesting speedup (30x compared to pure Python), but we can do even
better by using a pure C data type.

7. We are going to define a pure C structure instead of using a Python type for our
vectors. In other words, we are not only bypassing NumPy, but we are also bypassing
Python by moving to pure C code. To declare a C structure representing a 3D vector in
Cython, we can use the following code:
cdef struct Vec3:
 double x, y, z

High-performance Computing

172

To create a new Vec3 variable, we can use the following function:
cdef Vec3 vec3(double x, double y, double z):
 cdef Vec3 v
 v.x = x
 v.y = y
 v.z = z
 return v

As an example, here is the function used to add two Vec3 objects:
cdef Vec3 add(Vec3 u, Vec3 v):
 return vec3(u.x + v.x, u.y + v.y, u.z + v.z)

The code can be updated to make use of these fast C-style functions. Finally, the
image can be declared as a 3D memory view. With all these changes, the Cython
implementation runs in ~12 ms, 300 times faster than the pure Python version!

In summary, we have achieved a very interesting speedup by basically rewriting the entire
implementation in C with an enhanced Python syntax.

How it works…
Let's explain briefly how the ray tracing code works. We model a three-dimensional scene with
objects such as planes and spheres (here, there is only one sphere). There is also a camera
and a plane representing the rendered image:

Principles of ray tracing ("Ray trace diagram" by Henrik, Wikimedia Commons)

Chapter 5

173

There is a main loop over all pixels of the image. For each pixel, we launch a ray from the
camera center to the scene through the current pixel and compute the first intersection
point between that ray and an object from the scene. Then, we compute the pixel's color as
a function of the object material's color, the position of the lights, the normal of the object at
the intersection point, and so on. There are several physics-inspired lighting equations that
describe how the color depends on these parameters. Here, we use the Blinn-Phong shading
model with ambient, diffuse, and specular lighting components:

Blinn-Phong shading model ("Phong components", Wikimedia Commons)

Of course, a full ray tracing engine is far more complex than what we have implemented in this
example. We can model other optic and lighting characteristics such as reflections, refractions,
shadows, depth of field, and others. It is also possible to implement ray tracing algorithms on
the graphics card for real-time photorealistic rendering. Here are a few references:

 f Blinn-Phong shading model on Wikipedia, available at http://en.wikipedia.
org/wiki/Blinn-Phong_shading_model

 f Ray tracing on Wikipedia, available at http://en.wikipedia.org/wiki/Ray_
tracing_(graphics)

There's more…
Although powerful, Cython requires a good understanding of Python, NumPy, and C. The most
interesting performance speedups are achieved when dynamically-typed Python variables are
converted to statically-typed C variables, notably within tight loops.

Here are a few references:

 f Cython extension types available at http://docs.cython.org/src/
userguide/extension_types.html

 f Extended version of our ray tracing engine available at http://gist.github.
com/rossant/6046463

See also
 f The Accelerating Python code with Cython recipe

 f The Releasing the GIL to take advantage of multicore processors with Cython
and OpenMP recipe

High-performance Computing

174

Releasing the GIL to take advantage of
multicore processors with Cython and
OpenMP

As we have seen in this chapter's introduction, CPython's GIL prevents pure Python code from
taking advantage of multi-core processors. With Cython, we have a way to release the GIL
temporarily in a portion of the code in order to enable multi-core computing. This is done with
OpenMP, a multiprocessing API that is supported by most C compilers.

In this recipe, we will see how to parallelize the previous recipe's code on multiple cores.

Getting ready
To enable OpenMP in Cython, you just need to specify some options to the compiler. There is
nothing special to install on your computer besides a good C compiler. See the instructions in
this chapter's introduction for more details.

In this recipe, we use Microsoft's Visual C++ compiler on Windows, but the code can be easily
adapted to other systems.

How to do it…
Our simple ray tracing engine implementation is embarrassingly parallel; there is a main loop
over all pixels, within which the exact same function is called repetitively. There is no crosstalk
between loop iterations. Therefore, it would be theoretically possible to execute all iterations
in parallel.

Here, we will execute one loop (over all columns in the image) in parallel with OpenMP.

You will find the entire code on the book's website. We will only show the most important
steps here:

1. We add the following options to the %%cython magic command: --compile-
args=/openmp --link-args=/openmp. The exact syntax may depend on
your compiler and/or your system. For example, /openmp should be replaced by
-fopenmp with GCC.

2. We import the prange() function:
from cython.parallel import prange

3. We add nogil after each function definition in order to remove the GIL. We cannot use
any Python variable or function inside a function annotated with nogil. For example:
cdef Vec3 add(Vec3 x, Vec3 y) nogil:
 return vec3(x.x + y.x, x.y + y.y, x.z + y.z)

Chapter 5

175

4. To run a loop in parallel over the cores with OpenMP, we use prange():
with nogil:
 for i in prange(w):
 # ...

The GIL needs to be released before using any parallel computing feature such
as prange().

5. With these changes, we reach a 4x speedup on a quad-core processor.

How it works…
The GIL has been described in the introduction of this chapter. The nogil keyword tells
Cython that a particular function or code section should be executed without the GIL. When
the GIL is released, it is not possible to make any Python API calls, meaning that only C
variables and C functions (declared with cdef) can be used.

See also
 f The Accelerating Python code with Cython recipe

 f The Optimizing Cython code by writing less Python and more C recipe

 f The Distributing Python code across multiple cores with IPython recipe

Writing massively parallel code for NVIDIA
graphics cards (GPUs) with CUDA

Graphics Processing Units (GPUs) are powerful processors specialized in real-time rendering.
We find GPUs in virtually any computer, laptop, video game console, tablet, or smartphone. Their
massively parallel architecture comprises tens to thousands of cores. The video game industry
has been fostering the development of increasingly powerful GPUs over the last two decades.

GPUs are routinely used in modern supercomputers (for example in Cray's Titan at Oak Ridge
National Laboratory, ~20 petaFLOPS, ~20,000 CPUs, and as many NVIDIA GPUs). A high-end
$1000 GPU today is roughly as powerful as a $100 million supercomputer from 2000 (several
teraFLOPS).

FLOPS means FLoating-point Operations Per Second. A 1
teraFLOPS GPU can perform up to one trillion floating-point
operations per second.

High-performance Computing

176

Since the mid-2000s, GPUs are no longer limited to graphics processing. We can now
implement scientific algorithms on a GPU. The only condition is that the algorithm follows
the SIMD (Single Instruction, Multiple Data) paradigm, where a sequence of instructions
is executed in parallel with multiple data. This is called General Purpose Programming
on Graphics Processing Units (GPGPU). GPGPU is used in many areas: meteorology, data
mining, computer vision, image processing, finance, physics, bioinformatics, and many
more. Writing code for GPUs can be challenging as it requires understanding the internal
architecture of the hardware.

CUDA is a proprietary GPGPU framework created in 2007 by NVIDIA Corporation, one of the
main GPU manufacturers. Programs written in CUDA only work on NVIDIA graphics cards.
There is another competing GPGPU framework called OpenCL, an open standard supported
by other major companies. OpenCL programs can work on GPUs and CPUs from most
manufacturers (notably NVIDIA, AMD, and Intel).

In this recipe, we will show a very basic example of GPGPU. We'll implement the
embarrassingly parallel computation of the Mandelbrot fractal in CUDA. In the next recipe, we
will implement the exact same example in OpenCL.

Should you choose OpenCL or CUDA for a new project? The
answer depends most notably on the hardware of your user
base. If you need the highest performance possible for a
specific project in your lab where all computers have an
NVIDIA card, and if releasing your program to the world is
not a high priority, you could choose CUDA. If you envision
distributing your program to many people running different
platforms, you should probably choose OpenCL. Featurewise,
these two platforms are very roughly equivalent.

We can use CUDA in Python thanks to PyCUDA, a Python package written by Andreas Klöckner
(http://documen.tician.de/pycuda/).

Getting ready
Installing and configuring PyCUDA is not straightforward in general. First, you need an NVIDIA
GPU. Then, you need to install the CUDA SDK. Finally, you have to install and configure PyCUDA.
Note that PyCUDA depends on a few external packages, notably pytools.

On Windows, you should use Chris Gohlke's package. Make sure your version of CUDA
matches the version used in the PyCUDA package. If you have DLL-related problems, use
Dependency Walker on the *.pyd files in PyCUDA's installation folder (with Anaconda, it
should look like C:\anaconda\lib\site-packages\pycuda). If you use Windows 64-bit,
make sure that C:\Windows\SysWOW64 is in your system PATH. Finally, make sure you have
the version of Visual Studio that corresponds to your version of Python (see the instructions
related to C compilers at the beginning of this chapter).

Chapter 5

177

You will find more information at the following links:

 f CUDA SDK available at http://developer.nvidia.com/cuda-downloads

 f PyCUDA wiki available at http://wiki.tiker.net

How to do it...
1. Let's import PyCUDA:

In [1]: import pycuda.driver as cuda
 import pycuda.autoinit
 from pycuda.compiler import SourceModule
 import numpy as np

2. We initialize the NumPy array that will contain the fractal:
In [2]: size = 200
 iterations = 100
 col = np.empty((size, size), dtype=np.int32)

3. We allocate GPU memory for this array:
In [3]: col_gpu = cuda.mem_alloc(col.nbytes)

4. We write the CUDA kernel in a string. Arguments to the mandelbrot() function are:

 � The figure size
 � The number of iterations

 � The pointer to the memory buffer

This function executes on every single pixel. It updates the col buffer with the
pixel's color:
In [4]: code = """
 __global__ void mandelbrot(int size,
 int iterations,
 int *col) {
 // Get the row and column of the thread.
 int i = blockIdx.y * blockDim.y + threadIdx.y;
 int j = blockIdx.x * blockDim.x + threadIdx.x;
 int index = i * size + j;

 // Declare and initialize the variables.
 double cx, cy;
 double z0, z1, z0_tmp, z0_2, z1_2;
 cx = -2.0 + (double)j / size * 3;
 cy = -1.5 + (double)i / size * 3;

 // Main loop.
 z0 = z1 = 0.0;

High-performance Computing

178

 for (int n = 0; n < iterations; n++)
 {
 z0_2 = z0 * z0;
 z1_2 = z1 * z1;
 if (z0_2 + z1_2 <= 100)
 {
 // Need to update both z0 and z1,
 // hence the need for z0_tmp.
 z0_tmp = z0_2 - z1_2 + cx;
 z1 = 2 * z0 * z1 + cy;
 z0 = z0_tmp;
 col[index] = n;
 }
 else break;
 }
 }
 """

5. Now, we compile the CUDA program:
In [5]: prg = SourceModule(code)
 mandelbrot = prg.get_function("mandelbrot")

6. We define the block size and the grid size, specifying how the threads will be
parallelized with respect to the data:
In [6]: block_size = 10
 block = (block_size, block_size, 1)
 grid = (size // block_size, size // block_size, 1)

7. We call the compiled function:
In [7]: mandelbrot(np.int32(size),
 np.int32(iterations),
 col_gpu,
 block=block, grid=grid)

8. Once the function has completed, we copy the contents of the CUDA buffer back to
the NumPy array col:
In [8]: cuda.memcpy_dtoh(col, col_gpu)

9. The col array now contains the Mandelbrot fractal. We find that this CUDA program is
executed in 0.7 ms on a mobile GeForce GPU.

How it works…
GPU programming is a rich and highly technical topic, encompassing low-level architectural
details of GPUs. Of course, we only scratched the surface here with the simplest paradigm
possible (the "embarrassingly parallel" problem). We give further references in a later section.

Chapter 5

179

A CUDA GPU has a number of multiprocessors, and each multiprocessor has multiple stream
processors (also called CUDA cores). Each multiprocessor executes in parallel with the
others. Within a multiprocessor, the stream processors execute the same instruction at the
same time, but on multiple data bits (SIMD paradigm).

Central notions to the CUDA programming model are those of kernels, threads, blocks,
and grids:

 f A kernel is a program written in a C-like language that runs on the GPU.

 f A thread represents one execution of a kernel on one stream processor.

 f A block contains multiple threads executing on one multiprocessor.

 f A grid contains a number of blocks.

The number of threads per block is limited by the size of the multiprocessors and depends
on the graphics card model (1024 in recent models). However, a grid can contain an arbitrary
number of blocks.

Within a block, threads are executed within warps of typically 32 threads. Better performance
is achieved when conditional branching in a kernel is organized into groups of 32 threads.

Threads within a block can synchronize at synchronization barriers using the
__syncthreads() function. This feature enables inter-thread communication within one
block. However, blocks execute independently so that two threads from different blocks
cannot synchronize.

Within a block, threads are organized into a 1D, 2D, or 3D structure, and similarly for blocks
within a grid, as shown in the following figure. This structure is convenient as it matches most
common multidimensional datasets encountered in real-world problems.

The CUDA programming model (showing threads, blocks, and grids — image by NVIDIA Corporation)

High-performance Computing

180

The kernel can retrieve the thread index within the block (threadIdx), as well as the block
index within the grid (blockIdx) to determine which bit of data it should work on. In this recipe,
the 2D image of the fractal is partitioned into 10 x 10 blocks, each block containing 100 pixels,
with one thread per pixel. The kernel mandelbrot computes the color of a single pixel.

There are several levels of memory on the GPU, ranging from small, fast, and local memory
shared by a few threads within a block; to large, slow, and global memory shared by all blocks.
We need to tweak the memory access patterns in the code to match the hardware constraints
and achieve higher performance. In particular, data access is more efficient when the threads
within a warp access consecutive addresses in the global memory; the hardware coalesces
all memory accesses into a single access to consecutive DRAM (Dynamic Random Access
Memory) locations.

PyCUDA lets us upload/download data from NumPy arrays to buffers residing on the GPU. This
operation is generally costly. Complex real-world problems frequently involve iterative steps
happening on both the CPU and on the GPU, such that communication between the two is
a common performance bottleneck. Higher performance is achieved when there are few of
these exchanges.

There is some boilerplate code in (Py)CUDA on the C/Python side that consists of initializing
the GPU, allocating data, uploading/downloading data to/from the GPU, compiling the
kernel, executing the kernel, and so on. You can find all the details in the CUDA/PyCUDA
documentation, but as a first approach, you can also just copy and paste code from this recipe
or any tutorial.

There's more…
Here are a few references:

 f Official CUDA portal at http://developer.nvidia.com/category/zone/
cuda-zone

 f Education and training for CUDA, at http://developer.nvidia.com/cuda-
education-training

 f Suggested books about CUDA, at http://developer.nvidia.com/suggested-
reading

 f Choosing between CUDA or OpenCL, at http://wiki.tiker.net/CudaVsOpenCL

 f A blog post on CUDA and OpenCL available at http://streamcomputing.eu/
blog/2011-06-22/opencl-vs-cuda-misconceptions/

See also
 f The Writing massively parallel code for heterogeneous platforms with OpenCL recipe

Chapter 5

181

Writing massively parallel code for
heterogeneous platforms with OpenCL

In the previous recipe, we introduced CUDA, a proprietary GPGPU framework created by
NVIDIA Corporation. In this recipe, we present OpenCL, an alternative open framework
initiated by Apple in 2008. It is now adopted by mainstream companies including Intel,
NVIDIA, AMD, Qualcomm, ARM, and others. These companies are regrouped within the
non-profit technology consortium Khronos Group (which also maintains the OpenGL real-
time rendering specification). Programs written in OpenCL can run on GPUs and CPUs
(heterogeneous computing).

CUDA and OpenCL are relatively similar in terms of concepts,
syntax, and features. CUDA sometimes leads to slightly higher
performance, since its API matches the hardware more
closely than OpenCL's generic API.

We can use OpenCL in Python thanks to PyOpenCL, a Python package written by Andreas
Klöckner (http://documen.tician.de/pyopencl/).

In this recipe, we will implement the Mandelbrot fractal in OpenCL. The OpenCL kernel is very
similar to the CUDA kernel from the previous recipe. The Python API used to access OpenCL is
somewhat different from PyCUDA, but the concepts are equivalent.

Getting ready
Installing PyOpenCL is generally not straightforward. The first step is to install the OpenCL
SDK for your hardware (CPU and/or GPU). Then, you have to install and configure PyOpenCL.
On Windows, you should use Chris Gohlke's package. Some installation instructions in the
previous recipe apply here as well.

Here are a few references:

 f The PyOpenCL Wiki available at http://wiki.tiker.net

 f The documentation of PyOpenCL available at http://documen.tician.de/
pyopencl/

Here are the links to the various OpenCL SDKs:

 f Intel's SDK is available at http://software.intel.com/en-us/vcsource/
tools/opencl-sdk

 f AMD's SDK is available at http://developer.amd.com/tools-and-sdks/
heterogeneous-computing/

 f NVIDIA's SDK is available at http://developer.nvidia.com/opencl

High-performance Computing

182

How to do it…
1. Let's import PyOpenCL:

In [1]: import pyopencl as cl
 import numpy as np

2. The following object defines some flags related to memory management on the
device:
In [2]: mf = cl.mem_flags

3. We create an OpenCL context and a command queue:
In [3]: ctx = cl.create_some_context()
 queue = cl.CommandQueue(ctx)

4. Now, we initialize the NumPy array that will contain the fractal:
In [4]: size = 200
 iterations = 100
 col = np.empty((size, size), dtype=np.int32)

5. We allocate GPU memory for this array:
In [5]: col_buf = cl.Buffer(ctx,
 mf.WRITE_ONLY,
 col.nbytes)

6. We write the OpenCL kernel in a string:
In [6]: code = """
 __kernel void mandelbrot(int size,
 int iterations,
 global int *col)
 {
 // Get the row and column index of the thread.
 int i = get_global_id(1);
 int j = get_global_id(0);
 int index = i * size + j;

 // Declare and initialize the variables.
 double cx, cy;
 double z0, z1, z0_tmp, z0_2, z1_2;
 cx = -2.0 + (double)j / size * 3;
 cy = -1.5 + (double)i / size * 3;

 // Main loop.
 z0 = z1 = 0.0;
 for (int n = 0; n < iterations; n++)

Chapter 5

183

 {
 z0_2 = z0 * z0;
 z1_2 = z1 * z1;
 if (z0_2 + z1_2 <= 100)
 {
 // Need to update both z0 and z1.
 z0_tmp = z0_2 - z1_2 + cx;
 z1 = 2 * z0 * z1 + cy;
 z0 = z0_tmp;
 col[index] = n;
 }
 else break;
 }
 }
 """

7. Now, we compile the OpenCL program:
In [7]: prg = cl.Program(ctx, code).build()
Build on <pyopencl.Device 'Intel(R) Core(TM) i3-2365M CPU @
1.40GHz' on 'Intel(R) OpenCL' at 0x765b188> succeeded.

8. We call the compiled function, passing the command queue, the grid size, and the
buffers as arguments:
In [8]: prg.mandelbrot(queue, col.shape, None, np.int32(size),
np.int32(iterations), col_buf).wait()

9. Once the function has completed, we copy the contents of the OpenCL buffer back
into the NumPy array col:
In [9]: cl.enqueue_copy(queue, col, col_buf)

10. Finally, we can check that the function was successful by imshow()-ing the NumPy
array col. We can also do a quick benchmark with %timeit, and we find that this
function takes ~3.7 ms to complete on an Intel i3 dual-core CPU.

How it works…
The principles detailed in the previous recipe apply here as well. There is a change of
terminology between CUDA and OpenCL:

 f CUDA threads are equivalent to OpenCL work items.

 f CUDA blocks are equivalent to OpenCL work groups.

 f A CUDA grid is equivalent to an OpenCL NDRange.

 f A CUDA streaming processor is equivalent to an OpenCL compute unit.

High-performance Computing

184

In the kernel, we can get a work item's index with get_local_id(dim), get_group_
id(dim), and get_global_id(dim). The global qualifier in the function's arguments
specifies that a variable corresponds to an object in global memory.

An OpenCL context is the environment within which work items execute. It includes devices
with their memories and command queues. The command queue is a queue used by the host
application to submit work to a device.

This program works the same on a CPU or a GPU, depending on the installed OpenCL SDK
and on the available OpenCL context. If multiple contexts exist, PyOpenGL may ask the user
to choose the device. The context may also be specified programmatically (see http://
documen.tician.de/pyopencl/runtime.html#pyopencl.Context). On a CPU, the
code is parallelized and vectorized over multiple cores and with vector instructions such as
SSE or AVX.

There's more…
OpenCL is a relatively young standard but we should expect it to have more and more
importance in the future. It is supported by the biggest companies in the GPU industry. It
supports interoperability with OpenGL, the industry standard for real-time, hardware-accelerated
computer graphics (maintained by the very same Khronos Group). It is on its way to being
supported on mobile platforms (smartphones and tablets), and in the browser as well with
WebCL (which is still a draft at the time of writing).

Here are a few OpenCL resources:

 f OpenCL tutorial available at http://opencl.codeplex.com

 f Courses available at http://developer.amd.com/partners/university-
programs/opencl-university-course-listings/

 f Books on OpenCL, at http://streamcomputing.eu/knowledge/for-
developers/books/

See also
 f The Writing massively parallel code for NVIDIA graphics cards (GPUs) with

CUDA recipe

Chapter 5

185

Distributing Python code across multiple
cores with IPython

Despite CPython's GIL, it is possible to execute several tasks in parallel on multi-core
computers using multiple processes instead of multiple threads. Python offers a native
multiprocessing module. IPython offers an even simpler interface that brings powerful
parallel computing features in an interactive environment. We will describe this tool here.

How to do it…
1. First, we launch four IPython engines in separate processes. We have basically two

options to do this:

 � Executing ipcluster start -n 4 in a system shell
 � Using the web interface provided in the IPython notebook's main page by

clicking on the Clusters tab and launching four engines

2. Then, we create a client that will act as a proxy to the IPython engines. The client
automatically detects the running engines:
In [2]: from IPython.parallel import Client
 rc = Client()

3. Let's check the number of running engines:
In [3]: rc.ids
Out[3]: [0, 1, 2, 3]

4. To run commands in parallel over the engines, we can use the %px line magic or the
%%px cell magic:
In [4]: %%px
 import os
 print("Process {0:d}.".format(os.getpid()))
[stdout:0] Process 2988.
[stdout:1] Process 5192.
[stdout:2] Process 4484.
[stdout:3] Process 1360.

5. We can specify which engines to run the commands on using the --targets
or -t option:
In [5]: %%px -t 1,2
 # The os module has already been imported in
 # the previous cell.
 print("Process {0:d}.".format(os.getpid()))
[stdout:1] Process 5192.
[stdout:2] Process 4484.

High-performance Computing

186

6. By default, the %px magic executes commands in blocking mode; the cell only
returns when the commands have completed on all engines. It is possible to run
non-blocking commands with the --noblock or -a option. In this case, the cell
returns immediately, and the task's status and results can be polled asynchronously
from IPython's interactive session:
In [6]: %%px -a
 import time
 time.sleep(5)
Out[6]: <AsyncResult: execute>

7. The previous command returned an ASyncResult instance that we can use to poll
the task's status:
In [7]: print(_.elapsed, _.ready())
(0.061, False)

8. The %pxresult blocks until the task finishes:
In [8]: %pxresult
In [9]: print(_.elapsed, _.ready())
(5.019, True)

9. IPython provides convenient functions for common use cases, such as a parallel
map function:
In [10]: v = rc[:]
 res = v.map(lambda x: x*x, range(10))
In [11]: print(res.get())
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

How it works…
There are several steps to distribute code across multiple cores:

1. Launching several IPython engines (there is typically one process per core).
2. Creating a Client that acts as a proxy to these engines.
3. Using the client to launch tasks on the engines and retrieve the results.

Engines are Python processes that execute code on different computing units. They are very
similar to IPython kernels.

There are two main interfaces for accessing the engines:

 f With the direct interface, we access engines directly and explicitly with
their identifiers.

 f With the load-balanced interface, we access engines through an interface that
automatically and dynamically assigns work to appropriate engines.

We can also create custom interfaces for alternative styles of parallelism.

Chapter 5

187

In this recipe, we used the direct interface; we addressed individual engines explicitly by
specifying their identifiers in the %px magics.

As we have seen in this recipe, tasks can be launched synchronously or asynchronously.
The %px* magic commands are particularly convenient in the notebook, as they let us work
seamlessly on multiple engines in parallel.

There's more…
The parallel computing capabilities of IPython offer an easy way to launch independent jobs in
parallel over multiple cores. A more advanced use case is when jobs have dependencies.

Dependent parallel tasks
There are two types of dependencies:

 f Functional dependency: It determines whether a given task can execute on a given
engine, according to the engine's operating system, the presence or absence of
specific Python modules, or other conditions. IPython provides a @require decorator
for functions that need specific Python modules to run on the engines. Another
decorator is @depend; it lets us define arbitrary conditions implemented in a Python
function returning True or False.

 f Graph dependency: It determines whether a given task can execute at a given time
on a given engine. We may require a task to run only after one or several other tasks
have finished. Additionally, we can impose this condition within any individual engine;
an engine may need to execute a specific set of tasks before executing our task. For
example, here is how to require tasks B and C (with asynchronous results arB and
arC) to finish before task A starts:
with view.temp_flags(after=[arB, arC]):
 arA = view.apply_async(f)

IPython provides options to specify whether all or any of the dependencies should be met for
the task to run. Additionally, we can specify whether success- and/or failure-dependent tasks
should be considered as met or not.

When a task's dependency is unmet, the scheduler reassigns it to one engine, then to another
engine, and so on until an appropriate engine is found. If the dependency cannot be met on
any engine, an ImpossibleDependency error is raised for the task.

Passing data between dependent tasks is not particularly easy with IPython.parallel. A
first possibility is to use blocking calls in the interactive session; wait for tasks to finish,
retrieve the results, and send them back to the next tasks. Another possibility is to share
data between engines via the filesystem, but this solution does not work well on multiple
computers. An alternate solution is described at: http://nbviewer.ipython.org/gist/
minrk/11415238.

High-performance Computing

188

Alternative parallel computing solutions
Besides IPython, there are numerous alternative parallel computing frameworks in Python,
including ParallelPython, joblib, and many others.

There are also third-party (often commercial) services that provide Python-based clouds, such
as PythonAnywhere or Wakari. They are generally used in two ways:

 f Distributing a large number of computational tasks across multiple nodes in
parallel: Instead of being limited to a few cores with one or several local computers,
we can use hundreds or thousands of servers in parallel without worrying about the
maintenance of the whole infrastructure (it is handled by the company).

 f Hosting Python applications online, typically with a web interface: For example,
with Wakari, IPython notebooks can run on the cloud. An interesting use case is
teaching, where students can instantaneously use IPython from a web browser
connected to the Internet without installing anything locally.

References
Here are a few references about IPython.parallel:

 f Documentation of IPython.parallel available at http://ipython.org/ipython-
doc/dev/parallel/

 f IPython parallel tutorial by the IPython developers available at http://nbviewer.
ipython.org/github/minrk/IPython-parallel-tutorial/blob/master/
Index.ipynb

 f Dependencies in IPython.parallel, explained at http://ipython.org/ipython-
doc/dev/parallel/parallel_task.html#dependencies

 f DAG dependencies, described at http://ipython.org/ipython-doc/dev/
parallel/dag_dependencies.html

 f Examples of advanced techniques with IPython.parallel available at http://
github.com/ipython/ipython/tree/master/examples/Parallel%20
Computing

Here are some references about alternative parallel computing solutions in Python:

 f Parallel Python available at http://www.parallelpython.com

 f Joblib available at http://pythonhosted.org/joblib/parallel.html

 f List of parallel computing packages available at http://wiki.python.org/
moin/ParallelProcessing

 f Python Anywhere available at http://www.pythonanywhere.com

 f Wakari available at http://wakari.io

 f IPCluster on Wakari described at http://continuum.io/blog/ipcluster-
wakari-intro

Chapter 5

189

 f Teaching with Wakari described at http://continuum.io/blog/teaching-
with-wakari

See also
 f The Interacting with asynchronous parallel tasks in IPython recipe

 f The Parallelizing code with MPI in IPython recipe

Interacting with asynchronous parallel tasks
in IPython

In this recipe, we will show how to interact with asynchronous tasks running in parallel
with IPython.

Getting ready
You need to start the IPython engines (see the previous recipe). The simplest option is
to launch them from the Clusters tab in the notebook dashboard. In this recipe, we use
four engines.

How to do it…
1. Let's import a few modules:

In [1]: import time
 import sys
 from IPython import parallel
 from IPython.display import clear_output, display
 from IPython.html import widgets

2. We create a Client:
In [2]: rc = parallel.Client()

3. Now, we create a load-balanced view on the IPython engines:
In [3]: view = rc.load_balanced_view()

4. We define a simple function for our parallel tasks:
In [4]: def f(x):
 import time
 time.sleep(.1)
 return x*x

High-performance Computing

190

5. We will run this function on 100 integer numbers in parallel:
In [5]: numbers = list(range(100))

6. We execute f() on our list numbers in parallel across all of our engines, using map_
async(). This function immediately returns an AsyncResult object that allows us
to interactively retrieve information about the tasks:
In [6]: ar = view.map_async(f, numbers)

7. This object has a metadata attribute: a list of dictionaries for all engines. We can get
the date of submission and completion, the status, the standard output and error,
and other information:
In [7]: ar.metadata[0]
Out[7]: {
 'execute_result': None,
 'engine_id': None,
...
 'submitted': datetime.datetime(2014, 1, 1, 10, 30, 38, 9487),
 'follow': None}

8. Iterating over the AsyncResult instance works normally; the iteration progresses in
real-time while the tasks are being completed:
In [8]: for _ in ar:
 print(_, end=', ')
0, 1, 4,..., 9409, 9604, 9801,

9. Now, we create a simple progress bar for our asynchronous tasks. The idea is to
create a loop polling for the tasks' status at every second. An IntProgressWidget
widget is updated in real-time and shows the progress of the tasks:
In [9]: def progress_bar(ar):
 # We create a progress bar.
 w = widgets.IntProgressWidget()
 # The maximum value is the number of tasks.
 w.max = len(ar.msg_ids)
 # We display the widget in the output area.
 display(w)
 # Repeat every second:
 while not ar.ready():
 # Update the widget's value with the
 # number of tasks that have finished
 # so far.
 w.value = ar.progress
 time.sleep(1)
 w.value = w.max
In [10]: ar = view.map_async(f, numbers)
In [11]: progress_bar(ar)

Chapter 5

191

The progress bar is shown in the following screenshot:

10. Finally, it is easy to debug a parallel task on an engine. We can launch a Qt client on
the remote kernel by calling %qtconsole within a %%px cell magic:

In [12]: %%px -t 1
 %qtconsole

The Qt console allows us to inspect the remote namespace for debugging or analysis
purposes, as shown in the following screenshot:

Qt console for debugging an IPython engine

How it works…
AsyncResult instances are returned by asynchronous parallel functions. They implement
several useful attributes and methods, notably:

 f elapsed: Elapsed time since submission

 f progress: Number of tasks that have competed so far

 f serial_time: Sum of the computation time of all of the tasks done in parallel

 f metadata: Dictionary with further information about the task

 f ready(): Returns whether the call has finished

 f successful(): Returns whether the call has completed without raising an
exception (an exception is raised if the task has not completed yet)

High-performance Computing

192

 f wait(): Blocks until the tasks have completed (there is an optional
timeout argument)

 f get(): Blocks until the tasks have completed and returns the result (there is an
optional timeout argument)

There's more…
Here are a few references:

 f Documentation of the AsyncResult class available at http://ipython.org/
ipython-doc/dev/parallel/asyncresult.html

 f Documentation of the task interface available at http://ipython.org/ipython-
doc/dev/parallel/parallel_task.html

 f Printing engines output in real-time, demonstrated at http://github.com/
ipython/ipython/blob/master/examples/Parallel%20Computing/
iopubwatcher.py

See also
 f The Distributing Python code across multiple cores with IPython recipe

 f The Parallelizing code with MPI in IPython recipe

Parallelizing code with MPI in IPython
Message Passing Interface (MPI) is a standardized communication protocol for parallel
systems. It is used in many parallel computing applications to exchange data between nodes.
MPI has a high barrier to entry, but it is very efficient and powerful.

IPython's parallel computing system has been designed from the ground up to work with MPI.
If you are new to MPI, it is a good idea to start using it from IPython. If you are an experienced
MPI user, you will find that IPython integrates seamlessly with your parallel application.

In this recipe, we will see how to use MPI with IPython through a very simple example.

Getting ready
To use MPI with IPython, you need:

 f A standard MPI implementation such as OpenMPI available at http://www.open-
mpi.org or MPICH available at http://www.mpich.org

 f The mpi4py package available at http://mpi4py.scipy.org

Chapter 5

193

For example, here are the commands to install MPI for IPython on Ubuntu and Anaconda:

conda install mpich2

conda install mpi4py

You can also do pip install mpi4py for mpi4py. MPI can also be used on Windows. The
website of Python Tools for Visual Studio available at http://pytools.codeplex.com
contains the instructions to do this.

How to do it…
1. We first need to create a MPI profile with:

In [1]: !ipython profile create --parallel --profile=mpi

2. Then, we open ~/.ipython/profile_mpi/ipcluster_config.py and add the
line c.IPClusterEngines.engine_launcher_class = 'MPI'.

3. Once the MPI profile has been created and configured, we can launch the
engines by typing in a terminal: ipcluster start -n 2 --engines MPI
--profile=mpi.

4. Now, to actually use the engines, we create a client in the notebook:
In [2]: import numpy as np
 from IPython.parallel import Client
In [3]: c = Client(profile='mpi')

5. Let's create a view on all engines:
In [4]: view = c[:]

6. In this example, we compute the sum of all integers between 0 and 15 in parallel
over two cores. We first distribute the array with the 16 values across the engines
(each engine gets a subarray):
In [5]: view.scatter('a', np.arange(16., dtype='float'))
Out[5]: <AsyncResult: scatter>

High-performance Computing

194

7. We compute the total sum in parallel using MPI's allreduce() function. Every node
makes the same computation and returns the same result:
In [6]: %%px
 from mpi4py import MPI
 import numpy as np
 print MPI.COMM_WORLD.allreduce(np.sum(a), op=MPI.SUM)
[stdout:0] 120.0
[stdout:1] 120.0

If you get a different result, it means that the engines were not
actually started with MPI (see http://stackoverflow.
com/a/20159018/1595060).

How it works…
In this example, each node:

 f Receives a subset of the integers

 f Computes the local sum of those integers

 f Sends this local sum to all other engines

 f Receives the local sum of the other engines

 f Computes the total sum of those local sums

This is how allreduce() works in MPI; the principle is to scatter data across engines first,
then to reduce the local computations through a global operator (here, MPI.SUM).

IPython's direct interface also supports the scatter/gather paradigm natively, without resorting
to MPI. However, these operations can only be launched from the interactive session, not from
the engines themselves.

There are many other parallel computing paradigms in MPI. You can find more
information here:

 f MPI tutorials by Wes Kendall available at http://mpitutorial.com

 f MPI tutorials by Blaise Barney, Lawrence Livermore National Laboratory, available at
http://computing.llnl.gov/tutorials/mpi/

See also
 f The Distributing Python code across multiple cores with IPython recipe

 f The Interacting with asynchronous parallel tasks in IPython recipe

Chapter 5

195

Trying the Julia language in the notebook
Julia (http://julialang.org) is a young, high-level, dynamic language for high-
performance numerical computing. The first version was released in 2012 after three years
of development at MIT. Julia borrows ideas from Python, R, MATLAB, Ruby, Lisp, C, and other
languages. Its major strength is to combine the expressivity and ease of use of high-level,
dynamic languages with the speed of C (almost). This is achieved via an LLVM-based Just-In-
Time (JIT) compiler that targets machine code for x86-64 architectures.

In this recipe, we will try Julia in the IPython notebook using the IJulia package available
at http://github.com/JuliaLang/IJulia.jl. We will also show how to use Python
packages (such as NumPy and matplotlib) from Julia. Specifically, we will compute and display
a Julia set.

This recipe is inspired by a Julia tutorial given by David P. Sanders at the SciPy 2014
conference (http://nbviewer.ipython.org/github/dpsanders/scipy_2014_
julia/tree/master/).

Getting ready
You first need to install Julia. You will find packages for Windows, Mac OS X, and Linux
on Julia's website at http://julialang.org/downloads/. On Ubuntu, you can type
sudo apt-get install julia in a terminal. For IJulia, you also need a C++ compiler.
On Ubuntu, you can type sudo apt-get install build-essential.

Then, open a Julia terminal with the julia command, and install IJulia by typing Pkg.
add("IJulia") in the Julia terminal. This package should also create a julia profile
in your IPython installation.

Finally, to launch a Julia notebook, run ipython notebook --profile=julia in a
terminal. You'll recognize the dashboard of the IPython notebook. The only difference is
that the Julia language is used in the notebook instead of Python.

This recipe has been tested on Ubuntu 14.04 with Julia 0.2.1.

How to do it…
1. We can't avoid the customary Hello World example. The println() function displays

a string and adds a line break at the end:
In [1]: println("Hello world!")
Hello world!

High-performance Computing

196

2. We create a polymorphic function, f, that computes the expression z*z+c. We will
evaluate this function on arrays, so we use element-wise operators with a dot (.) prefix:
In [2]: f(z, c) = z.*z .+ c
Out[2]: f (generic function with 1 method)

3. Let's evaluate f on scalar complex numbers (the imaginary number i is 1im).
In [3]: f(2.0 + 1.0im, 1.0)
Out[3]: 4.0 + 4.0im

4. Now, we create a (2, 2) matrix. Components are separated by a space and rows are
separated by a semicolon (;). The type of this Array is automatically inferred from its
components. The Array type is a built-in data type in Julia, similar, but not identical,
to NumPy's ndarray type:
In [4]: z = [-1.0 - 1.0im 1.0 - 1.0im;
 -1.0 + 1.0im 1.0 + 1.0im]
Out[4]: 2x2 Array{Complex{Float64},2}:
 -1.0-1.0im 1.0-1.0im
 -1.0+1.0im 1.0+1.0im

5. We can index arrays with brackets []. A notable difference with Python is that
indexing starts from 1 instead of 0. MATLAB has the same convention. Furthermore,
the keyword end refers to the last item in that dimension:
In [5]: z[1,end]
Out[5]: 1.0 - 1.0im

6. We can evaluate f on the matrix z and a scalar c (polymorphism):
In [6]: f(z, 0)
Out[6]: 2x2 Array{Complex{Float64},2}:
 0.0+2.0im 0.0-2.0im
 0.0-2.0im 0.0+2.0im

7. Now, we create a function, julia, that computes a Julia set. Optional named
arguments are separated from positional arguments by a semicolon (;). Julia's
syntax for flow control is close to that of Python's, except that colons are dropped,
indentation doesn't count, and block end keywords are mandatory:
In [7]: function julia(z, c; maxiter=200)
 for n = 1:maxiter
 if abs2(z) > 4.0
 return n-1
 end
 z = f(z, c)
 end

Chapter 5

197

 return maxiter
 end
Out[7]: julia (generic function with 1 method)

8. We can use Python packages from Julia. First, we have to install the PyCall package
by using Julia's built-in package manager (Pkg). Once the package is installed, we
can use it in the interactive session with using PyCall:
In [8]: Pkg.add("PyCall")
 using PyCall

9. We can import Python packages with the @pyimport macro (a
metaprogramming feature in Julia). This macro is the equivalent of Python's import
command:
In [9]: @pyimport numpy as np

10. The np namespace is now available in the Julia interactive session. NumPy
arrays are automatically converted to Julia Array objects:
In [10]: z = np.linspace(-1., 1., 100)
Out[10]: 100-element Array{Float64,1}:
 -1.0
 -0.979798
...
 0.979798
 1.0

11. We can use list comprehensions to evaluate the function julia on many arguments:
In [11]: m = [julia(z[i], 0.5) for i=1:100]
Out[11]: 100-element Array{Int64,1}:
 2
...
 2

12. Let's try the Gadfly plotting package. This library offers a high-level plotting interface
inspired by Dr. Leland Wilkinson's textbook The Grammar of Graphics. In the
notebook, plots are interactive thanks to the D3.js library:
In [12]: Pkg.add("Gadfly")
 using Gadfly
In [13]: plot(x=1:100, y=m, Geom.point, Geom.line)
Out[13]: Plot(...)

High-performance Computing

198

Here is a screenshot:

A Gadfly plot in the IPython notebook with Julia

13. Now, we compute a Julia set by using two nested loops. In general, and unlike Python,
there is no significant performance penalty in using for loops instead of vectorized
operations. High-performance code can be written either with vectorized operations
or for loops:
In [14]: @time m = [julia(complex(r, i), complex(-0.06, 0.67))
 for i = 1:-.001:-1,
 r = -1.5:.001:1.5];
elapsed time: 0.881234749 seconds (48040248 bytes allocated)

14. Finally, we use the PyPlot package to draw matplotlib figures in Julia:
In [15]: Pkg.add("PyPlot")
 using PyPlot
In [16]: imshow(m, cmap="RdGy",
 extent=[-1.5, 1.5, -1, 1]);

Chapter 5

199

How it works…
Languages used to be either low-level, difficult to use, but fast (such as C); or high-level, easy
to use, but slow (such as Python). In Python, solutions to this problem include NumPy and
Cython, among others.

Julia developers chose to create a new high-level but fast language, bringing the best of
both worlds together. This is essentially achieved through modern Just-In-Time compilation
techniques implemented with LLVM.

Julia dynamically parses code and generates low-level code in the LLVM Intermediate
Representation. This representation features a language-independent instruction set that
is then compiled to machine code. Code written with explicit loops is directly compiled to
machine code. This explains why the performance-motivated vectorization of code is generally
not required with Julia.

There's more…
Strengths of Julia include:

 f A powerful and flexible dynamic type system based on multiple dispatch for
parametric polymorphism

 f Facilities for metaprogramming

 f A simple interface for calling C, FORTRAN, or Python code from Julia

 f Built-in support for fine-grained parallel and distributed computing

 f A built-in multidimensional array data type and numerical computing library

 f A built-in package manager based on Git

 f External packages for data analysis such as DataFrames (equivalent of pandas) and
Gadfly (statistical plotting library)

 f Integration in the IPython notebook

What are the strengths of Python over Julia? At the time of this writing, Julia is much younger
and less mature than Python and SciPy. Therefore, there are fewer packages and less
documentation in Julia than in Python. The syntax of the Julia language is still changing.
Additionally, Python is much more commonly found in production environments than Julia.
Thus, bringing numerical computing code to a production environment is easier when the
code is in Python.

High-performance Computing

200

That being said, the Julia ecosystem and its community are growing fast. We can reasonably
expect Julia to become increasingly popular in the future. Also, since both languages can be
used in the IPython notebook, we don't necessarily have to choose between Python and Julia.
We can call Python code and use Python modules from Julia and vice versa.

We have only scratched the surface of the Julia language in this recipe. Topics of interest
we couldn't cover in details here include Julia's type system, the metaprogramming features,
the support for parallel computing, and the package manager, among others.

Here are some references:

 f The Julia language on Wikipedia available at
http://en.wikipedia.org/wiki/Julia_%28programming_language%29

 f Official documentation of Julia available at
http://docs.julialang.org/en/latest/

 f The Why We Created Julia blog post available at
http://julialang.org/blog/2012/02/why-we-created-julia/

 f PyCall.jl for calling Python from Julia available at
http://github.com/stevengj/PyCall.jl

 f PyPlot.jl for using matplotlib in Julia available at
http://github.com/stevengj/PyPlot.jl

 f Gadfly.jl, a Julia plotting library, available at
http://dcjones.github.io/Gadfly.jl/

 f DataFrames.jl, an equivalent of pandas for Julia, available at
http://juliastats.github.io/DataFrames.jl/

 f Julia Studio, an IDE for Julia, available at
http://forio.com/labs/julia-studio/

6
Advanced Visualization

In this chapter, we will cover the following topics:

 f Making nicer matplotlib figures with prettyplotlib

 f Creating beautiful statistical plots with seaborn

 f Creating interactive web visualizations with Bokeh

 f Visualizing a NetworkX graph in the IPython notebook with D3.js

 f Converting matplotlib figures to D3.js visualizations with mpld3

 f Getting started with Vispy for high-performance interactive data visualizations

Introduction
Visualization is a central theme of this book. We create graphics in most recipes because
that's the most efficient way to communicate quantitative information. In most cases, we use
matplotlib to create plots. In this chapter, we will see more advanced visualization features
in Python.

First, we will see a few packages that let us improve the default styling of matplotlib figures
and the MATLAB-like pyplot interface. There are other high-level visualization programming
interfaces that can be more convenient in some situations.

Advanced Visualization

202

Also, the Web platform is getting closer and closer to Python. The IPython notebook is a
good example of this trend. In this chapter, we will see a few techniques and libraries to
create interactive Web visualizations in Python. These techniques will let us combine the
power of Python for data analysis and the power of the Web for interactivity.

Finally, we will introduce Vispy, a new high-performance interactive visualization library for
big data.

Making nicer matplotlib figures with
prettyplotlib

matplotlib is sometimes criticized for the default appearance of its figures. For example,
the default color maps are neither aesthetically appealing nor do they present perceptually
clear information.

There are many attempts to circumvent this problem. In this recipe, we will present prettyplotlib,
created by Olga Botvinnik. This lightweight Python library considerably improves the default
styling of many kinds of matplotlib figures.

Getting ready
You will find the installation instructions of prettyplotlib on the project's page at
http://github.com/olgabot/prettyplotlib. You can basically just do
pip install prettyplotlib in a terminal.

How to do it…
1. Let's first import NumPy and matplotlib:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 import matplotlib as mpl
 %matplotlib inline

2. We then draw several curves with matplotlib:
In [2]: np.random.seed(12)
 for i in range(8):
 x = np.arange(1000)
 y = np.random.randn(1000).cumsum()
 plt.plot(x, y, label=str(i))
 plt.legend()

Chapter 6

203

If you're reading the printed version of this book, you won't see the
colors. You can find the colored images on the book's website.

3. Now, we create the exact same plot with prettyplotlib. We just replace the
matplotlib.pyplot namespace with prettyplotlib:
In [3]: import prettyplotlib as ppl
 np.random.seed(12)
 for i in range(8):
 x = np.arange(1000)
 y = np.random.randn(1000).cumsum()
 ppl.plot(x, y, label=str(i))
 ppl.legend()

Advanced Visualization

204

4. Let's show another example with an image. We first use matplotlib's pcolormesh()
function to display a 2D array as an image:
In [4]: np.random.seed(12)
 plt.pcolormesh(np.random.rand(16, 16))
 plt.colorbar()

The default rainbow color map is known to cause visualized data to be
misinterpreted.

5. Now, we use prettyplotlib to display the exact same image:
In [5]: np.random.seed(12)
 ppl.pcolormesh(np.random.rand(16, 16))

This visualization is much clearer, in that high or low values are more obvious than
with the rainbow color map.

Chapter 6

205

How it works…
prettyplotlib merely tweaks the default styling options of matplotlib. The plotting interface
is basically the same as matplotlib. To understand how to modify matplotlib's styling, it is
worthwhile looking at prettyplotlib's code.

There's more…
There are other ways to improve matplotlib's styling:

 f A blog post by Randal Olson explains how to make clean and beautiful plots with
matplotlib; this is available at http://www.randalolson.com/2014/06/28/
how-to-make-beautiful-data-visualizations-in-python-with-
matplotlib/

 f There is some work in progress in matplotlib to add style sheet support; more
information can be found at http://github.com/matplotlib/matplotlib/
blob/master/doc/users/style_sheets.rst

 f Information about why rainbow color maps are misleading, at http://eagereyes.
org/basics/rainbow-color-map

See also
 f The Creating beautiful statistical plots with seaborn recipe

Creating beautiful statistical plots with
seaborn

matplotlib comes with a high-level plotting API called pyplot. Inspired by MATLAB (a widespread
commercial software for numerical computing), this interface may be a bit too low-level for
scientists, in that it can lead to boilerplate code that is difficult to read and maintain. Yet, it is
probably one of the most widely used plotting interfaces in the scientific Python community.

There exist higher-level, more convenient plotting interfaces. In this recipe, we present
seaborn created by Michael Waskom. This library exposes a high-level plotting API that
is specifically adapted to statistical figures. It also integrates nicely with pandas.

Getting ready
You will find the installation instructions of seaborn on the project's page at
http://github.com/mwaskom/seaborn. You can just type pip install
seaborn in a terminal.

Advanced Visualization

206

How to do it…
1. Let's import NumPy, matplotlib, and seaborn:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns
 %matplotlib inline

2. We generate a random dataset (following the example on seaborn's website
at http://nbviewer.ipython.org/github/mwaskom/seaborn/blob/
master/examples/linear_models.ipynb):
In [2]: x1 = np.random.randn(80)
 x2 = np.random.randn(80)
 x3 = x1 * x2
 y1 = .5 + 2 * x1 - x2 + 2.5 * x3 + \
 3 * np.random.randn(80)
 y2 = .5 + 2 * x1 - x2 + 2.5 * np.random.randn(80)
 y3 = y2 + np.random.randn(80)

3. Seaborn implements many easy-to-use statistical plotting functions. For example,
here is how to create a violin plot. This type of plot allows us to show the detailed
distribution of sets of points, instead of just quartiles like in box plots:
In [3]: sns.violinplot([x1,x2, x3])

Chapter 6

207

4. Seaborn also implements all-in-one statistical visualization functions. For example,
we can use a single function (regplot()) to perform and display a linear regression
between two variables:
In [4]: sns.regplot(x2, y2)

5. Seaborn has built-in support for pandas data structures. Here, we display the pair-
wise correlations between all variables defined in a DataFrame object:

In [5]: df = pd.DataFrame(dict(x1=x1, x2=x2, x3=x3,
 y1=y1, y2=y2, y3=y3))
 sns.corrplot(df)

Advanced Visualization

208

There's more…
Besides seaborn, there are other high-level plotting interfaces:

 f The Grammar of Graphics is a book by Dr. Leland Wilkinson that has influenced
many high-level plotting interfaces such as R's ggplot2, Python's ggplot by yhat,
and others.

 f Vega, by Trifacta, is a declarative visualization grammar that can be translated to
D3.js (a JavaScript visualization library). Also, Vincent is a Python library that lets
us create visualizations with Vega.

 f Tableau's VizQL is a commercial database-oriented visualization language.

Here are some more references:

 f Vega available at http://trifacta.github.io/vega/

 f Vincent available at http://vincent.readthedocs.org/en/latest/

 f ggplot2 available at http://ggplot2.org/

 f ggplot for Python available at
http://blog.yhathq.com/posts/ggplot-for-python.html

 f VizQL available at
http://www.tableausoftware.com/fr-fr/products/technology

See also
 f The Making nicer matplotlib figures with prettyplotlib recipe

Creating interactive web visualizations with
Bokeh

Bokeh is a library for creating rich interactive visualizations in a browser. Plots are designed
in Python, and they are entirely rendered in the browser. In this recipe, we will learn how to
create and render interactive Bokeh figures in the IPython notebook.

Getting ready
Install Bokeh by following the instructions on the website at http://bokeh.pydata.org.
In principle, you can just type pip install bokeh in a terminal. On Windows, you can
also download the binary installer from Chris Gohlke's website at http://www.lfd.uci.
edu/~gohlke/pythonlibs/#bokeh.

Chapter 6

209

How to do it…
1. Let's import NumPy and Bokeh. We need to call the output_notebook() function

in order to tell Bokeh to render plots in the IPython notebook:
In [1]: import numpy as np
 import bokeh.plotting as bkh
 bkh.output_notebook()

2. We create some random data:
In [2]: x = np.linspace(0., 1., 100)
 y = np.cumsum(np.random.randn(100))

3. Let's draw a curve:
In [3]: bkh.line(x, y, line_width=5)
 bkh.show()

An interactive plot is rendered in the notebook. We can pan and zoom by clicking on
the buttons above the plot:

An interactive plot with Bokeh

Advanced Visualization

210

4. Let's move on to another example. We first load a sample dataset (Iris flowers).
We also generate some colors based on the species of the flowers:
In [4]: from bokeh.sampledata.iris import flowers
 colormap = {'setosa': 'red',
 'versicolor': 'green',
 'virginica': 'blue'}
 flowers['color'] = flowers['species'].map(
 lambda x: colormap[x])

5. Now, we render an interactive scatter plot:
In [5]: bkh.scatter(flowers["petal_length"],
 flowers["petal_width"],
 color=flowers["color"],
 fill_alpha=0.25, size=10,)
 bkh.show()

An interactive scatter plot with Bokeh

Chapter 6

211

There's more…
Bokeh figures in the notebook are interactive even in the absence of a Python server. For
example, our figures can be interactive in nbviewer. Bokeh can also generate standalone
HTML/JavaScript documents from our plots. More examples can be found in the gallery at
http://bokeh.pydata.org/docs/gallery.html.

There is an IPython extension in Bokeh that simplifies the integration of interactive plots in
the notebook. This is available at http://github.com/ContinuumIO/bokeh/tree/
master/extensions.

In the same vein, let's mention plot.ly, an online commercial service for interactive Web-based
visualization that offers Python interfaces, available at http://plot.ly.

See also
 f The Converting matplotlib figures to D3.js visualizations with mpld3 recipe

Visualizing a NetworkX graph in the IPython
notebook with D3.js

D3.js (http://d3js.org) is a popular interactive visualization framework for the Web. Written
in JavaScript, it allows us to create data-driven visualizations based on Web technologies such
as HTML, SVG, and CSS. There are many other JavaScript visualization and charting libraries,
but we will focus on D3.js in this recipe.

Being a pure JavaScript library, D3.js has in principle nothing to do with Python. However,
the HTML-based IPython notebook can integrate D3.js visualizations seamlessly.

In this recipe, we will create a graph in Python with NetworkX and visualize it in the IPython
notebook with D3.js.

Getting ready
You need to know the basics of HTML, JavaScript, and D3.js for this recipe.

How to do it…
1. Let's import the packages:

In [1]: import json
 import numpy as np
 import networkx as nx

Advanced Visualization

212

 import matplotlib.pyplot as plt
 %matplotlib inline

2. We load a famous social graph published in 1977 called Zachary's Karate Club
graph. This graph represents the friendships between members of a Karate club.
The club's president and the instructor were involved in a dispute, resulting in a
split of this group. Here, we simply display the graph with matplotlib (using the
networkx.draw() function):
In [2]: g = nx.karate_club_graph()
 nx.draw(g)

3. Now, we're going to display this graph in the notebook with D3.js. The first step is
to bring this graph to JavaScript. Here, we choose to export the graph to JSON. D3.js
generally expects each edge to be an object with a source and target. Also, we specify
which side each member has taken (club attribute). NetworkX comes with a built-in
export function that we can use here:
In [3]: from networkx.readwrite import json_graph
 data = json_graph.node_link_data(g)
 with open('graph.json', 'w') as f:
 json.dump(data, f, indent=4)

4. The next step is to create an HTML object that will contain the visualization. Here, we
create a <div> element in the notebook. We also specify a few CSS styles for nodes
and links (also called edges):
In [4]: %%html
 <div id="d3-example"></div>

Chapter 6

213

 <style>
 .node {stroke: #fff; stroke-width: 1.5px;}
 .link {stroke: #999; stroke-opacity: .6;}
 </style>

5. The last step is trickier. We write the JavaScript code to load the graph from the
JSON file and display it with D3.js. Knowing the basics of D3.js is required here
(see the documentation of D3.js). The code is long, and you can find it on the
book's website. Here, we highlight the most important steps:
In [5]: %%javascript
 // We load the d3.js library.
 require(["d3"], function(d3) {
 // The code in this block is executed when the
 // d3.js library has been loaded.
 [...]
 // We create a force-directed dynamic graph
 // layout.
 var force = d3.layout.force().charge(-120).
 linkDistance(30).size([width, height]);
 [...]
 // In the <div> element, we create a <svg> graphic
 // that will contain our interactive
 // visualization.
 var svg = d3.select("#d3-example").select("svg");
 [...]
 // We load the JSON file.
 d3.json("graph.json", function(error, graph) {
 // We create the graph here.
 force.nodes(graph.nodes).links(graph.links)
 .start();

 // We create a <line> SVG element for each
 // link in the graph.
 var link = svg.selectAll(".link")
 .data(graph.links)
 .enter().append("line")
 .attr("class", "link");

 // We create <circle> SVG elements for the
 // nodes.
 var node = svg.selectAll(".node")
 .data(graph.nodes)
 .enter().append("circle")

Advanced Visualization

214

 [...]
 .style("fill", function(d) {
 return color(d.club);
 })
 .call(force.drag);
 [...]
 });
 });

When we execute this cell, the HTML object created in the previous cell is updated.
The graph is animated and interactive; we can click on nodes, see their labels, and
move them within the canvas:

An interactive plot in the notebook with D3.js

There's more…
D3.js' gallery contains many more examples of beautiful, interactive visualizations for the
Web. They are available at http://github.com/mbostock/d3/wiki/Gallery.

In this recipe, we created an HTML/JavaScript interactive visualization from a static dataset.
With IPython 2.0 and above, we can also create dynamic, real-time visualizations that involve bi-
directional communication between the browser and the Python kernel. There is an experimental
implementation by Brian Granger available at http://nbviewer.ipython.org/github/
ellisonbg/talk-2014-strata-sc/blob/master/Graph%20Widget.ipynb.

Let's also mention Vincent, a Python to Vega translator. Vega is a JSON-based visualization
grammar that can be translated to D3.js. Vincent makes it possible to design an interactive
visualization in Python and render it in the browser. More information can be found at
http://vincent.readthedocs.org/en/latest/.

Chapter 6

215

See also
 f The Creating interactive web visualizations with Bokeh recipe

 f The Converting matplotlib figures to D3.js visualizations with mpld3 recipe

Converting matplotlib figures to D3.js
visualizations with mpld3

The mpld3 library automatically converts matplotlib figures to interactive D3.js visualizations.
In this recipe, we will see how to use this library in the notebook.

Getting ready
To install the mpld3 library, you can just type pip install mpld3 in a terminal. See also
the main website at http://mpld3.github.io.

How to do it…
1. First, we load NumPy and matplotlib as usual:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

2. Then, we enable the mpld3 figures in the notebook with a single function call:
In [2]: from mpld3 import enable_notebook
 enable_notebook()

3. Now, let's create a scatter plot with matplotlib:
In [3]: X = np.random.normal(0, 1, (100, 3))
 color = np.random.random(100)
 size = 500 * np.random.random(100)
 plt.scatter(X[:,0], X[:,1], c=color,
 s=size, alpha=0.5, linewidths=2)
 plt.grid(color='lightgray', alpha=0.7)

Advanced Visualization

216

The matplotlib figure is rendered with D3.js instead of the standard matplotlib backend.
In particular, the figure is interactive (we can pan and zoom in the figure):

An interactive matplotlib figure with mpld3

4. Now, we create a more complex example with multiple subplots that represent
different 2D projections of a 3D dataset. We use the sharex and sharey keywords
in matplotlib's subplots() function to automatically bind the x and y axes of the
different figures. Panning and zooming in any of the subplots automatically updates
all the other subplots:
In [4]: fig, ax = plt.subplots(3, 3, figsize=(6, 6),
 sharex=True, sharey=True)
 fig.subplots_adjust(hspace=0.3)
 X[::2,2] += 3
 for i in range(3):
 for j in range(3):
 ax[i,j].scatter(X[:,i], X[:,j], c=color,
 s=.1*size, alpha=0.5, linewidths=2)
 ax[i,j].grid(color='lightgray', alpha=0.7)

Chapter 6

217

This use case is perfectly handled by mpld3; the D3.js subplots are dynamically
linked together:

Interactive linked subplots in mpld3

How it works…
mpld3 works by first crawling and exporting a matplotlib figure to JSON (in the context
of the mplexporter framework). Then, the library generates D3.js code from this JSON
representation. This architecture can enable other matplotlib backends besides D3.js.

There's more…
Here are some references:

 f mplexporter available at http://github.com/mpld3/mplexporter

 f mpld3 on GitHub available at https://github.com/jakevdp/mpld3

Advanced Visualization

218

See also
 f The Creating interactive web visualizations with Bokeh recipe

 f The Visualizing a NetworkX graph in the IPython notebook with D3.js recipe

Getting started with Vispy for high-
performance interactive data visualizations

Most existing plotting or visualization libraries in Python can display small or medium
datasets (that contain no more than a few tens of thousands of points). In the Big Data
era, it is sometimes necessary to display larger datasets.

Vispy (http://vispy.org) is a young 2D/3D high-performance visualization library that
can display very large datasets. Vispy leverages the computational power of modern Graphics
Processing Units (GPUs) through the OpenGL library.

The power of GPUs has been fostered by the video game industry in the last two decades.
GPUs are specialized in high-performance, real-time rendering. As such, they are perfectly
adapted to interactive scientific plotting.

Vispy offers a Pythonic object-oriented interface to OpenGL, useful to those who know OpenGL
or who are willing to learn it. Higher-level graphical interfaces are also being developed at the
time of this writing, and experimental versions are already available. These interfaces do not
require any knowledge of OpenGL.

In this recipe, we will give a brief introduction to the fundamental concepts of OpenGL.
There are two situations where you would need to know these concepts:

 f If you want to use Vispy today, before the availability of the high-level plotting interfaces

 f If you want to create custom, sophisticated, high-performance visualizations that are
not yet implemented in Vispy

Here, we display a digital signal using Vispy's object-oriented interface to OpenGL.

Getting ready
Vispy depends on NumPy. A backend library is necessary (for example, PyQt4 or PySide).

This recipe has been tested with the development version of Vispy available at
http://github.com/vispy/vispy. You should clone the GitHub repository
and install Vispy with the following command:

python setup.py install

Chapter 6

219

The API used in this recipe might change in future versions.

How to do it…
1. Let's import NumPy, vispy.app (to display a canvas), and vispy.gloo (object-

oriented interface to OpenGL):
In [1]: import numpy as np
 from vispy import app
 from vispy import gloo

2. In order to display a window, we need to create a Canvas:
In [2]: c = app.Canvas(keys='interactive')

3. When using vispy.gloo, we need to write shaders. These programs, written in a
C-like language, run on the GPU and give us full flexibility for our visualizations. Here,
we create a trivial vertex shader that directly displays 2D data points (stored in the
a_position variable) in the canvas. We will see more details in the next section:
In [3]: vertex = """
 attribute vec2 a_position;
 void main (void)
 {
 gl_Position = vec4(a_position, 0.0, 1.0);
 }
 """

4. The other shader we need to create is the fragment shader. It lets us control the
pixels' color. Here, we display all data points in black:
In [4]: fragment = """
 void main()
 {
 gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
 }
 """

5. Next, we create an OpenGL Program. This object contains shaders and links the
shader variables to the NumPy data:
In [5]: program = gloo.Program(vertex, fragment)

6. We link the a_position variable to a (1000, 2) NumPy array that contains the
coordinates of 1000 data points. In the default coordinate system, the coordinates
of the four canvas corners are (+/-1, +/-1):
In [6]: program['a_position'] = np.c_[
 np.linspace(-1.0, +1.0, 1000),
 np.random.uniform(-0.5, +0.5, 1000)]

Advanced Visualization

220

7. We create a callback function when the window is being resized. Updating the
OpenGL viewport lets us ensure that Vispy uses the entire canvas:
In [7]: @c.connect
 def on_resize(event):
 gloo.set_viewport(0, 0, *event.size)

8. We create a callback function when the canvas needs to be refreshed.
This on_draw() function renders the entire scene. First, we clear the window
in white (it is necessary to do this at every frame). Then, we draw a succession
of line segments using our OpenGL program:
In [8]: @c.connect
 def on_draw(event):
 gloo.clear((1,1,1,1))
 program.draw('line_strip')

9. Finally, we show the canvas and run the application:
In [9]: c.show()
 app.run()

The following figure shows a screenshot:

Basic visualization example with Vispy

How it works…
OpenGL is an open standard for hardware-accelerated interactive visualization. It is widely
used in video games, industry (Computer-Aided Design, or CAD), virtual reality, and scientific
applications (medical imaging, computer graphics, and so on).

OpenGL is a mature technology created in the early 1990s. In the early 2000s, OpenGL 2.0
brought a major new feature: the possibility to customize fundamental steps of the rendering
pipeline. This pipeline defines the way data is processed on the GPU for real-time rendering.
Many OpenGL courses and tutorials cover the old, fixed pipeline. However, Vispy exclusively
supports the modern, programmable pipeline.

Chapter 6

221

Here, we will introduce the fundamental concepts of the programmable pipeline used in this
recipe. OpenGL is considerably more complex than what we can cover here. However, Vispy
provides a vastly simplified API for the most common features of OpenGL.

Vispy is based on OpenGL ES 2.0, a flavor of OpenGL that is supported
on desktop computers, mobile devices, and modern web browsers
(through WebGL). Modern graphics cards can support additional
features. These features will be available in future versions of Vispy.

There are four major elements in the rendering pipeline of a given OpenGL program:

 f Data buffers store numerical data on the GPU. The main types of buffers are vertex
buffers, index buffers, and textures.

 f Variables are available in the shaders. There are four major types of variables:
attributes, uniforms, varyings, and texture samplers.

 f Shaders are GPU programs written in a C-like language called OpenGL Shading
Language (GLSL). The two main types of shaders are vertex shaders and
fragment shaders.

 f The primitive type defines the way data points are rendered. The main types are
points, lines, and triangles.

Here is how the rendering pipeline works:

1. Data is sent to the GPU and stored in buffers.

2. The vertex shader processes the data in parallel and generates a number of
4D points in a normalized coordinate system (+/-1, +/-1). The fourth dimension
is a homogeneous coordinate (generally 1).

3. Graphics primitives (points, lines, and triangles) are generated from the data
points returned by the vertex shader (primitive assembly and rasterization).

4. The fragment shader processes all primitive pixels in parallel and returns each
pixel's color as RGBA components.

In this recipe's example, there is only one GPU variable: the a_position attribute. An attribute
is a variable that takes one value per data point. Uniforms are global variables (shared by all
data points), whereas varyings are used to pass values from the vertex shader to the fragment
shader (with automatic linear interpolation for a pixel between two or three vertices).

In vispy.gloo, a Program is created with the vertex and fragment shaders. Then, the
variables declared in the shaders can be set with the program['varname'] = value
syntax. When varname is an attribute variable, the value can just be a NumPy 2D array.
In this array, every line contains the components of every data point.

Similarly, we can declare uniforms and textures in our program.

Advanced Visualization

222

Finally, the program.draw() function renders the data using the specified primitive type.
Here, the line_strip primitive type tells the GPU to run through all vertices (as returned by
the vertex buffer) and to draw a line segment from one point to the next. If there are n points,
there will be n-1 line segments.

Other primitive types include points and triangles, with several ways of generating lines or
triangles from a list of vertices.

In addition, an index buffer can be provided. An index buffer contains indices pointing to
the vertex buffers. Using an index buffer would allow us to reuse any vertex multiple times
during the primitive assembly stage. For example, when rendering a cube with a triangles
primitive type (one triangle is generated for every triplet of points), we can use a vertex buffer
with eight data points and an index buffer with thirty-six indices (three points per triangle, two
triangles per face, and six faces).

There's more…
The example shown here is extremely simple. The approach provided by OpenGL and Vispy
is nevertheless particularly powerful. It gives us full control on the rendering pipeline, and it
allows us to leverage the computational power of GPUs in a nearly optimal way.

High performance is achieved by minimizing the number of data transfers to the GPU. When
displaying static data (for example, a scatter plot), it is possible to send the data to the GPU at
initialization time only. Yet, rendering dynamic data is reasonably fast; the order of magnitude
of data transfers is roughly 1 GBps.

Additionally, it is critical to use as few OpenGL draw calls as possible. Every draw incurs a
significant overhead. High performance is achieved by rendering all similar primitive types at
once (batch rendering). GPUs are particularly efficient with batch rendering, even when the
properties of the points are different (for example, points with various sizes and colors).

Finally, geometric or pixel transformations can be executed on the GPU with very high
performance using the shaders. The massive architecture of GPUs, consisting of hundreds
or thousands of computing units, is fully leveraged when transformations are implemented
in the shaders.

General-purpose computations can be done in the shaders in the context of visualization.
There is one major drawback compared to proper GPGPU frameworks like CUDA or OpenCL: in
the vertex shader, a given thread has access to one data point only. Similarly, in the fragment
shader, a thread has only access to one pixel. Yet, certain types of simulations or visualization
effects require interactions between vertices or pixels. There are ways to mitigate this issue,
but they lead to a drop in performance.

Chapter 6

223

However, it is possible to interoperate OpenGL with CUDA/OpenCL. Buffers can be shared
between OpenGL and the GPGPU framework. Complex CUDA/OpenCL computations can be
implemented on vertex buffers or textures in real-time, leading to highly efficient rendering
of numerical simulations.

Vispy for scientific visualization
As we have seen in this recipe, Vispy requires the user to know OpenGL and GLSL. However,
higher-level graphical interfaces are currently being developed. These interfaces will bring to
scientists the power of GPUs for high-performance interactive visualization.

Visuals will provide reusable, reactive graphical components like shapes, polygons,
3D meshes, graphs, and others. These visuals will be fully customizable and can be
used without knowledge of OpenGL. A shader composition system will allow advanced
users to reuse snippets of GLSL code in a modular way.

Visuals will be organized within a scene graph implementing GPU-based transformations.

Scientific plotting interfaces will be implemented. Vispy can also serve as a high-performance
backend for existing plotting libraries such as matplotlib.

Vispy will also support full integration in the IPython notebook using WebGL.

Eventually, Vispy will be able to implement many kinds of scientific visualizations:

 f Scatter plots can be rendered efficiently with point sprites, using one vertex
per data point. Panning and zooming can be implemented in the vertex shader,
enabling fast interactive visualization of millions of points.

 f Static or dynamic (real-time) digital signals can be displayed with polylines.
High-quality rendering of curves can be achieved using an OpenGL implementation
of Anti-Grain Geometry, a high-quality 2D rendering library.

 f Graphs can be displayed by combining points and line segments.

 f 3D meshes can be displayed with triangles and index buffers. Geometric
transformations and realistic lighting can be implemented in the vertex
and fragment shaders.

 f Real-time streams of images can be displayed efficiently with textures.

 f Axes, grids, ticks, text, and labels can be rendered efficiently in the fragment shader.

Many examples can be found in Vispy's gallery.

Here are a few references:

 f Vispy's gallery available at http://vispy.org/gallery.html

 f A modern OpenGL tutorial, by Nicolas P. Rougier, available at
http://www.loria.fr/~rougier/teaching/opengl/

Advanced Visualization

224

 f Hardware-accelerated interactive data visualization for neuroscience in Python,
an article available at http://journal.frontiersin.org/Journal/
10.3389/fninf.2013.00036/full

 f The Vispy users mailing list available at
http://groups.google.com/forum/#!forum/vispy

 f The Vispy-dev mailing list available at
http://groups.google.com/forum/#!forum/vispy-dev

 f The Anti-Grain Geometry library on Wikipedia, available at
http://en.wikipedia.org/wiki/Anti-Grain_Geometry

7
Statistical Data

Analysis

In this chapter, we will cover the following topics:

 f Exploring a dataset with pandas and matplotlib

 f Getting started with statistical hypothesis testing – a simple z-test

 f Getting started with Bayesian methods

 f Estimating the correlation between two variables with a contingency table and
a chi-squared test

 f Fitting a probability distribution to data with the maximum likelihood method

 f Estimating a probability distribution nonparametrically with a kernel
density estimation

 f Fitting a Bayesian model by sampling from a posterior distribution with a Markov
chain Monte Carlo method

 f Analyzing data with the R programming language in the IPython notebook

Introduction
In the previous chapters, we reviewed technical aspects of high-performance interactive
computing in Python. We now begin the second part of this book by illustrating a variety of
scientific questions that can be tackled with Python.

In this chapter, we introduce statistical methods for data analysis. In addition to covering
statistical packages such as pandas, statsmodels, and PyMC, we will explain the basics of the
underlying mathematical principles. Therefore, this chapter will be most profitable if you have
basic experience with probability theory and calculus.

Statistical Data Analysis

226

The next chapter, Chapter 8, Machine Learning, is closely related; the underlying mathematics
is very similar, but the goals are slightly different. In this chapter, we show how to gain insight
into real-world data and how to make informed decisions in the presence of uncertainty. In the
next chapter, the goal is to learn from data, that is, to generalize and to predict outcomes from
partial observations.

In this introduction, we will give a broad, high-level overview of the methods we will see
in this chapter.

What is statistical data analysis?
The goal of statistical data analysis is to understand a complex, real-world phenomenon
from partial and uncertain observations. The uncertainty in the data results in uncertainty
in the knowledge we get about the phenomenon. A major goal of the theory is to quantify
this uncertainty.

It is important to make the distinction between the mathematical theory underlying statistical
data analysis, and the decisions made after conducting an analysis. The former is perfectly
rigorous; perhaps surprisingly, mathematicians were able to build an exact mathematical
framework to deal with uncertainty. Nevertheless, there is a subjective part in the way
statistical analysis yields actual human decisions. Understanding the risk and the uncertainty
behind statistical results is critical in the decision-making process.

In this chapter, we will see the basic notions, principles, and theories behind statistical data
analysis, covering in particular how to make decisions with a quantified risk. Of course, we will
always show how to implement these methods with Python.

A bit of vocabulary
There are many terms that need introduction before we get started with the recipes. These
notions allow us to classify statistical techniques within multiple dimensions.

Exploration, inference, decision, and prediction
Exploratory methods allow us to get a preliminary look at a dataset through basic statistical
aggregates and interactive visualization. We covered these basic methods in the first
chapter of this book and in the book Learning IPython for Interactive Computing and Data
Visualization, Packt Publishing. The first recipe of this chapter, Exploring a dataset with
pandas and matplotlib, shows another example.

Chapter 7

227

Statistical inference consists of getting information about an unknown process through
partial and uncertain observations. In particular, estimation entails obtaining approximate
quantities for the mathematical variables describing this process. Three recipes in this
chapter deal with statistical inference:

 f The Fitting a probability distribution to data with the maximum likelihood
method recipe

 f The Estimating a probability distribution nonparametrically with a kernel density
estimation recipe

 f The Fitting a Bayesian model by sampling from a posterior distribution with a Markov
chain Monte Carlo method recipe

Decision theory allows us to make decisions about an unknown process from random
observations, with a controlled risk. The following two recipes show how to make
statistical decisions:

 f The Getting started with statistical hypothesis testing: a simple z-test recipe

 f The Estimating the correlation between two variables with a contingency table
and a chi-squared test recipe

Prediction consists of learning from data, that is, predicting the outcomes of a random
process based on a limited number of observations. This is the topic of the next chapter,
Chapter 8, Machine Learning.

Univariate and multivariate methods
In most cases, you can consider two dimensions in your data:

 f Observations (or samples, for machine learning people)

 f Variables (or features)

Typically, observations are independent realizations of the same random process. Each
observation is made of one or several variables. Most of the time, variables are either
numbers, or elements belonging to a finite set (that is, taking a finite number of values).
The first step in an analysis is to understand what your observations and variables are.

Your problem is univariate if you have one variable. It is bivariate if you have two variables
and multivariate if you have at least two variables. Univariate methods are typically simpler.
That being said, univariate methods may be used on multivariate data, using one dimension
at a time. Although interactions between variables cannot be explored in that case, it is often
an interesting first approach.

Statistical Data Analysis

228

Frequentist and Bayesian methods
There are at least two different ways of considering uncertainty, resulting in two different
classes of methods for inference, decision, and other statistical questions. These are called
frequentist and Bayesian methods. Some people prefer frequentist methods, while others
prefer Bayesian methods.

Frequentists interpret a probability as a statistical average across many independent
realizations (law of large numbers). Bayesians interpret it as a degree of belief (no need
for many realizations). The Bayesian interpretation is very useful when only a single trial is
considered. In addition, Bayesian theory takes into account our prior knowledge about a
random process. This prior probability distribution is updated into a posterior distribution
as we get more and more data.

Both frequentist and Bayesian methods have their advantages and disadvantages. For
instance, one could say that frequentist methods might be easier to apply than Bayesian
methods, but more difficult to interpret. For classic misuses of frequentist methods, see
www.refsmmat.com/statistics/.

In any case, if you are a beginner in statistical data analysis, you probably want to learn the
basics of both approaches before choosing sides. This chapter introduces you to both types
of methods.

The following recipes are exclusively Bayesian:

 f The Getting started with Bayesian methods recipe

 f The Fitting a Bayesian model by sampling from a posterior distribution with a Markov
chain Monte Carlo method recipe

Jake Vanderplas has written several blog posts about frequentism and Bayesianism, with
examples in Python. The first post of the series is available at http://jakevdp.github.
io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro/.

Parametric and nonparametric inference methods
In many cases, you base your analysis on a probabilistic model. This model describes how
your data is generated. A probabilistic model has no reality; it is only a mathematical object
that guides you in your analysis. A good model can be helpful, whereas a bad model may
misguide you.

With a parametric method, you assume that your model belongs to a known family of
probability distributions. The model has one or multiple numerical parameters that you
can estimate.

Chapter 7

229

With a nonparametric model, you do not make such an assumption in your model. This gives
you more flexibility. However, these methods are typically more complicated to implement and
to interpret.

The following recipes are parametric and nonparametric, respectively:

 f The Fitting a probability distribution to data with the maximum likelihood
method recipe

 f The Estimating a probability distribution nonparametrically with a kernel density
estimation recipe

This chapter only gives you an idea of the wide range of possibilities that Python offers for
statistical data analysis. You can find many books and online courses that cover statistical
methods in much greater detail, such as:

 f Statistics on WikiBooks at http://en.wikibooks.org/wiki/Statistics

 f Free statistical textbooks available at http://stats.stackexchange.com/
questions/170/free-statistical-textbooks

Exploring a dataset with pandas and
matplotlib

In this first recipe, we will show how to conduct a preliminary analysis of a dataset with
pandas. This is typically the first step after getting access to the data. pandas lets us load the
data very easily, explore the variables, and make basic plots with matplotlib.

We will take a look at a dataset containing all ATP matches played by four tennis players until
2012. Here, we will focus on Roger Federer.

Getting ready
Download the Tennis dataset from the book's GitHub repository at https://github.com/
ipython-books/cookbook-data, and extract it to the current directory.

How to do it...
1. We import NumPy, pandas, and matplotlib:

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline

Statistical Data Analysis

230

2. The dataset is a CSV file, that is, a text file with comma-separated values. pandas lets
us load this file with a single function:
In [2]: player = 'Roger Federer'
 filename = "data/{name}.csv".format(
 name=player.replace(' ', '-'))
 df = pd.read_csv(filename)

We can have a first look at this dataset by just displaying it in the IPython notebook:

In [3]: df
Out[3]: Int64Index: 1179 entries, 0 to 1178
 Data columns (total 70 columns):
 year 1179 non-null values
 tournament 1179 non-null values
 ...
 player2 total points total 1027 non-null values
 dtypes: float64(49), int64(2), object(19)

3. There are many columns. Each row corresponds to a match played by Roger Federer.
Let's add a Boolean variable indicating whether he has won the match or not. The
tail() method displays the last rows of the column:
In [4]: df['win'] = df['winner'] == player
 df['win'].tail()
Out[4]: 1174 False
 1175 True
 1176 True
 1177 True
 1178 False
 Name: win, dtype: bool

4. df['win'] is a Series object. It is very similar to a NumPy array, except that each
value has an index (here, the match index). This object has a few standard statistical
functions. For example, let's look at the proportion of matches won:
In [5]: print(("{player} has won {vic:.0f}% "
 "of his ATP matches.").format(
 player=player, vic=100*df['win'].mean()))
Roger Federer has won 82% of his ATP matches.

5. Now, we are going to look at the evolution of some variables across time. The
df['start date'] field contains the start date of the tournament as a string.
We can convert the type to a date type using the pd.to_datetime() function:
In [6]: date = pd.to_datetime(df['start date'])

Chapter 7

231

6. We are now looking at the proportion of double faults in each match (taking into
account that there are logically more double faults in longer matches!). This number
is an indicator of the player's state of mind, his level of self-confidence, his willingness
to take risks while serving, and other parameters.
In [7]: df['dblfaults'] = (df['player1 double faults'] /
 df['player1 total points total'])

7. We can use the head() and tail() methods to take a look at the beginning and
the end of the column, and describe() to get summary statistics. In particular,
let's note that some rows have NaN values (that is, the number of double faults is
not available for all matches).
In [8]: df['dblfaults'].tail()
Out[8]: 1174 0.018116
 1175 0.000000
 1176 0.000000
 1177 0.011561
 1178 NaN
 Name: dblfaults, dtype: float64
In [9]: df['dblfaults'].describe()
Out[9]: count 1027.000000
 mean 0.012129
 std 0.010797
 min 0.000000
 25% 0.004444
 50% 0.010000
 75% 0.018108
 max 0.060606
 dtype: float64

8. A very powerful feature in pandas is groupby(). This function allows us to group
together rows that have the same value in a particular column. Then, we can
aggregate this group by value to compute statistics in each group. For instance, here
is how we can get the proportion of wins as a function of the tournament's surface:
In [10]: df.groupby('surface')['win'].mean()
Out[10]: surface
 Indoor: Carpet 0.736842
 Indoor: Clay 0.833333
 Indoor: Hard 0.836283
 Outdoor: Clay 0.779116
 Outdoor: Grass 0.871429
 Outdoor: Hard 0.842324
 Name: win, dtype: float64

Statistical Data Analysis

232

9. Now, we are going to display the proportion of double faults as a function of the
tournament date, as well as the yearly average. To do this, we also use groupby():
In [11]: gb = df.groupby('year')

10. gb is a GroupBy instance. It is similar to a DataFrame object, but there are multiple
rows per group (all matches played in each year). We can aggregate these rows using
the mean() operation. We use the matplotlib plot_date() function because the
x-axis contains dates:
In [12]: plt.plot_date(date, df['dblfaults'],
 alpha=.25, lw=0)
 plt.plot_date(gb['start date'].max(),
 gb['dblfaults'].mean(), '-', lw=3)
 plt.xlabel('Year')
 plt.ylabel('Proportion of double faults per
 match.')

There's more...
pandas is an excellent tool for data wrangling and exploratory analysis. pandas accepts all
sorts of formats (text-based, and binary files) and it lets us manipulate tables in many ways.
In particular, the groupby() function is extremely powerful. This library is covered in much
greater detail in a book by Wes McKinney, Python for Data Analysis.

What we covered here is only the first step in a data-analysis process. We need more
advanced statistical methods to obtain reliable information about the underlying phenomena,
make decisions and predictions, and so on. This is the topic of the following recipes.

Chapter 7

233

In addition, more complex datasets demand more sophisticated analysis methods. For
example, digital recordings, images, sounds, and videos require specific signal processing
treatments before we can apply statistical techniques. These questions will be covered in
subsequent chapters.

Getting started with statistical hypothesis
testing – a simple z-test

Statistical hypothesis testing allows us to make decisions in the presence of incomplete
data. By definition, these decisions are uncertain. Statisticians have developed rigorous
methods to evaluate this risk. Nevertheless, some subjectivity is always involved in the
decision-making process. The theory is just a tool that helps us make decisions in an
uncertain world.

Here, we introduce the most basic ideas behind statistical hypothesis testing. We will follow
an extremely simple example: coin tossing. More precisely, we will show how to perform a
z-test, and we will briefly explain the mathematical ideas underlying it. This kind of method
(also called the frequentist method), although widely used in science, is subject to many
criticisms. We will show later a more modern approach based on Bayesian theory. It is very
helpful to understand both approaches, because many studies and publications still follow
frequentist methods.

Getting ready
You need to have a basic knowledge of probability theory for this recipe (random variables,
distributions, expectancy, variance, central limit theorem, and so on).

How to do it...
Many frequentist methods for hypothesis testing roughly involve the following steps:

1. Writing down the hypotheses, notably the null hypothesis, which is the opposite of
the hypothesis we want to prove (with a certain degree of confidence).

2. Computing a test statistic, a mathematical formula depending on the test type, the
model, the hypotheses, and the data.

3. Using the computed value to accept the hypothesis, reject it, or fail to conclude.

Here, we flip a coin n times and we observe h heads. We want to know whether the coin is fair
(null hypothesis). This example is extremely simple yet quite useful for pedagogical purposes.
Besides, it is the basis of many more complex methods.

Statistical Data Analysis

234

We denote the Bernoulli distribution by B(q) with the unknown parameter q. You can refer to
http://en.wikipedia.org/wiki/Bernoulli_distribution for more information.

A Bernoulli variable is:

 f 0 (tail) with probability 1-q

 f 1 (head) with probability q

Here are the steps required to conduct a simple statistical z-test:

1. Let's suppose that after n=100 flips, we get h=61 heads. We choose a significance
level of 0.05: is the coin fair or not? Our null hypothesis is: the coin is fair (q = 1/2):
In [1]: import numpy as np
 import scipy.stats as st
 import scipy.special as sp
In [2]: n = 100 # number of coin flips
 h = 61 # number of heads
 q = .5 # null-hypothesis of fair coin

2. Let's compute the z-score, which is defined by the following formula (xbar is the
estimated average of the distribution). We will explain this formula in the next section,
How it works….
In [3]: xbar = float(h)/n
 z = (xbar - q) * np.sqrt(n / (q*(1-q))); z
Out[3]: 2.1999999999999997

3. Now, from the z-score, we can compute the p-value as follows:
In [4]: pval = 2 * (1 - st.norm.cdf(z)); pval
Out[4]: 0.02780689502699718

4. This p-value is less than 0.05, so we reject the null hypothesis and conclude that the
coin is probably not fair.

How it works...
The coin tossing experiment is modeled as a sequence of n independent random variables

{ }0,1ix ∈ following the Bernoulli distribution B(q). Each xi represents one coin flip. After
our experiment, we get actual values (samples) for these variables. A different notation
is sometimes used to distinguish between the random variables (probabilistic objects)
and the actual values (samples).

The following formula gives the sample mean (proportion of heads here):

1
i

i
x x

n
= ∑

Chapter 7

235

Knowing the expectancy qµ = and variance ()2 1q qσ = − of the distribution B(q),
we compute:

[]

() ()2 1
var

E x q

q q
x

n n

µ

σ

= =

−
= =

The z-test is the normalized version of x (we remove its mean, and divide by the standard
deviation, thus we get a variable with mean 0 and standard deviation 1):

[]
() () ()std 1

x E x nz x q
x q q

−
= = −

−

Under the null hypothesis, what is the probability of obtaining a z-test higher than some
quantity z0? This probability is called the (two-sided) p-value. According to the central limit
theorem, the z-test approximately follows a standard Gaussian distribution N(0,1) for large n,
so we get:

[] ()()0 0 02 2 1p P z z P z z z= > = > −Φ �

The following diagram illustrates the z-score and the p-value:

Illustration of the z-score and the p-value

Statistical Data Analysis

236

In this formula, Φ is the cumulative distribution function of a standard normal distribution.
In SciPy, we can get it with scipy.stats.norm.cdf. So, given the z-test computed from
the data, we compute the p-value: the probability of observing a z-test more extreme than the
observed test, under the null hypothesis.

If the p-value is less than five percent (a frequently-chosen significance level, for arbitrary and
historical reasons), we conclude that either:

 f The null hypothesis is false, thus we conclude that the coin is unfair.

 f The null hypothesis is true, and it's just bad luck if we obtained these values.
We cannot make a conclusion.

We cannot disambiguate between these two options in this framework, but typically the first
option is chosen. We hit the limits of frequentist statistics, although there are ways to mitigate
this problem (for example, by conducting several independent studies and looking at all of
their conclusions).

There's more...
Many statistical tests following this pattern exist. Reviewing all those tests is largely beyond the
scope of this book, but you can take a look at the reference at http://en.wikipedia.org/
wiki/Statistical_hypothesis_testing.

As a p-value is not easy to interpret, it can lead to wrong conclusions, even in peer-reviewed
scientific publications. For an in-depth treatment of the subject, see www.refsmmat.com/
statistics/.

See also
 f The Getting started with Bayesian methods recipe

Getting started with Bayesian methods
In the last recipe, we used a frequentist method to test a hypothesis on incomplete data.
Here, we will see an alternative approach based on Bayesian theory. The main idea is to
consider that unknown parameters are random variables, just like the variables describing
the experiment. Prior knowledge about the parameters is integrated into the model. This
knowledge is updated as more and more data is observed.

Frequentists and Bayesians interpret probabilities differently. Frequentists interpret
a probability as a limit of frequencies when the number of samples tends to infinity.
Bayesians interpret it as a belief; this belief is updated as more and more data is observed.

Chapter 7

237

Here, we revisit the previous coin flipping example with a Bayesian approach. This example
is sufficiently simple to permit an analytical treatment. In general, as we will see later in this
chapter, analytical results cannot be obtained and numerical methods become essential.

Getting ready
This is a math-heavy recipe. Knowledge of basic probability theory (random variables,
distributions, Bayes formula) and calculus (derivatives, integrals) is recommended. We
use the same notations as in the previous recipe.

How to do it...
Let q be the probability of obtaining a head. Whereas q was just a fixed number in the
previous recipe, we consider here that it is a random variable. Initially, this variable follows
a distribution called the prior probability distribution. It represents our knowledge about q
before we start flipping the coin. We will update this distribution after each trial (posterior
distribution).

1. First, we assume that q is a uniform random variable in the interval [0, 1]. That's our
prior distribution: for all q, P(q)=1.

2. Then, we flip our coin n times. We note xi the outcome of the ith flip (0 for tail and 1
for head).

3. What is the probability distribution of q knowing the observations xi? Bayes' theorem
allows us to compute the posterior distribution analytically (see the next section for
the mathematical details):

{ }() { }() ()
{ }() ()

() ()1

0

|
| 1 1

|

−
= = + −

 ∫
n hi h

i

i

P x q P q n
P q x n q q

hP x q P q dq

4. We define the posterior distribution according to the previous mathematical formula.
We remark that this expression is (n+1) times the probability mass function (PMF)
of the binomial distribution, which is directly available in scipy.stats. (For more
information on Binomial distribution, refer to http://en.wikipedia.org/wiki/
Binomial_distribution.)
In [1]: import numpy as np
 import scipy.stats as st
 import matplotlib.pyplot as plt
 %matplotlib inline
In [2]: posterior = lambda n, h, q: ((n+1) *
 st.binom(n, q).pmf(h))

Statistical Data Analysis

238

5. Let's plot this distribution for an observation of h=61 heads and n=100 total flips:
In [3]: n = 100
 h = 61
 q = np.linspace(0., 1., 1000)
 d = posterior(n, h, q)
In [4]: plt.plot(q, d, '-k')
 plt.ylim(0, d.max()+1)

This curve represents our belief about the parameter q after we have observed
61 heads.

How it works...
In this section, we explain Bayes' theorem, and we give the mathematical details underlying
this example.

Bayes' theorem
There is a very general idea in data science that consists of explaining data with a
mathematical model. This is formalized with a one-way process, model → data.

Once this process is formalized, the task of the data scientist is to exploit the data to recover
information about the model. In other words, we want to invert the original process and get
data → model.

In a probabilistic setting, the direct process is represented as a conditional probability
distribution P(data|model). This is the probability of observing the data when the model is
entirely specified.

Similarly, the inverse process is P(model|data). It gives us information about the model (what
we're looking for), knowing the observations (what we have).

Chapter 7

239

Bayes' theorem is at the core of a general framework for inverting a probabilistic process of
model → data. It can be stated as follows:

() () ()
()

data | model model
model | data

data
P P

P
P

=

This equation gives us information about our model, knowing the observed data. Bayes'
equation is widely used in signal processing, statistics, machine learning, inverse problems,
and in many other scientific applications.

In Bayes' equation, P(model) reflects our prior knowledge about the model. Also, P(data) is the
distribution of the data. It is generally expressed as an integral of P(data|model)P(model).

In conclusion, Bayes' equation gives us a general roadmap for data inference:

1. Specify a mathematical model for the direct process model → data (the
P(data|model) term).

2. Specify a prior probability distribution for the model (P(model) term).

3. Perform analytical or numerical calculations to solve this equation.

Computation of the posterior distribution
In this recipe's example, we found the posterior distribution with the following equation
(deriving directly from Bayes' theorem):

{ }() { }() ()
{ }() ()

1

0

|
|

|
=
∫

i
i

i

P x q P q
P q x

P x q P q dq

Knowing that the xi are independent, we get (h being the number of heads):

{ }() () ()
1

| | 1
n

n hh
i i

i
P x q P x q q q −

=

= = −∏

In addition, we can compute analytically the following integral (using an integration by parts
and an induction):

{ }() () ()
()

1 1

0 0

1| 1
1

−= − =

+

∫ ∫
n hh

iP x q P q dq q q dq
n

n
h

Statistical Data Analysis

240

Finally, we get:

{ }() { }() ()
{ }() ()

() ()1

0

|
| 1 1

|

−
= = + −

 ∫
n hi h

i

i

P x q P q n
P q x n q q

hP x q P q dq

Maximum a posteriori estimation
We can get a point estimate from the posterior distribution. For example, the maximum
a posteriori (MAP) estimation consists of considering the maximum of the posterior
distribution as an estimate for q. We can find this maximum analytically or numerically. For
more information on MAP, refer to http://en.wikipedia.org/wiki/Maximum_a_
posteriori_estimation.

Here, we can get this estimate analytically by deriving the posterior distribution with respect to
q. We get (assuming 1 ≤ h ≤ n-1):

{ }() () () () () ()()11| !1 1 1
! !

n h n hi h hdP q x nn hq q n h q q
dq n h h

− − −−= + − − − −
−

This expression is equal to zero when q = h/n. This is the MAP estimate of the parameter q.
This value happens to be the proportion of heads obtained in the experiment.

There's more...
In this recipe, we showed a few basic notions in Bayesian theory. We illustrated them with a
simple example. The fact that we were able to derive the posterior distribution analytically is not
very common in real-world applications. This example is nevertheless informative because it
explains the core mathematical ideas behind the complex numerical methods we will see later.

Credible interval
The posterior distribution indicates the plausible values for q given the observations. We could
use it to derive a credible interval, likely to contain the actual value. Credible intervals are
the Bayesian analog to confidence intervals in frequentist statistics. For more information on
credible intervals, refer to http://en.wikipedia.org/wiki/Credible_interval.

Conjugate distributions
In this recipe, the prior and posterior distributions are conjugate, meaning that they belong
to the same family (the beta distribution). For this reason, we were able to compute the
posterior distribution analytically. You will find more details about conjugate distributions at
http://en.wikipedia.org/wiki/Conjugate_prior.

Chapter 7

241

Non-informative (objective) prior distributions
We chose a uniform distribution as prior distribution for the unknown parameter q. It is
a simple choice and it leads to tractable computations. It reflects the intuitive fact that
we do not favor any particular value a priori. However, there are rigorous ways of choosing
completely uninformative priors (see http://en.wikipedia.org/wiki/Prior_
probability#Uninformative_priors). An example is the Jeffreys prior, based on the
idea that the prior distribution should not depend on the parameterization of the parameters.
For more information on Jeffreys prior, refer to http://en.wikipedia.org/wiki/
Jeffreys_prior. In our example, the Jeffreys prior is:

()
()
1
1

P q
q q

=
−

See also
 f The Fitting a Bayesian model by sampling from a posterior distribution with a Markov

chain Monte Carlo method recipe

Estimating the correlation between two
variables with a contingency table and
a chi-squared test

Whereas univariate methods deal with single-variable observations, multivariate methods
consider observations with several features. Multivariate datasets allow the study of relations
between variables, more particularly their correlation or lack thereof (that is, independence).

In this recipe, we will take a look at the same tennis dataset as in the first recipe of this
chapter. Following a frequentist approach, we will estimate the correlation between the
number of aces and the proportion of points won by a tennis player.

Getting ready
Download the Tennis dataset on the book's GitHub repository at https://github.com/
ipython-books/cookbook-data, and extract it in the current directory.

How to do it...
1. Let's import NumPy, pandas, SciPy.stats, and matplotlib:

In [1]: import numpy as np
 import pandas as pd

Statistical Data Analysis

242

 import scipy.stats as st
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We load the dataset corresponding to Roger Federer:
In [2]: player = 'Roger Federer'
 filename = "data/{name}.csv".format(
 name=player.replace(' ', '-'))
 df = pd.read_csv(filename)

3. Each row corresponds to a match, and the 70 columns contain many player
characteristics during that match:
In [3]: print("Number of columns: " + str(len(df.columns)))
 df[df.columns[:4]].tail()
Number of columns: 70
 year tournament start date
 1174 2012 Australian Open, Australia 16.01.2012
 1175 2012 Doha, Qatar 02.01.2012
 1176 2012 Doha, Qatar 02.01.2012
 1177 2012 Doha, Qatar 02.01.2012
 1178 2012 Doha, Qatar 02.01.2012

4. Here, we only look at the proportion of points won, and the (relative) number of aces:
In [4]: npoints = df['player1 total points total']
 points = df['player1 total points won'] / npoints
 aces = df['player1 aces'] / npoints
In [5]: plt.plot(points, aces, '.')
 plt.xlabel('% of points won')
 plt.ylabel('% of aces')
 plt.xlim(0., 1.)
 plt.ylim(0.)

If the two variables were independent, we would not see any trend in the cloud
of points. On this plot, it is a bit hard to tell. Let's use pandas to compute a
coefficient correlation.

Chapter 7

243

5. We create a new DataFrame object with only these fields (note that this step is not
compulsory). We also remove the rows where one field is missing (using dropna()):
In [6]: df_bis = pd.DataFrame({'points': points,
 'aces': aces}).dropna()
 df_bis.tail()
Out[6]: aces points
 1173 0.024390 0.585366
 1174 0.039855 0.471014
 1175 0.046512 0.639535
 1176 0.020202 0.606061
 1177 0.069364 0.531792

6. Let's compute the Pearson's correlation coefficient between the relative number of
aces in the match, and the number of points won:
In [7]: df_bis.corr()
Out[7]: aces points
 aces 1.000000 0.255457
 points 0.255457 1.000000

A correlation of ~0.26 seems to indicate a positive correlation between our two
variables. In other words, the more aces in a match, the more points the player wins
(which is not very surprising!).

7. Now, to determine if there is a statistically significant correlation between
the variables, we use a chi-squared test of the independence of variables
in a contingency table.

8. First, we binarize our variables. Here, the value corresponding to the number
of aces is True if the player is serving more aces than usual in a match, and
False otherwise:
In [8]: df_bis['result'] = df_bis['points'] > \
 df_bis['points'].median()
 df_bis['manyaces'] = df_bis['aces'] > \
 df_bis['aces'].median()

9. Then, we create a contingency table, with the frequencies of all four possibilities
(True and True, True and False, and so on):
In [9]: pd.crosstab(df_bis['result'], df_bis['manyaces'])
Out[9]: manyaces False True
 result
 False 300 214
 True 214 299

Statistical Data Analysis

244

10. Finally, we compute the chi-squared test statistic and the associated p-value.
The null hypothesis is the independence between the variables. SciPy implements
this test in scipy.stats.chi2_contingency, which returns several objects.
We're interested in the second result, which is the p-value:
In [10]: st.chi2_contingency(_)
Out[10]: (27.809858855369555,
 1.3384233799633629e-07,
 1L,
 array([[257.25024343, 256.74975657],
 [256.74975657, 256.25024343]]))

The p-value is much lower than 0.05, so we reject the null hypothesis and conclude
that there is a statistically significant correlation between the proportion of aces and
the proportion of points won in a match (for Roger Federer!).

As always, correlation does not imply causation. Here, it
is likely that external factors influence both variables. See
http://en.wikipedia.org/wiki/Correlation_
does_not_imply_causation for more details.

How it works...
We give here a few details about the statistical concepts used in this recipe.

Pearson's correlation coefficient
Pearson's correlation coefficient measures the linear correlation between two random
variables, X and Y. It is a normalized version of the covariance:

()
() ()

()() ()()()
() ()

cov ,

var var var var

E X E X Y E YX Y
X Y X Y

ρ
− −

=

It can be estimated by substituting, in this formula, the expectancy with the sample mean,
and the variance with the sample variance. More details about its inference can be found
at http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_
coefficient.

Chapter 7

245

Contingency table and chi-squared test
The contingency table contains the frequencies Oij of all combinations of outcomes, when
there are multiple random variables that can take a finite number of values. Under the null
hypothesis of independence, we can compute the expected frequencies Eij, based on the
marginal sums (sums in each row). The chi-squared statistic, by definition, is:

() 2

,

ij ij

i j ij

O E
E

χ
−

=∑

When there are sufficiently many observations, this variable approximately follows a chi-
squared distribution (the distribution of the sum of normal variables squared). Once we get
the p-value, as explained in the Getting started with statistical hypothesis testing – a simple
z-test recipe, we can reject or accept the null hypothesis of independence. Then, we can
conclude (or not) that there exists a significant correlation between the variables.

There's more...
There are many other sorts of chi-squared tests, that is, tests where the test statistic follows
a chi-squared distribution. These tests are widely used for testing the goodness-of-fit of a
distribution, or testing the independence of variables. More information can be found in the
following pages:

 f Chi2 test in SciPy documentation available at http://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.chi2_contingency.html

 f Contingency table introduced at http://en.wikipedia.org/wiki/
Contingency_table

 f Chi-squared test introduced at http://en.wikipedia.org/wiki/Pearson's_
chi-squared_test

See also
 f The Getting started with statistical hypothesis testing – a simple z-test recipe

Fitting a probability distribution to data with
the maximum likelihood method

A good way to explain a dataset is to apply a probabilistic model to it. Finding an adequate
model can be a job in its own. Once a model is chosen, it is necessary to compare it to the
data. This is what statistical estimation is about. In this recipe, we apply the maximum
likelihood method on a dataset of survival times after heart transplant (1967-1974 study).

Statistical Data Analysis

246

Getting ready
As usual in this chapter, a background in probability theory and real analysis is recommended.
In addition, you need the statsmodels package to retrieve the test dataset. For more
information on statsmodels, refer to http://statsmodels.sourceforge.net. On
Anaconda, you can install statsmodel with the conda install statsmodels command.

How to do it...
1. statsmodels is a Python package for conducting statistical data analyses. It also

contains real-world datasets that we can use when experimenting with new methods.
Here, we load the heart dataset:
In [1]: import numpy as np
 import scipy.stats as st
 import statsmodels.datasets as ds
 import matplotlib.pyplot as plt
 %matplotlib inline
In [2]: data = ds.heart.load_pandas().data

2. Let's take a look at this DataFrame:
In [3]: data.tail()
Out[3]: survival censors age
 64 14 1 40.3
 65 167 0 26.7
 66 110 0 23.7
 67 13 0 28.9
 68 1 0 35.2

This dataset contains censored and uncensored data: a censor of 0 means that the
patient was alive at the end of the study, and thus we don't know the exact survival
time. We only know that the patient survived at least the indicated number of days.
For simplicity here, we only keep uncensored data (we thereby introduce a bias
toward patients that did not survive very long after their transplant):

In [4]: data = data[data.censors==1]
 survival = data.survival

3. Let's take a look at the data graphically, by plotting the raw survival data and
the histogram:
In [5]: plt.subplot(121)
 plt.plot(sorted(survival)[::-1], 'o')
 plt.xlabel('Patient')
 plt.ylabel('Survival time (days)')
 plt.subplot(122)
 plt.hist(survival, bins=15)

Chapter 7

247

 plt.xlabel('Survival time (days)')
 plt.ylabel('Number of patients')

4. We observe that the histogram is decreasing very rapidly. Fortunately, the survival
rates today are much higher (~70 percent after 5 years). Let's try to fit an exponential
distribution (more information on the exponential distribution is available at http://
en.wikipedia.org/wiki/Exponential_distribution) to the data. According
to this model, S (number of days of survival) is an exponential random variable with
the parameter λ , and the observations si are sampled from this distribution. Let the
sample mean be:

1
is s

n
= ∑

The likelihood function of an exponential distribution is as follows, by definition
(see proof in the next section):

{ }() { }() (), | expn
i is P s nsλ λ λ λ= = −L

The maximum likelihood estimate for the rate parameter is, by definition, the value
λ that maximizes the likelihood function. In other words, it is the parameter that
maximizes the probability of observing the data, assuming that the observations are
sampled from an exponential distribution.

Here, it can be shown that the likelihood function has a maximum value when
1/ sλ = , which is the maximum likelihood estimate for the rate parameter. Let's

compute this parameter numerically:
In [6]: smean = survival.mean()
 rate = 1./smean

Statistical Data Analysis

248

5. To compare the fitted exponential distribution to the data, we first need to generate
linearly spaced values for the x-axis (days):
In [7]: smax = survival.max()
 days = np.linspace(0., smax, 1000)
 dt = smax / 999. # bin size: interval between two
 # consecutive values in `days`

We can obtain the probability density function of the exponential distribution with
SciPy. The parameter is the scale, the inverse of the estimated rate.

In [8]: dist_exp = st.expon.pdf(days, scale=1./rate)

6. Now, let's plot the histogram and the obtained distribution. We need to rescale the
theoretical distribution to the histogram (depending on the bin size and the total
number of data points):
In [9]: nbins = 30
 plt.hist(survival, nbins)
 plt.plot(days, dist_exp*len(survival)*smax/nbins,
 '-r', lw=3)

The fit is far from perfect. We were able to find an analytical formula for the maximum
likelihood estimate here. In more complex situations, that is not always possible. Thus
we may need to resort to numerical methods. SciPy actually integrates numerical
maximum likelihood routines for a large number of distributions. Here, we use this
other method to estimate the parameter of the exponential distribution.

In [10]: dist = st.expon
 args = dist.fit(survival); args
Out[10]: (0.99999999994836486, 222.28880590143666)

Chapter 7

249

7. We can use these parameters to perform a Kolmogorov-Smirnov test, which
assesses the goodness of fit of the distribution with respect to the data. This test is
based on a distance between the empirical distribution function of the data and the
cumulative distribution function (CDF) of the reference distribution.

In [11]: st.kstest(survival, dist.cdf, args)
Out[11]: (0.36199685486406347, 8.6470960143358866e-06)

The second output value is the p-value. Here, it is very low: the null hypothesis
(stating that the observed data stems from an exponential distribution with a maximum
likelihood rate parameter) can be rejected with high confidence. Let's try another
distribution, the Birnbaum-Sanders distribution, which is typically used to model
failure times. (More information on the Birnbaum-Sanders distribution is available
at http://en.wikipedia.org/wiki/Birnbaum-Saunders_distribution.)
In [12]: dist = st.fatiguelife
 args = dist.fit(survival)
 st.kstest(survival, dist.cdf, args)
Out[12]: (0.18773446101946889, 0.073211497000863268)

This time, the p-value is 0.07, so that we would not reject the null hypothesis with a
five percent confidence level. When plotting the resulting distribution, we observe a
better fit than with the exponential distribution:
In [13]: dist_fl = dist.pdf(days, *args)
 nbins = 30
 plt.hist(survival, nbins)
 plt.plot(days, dist_exp*len(survival)*smax/nbins,
 '-r', lw=3, label='exp')
 plt.plot(days, dist_fl*len(survival)*smax/nbins,
 '-g', lw=3, label='BS')
 plt.xlabel("Survival time (days)")
 plt.ylabel("Number of patients")
 plt.legend()

Statistical Data Analysis

250

How it works...
Here, we give the calculations leading to the maximum likelihood estimation of the rate
parameter for an exponential distribution:

{ }() { }()

() ()

()

()

1
n

1

1

, |

| by independence of the

exp

exp

exp

λ λ

λ

λ λ

λ λ

λ λ

=

=

=

=

=

= −

 = −

= −

∏

∏

∑

i i

n

i i
i

i
i

n
n

i
i

n

s P s

P s s

s

s

ns

L

Here, s is the sample mean. In more complex situations, we would require numerical
optimization methods in which the principle is to maximize the likelihood function using
a standard numerical optimization algorithm (see Chapter 9, Numerical Optimization).

To find the maximum of this function, let's compute its derivative function with respect to λ :

{ }() ()()1,
expi ns

ns n n s
d
λ

λ λ λ
λ

−= − −
dL

The root of this derivative is therefore 1/ sλ =

There's more...
Here are a few references:

 f Maximum likelihood on Wikipedia, available at http://en.wikipedia.org/
wiki/Maximum_likelihood

 f Kolmogorov-Smirnov test on Wikipedia, available at http://en.wikipedia.org/
wiki/Kolmogorov-Smirnov_test

 f Goodness of fit at http://en.wikipedia.org/wiki/Goodness_of_fit

The maximum likelihood method is parametric: the model belongs to a prespecified
parametric family of distributions. In the next recipe, we will see a nonparametric
kernel-based method.

Chapter 7

251

See also
 f The Estimating a probability distribution nonparametrically with a kernel density

estimation recipe

Estimating a probability distribution
nonparametrically with a kernel density
estimation

In the previous recipe, we applied a parametric estimation method. We had a statistical
model (the exponential distribution) describing our data, and we estimated a single parameter
(the rate of the distribution). Nonparametric estimation deals with statistical models that do
not belong to a known family of distributions. The parameter space is then infinite-dimensional
instead of finite-dimensional (that is, we estimate functions rather than numbers).

Here, we use a kernel density estimation (KDE) to estimate the density of probability
of a spatial distribution. We look at the geographical locations of tropical cyclones from
1848 to 2013, based on data provided by the NOAA, the US' National Oceanic and
Atmospheric Administration.

Getting ready
Download the Storms dataset from the book's GitHub repository at https://github.com/
ipython-books/cookbook-data, and extract it in the current directory. The data was
obtained from www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data.

You also need matplotlib's toolkit basemap, available at http://matplotlib.org/
basemap/. With Anaconda, you can install it with conda install basemap. Windows users
can also find an installer at www.lfd.uci.edu/~gohlke/pythonlibs/.

How to do it...
1. Let's import the usual packages. The kernel density estimation with a Gaussian

kernel is implemented in SciPy.stats:
In [1]: import numpy as np
 import pandas as pd
 import scipy.stats as st
 import matplotlib.pyplot as plt
 from mpl_toolkits.basemap import Basemap
 %matplotlib inline

2. Let's open the data with pandas:
In [2]: df = pd.read_csv(
 "data/Allstorms.ibtracs_wmo.v03r05.csv")

Statistical Data Analysis

252

3. The dataset contains information about most storms since 1848. A single storm may
appear multiple times across several consecutive days.
In [3]: df[df.columns[[0,1,3,8,9]]].head()
Out[3]: Serial_Num Season Basin Latitude Longitude
 0 1848011S09080 1848 SI -8.6 79.8
 1 1848011S09080 1848 SI -9.0 78.9
 2 1848011S09080 1848 SI -10.4 73.2
 3 1848011S09080 1848 SI -12.8 69.9
 4 1848011S09080 1848 SI -13.9 68.9

4. We use pandas' groupby() function to obtain the average location of every storm:
In [4]: dfs = df.groupby('Serial_Num')
 pos = dfs[['Latitude', 'Longitude']].mean()
 y, x = pos.values.T
 pos.head()
Out[4]: Latitude Longitude
 Serial_Num
 1848011S09080 -15.918182 71.854545
 1848011S15057 -24.116667 52.016667
 1848061S12075 -20.528571 65.342857
 1851080S15063 -17.325000 55.400000
 1851080S21060 -23.633333 60.200000

5. We display the storms on a map with basemap. This toolkit allows us to easily project
the geographical coordinates on the map.
In [5]: m = Basemap(projection='mill', llcrnrlat=-65,
 urcrnrlat=85, llcrnrlon=-180,
 urcrnrlon=180)
 x0, y0 = m(-180, -65)
 x1, y1 = m(180, 85)
 m.drawcoastlines()
 m.fillcontinents(color='#dbc8b2')
 xm, ym = m(x, y)
 m.plot(xm, ym, '.r', alpha=.1)

Chapter 7

253

6. To perform the kernel density estimation, we stack the x and y coordinates of the
storms into a (2, N) array:
In [6]: h = np.vstack((xm, ym))
In [7]: kde = st.gaussian_kde(h)

7. The gaussian_kde() routine returned a Python function. To see the results on
a map, we need to evaluate this function on a 2D grid spanning the entire map.
We create this grid with meshgrid(), and we pass the x and y values to the kde
function. kde accepts a (2, N) array as input, requiring us to tweak the shape of
the array:
In [8]: k = 50
 tx, ty = np.meshgrid(np.linspace(x0, x1, 2*k),
 np.linspace(y0, y1, k))
 v = kde(np.vstack((tx.ravel(),
 ty.ravel()))).reshape((k, 2*k))

8. Finally, we display the estimated density with imshow():
In [9]: m.drawcoastlines()
 m.fillcontinents(color='#dbc8b2')
 xm, ym = m(x, y)
 m.imshow(v, origin='lower', extent=[x0,x1,y0,y1],
 cmap=plt.get_cmap('Reds'))

How it works...
The kernel density estimator of a set of n points {xi} is given as:

()
1

1ˆ
n

i
h

i

x xf x K
nh h=

− =

∑

Statistical Data Analysis

254

Here, h>0 is a scaling parameter (the bandwidth) and K(u) is the kernel, a symmetric
function that integrates to 1. This estimator is to be compared with a classical histogram,
where the kernel would be a top-hat function (a rectangle function taking its values in
{0,1}), but the blocks would be located on a regular grid instead of the data points. For more
information on kernel density estimator, refer to http://en.wikipedia.org/wiki/
Kernel_density_estimation.

Multiple kernels can be chosen. Here, we chose a Gaussian kernel, so that the KDE is
the superposition of Gaussian functions centered on all the data points. It is an estimation
of the density.

The choice of the bandwidth is not trivial; there is a tradeoff between a too low value (small
bias, high variance: overfitting) and a too high value (high bias, small variance: underfitting).
We will return to this important concept of bias-variance tradeoff in the next chapter. For
more information on the bias-variance tradeoff, refer to http://en.wikipedia.org/
wiki/Bias-variance_dilemma.

The following figure illustrates the KDE. The dataset contains four points in [0,1] (black lines).
The estimated density is a smooth curve, represented here with multiple bandwidth values.

Kernel density estimation

There are other KDE implementations in statsmodels
and scikit-learn. You can find more information at
http://jakevdp.github.io/blog/2013/12/01/
kernel-density-estimation/.

Chapter 7

255

See also
 f The Fitting a probability distribution to data with the maximum likelihood

method recipe

Fitting a Bayesian model by sampling from
a posterior distribution with a Markov chain
Monte Carlo method

In this recipe, we illustrate a very common and useful method for characterizing a posterior
distribution in a Bayesian model. Imagine that you have some data and you want to obtain
information about the underlying random phenomenon. In a frequentist approach, you could
try to fit a probability distribution within a given family of distributions, using a parametric
method such as the maximum likelihood method. The optimization procedure would yield
parameters that maximize the probability of observing the data if given the null hypothesis.

In a Bayesian approach, you consider the parameters themselves as random variables.
Their prior distributions reflect your initial knowledge about these parameters. After the
observations, your knowledge is updated, and this is reflected in the posterior distributions
of the parameters.

A typical goal for Bayesian inference is to characterize the posterior distributions. Bayes'
theorem gives an analytical way to do this, but it is often impractical in real-world problems
due to the complexity of the models and the number of dimensions. A Markov chain Monte
Carlo method, such as the Metropolis-Hastings algorithm, gives a numerical method to
approximate a posterior distribution.

Here, we introduce the PyMC package, which gives an effective and natural interface for
fitting a probabilistic model to data in a Bayesian framework. We will look at the annual
frequency of storms in the northern Atlantic Ocean since the 1850s using data from NOAA,
the US' National Oceanic and Atmospheric Administration.

This recipe is largely inspired by a tutorial on PyMC's website (see the link in the There's
more… section).

Getting ready
You can find the instructions to install PyMC on the package's website. In this recipe, we will use
PyMC2. The new version (PyMC3) is still in development at the time of writing, and it is likely
to be significantly different. For more information on PyMC, refer to http://pymc-devs.
github.io/pymc/. With Anaconda, you can try conda install -c https://conda.
binstar.org/pymc pymc. Windows users can also find an installer at www.lfd.uci.
edu/~gohlke/pythonlibs/.

Statistical Data Analysis

256

You also need to download the Storms dataset from the book's GitHub repository at
https://github.com/ipython-books/cookbook-data and extract it in the
current directory.

How to do it...
1. Let's import the standard packages and PyMC:

In [1]: import numpy as np
 import pandas as pd
 import pymc
 import matplotlib.pyplot as plt
 %matplotlib inline

2. Let's import the data with pandas:
In [2]: df = pd.read_csv(
 "data/Allstorms.ibtracs_wmo.v03r05.csv",
 delim_whitespace=False)

3. With pandas, it only takes a single line of code to get the annual number of storms in
the North Atlantic Ocean. We first select the storms in that basin (NA), then we group
the rows by year (Season), and then we take the number of unique storms (Serial_
Num), as each storm can span several days (the nunique() method):
In [3]: cnt = df[df['Basin'] == ' NA'].groupby('Season') \
 ['Serial_Num'].nunique()
 years = cnt.index
 y0, y1 = years[0], years[-1]
 arr = cnt.values
 plt.plot(years, arr, '-ok')
 plt.xlim(y0, y1)
 plt.xlabel("Year")
 plt.ylabel("Number of storms")

Chapter 7

257

4. Now, we define our probabilistic model. We assume that storms arise following a
time-dependent Poisson process with a deterministic rate. We assume that this rate
is a piecewise-constant function that takes a first value early_mean before a switch
point switchpoint, and a second value late_mean after that point. These three
unknown parameters are treated as random variables (we will describe them more in
the How it works… section).

A Poisson process (http://en.wikipedia.org/wiki/
Poisson_process) is a particular point process, that is,
a stochastic process describing the random occurrence of
instantaneous events. The Poisson process is fully random:
the events occur independently at a given rate. See also
Chapter 13, Stochastic Dynamical Systems.

In [4]: switchpoint = pymc.DiscreteUniform('switchpoint',
 lower=0,
 upper=len(arr))
 early_mean = pymc.Exponential('early_mean', beta=1)
 late_mean = pymc.Exponential('late_mean', beta=1)

5. We define the piecewise-constant rate as a Python function:
In [5]: @pymc.deterministic(plot=False)
 def rate(s=switchpoint, e=early_mean, l=late_mean):
 out = np.empty(len(arr))
 out[:s] = e
 out[s:] = l
 return out

6. Finally, the observed variable is the annual number of storms. It follows a Poisson
variable with a random mean (the rate of the underlying Poisson process). This fact is
a known mathematical property of Poisson processes.
In [6]: storms = pymc.Poisson('storms', mu=rate, value=arr,
 observed=True)

7. Now, we use the MCMC method to sample from the posterior distribution, given the
observed data. The sample() method launches the fitting iterative procedure:
In [7]: model = pymc.Model([switchpoint, early_mean,
 late_mean,
 rate, storms])
In [8]: mcmc = pymc.MCMC(model)
 mcmc.sample(iter=10000, burn=1000, thin=10)
 [---- 17%] 1774 of 10000 complete
 [-----------100%-----------] 10000 of 10000 complete

Statistical Data Analysis

258

8. Let's plot the sampled Markov chains. Their stationary distribution corresponds to the
posterior distribution we want to characterize.
In [9]: plt.subplot(311)
 plt.plot(mcmc.trace('switchpoint')[:])
 plt.ylabel("Switch point")
 plt.subplot(312)
 plt.plot(mcmc.trace('early_mean')[:])
 plt.ylabel("Early mean")
 plt.subplot(313)
 plt.plot(mcmc.trace('late_mean')[:])
 plt.xlabel("Iteration")
 plt.ylabel("Late mean")

9. We also plot the distribution of the samples, which correspond to the posterior
distributions of our parameters, after the data points have been taken into account:
In [10]: plt.subplot(131)
 plt.hist(mcmc.trace('switchpoint')[:] + y0, 15)
 plt.xlabel("Switch point")
 plt.ylabel("Distribution")
 plt.subplot(132)
 plt.hist(mcmc.trace('early_mean')[:], 15)
 plt.xlabel("Early mean")

Chapter 7

259

 plt.subplot(133)
 plt.hist(mcmc.trace('late_mean')[:], 15)
 plt.xlabel("Late mean")

10. Taking the sample mean of these distributions, we get posterior estimates for
the three unknown parameters, including the year where the frequency of storms
suddenly increased:
In [11]: yp = y0 + mcmc.trace('switchpoint')[:].mean()
 em = mcmc.trace('early_mean')[:].mean()
 lm = mcmc.trace('late_mean')[:].mean()
 print((yp, em, lm))
(1966.681111111111, 8.2843072252292682, 16.728831395584947)

11. Now, we can plot the estimated rate on top of the observations:
In [12]: plt.plot(years, arr, '-ok')
 plt.axvline(yp, color='k', ls='--')
 plt.plot([y0, yp], [em, em], '-b', lw=3)
 plt.plot([yp, y1], [lm, lm], '-r', lw=3)
 plt.xlim(y0, y1)
 plt.xlabel("Year")
 plt.ylabel("Number of storms")

Statistical Data Analysis

260

How it works...
The general idea is to define a Bayesian probabilistic model and to fit it to the data. This model
may be the starting point of an estimation or decision task. The model is essentially described
by stochastic or deterministic variables linked together within a direct acyclic graph (DAG). A
is linked to B if B is entirely or partially determined by A. The following figure shows the graph
of the model used in this recipe:

In [13]: graph = pymc.graph.graph(model)
 from IPython.display import display_png
 display_png(graph.create_png(), raw=True)

late_mean early_mean switchpoint

1 e s

mu

storms

rate

As you can see, PyMC can create graph representations of the
models. You need to install GraphViz (refer to www.graphviz.org),
pydot, and pyparsing. Because of an unfortunate bug, you might need
to install a specific version of pyparsing:
pip install pyparsing==1.5.7
pip install pydot

Stochastic variables follow distributions that can be parameterized by fixed numbers or
other variables in the model. Parameters may be random variables themselves, reflecting
knowledge prior to the observations. This is the core of Bayesian modeling.

The goal of the analysis is to include the observations into the model in order to update our
knowledge as more and more data is available. Although Bayes' theorem gives us an exact
way to compute those posterior distributions, it is rarely practical in real-world problems. This
is notably due to the complexity of the models. Alternatively, numerical methods have been
developed in order to tackle this problem.

Chapter 7

261

The Markov chain Monte Carlo (MCMC) method used here allows us to sample from a
complex distribution by simulating a Markov chain that has the desired distribution as its
equilibrium distribution. The Metropolis-Hastings algorithm is a particular application of this
method to our current example.

This algorithm is implemented in the MCMC class in PyMC. The burn parameter determines
how many initial iterations are thrown away. This is necessary because it takes a number
of iterations for the Markov chain to converge to its equilibrium distribution. The thin
parameter corresponds to the number of steps to skip in the evaluation of the distribution
so as to minimize the autocorrelation of the samples. You will find more information at
http://pymc-devs.github.io/pymc/modelfitting.html.

There's more...
Here are a few references:

 f A great PyMC tutorial that we largely took inspiration from is available at
http://pymc-devs.github.io/pymc/tutorial.html

 f A must-read free e-book on the subject, by Cameron Davidson-Pilon, entirely written
in the IPython notebook, available at http://camdavidsonpilon.github.io/
Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/

 f The Markov chain Monte Carlo method introduced at http://en.wikipedia.
org/wiki/Markov_chain_Monte_Carlo

 f The Metropolis-Hastings algorithm introduced at http://en.wikipedia.org/
wiki/Metropolis-Hastings_algorithm

See also
 f The Getting started with Bayesian methods recipe

Analyzing data with the R programming
language in the IPython notebook

R (www.r-project.org) is a free domain-specific programming language for statistics. Its
syntax is well-adapted to statistical modeling and data analysis. By contrast, Python's syntax
is typically more convenient for general-purpose programming. Luckily, IPython allows you
to have the best of both worlds. For example, you can insert R code snippets anywhere in a
normal IPython notebook. You can continue using Python and pandas for data loading and
wrangling, and switch to R to design and fit statistical models. Using R instead of Python
for these tasks is more than a matter of programming syntax; R comes with an impressive
statistical toolbox that is still unmatched by Python.

Statistical Data Analysis

262

In this recipe, we will show how to use R from IPython, and we illustrate the most basic
capabilities of R with a simple data analysis example.

Getting ready
You need the statsmodels package for this recipe. You can find installation instructions in the
previous recipe, Fitting a probability distribution to data with the maximum likelihood method.

You also need R. There are three steps to use R from IPython. First, install R and rpy2
(R to Python interface). Of course, you only need to do this step once. Then, to use R in
an IPython session, you need to load the IPython R extension.

1. Download R for your operating system from http://cran.r-project.org/
mirrors.html and install it. On Ubuntu, you can do sudo apt-get install
r-base-dev.

2. Download rpy2 from http://rpy.sourceforge.net/rpy2.html and install
it. With Anaconda on Linux, you can try conda install -c https://conda.
binstar.org/r rpy2. Alternatively, you can do pip install rpy2.

3. Then, to execute R code in an IPython notebook, execute %load_ext rmagic first.

rpy2 does not appear to work well on Windows. We recommend
using Linux or Mac OS X.

How to do it...
Here, we will use the following workflow: first, we load data from Python. Then, we use R to
design and fit a model, and to make some plots in the IPython notebook. We could also load
data from R, or design and fit a statistical model with Python's statsmodels package, and so
on. In particular, the analysis we do here could be done entirely in Python, without resorting
to the R language. This recipe merely shows the basics of R and illustrates how R and Python
can play together within an IPython session.

1. Let's load the longley dataset with the statsmodels package. This dataset
contains a few economic indicators in the US from 1947 to 1962. We also
load the IPython R extension:
In [1]: import statsmodels.datasets as sd
In [2]: data = sd.longley.load_pandas()
In [3]: %load_ext rmagic

Chapter 7

263

2. We define x and y as the exogeneous (independent) and endogenous (dependent)
variables, respectively. The endogenous variable quantifies the total employment in
the country.
In [4]: data.endog_name, data.exog_name
Out[4]: ('TOTEMP', ['GNPDEFL', 'GNP', 'UNEMP',
 'ARMED', 'POP', 'YEAR'])
In [5]: y, x = data.endog, data.exog

3. For convenience, we add the endogenous variable to the x DataFrame:
In [6]: x['TOTEMP'] = y
In [7]: x
Out[7]: GNPDEFL GNP UNEMP POP YEAR TOTEMP
 0 83.0 234289 2356 107608 1947 60323
 1 88.5 259426 2325 108632 1948 61122
 2 88.2 258054 3682 109773 1949 60171
 ...
 13 114.2 502601 3931 125368 1960 69564
 14 115.7 518173 4806 127852 1961 69331
 15 116.9 554894 4007 130081 1962 70551

4. We will make a simple plot in R. First, we need to pass Python variables to R. We can
use the %R -i var1,var2 magic. Then, we can call R's plot() command:
In [8]: gnp = x['GNP']
 totemp = x['TOTEMP']
In [9]: %R -i totemp,gnp plot(gnp, totemp)

Statistical Data Analysis

264

5. Now that the data has been passed to R, we can fit a linear model to the data. The
lm() function lets us perform a linear regression. Here, we want to express totemp
(total employment) as a function of the country's GNP:
In [10]: %%R
 # Least-squares regression
 fit <- lm(totemp ~ gnp);
 # Display the coefficients of the fit.
 print(fit$coefficients)
 plot(gnp, totemp) # Plot the data points.
 abline(fit) # And plot the linear regression.
 (Intercept) gnp
5.184359e+04 3.475229e-02

How it works...
The -i and -o options of the %R magic allow us to pass variables back and forth between
IPython and R. The variable names need to be separated by commas. You can find
more information about the %R magic in the documentation available at http://rpy.
sourceforge.net/.

Chapter 7

265

In R, the tilde (~) expresses the dependence of a dependent variable upon one or several
independent variables. The lm() function allows us to fit a simple linear regression model to
the data. Here, totemp is expressed as a function of gnp:

totemp gnpa b= × +

Here, b (intercept) and a are the coefficients of the linear regression model. These two values
are returned by fit$coefficients in R, where fit is the fitted model.

Our data points do not satisfy this relation exactly, of course. The coefficients are chosen so
as to minimize the error between this linear prediction and the actual values. This is typically
done by minimizing the following least squares error:

() ()()
2

1
, totemp gnp

n

i i
i

r a b a b
=

= − × +∑

The data points are (gnpi, totempi) here. The coefficients a and b that are returned by lm()
make this sum minimal: they fit the data best.

There's more...
Regression is an important statistical concept that we will see in greater detail in the next
chapter. Here are a few references:

 f Regression analysis on Wikipedia, available at http://en.wikipedia.org/
wiki/Regression_analysis

 f Least squares method on Wikipedia, available at en.wikipedia.org/wiki/
Linear_least_squares_(mathematics)

R is an excellent platform for advanced statistics. Python has a few statistical packages such
as pandas and statsmodels that implement many common features, but the number of
statistical toolboxes in R remains unmatched by Python at this time. Yet, Python has a much
wider range of possibilities outside of statistics and is an excellent general-purpose language
that comes with an impressive number of various packages.

Thanks to the multilanguage capabilities of IPython, you don't necessarily have to choose
between those languages. You can keep using Python and switch to R when you need highly
specific statistical features that are still missing in Python.

Here are a few references about R:

 f Introduction to R available at http://cran.r-project.org/doc/manuals/R-
intro.html

 f R tutorial available at www.cyclismo.org/tutorial/R/

Statistical Data Analysis

266

 f CRAN, or Comprehensive R Archive Network, containing many packages for R,
available at http://cran.r-project.org

 f IPython and R tutorial available at http://nbviewer.ipython.org/github/
ipython/ipython/blob/master/examples/Builtin%20Extensions/R%20
Magics.ipynb

See also
 f The Exploring a dataset with pandas and matplotlib recipe

8
Machine Learning

In this chapter, we will cover the following topics:

 f Getting started with scikit-learn

 f Predicting who will survive on the Titanic with logistic regression

 f Learning to recognize handwritten digits with a K-nearest neighbors classifier

 f Learning from text – Naive Bayes for Natural Language Processing

 f Using support vector machines for classification tasks

 f Using a random forest to select important features for regression

 f Reducing the dimensionality of a dataset with a Principal Component Analysis

 f Detecting hidden structures in a dataset with clustering

Introduction
In the previous chapter, we were interested in getting insight into data, understanding complex
phenomena through partial observations, and making informed decisions in the presence
of uncertainty. Here, we are still interested in analyzing and processing data using statistical
tools. However, the goal is not necessarily to understand the data, but to learn from it.

Learning from data is close to what we do as humans. From our experience, we intuitively
learn general facts and relations about the world, even if we don't fully understand their
complexity. The increasing computational power of computers makes them able to learn from
data too. That's the heart of machine learning, a modern and fascinating branch of artificial
intelligence, computer science, statistics, and applied mathematics. For more information
on machine learning, refer to http://en.wikipedia.org/wiki/Machine_learning.

Machine Learning

268

This chapter is a hands-on introduction to some of the most basic methods in machine
learning. These methods are routinely used by data scientists. We will use these methods
with scikit-learn, a popular and user-friendly Python package for machine learning.

A bit of vocabulary
In this introduction, we will explain the fundamental definitions and concepts of
machine learning.

Learning from data
In machine learning, most data can be represented as a table of numerical values. Every row is
called an observation, a sample, or a data point. Every column is called a feature or a variable.

Let's call N the number of rows (or the number of points) and D the number of columns
(or number of features). The number D is also called the dimensionality of the data. The
reason is that we can view this table as a set E of vectors in a space with D dimensions
(or vector space). Here, a vector x contains D numbers (x1, ..., xD), also called components.
This mathematical point of view is very useful and we will use it throughout this chapter.

We generally make the distinction between supervised learning and unsupervised learning:

 f Supervised learning is when we have a label y associated with a data point x.
The goal is to learn the mapping from x to y from our data. The data gives us this
mapping for a finite set of points, but what we want is to generalize this mapping
to the full set E.

 f Unsupervised learning is when we don't have any labels. What we want to do is
discover some form of hidden structure in the data.

Supervised learning
Mathematically, supervised learning consists of finding a function f that maps the set of points
E to a set of labels F, knowing a finite set of associations (x, y), which is given by our data. This
is what generalization is about: after observing the pairs (xi, yi), given a new x, we are able to
find the corresponding y by applying the function f to x. For more information on supervised
learning, refer to http://en.wikipedia.org/wiki/Supervised_learning.

It is a common practice to split the set of data points into two subsets: the training set and
the test set. We learn the function f on the training set and test it on the test set. This is
essential when assessing the predictive power of a model. By training and testing a model
on the same set, our model might not be able to generalize well. This is the fundamental
concept of overfitting, which we will detail later in this chapter.

We generally make the distinction between classification and regression, two particular
instances of supervised learning.

Chapter 8

269

Classification is when our labels y can only take a finite set of values (categories).
Examples include:

 f Handwritten digit recognition: x is an image with a handwritten digit; y is a digit
between 0 and 9

 f Spam filtering: x is an e-mail and y is 1 or 0, depending on whether that e-mail is
spam or not

Regression is when our labels y can take any real (continuous) value. Examples include:

 f Predicting stock market data

 f Predicting sales

 f Detecting the age of a person from a picture

A classification task yields a division of our space E in different regions (also called partition),
each region being associated to one particular value of the label y. A regression task yields
a mathematical model that associates a real number to any point x in the space E. This
difference is illustrated in the following figure:

Difference between classification and regression

Classification and regression can be combined. For example, in the probit model, although
the dependent variable is binary (classification), the probability that this variable belongs
to one category can also be modeled (regression). We will see an example in the recipe
about logistic regression. For more information on the probit model, refer to http://
en.wikipedia.org/wiki/Probit_model.

Machine Learning

270

Unsupervised learning
Broadly speaking, unsupervised learning helps us discover systemic structures in our data. This
is harder to grasp than supervised learning, in that there is generally no precise question and
answer. For more information on unsupervised learning, refer to http://en.wikipedia.
org/wiki/Unsupervised_learning.

Here are a few important terms related to unsupervised learning:

 f Clustering: Grouping similar points together within clusters

 f Density estimation: Estimating a probability density function that can explain
the distribution of the data points

 f Dimension reduction: Getting a simple representation of high-dimensional
data points by projecting them onto a lower-dimensional space (notably for
data visualization)

 f Manifold learning: Finding a low-dimensional manifold containing the data points
(also known as nonlinear dimension reduction)

Feature selection and feature extraction
In a supervised learning context, when our data contains many features, it is sometimes
necessary to choose a subset of them. The features we want to keep are those that are
most relevant to our question. This is the problem of feature selection.

Additionally, we might want to extract new features by applying complex transformations on
our original dataset. This is feature extraction. For example, in computer vision, training a
classifier directly on the pixels is not the most efficient method in general. We might want to
extract the relevant points of interest or make appropriate mathematical transformations.
These steps depend on our dataset and on the questions we want to answer.

For example, it is often necessary to preprocess the data before learning models. Feature
scaling (or data normalization) is a common preprocessing step where features are linearly
rescaled to fit in the range [-1,1] or [0,1].

Feature extraction and feature selection involve a balanced combination of domain expertise,
intuition, and mathematical methods. These early steps are crucial, and they might be even
more important than the learning steps themselves. The reason is that the few dimensions
that are relevant to our problem are generally hidden in the high dimensionality of our
dataset. We need to uncover the low-dimensional structure of interest to improve the
efficiency of the learning models.

We will see a few feature selection and feature extraction methods in this chapter. Methods
that are specific to signals, images, or sounds will be covered in Chapter 10, Signal Processing,
and Chapter 11, Image and Audio Processing.

Chapter 8

271

Here are a few further references:

 f Feature selection in scikit-learn, documented at http://scikit-learn.org/
stable/modules/feature_selection.html

 f Feature selection on Wikipedia at http://en.wikipedia.org/wiki/Feature_
selection

Overfitting, underfitting, and the bias-variance tradeoff
A central notion in machine learning is the trade-off between overfitting and underfitting.
A model may be able to represent our data accurately. However, if it is too accurate, it might
not generalize well to unobserved data. For example, in facial recognition, a too-accurate model
would be unable to identify someone who styled their hair differently that day. The reason is that
our model might learn irrelevant features in the training data. On the contrary, an insufficiently
trained model would not generalize well either. For example, it would be unable to correctly
recognize twins. For more information on overfitting, refer to http://en.wikipedia.org/
wiki/Overfitting.

A popular solution to reduce overfitting consists of adding structure to the model, for example,
with regularization. This method favors simpler models during training (Occam's razor). You
will find more information at http://en.wikipedia.org/wiki/Regularization_%28m
athematics%29.

The bias-variance dilemma is closely related to the issue of overfitting and underfitting. The
bias of a model quantifies how precise it is across training sets. The variance quantifies how
sensitive the model is to small changes in the training set. A robust model is not overly sensitive
to small changes. The dilemma involves minimizing both bias and variance; we want a precise
and robust model. Simpler models tend to be less accurate but more robust. Complex models
tend to be more accurate but less robust. For more information on the bias-variance dilemma,
refer to http://en.wikipedia.org/wiki/Bias-variance_dilemma.

The importance of this trade-off cannot be overstated. This question pervades the entire
discipline of machine learning. We will see concrete examples in this chapter.

Model selection
As we will see in this chapter, there are many supervised and unsupervised algorithms.
For example, well-known classifiers that we will cover in this chapter include logistic regression,
nearest-neighbors, Naive Bayes, and support vector machines. There are many other algorithms
that we can't cover here.

No model performs uniformly better than the others. One model may perform well on one
dataset and badly on another. This is the question of model selection.

Machine Learning

272

We will see systematic methods to assess the quality of a model on a particular dataset
(notably cross-validation). In practice, machine learning is not an "exact science" in that it
frequently involves trial and error. We need to try different models and empirically choose
the one that performs best.

That being said, understanding the details of the learning models allows us to gain intuition
about which model is best adapted to our current problem.

Here are a few references on this question:

 f Model selection on Wikipedia, available at http://en.wikipedia.org/wiki/
Model_selection

 f Model evaluation in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/model_evaluation.html

 f Blog post on how to choose a classifier, available at http://blog.echen.
me/2011/04/27/choosing-a-machine-learning-classifier/

Machine learning references
Here are a few excellent, math-heavy textbooks on machine learning:

 f Pattern Recognition and Machine Learning, Christopher M. Bishop, (2006), Springer

 f Machine Learning – A Probabilistic Perspective, Kevin P. Murphy, (2012), MIT Press

 f The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, Jerome
Friedman, (2009), Springer

Here are a few books more oriented toward programmers without a strong
mathematical background:

 f Machine Learning for Hackers, Drew Conway, John Myles White, (2012), O'Reilly
Media

 f Machine Learning in Action, Peter Harrington, (2012), Manning Publications Co.

You will find many other references online.

Important classes of machine learning methods that we couldn't cover in this chapter include
neural networks and deep learning. Deep learning is the subject of very active research in
machine learning. Many state-of-the-art results are currently achieved by using deep learning
methods. For more information on deep learning, refer to http://en.wikipedia.org/
wiki/Deep_learning.

Chapter 8

273

Getting started with scikit-learn
In this recipe, we introduce the basics of the machine learning scikit-learn package
(http://scikit-learn.org). This package is the main tool we will use throughout this
chapter. Its clean API makes it really easy to define, train, and test models. Plus, scikit-learn
is specifically designed for speed and (relatively) big data.

We will show here a very basic example of linear regression in the context of curve fitting.
This toy example will allow us to illustrate key concepts such as linear models, overfitting,
underfitting, regularization, and cross-validation.

Getting ready
You can find all instructions to install scikit-learn in the main documentation.
For more information, refer to http://scikit-learn.org/stable/install.html.
With anaconda, you can type conda install scikit-learn in a terminal.

How to do it...
We will generate a one-dimensional dataset with a simple model (including some noise),
and we will try to fit a function to this data. With this function, we can predict values on
new data points. This is a curve fitting regression problem.

1. First, let's make all the necessary imports:
In [1]: import numpy as np
 import scipy.stats as st
 import sklearn.linear_model as lm
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We now define a deterministic nonlinear function underlying our generative model:
In [2]: f = lambda x: np.exp(3 * x)

3. We generate the values along the curve on [0,2]:
In [3]: x_tr = np.linspace(0., 2, 200)
 y_tr = f(x_tr)

4. Now, let's generate data points within [0,1]. We use the function f and we add some
Gaussian noise:
In [4]: x = np.array([0, .1, .2, .5, .8, .9, 1])
 y = f(x) + np.random.randn(len(x))

Machine Learning

274

5. Let's plot our data points on [0,1]:
In [5]: plt.plot(x_tr[:100], y_tr[:100], '--k')
 plt.plot(x, y, 'ok', ms=10)

In the image, the dotted curve represents the generative model.

6. Now, we use scikit-learn to fit a linear model to the data. There are three steps. First,
we create the model (an instance of the LinearRegression class). Then, we fit the
model to our data. Finally, we predict values from our trained model.
In [6]: # We create the model.
 lr = lm.LinearRegression()
 # We train the model on our training dataset.
 lr.fit(x[:, np.newaxis], y)
 # Now, we predict points with our trained model.
 y_lr = lr.predict(x_tr[:, np.newaxis])

We need to convert x and x_tr to column vectors, as it is a general
convention in scikit-learn that observations are rows, while features are
columns. Here, we have seven observations with one feature.

7. We now plot the result of the trained linear model. We obtain a regression line in
green here:
In [7]: plt.plot(x_tr, y_tr, '--k')
 plt.plot(x_tr, y_lr, 'g')
 plt.plot(x, y, 'ok', ms=10)
 plt.xlim(0, 1)

Chapter 8

275

 plt.ylim(y.min()-1, y.max()+1)
 plt.title("Linear regression")

8. The linear fit is not well-adapted here, as the data points are generated according to a
nonlinear model (an exponential curve). Therefore, we are now going to fit a nonlinear
model. More precisely, we will fit a polynomial function to our data points. We can still
use linear regression for this, by precomputing the exponents of our data points. This
is done by generating a Vandermonde matrix, using the np.vander function. We will
explain this trick in How it works…. In the following code, we perform and plot the fit:
In [8]: lrp = lm.LinearRegression()
 plt.plot(x_tr, y_tr, '--k')
 for deg in [2, 5]:
 lrp.fit(np.vander(x, deg + 1), y)
 y_lrp = lrp.predict(np.vander(x_tr, deg + 1))
 plt.plot(x_tr, y_lrp,
 label='degree ' + str(deg))
 plt.legend(loc=2)
 plt.xlim(0, 1.4)
 plt.ylim(-10, 40)
 # Print the model's coefficients.
 print(' '.join(['%.2f' % c for c in
 lrp.coef_]))
 plt.plot(x, y, 'ok', ms=10)

Machine Learning

276

 plt.title("Linear regression")
25.00 -8.57 0.00
-132.71 296.80 -211.76 72.80 -8.68 0.00

We have fitted two polynomial models of degree 2 and 5. The degree 2 polynomial
appears to fit the data points less precisely than the degree 5 polynomial. However,
it seems more robust; the degree 5 polynomial seems really bad at predicting values
outside the data points (look for example at the x ≥ 1 portion). This is what we call
overfitting; by using a too-complex model, we obtain a better fit on the trained dataset,
but a less robust model outside this set.

Note the large coefficients of the degree 5 polynomial;
this is generally a sign of overfitting.

9. We will now use a different learning model called ridge regression. It works like
linear regression except that it prevents the polynomial's coefficients from becoming
too big. This is what happened in the previous example. By adding a regularization
term in the loss function, ridge regression imposes some structure on the underlying
model. We will see more details in the next section.

The ridge regression model has a meta-parameter, which represents the weight of
the regularization term. We could try different values with trial and error using the
Ridge class. However, scikit-learn provides another model called RidgeCV, which
includes a parameter search with cross-validation. In practice, this means that
we don't have to tweak this parameter by hand—scikit-learn does it for us. As the
models of scikit-learn always follow the fit-predict API, all we have to do is replace
lm.LinearRegression() with lm.RidgeCV() in the previous code. We will
give more details in the next section.

Chapter 8

277

In [9]: ridge = lm.RidgeCV()
 plt.plot(x_tr, y_tr, '--k')

 for deg in [2, 5]:
 ridge.fit(np.vander(x, deg + 1), y);
 y_ridge = ridge.predict(np.vander(x_tr, deg+1))
 plt.plot(x_tr, y_ridge,
 label='degree ' + str(deg))
 plt.legend(loc=2)
 plt.xlim(0, 1.5)
 plt.ylim(-5, 80)
 # Print the model's coefficients.
 print(' '.join(['%.2f' % c
 for c in ridge.coef_]))

 plt.plot(x, y, 'ok', ms=10)
 plt.title("Ridge regression")
11.36 4.61 0.00
2.84 3.54 4.09 4.14 2.67 0.00

This time, the degree 5 polynomial seems more precise than the simpler degree
2 polynomial (which now causes underfitting). Ridge regression mitigates the
overfitting issue here. Observe how the degree 5 polynomial's coefficients are
much smaller than in the previous example.

Machine Learning

278

How it works...
In this section, we explain all the aspects covered in this recipe.

The scikit-learn API
scikit-learn implements a clean and coherent API for supervised and unsupervised learning.
Our data points should be stored in a (N,D) matrix X, where N is the number of observations
and D is the number of features. In other words, each row is an observation. The first step in
a machine learning task is to define what the matrix X is exactly.

In a supervised learning setup, we also have a target, an N-long vector y with a scalar value
for each observation. This value is either continuous or discrete, depending on whether we
have a regression or classification problem, respectively.

In scikit-learn, models are implemented in classes that have the fit() and predict()
methods. The fit() method accepts the data matrix X as input, and y as well for supervised
learning models. This method trains the model on the given data.

The predict() method also takes data points as input (as a (M,D) matrix). It returns the
labels or transformed points as predicted by the trained model.

Ordinary least squares regression
Ordinary least squares regression is one of the simplest regression methods. It consists of
approaching the output values yi with a linear combination of Xij:

{ }
1

ˆ ˆ1,..., , X , or, in matrix form : y XW
D

i j ij
j

i N y w
=

∀ ∈ = =∑

Here, w = (w1, ..., wD) is the (unknown) parameter vector. Also, ŷ represents the model's
output. We want this vector to match the data points y as closely as possible. Of course, the
exact equality ŷ y= cannot hold in general (there is always some noise and uncertainty—
models are always idealizations of reality). Therefore, we want to minimize the difference
between these two vectors. The ordinary least squares regression method consists of
minimizing the following loss function:

()2

W W 1

2
ˆmin || y Xw || min

2

N

i i
i
y y

=

 − = −

∑

This sum of the components squared is called the L2 norm. It is convenient because it leads
to differentiable loss functions so that gradients can be computed and common optimization
procedures can be performed.

Chapter 8

279

Polynomial interpolation with linear regression
Ordinary least squares regression fits a linear model to the data. The model is linear both in the
data points Xi and in the parameters wj. In our example, we obtain a poor fit because the data
points were generated according to a nonlinear generative model (an exponential function).

However, we can still use the linear regression method with a model that is linear in wj but
nonlinear in xi. To do this, we need to increase the number of dimensions in our dataset by
using a basis of polynomial functions. In other words, we consider the following data points:

2, ,..., D
i i ix x x

Here, D is the maximum degree. The input matrix X is therefore the Vandermonde matrix
associated to the original data points xi. For more information on the Vandermonde matrix,
refer to http://en.wikipedia.org/wiki/Vandermonde_matrix.

Here, it is easy to see that training a linear model on these new data points is equivalent to
training a polynomial model on the original data points.

Ridge regression
Polynomial interpolation with linear regression can lead to overfitting if the degree of the
polynomials is too large. By capturing the random fluctuations (noise) instead of the general
trend of the data, the model loses some of its predictive power. This corresponds to a
divergence of the polynomial's coefficients wj.

A solution to this problem is to prevent these coefficients from growing unboundedly. With ridge
regression (also known as Tikhonov regularization), this is done by adding a regularization
term to the loss function. For more details on Tikhonov regularization, refer to http://
en.wikipedia.org/wiki/Tikhonov_regularization.

W

2 2
min || y Xw || || w ||

2 2
α− +

By minimizing this loss function, we not only minimize the error between the model and the
data (first term, related to the bias), but also the size of the model's coefficients (second term,
related to the variance). The bias-variance trade-off is quantified by the hyperparameter α ,
which specifies the relative weight between the two terms in the loss function.

Here, ridge regression led to a polynomial with smaller coefficients, and thus a better fit.

Cross-validation and grid search
A drawback of the ridge regression model compared to the ordinary least squares model is
the presence of an extra hyperparameter α . The quality of the prediction depends on the
choice of this parameter. One possibility would be to fine-tune this parameter manually,
but this procedure can be tedious and can also lead to overfitting problems.

Machine Learning

280

To solve this problem, we can use a grid search; we loop over many possible values for α ,
and we evaluate the performance of the model for each possible value. Then, we choose
the parameter that yields the best performance.

How can we assess the performance of a model with a given α value? A common solution is to
use cross-validation. This procedure consists of splitting the dataset into a training set and a
test set. We fit the model on the train set, and we test its predictive performance on the test set.
By testing the model on a different dataset than the one used for training, we reduce overfitting.

There are many ways to split the initial dataset into two parts like this. One possibility is to
remove one sample to form the train set and to put this one sample into the test set. This is
called Leave-One-Out cross-validation. With N samples, we obtain N sets of train and test sets.
The cross-validated performance is the average performance on all these set decompositions.

As we will see later, scikit-learn implements several easy-to-use functions to do cross-validation
and grid search. In this recipe, there exists a special estimator called RidgeCV that implements
a cross-validation and grid search procedure that is specific to the ridge regression model. Using
this class ensures that the best hyperparameter α is found automatically for us.

There's more…
Here are a few references about least squares:

 f Ordinary least squares on Wikipedia, available at http://en.wikipedia.org/
wiki/Ordinary_least_squares

 f Linear least squares on Wikipedia, available at http://en.wikipedia.org/
wiki/Linear_least_squares_(mathematics)

Here are a few references about cross-validation and grid search:

 f Cross-validation in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/cross_validation.html

 f Grid search in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/grid_search.html

 f Cross-validation on Wikipedia, available at http://en.wikipedia.org/wiki/
Cross-validation_%28statistics%29

Here are a few references about scikit-learn:

 f scikit-learn basic tutorial available at http://scikit-learn.org/stable/
tutorial/basic/tutorial.html

 f scikit-learn tutorial given at the SciPy 2013 conference, available at
https://github.com/jakevdp/sklearn_scipy2013

Chapter 8

281

See also
 f The Using support vector machines for classification tasks recipe

Predicting who will survive on the Titanic
with logistic regression

In this recipe, we will introduce logistic regression, a basic classifier. We will also show how to
perform a grid search with cross-validation.

We will apply these techniques on a Kaggle dataset where the goal is to predict survival on
the Titanic based on real data.

Kaggle (www.kaggle.com/competitions) hosts machine learning
competitions where anyone can download a dataset, train a model, and
test the predictions on the website. The author of the best model might
even win a prize! It is a fun way to get started with machine learning.

Getting ready
Download the Titanic dataset from the book's GitHub repository at https://github.com/
ipython-books/cookbook-data.

The dataset has been obtained from www.kaggle.com/c/titanic-gettingStarted.

How to do it...
1. We import the standard packages:

In [1]: import numpy as np
 import pandas as pd
 import sklearn
 import sklearn.linear_model as lm
 import sklearn.cross_validation as cv
 import sklearn.grid_search as gs
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We load the training and test datasets with pandas:
In [2]: train = pd.read_csv('data/titanic_train.csv')
 test = pd.read_csv('data/titanic_test.csv')
In [3]: train[train.columns[[2,4,5,1]]].head()
Out[3]:

Machine Learning

282

 Pclass Sex Age Survived
0 3 male 22 0
1 1 female 38 1
2 3 female 26 1
3 1 female 35 1
4 3 male 35 0

3. Let's keep only a few fields for this example, and also convert the sex field to
a binary variable so that it can be handled correctly by NumPy and scikit-learn.
Finally, we remove the rows that contain NaN values:
In [4]: data = train[['Sex', 'Age', 'Pclass', 'Survived']].copy()
 data['Sex'] = data['Sex'] == 'female'
 data = data.dropna()

4. Now, we convert this DataFrame object to a NumPy array so that we can pass it
to scikit-learn:
In [5]: data_np = data.astype(np.int32).values
 X = data_np[:,:-1]
 y = data_np[:,-1]

5. Let's have a look at the survival of male and female passengers as a function of
their age:
In [6]: # We define a few boolean vectors.
 female = X[:,0] == 1
 survived = y == 1
 # This vector contains the age of the passengers.
 age = X[:,1]
 # We compute a few histograms.
 bins_ = np.arange(0, 81, 5)
 S = {'male': np.histogram(age[survived & ~female],
 bins=bins_)[0],
 'female': np.histogram(age[survived & female],
 bins=bins_)[0]}
 D = {'male': np.histogram(age[~survived & ~female],
 bins=bins_)[0],
 'female': np.histogram(age[~survived &
 female],
 bins=bins_)[0]}
In [7]: # We now plot the data.
 bins = bins_[:-1]
 for i, sex, color in zip((0, 1),
 ('male', 'female'),
 ('#3345d0', '#cc3dc0')):
 plt.subplot(121 + i)
 plt.bar(bins, S[sex], bottom=D[sex],
 color=color,

Chapter 8

283

 width=5, label='survived')
 plt.bar(bins, D[sex], color='k', width=5,
 label='died')
 plt.xlim(0, 80)
 plt.grid(None)
 plt.title(sex + " survival")
 plt.xlabel("Age (years)")
 plt.legend()

6. Let's try to train a LogisticRegression classifier in order to predict the survival of
people based on their gender, age, and class. We first need to create a train and
a test dataset:
In [8]: # We split X and y into train and test datasets.
 (X_train, X_test, y_train,
 y_test) = cv.train_test_split(X, y, test_size=.05)
In [9]: # We instanciate the classifier.
 logreg = lm.LogisticRegression()

7. We train the model and we get the predicted values on the test set:
In [10]: logreg.fit(X_train, y_train)
 y_predicted = logreg.predict(X_test)

The following figure shows the actual and predicted results:
In [11]: plt.imshow(np.vstack((y_test, y_predicted)),
 interpolation='none', cmap='bone')
 plt.xticks([]); plt.yticks([])
 plt.title(("Actual and predicted survival "
 "outcomes on the test set"))

Machine Learning

284

In this screenshot, the first line shows the survival of several people from the test set
(white for survival, black otherwise). The second line shows the values predicted by
the model.

8. To get an estimation of the model's performance, we compute the cross-validation
score with the cross_val_score() function. This function uses a three-fold
stratified cross-validation procedure by default, but this can be changed with the
cv keyword argument:
In [12]: cv.cross_val_score(logreg, X, y)
Out[12]: array([0.78661088, 0.78991597, 0.78059072])

This function returns, for each pair of train and test set, a prediction score (we give
more details in How it works…).

9. The LogisticRegression class accepts a C hyperparameter as an argument.
This parameter quantifies the regularization strength. To find a good value, we can
perform a grid search with the generic GridSearchCV class. It takes an estimator as
input and a dictionary of parameter values. This new estimator uses cross-validation
to select the best parameter:
In [13]: grid = gs.GridSearchCV(logreg,
 {'C': np.logspace(-5, 5, 50)})
 grid.fit(X_train, y_train)
 grid.best_params_
Out[13]: {'C': 5.35}

10. Here is the performance of the best estimator:

In [14]: cv.cross_val_score(grid.best_estimator_, X, y)
Out[14]: array([0.78661088, 0.79831933, 0.78481013])

Performance is slightly better after the C hyperparameter has been chosen with
a grid search.

How it works...
Logistic regression is not a regression model, it is a classification model. Yet, it is closely
related to linear regression. This model predicts the probability that a binary variable is 1,
by applying a sigmoid function (more precisely, a logistic function) to a linear combination
of the variables. The equation of the sigmoid is:

{ } () () ()
1ˆ1,..., , x w where

1 expi ii N y f f x
x

∀ ∈ = =
+ −

Chapter 8

285

The following figure shows a logistic function:

A logistic function

If a binary variable has to be obtained, we can round the value to the closest integer.

The parameter w is obtained with an optimization procedure during the learning step.

There's more...
Here are a few references:

 f Logistic regression on Wikipedia, available at http://en.wikipedia.org/wiki/
Logistic_regression

 f Logistic regression in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/linear_model.html#logistic-regression

See also
 f The Getting started with scikit-learn recipe

 f The Learning to recognize handwritten digits with a K-nearest neighbors
classifier recipe

 f The Using support vector machines for classification tasks recipe

Learning to recognize handwritten digits
with a K-nearest neighbors classifier

In this recipe, we will see how to recognize handwritten digits with a K-nearest neighbors
(K-NN) classifier. This classifier is a simple but powerful model, well-adapted to complex,
highly nonlinear datasets such as images. We will explain how it works later in this recipe.

Machine Learning

286

How to do it...
1. We import the modules:

In [1]: import numpy as np
 import sklearn
 import sklearn.datasets as ds
 import sklearn.cross_validation as cv
 import sklearn.neighbors as nb
 import matplotlib.pyplot as plt
 %matplotlib inline

2. Let's load the digits dataset, part of the datasets module of scikit-learn. This
dataset contains handwritten digits that have been manually labeled:
In [2]: digits = ds.load_digits()
 X = digits.data
 y = digits.target
 print((X.min(), X.max()))
 print(X.shape)
0.0 16.0
(1797L, 64L)

In the matrix X, each row contains 8 * 8=64 pixels (in grayscale, values between 0
and 16). The row-major ordering is used.

3. Let's display some of the images along with their labels:
In [3]: nrows, ncols = 2, 5
 plt.gray()
 for i in range(ncols * nrows):
 ax = plt.subplot(nrows, ncols, i + 1)
 ax.matshow(digits.images[i,...])
 plt.xticks([]); plt.yticks([])
 plt.title(digits.target[i])

Chapter 8

287

4. Now, let's fit a K-nearest neighbors classifier on the data:
In [4]: (X_train, X_test, y_train,
 y_test) = cv.train_test_split(X, y, test_size=.25)
In [5]: knc = nb.KNeighborsClassifier()
In [6]: knc.fit(X_train, y_train);

5. Let's evaluate the score of the trained classifier on the test dataset:
In [7]: knc.score(X_test, y_test)
Out[7]: 0.98888888888888893

6. Now, let's see if our classifier can recognize a handwritten digit!
In [8]: # Let's draw a 1.
 one = np.zeros((8, 8))
 one[1:-1, 4] = 16 # The image values are
 # in [0,16].
 one[2, 3] = 16
In [9]: plt.imshow(one, interpolation='none')
 plt.grid(False)
 plt.xticks(); plt.yticks()
 plt.title("One")

Can our model recognize this number? Let's see:
In [10]: knc.predict(one.ravel())
Out[10]: array([1])

Good job!

How it works...
This example illustrates how to deal with images in scikit-learn. An image is a 2D (N, M)
matrix, which has NM features. This matrix needs to be flattened when composing the data
matrix; each row is a full image.

Machine Learning

288

The idea of K-nearest neighbors is as follows: given a new point in the feature space, find the
K closest points from the training set and assign the label of the majority of those points.

The distance is generally the Euclidean distance, but other distances can be used too.

The following image shows the space partition obtained with a 15-nearest-neighbors classifier
on a toy dataset (with three labels):

K-nearest neighbors space partition

The number K is a hyperparameter of the model. If it is too small, the model will not generalize
well (high variance). In particular, it will be highly sensitive to outliers. By contrast, the
precision of the model will worsen if K is too large. At the extreme, if K is equal to the total
number of points, the model will always predict the exact same value disregarding the input
(high bias). There are heuristics to choose this hyperparameter (see the next section).

It should be noted that no model is learned by a K-nearest neighbor algorithm; the classifier
just stores all data points and compares any new target points with them. This is an example
of instance-based learning. It is in contrast to other classifiers such as the logistic regression
model, which explicitly learns a simple mathematical model on the training data.

The K-nearest neighbors method works well on complex classification problems that have
irregular decision boundaries. However, it might be computationally intensive with large
training datasets because a large number of distances have to be computed for testing.
Dedicated tree-based data structures such as K-D trees or ball trees can be used to
accelerate the search of nearest neighbors.

The K-nearest neighbors method can be used for classification, like here, and also for
regression problems. The model assigns the average of the target value of the nearest
neighbors. In both cases, different weighting strategies can be used.

Chapter 8

289

There's more…
Here are a few references:

 f The K-NN algorithm in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/neighbors.html

 f The K-NN algorithm on Wikipedia, available at http://en.wikipedia.org/
wiki/K-nearest_neighbors_algorithm

 f Blog post about how to choose the K hyperparameter, available at
http://datasciencelab.wordpress.com/2013/12/27/finding-the-k-
in-k-means-clustering/

 f Instance-based learning on Wikipedia, available at http://en.wikipedia.org/
wiki/Instance-based_learning

See also
 f The Predicting who will survive on the Titanic with logistic regression recipe

 f The Using support vector machines for classification tasks recipe

Learning from text – Naive Bayes for Natural
Language Processing

In this recipe, we show how to handle text data with scikit-learn. Working with text requires
careful preprocessing and feature extraction. It is also quite common to deal with highly
sparse matrices.

We will learn to recognize whether a comment posted during a public discussion is considered
insulting to one of the participants. We will use a labeled dataset from Impermium, released
during a Kaggle competition.

Getting ready
Download the Troll dataset from the book's GitHub repository at https://github.com/
ipython-books/cookbook-data.

This dataset was obtained from Kaggle, at www.kaggle.com/c/detecting-insults-in-
social-commentary.

Machine Learning

290

How to do it...
1. Let's import our libraries:

In [1]: import numpy as np
 import pandas as pd
 import sklearn
 import sklearn.cross_validation as cv
 import sklearn.grid_search as gs
 import sklearn.feature_extraction.text as text
 import sklearn.naive_bayes as nb
 import matplotlib.pyplot as plt
 %matplotlib inline

2. Let's open the CSV file with pandas:
In [2]: df = pd.read_csv("data/troll.csv")

3. Each row is a comment. We will consider two columns: whether the comment is
insulting (1) or not (0) and the unicode-encoded contents of the comment:
In [3]: df[['Insult', 'Comment']].tail()
 Insult Comment
3942 1 "you are both morons and that is..."
3943 0 "Many toolbars include spell check...
3944 0 "@LambeauOrWrigley\xa0\xa0@K.Moss\xa0\n...
3945 0 "How about Felix? He is sure turning into...
3946 0 "You're all upset, defending this hipster...

4. Now, we are going to define the feature matrix X and the labels y:
In [4]: y = df['Insult']

Obtaining the feature matrix from the text is not trivial. scikit-learn can only work with
numerical matrices. So how do we convert text into a matrix of numbers? A classical
solution is to first extract a vocabulary, a list of words used throughout the corpus.
Then, we count, for each sample, the frequency of each word. We end up with a
sparse matrix, a huge matrix containing mostly zeros. Here, we do this in two lines.
We will give more details in How it works….

The general rule here is that whenever one of our features is categorical
(that is, the presence of a word, a color belonging to a fixed set of n colors,
and so on), we should vectorize it by considering one binary feature per
item in the class. For example, instead of a feature color being red,
green, or blue, we should consider three binary features color_red,
color_green, and color_blue. We give further references in the
There's more… section.

Chapter 8

291

In [5]: tf = text.TfidfVectorizer()
 X = tf.fit_transform(df['Comment'])
 print(X.shape)
(3947, 16469)

5. There are 3947 comments and 16469 different words. Let's estimate the sparsity
of this feature matrix:
In [6]: print(("Each sample has ~{0:.2f}% non-zero"
 "features.").format(
 100 * X.nnz / float(X.shape[0] * X.shape[1])))
Each sample has ~0.15% non-zero features.

6. Now, we are going to train a classifier as usual. We first split the data into a train and
test set:
In [7]: (X_train, X_test, y_train,
 y_test) = cv.train_test_split(X, y,
 test_size=.2)

7. We use a Bernoulli Naive Bayes classifier with a grid search on the α parameter:
In [8]: bnb = gs.GridSearchCV(nb.BernoulliNB(),
 param_grid={
 'alpha': np.logspace(-2., 2., 50)})
 bnb.fit(X_train, y_train)

8. Let's check the performance of this classifier on the test dataset:
In [9]: bnb.score(X_test, y_test)
Out[9]: 0.76455696202531642

9. Let's take a look at the words corresponding to the largest coefficients (the words we
find frequently in insulting comments):
In [10]: # We first get the words corresponding
 # to each feature.
 names = np.asarray(tf.get_feature_names())
 # Next, we display the 50 words with the largest
 # coefficients.
 print(','.join(names[np.argsort(
 bnb.best_estimator_.coef_[0,:])[::-1][:50]]))
you,are,your,to,the,and,of,that,is,it,in,like,on,have,for,not,re,j
ust,an,with,so,all,***,***be,get,***,***up,this,what,xa0,don,***,*
go,no,do,can,but,*,***or,as,if,***,***who,know,about,because,h
ere,***,***me,was

Machine Learning

292

10. Finally, let's test our estimator on a few test sentences:

In [11]: print(bnb.predict(tf.transform([
 "I totally agree with you.",
 "You are so stupid.",
 "I love you."
])))
[0 1 1]

That's not bad, but we can probably do better.

How it works...
scikit-learn implements several utility functions to obtain a sparse feature matrix from text
data. A vectorizer such as CountVectorizer() extracts a vocabulary from a corpus (fit)
and constructs a sparse representation of the corpus based on this vocabulary (transform).
Each sample is represented by the vocabulary's word frequencies. The trained instance also
contains attributes and methods to map feature indices to the corresponding words (get_
feature_names()) and conversely (vocabulary_).

N-grams can also be extracted. These are pairs or tuples of words occurring successively
(the ngram_range keyword).

The frequency of the words can be weighted in different ways. Here, we have used tf-idf, or
term frequency-inverse document frequency. This quantity reflects how important a word
is to a corpus. Frequent words in comments have a high weight except if they appear in most
comments (which means that they are common terms, for example, "the" and "and" would be
filtered out using this technique).

Naive Bayes algorithms are Bayesian methods based on the naive assumption of independence
between the features. This strong assumption drastically simplifies the computations and leads
to very fast yet decent classifiers.

There's more…
Here are a few references:

 f Text feature extraction in scikit-learn's documentation, available at
http://scikit-learn.org/stable/modules/feature_extraction.
html#text-feature-extraction

 f Term frequency-inverse document-frequency on Wikipedia, available at
http://en.wikipedia.org/wiki/tf-idf

 f Vectorizer in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/generated/sklearn.feature_extraction.
DictVectorizer.html

Chapter 8

293

 f Naive Bayes classifier on Wikipedia, at http://en.wikipedia.org/wiki/
Naive_Bayes_classifier

 f Naive Bayes in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/naive_bayes.html

 f Impermium Kaggle challenge, at http://blog.kaggle.com/2012/09/26/
impermium-andreas-blog/

 f Document classification example in scikit-learn's documentation, at
http://scikit-learn.org/stable/auto_examples/document_
classification_20newsgroups.html

Besides scikit-learn, which has good support for text processing,
we should also mention NLTK (available at www.nltk.org),
a Natural Language Toolkit in Python.

See also
 f The Predicting who will survive on the Titanic with logistic regression recipe
 f The Learning to recognize handwritten digits with a K-nearest neighbors

classifier recipe
 f The Using support vector machines for classification tasks recipe

Using support vector machines for
classification tasks

In this recipe, we introduce support vector machines, or SVMs. These powerful models can
be used for classification and regression. Here, we illustrate how to use linear and nonlinear
SVMs on a simple classification task.

How to do it...
1. Let's import the packages:

In [1]: import numpy as np
 import pandas as pd
 import sklearn
 import sklearn.datasets as ds
 import sklearn.cross_validation as cv
 import sklearn.grid_search as gs
 import sklearn.svm as svm
 import matplotlib.pyplot as plt
 %matplotlib inline

Machine Learning

294

2. We generate 2D points and assign a binary label according to a linear operation on
the coordinates:
In [2]: X = np.random.randn(200, 2)
 y = X[:, 0] + X[:, 1] > 1

3. We now fit a linear Support Vector Classifier (SVC). This classifier tries to separate
the two groups of points with a linear boundary (a line here, but more generally a
hyperplane):
In [3]: # We train the classifier.
 est = svm.LinearSVC()
 est.fit(X, y)

4. We define a function that displays the boundaries and decision function of a
trained classifier:
In [4]: # We generate a grid in the square [-3,3]^2.
 xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
 np.linspace(-3, 3, 500))
 # This function takes a SVM estimator as input.
 def plot_decision_function(est):
 # We evaluate the decision function on the
 # grid.
 Z = est.decision_function(np.c_[xx.ravel(),
 yy.ravel()])
 Z = Z.reshape(xx.shape)
 cmap = plt.cm.Blues
 # We display the decision function on the grid.
 plt.imshow(Z,
 extent=(xx.min(), xx.max(),
 yy.min(), yy.max()),
 aspect='auto', origin='lower',
 cmap=cmap)
 # We display the boundaries.
 plt.contour(xx, yy, Z, levels=[0],
 linewidths=2,
 colors='k')
 # We display the points with their true labels.
 plt.scatter(X[:, 0], X[:, 1], s=30, c=.5+.5*y,
 lw=1, cmap=cmap, vmin=0, vmax=1)
 plt.axhline(0, color='k', ls='--')
 plt.axvline(0, color='k', ls='--')
 plt.xticks(())
 plt.yticks(())
 plt.axis([-3, 3, -3, 3])

Chapter 8

295

5. Let's take a look at the classification results with the linear SVC:
In [5]: plot_decision_function(est)
 plt.title("Linearly separable, linear SVC")

The linear SVC tried to separate the points with a line and it did a pretty good
job here.

6. We now modify the labels with an XOR function. A point's label is 1 if the coordinates
have different signs. This classification is not linearly separable. Therefore, a linear
SVC fails completely:
In [6]: y = np.logical_xor(X[:, 0]>0, X[:, 1]>0)
 # We train the classifier.
 est = gs.GridSearchCV(svm.LinearSVC(),
 {'C': np.logspace(-3., 3., 10)})
 est.fit(X, y)
 print("Score: {0:.1f}".format(
 v.cross_val_score(est, X, y).mean()))
 # Plot the decision function.
 plot_decision_function(est)
 plt.title("XOR, linear SVC")
Score: 0.6

Machine Learning

296

7. Fortunately, it is possible to use nonlinear SVCs by using nonlinear kernels. Kernels
specify a nonlinear transformation of the points into a higher dimensional space.
Transformed points in this space are assumed to be more linearly separable. By
default, the SVC classifier in scikit-learn uses the Radial Basis Function (RBF) kernel:
In [7]: y = np.logical_xor(X[:, 0]>0, X[:, 1]>0)
 est = gs.GridSearchCV(svm.SVC(),
 {'C': np.logspace(-3., 3., 10),
 'gamma': np.logspace(-3., 3., 10)})
 est.fit(X, y)
 print("Score: {0:.3f}".format(
 cv.cross_val_score(est, X, y).mean()))
 plot_decision_function(est.best_estimator_)
 plt.title("XOR, non-linear SVC")
Score: 0.975

This time, the nonlinear SVC successfully managed to classify these nonlinearly
separable points.

How it works...
A two-class linear SVC tries to find a hyperplane (defined as a linear equation) that best
separates the two sets of points (grouped according to their labels). There is also the constraint
that this separating hyperplane needs to be as far as possible from the points. This method
works best when such a hyperplane exists. Otherwise, this method can fail completely, as we
saw in the XOR example. XOR is known as being a nonlinearly separable operation.

The SVM classes in scikit-learn have a C hyperparameter. This hyperparameter trades off
misclassification of training examples against simplicity of the decision surface. A low
C value makes the decision surface smooth, while a high C value aims at classifying all
training examples correctly. This is another example where a hyperparameter quantifies
the bias-variance trade-off. This hyperparameter can be chosen with cross-validation
and grid search.

Chapter 8

297

The linear SVC can also be extended to multiclass problems. The multiclass SVC is directly
implemented in scikit-learn.

The nonlinear SVC works by considering a nonlinear transformation ()xϕ from the original
space into a higher dimensional space. This nonlinear transformation can increase the
linear separability of the classes. In practice, all dot products are replaced by the
() () (), ' 'k x x x xϕ ϕ= ⋅ kernel.

Nonlinear SVC

There are several widely-used nonlinear kernels. By default, SVC uses Gaussian radial
basis functions:

() ()2x, x exp || x x ||k γ′ ′= − −

Here, γ is a hyperparameter of the model that can be chosen with grid search and
cross-validation.

The ϕ function does not need to be computed explicitly. This is the kernel trick; it suffices to
know the kernel k(x, x'). The existence of a function ϕ corresponding to a given kernel k(x, x')
is guaranteed by a mathematical theorem in functional analysis.

There's more…
Here are a few references about support vector machines:

 f Exclusive OR on Wikipedia, available at http://en.wikipedia.org/wiki/
Exclusive_or

 f Support vector machines on Wikipedia, available at http://en.wikipedia.org/
wiki/Support_vector_machine

 f SVMs in scikit-learn's documentation, available at http://scikit-learn.org/
stable/modules/svm.html

Machine Learning

298

 f Kernel trick on Wikipedia, available at http://en.wikipedia.org/wiki/
Kernel_method

 f Notes about the kernel trick available at www.eric-kim.net/eric-kim-net/
posts/1/kernel_trick.html

 f An example with a nonlinear SVM available at http://scikit-learn.org/0.11/
auto_examples/svm/plot_svm_nonlinear.html (this example inspired
this recipe)

See also
 f The Predicting who will survive on the Titanic with logistic regression recipe

 f The Learning to recognize handwritten digits with a K-nearest neighbors
classifier recipe

Using a random forest to select important
features for regression

Decision trees are frequently used to represent workflows or algorithms. They also form a
method for nonparametric supervised learning. A tree mapping observations to target values
is learned on a training set and gives the outcomes of new observations.

Random forests are ensembles of decision trees. Multiple decision trees are trained and
aggregated to form a model that is more performant than any of the individual trees. This
general idea is the purpose of ensemble learning.

There are many types of ensemble methods. Random forests are an instance of bootstrap
aggregating, also called bagging, where models are trained on randomly drawn subsets of
the training set.

Random forests yield information about the importance of each feature for the classification
or regression task. In this recipe, we will find the most influential features of Boston
house prices using a classic dataset that contains a range of diverse indicators about
the houses' neighborhood.

How to do it...
1. We import the packages:

In [1]: import numpy as np
 import sklearn as sk
 import sklearn.datasets as skd
 import sklearn.ensemble as ske
 import matplotlib.pyplot as plt

Chapter 8

299

 %matplotlib inline

2. We load the Boston dataset:
In [2]: data = skd.load_boston()

The details of this dataset can be found in data['DESCR']. Here is the description
of some features:

 � CRIM: Per capita crime rate by town

 � NOX: Nitric oxide concentration (parts per 10 million)

 � RM: Average number of rooms per dwelling

 � AGE: Proportion of owner-occupied units built prior to 1940

 � DIS: Weighted distances to five Boston employment centers

 � PTRATIO: Pupil-teacher ratio by town

 � LSTAT: Percentage of lower status of the population

 � MEDV: Median value of owner-occupied homes in $1000s

The target value is MEDV.

3. We create a RandomForestRegressor model:
In [3]: reg = ske.RandomForestRegressor()

4. We get the samples and the target values from this dataset:
In [4]: X = data['data']
 y = data['target']

5. Let's fit the model:
In [5]: reg.fit(X, y)

6. The importance of our features can be found in reg.feature_importances_.
We sort them by decreasing order of importance:
In [6]: fet_ind = np.argsort(reg.feature_importances_) \
 [::-1]
 fet_imp = reg.feature_importances_[fet_ind]

7. Finally, we plot a histogram of the features' importance:

In [7]: ax = plt.subplot(111)
 plt.bar(np.arange(len(fet_imp)),
 fet_imp, width=1, lw=2)
 plt.grid(False)
 ax.set_xticks(np.arange(len(fet_imp))+.5)

Machine Learning

300

 ax.set_xticklabels(data['feature_names'][fet_ind])
 plt.xlim(0, len(fet_imp))

We find that LSTAT (proportion of lower status of the population) and RM (number
of rooms per dwelling) are the most important features determining the price of a
house. As an illustration, here is a scatter plot of the price as a function of LSTAT:

In [8]: plt.scatter(X[:,-1], y)
 plt.xlabel('LSTAT indicator')
 plt.ylabel('Value of houses (k$)')

Chapter 8

301

How it works...
Several algorithms can be used to train a decision tree. scikit-learn uses the CART, or
Classification and Regression Trees, algorithm. This algorithm constructs binary trees
using the feature and threshold that yield the largest information gain at each node.
Terminal nodes give the outcomes of input values.

Decision trees are simple to understand. They can also be visualized with pydot, a Python
package for drawing graphs and trees. This is useful when we want to understand what a tree
has learned exactly (white box model); the conditions that apply on the observations at each
node can be expressed easily with Boolean logic.

However, decision trees may suffer from overfitting, notably when they are too deep, and
they might be unstable. Additionally, global convergence toward an optimal model is not
guaranteed, particularly when greedy algorithms are used for training. These problems can
be mitigated by using ensembles of decision trees, notably random forests.

In a random forest, multiple decision trees are trained on bootstrap samples of the training
dataset (randomly sampled with replacement). Predictions are made with the averages of
individual trees' predictions (bootstrap aggregating or bagging). Additionally, random subsets
of the features are chosen at each node (random subspace method). These methods lead
to an overall better model than the individual trees.

There's more...
Here are a few references:

 f Ensemble learning in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/ensemble.html

 f API reference of RandomForestRegressor available at http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html

 f Random forests on Wikipedia, available at http://en.wikipedia.org/wiki/
Random_forest

 f Decision tree learning on Wikipedia, available at http://en.wikipedia.org/
wiki/Decision_tree_learning

 f Bootstrap aggregating on Wikipedia, available at http://en.wikipedia.org/
wiki/Bootstrap_aggregating

 f Random subspace method on Wikipedia, available at http://en.wikipedia.
org/wiki/Random_subspace_method

 f Ensemble learning on Wikipedia, available at http://en.wikipedia.org/wiki/
Ensemble_learning

Machine Learning

302

See also
 f The Using support vector machines for classification tasks recipe

Reducing the dimensionality of a dataset
with a principal component analysis

In the previous recipes, we presented supervised learning methods; our data points came
with discrete or continuous labels, and the algorithms were able to learn the mapping from
the points to the labels.

Starting with this recipe, we will present unsupervised learning methods. These methods
might be helpful prior to running a supervised learning algorithm. They can give a first insight
into the data.

Let's assume that our data consists of points xi without any labels. The goal is to discover
some form of hidden structure in this set of points. Frequently, data points have intrinsic
low dimensionality: a small number of features suffice to accurately describe the data.
However, these features might be hidden among many other features not relevant to the
problem. Dimension reduction can help us find these structures. This knowledge can
considerably improve the performance of subsequent supervised learning algorithms.

Another useful application of unsupervised learning is data visualization; high-dimensional
datasets are hard to visualize in 2D or 3D. Projecting the data points on a subspace or
submanifold yields more interesting visualizations.

In this recipe, we will illustrate a basic unsupervised linear method, principal component
analysis (PCA). This algorithm lets us project data points linearly on a low-dimensional
subspace. Along the principal components, which are vectors forming a basis of this
low-dimensional subspace, the variance of the data points is maximum.

We will use the classic Iris flower dataset as an example. This dataset contains the width
and length of the petal and sepal of 150 iris flowers. These flowers belong to one of three
categories: Iris setosa, Iris virginica, and Iris versicolor. We have access to the category
in this dataset (labeled data). However, because we are interested in illustrating an
unsupervised learning method, we will only use the data matrix without the labels.

How to do it...
1. We import NumPy, matplotlib, and scikit-learn:

In [1]: import numpy as np
 import sklearn
 import sklearn.decomposition as dec
 import sklearn.datasets as ds

Chapter 8

303

 import matplotlib.pyplot as plt
 %matplotlib inline

2. The Iris flower dataset is available in the datasets module of scikit-learn:
In [2]: iris = ds.load_iris()
 X = iris.data
 y = iris.target
 print(X.shape)
(150L, 4L)

3. Each row contains four parameters related to the morphology of the flower. Let's
display the first two dimensions. The color reflects the iris variety of the flower (the
label, between 0 and 2):
In [3]: plt.scatter(X[:,0], X[:,1], c=y,
 s=30, cmap=plt.cm.rainbow)

If you're reading the printed version of this book, you might not be
able to distinguish the colors. You will find the colored images on
the book's website.

4. We now apply PCA on the dataset to get the transformed matrix. This operation can
be done in a single line with scikit-learn: we instantiate a PCA model and call the
fit_transform() method. This function computes the principal components and
projects the data on them:
In [4]: X_bis = dec.PCA().fit_transform(X)

Machine Learning

304

5. We now display the same dataset, but in a new coordinate system (or equivalently,
a linearly transformed version of the initial dataset):
In [5]: plt.scatter(X_bis[:,0], X_bis[:,1], c=y,
 s=30, cmap=plt.cm.rainbow)

Points belonging to the same classes are now grouped together, even though the PCA
estimator did not use the labels. The PCA was able to find a projection maximizing the
variance, which corresponds here to a projection where the classes are well separated.

6. The scikit.decomposition module contains several variants of the classic PCA
estimator: ProbabilisticPCA, SparsePCA, RandomizedPCA, KernelPCA, and
others. As an example, let's take a look at KernelPCA, a nonlinear version of PCA:

In [6]: X_ter = dec.KernelPCA(kernel='rbf'). \
 fit_transform(X)
 plt.scatter(X_ter[:,0], X_ter[:,1], c=y, s=30,
 cmap=plt.cm.rainbow)

Chapter 8

305

How it works...
Let's look at the mathematical ideas behind PCA. This method is based on a matrix
decomposition called Singular Value Decomposition (SVD):

X U VT= ∑

Here, X is the (N,D) data matrix, U and V are orthogonal matrices, and ∑ is a (N,D)
diagonal matrix.

PCA transforms X into X' defined by:

X XV U′ = = ∑

The diagonal elements of ∑ are the singular values of X. By convention, they are generally
sorted in descending order. The columns of U are orthonormal vectors called the left singular
vectors of X. Therefore, the columns of X' are the left singular vectors multiplied by the
singular values.

In the end, PCA converts the initial set of observations, which are made of possibly correlated
variables, into vectors of linearly uncorrelated variables called principal components.

The first new feature (or first component) is a transformation of all original features such that
the dispersion (variance) of the data points is the highest in that direction. In the subsequent
principal components, the variance is decreasing. In other words, PCA gives us an alternative
representation of our data where the new features are sorted according to how much they
account for the variability of the points.

There's more…
Here are a few further references:

 f Iris flower dataset on Wikipedia, available at http://en.wikipedia.org/wiki/
Iris_flower_data_set

 f PCA on Wikipedia, available at http://en.wikipedia.org/wiki/Principal_
component_analysis

 f SVD decomposition on Wikipedia, available at http://en.wikipedia.org/wiki/
Singular_value_decomposition

 f Iris dataset example available at http://scikit-learn.org/stable/auto_
examples/datasets/plot_iris_dataset.html

 f Decompositions in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/decomposition.html

Machine Learning

306

 f Unsupervised learning tutorial with scikit-learn available at http://scikit-
learn.org/dev/tutorial/statistical_inference/unsupervised_
learning.html

See also
 f The Detecting hidden structures in a dataset with clustering recipe

Detecting hidden structures in a dataset
with clustering

A large part of unsupervised learning is devoted to the clustering problem. The goal is to
group similar points together in a totally unsupervised way. Clustering is a hard problem,
as the very definition of clusters (or groups) is not necessarily well posed. In most datasets,
stating that two points should belong to the same cluster may be context-dependent or
even subjective.

There are many clustering algorithms. We will see a few of them in this recipe, applied to
a toy example.

How to do it...
1. Let's import the libraries:

In [1]: from itertools import permutations
 import numpy as np
 import sklearn
 import sklearn.decomposition as dec
 import sklearn.cluster as clu
 import sklearn.datasets as ds
 import sklearn.grid_search as gs
 import matplotlib.pyplot as plt
 %matplotlib inline

2. Let's generate a random dataset with three clusters:
In [2]: X, y = ds.make_blobs(n_samples=200, n_features=2,
 centers=3)

3. We need a couple of functions to relabel and display the results of the
clustering algorithms:
In [3]: def relabel(cl):
 """Relabel a clustering with three clusters
 to match the original classes."""
 if np.max(cl) != 2:

Chapter 8

307

 return cl
 perms = np.array(list(permutations((0, 1, 2))))
 i = np.argmin([np.sum(np.abs(perm[cl] - y))
 for perm in perms])
 p = perms[i]
 return p[cl]
In [4]: def display_clustering(labels, title):
 """Plot the data points with the cluster
 colors."""
 # We relabel the classes when there are 3
 # clusters.
 labels = relabel(labels)
 # Display the points with the true labels on
 # the left, and with the clustering labels on
 # the right.
 for i, (c, title) in enumerate(zip(
 [y, labels], ["True labels", title])):
 plt.subplot(121 + i)
 plt.scatter(X[:,0], X[:,1], c=c, s=30,
 linewidths=0,
 cmap=plt.cm.rainbow)
 plt.xticks([]); plt.yticks([])
 plt.title(title)

4. Now, we cluster the dataset with the K-means algorithm, a classic and simple
clustering algorithm:
In [5]: km = clu.KMeans()
 km.fit(X)
 display_clustering(km.labels_, "KMeans")

If you're reading the printed version of this book, you might not be
able to distinguish the colors. You will find the colored images on
the book's website.

Machine Learning

308

5. This algorithm needs to know the number of clusters at initialization time. In general,
however, we do not necessarily know the number of clusters in the dataset. Here,
let's try with n_clusters=3 (that's cheating, because we happen to know that there
are 3 clusters!):
In [6]: km = clu.KMeans(n_clusters=3)
 km.fit(X)
 display_clustering(km.labels_, "KMeans(3)")

6. Let's try a few other clustering algorithms implemented in scikit-learn. The simplicity
of the API makes it really easy to try different methods; it is just a matter of changing
the name of the class:
In [7]: plt.subplot(231)
 plt.scatter(X[:,0], X[:,1], c=y, s=30,
 linewidths=0, cmap=plt.cm.rainbow)
 plt.xticks([]); plt.yticks([])
 plt.title("True labels")
 for i, est in enumerate([clu.SpectralClustering(3),
 clu.AgglomerativeClustering(3),
 clu.MeanShift(),
 clu.AffinityPropagation(),
 clu.DBSCAN()]):
 est.fit(X)
 c = relabel(est.labels_)
 plt.subplot(232 + i)
 plt.scatter(X[:,0], X[:,1], c=c, s=30,
 linewidths=0, cmap=plt.cm.rainbow)
 plt.xticks([]); plt.yticks([])
 plt.title(est.__class__.__name__)

Chapter 8

309

The first two algorithms required the number of clusters as input. The next two did not,
but they were able to find the right number: 3. The last one failed at finding the correct
number of clusters (this is overclustering—too many clusters have been found).

How it works...
The K-means clustering algorithm consists of partitioning the data points xj into K clusters Si
so as to minimize the within-cluster sum of squares:

S 1 x

2
arg min || x ||

2
j i

K

j i
i S

µ
= ∈

−∑ ∑

Here, iµ is the center of the cluster i (average of all points in Si).

Although it is very hard to solve this problem exactly, approximation algorithms exist.
A popular one is Lloyd's algorithm. It consists of starting from an initial set of K means
iµ and alternating between two steps:

 f In the assignment step, the points are assigned to the cluster associated
to the closest mean

 f In the update step, the means are recomputed from the last assignments

The algorithm converges to a solution that is not guaranteed to be optimal.

The expectation-maximization algorithm can be seen as a probabilistic version of the
K-means algorithm. It is implemented in the mixture module of scikit-learn.

Machine Learning

310

The other clustering algorithms used in this recipe are explained in the scikit-learn
documentation. There is no clustering algorithm that works uniformly better than all the
others, and every algorithm has its strengths and weaknesses. You will find more details
in the references in the next section.

There's more...
Here are a few references:

 f The K-means clustering algorithm on Wikipedia, available at
http://en.wikipedia.org/wiki/K-means_clustering

 f The expectation-maximization algorithm on Wikipedia, available at
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm

 f Clustering in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/clustering.html

See also
 f The Reducing the dimensionality of a dataset with principal component

analysis recipe

9
Numerical Optimization

In this chapter, we will cover the following topics:

 f Finding the root of a mathematical function

 f Minimizing a mathematical function

 f Fitting a function to data with nonlinear least squares

 f Finding the equilibrium state of a physical system by minimizing
its potential energy

Introduction
Mathematical optimization is a wide area of applied mathematics. It consists of finding
the best solution to a given problem. Many real-world problems can be expressed in an
optimization framework. What is the shortest path on the road from point A to point B?
What is the best strategy to solve a puzzle? What is the most energy-efficient shape of a car
(automotive aerodynamics)? Mathematical optimization is relevant in many domains including
engineering, economics, finance, operations research, image processing, data analysis,
and others.

Mathematically, an optimization problem generally consists of finding the maximum or
minimum value of a function. We sometimes use the terms continuous optimization or
discrete optimization, according to whether the function variable is real-valued or discrete.

Numerical Optimization

312

In this chapter, we will focus on numerical methods for solving continuous optimization
problems. Many optimization algorithms are implemented in the scipy.optimize module.
We will come across other instances of optimization problems in several other chapters of
this book. For example, we will see discrete optimization problems in Chapter 14, Graphs,
Geometry, and Geographic Information Systems. In this introduction, we will give a few
important definitions and key concepts related to mathematical optimization.

The objective function
We will study methods to find a root or an extremum of a real-valued function f called the
objective function. An extremum is either a maximum or a minimum of a function. This
mathematical function is generally implemented in a Python function. It can accept one or
several variables, it can be continuous or not, and so on. The more assumptions we have
about the function, the easier it can be optimized.

A maximum of f is a minimum of -f, so any minimization algorithm can be
used to maximize a function by considering the opposite of that function.
Therefore, from now on, when we talk about minimization, we will really
mean minimization or maximization.

Convex functions are generally easier to optimize than non-convex functions, as they satisfy
certain useful properties. For example, any local minimum is necessarily a global minimum.
The field of convex optimization deals with algorithms that are specifically adapted to the
optimization of convex functions on convex domains. Convex optimization is an advanced
topic, and we can't cover much of it here.

Differentiable functions have gradients, and these gradients can be particularly useful in
optimization algorithms. Similarly, continuous functions are typically easier to optimize than
non-continuous functions.

Also, functions with a single variable are easier to optimize than functions with
multiple variables.

The choice of the most adequate optimization algorithm depends on the properties satisfied
by the objective function.

Local and global minima
A minimum of a function f is a point x0 such that f(x) ≥ f(x0), for a particular set of points x in E.
When this inequality is satisfied on the whole set E, we refer to x0 as a global minimum. When
it is only satisfied locally (around the point x0), we say that x0 is a local minimum. A maximum
is defined similarly.

Chapter 9

313

If f is differentiable, an extremum x0 satisfies:

()0 0f x ='

Therefore, finding the extrema of an objective function is closely related to finding the roots of
the derivative. However, a point x0 satisfying this property is not necessarily an extremum.

It is more difficult to find global minima than to find local minima. In general, when an
algorithm finds a local minimum, there is no guarantee that it is also a global minimum.
Frequently, an algorithm seeking a global minimum stays stuck in a local minimum. This
problem needs to be accounted for, specifically in global minimization algorithms. However,
things are simpler with convex functions since these do not have strictly local minima.
Moreover, there are many cases where finding a local minimum is good enough (for example,
when looking for a good solution to a problem rather than the absolute best solution). Finally,
let's note that a global minimum or maximum does not necessarily exist (the function can go
to infinity). In that case, it may be necessary to constrain the space search; this is the subject
of constrained optimization.

Local and global extrema

Constrained and unconstrained optimization
 f Unconstrained optimization: Finding the minimum of a function f on the full set E

where f is defined

 f Constrained optimization: Finding the minimum of a function f on a subset E' of E;
this set is generally described by equalities and inequalities:

() (), , ,i i j jx E i j g x c h x d∈ ⇔∀ = ≤'

Here, the gi and hj are arbitrary functions defining the constraints.

Numerical Optimization

314

For example, optimizing the aerodynamic shape of a car requires constraints on parameters
such as the volume and mass of the car, the cost of the production process, and others.

Constrained optimization is generally harder than unconstrained optimization.

Deterministic and stochastic algorithms
Some global optimization algorithms are deterministic, others are stochastic. Typically,
deterministic methods are adapted to well-behaved functions, whereas stochastic methods
may be useful with highly irregular and noisy functions.

The reason is that deterministic algorithms may be stuck in local minima, particularly if there
are many non-global local minima. By spending some time exploring the space E, stochastic
algorithms may have a chance of finding a global minimum.

References
 f The SciPy lecture notes are an excellent reference on mathematical optimization with

SciPy and are available at http://scipy-lectures.github.io/advanced/
mathematical_optimization/index.html

 f Reference manual of scipy.optimize available at http://docs.scipy.org/
doc/scipy/reference/optimize.html

 f Overview of mathematical optimization on Wikipedia, available at
http://en.wikipedia.org/wiki/Mathematical_optimization

 f Extrema, minima, and maxima on Wikipedia, available at http://en.wikipedia.
org/wiki/Maxima_and_minima

 f Convex optimization on Wikipedia, available at http://en.wikipedia.org/
wiki/Convex_optimization

 f Advanced optimization methods for image processing by Gabriel Peyré, available
at http://github.com/gpeyre/numerical-tours

Finding the root of a mathematical function
In this short recipe, we will see how to use SciPy to find the root of a simple
mathematical function of a single real variable.

How to do it…
1. Let's import NumPy, SciPy, scipy.optimize, and matplotlib:

In [1]: import numpy as np
 import scipy as sp

Chapter 9

315

 import scipy.optimize as opt
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We define the mathematical function f(x)=cos(x)-x in Python. We will try to find a
root of this function numerically. Here, a root corresponds to a fixed point of the
cosine function:
In [2]: f = lambda x: np.cos(x) - x

3. Let's plot this function on the interval [-5, 5] (using 1000 samples):
In [3]: x = np.linspace(-5, 5, 1000)
 y = f(x)
 plt.plot(x, y)
 plt.axhline(0, color='k')
 plt.xlim(-5,5)

4. We see that this function has a unique root on this interval (this is because the
function's sign changes on this interval). The scipy.optimize module contains
a few root-finding functions that are adapted here. For example, the bisect()
function implements the bisection method (also called the dichotomy method).
It takes as input the function and the interval to find the root in:
In [4]: opt.bisect(f, -5, 5)
Out[4]: 0.7390851332155535

Numerical Optimization

316

Let's visualize the root on the plot:

In [5]: plt.plot(x, y)
 plt.axhline(0, color='k')
 plt.scatter([_], [0], c='r', s=100)
 plt.xlim(-5,5)

5. A faster and more powerful method is brentq() (Brent's method). This algorithm
also requires f to be continuous and f(a) and f(b) to have different signs:

In [6]: opt.brentq(f, -5, 5)
Out[6]: 0.7390851332151607

The brentq() method is faster than bisect(). If the conditions are satisfied,
it is a good idea to try Brent's method first:

In [7]: %timeit opt.bisect(f, -5, 5)
 %timeit opt.brentq(f, -5, 5)
1000 loops, best of 3: 331 µs per loop
10000 loops, best of 3: 71 µs per loop

How it works…
The bisection method consists of iteratively cutting an interval in half and selecting a
subinterval that necessarily contains a root. This method is based on the fact that, if f is a
continuous function of a single real variable, f(a)>0, and f(b)<0, then f has a root in (a,b)
(intermediate value theorem).

Brent's method is a popular hybrid algorithm combining root bracketing, interval bisection,
and inverse quadratic interpolation. It is a default method that works in many cases.

Let's also mention Newton's method. The idea is to approximate f(x) by its tangent (found
with f'(x)) and find the intersection with the y=0 line. If f is regular enough, the intersection
point will be closer to the actual root of f. By iterating this operation, the algorithm generally
converges to the sought solution.

Chapter 9

317

There's more…
Here are a few references:

 f Documentation of scipy.optimize available at http://docs.scipy.org/doc/
scipy/reference/optimize.html#root-finding

 f A course on root finding with SciPy available at http://quant-econ.net/scipy.
html#roots-and-fixed-points

 f The Bisection method on Wikipedia, available at http://en.wikipedia.org/
wiki/Bisection_method

 f The intermediate value theorem on Wikipedia, available at http://
en.wikipedia.org/wiki/Intermediate_value_theorem

 f Brent's method on Wikipedia, available at http://en.wikipedia.org/wiki/
Brent%27s_method

 f Newton's method on Wikipedia, available at http://en.wikipedia.org/wiki/
Newton%27s_method

See also
 f The Minimizing a mathematical function recipe

Minimizing a mathematical function
Mathematical optimization deals mainly with the problem of finding a minimum or a maximum
of a mathematical function. Frequently, a real-world numerical problem can be expressed as a
function minimization problem. Such examples can be found in statistical inference, machine
learning, graph theory, and other areas.

Although there are many function minimization algorithms, a generic and universal method
does not exist. Therefore, it is important to understand the differences between existing
classes of algorithms, their specificities, and their respective use cases. We should also
have a good understanding of our problem and our objective function; is it continuous,
differentiable, convex, multidimensional, regular, or noisy? Is our problem constrained or
unconstrained? Are we seeking local or global minima?

In this recipe, we will demonstrate a few usage examples of the function minimization
algorithms implemented in SciPy.

Numerical Optimization

318

How to do it…
1. We import the libraries:

In [1]: import numpy as np
 import scipy as sp
 import scipy.optimize as opt
 import matplotlib.pyplot as plt
 %matplotlib inline

2. First, let's define a simple mathematical function (the opposite of the
cardinal sine). This function has many local minima but a single global
minimum (http://en.wikipedia.org/wiki/Sinc_function):
In [2]: f = lambda x: 1-np.sin(x)/x

3. Let's plot this function on the interval [-20, 20] (with 1000 samples):
In [3]: x = np.linspace(-20., 20., 1000)
 y = f(x)
In [4]: plt.plot(x, y)

4. The scipy.optimize module comes with many function minimization routines.
The minimize() function offers a unified interface to many algorithms. The
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (the default algorithm in
minimize()) gives good results in general. The minimize() function requires
an initial point as argument. For scalar univariate functions, we can also use
minimize_scalar():
In [5]: x0 = 3
 xmin = opt.minimize(f, x0).x

Starting from x0=3, the algorithm was able to find the actual global minimum, as
shown in the following figure:

Chapter 9

319

In [6]: plt.plot(x, y)
 plt.scatter(x0, f(x0), marker='o', s=300)
 plt.scatter(xmin, f(xmin), marker='v', s=300)
 plt.xlim(-20, 20)

5. Now, if we start from an initial point that is further away from the actual global
minimum, the algorithm converges towards a local minimum only:
In [7]: x0 = 10
 xmin = opt.minimize(f, x0).x
In [8]: plt.plot(x, y)
 plt.scatter(x0, f(x0), marker='o', s=300)
 plt.scatter(xmin, f(xmin), marker='v', s=300)
 plt.xlim(-20, 20)

Numerical Optimization

320

6. Like most function minimization algorithms, the BFGS algorithm is efficient at finding
local minima, but not necessarily global minima, especially on complicated or noisy
objective functions. A general strategy to overcome this problem is to combine such
algorithms with an exploratory grid search on the initial points. Another option is to
use a different class of algorithms based on heuristics and stochastic methods. A
popular example is the simulated annealing method:
In [9]: xmin = opt.minimize(f, x0, method='Anneal').x
In [10]: plt.plot(x, y)
 plt.scatter(x0, f(x0), marker='o', s=300)
 plt.scatter(xmin, f(xmin), marker='v', s=300)
 plt.xlim(-20, 20)

This time, the algorithm was able to find the global minimum.

7. Now, let's define a new function, in two dimensions this time, called the Lévi
function:

() () () ()() () ()()2 22 2 2, sin 3 1 1 sin 3 1 1 sin 2π π π= + − + + − +f x y x x y y y

This function is very irregular and may be difficult to minimize in general. It is one of
the many test functions for optimization that researchers have developed to study
and benchmark optimization algorithms (http://en.wikipedia.org/wiki/
Test_functions_for_optimization):

In [11]: def g(X):
 # X is a 2*N matrix, each column contains
 # x and y coordinates.
 x, y = X
 return (np.sin(3*np.pi*x)**2 +
 (x-1)**2 * (1+np.sin(3*np.pi*y)**2) +
 (y-1)**2 * (1+np.sin(2*np.pi*y)**2))

Chapter 9

321

8. Let's display this function with imshow(), on the square [-10,10]2:
In [12]: n = 200
 k = 10
 X, Y = np.mgrid[-k:k:n*1j,-k:k:n*1j]
In [13]: Z = g(np.vstack((X.ravel(),
 Y.ravel()))).reshape(n,n)
In [14]: # We use a logarithmic scale for the color here.
 plt.imshow(np.log(Z), cmap=plt.cm.hot_r)
 plt.xticks([]); plt.yticks([])

9. The BFGS algorithm also works in multiple dimensions:

In [15]: x0, y0 = opt.minimize(g, (8, 3)).x
In [16]: plt.imshow(np.log(Z), cmap=plt.cm.hot_r,
 extent=(-k, k, -k, k), origin=0)
 plt.scatter([x0], [y0], c=['r'], s=100)
 plt.xticks([]); plt.yticks([])

How it works…
Many function minimization algorithms are based on the fundamental idea of gradient descent.
If a function f is differentiable, then at every point, the opposite of its gradient points to the
direction of the greatest decrease rate of the function. By following this direction, we can expect
to find a local minimum.

Numerical Optimization

322

This operation is generally done iteratively, by following the direction of the gradient with a
small step. The way this step is computed depends on the optimization method.

Newton's method can also be used in this context of function minimization. The idea is to find
a root of f' with Newton's method, thereby making use of the second derivative f''. In other
words, we approximate f with a quadratic function instead of a linear function. In multiple
dimensions, this is done by computing the Hessian (second derivatives) of f. By performing
this operation iteratively, we can expect the algorithm to converge towards a local minimum.

When the computation of the Hessian is too costly, we can compute an approximation of the
Hessian. Such methods are called Quasi-Newton methods. The BFGS algorithm belongs to
this class of algorithms.

These algorithms make use of the objective function's gradient. If we can compute an analytical
expression of the gradient, we should provide it to the minimization routine. Otherwise, the
algorithm will compute an approximation of the gradient that may not be reliable.

The simulated annealing algorithm is a generic probabilistic metaheuristic for the global
optimization problem. It is based on an analogy with thermodynamic systems: by increasing
and decreasing the temperature, the configuration may converge to a state of low energy.

There are many stochastic global optimization methods based on metaheuristics. They are
generally less well-theoretically grounded than the deterministic optimization algorithms
previously described, and convergence is not always guaranteed. However, they may be useful in
situations where the objective function is very irregular and noisy, with many local minima. The
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is a metaheuristic that
performs well in many situations. It is currently not implemented in SciPy, but there's a Python
implementation in one of the references given later.

SciPy's minimize() function accepts a method keyword argument to specify the minimization
algorithm to use. This function returns an object containing the results of the optimization. The
x attribute is the point reaching the minimum.

There's more…
Here are a few further references:

 f The scipy.optimize reference documentation available at http://docs.
scipy.org/doc/scipy/reference/optimize.html

 f An excellent lecture on mathematical optimization with SciPy available at
http://scipy-lectures.github.io/advanced/mathematical_
optimization/

 f Definition of the gradient on Wikipedia, available at http://en.wikipedia.org/
wiki/Gradient

Chapter 9

323

 f Newton's method on Wikipedia, available at http://en.wikipedia.org/wiki/
Newton%27s_method_in_optimization

 f Quasi-Newton methods on Wikipedia, available at http://en.wikipedia.org/
wiki/Quasi-Newton_method

 f Metaheuristics for function minimization on Wikipedia, available at http://
en.wikipedia.org/wiki/Metaheuristic

 f Simulated annealing on Wikipedia, available at http://en.wikipedia.org/
wiki/Simulated_annealing

 f The CMA-ES algorithm described at http://en.wikipedia.org/wiki/CMA-ES

 f A Python implementation of CMA-ES available at http://www.lri.fr/~hansen/
cmaes_inmatlab.html#python

See also
 f The Finding the root of a mathematical function recipe

Fitting a function to data with nonlinear
least squares

In this recipe, we will show an application of numerical optimization to nonlinear least
squares curve fitting. The goal is to fit a function, depending on several parameters, to data
points. In contrast to the linear least squares method, this function does not have to be linear
in those parameters.

We will illustrate this method on artificial data.

How to do it…
1. Let's import the usual libraries:

In [1]: import numpy as np
 import scipy.optimize as opt
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We define a logistic function with four parameters:

() ()(), , , 1 expa b c d
af x b
c x d

= +
+ − −

Numerical Optimization

324

In [2]: def f(x, a, b, c, d):
 return a/(1 + np.exp(-c * (x-d))) + b

3. Let's define four random parameters:
In [3]: a, c = np.random.exponential(size=2)
 b, d = np.random.randn(2)

4. Now, we generate random data points by using the sigmoid function and adding a bit
of noise:
In [4]: n = 100
 x = np.linspace(-10., 10., n)
 y_model = f(x, a, b, c, d)
 y = y_model + a * .2 * np.random.randn(n)

5. Here is a plot of the data points, with the particular sigmoid used for their generation
(in dashed black):
In [5]: plt.plot(x, y_model, '--k')
 plt.plot(x, y, 'o')

6. We now assume that we only have access to the data points and not the underlying
generative function. These points could have been obtained during an experiment.
By looking at the data, the points appear to approximately follow a sigmoid, so we
may want to try to fit such a curve to the points. That's what curve fitting is about.
SciPy's curve_fit() function allows us to fit a curve defined by an arbitrary Python
function to the data:
In [6]: (a_, b_, c_, d_), _ = opt.curve_fit(f, x, y,
 (a, b, c, d))

Chapter 9

325

7. Now, let's take a look at the fitted sigmoid curve:

In [7]: y_fit = f(x, a_, b_, c_, d_)
In [8]: plt.plot(x, y_model, '--k')
 plt.plot(x, y, 'o')
 plt.plot(x, y_fit, '-')

The fitted sigmoid appears to be reasonably close to the original sigmoid used for
data generation.

How it works…
In SciPy, nonlinear least squares curve fitting works by minimizing the following cost function:

() ()()
2

1
ββ

=

= −∑
n

i i
i

S y f x

Here, β is the vector of parameters (in our example, β =(a,b,c,d)).

Nonlinear least squares is really similar to linear least squares for linear regression. Whereas
the function f is linear in the parameters with the linear least squares method, it is not
linear here. Therefore, the minimization of S(β) cannot be done analytically by solving the
derivative of S with respect to β . SciPy implements an iterative method called the Levenberg-
Marquardt algorithm (an extension of the Gauss–Newton algorithm).

Numerical Optimization

326

There's more…
Here are further references:

 f Reference documentation of curvefit available at http://docs.scipy.org/
doc/scipy/reference/generated/scipy.optimize.curve_fit.html

 f Nonlinear least squares on Wikipedia, available at http://en.wikipedia.org/
wiki/Non-linear_least_squares

 f Levenberg-Marquardt algorithm on Wikipedia, available at http://en.wikipedia.
org/wiki/Levenberg%E2%80%93Marquardt_algorithm

See also
 f The Minimizing a mathematical function recipe

Finding the equilibrium state of a physical
system by minimizing its potential energy

In this recipe, we will give an application example of the function minimization algorithms
described earlier. We will try to numerically find the equilibrium state of a physical system
by minimizing its potential energy.

More specifically, we'll consider a structure made of masses and springs, attached to a
vertical wall and subject to gravity. Starting from an initial position, we'll search for the
equilibrium configuration where the gravity and elastic forces compensate.

How to do it…
1. Let's import NumPy, SciPy, and matplotlib:

In [1]: import numpy as np
 import scipy.optimize as opt
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We define a few constants in the International System of Units:
In [2]: g = 9.81 # gravity of Earth
 m = .1 # mass, in kg
 n = 20 # number of masses
 e = .1 # initial distance between the masses
 l = e # relaxed length of the springs
 k = 10000 # spring stiffness

Chapter 9

327

3. We define the initial positions of the masses. They are arranged on a two-dimensional
grid with two lines and n/2 columns:
In [3]: P0 = np.zeros((n, 2))
 P0[:,0] = np.repeat(e*np.arange(n//2), 2)
 P0[:,1] = np.tile((0,-e), n//2)

4. Now, let's define the connectivity matrix between the masses. Coefficient (i,j) is 1 if
masses i and j are connected by a spring, 0 otherwise:
In [4]: A = np.eye(n, n, 1) + np.eye(n, n, 2)

5. We also specify the spring stiffness of each spring. It is l, except for diagonal springs
where it is 2l :
In [5]: L = l * (np.eye(n, n, 1) + np.eye(n, n, 2))
 for i in range(n//2-1):
 L[2*i+1,2*i+2] *= np.sqrt(2)

6. We get the indices of the spring connections:
In [6]: I, J = np.nonzero(A)

7. This dist function computes the distance matrix (distance between any pair of
masses):
In [7]: dist = lambda P: np.sqrt(
 (P[:,0]-P[:,0][:, np.newaxis])**2 +
 (P[:,1]-P[:,1][:, np.newaxis])**2)

8. We define a function that displays the system. The springs are colored according to
their tension:
In [8]: def show_bar(P):
 # Wall.
 plt.axvline(0, color='k', lw=3)
 # Distance matrix.
 D = dist(P)
 # We plot the springs.
 for i, j in zip(I, J):
 # The color depends on the spring tension,
 # which is proportional to the spring
 # elongation.
 c = D[i,j] - L[i,j]
 plt.plot(P[[i,j],0], P[[i,j],1],
 lw=2, color=plt.cm.copper(c*150))
 # We plot the masses.
 plt.plot(P[[I,J],0], P[[I,J],1], 'ok',)
 # We configure the axes.
 plt.axis('equal')

Numerical Optimization

328

 plt.xlim(P[:,0].min()-e/2, P[:,0].max()+e/2)
 plt.ylim(P[:,1].min()-e/2, P[:,1].max()+e/2)
 plt.xticks([]); plt.yticks([])

9. Here is the system in its initial configuration:
In [9]: show_bar(P0)
 plt.title("Initial configuration")

10. To find the equilibrium state, we need to minimize the total potential energy of the
system. The following function computes the energy of the system given the positions
of the masses. This function is explained in the How it works… section:
In [10]: def energy(P):
 # The argument P is a vector (flattened
 # matrix). We convert it to a matrix here.
 P = P.reshape((-1, 2))
 # We compute the distance matrix.
 D = dist(P)
 # The potential energy is the sum of the
 # gravitational and elastic potential
 # energies.
 return (g * m * P[:,1].sum() +
 .5 * (k * A * (D - L)**2).sum())

11. Let's compute the potential energy of the initial configuration:
In [11]: energy(P0.ravel())
Out[11]: -0.98099

Chapter 9

329

12. Now, let's minimize the potential energy with a function minimization method. We
need a constrained optimization algorithm, because we make the assumption that
the first two masses are fixed to the wall. Therefore, their positions cannot change.
The L-BFGS-B algorithm, a variant of the BFGS algorithm, accepts bound constraints.
Here, we force the first two points to stay at their initial positions, whereas there are
no constraints on the other points. The minimize() function accepts a bounds list
containing, for each dimension, a pair of [min, max] values:
In [12]: bounds = np.c_[P0[:2,:].ravel(),
 P0[:2,:].ravel()].tolist() + \
 [[None, None]] * (2*(n-2))
In [13]: P1 = opt.minimize(energy, P0.ravel(),
 method='L-BFGS-B',
 bounds=bounds).x \
 .reshape((-1, 2))

13. Let's display the stable configuration:

In [14]: show_bar(P1)
 plt.title("Equilibrium configuration")

This configuration looks realistic. The tension appears to be maximal on the top
springs near the wall.

How it works…
This example is conceptually simple. The state of the system is only described by the positions
of the masses. If we can write a Python function that returns the total energy of the system,
finding the equilibrium is just a matter of minimizing this function. This is the principle of
minimum total potential energy, due to the second law of thermodynamics.

Numerical Optimization

330

Here, we give an expression of the total energy of the system. Since we are only interested
in the equilibrium, we omit any kinetic aspect and we only consider potential energy due to
gravity (gravitational force) and spring forces (elastic potential energy).

Letting U be the total potential energy of the system, U can be expressed as the sum of
the gravitational potential energies of the masses and the elastic potential energies of the
springs. Therefore:

()2

1 , 1

1 p p
2= =

= + − −∑ ∑
n n

i ij i j ij
i i j

U mgy ka l

Here:

 f m is the mass

 f g is the gravity of Earth

 f k is the stiffness of the springs

 f pi = (xi, yi) is the position of mass i

 f aij is 1 if masses i and j are attached by a spring, 0 otherwise

 f lij is the relaxed length of spring (i,j), or 0 if masses i and j are not attached

The energy() function implements this formula using vectorized computations on
NumPy arrays.

There's more…
The following references contain details about the physics behind this formula:

 f Potential energy on Wikipedia, available at http://en.wikipedia.org/wiki/
Potential_energy

 f Elastic potential energy on Wikipedia, available at http://en.wikipedia.org/
wiki/Elastic_potential_energy

 f Hooke's law, which is the linear approximation of the springs' response, described at
http://en.wikipedia.org/wiki/Hooke%27s_law

 f Principle of minimum energy on Wikipedia, available at http://en.wikipedia.
org/wiki/Minimum_total_potential_energy_principle

Chapter 9

331

Here is a reference about the optimization algorithm:

 f L-BFGS-B algorithm on Wikipedia, available at http://en.wikipedia.org/wiki/
Limited-memory_BFGS#L-BFGS-B

See also
 f The Minimizing a mathematical function recipe

10
Signal Processing

In this chapter, we will cover the following topics:

 f Analyzing the frequency components of a signal with a Fast Fourier Transform

 f Applying a linear filter to a digital signal

 f Computing the autocorrelation of a time series

Introduction
Signals are mathematical functions that describe the variation of a quantity across time or
space. Time-dependent signals are often called time series. Examples of time series include
share prices, which are typically presented as successive points in time spaced at uniform
time intervals. In physics or biology, experimental devices record the evolution of variables
such as electromagnetic waves or biological processes.

In signal processing, a general objective consists of extracting meaningful and relevant
information from raw, noisy measurements. Signal processing topics include signal
acquisition, transformation, compression, filtering, and feature extraction, among others.
When dealing with a complex dataset, it can be beneficial to clean it before applying more
advanced mathematical analysis methods (such as machine learning, for instance).

In this concise chapter, we will illustrate and explain the main foundations of signal
processing. In the next chapter, Chapter 11, Image and Audio Processing, we will see
particular signal processing methods adapted to images and sounds.

First, we will give some important definitions in this introduction.

Signal Processing

334

Analog and digital signals
Signals can be time-dependent or space-dependent. In this chapter, we will focus on
time-dependent signals.

Let x(t) be a time-varying signal. We say that:

 f This signal is analog if t is a continuous variable and x(t) is a real number

 f This signal is digital if t is a discrete variable (discrete-time signal) and x(t) can only
take a finite number of values (quantified signal)

The following figure shows the difference between an analog signal (the continuous curve)
and a digital signal (dots):

Difference between the analog and digital (quantified) signals

Analog signals are found in mathematics and in most physical systems such as electric
circuits. Yet, computers being discrete machines, they can only understand digital signals.
This is why computational science especially deals with digital signals.

A digital signal recorded by an experimental device is typically characterized by two
important quantities:

 f The sampling rate: The number of values (or samples) recorded every second
(in Hertz)

 f The resolution: The precision of the quantization, usually in bits per sample
(also known as bit depth)

Digital signals with high sampling rates and bit depths are more accurate, but they require
more memory and processing power. These two parameters are limited by the experimental
devices that record the signals.

Chapter 10

335

The Nyquist–Shannon sampling theorem
Let's consider a continuous (analog) time-varying signal x(t). We record this physical signal
with an experimental device, and we obtain a digital signal with a sampling rate of fs.
As the original analog signal has an infinite precision, whereas the recorded signal has
a finite precision, we expect to lose information in the analog-to-digital process.

The Nyquist–Shannon sampling theorem states that under certain conditions on the analog
signal and the sampling rate, it is possible not to lose any information in the process. In
other words, under these conditions, we can recover the original continuous signal from the
sampled digital signal. For more details, refer to http://en.wikipedia.org/wiki/
Nyquist%E2%80%93Shannon_sampling_theorem.

Let's define these conditions. The Fourier transform ()x̂ f of x(t) is defined by:

() () 2ˆ i ftx f x t e dtπ+∞ −

−∞
= ∫

Here, the Fourier transform is a representation of a time-dependent signal in the frequency
domain. The Nyquist criterion states that:

()ˆ2, , 0.sB f f B x f∃ < ∀ > =

In other words, the signal must be bandlimited, meaning that it must not contain any
frequency higher than a certain cutoff frequency B. Additionally, the sampling rate fs
needs to be at least twice as large as this frequency B. Here are a couple of definitions:

 f The Nyquist rate is 2B. For a given bandlimited analog signal, it is the minimal
sampling rate required to sample the signal without loss.

 f The Nyquist frequency is fs/2. For a given sampling rate, it is the maximal frequency
that the signal can contain in order to be sampled without loss.

Under these conditions, we can theoretically reconstruct the original analog signal from the
sampled digital signal.

Compressed sensing
Compressed sensing is a modern and important approach to signal processing. It acknowledges
that many real-world signals are intrinsically low dimensional. For example, speech signals have
a very specific structure depending on the general physical constraints of the human vocal tract.

Signal Processing

336

Even if a speech signal has many frequencies in the Fourier domain, it may be well
approximated by a sparse decomposition on an adequate basis (dictionary). By definition,
a decomposition is sparse if most of the coefficients are zero. If the dictionary is chosen well,
every signal is a combination of a small number of the basis signals.

This dictionary contains elementary signals that are specific to the signals considered in a
given problem. This is different from the Fourier transform that decomposes a signal on a
universal basis of sine functions. In other words, with sparse representations, the Nyquist
condition can be circumvented. We can precisely reconstruct a continuous signal from a
sparse representation containing fewer samples than what the Nyquist condition requires.

Sparse decompositions can be found with sophisticated algorithms. In particular, these
problems may be turned into convex optimization problems that can be tackled with specific
numerical optimization methods.

Compressed sensing has many applications in signal compression, image processing,
computer vision, biomedical imaging, and many other scientific and engineering areas.

Here are further references about compressed sensing:

 f http://en.wikipedia.org/wiki/Compressed_sensing

 f http://en.wikipedia.org/wiki/Sparse_approximation

References
Here are a few references:

 f Understanding Digital Signal Processing, Richard G. Lyons, Pearson
Education, (2010).

 f For good coverage of compressed sensing, refer to the book A Wavelet Tour of Signal
Processing: The Sparse Way, Mallat Stéphane, Academic Press, (2008).

 f The book Python for Signal Processing by Jose Unpingco contains many more details
than what we can cover in this chapter. The code is available as IPython notebooks
on GitHub (http://python-for-signal-processing.blogspot.com).

 f Digital Signal Processing on WikiBooks available at http://en.wikibooks.org/
wiki/Digital_Signal_Processing.

Chapter 10

337

Analyzing the frequency components of a
signal with a Fast Fourier Transform

In this recipe, we will show how to use a Fast Fourier Transform (FFT) to compute the
spectral density of a signal. The spectrum represents the energy associated to frequencies
(encoding periodic fluctuations in a signal). It is obtained with a Fourier transform, which is a
frequency representation of a time-dependent signal. A signal can be transformed back and
forth from one representation to the other without information loss.

In this recipe, we will illustrate several aspects of the Fourier Transform. We will apply this
tool to weather data spanning 20 years in France obtained from the US National Climatic
Data Center.

Getting ready
Download the Weather dataset from the book's GitHub repository at http://github.com/
ipython-books/cookbook-data, and extract it in the current directory.

The data has been obtained from www.ncdc.noaa.gov/cdo-web/datasets#GHCND.

How to do it...
1. Let's import the packages, including scipy.fftpack, which includes many FFT-

related routines:
In [1]: import datetime
 import numpy as np
 import scipy as sp
 import scipy.fftpack
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We import the data from the CSV file. The number -9999 is used for N/A values.
pandas can easily handle this. In addition, we tell pandas to parse dates contained in
the DATE column:
In [2]: df0 = pd.read_csv('data/weather.csv',
 na_values=(-9999),
 parse_dates=['DATE'])
In [3]: df = df0[df0['DATE']>='19940101']
In [4]: df.head()
Out[4]: STATION DATE PRCP TMAX TMIN
365 FR013055001 1994-01-01 00:00:00 0 104 72
366 FR013055001 1994-01-02 00:00:00 4 128 49

Signal Processing

338

3. Each row contains the precipitation and extreme temperatures recorded each day by
one weather station in France. For every date in the calendar, we want to get a single
average temperature for the whole country. The groupby() method provided by
pandas lets us do this easily. We also remove any N/A value with dropna():
In [5]: df_avg = df.dropna().groupby('DATE').mean()
In [6]: df_avg.head()
Out[6]:
 DATE PRCP TMAX TMIN
1994-01-01 178.666667 127.388889 70.333333
1994-01-02 122.000000 152.421053 81.736842

4. Now, we get the list of dates and the list of corresponding temperatures. The unit is in
tenths of a degree, and we get the average value between the minimal and maximal
temperature, which explains why we divide by 20.
In [7]: date = df_avg.index.to_datetime()
 temp = (df_avg['TMAX'] + df_avg['TMIN']) / 20.
 N = len(temp)

5. Let's take a look at the evolution of the temperature:
In [8]: plt.plot_date(date, temp, '-', lw=.5)
 plt.ylim(-10, 40)
 plt.xlabel('Date')
 plt.ylabel('Mean temperature')

6. We now compute the Fourier transform and the spectral density of the signal. The
first step is to compute the FFT of the signal using the fft() function:
In [9]: temp_fft = sp.fftpack.fft(temp)

7. Once the FFT has been obtained, we need to take the square of its absolute value in
order to get the power spectral density (PSD):
In [10]: temp_psd = np.abs(temp_fft) ** 2

Chapter 10

339

8. The next step is to get the frequencies corresponding to the values of the PSD. The
fftfreq() utility function does just that. It takes the length of the PSD vector as
input as well as the frequency unit. Here, we choose an annual unit: a frequency
of 1 corresponds to 1 year (365 days). We provide 1/365 because the original unit
is in days.
In [11]: fftfreq = sp.fftpack.fftfreq(len(temp_psd),
 1./365)

9. The fftfreq() function returns positive and negative frequencies. We are only
interested in positive frequencies here, as we have a real signal (this will be explained
in the How it works... section of this recipe).
In [12]: i = fftfreq>0

10. We now plot the power spectral density of our signal, as a function of the frequency
(in unit of 1/year). We choose a logarithmic scale for the y axis (decibels).
In [13]: plt.plot(fftfreq[i], 10*np.log10(temp_psd[i]))
 plt.xlim(0, 5)
 plt.xlabel('Frequency (1/year)')
 plt.ylabel('PSD (dB)')

Because the fundamental frequency of the signal is the yearly variation of the
temperature, we observe a peak for f=1.

11. Now, we cut out frequencies higher than the fundamental frequency:
In [14]: temp_fft_bis = temp_fft.copy()
 temp_fft_bis[np.abs(fftfreq) > 1.1] = 0

Signal Processing

340

12. Next, we perform an inverse FFT to convert the modified Fourier transform back
to the temporal domain. This way, we recover a signal that mainly contains the
fundamental frequency, as shown in the following figure:
In [15]: temp_slow = np.real(sp.fftpack.ifft(temp_fft_bis))
In [16]: plt.plot_date(date, temp, '-', lw=.5)
 plt.plot_date(date, temp_slow, '-')
 plt.xlim(datetime.date(1994, 1, 1),
 datetime.date(2000, 1, 1))
 plt.ylim(-10, 40)
 plt.xlabel('Date')
 plt.ylabel('Mean temperature')

We get a smoothed version of the signal, because the fast variations have been lost
when we have removed the high frequencies in the Fourier transform.

How it works...
Broadly speaking, the Fourier transform is an alternative representation of a signal as a
superposition of periodic components. It is an important mathematical result that any well-
behaved function can be represented under this form. Whereas a time-varying signal is most
naturally considered as a function of time, the Fourier transform represents it as a function of
the frequency. A magnitude and a phase, which are both encoded in a single complex number,
are associated to each frequency.

Chapter 10

341

The Discrete Fourier Transform
Let's consider a digital signal x represented by a vector (x0, ..., x(N-1)). We assume that this
signal is regularly sampled. The Discrete Fourier Transform (DFT) of x is X = (X0, ..., X(N-1))
defined as:

{ }
1

2

0
0,..., 1 , .

N
i kn N

k n
n

k N X x e π
−

−

=

∀ ∈ − =∑

The DFT can be computed efficiently with the Fast Fourier Transform (FFT), an algorithm
that exploits symmetries and redundancies in this definition to considerably speed up the
computation. The complexity of the FFT is O(N log N) instead of O(N2) for the naive DFT. The
FFT is one of the most important algorithms of the digital universe.

Here is an intuitive explanation of what the DFT describes. Instead of representing our signal
on a real line, let's represent it on a circle. We can play the whole signal by making 1, 2, or any
number k of laps on the circle. Therefore, when k is fixed, we represent each value xn of the
signal with an angle 2 kn / Nπ and a distance from the original equal to xn.

If the signal shows a certain periodicity of k laps, it means that many correlated values will
superimpose at that exact frequency so that the coefficient Xk will be large. In other words,
the modulus |Xk| of the k-th coefficient represents the energy of the signal associated
to this frequency.

In the following figure, the signal is a sine wave at the frequency f=3 Hz. The points of this
signal are in blue, positioned at an angle 2 kn / Nπ . Their algebraic sum in the complex plane
is in red. These vectors represent the different coefficients of the signal's DFT.

An illustration of the DFT

Signal Processing

342

The next figure represents the previous signal's power spectral density (PSD):

The PSD of the signal in the previous example

Inverse Fourier Transform
By considering all possible frequencies, we have an exact representation of our digital signal in
the frequency domain. We can recover the initial signal with an Inverse Fast Fourier Transform
that computes an Inverse Discrete Fourier Transform. The formula is very similar to the DFT:

{ }
1

2

0

10,..., 1 , .
N

i kn N
k n

n
k N x X e

N
π

−

=

∀ ∈ − = ∑

The DFT is useful when periodic patterns are to be found. However, generally speaking, the
Fourier transform cannot detect transient changes at specific frequencies. More local spectral
methods are required, such as the wavelet transform.

There's more...
The following links contain more details about Fourier transforms:

 f Introduction to the FFT with SciPy, available at http://scipy-lectures.github.
io/intro/scipy.html#fast-fourier-transforms-scipy-fftpack

 f Reference documentation for the fftpack in SciPy, available at http://docs.
scipy.org/doc/scipy/reference/fftpack.html

 f Fourier Transform on Wikipedia, available at http://en.wikipedia.org/wiki/
Fourier_transform

 f Discrete Fourier Transform on Wikipedia, available at http://en.wikipedia.
org/wiki/Discrete_Fourier_transform

 f Fast Fourier Transform on Wikipedia, available at http://en.wikipedia.org/
wiki/Fast_Fourier_transform

 f Decibel on Wikipedia, available at https://en.wikipedia.org/wiki/Decibel

Chapter 10

343

See also
 f The Applying a linear filter to a digital signal recipe

 f The Computing the autocorrelation of a time series recipe

Applying a linear filter to a digital signal
Linear filters play a fundamental role in signal processing. With a linear filter, one can extract
meaningful information from a digital signal.

In this recipe, we will show two examples using stock market data (the NASDAQ stock
exchange). First, we will smooth out a very noisy signal with a low-pass filter to extract its
slow variations. We will also apply a high-pass filter on the original time series to extract the
fast variations. These are just two common examples among a wide variety of applications of
linear filters.

Getting ready
Download the Nasdaq dataset from the book's GitHub repository at https://github.com/
ipython-books/cookbook-data and extract it in the current directory.

The data has been obtained from http://finance.yahoo.com/q/hp?s=^IXIC&a=00&b
=1&c=1990&d=00&e=1&f=2014&g=d.

How to do it...
1. Let's import the packages:

In [1]: import numpy as np
 import scipy as sp
 import scipy.signal as sg
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We load the NASDAQ data with pandas:
In [2]: nasdaq_df = pd.read_csv('data/nasdaq.csv')
In [3]: nasdaq_df.head()
Out[3]: Date Open High Low Close
0 2013-12-31 4161.51 4177.73 4160.77 4176.59
1 2013-12-30 4153.58 4158.73 4142.18 4154.20

Signal Processing

344

3. Let's extract two columns: the date and the daily closing value:
In [4]: date = pd.to_datetime(nasdaq_df['Date'])
 nasdaq = nasdaq_df['Close']

4. Let's take a look at the raw signal:
In [5]: plt.plot_date(date, nasdaq, '-')

5. Now, we will follow the first approach to get the slow variations of the signal. We will
convolve the signal with a triangular window, which corresponds to a FIR filter. We
will explain the idea behind this method in the How it works... section of this recipe.
For now, let's just say that we replace each value with a weighted mean of the signal
around this value:
In [6]: # We get a triangular window with 60 samples.
 h = sg.get_window('triang', 60)
 # We convolve the signal with this window.
 fil = sg.convolve(nasdaq, h/h.sum())
In [7]: # We plot the original signal...
 plt.plot_date(date, nasdaq, '-', lw=1)
 # ... and the filtered signal.
 plt.plot_date(date, fil[:len(nasdaq)-1], '-')

Chapter 10

345

6. Now, let's use another method. We create an IIR Butterworth low-pass filter to extract
the slow variations of the signal. The filtfilt() method allows us to apply a filter
forward and backward in order to avoid phase delays:
In [8]: plt.plot_date(date, nasdaq, '-', lw=1)
 # We create a 4-th order Butterworth low-pass
 # filter.
 b, a = sg.butter(4, 2./365)
 # We apply this filter to the signal.
 plt.plot_date(date, sg.filtfilt(b, a, nasdaq),
 '-')

7. Finally, we use the same method to create a high-pass filter and extract the fast
variations of the signal:
In [9]: plt.plot_date(date, nasdaq, '-', lw=1)
 b, a = sg.butter(4, 2*5./365, btype='high')
 plt.plot_date(date, sg.filtfilt(b, a, nasdaq),
 '-', lw=.5)

Signal Processing

346

The fast variations around 2000 correspond to the dot-com bubble burst, reflecting the
high-market volatility and the fast fluctuations of the stock market indices at that time.
For more details, refer to http://en.wikipedia.org/wiki/Dot-com_bubble.

How it works...
In this section, we explain the very basics of linear filters in the context of digital signals.

A digital signal is a discrete sequence (xn) indexed by n 0. Although we often assume
infinite sequences, in practice, a signal is represented by a vector of the finite size N.

In the continuous case, we would rather manipulate time-dependent functions f(t).
Loosely stated, we can go from continuous signals to discrete signals by discretizing
time and transforming integrals into sums.

What are linear filters?
A linear filter F transforms an input signal x = (xn) to an output signal y = (yn).
This transformation is linear—the transformation of the sum of two signals is the
sum of the transformed signals: F(x+y) = F(x)+F(y).

In addition to this, multiplying the input signal by a constant yields the same output as
multiplying the original output signal by the same constant: () ()F Fx xλ λ= .

A Linear Time-Invariant (LTI) filter has an additional property: if the signal (xn) is transformed
to (yn), then the shifted signal (x(n-k)) is transformed to (y(n-k)), for any fixed k. In other words, the
system is time-invariant because the output does not depend on the particular time the input
is applied.

From now on, we will only consider LTI filters.

Linear filters and convolutions
A very important result in the LTI system theory is that LTI filters can be described by a single
signal: the impulse response h. This is the output of the filter in response to an impulse signal.
For digital filters, the impulse signal is (1, 0, 0, 0, ...).

It can be shown that x = (xn) is transformed to y = (yn) defined by the convolution of the
impulse response h with the signal x:

0
,

n

n k n k
k

y h x or y h x −
=

= ∗ =∑

Chapter 10

347

The convolution is a fundamental mathematical operation in signal processing. Intuitively,
and considering a convolution function peaking around zero, the convolution is equivalent
to taking a local average of the signal (x here), weighted by a given window (h here).

It is implied, by our notations, that we restrict ourselves to causal filters (hn = 0 for n < 0).
This property means that the output of the signal only depends on the present and the past
of the input, not the future. This is a natural property in many situations.

The FIR and IIR filters
The support of a signal (hn) is the set of n such that 0nh ≠ . LTI filters can be classified into
two categories:

 f A Finite Impulse Response (FIR) filter has an impulse response with finite support

 f A Infinite Impulse Response (IIR) filter has an impulse response with infinite support

A FIR filter can be described by a finite impulse response of size N (a vector). It works by
convolving a signal with its impulse response. Let's define bn = hn for n ≤ N. Then, yn is a linear
combination of the last N+1 values of the input signal:

0

N

n k n k
k

y b x −
=

=∑

On the other hand, an IIR filter is described by an infinite impulse response that cannot
be represented exactly under this form. For this reason, we often use an alternative
representation:

0 10

1 N M

n k n k l n l
k l

y b x a y
a − −

= =

 = −

∑ ∑

This difference equation expresses yn as a linear combination of the last N+1 values of the
input signal (the feedforward term, like for a FIR filter) and a linear combination of the last
M values of the output signal (feedback term). The feedback term makes the IIR filter more
complex than a FIR filter in that the output depends not only on the input but also on the
previous values of the output (dynamics).

Filters in the frequency domain
We only described filters in the temporal domain. Alternate representations in other domains
exist such as Laplace transforms, Z-transforms, and Fourier transforms.

Signal Processing

348

In particular, the Fourier transform has a very convenient property: it transforms convolutions
into multiplications in the frequency domain. In other words, in the frequency domain, an
LTI filter multiplies the Fourier transform of the input signal by the Fourier transform of the
impulse response.

The low-, high-, and band-pass filters
Filters can be characterized by their effects on the amplitude of the input signal's frequencies.
They are as follows:

 f A low-pass filter attenuates the components of the signal at frequencies higher than
a cutoff frequency

 f A high-pass filter attenuates the components of the signal at frequencies lower than
a cutoff frequency

 f A band-pass filter passes the components of the signal at frequencies within a
certain range and attenuates those outside

In this recipe, we first convolved the input signal with a triangular window (with finite support).
It can be shown that this operation corresponds to a low-pass FIR filter. It is a particular case
of the moving average method, which computes a local weighted average of every value in
order to smooth out the signal.

Then, we applied two instances of the Butterworth filter, a particular kind of IIR filter that can
act as a low-pass, high-pass, or band-pass filter. In this recipe, we first used it as a low-pass
filter to smooth out the signal, before using it as a high-pass filter to extract fast variations of
the signal.

There's more...
Here are some general references about digital signal processing and linear filters:

 f Digital signal processing on Wikipedia, available at http://en.wikipedia.org/
wiki/Digital_signal_processing

 f Linear filters on Wikipedia, available at http://en.wikipedia.org/wiki/
Linear_filter

 f LTI filters on Wikipedia, available at http://en.wikipedia.org/wiki/LTI_
system_theory

Here are some references about impulse responses, convolutions, and FIR/IIR filters:

 f Impulse responses described at http://en.wikipedia.org/wiki/
Impulse_response

 f Convolution described at http://en.wikipedia.org/wiki/Convolution

Chapter 10

349

 f FIR filters described at http://en.wikipedia.org/wiki/Finite_impulse_
response

 f IIR filters described at http://en.wikipedia.org/wiki/Infinite_impulse_
response

 f Low-pass filters described at http://en.wikipedia.org/wiki/Low-pass_
filter

 f High-pass filters described at http://en.wikipedia.org/wiki/High-pass_
filter

 f Band-pass filters described at http://en.wikipedia.org/wiki/Band-pass_
filter

See also
 f The Analyzing the frequency components of a signal with a Fast Fourier

Transform recipe

Computing the autocorrelation of a time
series

The autocorrelation of a time series can inform us about repeating patterns or serial
correlation. The latter refers to the correlation between the signal at a given time and at a
later time. The analysis of the autocorrelation can thereby inform us about the timescale
of the fluctuations. Here, we use this tool to analyze the evolution of baby names in the US,
based on the data provided by the United States Social Security Administration.

Getting ready
Download the Babies dataset from the book's GitHub repository at https://github.com/
ipython-books/cookbook-data, and extract it in the current directory.

The data has been obtained from www.data.gov (http://catalog.data.gov/
dataset/baby-names-from-social-security-card-applications-national-
level-data-6315b).

Signal Processing

350

How to do it...
1. We import the following packages:

In [1]: import os
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We read the data with pandas. The dataset contains one CSV file per year. Each file
contains all baby names given that year with the respective frequencies. We load the
data in a dictionary, containing one DataFrame per year:
In [2]: files = [file for file in os.listdir('data/')
 if file.startswith('yob')]
In [3]: years = np.array(sorted([int(file[3:7])
 for file in files]))
In [4]: data = {year:
 pd.read_csv(
 'data/yob{y:d}.txt'.format(y=year),
 index_col=0, header=None,
 names=['First name', 'Gender', 'Number'])
 for year in years}
In [5]: data[2012].head()
Out[5]: Gender Number
First name
Sophia F 22158
Emma F 20791
Isabella F 18931
Olivia F 17147
Ava F 15418

3. We write functions to retrieve the frequencies of baby names as a function of the
name, gender, and birth year:
In [6]: def get_value(name, gender, year):
 """Return the number of babies born a given
 year, with a given gender and a given name."""
 try:
 return data[year] \
 [data[year]['Gender'] == gender] \
 ['Number'][name]
 except KeyError:
 return 0
In [7]: def get_evolution(name, gender):

Chapter 10

351

 """Return the evolution of a baby name over the
 years."""
 return np.array([get_value(name, gender, year)
 for year in years])

4. Let's define a function that computes the autocorrelation of a signal. This function is
essentially based on NumPy's correlate() function.
In [8]: def autocorr(x):
 result = np.correlate(x, x, mode='full')
 return result[result.size/2:]

5. Now, we create a function that displays the evolution of a baby name as well as its
(normalized) autocorrelation:
In [9]: def autocorr_name(name, gender):
 x = get_evolution(name, gender)
 z = autocorr(x)
 # Evolution of the name.
 plt.subplot(121)
 plt.plot(years, x, '-o', label=name)
 plt.title("Baby names")
 # Autocorrelation.
 plt.subplot(122)
 plt.plot(z / float(z.max()), '-', label=name)
 plt.legend()
 plt.title("Autocorrelation")

6. Let's take a look at two female names:
In [10]: autocorr_name('Olivia', 'F')
 autocorr_name('Maria', 'F')

Signal Processing

352

The autocorrelation of Olivia is decaying much faster than Maria's. This is mainly
because of the steep increase of the name Olivia at the end of the twentieth century.
By contrast, the name Maria is varying more slowly globally, and its autocorrelation is
decaying somewhat slower.

How it works...
A time series is a sequence indexed by time. Important applications include stock markets,
product sales, weather forecasting, biological signals, and many others. Time series analysis
is an important part of statistical data analysis, signal processing, and machine learning.

There are various definitions of the autocorrelation. Here, we define the autocorrelation of a
time series (xn) as:

() 1
n n k

n
R k x x

N += ∑

In the previous plot, we normalized the autocorrelation by its maximum so as to compare the
autocorrelation of two signals. The autocorrelation quantifies the average similarity between
the signal and a shifted version of the same signal, as a function of the delay between the
two. In other words, the autocorrelation can give us information about repeating patterns as
well as the timescale of the signal's fluctuations. The faster the autocorrelation decays to zero,
the faster the signal varies.

There's more...
Here are a few references:

 f NumPy's correlation function documentation, available at http://docs.scipy.
org/doc/numpy/reference/generated/numpy.correlate.html

 f Autocorrelation function in statsmodels, documented at http://statsmodels.
sourceforge.net/stable/tsa.html

 f Time series on Wikipedia, available at http://en.wikipedia.org/wiki/
Time_series

 f Serial dependence on Wikipedia, available at http://en.wikipedia.org/wiki/
Serial_dependence

 f Autocorrelation on Wikipedia, available at http://en.wikipedia.org/wiki/
Autocorrelation

See also
 f The Analyzing the frequency components of a signal with a Fast Fourier

Transform recipe

11
Image and Audio

Processing

In this chapter, we will cover the following topics:

 f Manipulating the exposure of an image

 f Applying filters on an image

 f Segmenting an image

 f Finding points of interest in an image

 f Detecting faces in an image with OpenCV

 f Applying digital filters to speech sounds

 f Creating a sound synthesizer in the notebook

Introduction
In the previous chapter, we covered signal processing techniques for one-dimensional,
time-dependent signals. In this chapter, we will see signal processing techniques for
images and sounds.

Generic signal processing techniques can be applied to images and sounds, but many image
or audio processing tasks require specialized algorithms. For example, we will see algorithms
for segmenting images, detecting points of interest in an image, or detecting faces. We will
also hear the effect of linear filters on speech sounds.

scikit-image is one of the main image processing packages in Python. We will use it in
most of the image processing recipes in this chapter. For more on scikit-image, refer to
http://scikit-image.org.

Image and Audio Processing

354

We will also use OpenCV (http://opencv.org), a C++ computer vision library that has
a Python wrapper. It implements algorithms for specialized image and video processing
tasks, but it can be a bit difficult to use. An interesting (and simpler) alternative is SimpleCV
(http://simplecv.org).

In this introduction, we will discuss the particularities of images and sounds from a signal
processing point of view.

Images
A grayscale image is a bidimensional signal represented by a function, f, that maps each pixel
to an intensity. The intensity can be a real value between 0 (dark) and 1 (light). In a colored
image, this function maps each pixel to a triplet of intensities, generally, the red, green, and
blue (RGB) components.

On a computer, images are digitally sampled. The intensities are no longer real values, but
integers or floating point numbers. On one hand, the mathematical formulation of continuous
functions allows us to apply analytical tools such as derivatives and integrals. On the other
hand, we need to take into account the digital nature of the images we deal with.

Sounds
From a signal processing perspective, a sound is a time-dependent signal that has sufficient
power in the hearing frequency range (about 20 Hz to 20 kHz). Then, according to the Nyquist-
Shannon theorem (introduced in Chapter 10, Signal Processing), the sampling rate of a digital
sound signal needs to be at least 40 kHz. A sampling rate of 44100 Hz is frequently chosen.

References
Here are a few references:

 f Image processing on Wikipedia, available at http://en.wikipedia.org/wiki/
Image_processing

 f Advanced image processing algorithms, by Gabriel Peyré, available at https://
github.com/gpeyre/numerical-tours

 f Audio signal processing on Wikipedia, available at http://en.wikipedia.org/
wiki/Audio_signal_processing

 f Particularities of the 44100 Hz sampling rate explained at http://en.wikipedia.
org/wiki/44,100_Hz

Chapter 11.

355

Manipulating the exposure of an image
The exposure of an image tells us whether the image is too dark, too light, or balanced. It can
be measured with a histogram of the intensity values of all pixels. Improving the exposure of
an image is a basic image-editing operation. As we will see in this recipe, that can be done
easily with scikit-image.

Getting ready
You need scikit-image for this recipe. You will find the installation instructions at
http://scikit-image.org/download.html. With Anaconda, you can just type conda
install scikit-image in a terminal.

You also need to download the Beach dataset from the book's GitHub repository at
https://github.com/ipython-books/cookbook-data.

How to do it...
1. Let's import the packages:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 import skimage.exposure as skie
 %matplotlib inline

2. We open an image with matplotlib. We only take a single RGB component to
have a grayscale image (there are better ways to convert a colored image to a
grayscale image):
In [2]: img = plt.imread('data/pic1.jpg')[...,0]

3. We create a function that displays the image along with its histogram of the
intensity values (that is, the exposure):
In [3]: def show(img):
 # Display the image.
 plt.subplot(121)
 plt.imshow(img, cmap=plt.cm.gray)
 plt.axis('off')
 # Display the histogram.
 plt.subplot(122)
 plt.hist(img.ravel(), lw=0, bins=256)
 plt.xlim(0, img.max())
 plt.yticks([])
 plt.show()

Image and Audio Processing

356

4. Let's display the image along with its histogram:
In [4]: show(img)

An image and its histogram

The histogram is unbalanced and the image appears overexposed (many pixels are
too bright).

5. Now, we rescale the intensity of the image using scikit-image's rescale_
intensity function. The in_range and out_range parameters define a linear
mapping from the original image to the modified image. The pixels that are outside
in_range are clipped to the extremal values of out_range. Here, the darkest pixels
(intensity less than 100) become completely black (0), whereas the brightest pixels
(>240) become completely white (255):
In [5]: show(skie.rescale_intensity(img,
 in_range=(100, 240), out_range=(0, 255)))

A crude exposure manipulation technique

Many intensity values seem to be missing in the histogram, which reflects the poor
quality of this basic exposure correction technique.

6. We now use a more advanced exposure correction technique called Contrast
Limited Adaptive Histogram Equalization (CLAHE):

In [6]: show(skie.equalize_adapthist(img))

Chapter 11.

357

Result of the Contrast Limited Adaptive Histogram Equalization method for exposure correction

The histogram seems more balanced, and the image now appears more contrasted.

How it works...
An image's histogram represents the distribution of the pixels' intensity values. It is a central
tool in image editing, image processing, and computer vision.

The rescale_intensity() function stretches or shrinks the intensity levels of the image.
One use case is to ensure that the whole range of values allowed by the data type is used by
the image.

The equalize_adapthist() function works by splitting the image into rectangular sections
and computing the histogram for each section. Then, the intensity values of the pixels are
redistributed to improve the contrast and enhance the details.

There's more...
Here are some references:

 f Image histogram on Wikipedia, available at http://en.wikipedia.org/wiki/
Image_histogram

 f Histogram equalization on Wikipedia, available at http://en.wikipedia.org/
wiki/Histogram_equalization

 f Adaptive histogram equalization on Wikipedia, available at http://
en.wikipedia.org/wiki/Adaptive_histogram_equalization

 f Contrast on Wikipedia, available at http://en.wikipedia.org/wiki/
Contrast_(vision)

See also
 f The Applying filters on an image recipe

Image and Audio Processing

358

Applying filters on an image
In this recipe, we apply filters on an image for various purposes: blurring, denoising, and
edge detection.

How it works...
1. Let's import the packages:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 import skimage
 import skimage.filter as skif
 import skimage.data as skid
 %matplotlib inline

2. We create a function that displays a grayscale image:
In [2]: def show(img):
 plt.imshow(img, cmap=plt.cm.gray)
 plt.axis('off')
 plt.show()

3. Now, we load the Lena image (bundled in scikit-image). We select a single
RGB component to get a grayscale image:
In [3]: img = skimage.img_as_float(skid.lena())[...,0]
In [4]: show(img)

4. Let's apply a blurring Gaussian filter to the image:
In [5]: show(skif.gaussian_filter(img, 5.))

Chapter 11.

359

5. We now apply a Sobel filter that enhances the edges in the image:
In [6]: sobimg = skif.sobel(img)
 show(sobimg)

6. We can threshold the filtered image to get a sketch effect. We obtain a binary
image that only contains the edges. We use a notebook widget to find an adequate
thresholding value; by adding the @interact decorator, we display a slider on top
of the image. This widget lets us control the threshold dynamically.
In [7]: from IPython.html import widgets
 @widgets.interact(x=(0.01, .4, .005))
 def edge(x):
 show(sobimg<x)

Image and Audio Processing

360

7. Finally, we add some noise to the image to illustrate the effect of a denoising filter:
In [8]: img = skimage.img_as_float(skid.lena())
 # We take a portion of the image to show the
 # details.
 img = img[200:-100, 200:-150]
 # We add Gaussian noise.
 img = np.clip(img + 0.3*np.random.rand(*img.shape),
 0, 1)
In [9]: show(img)

8. The denoise_tv_bregman() function implements total-variation denoising using
the Split Bregman method:

In [10]: show(skimage.restoration.denoise_tv_bregman(img,
 5.))

How it works...
Many filters used in image processing are linear filters. These filters are very similar to those
seen in Chapter 10, Signal Processing; the only difference is that they work in two dimensions.
Applying a linear filter to an image amounts to performing a discrete convolution of the image
with a particular function. The Gaussian filter applies a convolution with a Gaussian function
to blur the image.

Chapter 11.

361

The Sobel filter computes an approximation of the gradient of the image. Therefore, it can
detect fast-varying spatial changes in the image, which generally correspond to edges.

Image denoising refers to the process of removing noise from an image. Total variation
denoising works by finding a regular image close to the original (noisy) image. Regularity is
quantified by the total variation of the image:

() 2 2

1, , , 1 ,
,

i j i j i j i j
i j

V x x x x x+ += − + −∑

The Split Bregman method is a variant based on the L1 norm. It is an instance of
compressed sensing, which aims to find regular and sparse approximations of
real-world noisy measurements.

There's more...
Here are a few references:

 f API reference of the skimage.filter module available at http://scikit-image.
org/docs/dev/api/skimage.filter.html

 f Noise reduction on Wikipedia, available at http://en.wikipedia.org/wiki/
Noise_reduction

 f Gaussian filter on Wikipedia, available at http://en.wikipedia.org/wiki/
Gaussian_filter

 f Sobel filter on Wikipedia, available at http://en.wikipedia.org/wiki/Sobel_
operator

 f Image denoising on Wikipedia, available at http://en.wikipedia.org/wiki/
Noise_reduction

 f Total variation denoising on Wikipedia, available at http://en.wikipedia.org/
wiki/Total_variation_denoising

 f The Split Bregman algorithm explained at www.ece.rice.edu/~tag7/Tom_
Goldstein/Split_Bregman.html

See also
 f The Manipulating the exposure of an image recipe

Image and Audio Processing

362

Segmenting an image
Image segmentation consists of partitioning an image into different regions that share
certain characteristics. This is a fundamental task in computer vision, facial recognition,
and medical imaging. For example, an image segmentation algorithm can automatically
detect the contours of an organ in a medical image.

scikit-image provides several segmentation methods. In this recipe, we will demonstrate how
to segment an image containing different objects.

How to do it...
1. Let's import the packages:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 from skimage.data import coins
 from skimage.filter import threshold_otsu
 from skimage.segmentation import clear_border
 from skimage.morphology import closing, square
 from skimage.measure import regionprops, label
 from skimage.color import lab2rgb
 %matplotlib inline

2. We create a function that displays a grayscale image:
In [2]: def show(img, cmap=None):
 cmap = cmap or plt.cm.gray
 plt.imshow(img, cmap=cmap)
 plt.axis('off')
 plt.show()

3. We get a test image bundled in scikit-image, showing various coins on a plain
background:
In [3]: img = coins()
In [4]: show(img)

Chapter 11.

363

4. The first step to segment the image is finding an intensity threshold separating the
(bright) coins from the (dark) background. Otsu's method defines a simple algorithm
to automatically find such a threshold.
In [5]: threshold_otsu(img)
Out[5]: 107
In [6]: show(img>107)

The thresholded image using Otsu's method

5. There appears to be a problem in the top-left corner of the image, with part of the
background being too bright. Let's use a notebook widget to find a better threshold:
In [7]: from IPython.html import widgets
 @widgets.interact(t=(10, 240))
 def threshold(t):
 show(img>t)

The thresholded image using a manually selected threshold

Image and Audio Processing

364

6. The threshold 120 looks better. The next step consists of cleaning the binary
image by smoothing the coins and removing the border. scikit-image contains a
few functions for these purposes.
In [8]: img_bin = clear_border(closing(img>120, square(5)))
 show(img_bin)

The thresholded image with cleared borders

7. Next, we perform the segmentation task itself with the label() function. This
function detects the connected components in the image and attributes a unique
label to every component. Here, we color code the labels in the binary image:
In [9]: labels = label(img_bin)
 show(labels, cmap=plt.cm.rainbow)

The segmented image

8. Small artifacts in the image result in spurious labels that do not correspond
to coins. Therefore, we only keep components with more than 100 pixels.
The regionprops() function allows us to retrieve specific properties of
the components (here, the area and the bounding box):
In [10]: regions = regionprops(labels,
 ['Area', 'BoundingBox'])

Chapter 11.

365

 boxes = np.array([label['BoundingBox']
 for label in regions
 if label['Area'] > 100])
 print("There are {0:d} coins.".format(len(boxes)))
There are 24 coins.

9. Finally, we show the label number on top of each component in the original image:

In [11]: plt.imshow(img, cmap=plt.cm.gray)
 plt.axis('off')
 xs = boxes[:,[1,3]].mean(axis=1)
 ys = boxes[:,[0,2]].mean(axis=1)
 for i, box in enumerate(boxes):
 plt.text(xs[i]-5, ys[i]+5, str(i))

How it works...
To clean up the coins in the thresholded image, we used mathematical morphology
techniques. These methods, based on set theory, geometry, and topology, allow us to
manipulate shapes.

For example, let's explain dilation and erosion. First, if A is a set of pixels in an image,
and b is a 2D vector, we denote Ab the set A translated by b as:

{ }|bA a b a A= + ∈

Image and Audio Processing

366

Let B be a set of vectors with integer components. We call B the structuring element (here,
we used a square). This set represents the neighborhood of a pixel. The dilation of A by B is:

The erosion of A by B is:

A dilation extends a set by adding pixels close to its boundaries. An erosion removes the
pixels of the set that are too close to the boundaries. The closing of a set is a dilation followed
by an erosion. This operation can remove small dark spots and connect small
bright cracks. In this recipe, we used a square structuring element.

There's more...
Here are a few references:

 f SciPy lecture notes on image processing available at http://scipy-lectures.
github.io/packages/scikit-image/

 f Image segmentation on Wikipedia, available at http://en.wikipedia.org/
wiki/Image_segmentation

 f Otsu's method to find a threshold explained at http://en.wikipedia.org/
wiki/Otsu's_method

 f Segmentation tutorial with scikit-image (which inspired this recipe) available
at http://scikit-image.org/docs/dev/user_guide/tutorial_
segmentation.html

 f Mathematical morphology on Wikipedia, available at http://en.wikipedia.org/
wiki/Mathematical_morphology

 f API reference of the skimage.morphology module available at http://scikit-
image.org/docs/dev/api/skimage.morphology.html

See also
 f The Computing connected components in an image recipe in Chapter 14, Graphs,

Geometry, and Geographic Information Systems

Chapter 11.

367

Finding points of interest in an image
In an image, points of interest are positions where there might be edges, corners, or
interesting objects. For example, in a landscape picture, points of interest can be located
near a house or a person. Detecting points of interest is useful in image recognition,
computer vision, or medical imaging.

In this recipe, we will find points of interest in an image with scikit-image. This will allow us to
crop an image around the subject of the picture, even when this subject is not in the center
of the image.

Getting ready
Download the Child dataset from the book's GitHub repository at https://github.com/
ipython-books/cookbook-data, and extract it into the current directory.

How to do it...
1. Let's import the packages:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 import skimage
 import skimage.feature as sf
 %matplotlib inline

2. We create a function to display a colored or grayscale image:
In [2]: def show(img, cmap=None):
 cmap = cmap or plt.cm.gray
 plt.imshow(img, cmap=cmap)
 plt.axis('off')

3. We load an image:
In [3]: img = plt.imread('data/pic2.jpg')
In [4]: show(img)

Image and Audio Processing

368

4. Let's find salient points in the image with the Harris corner method. The first step
consists of computing the Harris corner measure response image with the
corner_harris() function (we will explain this measure in How it works...).
This function requires a grayscale image, thus we select the first RGB component:
In [5]: corners = sf.corner_harris(img[:,:,0])
In [6]: show(corners)

We see that the patterns in the child's coat are well detected by this algorithm.

5. The next step is to detect corners from this measure image, using the
corner_peaks() function:
In [7]: peaks = sf.corner_peaks(corners)
In [8]: show(img)
 plt.plot(peaks[:,1], peaks[:,0], 'or', ms=4)

Chapter 11.

369

6. Finally, we create a box around the corner points to define our region of interest:

In [9]: ymin, xmin = peaks.min(axis=0)
 ymax, xmax = peaks.max(axis=0)
 w, h = xmax-xmin, ymax-ymin
In [10]: k = .25
 xmin -= k*w
 xmax += k*w
 ymin -= k*h
 ymax += k*h
In [11]: show(img[ymin:ymax,xmin:xmax])

How it works...
Let's explain the method used in this recipe. The first step consists of computing the structure
tensor (or Harris matrix) of the image:

2

2

x x y

x y y

I I I
A

I I I

 =

Here, I(x,y) is the image, Ix and Iy are the partial derivatives, and the brackets denote
the local spatial average around neighboring values.

This tensor associates a (2,2) positive symmetric matrix at each point. This matrix is used
to calculate a sort of autocorrelation of the image at each point.

Image and Audio Processing

370

Let λ and µ be the two eigenvalues of this matrix (the matrix is diagonalizable because
it is real and symmetric). Roughly, a corner is characterized by a large variation of the
autocorrelation in all directions, or in large positive eigenvalues λ and µ . The corner
measure image is defined as:

() () ()2 2det traceM A k A k= − × = λµ − λ +µ

Here, k is a tunable parameter. M is large when there is a corner. Finally, corner_peaks()
finds corner points by looking at local maxima in the corner measure image.

There's more...
Here are a few references:

 f A corner detection example with scikit-image available at http://scikit-image.
org/docs/dev/auto_examples/plot_corner.html

 f An image processing tutorial with scikit-image available at http://blog.yhathq.
com/posts/image-processing-with-scikit-image.html

 f Corner detection on Wikipedia, available at http://en.wikipedia.org/wiki/
Corner_detection

 f Structure tensor on Wikipedia, available at http://en.wikipedia.org/wiki/
Structure_tensor

 f Interest point detection on Wikipedia, available at http://en.wikipedia.org/
wiki/Interest_point_detection

 f API reference of the skimage.feature module available at http://scikit-
image.org/docs/dev/api/skimage.feature.html

Detecting faces in an image with OpenCV
OpenCV (Open Computer Vision) is an open source C++ library for computer vision. It features
algorithms for image segmentation, object recognition, augmented reality, face detection, and
other computer vision tasks.

In this recipe, we will use OpenCV in Python to detect faces in a picture.

Chapter 11.

371

Getting ready
You need OpenCV and the Python wrapper. You can find installation instructions on
OpenCV's website, http://docs.opencv.org/trunk/doc/py_tutorials/py_
tutorials.html.

On Windows, you can install Chris Gohlke's package, available at www.lfd.uci.
edu/~gohlke/pythonlibs/#opencv.

You also need to download the Family dataset from the book's GitHub repository at
https://github.com/ipython-books/cookbook-data.

OpenCV is not compatible with Python 3 at the time of this writing.
Therefore, this recipe requires Python 2.

How to do it...
1. First, we import the packages:

In [1]: import numpy as np
 import cv2
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We open the JPG image with OpenCV:
In [2]: img = cv2.imread('data/pic3.jpg')

3. Then, we convert it to a grayscale image using OpenCV's cvtColor() function.
For face detection, it is sufficient and faster to use grayscale images.
In [3]: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

4. To detect faces, we will use the Viola–Jones object detection framework. A
cascade of Haar-like classifiers has been trained on many images to detect faces
(more details are given in the next section). The result of the training is stored in
an XML file (part of the Family dataset available on the book's GitHub repository).
We load this cascade from this XML file with OpenCV's CascadeClassifier class:
In [4]: face_cascade = cv2.CascadeClassifier(
 'data/haarcascade_frontalface_default.xml')

Image and Audio Processing

372

5. Finally, the detectMultiScale() method of the classifier detects the objects
on a grayscale image and returns a list of rectangles around these objects:

In [5]: for x,y,w,h in \
 face_cascade.detectMultiScale(gray, 1.3):
 cv2.rectangle(gray, (x,y), (x+w,y+h),
 (255,0,0), 2)
 plt.imshow(gray, cmap=plt.cm.gray)
 plt.axis('off')

We see that, although all detected objects are indeed faces, one face out of four
is not detected. This is probably due to the fact that this face is not perfectly facing
the camera, whereas the faces in the training set were. This shows that the efficacy
of this method is limited by the quality and generality of the training set.

How it works...
The Viola–Jones object detection framework works by training a cascade of boosted
classifiers with Haar-like features. First, we consider a set of features:

A

B

C

D

Haar-like features

Chapter 11.

373

A feature is positioned at a particular location and size in the image. It covers a small
window in the image (for example, 24 x 24 pixels). The sum of all pixels in the black area
is subtracted to the sum of the pixels in the white area. This operation can be done
efficiently with integral images.

Then, the set of all classifiers is trained with a boosting technique; only the best features are
kept for the next stage during training. The training set contains positive and negative images
(with and without faces). Although the classifiers yield poor performance individually, the
cascade of boosted classifiers is both efficient and fast. This method is therefore well-adapted
to real-time processing.

The XML file has been obtained in OpenCV's package. There are multiple files corresponding
to different training sets. You can also train your own cascade with your own training set.

There's more...
Here are a few references:

 f A cascade tutorial with OpenCV (C++) available at http://docs.opencv.org/doc/
tutorials/objdetect/cascade_classifier/cascade_classifier.html

 f Documentation to train a cascade, available at http://docs.opencv.org/doc/
user_guide/ug_traincascade.html

 f Haar cascades library, available at https://github.com/Itseez/opencv/
tree/master/data/haarcascades

 f OpenCV's cascade classification API reference available at http://docs.opencv.
org/modules/objdetect/doc/cascade_classification.html

 f The Viola–Jones object detection framework on Wikipedia, available at http://
en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_
framework

 f Boosting or how to create one strong classifier from many weak classifiers, explained
at http://en.wikipedia.org/wiki/Boosting_(machine_learning)

Applying digital filters to speech sounds
In this recipe, we will show how to play sounds in the notebook. We will also illustrate the
effect of simple digital filters on speech sounds.

Getting ready
You need the pydub package. You can install it with pip install pydub or download it
from https://github.com/jiaaro/pydub/.

Image and Audio Processing

374

This package requires the open source multimedia library FFmpeg for the decompression
of MP3 files, available at www.ffmpeg.org.

The code given here works with Python 3. You will find the Python 2 version in the
book's GitHub repository.

How to do it…
1. Let's import the packages:

In [1]: import urllib
 from io import BytesIO
 import numpy as np
 import scipy.signal as sg
 import pydub
 import matplotlib.pyplot as plt
 from IPython.display import Audio, display
 %matplotlib inline

2. We create a Python function to generate a sound from an English sentence.
This function uses Google's Text-To-Speech (TTS) API. We retrieve the sound in
the MP3 format, and convert it to the Wave format with pydub. Finally, we retrieve
the raw sound data by removing the wave header with NumPy:
In [2]: def speak(sentence):
 url = ("http://translate.google.com/"
 "translate_tts?tl=en&q=") +
 urllib.parse.quote_plus(sentence)
 req = urllib.request.Request(url,
 headers={'User-Agent': ''})
 mp3 = urllib.request.urlopen(req).read()
 # We convert the mp3 bytes to wav.
 audio = pydub.AudioSegment.from_mp3(
 BytesIO(mp3))
 wave = audio.export('_', format='wav')
 wave.seek(0)
 wave = wave.read()
 # We get the raw data by removing the 24
 # first bytes of the header.
 x = np.frombuffer(wave, np.int16)[24:] / 2.**15

3. We create a function that plays a sound (represented by a NumPy vector) in the
notebook, using IPython's Audio class:
In [3]: def play(x, fr, autoplay=False):
 display(Audio(x, rate=fr, autoplay=autoplay))

Chapter 11.

375

4. Let's play the sound "Hello world." We also display the waveform with matplotlib:
In [4]: x, fr = speak("Hello world")
 play(x, fr)
 t = np.linspace(0., len(x)/fr, len(x))
 plt.plot(t, x, lw=1)

5. Now, we will hear the effect of a Butterworth low-pass filter applied to this sound
(500 Hz cutoff frequency):
In [5]: b, a = sg.butter(4, 500./(fr/2.), 'low')
 x_fil = sg.filtfilt(b, a, x)
In [6]: play(x_fil, fr)
 plt.plot(t, x, lw=1)
 plt.plot(t, x_fil, lw=1)

We hear a muffled voice.

Image and Audio Processing

376

6. Now, with a high-pass filter (1000 Hz cutoff frequency):
In [7]: b, a = sg.butter(4, 1000./(fr/2.), 'high')
 x_fil = sg.filtfilt(b, a, x)
In [8]: play(x_fil, fr)
 plt.plot(t, x, lw=1)
 plt.plot(t, x_fil, lw=1)

It sounds like a phone call.

7. Finally, we can create a simple widget to quickly test the effect of a high-pass filter
with an arbitrary cutoff frequency:

In [9]: from IPython.html import widgets
 @widgets.interact(t=(100., 5000., 100.))
 def highpass(t):
 b, a = sg.butter(4, t/(fr/2.), 'high')
 x_fil = sg.filtfilt(b, a, x)
 play(x_fil, fr, autoplay=True)

We get a slider that lets us change the cutoff frequency and hear the effect in real-time.

How it works...
The human ear can hear frequencies up to 20 kHz. The human voice frequency band ranges
from approximately 300 Hz to 3000 Hz.

Digital filters were described in Chapter 10, Signal Processing. The example given here allows
us to hear the effect of low- and high-pass filters on sounds.

Chapter 11.

377

There's more...
Here are a few references:

 f Audio signal processing on Wikipedia, available at http://en.wikipedia.org/
wiki/Audio_signal_processing

 f Audio filters on Wikipedia, available at http://en.wikipedia.org/wiki/
Audio_filter

 f Voice frequency on Wikipedia, available at http://en.wikipedia.org/wiki/
Voice_frequency

 f PyAudio, an audio Python package that uses the PortAudio library, available at
http://people.csail.mit.edu/hubert/pyaudio/

See also
 f The Creating a sound synthesizer in the notebook recipe

Creating a sound synthesizer in the
notebook

In this recipe, we will create a small electronic piano in the notebook. We will synthesize
sinusoidal sounds with NumPy instead of using recorded tones.

How to do it...
1. We import the modules:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 from IPython.display import (Audio, display,
 clear_output)
 from IPython.html import widgets
 from functools import partial
 %matplotlib inline

2. We define the sampling rate and the duration of the notes:
In [2]: rate = 16000.
 duration = 0.5
 t = np.linspace(0., duration, rate * duration)

Image and Audio Processing

378

3. We create a function that generates and plays the sound of a note (sine function)
at a given frequency, using NumPy and IPython's Audio class:
In [3]: def synth(f):
 x = np.sin(f * 2. * np.pi * t)
 display(Audio(x, rate=rate, autoplay=True))

4. Here is the fundamental 440 Hz note:
In [4]: synth(440)

5. Now, we generate the note frequencies of our piano. The chromatic scale is obtained
by a geometric progression with the common ratio 21/12:
In [5]: notes = zip(('C,C#,D,D#,E,F,F#,G,G#,'
 'A,A#,B,C').split(','),
 440. * 2 ** (np.arange(3, 17) / 12.))

6. Finally, we create the piano with the notebook widgets. Each note is a button, and
all buttons are contained in a horizontal box container. Clicking on one note plays
a sound at the corresponding frequency. The piano layout is the same as the one
used in the Using interactive widgets – a piano in the notebook recipe of Chapter 3,
Mastering the Notebook.

In [6]: container = widgets.ContainerWidget()
 buttons = []
 for note, f in notes:
 button = widgets.ButtonWidget(description=note)
 def on_button_clicked(f, b):
 clear_output()
 synth(f)
 button.on_click(partial(on_button_clicked, f))
 button.set_css({...})
 buttons.append(button)
 container.children = buttons
 display(container)
 container.remove_class('vbox')
 container.add_class('hbox')

The IPython API used here to design the layout is based on
IPython 2.x; it will be slightly different in IPython 3.0.

Chapter 11.

379

How it works...
A pure tone is a tone with a sinusoidal waveform. It is the simplest way of representing a
musical note. A note generated by a musical instrument is typically much more complex.
Although the sound contains many frequencies, we generally perceive a musical tone
(fundamental frequency).

By generating another periodic function instead of a sinusoidal waveform, we would hear
the same tone, but a different timbre. Electronic music synthesizers are based on this idea.

There's more...
Here are a few references:

 f Synthesizer on Wikipedia, available at http://en.wikipedia.org/wiki/
Synthesizer

 f Equal temperament on Wikipedia, available at http://en.wikipedia.org/
wiki/Equal_temperament

 f Chromatic scale on Wikipedia, available at http://en.wikipedia.org/wiki/
Chromatic_scale

 f Pure tone on Wikipedia, available at http://en.wikipedia.org/wiki/Pure_
tone

 f Timbre on Wikipedia, available at http://en.wikipedia.org/wiki/Timbre

See also
 f The Applying digital filters to speech sounds recipe

 f The Using interactive widgets – a piano in the notebook recipe in Chapter 3,
Mastering the Notebook

12
Deterministic

Dynamical Systems

In this chapter, we will cover the following topics:

 f Plotting the bifurcation diagram of a chaotic dynamical system

 f Simulating an elementary cellular automaton

 f Simulating an ordinary differential equation with SciPy

 f Simulating a partial differential equation – reaction-diffusion systems and
Turing patterns

Introduction
The previous chapters dealt with classical approaches in data science: statistics, machine
learning, and signal processing. In this chapter and the next chapter, we will cover a different
type of approach. Instead of analyzing data directly, we will simulate mathematical models
that represent how our data was generated. A representative model gives us an explanation of
the real-world processes underlying our data.

Specifically, we will cover a few examples of dynamical systems. These mathematical
equations describe the evolution of quantities over time and space. They can represent a wide
variety of real-world phenomena in physics, chemistry, biology, economics, social sciences,
computer science, engineering, and other disciplines.

In this chapter, we will consider deterministic dynamical systems. This term is used in contrast
to stochastic systems, which incorporate randomness in their rules. We will cover stochastic
systems in the next chapter.

Deterministic Dynamical Systems

382

Types of dynamical systems
The types of deterministic dynamical systems we will consider here are:

 f Discrete-time dynamical systems (iterated functions)

 f Cellular automata

 f Ordinary Differential Equations (ODEs)

 f Partial Differential Equations (PDEs)

In these models, the quantities of interest depend on one or several independent
variables. Often, these variables include time and/or space. The independent variables
can be discrete or continuous, resulting in different types of models and different analysis
and simulation techniques.

A discrete-time dynamical system is described by the iterative application of a function on
an initial point: f(x), f(f(x)), f(f(f(x))), and so on. This type of system can lead to complex and
chaotic behaviors.

A cellular automaton is represented by a discrete grid of cells that can be in a finite number
of states. Rules describe how the state of a cell evolves according to the states of the
neighboring cells. These simple models can lead to highly sophisticated behaviors.

An ODE describes the dependence of a continuous function on its derivative with respect
to the independent variable. In differential equations, the unknown variable is a function
instead of a number. ODEs notably arise when the rate of change of a quantity depends on
the current value of this quantity. For example, in classical mechanics, the laws of motion
(including movement of planets and satellites) can be described by ODEs.

PDEs are similar to ODEs, but they involve several independent variables (for example, time
and space). These equations contain partial derivatives of the function with respect to
the different independent variables. For example, PDEs describe the propagation of waves
(acoustic, electromagnetic, or mechanical waves) and fluids (fluid dynamics). They are also
important in quantum mechanics.

Differential equations
ODEs and PDEs can be one-dimensional or multidimensional, depending on the
dimensionality of the target space. Systems of multiple differential equations can
be seen as multidimensional equations.

The order of an ODE or a PDE refers to the maximal derivative order in the equation. For
example, a first-order equation only involves simple derivatives, a second-order equation
also involves second-order derivatives (the derivatives of the derivatives), and so on.

Chapter 12

383

Ordinary or partial differential equations come with additional rules: initial and boundary
conditions. These formulas describe the behavior of the sought functions on the spatial
and temporal domain boundaries. For example, in classical mechanics, boundary conditions
include the initial position and initial speed of a physical body subject to forces.

Dynamical systems are often classified between linear and nonlinear systems, depending
on whether the rules are linear or not (with respect to the unknown function). Nonlinear
equations are typically much harder to study mathematically and numerically than linear
equations. They can lead to extremely complex behaviors.

For example, the Navier–Stokes equations, a set of nonlinear PDEs that describe the motion
of fluid substances, can lead to turbulence, a highly chaotic behavior seen in many fluid
flows. Despite their high importance in meteorology, medicine, and engineering, fundamental
properties of the Navier-Stokes equations remain unknown at this time. For example, the
existence and smoothness problem in three dimensions is one of the seven Clay Mathematics
Institute's Millennium Prize Problems. One million dollars is offered to anyone who comes up
with a solution.

References
Here are a few references:

 f Overview of dynamical systems on Wikipedia, available at http://en.wikipedia.
org/wiki/Dynamical_system

 f Mathematical definition of dynamical systems available at http://en.wikipedia.
org/wiki/Dynamical_system_%28definition%29

 f List of dynamical systems topics available at http://en.wikipedia.org/wiki/
List_of_dynamical_systems_and_differential_equations_topics

 f Navier-Stokes equations on Wikipedia, available at http://en.wikipedia.org/
wiki/Navier%E2%80%93Stokes_equations

 f A course on Computational Fluid Dynamics by Prof. Lorena Barba, written in the
IPython notebook, available at https://github.com/barbagroup/CFDPython

Plotting the bifurcation diagram of a chaotic
dynamical system

A chaotic dynamical system is highly sensitive to initial conditions; small perturbations at any
given time yield completely different trajectories. The trajectories of a chaotic system tend to
have complex and unpredictable behaviors.

Many real-world phenomena are chaotic, particularly those that involve nonlinear interactions
among many agents (complex systems). Famous examples can be found in meteorology,
economics, biology, and other disciplines.

Deterministic Dynamical Systems

384

In this recipe, we will simulate a famous chaotic system: the logistic map. This is an
archetypal example of how chaos can arise from a very simple nonlinear equation. The
logistic map models the evolution of a population, taking into account both reproduction
and density-dependent mortality (starvation).

We will draw the system's bifurcation diagram, which shows the possible long-term behaviors
(equilibria, fixed points, periodic orbits, and chaotic trajectories) as a function of the system's
parameter. We will also compute an approximation of the system's Lyapunov exponent,
characterizing the model's sensitivity to initial conditions.

How to do it...
1. Let's import NumPy and matplotlib:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We define the logistic function by:

() ()1rf x rx x= −

Our discrete dynamical system is defined by the recursive application of the
logistic function:

() ()() () ()()1 1r r r r
n r n n nx f x rx x+ = = −

3. Here is the implementation of this function in Python:
In [2]: def logistic(r, x):
 return r*x*(1-x)

4. We simulate this system for 10000 values of r linearly spaced between 2.5 and 4,
and vectorize the simulation with NumPy by considering a vector of independent
systems (one dynamical system per parameter value):
In [3]: n = 10000
 r = np.linspace(2.5, 4.0, n)

Chapter 12

385

5. Let's simulate 1000 iterations of the logistic map and keep the last 100 iterations to
display the bifurcation diagram:
In [4]: iterations = 1000
 last = 100

6. We initialize our system with the same initial condition x0 = 0.00001:
In [5]: x = 1e-5 * np.ones(n)

7. We also compute an approximation of the Lyapunov exponent for every value of r.
The Lyapunov exponent is defined by:

() ()()
1

0

1lim log
n

rr
in i

dfr x
n dx

−

→∞
=

λ = ∑

8. We first initialize the lyapunov vector:
In [6]: lyapunov = np.zeros(n)

9. Now, we simulate the system and plot the bifurcation diagram. The simulation only
involves the iterative evaluation of the logistic() function on our vector x. Then,
to display the bifurcation diagram, we draw one pixel per point xn

(r) during the last
100 iterations:

In [7]: plt.subplot(211)
 for i in range(iterations):
 x = logistic(r, x)
 # We compute the partial sum of the
 # Lyapunov exponent.
 lyapunov += np.log(abs(r-2*r*x))
 # We display the bifurcation diagram.
 if i >= (iterations - last):
 plt.plot(r, x, ',k', alpha=.02)
 plt.xlim(2.5, 4)
 plt.title("Bifurcation diagram")

 # We display the Lyapunov exponent.
 plt.subplot(212)
 plt.plot(r[lyapunov<0],
 lyapunov[lyapunov<0] / iterations,
 ',k', alpha=0.1)
 plt.plot(r[lyapunov>=0],

Deterministic Dynamical Systems

386

 lyapunov[lyapunov>=0] / iterations,
 ',r', alpha=0.25)
 plt.xlim(2.5, 4)
 plt.ylim(-2, 1)
 plt.title("Lyapunov exponent")

The bifurcation diagram and Lyapunov exponent of the logistic map

The bifurcation diagram brings out the existence of a fixed point for r<3, then two
and four equilibria, and a chaotic behavior when r belongs to certain areas of the
parameter space.

We observe an important property of the Lyapunov exponent: it is positive when the
system is chaotic (in red here).

There's more...
Here are some references:

 f Chaos theory on Wikipedia, available at http://en.wikipedia.org/wiki/
Chaos_theory

 f Complex systems on Wikipedia, available at http://en.wikipedia.org/wiki/
Complex_system

Chapter 12

387

 f The logistic map on Wikipedia, available at https://en.wikipedia.org/wiki/
Logistic_map

 f Iterated functions (discrete dynamical systems) on Wikipedia, available at http://
en.wikipedia.org/wiki/Iterated_function

 f Bifurcation diagrams on Wikipedia, available at http://en.wikipedia.org/
wiki/Bifurcation_diagram

 f Lyapunov exponent on Wikipedia, available at http://en.wikipedia.org/wiki/
Lyapunov_exponent

See also
 f The Simulating an ordinary differential equation with SciPy recipe

Simulating an elementary cellular
automaton

Cellular automata are discrete dynamical systems evolving on a grid of cells. These cells can
be in a finite number of states (for example, on/off). The evolution of a cellular automaton is
governed by a set of rules, describing how the state of a cell changes according to the state of
its neighbors.

Although extremely simple, these models can initiate highly complex and chaotic behaviors.
Cellular automata can model real-world phenomena such as car traffic, chemical reactions,
propagation of fire in a forest, epidemic propagations, and much more. Cellular automata are
also found in nature. For example, the patterns of some seashells are generated by natural
cellular automata.

An elementary cellular automaton is a binary, one-dimensional automaton, where the rules
concern the immediate left and right neighbors of every cell.

In this recipe, we will simulate elementary cellular automata with NumPy using their
Wolfram code.

How to do it...
1. We import NumPy and matplotlib:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We will use the following vector to obtain numbers written in binary representation:
In [2]: u = np.array([[4], [2], [1]])

Deterministic Dynamical Systems

388

3. Let's write a function that performs an iteration on the grid, updating all cells at once
according to the given rule in binary representation (we will give all explanations in the
How it works... section). The first step consists of stacking circularly-shifted versions
of the grid to get the LCR (left, center, right) triplets of each cell (y). Then, we convert
these triplets into 3-bit numbers (z). Finally, we compute the next state of every cell
using the specified rule:
In [3]: def step(x, rule_binary):
 """Compute a single stet of an elementary
 cellular automaton."""
 # The columns contain the L, C, R values
 # of all cells.
 y = np.vstack((np.roll(x, 1), x,
 np.roll(x, -1))).astype(np.int8)
 # We get the LCR pattern numbers
 # between 0 and 7.
 z = np.sum(y * u, axis=0).astype(np.int8)
 # We get the patterns given by the rule.
 return rule_binary[7-z]

4. We now write a function that simulates any elementary cellular automaton. First, we
compute the binary representation of the rule (Wolfram Code). Then, we initialize
the first row of the grid with random values. Finally, we apply the function step()
iteratively on the grid:
In [4]: def generate(rule, size=80, steps=80):
 """Simulate an elementary cellular automaton
 given its rule (number between 0 and 255)."""
 # Compute the binary representation of the
 # rule.
 rule_binary = np.array(
 [int(x) for x in np.binary_repr(rule, 8)],
 dtype=np.int8)
 x = np.zeros((steps, size), dtype=np.int8)
 # Random initial state.
 x[0,:] = np.random.rand(size) < .5
 # Apply the step function iteratively.
 for i in range(steps-1):
 x[i+1,:] = step(x[i,:], rule_binary)
 return x

5. Now, we simulate and display nine different automata:

In [5]: rules = [3, 18, 30,
 90, 106, 110,
 158, 154, 184]
 for i, rule in enumerate(rules):

Chapter 12

389

 x = generate(rule)
 plt.subplot(331+i)
 plt.imshow(x, interpolation='none',
 cmap=plt.cm.binary)
 plt.xticks([]); plt.yticks([])
 plt.title(str(rule))

How it works...
Let's consider an elementary cellular automaton in one dimension. Every cell C has two
neighbors (L and R), and it can be either off (0) or on (1). Therefore, the future state of a cell
depends on the current state of L, C, and R. This triplet can be encoded as a number between
0 and 7 (three digits in binary representation).

A particular elementary cellular automaton is entirely determined by the outcome of each of
these eight configurations. Therefore, there are 256 different elementary cellular automata
(28). Each of these automata is identified by a number between 0 and 255.

We consider all eight LCR states in order: 111, 110, 101, ..., 001, 000. Each of the eight digits
in the binary representation of the automaton's number corresponds to a LCR state (using the
same order). For example, in the Rule 110 automaton (01101110 in binary representation),
the state 111 yields a new state of 0 for the center cell, 110 yields 1, 101 yields 1, and so
on. It has been shown that this particular automaton is Turing complete (or universal); it can
theoretically simulate any computer program.

Deterministic Dynamical Systems

390

There's more...
Other types of cellular automata include Conway's Game of Life, in two dimensions. This
famous system yields various dynamic patterns. It is also Turing complete.

Here are a few references:

 f Cellular automata on Wikipedia, available at http://en.wikipedia.org/wiki/
Cellular_automaton

 f Elementary cellular automata on Wikipedia, available at http://en.wikipedia.
org/wiki/Elementary_cellular_automaton

 f Rule 110, described at http://en.wikipedia.org/wiki/Rule_110

 f The Wolfram code, explained at http://en.wikipedia.org/wiki/Wolfram_
code, assigns a 1D elementary cellular automaton to any number between 0
and 255

 f Conway's Game of Life on Wikipedia, available at http://en.wikipedia.org/
wiki/Conway's_Game_of_Life

Simulating an ordinary differential equation
with SciPy

Ordinary Differential Equations (ODEs) describe the evolution of a system subject to
internal and external dynamics. Specifically, an ODE links a quantity depending on a single
independent variable (time, for example) to its derivatives. In addition, the system can be
under the influence of external factors. A first-order ODE can typically be written as:

() ()(),y' t f t y t=

More generally, an n-th order ODE involves successive derivatives of y until the order n. The
ODE is said to be linear or nonlinear depending on whether f is linear in y or not.

ODEs naturally appear when the rate of change of a quantity depends on its value. Therefore,
ODEs are found in many scientific disciplines such as mechanics (evolution of a body subject
to dynamic forces), chemistry (concentration of reacting products), biology (spread of an
epidemic), ecology (growth of a population), economics, and finance, among others.

Whereas simple ODEs can be solved analytically, many ODEs require a numerical treatment.
In this recipe, we will simulate a simple linear second-order autonomous ODE, describing
the evolution of a particle in the air subject to gravity and viscous resistance. Although this
equation could be solved analytically, here we will use SciPy to simulate it numerically.

Chapter 12

391

How to do it...
1. Let's import NumPy, SciPy (the integrate package), and matplotlib:

In [1]: import numpy as np
 import scipy.integrate as spi
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We define a few parameters appearing in our model:
In [2]: m = 1. # particle's mass
 k = 1. # drag coefficient
 g = 9.81 # gravity acceleration

3. We have two variables: x and y (two dimensions). We note u=(x,y). The ODE that we
are going to simulate is:

k
m

= − +u u g�� �

Here, g is the gravity acceleration vector.

Time derivatives are denoted with dots above variables (one dot
means first derivative and two dots means second derivative).

In order to simulate this second-order ODE with SciPy, we can convert it to a
first-order ODE (another option would be to solve u' first before integrating the
solution). To do this, we consider two 2D variables: u and u'. We note v = (u, u').
We can express v' as a function of v. Now, we create the initial vector v0 at time t=0:
it has four components.

In [3]: # The initial position is (0, 0).
 v0 = np.zeros(4)
 # The initial speed vector is oriented
 # to the top right.
 v0[2] = 4.
 v0[3] = 10.

4. Let's create a Python function f that takes the current vector v(t0) and a time t0 as
arguments (with optional parameters) and that returns the derivative v'(t0):
In [4]: def f(v, t0, k):
 # v has four components: v=[u, u'].
 u, udot = v[:2], v[2:]

Deterministic Dynamical Systems

392

 # We compute the second derivative u'' of u.
 udotdot = -k/m * udot
 udotdot[1] -= g
 # We return v'=[u', u''].
 return np.r_[udot, udotdot]

5. Now, we simulate the system for different values of k. We use the SciPy odeint()
function, defined in the scipy.integrate package.

In [5]: # We want to evaluate the system on 30 linearly
 # spaced times between t=0 and t=3.
 t = np.linspace(0., 3., 30)
 # We simulate the system for different values of k.
 for k in np.linspace(0., 1., 5):
 # We simulate the system and evaluate v on
 # the given times.
 v = spi.odeint(f, v0, t, args=(k,))
 # We plot the particle's trajectory.
 plt.plot(v[:,0], v[:,1], 'o-',
 mew=1, ms=8, mec='w',
 label='k={0:.1f}'.format(k))
 plt.legend()
 plt.xlim(0, 12)
 plt.ylim(0, 6)

In the preceding figure, the most outward trajectory (blue) corresponds to drag-free
motion (without air resistance). It is a parabola. In the other trajectories, we can
observe the increasing effect of air resistance, parameterized with k.

Chapter 12

393

How it works...
Let's explain how we obtained the differential equation from our model. Let u = (x,y) encode
the 2D position of our particle with mass m. This particle is subject to two forces: gravity g = (0,
-9.81) (in m/s) and air drag F = -ku'. This last term depends on the particle's speed and is only
valid at low speed. With higher speeds, we need to use more complex nonlinear expressions.

Now, we use Newton's second law of motion in classical mechanics. This law states that in
an inertial reference frame, the mass multiplied by the acceleration of the particle is equal to
the sum of all forces applied to that particle. Here, we obtain:

m =u F + g��

We immediately obtain our second-order ODE:

k
m

= −u u + g�� �

We transform it into a single-order system of ODEs with v=(u, u'):

(), , k
m

 = = −

v u u u u + g� � �� � �

The last term can be expressed as a function of v only.

The SciPy odeint()function is a black-box solver; we simply specify the function that
describes the system, and SciPy solves it automatically.

This function leverages the FORTRAN library ODEPACK, which contains well-tested code that
has been used for decades by many scientists and engineers.

An example of a simple numerical solver is the Euler method. To numerically solve the
autonomous ODE y'=f(y), the method consists of discretizing time with a time step dt and
replacing y' with a first-order approximation:

() () ()y t dt y t
y' t

dt
+ −

�

Then, starting from an initial condition y0 = y(t0), the method evaluates y successively with the
following recurrence relation:

() ()1 with ,n n n ny y dt f y t n dt y y n dt+ = + ⋅ = ⋅ = ⋅

Deterministic Dynamical Systems

394

There's more...
Here are a few references:

 f The documentation of the integrate package in SciPy available at http://docs.
scipy.org/doc/scipy/reference/integrate.html

 f ODEs on Wikipedia, available at http://en.wikipedia.org/wiki/Ordinary_
differential_equation

 f Newton's laws of motion on Wikipedia, available at http://en.wikipedia.org/
wiki/Newton's_laws_of_motion

 f Air resistance on Wikipedia, available at http://en.wikipedia.org/wiki/
Drag_%28physics%29

 f Some numerical methods for ODEs described at http://en.wikipedia.org/
wiki/Numerical_methods_for_ordinary_differential_equations

 f The Euler method on Wikipedia, available at http://en.wikipedia.org/wiki/
Euler_method

 f Documentation of the ODEPACK package in FORTRAN available at www.netlib.
org/odepack/opks-sum

See also
 f The Plotting the bifurcation diagram of a chaotic dynamical system recipe

Simulating a partial differential
equation – reaction-diffusion systems
and Turing patterns

Partial Differential Equations (PDEs) describe the evolution of dynamical systems involving
both time and space. Examples in physics include sound, heat, electromagnetism, fluid flow,
and elasticity, among others. Examples in biology include tumor growth, population dynamics,
and epidemic propagations.

PDEs are hard to solve analytically. Therefore, PDEs are often studied via numerical simulations.

In this recipe, we will illustrate how to simulate a reaction-diffusion system described by a
PDE called the FitzHugh–Nagumo equation. A reaction-diffusion system models the evolution
of one or several variables subject to two processes: reaction (transformation of the variables
into each other) and diffusion (spreading across a spatial region). Some chemical reactions
can be described by this type of model, but there are other applications in physics, biology,
ecology, and other disciplines.

Chapter 12

395

Here, we simulate a system that has been proposed by Alan Turing as a model of animal coat
pattern formation. Two chemical substances influencing skin pigmentation interact according
to a reaction-diffusion model. This system is responsible for the formation of patterns that are
reminiscent of the pelage of zebras, jaguars, and giraffes.

We will simulate this system with the finite difference method. This method consists of
discretizing time and space and replacing the derivatives with their discrete equivalents.

How to do it...
1. Let's import the packages:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We will simulate the following system of partial differential equations on the
domain E=[-1,1]2:

3u a u u u v k
t
u b v u v
t

τ

∂
= ∆ + − − +

∂
∂

= ∆ + −
∂

The variable u represents the concentration of a substance favoring skin
pigmentation, whereas v represents another substance that reacts with the first and
impedes pigmentation.

At initialization time, we assume that u and v contain independent random numbers
on every grid point. We also take Neumann boundary conditions: we require the
spatial derivatives of the variables with respect to the normal vectors to be null on
the domain's boundaries.

3. Let's define the four parameters of the model:
In [2]: a = 2.8e-4
 b = 5e-3
 tau = .1
 k = -.005

4. We discretize time and space. The following condition ensures that the discretization
scheme we use here is stable:

2

2
dxdt ≤

Deterministic Dynamical Systems

396

In [3]: size = 80 # size of the 2D grid
 dx = 2./size # space step
In [4]: T = 10.0 # total time
 dt = .9 * dx**2/2 # time step
 n = int(T/dt)

5. We initialize the variables u and v. The matrices U and V contain the values of these
variables on the vertices of the 2D grid. These variables are initialized with a uniform
noise between 0 and 1:
In [5]: U = np.random.rand(size, size)
 V = np.random.rand(size, size)

6. Now, we define a function that computes the discrete Laplace operator of a 2D
variable on the grid, using a five-point stencil finite difference method. This operator
is defined by:

() () () () () ()
2

, , , , 4 ,
,

u x h y u x h y u x y h u x y h u x y
u x y

dx
+ + − + + + − −

∆ �

We can compute the values of this operator on the grid using vectorized matrix
operations. Because of side effects on the edges of the matrix, we need to remove
the borders of the grid in the computation:

In [6]: def laplacian(Z):
 Ztop = Z[0:-2,1:-1]
 Zleft = Z[1:-1,0:-2]
 Zbottom = Z[2:,1:-1]
 Zright = Z[1:-1,2:]
 Zcenter = Z[1:-1,1:-1]
 return (Ztop + Zleft + Zbottom + Zright \
 - 4 * Zcenter) / dx**2

7. Now, we simulate the system of equations using the finite difference method. At
each time step, we compute the right-hand sides of the two equations on the grid
using discrete spatial derivatives (Laplacians). Then, we update the variables using a
discrete time derivative:
In [7]: for i in range(n):
 # We compute the Laplacian of u and v.
 deltaU = laplacian(U)
 deltaV = laplacian(V)
 # We take the values of u and v
 # inside the grid.
 Uc = U[1:-1,1:-1]

Chapter 12

397

 Vc = V[1:-1,1:-1]
 # We update the variables.
 U[1:-1,1:-1], V[1:-1,1:-1] = (
 Uc + dt * (a*deltaU + Uc - Uc**3 - Vc + k),
 Vc + dt * (b*deltaV + Uc - Vc) / tau)
 # Neumann conditions: derivatives at the edges
 # are null.
 for Z in (U, V):
 Z[0,:] = Z[1,:]
 Z[-1,:] = Z[-2,:]
 Z[:,0] = Z[:,1]
 Z[:,-1] = Z[:,-2]

8. Finally, we display the variable u after a time T of simulation:

In [8]: plt.imshow(U, cmap=plt.cm.copper, extent=[-1,1,-1,1])

Whereas the variables were completely random at initialization time, we observe the
formation of patterns after a sufficiently long simulation time.

Deterministic Dynamical Systems

398

How it works...
Let's explain how the finite difference method allowed us to implement the update step. We
start from the following system of equations:

We first use the following scheme for the discrete Laplace operator:

() () () () () ()
2

, , , , 4 ,
,

u x h y u x h y u x y h u x y h u x y
u x y

dx
+ + − + + + − −

∆ �

We also use this scheme for the time derivative of u and v:

We end up with the following iterative update step:

Here, our Neumann boundary conditions state that the spatial derivatives with respect to the
normal vectors are null on the boundaries of the domain E:

{ }

() () () ()

, , 0, ,

; 1, ;1, ; , 1 ; ,1 0

w u v t x y E
w w w wt y t y t x t x
x x y y

∀ ∈ ∀ ≥ ∀ ∈∂

∂ ∂ ∂ ∂
− = = − = =

∂ ∂ ∂ ∂

We implement these boundary conditions by duplicating values in matrices U and V on the
edges (see the preceding code).

Chapter 12

399

In order to ensure that our numerical scheme converges to a numerical solution that is close
to the actual (unknown) mathematical solution, the stability of the scheme needs to be
ascertained. One can show that a sufficient condition for the stability is:

2

2
dxdt ≤

There's more...
Here are further references on partial differential equations, reaction-diffusion systems, and
numerical simulations of those systems:

 f Partial differential equations on Wikipedia, available at http://en.wikipedia.
org/wiki/Partial_differential_equation

 f Reaction-diffusion systems on Wikipedia, available at http://en.wikipedia.
org/wiki/Reaction%E2%80%93diffusion_system

 f FitzHugh-Nagumo system on Wikipedia, available at http://en.wikipedia.org/
wiki/FitzHugh%E2%80%93Nagumo_equation

 f Neumann boundary conditions on Wikipedia, available at http://en.wikipedia.
org/wiki/Neumann_boundary_condition

 f Von Neumann stability analysis on Wikipedia, available at http://en.wikipedia.
org/wiki/Von_Neumann_stability_analysis

 f A course on Computational Fluid Dynamics by Prof. Lorena Barba, written in the
IPython notebook, available at https://github.com/barbagroup/CFDPython

See also
 f The Simulating an elementary cellular automaton recipe

 f The Simulating an ordinary differential equation with SciPy recipe

13
Stochastic Dynamical

Systems

In this chapter, we will cover the following topics:

 f Simulating a discrete-time Markov chain

 f Simulating a Poisson process

 f Simulating a Brownian motion

 f Simulating a stochastic differential equation

Introduction
Stochastic dynamical systems are dynamical systems subjected to the effect of noise.
The randomness brought by the noise takes into account the variability observed in real-world
phenomena. For example, the evolution of a share price typically exhibits long-term behaviors
along with faster, smaller-amplitude oscillations, reflecting day-to-day or hour-to-hour variations.

Applications of stochastic systems to data science include methods for statistical inference
(such as Markov chain Monte Carlo) and stochastic modeling for time series or geospatial data.

Stochastic discrete-time systems include discrete-time Markov chains. The Markov property
means that the state of a system at time n+1 only depends on its state at time n. Stochastic
cellular automata, which are stochastic extensions of cellular automata, are particular
Markov chains.

As far as continuous-time systems are concerned, Ordinary Differential Equations with noise
yield Stochastic Differential Equations (SDEs). Partial Differential Equations with noise yield
Stochastic Partial Differential Equations (SPDEs).

Stochastic Dynamical Systems

402

Point processes are another type of stochastic process. These processes model the random
occurrence of instantaneous events over time (arrival of customers in a queue or action
potentials in the nervous system) or space (locations of trees in a forest, cities in a territory,
or stars in the sky).

Mathematically, the theory of stochastic dynamical systems is based on probability
theory and measure theory. The study of continuous-time stochastic systems builds
upon stochastic calculus, an extension of infinitesimal calculus (including derivatives
and integrals) to stochastic processes.

In this chapter, we will see how to simulate different kinds of stochastic systems with Python.

References
Here are a few references on the subject:

 f An overview of stochastic dynamical systems, available at
www.scholarpedia.org/article/Stochastic_dynamical_systems

 f The Markov property on Wikipedia, available at
https://en.wikipedia.org/wiki/Markov_property

Simulating a discrete-time Markov chain
Discrete-time Markov chains are stochastic processes that undergo transitions from one
state to another in a state space. Transitions occur at every time step. Markov chains are
characterized by their lack of memory in that the probability to undergo a transition from
the current state to the next depends only on the current state, not the previous ones.
These models are widely used in scientific and engineering applications.

Continuous-time Markov processes also exist and we will cover particular instances later
in this chapter.

Markov chains are relatively easy to study mathematically and to simulate numerically.
In this recipe, we will simulate a simple Markov chain modeling the evolution of a population.

How to do it...
1. Let's import NumPy and matplotlib:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

Chapter 13

403

2. We consider a population that cannot comprise more than N=100 individuals,
and define the birth and death rates:
In [2]: N = 100 # maximum population size
 a = 0.5/N # birth rate
 b = 0.5/N # death rate

3. We simulate a Markov chain on the finite space {0, 1, ..., N}. Each state represents
a population size. The x vector will contain the population size at each time step.
We set the initial state to x0=25 (that is, there are 25 individuals in the population at
initialization time):
In [3]: nsteps = 1000
 x = np.zeros(nsteps)
 x[0] = 25

4. Now we simulate our chain. At each time step t, there is a new birth with probability
axt, and independently, there is a new death with probability bxt. These probabilities
are proportional to the size of the population at that time. If the population size
reaches 0 or N, the evolution stops:
In [4]: for t in range(nsteps - 1):
 if 0 < x[t] < N-1:
 # Is there a birth?
 birth = np.random.rand() <= a*x[t]
 # Is there a death?
 death = np.random.rand() <= b*x[t]
 # We update the population size.
 x[t+1] = x[t] + 1*birth - 1*death
 # The evolution stops if we reach 0 or N.
 else:
 x[t+1] = x[t]

5. Let's look at the evolution of the population size:
In [5]: plt.plot(x)

Stochastic Dynamical Systems

404

We see that, at every time step, the population size can stay stable, increase, or
decrease by 1.

6. Now, we will simulate many independent trials of this Markov chain. We could
run the previous simulation with a loop, but it would be very slow (two nested for
loops). Instead, we vectorize the simulation by considering all independent trials
at once. There is a single loop over time. At every time step, we update all trials
simultaneously with vectorized operations on vectors. The x vector now contains the
population size of all trials, at a particular time. At initialization time, the population
sizes are set to random numbers between 0 and N:
In [6]: ntrials = 100
 x = np.random.randint(size=ntrials,
 low=0, high=N)

7. We define a function that performs the simulation. At every time step, we find the
trials that undergo births and deaths by generating random vectors, and we update
the population sizes with vector operations:
In [7]: def simulate(x, nsteps):
 """Run the simulation."""
 for _ in range(nsteps - 1):
 # Which trials to update?
 upd = (0 < x) & (x < N-1)
 # In which trials do births occur?
 birth = 1*(np.random.rand(ntrials) <= a*x)
 # In which trials do deaths occur?
 death = 1*(np.random.rand(ntrials) <= b*x)
 # We update the population size for all
 # trials.
 x[upd] += birth[upd] - death[upd]

8. Now, let's look at the histograms of the population size at different times.
These histograms represent the probability distribution of the Markov chain,
estimated with independent trials (the Monte Carlo method):
In [8]: bins = np.linspace(0, N, 25)
In [9]: nsteps_list = [10, 1000, 10000]
 for i, nsteps in enumerate(nsteps_list):
 plt.subplot(1, len(nsteps_list), i + 1)
 simulate(x, nsteps)
 plt.hist(x, bins=bins)
 plt.xlabel("Population size")
 if i == 0:
 plt.ylabel("Histogram")
 plt.title("{0:d} time steps".format(nsteps))

Chapter 13

405

Whereas, initially, the population sizes look uniformly distributed between 0 and N,
they appear to converge to 0 or N after a sufficiently long time. This is because the
states 0 and N are absorbing; once reached, the chain cannot leave these states.
Furthermore, these states can be reached from any other state.

How it works...
Mathematically, a discrete-time Markov chain on a space E is a sequence of random variables
X1, X2, ... that satisfy the Markov property:

1 1 2 11, (| , ,...,) (|)n n n nn P X X X X P X X+ +∀ > =

A (stationary) Markov chain is characterized by the probability of transitions P(Xj | Xi).
These values form a matrix called the transition matrix. This matrix is the adjacency matrix of
a directed graph called the state diagram. Every node is a state, and the node i is connected
to the node j if the chain has a non-zero probability of transition between these nodes.

There's more...
Simulating a single Markov chain in Python is not particularly efficient because we need a for
loop. However, simulating many independent chains following the same process can be made
efficient with vectorization and parallelization (all tasks are independent, thus the problem is
embarrassingly parallel). This is useful when we are interested in statistical properties of the
chain (example of the Monte Carlo method).

There is a vast literature on Markov chains. Many theoretical results can be established with
linear algebra and probability theory. You can find references and textbooks on Wikipedia.

Stochastic Dynamical Systems

406

Many generalizations of discrete-time Markov chains exist. Markov chains can be defined
on infinite state spaces, or with a continuous time. Also, the Markov property is important in
a broad class of stochastic processes.

Here are a few references:

 f Markov chains on Wikipedia, available at
https://en.wikipedia.org/wiki/Markov_chain

 f Absorbing Markov chains on Wikipedia, available at
https://en.wikipedia.org/wiki/Absorbing_Markov_chain

 f Monte-Carlo methods on Wikipedia, available at
https://en.wikipedia.org/wiki/Monte_Carlo_method

See also
 f The Simulating a Brownian motion recipe

Simulating a Poisson process
A Poisson process is a particular type of point process, a stochastic model that represents
random occurrences of instantaneous events. Roughly speaking, the Poisson process is the
least structured, or the most random, point process.

The Poisson process is a particular continuous-time Markov process.

Point processes, and notably Poisson processes, can model random instantaneous events such
as the arrival of clients in a queue or on a server, telephone calls, radioactive disintegrations,
action potentials of nerve cells, and many other phenomena.

In this recipe, we will show different methods to simulate a homogeneous stationary
Poisson process.

How to do it...
1. Let's import NumPy and matplotlib:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

Chapter 13

407

2. Let's specify the rate value, that is, the average number of events per second:
In [2]: rate = 20. # average number of events per second

3. First, we will simulate the process using small time bins of 1 millisecond:
In [3]: dt = .001 # time step
 n = int(1./dt) # number of time steps

4. On every time bin, the probability that an event occurs is about rate * dt if dt is small
enough. Besides, as the Poisson process has no memory, the occurrence of an event
is independent from one bin to another. Therefore, we can sample Bernoulli random
variables (either 1 or 0, respectively representing an experiment's success or failure)
in a vectorized way in order to simulate our process:
In [4]: x = np.zeros(n)
 x[np.random.rand(n) <= rate*dt] = 1

The x vector contains zeros and ones on all time bins, 1 corresponding to the
occurrence of an event:
In [5]: x[:5]
Out[5]: array([0., 1., 0., 0., 0.])

5. Let's display the simulated process. We draw a vertical line for each event:
In [6]: plt.vlines(np.nonzero(x)[0], 0, 1)
 plt.xticks([]); plt.yticks([])

Stochastic Dynamical Systems

408

6. Another way of representing that same object is by considering the associated
counting process N(t),which is the number of events that have occurred until
time t. Here, we can display this process using the cumsum() function:
In [7]: plt.plot(np.linspace(0., 1., n), np.cumsum(x))
 plt.xlabel("Time")
 plt.ylabel("Counting process")

7. The other (and more efficient) way of simulating the homogeneous Poisson process
is to use the property that the time intervals between two successive events follow an
exponential distribution. Furthermore, these intervals are independent. Thus, we can
sample them in a vectorized way. Finally, we get our process by cumulatively summing
all of these intervals:
In [8]: y = np.cumsum(np.random.exponential(
 1./rate, size=int(rate)))

The y vector contains another realization of our Poisson process, but the data
structure is different. Every component of the vector is an event time:
In [9]: y[:5]
Out[9]: array([0.006, 0.111, 0.244, 0.367, 0.365])

8. Finally, let's display the simulated process:
In [10]: plt.vlines(y, 0, 1)
 plt.xticks([]); plt.yticks([])

Chapter 13

409

How it works...
For a Poisson process with rate , the number of events in a time window of length τ follows
a Poisson distribution:

[] ()0, () ()
!

k

k P N t N t k e
k

λτ λττ −∀ > + − = =

When dtτ = is small, we can show that, at first order, this probability is about λτ .

Also, the holding times (delays between two consecutive events) are independent and follow
an exponential distribution. The Poisson process satisfies other useful properties, such as the
independent and stationary increments. This property justifies the first simulation method
used in this recipe.

There's more...
In this recipe, we only considered homogeneous time-dependent Poisson processes. Other
types of Poisson processes include inhomogeneous (or non-homogeneous) processes that
are characterized by a time-varying rate, and multidimensional spatial Poisson processes.

Here are further references:

 f The Poisson process on Wikipedia, available at
http://en.wikipedia.org/wiki/Poisson_process

 f Point processes on Wikipedia, available at
http://en.wikipedia.org/wiki/Point_process

 f Continuous-time processes on Wikipedia, available at
http://en.wikipedia.org/wiki/Continuous-time_process

 f Renewal theory on Wikipedia, available at
http://en.wikipedia.org/wiki/Renewal_theory

 f Spatial Poisson processes on Wikipedia, available at
http://en.wikipedia.org/wiki/ Spatial_Poisson_process

Stochastic Dynamical Systems

410

See also
 f The Simulating a discrete-time Markov chain recipe

Simulating a Brownian motion
The Brownian motion (or Wiener process) is a fundamental object in mathematics, physics,
and many other scientific and engineering disciplines. This model describes the movement of
a particle suspended in a fluid resulting from random collisions with the quick molecules in
the fluid (diffusion). More generally, the Brownian motion models a continuous-time random
walk, where a particle evolves in space by making independent random steps in all directions.

Mathematically, the Brownian motion is a particular Markov continuous stochastic process.
The Brownian motion is at the core of mathematical domains such as stochastic calculus and
the theory of stochastic processes, but it is also central in applied fields such as quantitative
finance, ecology, and neuroscience.

In this recipe, we will show how to simulate and plot a Brownian motion in two dimensions.

How to do it...
1. Let's import NumPy and matplotlib:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We simulate Brownian motions with 5000 time steps:
In [2]: n = 5000

3. We simulate two independent one-dimensional Brownian processes to form a
single two-dimensional Brownian process. The (discrete) Brownian motion makes
independent Gaussian jumps at each time step. Therefore, we merely have to
compute the cumulative sum of independent normal random variables (one for
each time step):
In [3]: x = np.cumsum(np.random.randn(n))
 y = np.cumsum(np.random.randn(n))

4. Now, to display the Brownian motion, we could just use plot(x, y). However, the
result would be monochromatic and a bit boring. We would like to use a gradient of
color to illustrate the progression of the motion in time (the hue is a function of time).
matplotlib forces us to use a small hack based on scatter(). This function allows us
to assign a different color to each point at the expense of dropping out line segments
between points. To work around this issue, we linearly interpolate the process to give
the illusion of a continuous line:

Chapter 13

411

In [4]: k = 10 # We add 10 intermediary points between two
 # successive points.
 # We interpolate x and y.
 x2 = np.interp(np.arange(n*k), np.arange(n)*k, x)
 y2 = np.interp(np.arange(n*k), np.arange(n)*k, y)
In [5]: # Now, we draw our points with a gradient of
 # colors.
 plt.scatter(x2, y2, c=range(n*k), linewidths=0,
 marker='o', s=3, cmap=plt.cm.jet)
 plt.axis('equal')
 plt.xticks([]); plt.yticks([])

How it works...
The Brownian motion W(t) has several important properties. First, it gives rise (almost surely)
to continuous trajectories. Second, its increments are independent on
non-overlapping intervals. Third, these increments are Gaussian random variables.
More precisely:

, 0, () () ~ (0,)t W t W t Nτ τ τ∀ > + −

In particular, the density of W(t) is a normal distribution with variance t.

Additionally, the Brownian motion, and stochastic processes in general, have deep connections
with partial differential equations. Here, the density of W(t) is a solution of the heat equation,
a particular diffusion equation. More generally, the Fokker-Planck equation is a partial
differential equation satisfied by the density of solutions of a stochastic differential equation.

Stochastic Dynamical Systems

412

There's more...
The Brownian motion is a limit of a random walk with an infinitesimal step size. We used this
property here to simulate the process.

Here are a few references:

 f The Brownian motion (physical phenomenon) described at
http://en.wikipedia.org/wiki/Brownian_motion

 f The Wiener process (mathematical object) explained at
http://en.wikipedia.org/wiki/Wiener_process

 f The Brownian motion is a particular type of the Lévy process; refer to
http://en.wikipedia.org/wiki/L%C3%A9vy_process

 f The Fokker-Planck equation links stochastic processes to
partial differential equations; refer to http://en.wikipedia.org/wiki/
Fokker%E2%80%93Planck_equation

See also
 f The Simulating a stochastic differential equation recipe

Simulating a stochastic differential equation
Stochastic differential equations (SDEs) model dynamical systems that are subject to noise.
They are widely used in physics, biology, finance, and other disciplines.

In this recipe, we simulate an Ornstein-Uhlenbeck process, which is a solution of the
Langevin equation. This model describes the stochastic evolution of a particle in a fluid
under the influence of friction. The particle's movement is due to collisions with the molecules
of the fluid (diffusion). The difference with the Brownian motion is the presence of friction.

The Ornstein-Uhlenbeck process is stationary, Gaussian, and Markov, which makes it a good
candidate to represent stationary random noise.

We will simulate this process with a numerical method called the Euler-Maruyama method.
It is a simple generalization to SDEs of the Euler method for ODEs.

How to do it...
1. Let's import NumPy and matplotlib:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

Chapter 13

413

2. We define a few parameters for our model:
In [2]: sigma = 1. # Standard deviation.
 mu = 10.0 # Mean.
 tau = 0.05 # Time constant.

3. Let's define a few simulation parameters:
In [3]: dt = 0.001 # Time step.
 T = 1.0 # Total time.
 n = int(T/dt) # Number of time steps.
 t = np.linspace(0., T, n) # Vector of times.

4. We also define renormalized variables (to avoid recomputing these constants at every
time step):
In [4]: sigma_bis = sigma * np.sqrt(2. / tau)
 sqrtdt = np.sqrt(dt)

5. We create a vector that will contain all successive values of our process during
the simulation:
In [5]: x = np.zeros(n)

6. Now, let's simulate the process with the Euler-Maruyama method. It is really like
the standard Euler method for ODEs, but with an extra stochastic term (which is
just a scaled normal random variable). We will give the equation of the process
along with the details of this method in the How it works... section:
In [6]: for i in range(n-1):
 x[i+1] = x[i] + dt*(-(x[i]-mu)/tau) + \
 sigma_bis * sqrtdt * np.random.randn()

7. Let's display the evolution of the process:
In [7]: plt.plot(t, x)

Stochastic Dynamical Systems

414

8. Now, we are going to take a look at the time evolution of the distribution of the
process. To do this, we will simulate many independent realizations of the same
process in a vectorized way. We define a vector X that will contain all realizations
of the process at a given time (that is, we do not keep all realizations at all times
in memory). This vector will be overwritten at every time step. We will show the
estimated distribution (histograms) at several points in time:
In [8]: ntrials = 10000
 X = np.zeros(ntrials)
In [9]: # We create bins for the histograms.
 bins = np.linspace(-2., 14., 50);
 for i in range(n):
 # We update the process independently for all
 # trials.
 X += dt*(-(X-mu)/tau) + \
 sigma_bis*sqrtdt*np.random.randn(ntrials)
 # We display the histogram for a few points in
 # time.
 if i in (5, 50, 900):
 hist, _ = np.histogram(X, bins=bins)
 plt.plot((bins[1:]+bins[:-1])/2, hist,
 label="t={0:.2f}".format(i*dt))
 plt.legend()

The distribution of the process tends to a Gaussian distribution with mean
10µ = and standard deviation 1σ = . The process would be stationary

if the initial distribution was also a Gaussian with the adequate parameters.

Chapter 13

415

How it works...
The Langevin equation that we use in this recipe is the following stochastic differential equation:

() 2xdx dt dWµ σ
τ τ
−

= − +

Here, x(t) is our stochastic process, dx is the infinitesimal increment, µ is the mean,
σ is the standard deviation, and τ is the time constant. Also, W is a Brownian motion
(or the Wiener process) that underlies our SDE.

The first term on the right-hand side is the deterministic term (in dt), while the second
term is the stochastic term. Without that last term, the equation would be a regular
deterministic ODE.

The infinitesimal step of a Brownian motion is a Gaussian random variable. Specifically,
the derivative (in a certain sense) of a Brownian motion is a white noise, a sequence of
independent Gaussian random variables.

The Euler-Maruyama method involves discretizing time and adding infinitesimal steps to the
process at every time step. This method involves a deterministic term (like in the standard
Euler method for ODEs) and a stochastic term (random Gaussian variable). Specifically,
for an equation:

(,) (,)dx a t x dt b t x dW= +

The numerical scheme is (with t=n * dt):

1 (,) (,) , ~ (0,1)n n n n nx x dx x a t x dt b t x dt Nξ ξ+ = + = + +

Here, ξ is a random Gaussian variable with variance 1 (independent at each time step).
The normalization factor dt comes from the fact that the infinitesimal step for a
Brownian motion has the standard deviation dt .

There's more...
The mathematics of SDEs comprises the theory of stochastic calculus, Itō calculus,
martingales, and other topics. Although these theories are quite involved, simulating
stochastic processes numerically can be relatively straightforward, as we have seen
in this recipe.

Stochastic Dynamical Systems

416

The error of the Euler-Maruyama method is of order dt . The Milstein method is a more
precise numerical scheme, of order dt.

Here are a few references on these topics:

 f Stochastic differential equations on Wikipedia, available at
http://en.wikipedia.org/wiki/Stochastic_differential_equation

 f White noise, described at http://en.wikipedia.org/wiki/White_noise

 f The Langevin equation on Wikipedia, available at
http://en.wikipedia.org/wiki/Langevin_equation

 f The Ornstein-Uhlenbeck process described at http://en.wikipedia.org/wiki/
Ornstein%E2%80%93Uhlenbeck_process

 f Diffusion processes described at http://en.wikipedia.org/wiki/
Diffusion_process

 f Itō calculus, described at http://en.wikipedia.org/wiki/It%C5%8D_
calculus

 f The Euler-Maruyama method, explained at http://en.wikipedia.org/wiki/
Euler%E2%80%93Maruyama_method

 f The Milstein method on Wikipedia, available at http://en.wikipedia.org/
wiki/Milstein_method

See also
 f The Simulating a Brownian motion recipe

14
Graphs, Geometry,

and Geographic
Information Systems

In this chapter, we will cover the following topics:

 f Manipulating and visualizing graphs with NetworkX

 f Analyzing a social network with NetworkX

 f Resolving dependencies in a Directed Acyclic Graph with a topological sort

 f Computing connected components in an image

 f Computing the Voronoi diagram of a set of points

 f Manipulating geospatial data with Shapely and basemap

 f Creating a route planner for a road network

Introduction
In this chapter, we will cover Python's capabilities in graph theory, geometry, and geography.

Graphs are mathematical objects describing relations between items. They are ubiquitous in
science and engineering, as they can represent many kinds of real-world relations: friends in
a social network, atoms in a molecule, website links, cells in a neural network, neighboring
pixels in an image, and so on. Graphs are also classical data structures in computer science.
Finally, many domain-specific problems may be re-expressed as graph problems, and then
solved with well-known algorithms.

Graphs, Geometry, and Geographic Information Systems

418

We will also see a few recipes related to geometry and Geographic Information Systems
(GIS), which refers to the processing and analysis of any kind of spatial, geographical, or
topographical data.

In this introduction, we will give a brief overview of these topics.

Graphs
Mathematically, a graph G = (V, E) is defined by a set V of vertices or nodes, and a set E of
edges (two-element subsets of V). Two nodes v and v' are said to be connected if (v, v') is an
edge (element of E).

 f If the edges are unordered (meaning that (v,v') = (v',v)), the graph is said to
be undirected

 f If the edges are ordered (meaning that (v,v') ≠ (v',v)), the graph is said to be directed

An edge in an undirected graph is represented by a line segment between the two nodes.
In a directed graph, it is represented by an arrow.

Undirected graph Directed graph

Undirected and directed graphs

A graph can be represented by different data structures, notably an adjacency list
(for each vertex, a list of adjacent vertices) or an adjacency matrix (matrix of connections
between vertices).

Problems in graph theory
Here are a few examples of classical graph problems:

 f Graph traversal: How to walk through a graph, discussed at
http://en.wikipedia.org/wiki/Graph_traversal

 f Graph coloring: How to color nodes in a graph such that no two adjacent vertices
share the same color, discussed at http://en.wikipedia.org/wiki/Graph_
coloring

Chapter 14

419

 f Connected components: How to find connected components in a graph, explained
at http://en.wikipedia.org/wiki/Connected_component_%28graph_
theory%29

 f Shortest paths: What is the shortest path from one node to another in a given
graph?, discussed at http://en.wikipedia.org/wiki/Shortest_path_
problem

 f Hamiltonian paths: Does a graph include a Hamiltonian path, visiting every vertex
exactly once?, explained at http://en.wikipedia.org/wiki/Hamiltonian_
path

 f Eulerian paths: Does a graph include an Eulerian path, visiting every edge exactly
once?, discussed at http://en.wikipedia.org/wiki/Eulerian_path

 f Traveling Salesman Problem: What is the shortest route visiting every node exactly
once (Hamiltonian path)?, explained at http://en.wikipedia.org/wiki/
Traveling_salesman_problem

Random graphs
Random graphs are particular kinds of graphs defined with probabilistic rules. They are useful
for understanding the structure of large real-world graphs such as social graphs.

In particular, small-world networks have sparse connections, but most nodes can be reached
from every other node in a small number of steps. This property is due to the existence of a
small number of hubs that have a high number of connections.

Graphs in Python
Although graphs can be manipulated with native Python structures, it is more convenient to
use a dedicated library implementing specific data structures and manipulation routines. In
this chapter, we will use NetworkX, a pure Python library. Alternative Python libraries include
python-graph and graph-tool (largely written in C++).

NetworkX implements a flexible data structure for graphs, and it contains many algorithms.
NetworkX also lets us draw graphs easily with matplotlib.

Geometry in Python
Shapely is a Python library used to manipulate 2D geometrical shapes such as points, lines,
and polygons. It is most notably useful in Geographic Information Systems.

It is not straightforward to combine Shapely with matplotlib. Fortunately, the descartes
package makes this task much easier.

Graphs, Geometry, and Geographic Information Systems

420

Geographical Information Systems in Python
There are several Python modules used to manipulate geographical data and plotting maps.

In this chapter, we will use matplotlib's basemap, Shapely, descartes, and Fiona to handle
GIS files.

The ESRI shapefile is a popular geospatial vector data format. It can be read by basemap,
NetworkX, and Fiona.

We will also use the OpenStreetMap service, a free, open source, collaborative service
providing maps of the world.

Other GIS/mapping systems in Python that we couldn't cover in this chapter include
GeoPandas, Kartograph, Vincent, and cartopy.

References
Here are a few references about graphs:

 f Graph theory on Wikipedia, available at http://en.wikipedia.org/wiki/
Graph_theory

 f Data structures for graphs, described at http://en.wikipedia.org/wiki/
Graph_(abstract_data_type)

 f Random graphs on Wikipedia, available at http://en.wikipedia.org/wiki/
Random_graph

 f Small-world graphs on Wikipedia, available at http://en.wikipedia.org/wiki/
Small-world_network

 f NetworkX package, available at http://networkx.github.io

 f The python-graph package, available at https://code.google.com/p/python-
graph/

 f The graph-tool package, available at http://graph-tool.skewed.de

Here are a few references about geometry and maps in Python:

 f Basemap at http://matplotlib.org/basemap/

 f Shapely at http://toblerity.org/shapely/project.html

 f Fiona at http://toblerity.org/fiona/

 f descartes at https://pypi.python.org/pypi/descartes

 f Shapefile at http://en.wikipedia.org/wiki/Shapefile

 f OpenStreetMap at www.openstreetmap.org

Chapter 14

421

 f Folium at https://github.com/wrobstory/folium

 f GeoPandas at http://geopandas.org

 f Kartograph at http://kartograph.org

 f Cartopy at http://scitools.org.uk/cartopy/

 f Vincent at https://github.com/wrobstory/vincent

Manipulating and visualizing graphs with
NetworkX

In this recipe, we will show how to create, manipulate, and visualize graphs with NetworkX.

Getting ready
You can find the installation instructions for NetworkX in the official documentation at
http://networkx.github.io/documentation/latest/install.html.

With Anaconda, you can type conda install networkx in a terminal. Alternatively, you
can type pip install networkx. On Windows, you can also use Chris Gohlke's installer,
available at www.lfd.uci.edu/~gohlke/pythonlibs/#networkx.

How to do it…
1. Let's import NumPy, NetworkX, and matplotlib:

In [1]: import numpy as np
 import networkx as nx
 import matplotlib.pyplot as plt
 %matplotlib inline

2. There are many different ways of creating a graph. Here, we create a list of edges
(pairs of node indices):
In [2]: n = 10 # Number of nodes in the graph.
 # Each node is connected to the two next nodes,
 # in a circular fashion.
 adj = [(i, (i+1)%n) for i in range(n)]
 adj += [(i, (i+2)%n) for i in range(n)]

3. We instantiate a Graph object with our list of edges:
In [3]: g = nx.Graph(adj)

Graphs, Geometry, and Geographic Information Systems

422

4. Let's check the list of nodes and edges of the graph, and its adjacency matrix:
In [4]: print(g.nodes())
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In [5]: print(g.edges())
[(0, 8), (0, 1), (0, 2), ..., (7, 9), (8, 9)]
In [6]: print(nx.adjacency_matrix(g))
[[0. 1. 1. 0. 0. 0. 0. 0. 1. 1.]
 [1. 0. 1. 1. 0. 0. 0. 0. 0. 1.]
 ...
 [1. 0. 0. 0. 0. 0. 1. 1. 0. 1.]
 [1. 1. 0. 0. 0. 0. 0. 1. 1. 0.]]

5. Let's display this graph. NetworkX comes with a variety of drawing functions. We
can either specify the nodes' positions explicitly, or we can use an algorithm to
automatically compute an interesting layout. Here, we use the draw_circular()
function that simply positions nodes linearly on a circle:
In [7]: nx.draw_circular(g)

6. Graphs can be modified easily. Here, we add a new node connected to all existing
nodes. We also specify a color attribute to this node. In NetworkX, every node and
edge comes with a convenient Python dictionary containing arbitrary attributes.
In [8]: g.add_node(n, color='#fcff00')
 # We add an edge from every existing
 # node to the new node.
 for i in range(n):
 g.add_edge(i, n)

Chapter 14

423

7. Now, let's draw the modified graph again. This time, we specify the nodes' positions
and colors explicitly:
In [9]: # We define custom node positions on a circle
 # except the last node which is at the center.
 t = np.linspace(0., 2*np.pi, n)
 pos = np.zeros((n+1, 2))
 pos[:n,0] = np.cos(t)
 pos[:n,1] = np.sin(t)
 # A node's color is specified by its 'color'
 # attribute, or a default color if this attribute
 # doesn't exist.
 color = [g.node[i].get('color', '#88b0f3')
 for i in range(n+1)]
 # We now draw the graph with matplotlib.
 nx.draw_networkx(g, pos=pos, node_color=color)
 plt.axis('off')

Graphs, Geometry, and Geographic Information Systems

424

8. Let's also use an automatic layout algorithm:

In [10]: nx.draw_spectral(g, node_color=color)
 plt.axis('off')

There's more…
In NetworkX, nodes are not necessarily integers. They can be numbers, strings, tuples, and
instances of any hashable Python class.

In addition, every node and edge comes with optional attributes (which form a dictionary).

A few layout algorithms are implemented in NetworkX. The draw_spectral() function uses
the eigenvectors of the graph's Laplacian matrix.

The draw_spring() function implements the Fruchterman-Reingold force-directed
algorithm. Nodes are considered as masses subject to edge-dependent forces. A force-
directed graph drawing algorithm minimizes the system's energy so as to find an equilibrium
configuration. This results in an aesthetically appealing layout with as few crossing edges
as possible.

Chapter 14

425

Here are a few references:

 f Graph drawing, described at http://en.wikipedia.org/wiki/Graph_drawing

 f Laplacian matrix on Wikipedia, available at http://en.wikipedia.org/wiki/
Laplacian_matrix

 f Force-directed graph drawing, described at http://en.wikipedia.org/wiki/
Force-directed_graph_drawing

See also
 f The Analyzing a social network with NetworkX recipe

Analyzing a social network with NetworkX
In this recipe, we will show how to analyze social data in Python. Social data is generated by
people's activity on social networks such as Facebook, Twitter, Google+, GitHub, and others.

In this recipe, we will analyze and visualize a Twitter user's social network with NetworkX.

Getting ready
First, you need to install the Twitter Python package. You can install it with pip install
twitter. You'll find more information at https://pypi.python.org/pypi/twitter.

Then, you need to obtain authentication codes in order to access your Twitter data. The
procedure is free. In addition to a Twitter account, you also need to create an Application on
the Twitter Developers website at https://dev.twitter.com/apps. Then, you will be able
to retrieve the OAuth authentication codes that are required for this recipe.

You need to create a twitter.txt text file in the current folder with the four private
authentication keys. There must be one key per line, in the following order:

 f API key

 f API secret

 f Access token

 f Access token secret

Note that access to the Twitter API is limited. Most methods can only be called a few times
within a given time window. Unless you study small networks or look at small portions of
large networks, you will need to throttle your requests. In this recipe, we only consider a
small portion of the network, so that the API limit should not be reached. Otherwise, you will
have to wait a few minutes before the next time window starts. The API limits are available at
https://dev.twitter.com/docs/rate-limiting/1.1/limits.

Graphs, Geometry, and Geographic Information Systems

426

How to do it…
1. Let's import a few packages:

In [1]: import math
 import json
 import twitter
 import numpy as np
 import pandas as pd
 import networkx as nx
 import matplotlib.pyplot as plt
 %matplotlib inline
 from IPython.display import Image

2. We get the secret consumer and OAuth keys from our twitter.txt file:
In [2]: (CONSUMER_KEY,
 CONSUMER_SECRET,
 OAUTH_TOKEN,
 OAUTH_TOKEN_SECRET) = open(
 'twitter.txt', 'r').read().splitlines()

3. We now create an instance of the Twitter class that will give us access to the
Twitter API:
In [3]: auth = twitter.oauth.OAuth(OAUTH_TOKEN,
 OAUTH_TOKEN_SECRET,
 CONSUMER_KEY,
 CONSUMER_SECRET)
 tw = twitter.Twitter(auth=auth)

4. We use the 1.1 version of the Twitter API in this recipe. The twitter library defines
a direct mapping between the REST API and the attributes of the Twitter instance.
Here, we execute the account/verify_credentials REST request to obtain
the identifier of the authenticated user (me here, or you if you execute this
notebook yourself!):
In [4]: me = tw.account.verify_credentials()
In [5]: myid = me['id']

5. Let's define a simple function that returns the identifiers of all followers of a given
user (the authenticated user by default):
In [6]: def get_followers_ids(uid=None):
 # Retrieve the list of followers' ids of the
 # specified user.
 return tw.followers.ids(user_id=uid)['ids']
In [7]: # We get the list of my followers.
 my_followers_ids = get_followers_ids()

Chapter 14

427

6. Now, we define a function that retrieves the full profile of Twitter users. As the
users/lookup batch request is limited to 100 users per call, and only a small
number of calls are allowed within a time window, we only look at a subset of
all the followers:
In [8]: def get_users_info(users_ids, max=500):
 n = min(max, len(users_ids))
 # Get information about those users,
 # using batch requests.
 users = [tw.users.lookup(
 user_id=users_ids[100*i:100*(i+1)])
 for i in range(int(math.ceil(n/100.)))]
 # We flatten this list of lists.
 users = [item for sublist in users
 for item in sublist]
 return {user['id']: user for user in users}
In [9]: users_info = get_users_info(my_followers_ids)
In [10]: # Let's save this dictionary on the disk.
 with open('my_followers.json', 'w') as f:
 json.dump(users_info, f, indent=1)

7. We also start to define the graph with the followers, using an adjacency list
(technically, a dictionary of lists). This is called the ego graph. This graph represents
all following connections between our followers:
In [11]: adjacency = {myid: my_followers_ids}

8. Now, we are going to take a look at the part of the ego graph related to Python.
Specifically, we will consider the followers of the 10 most followed users whose
descriptions contain "Python":
In [12]: my_followers_python = \[user
 for user in users_info.values()
 if 'python' in user['description'].lower()]
In [13]: my_followers_python_best = \
 sorted(my_followers_python,
 key=lambda u: u['followers_count'])[::-1][:10]

The request for retrieving the followers of a given user is rate-limited. Let's check how
many remaining calls we have:

In [14]: tw.application.rate_limit_status(
 resources='followers') \
 ['resources']['followers']['/followers/ids']
Out[14]: {u'limit': 15,
 u'remaining': 0,
 u'reset': 1388865551}

Graphs, Geometry, and Geographic Information Systems

428

In [15]: for user in my_followers_python_best:
 # The call to get_followers_ids is
 # rate-limited.
 adjacency[user['id']] = list(set(
 get_followers_ids(user['id'])). \
 intersection(my_followers_ids))

9. Now that our graph is defined as an adjacency list in a dictionary, we will load
it in NetworkX:
In [16]: g = nx.Graph(adjacency)
In [17]: # We only restrict the graph to the users
 # for which we were able to retrieve the profile.
 g = g.subgraph(users_info.keys())
In [18]: # We also save this graph on disk.
 with open('my_graph.json', 'w') as f:
 json.dump(nx.to_dict_of_lists(g), f, indent=1)
In [19]: # We remove isolated nodes for simplicity.
 g.remove_nodes_from([k
 for k, d in g.degree().items()
 if d <= 1])
In [20]: # Since I am connected to all nodes,
 # by definition, we can remove me for simplicity.
 g.remove_nodes_from([myid])

10. Let's take a look at the graph's statistics:
In [21]: len(g.nodes()), len(g.edges())
Out[21]: (197, 1037)

11. We are now going to plot this graph. We will use different sizes and colors for the
nodes, according to the number of followers and the number of tweets for each user.
Most followed users will be bigger. Most active users will be redder.
In [22]: # Update the dictionary.
 deg = g.degree()
 for user in users_info.values():
 fc = user['followers_count']
 sc = user['statuses_count']
 # Is this user a Pythonista?
 user['python'] = 'python' in \
 user['description'].lower()
 # We compute the node size as a function of
 # the number of followers.
 user['node_size'] = math.sqrt(1 + 10 * fc)
 # The color is function of its activity

Chapter 14

429

 user['node_color'] = 10 * math.sqrt(1 + sc)
 # We only display the name of the most
 # followed users.
 user['label'] = user['screen_name'] \
 if fc > 2000 else ''

12. Finally, we use the draw() function to display the graph. We need to specify the
nodes' sizes and colors as lists, and the labels as a dictionary:

In [23]: node_size = [users_info[uid]['node_size']
 for uid in g.nodes()]
In [24]: node_color = [users_info[uid]['node_color']
 for uid in g.nodes()]
In [25]: labels = {uid: users_info[uid]['label']
 for uid in g.nodes()}
In [26]: nx.draw(g, cmap=plt.cm.OrRd, alpha=.8,
 node_size=node_size,
 node_color=node_color,
 labels=labels, font_size=4, width=.1)

Graphs, Geometry, and Geographic Information Systems

430

There's more…
A great reference on social data analysis with Python is Matthew A. Russel's book Mining
the Social Web, O'Reilly Media. The code is available on GitHub as IPython notebooks at
https://github.com/ptwobrussell/Mining-the-Social-Web-2nd-Edition.
The following networks are covered: Twitter, Facebook, LinkedIn, Google+, GitHub, mailboxes,
websites, and others.

See also
 f The Manipulating and visualizing graphs with NetworkX recipe

Resolving dependencies in a directed
acyclic graph with a topological sort

In this recipe, we will show an application of a well-known graph algorithm: topological
sorting. Let's consider a directed graph describing dependencies between items. For example,
in a package manager, before we can install a given package P, we may need to install
dependent packages.

The set of dependencies forms a directed graph. With topological sorting, the package
manager can resolve the dependencies and find the right installation order of the packages.

Topological sorting has many other applications. Here, we will illustrate this notion on real
data from the Debian package manager. We will find the installation order of the required
packages for IPython.

Getting ready
You need the python-apt package in order to build the package dependency graph. The
package is available at https://pypi.python.org/pypi/python-apt/.

We also assume that this notebook is executed on a Debian system (such as Ubuntu). If you
don't have such a system, you can download the Debian dataset directly from the book's
GitHub repository at https://github.com/ipython-books/cookbook-data. Extract it
in the current directory, and start directly from step 7 in this notebook.

Chapter 14

431

How to do it…
1. We import the apt module and we build the list of packages:

In [1]: import json
 import apt
 cache = apt.Cache()

2. The graph dictionary will contain the adjacency list of a small portion of the
dependency graph:
In [2]: graph = {}

3. We define a function that returns the list of dependencies of a package:
In [3]: def get_dependencies(package):
 if package not in cache:
 return []
 pack = cache[package]
 ver = pack.candidate or pack.versions[0]
 # We flatten the list of dependencies,
 # and we remove the duplicates.
 return sorted(set([item.name
 for sublist in ver.dependencies
 for item in sublist]))

4. We now define a recursive function that builds the dependency graph for a particular
package. This function updates the graph variable:
In [4]: def get_dep_recursive(package):
 if package not in cache:
 return []
 if package not in graph:
 dep = get_dependencies(package)
 graph[package] = dep
 for dep in graph[package]:
 if dep not in graph:
 graph[dep] = get_dep_recursive(dep)
 return graph[package]

5. Let's build the dependency graph for IPython:
In [5]: get_dep_recursive('ipython')

6. Finally, we save the adjacency list in JSON:
In [6]: with open('data/apt.json', 'w') as f:
 json.dump(graph, f, indent=1)

Graphs, Geometry, and Geographic Information Systems

432

Start here if you don't have a Debian operating system (you first need
to download the Debian dataset from the book's repository).

7. We import a few packages:
In [7]: import json
 import numpy as np
 import networkx as nx
 import matplotlib.pyplot as plt
 %matplotlib inline

8. Let's load the adjacency list from the JSON file:
In [8]: with open('data/apt.json', 'r') as f:
 graph = json.load(f)

9. Now, we create a directed graph (DiGraph in NetworkX) from our adjacency list. We
reverse the graph to get a more natural ordering:
In [9]: g = nx.DiGraph(graph).reverse()

10. A topological sort only exists when the graph is a directed acyclic graph (DAG). This
means that there is no cycle in the graph, that is, no circular dependency. Is our
graph a DAG? Let's see:
In [10]: nx.is_directed_acyclic_graph(g)
Out[10]: False

11. What are the packages responsible for the cycles? We can find them with the
simple_cycles() function:
In [11]: set([cycle[0] for cycle in nx.simple_cycles(g)])
Out[11]: {u'coreutils', u'libc6', u'multiarch-support',
 u'python-minimal', u'tzdata'}

12. Here, we can try to remove these packages. In an actual package manager, these
cycles need to be carefully taken into account.
In [12]: g.remove_nodes_from(_)
In [13]: nx.is_directed_acyclic_graph(g)
Out[13]: True

13. The graph is now a DAG. Let's display it first:
In [14]: ug = g.to_undirected()
 deg = ug.degree()
In [15]: # The size of the nodes depends on the number
 # of dependencies.
 nx.draw(ug, font_size=6,
 node_size=[20*deg[k] for k in ug.nodes()])

Chapter 14

433

14. Finally, we can perform the topological sort, thereby obtaining a linear installation
order satisfying all dependencies:

In [16]: nx.topological_sort(g)
Out[16]: [u'libexpat1',
 u'libdb5.1',
 u'debconf-2.0',
 ...
 u'python-pexpect',
 u'python-configobj',
 u'ipython']

There's more…
Directed acyclic graphs are found in many applications. They can represent causal relations,
influence diagrams, dependencies, and other concepts. For example, the version history of a
distributed revision control system such as Git is described with a DAG.

Topological sorting is useful in any scheduling task in general (project management and
instruction scheduling).

Graphs, Geometry, and Geographic Information Systems

434

Here are a few references:

 f Topological sorting on Wikipedia, available at http://en.wikipedia.org/wiki/
Topological_sorting

 f Directed acyclic graphs, described at http://en.wikipedia.org/wiki/
Directed_acyclic_graph

Computing connected components in
an image

In this recipe, we will show an application of graph theory in image processing. We will
compute connected components in an image. This method will allow us to label contiguous
regions of an image, similar to the bucket fill tool of paint programs.

Finding connected components is also useful in many puzzle video games such as
Minesweeper, bubble shooters, and others. In these games, contiguous sets of items
with the same color need to be automatically detected.

How to do it…
1. Let's import the packages:

In [1]: import itertools
 import numpy as np
 import networkx as nx
 import matplotlib.colors as col
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We create a 10 x 10 image where each pixel can take one of three possible labels
(or colors):
In [2]: n = 10
In [3]: img = np.random.randint(size=(n, n),
 low=0, high=3)

3. Now, we create the underlying 2D grid graph encoding the structure of the image.
Each node is a pixel, and a node is connected to its nearest neighbors. NetworkX
defines a grid_2d_graph function to generate this graph:
In [4]: g = nx.grid_2d_graph(n, n)

Chapter 14

435

4. Let's create two functions to display the image and the corresponding graph:
In [5]: def show_image(img, **kwargs):
 plt.imshow(img,
 origin='lower',
 interpolation='none',
 **kwargs)
 plt.axis('off')
In [6]: def show_graph(g, **kwargs):
 nx.draw(g,
 pos={(i, j): (j, i)
 for (i, j) in g.nodes()},
 node_color=[img[i, j]
 for (i, j) in g.nodes()],
 linewidths=1, edge_color='w',
 with_labels=False, node_size=30, **kwargs)
In [7]: cmap = plt.cm.Blues

5. Here is the original image superimposed with the underlying graph:
In [8]: show_image(img, cmap=cmap, vmin=-1)
 show_graph(g, cmap=cmap, vmin=-1)

Graphs, Geometry, and Geographic Information Systems

436

6. Now, we are going to find all contiguous dark blue regions containing more than three
pixels. First, we consider the subgraph corresponding to all dark blue pixels:
In [9]: g2 = g.subgraph(zip(*np.nonzero(img==2)))
In [10]: show_image(img, cmap=cmap, vmin=-1)
 show_graph(g2, cmap=cmap, vmin=-1)

7. We see that the requested contiguous regions correspond to the connected
components containing more than three nodes in the subgraph. We can use the
connected_components function of NetworkX to find those components:
In [11]: components = [np.array(comp)
 for comp in nx.connected_components(g2)
 if len(comp)>=3]
 len(components)
Out[11]: 3

8. Finally, we assign a new color to each of these components, and we display the
new image:

In [12]: # We copy the image, and assign a new label
 # to each found component.
 img_bis = img.copy()
 for i, comp in enumerate(components):
 img_bis[comp[:,0], comp[:,1]] = i + 3
In [13]: # We create a new discrete color map extending
 # the previous map with new colors.
 colors = [cmap(.5), cmap(.75), cmap(1.),

Chapter 14

437

 '#f4f235', '#f4a535', '#f44b35']
 cmap2 = col.ListedColormap(colors, 'indexed')
In [14]: show_image(img_bis, cmap=cmap2)

How it works…
The problem we solved is called connected-component labeling. It is also closely related to
the flood-fill algorithm.

The idea to associate a grid graph to an image is quite common in image processing. Here,
contiguous color regions correspond to connected components of subgraphs. A connected
component can be defined as an equivalence class of the reachability relation. Two nodes
are connected in the graph if there is a path from one node to the other. An equivalence class
contains nodes that can be reached from one another.

Finally, the simple approach described here is only adapted to basic tasks on small images.
More advanced algorithms are covered in Chapter 11, Image and Audio Processing.

Graphs, Geometry, and Geographic Information Systems

438

There's more…
Here are a few references:

 f Connected components on Wikipedia, available at http://en.wikipedia.org/
wiki/Connected_component_%28graph_theory%29

 f Connected-component labeling on Wikipedia, at http://en.wikipedia.org/
wiki/Connected-component_labeling

 f Flood-fill algorithm on Wikipedia, available at http://en.wikipedia.org/wiki/
Flood_fill

Computing the Voronoi diagram of a set
of points

The Voronoi diagram of a set of seed points divides space into several regions. Each region
contains all points closer to one seed point than to any other seed point.

The Voronoi diagram is a fundamental structure in computational geometry. It is widely used
in computer science, robotics, geography, and other disciplines. For example, the Voronoi
diagram of a set of metro stations gives us the closest station from any point in the city.

In this recipe, we compute the Voronoi diagram of the set of metro stations in Paris
using SciPy.

Getting ready
You need the Smopy module to display the OpenStreetMap map of Paris. You can install this
package with pip install smopy.

You also need to download the RATP dataset from the book's GitHub repository at https://
github.com/ipython-books/cookbook-data and extract it in the current directory. The
data was obtained on RATP's open data website (Paris' public transport operator, http://
data.ratp.fr).

How to do it…
1. Let's import NumPy, pandas, matplotlib, and SciPy:

In [1]: import numpy as np
 import pandas as pd
 import scipy.spatial as spatial
 import matplotlib.pyplot as plt
 import matplotlib.path as path

Chapter 14

439

 import matplotlib as mpl
 import smopy
 %matplotlib inline

2. Let's load the dataset with pandas:
In [2]: df = pd.read_csv('data/ratp.csv',
 sep='#', header=None)
In [3]: df[df.columns[1:]].tail(2)
Out[3]: 1 2 3 4 5
11609 2.30 48.93 TIMBAUD GENNEVILLIERS tram
11610 2.23 48.91 VICTOR BASCH COLOMBES tram

3. The DataFrame object contains the coordinates, name, city, district, and type of
station. Let's select all metro stations:
In [4]: metro = df[(df[5] == 'metro')]
In [5]: metro[metro.columns[1:]].tail(3)
Out[5]:
305 2.308 48.841 Volontaires PARIS-15EME metro
306 2.379 48.857 Voltaire PARIS-11EME metro
307 2.304 48.883 Wagram PARIS-17EME metro

4. We are going to extract the district number of Paris' stations. With pandas, we can
use vectorized string operations using the str attribute of the corresponding column.
In [6]: # We only extract the district from stations
 # in Paris.
 paris = metro[4].str.startswith('PARIS').values
In [7]: # We create a vector of integers with the district
 # number of the corresponding station, or 0
 # if the station is not in Paris.
 districts = np.zeros(len(paris), dtype=np.int32)
 districts[paris] = metro[4][paris].\
 str.slice(6, 8).astype(np.int32)
 districts[~paris] = 0
 ndistricts = districts.max() + 1

5. We also extract the coordinates of all metro stations:
In [8]: lon = metro[1]
 lat = metro[2]

Graphs, Geometry, and Geographic Information Systems

440

6. Now, let's retrieve Paris' map with OpenStreetMap. We specify the map's boundaries
with the extreme latitude and longitude coordinates of all our metro stations. We use
the lightweight Smopy module to generate the map:
In [9]: box = (lat[paris].min(), lon[paris].min(),
 lat[paris].max(), lon[paris].max())
 m = smopy.Map(box, z=12)

7. We now compute the Voronoi diagram of the stations using SciPy. A Voronoi
object is created with the points coordinates. It contains several attributes we
will use for display:
In [10]: vor = spatial.Voronoi(np.c_[lat, lon])

8. We create a generic function to display a Voronoi diagram. SciPy already implements
such a function, but this function does not take infinite points into account. The
implementation we will use has been obtained in Stack Overflow and is present at
http://stackoverflow.com/a/20678647/1595060. This function is relatively
long, and we won't copy it entirely here. The full version can be found in the book's
GitHub repository.
In [11]: def voronoi_finite_polygons_2d(vor, radius=None):
 """Reconstruct infinite Voronoi regions in a
 2D diagram to finite regions."""
 ...

9. The voronoi_finite_polygons_2d() function returns a list of regions and a
list of vertices. Every region is a list of vertex indices. The coordinates of all vertices
are stored in vertices. From these structures, we can create a list of cells. Every
cell represents a polygon as an array of vertex coordinates. We also use the to_
pixels() method of the smopy.Map instance. This function converts latitude and
longitude geographical coordinates to pixels in the image.
In [12]: regions, vertices = \
 voronoi_finite_polygons_2d(vor)
 cells = [m.to_pixels(vertices[region])
 for region in regions]

10. Now, we compute the color of every polygon:
In [13]: cmap = plt.cm.Set3
 # We generate colors for districts using
 # a color map.
 colors_districts = cmap(
 np.linspace(0., 1., ndistricts))[:,:3]
 # The color of every polygon, grey by default.
 colors = .25 * np.ones((len(districts), 3))

Chapter 14

441

 # We give each polygon in Paris the color of
 # its district.
 colors[paris] = colors_districts[districts[paris]]

11. Finally, we display the map with the Voronoi diagram, using the show_mpl() method
of the Map instance:

In [14]: ax = m.show_mpl()
 ax.add_collection(
 mpl.collections.PolyCollection(cells,
 facecolors=colors, edgecolors='k',
 alpha=0.35,))

How it works…
Let's give the mathematical definition of the Voronoi diagram in a Euclidean space. If (xi) is a
set of points, the Voronoi diagram of this set of points is the collection of subsets Vi (called
cells or regions) defined by:

{ }x | , x x x xd
i i jV j i= ∈ ∀ ≠ − ≤ −�

Graphs, Geometry, and Geographic Information Systems

442

The dual graph of the Voronoi diagram is the Delaunay triangulation. This geometrical object
covers the convex hull of the set of points with triangles.

SciPy computes Voronoi diagrams with Qhull, a computational geometry library in C++.

There's more…
Here are further references:

 f Voronoi diagram on Wikipedia, available at http://en.wikipedia.org/wiki/
Voronoi_diagram

 f Delaunay triangulation on Wikipedia, available at http://en.wikipedia.org/
wiki/Delaunay_triangulation

 f The documentation of scipy.spatial.voronoi available at http://docs.
scipy.org/doc/scipy-dev/reference/generated/scipy.spatial.
Voronoi.html

 f The Qhull library available at www.qhull.org

See also
 f The Manipulating geospatial data with Shapely and basemap recipe

Manipulating geospatial data with Shapely
and basemap

In this recipe, we will show how to load and display geographical data in the Shapefile format.
Specifically, we will use data from Natural Earth (www.naturalearthdata.com) to display
the countries of Africa, color coded with their population and Gross Domestic Product (GDP).

Shapefile (http://en.wikipedia.org/wiki/Shapefile) is a popular geospatial vector
data format for GIS software. It can be read by Fiona, a Python wrapper to GDAL/OGR (a
C++ library supporting GIS file formats). We will also use Shapely, a Python package used to
handle two-dimensional geometrical shapes, and descartes, used to render Shapely shapes
in matplotlib. Finally, we will use basemap to plot maps.

Getting ready
You need the following packages:

 f GDAL/OGR available at www.gdal.org/ogr/

 f Fiona available at http://toblerity.org/fiona/README.html

 f Shapely available at http://toblerity.org/shapely/project.html

Chapter 14

443

 f descartes available at https://pypi.python.org/pypi/descartes

 f Basemap available at http://matplotlib.org/basemap/

With Anaconda, you can do:

conda install gdal

conda install fiona

conda install basemap

Shapely and descartes can be installed with:

pip install shapely

pip install descartes

On Windows, you can find binary installers for all of those packages except descartes on Chris
Gohlke's webpage, www.lfd.uci.edu/~gohlke/pythonlibs/.

On other systems, you can find installation instructions on the projects' websites. GDAL/OGR
is a C++ library that is required by Fiona. The other packages are regular Python packages.

Finally, you need to download the Africa dataset on the book's GitHub repository at https://
github.com/ipython-books/cookbook-data. The data was obtained on Natural Earth's
website, www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-
admin-0-countries/.

How to do it…
1. Let's import the packages:

In [1]: import numpy as np
 import matplotlib.pyplot as plt
 import matplotlib.collections as col
 from mpl_toolkits.basemap import Basemap
 import fiona
 import shapely.geometry as geom
 from descartes import PolygonPatch
 %matplotlib inline

2. We load the Shapefile dataset with Fiona. This dataset notably contains the borders
of all countries in the world.
In [2]: # Natural Earth data
 countries = fiona.open(
 "data/ne_10m_admin_0_countries.shp")

Graphs, Geometry, and Geographic Information Systems

444

3. We select the countries in Africa:
In [3]: africa = [c for c in countries
 if c['properties']['CONTINENT'] == 'Africa']

4. Now, we create a basemap map showing the African continent:
In [4]: m = Basemap(llcrnrlon=-23.03,
 llcrnrlat=-37.72,
 urcrnrlon=55.20,
 urcrnrlat=40.58)

5. Let's write a function converting the geographical coordinates of the countries'
borders to map coordinates. This will allow us to display the borders in basemap:
In [5]: def _convert(poly, m):
 if isinstance(poly, list):
 return [_convert(_, m) for _ in poly]
 elif isinstance(poly, tuple):
 return m(*poly)
In [6]: for _ in africa:
 _['geometry']['coordinates'] = _convert(
 _['geometry']['coordinates'], m)

6. The next step is to create matplotlib PatchCollection objects from the Shapefile
dataset loaded with Fiona. We use Shapely and descartes for this:
In [7]: def get_patch(shape, **kwargs):
 """Return a matplotlib PatchCollection from a
 geometry object loaded with fiona."""
 # Simple polygon.
 if isinstance(shape, geom.Polygon):
 return col.PatchCollection(
 [PolygonPatch(shape, **kwargs)],
 match_original=True)
 # Collection of polygons.
 elif isinstance(shape, geom.MultiPolygon):
 return col.PatchCollection(
 [PolygonPatch(c, **kwargs)
 for c in shape],
 match_original=True)
In [8]: def get_patches(shapes, fc=None,
 ec=None, **kwargs):
 """Return a list of matplotlib PatchCollection
 objects from a Shapefile dataset."""
 # fc and ec are the face and edge colors of the
 # countries. We ensure these are lists of

Chapter 14

445

 # colors, with one element per country.
 if not isinstance(fc, list):
 fc = [fc] * len(shapes)
 if not isinstance(ec, list):
 ec = [ec] * len(shapes)
 # We convert each polygon to a matplotlib
 # PatchCollection object.
 return [get_patch(geom.shape(s['geometry']),
 fc=fc_, ec=ec_, **kwargs)
 for s, fc_, ec_ in zip(shapes, fc, ec)]

7. We also define a function to get countries' colors depending on a specific field in the
Shapefile dataset. Indeed, our dataset not only contains countries borders, but also a
few administrative, economical, and geographical properties for each country. Here,
we will choose the color according to the countries' population and GDP:
In [9]: def get_colors(field, cmap):
 """Return one color per country, depending on a
 specific field in the dataset."""
 values = [country['properties'][field]
 for country in africa]
 values_max = max(values)
 return [cmap(v / values_max) for v in values]

8. Finally, we display the maps. We display the coastlines with basemap, and the
countries with our Shapefile dataset:

In [10]: # Display the countries color-coded with
 # their population.
 ax = plt.subplot(121)
 m.drawcoastlines()
 patches = get_patches(africa,
 fc=get_colors('POP_EST',
 plt.cm.Reds),
 ec='k')
 for p in patches:
 ax.add_collection(p)
 plt.title("Population")
 # Display the countries color-coded with
 # their population.
 ax = plt.subplot(122)
 m.drawcoastlines()
 patches = get_patches(africa,
 fc=get_colors('GDP_MD_EST',

Graphs, Geometry, and Geographic Information Systems

446

 plt.cm.Blues),
 ec='k')
 for p in patches:
 ax.add_collection(p)
 plt.title("GDP")

See also
 f The Creating a route planner for a road network recipe

Creating a route planner for a road network
In this recipe, we build upon several techniques described in the previous recipes in order to
create a simple GPS-like route planner in Python. We will retrieve California's road network
data from the United States Census Bureau in order to find shortest paths in the road network
graph. This allows us to display road itineraries between any two locations in California.

Getting ready
You need NetworkX and Smopy for this recipe. In order for NetworkX to read Shapefile
datasets, you also need GDAL/OGR. You can find more information in the previous recipe.

You also need to download the Road dataset from the book's GitHub repository at
https://github.com/ipython-books/cookbook-data, and extract it in the
current directory.

Chapter 14

447

At the time of this writing, NetworkX's support of Shapefile doesn't seem
to be compatible with Python 3.x. For this reason, this recipe has only
been successfully tested with Python 2.x.

How to do it…
1. Let's import the packages:

In [1]: import networkx as nx
 import numpy as np
 import pandas as pd
 import json
 import smopy
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We load the data (a Shapefile dataset) with NetworkX. This dataset contains detailed
information about the primary roads in California. NetworkX's read_shp() function
returns a graph, where each node is a geographical position, and each edge contains
information about the road linking the two nodes. The data comes from the United
States Census Bureau website at www.census.gov/geo/maps-data/data/
tiger.html.
In [2]: g = nx.read_shp("data/tl_2013_06_prisecroads.shp")

3. This graph is not necessarily connected, but we need a connected graph in order to
compute shortest paths. Here, we take the largest connected subgraph using the
connected_component_subgraphs() function:
In [3]: sgs = list(nx.connected_component_subgraphs(
 g.to_undirected()))
 largest = np.argmax([len(sg)
 for sg in sgs])
 sg = sgs[largest]
 len(sg)
Out[3]: 464

4. We define two positions (with the latitude and longitude) and find the shortest path
between these two positions:
In [4]: pos0 = (36.6026, -121.9026)
 pos1 = (34.0569, -118.2427)

5. Each edge in the graph contains information about the road, including a list of points
along this road. We first create a function that returns this array of coordinates, for
any edge in the graph:
In [5]: def get_path(n0, n1):

Graphs, Geometry, and Geographic Information Systems

448

 """If n0 and n1 are connected nodes in the
 graph, this function returns an array of point
 coordinates along the road linking these
 two nodes."""
 return np.array(json.loads(
 sg[n0][n1]['Json'])['coordinates'])

6. We can notably use the road path to compute its length. We first need to define
a function that computes the distance between any two points in geographical
coordinates. This function has been found in Stack Overflow (http://
stackoverflow.com/questions/8858838/need-help-calculating-
geographical-distance):
In [6]: EARTH_R = 6372.8
 def geocalc(lat0, lon0, lat1, lon1):
 """Return the distance (in km) between two
 points in geographical coordinates."""
 lat0 = np.radians(lat0)
 lon0 = np.radians(lon0)
 lat1 = np.radians(lat1)
 lon1 = np.radians(lon1)
 dlon = lon0 - lon1
 y = np.sqrt(
 (np.cos(lat1)*np.sin(dlon))**2
 +(np.cos(lat0)*np.sin(lat1)
 -np.sin(lat0)*np.cos(lat1)* \
 np.cos(dlon))**2)
 x = np.sin(lat0)*np.sin(lat1) + \
 np.cos(lat0)*np.cos(lat1)*np.cos(dlon)
 c = np.arctan2(y, x)
 return EARTH_R * c

7. Now, we define a function computing a path's length:
In [7]: def get_path_length(path):
 return np.sum(geocalc(
 path[1:,0], path[1:,1],
 path[:-1,0], path[:-1,1]))

8. Now, we update our graph by computing the distance between any two connected
nodes. We add this information in the distance attribute of the edges:
In [8]: # Compute the length of the road segments.
 for n0, n1 in sg.edges_iter():
 path = get_path(n0, n1)
 distance = get_path_length(path)
 sg.edge[n0][n1]['distance'] = distance

Chapter 14

449

9. The last step before we can find the shortest path in the graph is to find the two
nodes in the graph that are closest to the two requested positions:
In [9]: nodes = np.array(sg.nodes())
 # Get the closest nodes in the graph.
 pos0_i = np.argmin(np.sum(
 (nodes[:,::-1] - pos0)**2,
 axis=1))
 pos1_i = np.argmin(np.sum(
 (nodes[:,::-1] - pos1)**2,
 axis=1))

10. Now, we use NetworkX's shortest_path() function to compute the shortest path
between our two positions. We specify that the weight of every edge is the length of
the road between them:
In [10]: # Compute the shortest path.
 path = nx.shortest_path(sg,
 source=tuple(nodes[pos0_i]),
 target=tuple(nodes[pos1_i]),
 weight='distance')
 len(path)
Out[10]: 19

11. The itinerary has been computed. The path variable contains the list of edges that
form the shortest path between our two positions. Now, we can get information about
the itinerary with pandas. The dataset has a few fields of interest, including the name
and type (State, Interstate, and so on) of the roads:
In [11]: roads = pd.DataFrame([
 sg.edge[path[i]][path[i + 1]]
 for i in range(len(path)-1)],
 columns=['FULLNAME', 'MTFCC',
 'RTTYP', 'distance'])
 roads
Out[11]: FULLNAME MTFCC RTTYP distance
0 State Rte 1 S1200 S 100.657768
1 State Rte 1 S1200 S 33.419581
...
16 Hollywood Fwy S1200 M 14.087627
17 Hollywood Fwy S1200 M 0.010107

Here is the total length of this itinerary:

In [12]: roads['distance'].sum()
Out[12]: 508.66421585288725

Graphs, Geometry, and Geographic Information Systems

450

12. Finally, let's display the itinerary on the map. We first retrieve the map with Smopy:
In [13]: map = smopy.Map(pos0, pos1, z=7, margin=.1)

13. Our path contains connected nodes in the graph. Every edge between two nodes is
characterized by a list of points (constituting a part of the road). Therefore, we need
to define a function that concatenates the positions along every edge in the path. We
have to concatenate the positions in the right order along our path. We choose the
order based on the fact that the last point in an edge needs to be close to the first
point in the next edge:
In [14]: def get_full_path(path):
 """Return the positions along a path."""
 p_list = []
 curp = None
 for i in range(len(path)-1):
 p = get_path(path[i], path[i+1])
 if curp is None:
 curp = p
 if np.sum((p[0]-curp)**2) > \
 np.sum((p[-1]-curp)**2):
 p = p[::-1,:]
 p_list.append(p)
 curp = p[-1]
 return np.vstack(p_list)

14. We convert the path in pixels in order to display it on the Smopy map:
In [15]: linepath = get_full_path(path)
 x, y = map.to_pixels(linepath[:,1], linepath[:,0])

15. Finally, let's display the map, with our two positions and the computed itinerary
between them:

In [16]: map.show_mpl()
 # Plot the itinerary.
 plt.plot(x, y, '-k', lw=1.5)
 # Mark our two positions.
 plt.plot(x[0], y[0], 'ob', ms=10)
 plt.plot(x[-1], y[-1], 'or', ms=10)

Chapter 14

451

How it works…
We computed the shortest path with NetworkX's shortest_path() function. Here, this
function used Dijkstra's algorithm. This algorithm has a wide variety of applications, for
example in network routing protocols.

There are different ways to compute the geographical distance between two points. Here,
we used a relatively precise formula: the orthodromic distance (also called great-circle
distance), which assumes that the Earth is a perfect sphere. We could also have used a
simpler formula since the distance between two successive points on a road is small.

There's more…
You can find more information about shortest path problems and Dijkstra's algorithm in the
following references:

 f Shortest paths on Wikipedia, available at http://en.wikipedia.org/wiki/
Shortest_path_problem

 f Dijkstra's algorithm, described at http://en.wikipedia.org/wiki/
Dijkstra%27s_algorithm

Graphs, Geometry, and Geographic Information Systems

452

Here are a few references about geographical distances:

 f Geographical distance on Wikipedia, at http://en.wikipedia.org/wiki/
Geographical_distance

 f Great circles on Wikipedia, at http://en.wikipedia.org/wiki/Great_circle

 f Great-circle distance on Wikipedia, at http://en.wikipedia.org/wiki/Great-
circle_distance

15
Symbolic and

Numerical Mathematics

In this chapter, we will cover the following topics:

 f Diving into symbolic computing with SymPy

 f Solving equations and inequalities

 f Analyzing real-valued functions

 f Computing exact probabilities and manipulating random variables

 f A bit of number theory with SymPy

 f Finding a Boolean propositional formula from a truth table

 f Analyzing a nonlinear differential system – Lotka-Volterra (predator-prey) equations

 f Getting started with Sage

Introduction
In this chapter, we will introduce SymPy, a Python library for symbolic mathematics. Whereas
most of the book deals with numerical methods, we will see examples here where symbolic
computations are more suitable.

SymPy is to symbolic computing what NumPy is to numerical computing. For example, SymPy
can help us analyze a mathematical model before we run a simulation.

Symbolic and Numerical Mathematics

454

Although quite powerful, SymPy is a bit slow compared to other computer algebra systems.
The main reason is that SymPy is written in pure Python. A faster and more powerful
mathematics system is Sage (see also the Getting started with Sage recipe in this chapter).
Sage is a heavy standalone program that has many big dependencies (including SymPy!), and
it uses only Python 2 at the time of writing. It is essentially meant for interactive use. Sage
includes an IPython-like notebook.

LaTeX
LaTeX is a document markup language widely used to write publication-quality mathematical
equations. Equations written in LaTeX can be displayed in the browser with the MathJax
JavaScript library. SymPy uses this system to display equations in the IPython notebook.

LaTeX equations can also be used in matplotlib. In this case, it is recommended to have a
LaTeX installation on your local computer.

Here are a few references:

 f LaTeX on Wikipedia, at http://en.wikipedia.org/wiki/LaTeX
 f MathJax, available at www.mathjax.org
 f LaTeX in matplotlib, described at http://matplotlib.org/users/usetex.html
 f Documentation for displaying equations with SymPy, available at http://docs.

sympy.org/latest/tutorial/printing.html

 f To install LaTeX on your computer, refer to http://latex-project.org/ftp.html

Diving into symbolic computing with SymPy
In this recipe, we will give a brief introduction to symbolic computing with SymPy. We will
see more advanced features of SymPy in the next recipes.

Getting ready
SymPy is a pure Python package with no other dependencies, and as such, it is very easy
to install. With Anaconda, you can type conda install sympy in a terminal. On Windows,
you can use Chris Gohlke's package (www.lfd.uci.edu/~gohlke/pythonlibs/#sympy).
Finally, you can use the pip install sympy command.

How to do it...
SymPy can be used from a Python module, or interactively in IPython. In the notebook, all
mathematical expressions are displayed with LaTeX, thanks to the MathJax JavaScript library.

Chapter 15

455

Here is an introduction to SymPy:

1. First, we import SymPy and enable LaTeX printing in the IPython notebook:
In [1]: from sympy import *
 init_printing()

2. To deal with symbolic variables, we first need to declare them:
In [2]: var('x y')
Out[2]: (x, y)

3. The var() function creates symbols and injects them into the namespace.
This function should only be used in the interactive mode. In a Python module,
it is better to use the symbols() function that returns the symbols:
In [3]: x, y = symbols('x y')

4. We can create mathematical expressions with these symbols:
In [4]: expr1 = (x + 1)**2
 expr2 = x**2 + 2*x + 1

5. Are these expressions equal?
In [5]: expr1 == expr2
Out[5]: False

6. These expressions are mathematically equal, but not syntactically identical.
To test whether they are mathematically equal, we can ask SymPy to simplify
the difference algebraically:
In [6]: simplify(expr1-expr2)
Out[6]: 0

7. A very common operation with symbolic expressions is the substitution of a
symbol by another symbol, expression, or a number, using the subs() method
of a symbolic expression:

Substitution in a SymPy expression

Symbolic and Numerical Mathematics

456

8. A rational number cannot be written simply as 1/2 as this Python expression
evaluates to 0. A possibility is to convert the number 1 into a SymPy integer
object, for example by using the S() function:
In [9]: expr1.subs(x, S(1)/2)
Out[9]: 9/4

9. Exactly represented numbers can be evaluated numerically with evalf:
In [10]: _.evalf()
Out[10]: 2.25000000000000

10. We can easily create a Python function from a SymPy symbolic expression using the
lambdify() function. The resulting function can notably be evaluated on NumPy
arrays. This is quite convenient when we need to go from the symbolic world to the
numerical world:

In [11]: f = lambdify(x, expr1)
In [12]: import numpy as np
 f(np.linspace(-2., 2., 5))
Out[12]: array([1., 0., 1., 4., 9.])

How it works...
A core idea in SymPy is to use the standard Python syntax to manipulate exact expressions.
Although this is very convenient and natural, there are a few caveats. Symbols such as x,
which represent mathematical variables, cannot be used in Python before being instantiated
(otherwise, a NameError exception is thrown by the interpreter). This is in contrast to most
other computer algebra systems. For this reason, SymPy offers ways to declare symbolic
variables beforehand.

Another example is integer division; as 1/2 evaluates to 0 (in Python 2), SymPy has no way
to know that the user intended to write a fraction instead. We need to convert the numerical
integer 1 to the symbolic integer 1 before dividing it by 2.

Also, the Python equality refers to the equality between syntax trees rather than between
mathematical expressions.

See also
 f The Solving equations and inequalities recipe

 f The Getting started with Sage recipe

Chapter 15

457

Solving equations and inequalities
SymPy offers several ways to solve linear and nonlinear equations and systems of equations.
Of course, these functions do not always succeed in finding closed-form exact solutions.
In this case, we can fall back to numerical solvers and obtain approximate solutions.

Getting ready
We first need to import SymPy. We also initialize pretty printing in the notebook (see the first
recipe of this chapter).

How to do it...
1. Let's define a few symbols:

In [2]: var('x y z a')
Out[2]: (x, y, z, a)

2. We use the solve() function to solve equations (the right-hand side is 0 by default):
In [3]: solve(x**2 - a, x)
Out[3]: [-sqrt(a), sqrt(a)]

3. We can also solve inequalities. Here, we need to use the solve_univariate_
inequality() function to solve this univariate inequality in the real domain:
In [4]: x = Symbol('x')
 solve_univariate_inequality(x**2 > 4, x)
Out[4]: Or(x < -2, x > 2)

4. The solve() function also accepts systems of equations (here, a linear system):
In [5]: solve([x + 2*y + 1, x - 3*y - 2], x, y)
Out[5]: {x: 1/5, y: -3/5}

5. Nonlinear systems are also handled:
In [6]: solve([x**2 + y**2 - 1, x**2 - y**2 - S(1)/2],
 x, y)
Out[6]: [(-sqrt(3)/2, -1/2), (-sqrt(3)/2, 1/2),
 (sqrt(3)/2, -1/2), (sqrt(3)/2, 1/2)]

6. Singular linear systems can also be solved (here, there is an infinite number of
solutions because the two equations are collinear):
In [7]: solve([x + 2*y + 1, -x - 2*y - 1], x, y)
Out[7]: {x: -2*y - 1}

Symbolic and Numerical Mathematics

458

7. Now, let's solve a linear system using matrices containing symbolic variables:
In [8]: var('a b c d u v')
Out[8]: (a, b, c, d, u, v)

8. We create the augmented matrix, which is the horizontal concatenation of the
system's matrix with the linear coefficients and the right-hand side vector. This
matrix corresponds to the following system in x,y: ax+by=u, cx+dy=v:
In [9]: M = Matrix([[a, b, u], [c, d, v]]); M
Out[9]: Matrix([[a, b, u],
 [c, d, v]])
In [10]: solve_linear_system(M, x, y)
Out[10]: {x: (-b*v + d*u)/(a*d - b*c),
 y: (a*v - c*u)/(a*d - b*c)}

9. This system needs to be nonsingular in order to have a unique solution, which is
equivalent to saying that the determinant of the system's matrix needs to be nonzero
(otherwise the denominators in the preceding fractions are equal to zero):

In [11]: det(M[:2,:2])
Out[11]: a*d - b*c

There's more...
Matrix support in SymPy is quite rich; we can perform a large number of operations and
decompositions (see the reference guide at http://docs.sympy.org/latest/
modules/matrices/matrices.html).

Here are more references about linear algebra:

 f Linear algebra on Wikipedia, at http://en.wikipedia.org/wiki/Linear_
algebra#Further_reading

 f Linear algebra on Wikibooks, at http://en.wikibooks.org/wiki/Linear_
Algebra

Analyzing real-valued functions
SymPy contains a rich calculus toolbox to analyze real-valued functions: limits, power series,
derivatives, integrals, Fourier transforms, and so on. In this recipe, we will show the very
basics of these capabilities.

Getting ready
We first need to import SymPy. We also initialize pretty printing in the notebook (see the first
recipe of this chapter).

Chapter 15

459

How to do it...
1. Let's define a few symbols and a function (which is just an expression depending

on x):
In [1]: var('x z')
Out[1]: (x, z)
In [2]: f = 1/(1+x**2)

2. Let's evaluate this function at 1:
In [3]: f.subs(x, 1)
Out[3]: 1/2

3. We can compute the derivative of this function:
In [4]: diff(f, x)
Out[4]: -2*x/(x**2 + 1)**2

4. What is f's limit to infinity? (Note the double o (oo) for the infinity symbol):
In [5]: limit(f, x, oo)
Out[5]: 0

5. Here's how to compute a Taylor series (here, around 0, of order 9).
The Big O can be removed with the removeO() method.
In [6]: series(f, x0=0, n=9)
Out[6]: 1 - x**2 + x**4 - x**6 + x**8 + O(x**9)

6. We can compute definite integrals (here, over the entire real line):
In [7]: integrate(f, (x, -oo, oo))
Out[7]: pi

7. SymPy can also compute indefinite integrals:
In [8]: integrate(f, x)
Out[8]: atan(x)

8. Finally, let's compute f's Fourier transforms:

In [9]: fourier_transform(f, x, z)
Out[9]: pi*exp(-2*pi*z)

There's more...
SymPy includes a large number of other integral transforms besides the Fourier transform
(http://docs.sympy.org/dev/modules/integrals/integrals.html). However,
SymPy will not always be able to find closed-form solutions.

Symbolic and Numerical Mathematics

460

Here are a few general references about real analysis and calculus:

 f Real analysis on Wikipedia, at http://en.wikipedia.org/wiki/Real_
analysis#Bibliography

 f Calculus on Wikibooks, at http://en.wikibooks.org/wiki/Calculus

Computing exact probabilities and
manipulating random variables

SymPy includes a module named stats that lets us create and manipulate random variables.
This is useful when we work with probabilistic or statistical models; we can compute symbolic
expectancies, variances probabilities, and densities of random variables.

How to do it...
1. Let's import SymPy and the stats module:

In [1]: from sympy import *
 from sympy.stats import *
 init_printing()

2. Let's roll two dice, X and Y, with six faces each:
In [2]: X, Y = Die('X', 6), Die('Y', 6)

3. We can compute probabilities defined by equalities (with the Eq operator) or
inequalities:
In [3]: P(Eq(X, 3))
Out[3]: 1/6
In [4]: P(X>3)
Out[4]: 1/2

4. Conditions can also involve multiple random variables:
In [5]: P(X>Y)
Out[5]: 5/12

5. We can compute conditional probabilities:
In [6]: P(X+Y>6, X<5)
Out[6]: 5/12

6. We can also work with arbitrary discrete or continuous random variables:
In [7]: Z = Normal('Z', 0, 1) # Gaussian variable
In [8]: P(Z>pi)
Out[8]: -erf(sqrt(2)*pi/2)/2 + 1/2

Chapter 15

461

7. We can compute expectancies and variances:
In [9]: E(Z**2), variance(Z**2)
Out[9]: (1, 2)

8. We can also compute densities:
In [10]: f = density(Z)
In [11]: var('x')
 f(x)
Out[11]: sqrt(2)*exp(-x**2/2)/(2*sqrt(pi))

9. We can plot these densities:

In [12]: %matplotlib inline
 plot(f(x), (x, -6, 6))

The Gaussian density

How it works...
SymPy's stats module contains many functions to define random variables with classical
laws (binomial, exponential, and so on), discrete or continuous. It works by leveraging
SymPy's powerful integration algorithms to compute exact probabilistic quantities as
integrals of probability distributions. For example, ()P Z π> is:

Note that the equality condition is written using the Eq operator rather than the more
standard == Python syntax. This is a general feature in SymPy; == means equality between
Python variables, whereas Eq is the mathematical operation between symbolic expressions.

Symbolic and Numerical Mathematics

462

A bit of number theory with SymPy
SymPy contains many number-theory-related routines: obtaining prime numbers, integer
decompositions, and much more. We will show a few examples here.

Getting ready
To display legends using LaTeX in matplotlib, you will need an installation of LaTeX on your
computer (see this chapter's Introduction).

How to do it...
1. Let's import SymPy and the number theory package:

In [1]: from sympy import *
 init_printing()
In [2]: import sympy.ntheory as nt

2. We can test whether a number is prime:
In [3]: nt.isprime(2011)
Out[3]: True

3. We can find the next prime after a given number:
In [4]: nt.nextprime(2011)
Out[4]: 2017

4. What is the 1000th prime number?
In [5]: nt.prime(1000)
Out[5]: 7919

5. How many primes less than 2011 are there?
In [6]: nt.primepi(2011)
Out[6]: 305

6. We can plot ()xπ , the prime-counting function (the number of prime numbers less
than or equal to some number x). The famous prime number theorem states that
this function is asymptotically equivalent to x/log(x). This expression approximately
quantifies the distribution of prime numbers among all integers:
In [7]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline
 x = np.arange(2, 10000)
 plt.plot(x, map(nt.primepi, x), '-k',
 label='$\pi(x)$')

Chapter 15

463

 plt.plot(x, x / np.log(x), '--k',
 label='$x/\log(x)$')
 plt.legend(loc=2)

Distribution of prime numbers

7. Let's compute the integer factorization of a number:
In [8]: nt.factorint(1998)
Out[8]: {2: 1, 3: 3, 37: 1}
In [9]: 2 * 3**3 * 37
Out[9]: 1998

8. Finally, a small problem. A lazy mathematician is counting his marbles. When they are
arranged in three rows, the last column contains one marble. When they form four
rows, there are two marbles in the last column, and there are three with five rows. How
many marbles are there? (Hint: The lazy mathematician has fewer than 100 marbles.)

Counting marbles with the Chinese Remainder Theorem

Symbolic and Numerical Mathematics

464

The Chinese Remainder Theorem gives us the answer:

In [10]: from sympy.ntheory.modular import solve_congruence
In [11]: solve_congruence((1, 3), (2, 4), (3, 5))
Out[11]: (58, 60)

There are infinitely many solutions: 58 plus any multiple of 60. Since there
are less than 100 marbles, 58 is the right answer.

How it works...
SymPy contains many number-theory-related functions. Here, we used the Chinese Remainder
Theorem to find the solutions of the following system of arithmetic equations:

()

()

1 1mod

modk k

n a m

n a m

≡

≡

�

The Chinese Remainder Theorem

The triple bar is the symbol for modular congruence. Here, it means that mi divides ai-n.
In other words, n and ai are equal up to a multiple of mi. Reasoning with congruences is
very convenient when periodic scales are involved. For example, operations involving 12-
hour clocks are done modulo 12. The numbers 11 and 23 are equivalent modulo 12 (they
represent the same hour on the clock) because their difference is a multiple of 12.

In this recipe's example, three congruences have to be satisfied: the remainder of the number
of marbles in the division with 3 is 1 (there's one extra marble in that arrangement), it is 2 in
the division with 4, and 3 in the division with 5. With SymPy, we simply specify these values in
the solve_congruence() function to get the solutions.

The theorem states that solutions exist as soon as the mi are pairwise co-prime (any
two distinct numbers among them are co-prime). All solutions are congruent modulo the
product of the mi. This fundamental theorem in number theory has several applications,
notably in cryptography.

There's more...
Here are a few textbooks about number theory:

 f Undergraduate level: Elementary Number Theory, Gareth A. Jones, Josephine M.
Jones, Springer, (1998)

Chapter 15

465

 f Graduate level: A Classical Introduction to Modern Number Theory, Kenneth Ireland,
Michael Rosen, Springer, (1982)

Here are a few references:

 f Documentation on SymPy's number-theory module, available at http://docs.
sympy.org/dev/modules/ntheory.html

 f The Chinese Remainder Theorem on Wikipedia, at http://en.wikipedia.org/
wiki/Chinese_remainder_theorem

 f Applications of the Chinese Remainder Theorem, given at http://mathoverflow.
net/questions/10014/applications-of-the-chinese-remainder-
theorem

Finding a Boolean propositional formula
from a truth table

The logic module in SymPy lets us manipulate complex Boolean expressions, also known as
propositional formulas.

This recipe will show an example where this module can be useful. Let's suppose that, in a
program, we need to write a complex if statement depending on three Boolean variables. We
can think about each of the eight possible cases (true, true and false, and so on) and evaluate
what the outcome should be. SymPy offers a function to generate a compact logic expression
that satisfies our truth table.

How to do it...
1. Let's import SymPy:

In [1]: from sympy import *
 init_printing()

2. Let's define a few symbols:
In [2]: var('x y z')

3. We can define propositional formulas with symbols and a few operators:
In [3]: P = x & (y | ~z); P
Out[3]: And(Or(Not(z), y), x)

4. We can use subs() to evaluate a formula on actual Boolean values:
In [4]: P.subs({x: True, y: False, z: True})
Out[4]: False

Symbolic and Numerical Mathematics

466

5. Now, we want to find a propositional formula depending on x, y, and z,
with the following truth table:

A truth table

6. Let's write down all combinations that we want to evaluate to True, and those for
which the outcome does not matter:
In [6]: minterms = [[1,0,1], [1,0,0], [0,0,0]]
 dontcare = [[1,1,1], [1,1,0]]

7. Now, we use the SOPform() function to derive an adequate formula:
In [7]: Q = SOPform(['x', 'y', 'z'], minterms, dontcare); Q
Out[7]: Or(And(Not(y), Not(z)), x)

8. Let's test that this proposition works:

In [8]: Q.subs({x: True, y: False, z: False}),
 Q.subs({x: False, y: True, z: True})
Out[8]: (True, False)

How it works...
The SOPform() function generates a full expression corresponding to a truth table and
simplifies it using the Quine-McCluskey algorithm. It returns the smallest Sum of Products
form (or disjunction of conjunctions). Similarly, the POSform() function returns a Product
of Sums.

Chapter 15

467

The given truth table can occur in this case: suppose that we want to write a file if it doesn't
already exist (z), or if the user wants to force the writing (x). In addition, the user can prevent
the writing (y). The expression evaluates to True if the file is to be written. The resulting SOP
formula works if we explicitly forbid x and y in the first place (forcing and preventing
the writing at the same time is forbidden).

There's more...
Here are a few references:

 f The propositional formula on Wikipedia, at http://en.wikipedia.org/wiki/
Propositional_formula

 f Sum of Products on Wikipedia, at http://en.wikipedia.org/wiki/
Canonical_normal_form

 f The Quine–McCluskey algorithm on Wikipedia, at http://en.wikipedia.org/
wiki/Quine%E2%80%93McCluskey_algorithm

Analyzing a nonlinear differential system –
Lotka-Volterra (predator-prey) equations

Here, we will conduct a brief analytical study of a famous nonlinear differential system:
the Lotka-Volterra equations, also known as predator-prey equations. These equations are
first-order differential equations that describe the evolution of two interacting populations (for
example, sharks and sardines), where the predators eat the prey. This example illustrates how
to obtain exact expressions and results about fixed points and their stability with SymPy.

Getting ready
For this recipe, knowing the basics of linear and nonlinear systems of differential equations
is recommended.

How to do it...
1. Let's create some symbols:

In [1]: from sympy import *
 init_printing()
In [2]: var('x y')
 var('a b c d', positive=True)
Out[2]: (a, b, c, d)

Symbolic and Numerical Mathematics

468

2. The variables x and y represent the populations of the prey and predators, respectively.
The parameters a, b, c, and d are strictly positive parameters (described more precisely
in the How it works... section of this recipe). The equations are:

() ()

() ()

dx f x x a by
dt
dy g x y c dx
dt

= = −

= = − −

Lotka-Volterra equations

In [3]: f = x * (a - b*y)
 g = -y * (c - d*x)

3. Let's find the fixed points of the system (solving f(x,y) = g(x,y) = 0). We call them
(x0, y0) and (x1, y1):
In [4]: solve([f, g], (x, y))
Out[4]: [(0, 0), (c/d, a/b)]
In [5]: (x0, y0), (x1, y1) = _

4. Let's write the 2D vector with the two equations:
In [6]: M = Matrix((f, g)); M
Out[6]: Matrix([[x*(a - b*y)],
 [-y*(c - d*x)]])

5. Now, we can compute the Jacobian of the system, as a function of (x, y):
In [7]: J = M.jacobian((x, y)); J
Out[7]: Matrix([
 [a - b*y, -b*x],
 [d*y, -c + d*x]])

6. Let's study the stability of the first fixed point by looking at the eigenvalues of the
Jacobian at this point. The first fixed point corresponds to extinct populations:
In [8]: M0 = J.subs(x, x0).subs(y, y0); M0
Out[8]: Matrix([a, 0],
 [0, -c]])
In [9]: M0.eigenvals()
Out[9]: {a: 1, -c: 1}

The parameters a and c are strictly positive, so the eigenvalues are real and
of opposite signs, and this fixed point is a saddle point. As this point is unstable,
the extinction of both populations is unlikely in this model.

7. Let's consider the second fixed point now:
In [10]: M1 = J.subs(x, x1).subs(y, y1); M1

Chapter 15

469

Out[10]: Matrix([[0, -b*c/d],
 [a*d/b, 0]])
In [11]: M1.eigenvals()
Out[11]: {-I*sqrt(a)*sqrt(c): 1, I*sqrt(a)*sqrt(c): 1}

The eigenvalues are purely imaginary; thus, this fixed point is not hyperbolic. Therefore,
we cannot draw conclusions from this linear analysis about the qualitative behavior of
the system around this fixed point. However, we could show with other methods that
oscillations occur around this point.

How it works...
The Lotka-Volterra equations model the growth of the predator and prey populations, taking
into account their interactions. In the first equation, the ax term represents the exponential
growth of the prey, and -bxy represents death by predators. Similarly, in the second equation,
-yc represents the natural death of the predators, and dxy represents their growth as they eat
more and more prey.

To find the equilibrium points of the system, we need to find the values x, y such that dx/dt
= dy/dt = 0, that is, f(x, y) = g(x, y) = 0, so that the variables do not evolve anymore. Here, we
were able to obtain analytical values for these equilibrium points with the solve() function.

To analyze their stability, we need to perform a linear analysis of the nonlinear equations, by
taking the Jacobian matrix at these equilibrium points. This matrix represents the linearized
system, and its eigenvalues tell us about the stability of the system near the equilibrium point.
The Hartman–Grobman theorem states that the behavior of the original system qualitatively
matches the behavior of the linearized system around an equilibrium point if this point is
hyperbolic (meaning that no eigenvalues of the matrix have a real part equal to 0). Here,
the first equilibrium point is hyperbolic as a, c > 0, but the second is not.

Here, we were able to compute symbolic expressions for the Jacobian matrix and its
eigenvalues at the equilibrium points.

There's more...
Even when a differential system is not solvable analytically (as is the case here), a
mathematical analysis can still give us qualitative information about the behavior of the
system's solutions. A purely numerical analysis is not always relevant when we are interested
in qualitative results, as numerical errors and approximations can lead to wrong conclusions
about the system's behavior.

Symbolic and Numerical Mathematics

470

Here are a few references:

 f Matrix documentation in SymPy, available at http://docs.sympy.org/dev/
modules/matrices/matrices.html

 f Dynamical systems on Wikipedia, at http://en.wikipedia.org/wiki/
Dynamical_system

 f Equilibrium points on Scholarpedia, at www.scholarpedia.org/article/
Equilibrium

 f Bifurcation theory on Wikipedia, at http://en.wikipedia.org/wiki/
Bifurcation_theory

 f Chaos theory on Wikipedia, at http://en.wikipedia.org/wiki/Chaos_
theory

 f Further reading on dynamical systems, at http://en.wikipedia.org/wiki/
Dynamical_system#Further_reading

Getting started with Sage
Sage (www.sagemath.org) is a standalone mathematics software based on Python. It is an
open source alternative to commercial products such as Mathematica, Maple, or MATLAB. Sage
provides a unified interface to many open source mathematical libraries. These libraries include
SciPy, SymPy, NetworkX, and other Python scientific packages, but also non-Python libraries
such as ATLAS, BLAS, GSL, LAPACK, Singular, and many others.

In this recipe, we will give a brief introduction to Sage.

Getting ready
You can either:

 f Install Sage on your local computer (www.sagemath.org/doc/installation/)
 f Create Sage notebooks remotely in the cloud (https://cloud.sagemath.com/)

Being based on so many libraries, Sage is heavy and hard to compile from source. Binaries
exist for most systems except Windows, where you generally have to use VirtualBox (a
virtualization solution: www.virtualbox.org).

Alternatively, you can use Sage in a browser with an IPython notebook running on the cloud.

Note that Sage is not compatible with Python 3 at the time of this writing.

Chapter 15

471

Typically, Sage is used interactively with the built-in notebook (which resembles the IPython
notebook). If you want to use Sage in a Python program (that is, importing Sage from Python),
you need to run Sage's built-in Python interpreter (www.sagemath.org/doc/faq/faq-
usage.html#how-do-i-import-sage-into-a-python-script).

How to do it...
Here, we will create a new Sage notebook and introduce the most basic features:

1. Sage accepts mathematical expressions as we would expect:
sage: 3*4
12

2. Being based on Python, Sage's syntax is almost Python, but there are a few
differences. For example, the power exponent is the more classical ^ symbol:
sage: 2^3
8

3. Like in SymPy, symbolic variables need to be declared beforehand with the var()
function. However, the x variable is always predefined. Here, we define a new
mathematical function:
sage: f=1-sin(x)^2

4. Let's simplify the expression of f:
sage: f.simplify_trig()
cos(x)^2

5. Let's evaluate f on a given point:
sage: f(x=pi)
1

6. Functions can be differentiated and integrated:
sage: f.diff(x)
-2*cos(x)*sin(x)
sage: f.integrate(x)
1/2*x + 1/4*sin(2*x)

7. Sage also supports numerical computations in addition to symbolic computations:
sage: find_root(f-x, 0, 2)
0.6417143708729723

Symbolic and Numerical Mathematics

472

8. Sage also comes with rich plotting capabilities (including interactive plotting widgets):

sage: f.plot((x, -2*pi, 2*pi))

There's more...
This (too) short recipe cannot do justice to the huge list of possibilities offered by Sage.
Many aspects of mathematics are covered: algebra, combinatorics, numerical mathematics,
number theory, calculus, geometry, graph theory, and many others. Here are a few references:

 f An in-depth tutorial on Sage, available at www.sagemath.org/doc/tutorial/

 f The Sage reference manual, available at www.sagemath.org/doc/reference/

 f Videos on Sage, available at www.sagemath.org/help-video.html

See also
 f The Diving into symbolic computing with SymPy recipe

Index
Symbols
2to3 tool

about 47
reference link 48
using 48

100 NumPy exercises
reference link 132

44100 Hz sampling rate
reference link 354

%%cython cell magic 166
%debug magic command 75
%lprun command 123
%memit magic command

using, in IPython 126
%pdb on command 75
%%prun cell magic 118
%prun line magic 118
@pyimport macro 197
%run magic command 51, 118
%%timeit cell magic 117
%timeit command 117

A
adaptive histogram equalization

reference link 357
adjacency list 418
adjacency matrix 418
advanced image processing algorithms

reference link 354
advanced optimization methods, image

processing
reference link 314

alternative parallel computing
solutions, Python

references 188

Anaconda distribution
reference link 13

analog signal 334
annotations 165
Anti-Grain Geometry

about 223
reference link 224

API reference, InteractiveShell
reference link 36

API reference, skimage.feature module
reference link 370

API reference, skimage.filter module
reference link 361

API reference, skimage.morphology module
reference link 366

architecture, IPython notebook
about 81
multiple clients, connecting to kernel 82

array buffers 165
array computations

accelerating, with Numexpr 158, 159
array interface, NumPy

reference link 132
arrays

manipulating, with HDF5 142-145
manipulating, with PyTables 142-145

array selections
making, in NumPy 138, 139

array views 138
assert-like functions, NumPy

reference link 72
asynchronous parallel tasks

interacting with 189-191
AsyncResult class

elapsed attribute 191
get() method 192

474

metadata attribute 191
progress attribute 191
ready() method 191
reference link, for documentation 192
serial_time attribute 191
successful() method 191
wait() method 192

attributes, InteractiveShell class
audio filters

reference link 377
audio signal processing

reference link 354, 377
augmented matrix 458
autocorrelation

computing, of time series 349-352
reference link 352

AutoHotKey
reference link 61

AutoIt
reference link 61

automated testing 67
AVX 130

B
bagging 298
ball trees 288
band-pass filter

about 348
reference link 349

basemap
about 251, 442
geospatial data, manipulating with 443-445
references 420, 443

batch rendering 222
Bayesianism

reference link, for blog 228
Bayesian methods

computation, of posterior distribution 239
overview 237, 238
posteriori estimation, maximizing 240
reference 261

Bayesian theory 236
Bayes' theorem 237, 238
Bazaar 53
Bernoulli distribution

reference link 234

Bernoulli Naive Bayes classifier 291
bias-variance dilemma

about 271
reference link 271

bias-variance tradeoff
about 254
reference 254

bifurcation diagram
about 384
plotting, of chaotic dynamical

system 383-386
reference 387

Bifurcation theory
reference link 470

Binomial distribution
reference 237

Birnbaum-Sanders distribution
about 249
reference link 249

bisection method
about 315
reference link 317

Bitbucket 53
bivariate method 227
BLAS 130
Blaze

about 150, 156
reference link 148, 157

Blinn-Phong shading model
about 173
reference link 173

block 179
blocking mode 186
Bokeh

about 208
references 208, 211
used, for creating interactive web

visualizations 208-210
Bokeh figures 211
Boolean propositional formula

finding, from truth table 465, 466
Boosting

reference link 373
bootstrap aggregating 298
boundary condition 383
branches

references 59

475

branching 56
brentq() method 316
Brent's method

about 316
reference link 317

broadcasting rules
about 129, 132
reference link 132

Brownian motion
about 410
references 412
simulating 410, 411

Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm 318

B-tree 145
bus factor

references 62
Butterworth filter 348

C
calculus

about 458
references 460

Canopy distribution
reference link 13

cardinal sine 318
CART 301
cartopy

about 420
reference link 421

cascade classification API reference, OpenCV
reference link 373

cascade tutorial, OpenCV (C++)
reference link 373

causal filters 347
cdef keyword 165
cells 15, 441
cellular automaton 382
Census Bureau website

reference link 447
cffi

references 163
Chaos theory

references 386, 470
chaotic dynamical system

about 383

bifurcation diagram, plotting of 383-386
chi2 test, SciPy documentation

reference link 245
Chinese Remainder Theorem

about 464
references 465

chi-squared test
about 243-245
reference 245
used, for estimating correlation between

variables 241-244
Chromatic scale

reference link 379
chunks 145
classical graph problems

examples 418, 419
classification

about 269
examples 269

Classification and Regression Trees.
See CART

C library
wrapping, with ctypes 159-162

clustering
about 270, 306
hidden structures, detecting in

dataset 306-309
references 310

clusters 144, 270, 306
CMA-ES algorithm

reference link 323
code

debugging, with IPython 74, 75
parallelizing, with MPI 192-194
profiling, cProfile used 117-119
profiling, IPython used 117-121
profiling, with line_profiler 121-123
writing 48

code cells 17
code coverage

references 66
code debugging, with IPython

post-mortem mode 75
step-by-step debugging mode 75

coin tossing experiment 234
column-major order 131
command prompt 14

476

commit 55
Comms 107
compilation, with Cython

reference link 167
compiler-related installation instructions

about 151
Linux 152
Mac OS X 152
Windows 152

complex systems
reference 386

compressed sensing
about 335, 361
references 336

Computer-Aided Design (CAD) 220
concurrent programming 151
conda 61, 66
conditional probability distribution 238
Configurable class

about 38
example 38

configuration file 38
configuration object 38
configuration system, IPython

Configurable class 38
configuration file 38
configuration object 38
HasTraits class 38
mastering 36, 37
user profile 38

conjugate distributions
about 240
reference 240

connected-component labeling 437
connected components

about 434, 437
computing, in image 434-437
reference link 438

connected graph 418
constrained optimization algorithm 329
contiguous block 31, 145
contingency table

about 243-245
reference 245
used, for estimating correlation between

variables 241-244
continuous functions 312

continuous integration systems
about 74
references 66

continuous optimization 311
Continuous-time process

reference 409
Continuum Analytics

reference link 154
Contrast

reference link 357
Contrast Limited Adaptive Histogram

Equalization (CLAHE) 356
conversion examples, nbconvert

reference link 94
convex functions 312
convex optimization

about 312
reference link 314

convolutions
about 346
references 348

Conway's Game of Life
about 390
reference 390

corner detection
reference link 370

corner detection example, scikit-image
reference link 370

correlation coefficient
reference 244

counting process 408
course, Computational Fluid Dynamics

reference link 383, 399
Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) algorithm 322
coverage module 73
coveralls.io service 73
cProfile

reference link, for documentation 121
used, for profiling code 117-119

CPython 151
CRAN

reference link 266
credible interval

about 240
reference 240

477

cross-validation
about 276, 280, 281
grid search, performing with 281-284
reference link 280

CSS
references 99

CSS style
customizing, in notebook 96-98

CSV (Comma-separated values) 23
ctypes

about 150, 159
used, for wrapping C library 159-162

CUDA
about 176
massively parallel code, writing for NVIDIA

graphics cards (GPUs) 175-180
references 180

CUDA cores 179
CUDA programming model

block 179
grid 179
kernel 179
thread 179

CUDA SDK
reference link 177

cumulative distribution function
(CDF) 236, 249

curvefit
reference documentation 326

curve fitting 324
curve fitting regression problem 273
custom controls

adding, in notebook toolbar 94-96
custom JavaScript widget

creating, for notebook 103-107
custom magic commands

IPython extension, creating with 32-34
Cython

about 150, 163
Python code, accelerating with 163-165
reference link, for installing 163

Cython code
integrating, within Python package 166
optimizing 167-173

Cython extension types
reference link 173

Cython, installing on Windows
reference link 153

Cython, installing on Windows 64-bit
reference link 153

Cython modules
reference link 167

D
D3.js

about 211
NetworkX graph, visualizing with 211-214
references 211, 214

D3.js visualizations
matplotlib figures, converting to 215-217

data
analyzing, R used 261-265

data buffers
about 130
index buffers 221
textures 221
vertex buffers 221

data dimensions
observations 227
variables 227

data manipulation, pandas
references 27

data point 268
dataset

dimensionality, reducing with principal
component analysis (PCA) 302-305

exploring, with matplotlib 229-232
exploring, with pandas 229-232
hidden structures, detecting in 306-309

data structures, for graphs
reference link 420

data type 30
datautils package 73
data visualization 270, 302
debugger

references 76
debugging 74
decisions trees 298
decision theory 227
defensive programming 64
degree of belief 228

478

Delaunay triangulation
about 442
reference link 442

dependencies
about 187
functional dependency 187
graph dependency 187

Dependency Walker
reference link 153

dependent parallel tasks 187
descartes package

about 419, 442
reference link 420, 443

design patterns 64
deterministic algorithm 314
deterministic dynamical systems

about 382
cellular automaton 382
discrete-time dynamical systems 382
Ordinary Differential Equations (ODEs) 382
Partial Differential Equations (PDEs) 382

development version, Vispy
reference 218

dichotomy method. See bisection method
difference equation 347
differentiable functions 312
differential equations 382
digital filters

applying, to speech sounds 374-376
digital signal

about 334, 346
linear filters, applying to 343-346
resolution 334
sampling rate 334

digital signal processing
references 348

Dijkstra's algorithm
about 451
reference link 451

dilation 365
dimensionality 268
direct acyclic graph (DAG)

about 260, 433
dependencies, resolving with topological

sort 430-433
reference link 434

directed graph 418

direct interface 186
discrete convolution 360
Discrete Fourier Transform (DFT) 341
discrete optimization 311
discrete-time dynamical system 382
discrete-time Markov chain

about 402
simulating 402-405

discrete-time signal 334
distributed version control system

about 53
working 55

document classification example, scikit-learn
reference link 293

DRAM (Dynamic Random Access
Memory) 180

dtype. See data type
Dynamically Linked Libraries (DLLs) 159
dynamical systems

references 383, 470

E
Eclipse/PyDev 52
edges 418
ego graph 427
elementary cellular automaton

about 387
simulating 387-389

elements, in rendering pipeline of OpenGL
data buffers 221
primitive type 221
shaders 221
variables 221

embarrassingly parallel problem 405
empirical distribution function 249
engines output printing, in real-time

reference 192
ensemble learning 298
Equal temperament

reference link 379
equations

solving 457, 458
equations, SymPy

reference link 454
equilibrium points, Scholarpedia

reference link 470

479

equilibrium state, of physical system
finding, by minimizing potential

energy 326-330
ESRI shapefile 420
Eulerian paths

reference link 419
Euler-Maruyama method

about 412
reference 416

Euler method
about 393
reference 394

exact probabilities
computing 460, 461

examples, classification
handwritten digit recognition 269
spam filtering 269

expectation-maximization algorithm
about 309
reference link 310

exploratory data analysis, IPython 22-26
exploratory methods 226
exponential distribution

reference 247
extension system, IPython

reference link, for documentation 35
extrema

reference link 314

F
Fast Fourier Transform (FFT)

about 337
used, for analyzing frequency components

of signal 337-340
feature extraction 270
feature scaling 270
feature selection

about 270
references 271

features, for regression
selecting, random forests used 298-301

feedback term 347
feedforward term 347
FFmpeg

reference link 374
fftfreq() utility 339

filters
applying, on image 358-360

filters, frequency domain 347
Finite Impulse Response (FIR) filter

about 347
references 348

Fiona
reference links 420, 442

FIR filter 344
FitzHugh-Nagumo system

references 399
fixtures 71
FLoating-point Operations Per Second. See

FLOPS
flood-fill algorithm

about 437
reference link 438

FLOPS 175
fluid dynamics 382
Fokker-Planck equation

about 411
reference link 412

Folium
reference link 421

force-directed graph drawing
reference link 425

forking 59
Fourier transforms

about 335
references 342

fragment shader 219
frequency components, signal

analyzing, with Fast Fourier
Transform (FFT) 337-340

frequentism
reference link, for blog 228

frequentist method
about 228
reference link, for classic misuses 228

frequentist methods, hypothesis testing 233
frequentists 236
Fruchterman-Reingold force-directed

algorithm 424
functional dependency 187
function, fitting to data

nonlinear least squares used 324, 325

480

G
Gaussian filter

about 358
reference link 361

Gaussian kernel 254
GCC (GNU Compiler Collection) 152
GDAL/OGR

reference link 442
General Purpose Programming on Graphics

Processing Units. See GPGPU
geographical distances

reference link 452
Geographic Information Systems

(GIS) 418, 420
geometry

references 420
GeoPandas

about 420
reference link 421

geospatial data
manipulating, with basemap 443-445
manipulating, with Shapely 443-445

ggplot2
reference link 208

ggplot, for Python
reference link 208

GIL
reference link 151

Git
about 53, 56
references 56

git branch command 57
Git branching

workflow 56-58
git diff command 57
git-flow 58
GitHub 53
git log command 57
Gitorious 53
git remote add command 55
git status command 57
Global Interpreter Lock (GIL)

about 151
reference link 151

glue language 10

Google code 53
GPGPU 176
gradient

reference link, for definition 322
gradient descent 321
graph coloring

reference link 418
graph dependency 187
Graphics Processing Units (GPUs) 150, 175
graphs

about 417, 418
edges 418
manipulating, with NetworkX 421-423
nodes 418
references 420
vertices 418
visualizing, with NetworkX 421, 423

graph theory
reference link 420

graph-tool package
about 419
reference link 420

graph traversal
reference link 418

GraphViz
reference link 260

grayscale image 354
great-circle distance 451
grid 179
grid search

about 280, 281
performing, with cross-validation 281-284
reference link 280

Gross Domestic Product (GDP) 442
groups. See clusters
GUI debuggers 77
GUI on Mac OS X 54
GUI on Windows 54
Guppy-PE

reference link 126

H
h5py

about 142
references 145, 146

481

Haar cascades library
reference link 373

Hamiltonian paths
reference link 419

Handsontable JavaScript library
reference link 103

handwritten digit recognition 269
handwritten digits

recognizing, K-nearest neighbors (K-NN)
classifier used 285-288

Harris corner measure response image 368
Harris matrix 369
Hartman-Grobman theorem 469
HasTraits class 38
HDF5

about 142
arrays, manipulating with 142-145
heterogeneous tables, manipulating

with 146-148
HDF5 chunking

references 146
heat equation 411
Hessian 322
heterogeneous computing 181
heterogeneous platforms

massively parallel code, writing for 181-184
heterogeneous tables

manipulating, with HDF5 146-148
manipulating, with PyTables 146-148

hidden structures
detecting, in dataset 306-309

Hierarchical Data Format. See HDF5
high-level plotting interfaces

references 208
high-pass filter

about 348
reference link 349

high-quality Python code
writing 63-66

histogram 355
histogram equalization

reference link 357
holding times 409
Hooke's law

reference link 330
hubs 419

I
IDEs 50, 52
IDEs, for Python

reference link 52
IHaskell 80
IJulia package

about 80, 150
reference link 195

image
about 354
connected components,

computing in 434-437
filters, applying on 358-360
points of interest, finding in 367-369
segmenting 362-366

image denoising
reference link 361

image exposure
manipulating 355-357

image histogram
reference link 357

image processing
reference link 354

image processing, SciPy lecture notes
reference link 366

image processing tutorial, scikit-image
reference link 370

image segmentation
reference link 366

Impermium Kaggle challenge
reference link 293

implicit-copy operations
versus in-place operations 130

impulse responses
references 348

independent variables 382
indexing routines

reference link 140
index, IPython extensions

reference link 36
inequalities

solving 457, 458
Infinite Impulse Response (IIR) filter

about 347
references 348

initial condition 383

482

in-kernel queries
about 148
references 148

in-place operations
versus implicit-copy operations 130

instance-based learning
example 288
reference link 289

Integrated Development
Environments. See IDEs

integrate package, SciPy
reference link, for documentation 394

Intel Math Kernel Library (MKL) 130
interactive computing workflow, IPython 50
InteractiveShell class

about 34
attributes 35
methods 35

interactive web visualizations
creating, with Bokeh 208-210

interactive widgets
using 99-102

interest point detection
reference link 370

intermediate value theorem
about 316
reference link 317

Inverse Discrete Fourier Transform 342
Inverse Fast Fourier Transform 342
ipycache 61
IPython

%memit magic command, using in 126
about 10, 50
code, debugging with 74, 75
code, parallelizing with MPI 192-194
configuration system, mastering 36, 37
embedding, within program 76
exploratory data analysis 22-26
interacting, with asynchronous

parallel tasks 189-191
interactive computing workflows 50
kernel, creating for 39-44
NetworkX graph, visualizing

with D3.js 211-214
Python code, distributing across multiple

cores 185-187
references 39

time, evaluating by statement 117
reference link 14
reference link, for installation instructions 14
used, for profiling code 117-121
using, with text editor 51

IPython 2.0 81
IPython blocks

used, for teaching programming in
notebook 84-87

IPython documentation
reference link 82

IPython engines 186
IPython extension

about 33
creating, with custom magic

commands 32-34
loading 35

IPython notebook
about 52
architecture 81
converting to other formats,

with nbconvert 89-93
data analyzing, with R programming

language 261-265
overview 13-19

IPython.parallel
references 188

IPython terminal 50
IPython-text editor workflow 51
IPython tutorial

reference link 266
Iris flower data set

reference link 305
IRuby 80
iterated functions

reference link 387
Itō calculus

reference link 416

J
Jacobian matrix 469
JavaScript Object Notation. See JSON
joblib 61, 188
JSON 80, 89
Julia

about 150, 195

483

reference links 195, 200
strengths 199
trying, in notebook 195-198

Jupyter
about 80
reference link 80

Just-In-Time compilation (JIT)
about 150
Python code, accelerating with 154-156

K
Kaggle

about 281
references 281, 289

Kartograph
about 420
reference link 421

KDE implementations, scikit-learn
reference link 254

KDE implementations, statsmodels
reference link 254

K-D trees 288
kernel

about 10, 179, 254, 296
creating, for IPython 39-44
multiple clients, connecting to 82

KernelBase API
reference link 44

kernel density estimation (KDE)
about 251-253
reference link 254
used, for estimating probability distribution

nonparametrically 251-254
kernel spec 43
kernel trick 297
kernprof file

reference link, for downloading 123
Khronos Group 181
K-means algorithm

about 307
reference link 310

K-nearest neighbors (K-NN) classifier
about 285
handwritten digits, recognizing with 285-288
references 289

Kolmogorov-Smirnov test
about 249
reference link 250

L
L2 norm 278
Langevin equation

about 412
reference link 416

LAPACK 130
Laplacian matrix 424
LaTeX

about 17, 454
references 454

LaTeX equations 18
L-BFGS-B algorithm

about 329
reference link 330

least squares method
references 265, 280

Leave-One-Out cross-validation 280
left singular vectors 305
Levenberg-Marquardt algorithm

about 325
reference link 326

Lévi function 320
linear algebra

references 458
linear combination 134
linear filters

about 343, 346
and convolutions 346
applying, to digital signal 343-346
references 348

linear system 383
Linear Time-Invariant (LTI) 346
line_profiler

reference link 121
used, for profiling code 121-123

Linux 152
Lloyd's algorithm 309
LLVM (Low Level Virtual Machine) 156
load-balanced interface 186
locality of reference

about 130
reference link 132

484

local minimum 312, 313
local repository

creating 54
logistic map

about 384
reference link 387

logistic regression
about 281
references 285

Lotka-Volterra equations 467, 469
low-pass filter

about 348
reference link 349

Lyapunov exponent
about 384, 385
reference link 387

M
machine learning

about 267
references 267, 272

magic commands
about 16
cythonmagic 35
octavemagic 35
reference link 35
rmagic 35

Magics class 39
mandelbrot() function

about 160, 164
iterations argument 162, 177
pointer argument 162, 177
size argument 162, 177

manually-vectorized code
Numba, comparing with 157

manual testing 67
MAP

reference link 240
Maple 11
Markdown

about 17
reference link 60

Markdown cell 17
Markov chain Monte Carlo (MCMC)

about 261

Bayesian model, fitting by sampling from
posterior distribution 255-261

reference link 261
Markov chains

about 401
references 406

Markov property
about 401
reference link 402

Mathematica 11
mathematical function

minimizing 317-322
root, finding of 314-316

mathematical morphology
about 365
reference link 366

mathematical optimization
about 311
reference link 314

MathJax
about 454
reference link 454

matplotlib
about 10, 202
dataset, exploring with 229-232
reference link, for installation instructions 14
references, for improving styling 205

matplotlib figures
converting, to D3.js visualizations 215-217
improving, with prettyplotlib 202-205

matrix
about 30
reference link 458, 470

maxima
reference link 314

maximum a posteriori (MAP) 240
maximum likelihood estimate

about 247
reference link 250

maximum likelihood method
about 245
used for fitting, probability distribution

to data 246-250
memoize pattern 61
memory mapping

about 140, 142
NumPy arrays, processing with 140, 141

485

memory mapping, arrays 116
memory_profiler package

about 126
memory usage of code, profiling

with 124, 125
reference link, for downloading 125
using, for standalone Python programs 126

memory usage, of code
profiling, with memory_profiler 124, 125

Mercurial 53
merge 58
Message Passing Interface. See MPI
messaging protocols

reference link 44
Metaheuristics for function minimization

reference link 323
methods, InteractiveShell class

ev() 35
ex() 35
push() 35
register_magic_function() 35
run_cell() 35
safe_execfile() 35
system() 35
write() 35
write_err() 35

Metropolis-Hastings algorithm
about 255, 261
reference link 261

Milstein method
reference link 416

MinGW
reference link 152

minima
reference link 314

modal user interface 11
model selection

about 271
reference link 272

Model-View-Controller (MVC) 107
Monte Carlo method

about 255, 405
references 406

moving average method 348
MPI

about 192
code, parallelizing with 192-194

references, for tutorials 194
mpi4py package

reference link 192
MPICH

reference link 192
mpld3, GitHub

reference link 217
mpld3 library

about 215
matplotlib figures, converting to D3.js

visualizations 215-217
reference link, for installation

instructions 215
mplexporter framework 217
msysGit

reference link 53
multi-core processors

advantage, taking of 174
multidimensional array, NumPy

for fast array computations 28-31
multiple clients

connecting, to kernel 82
multiprocessing module 185
multiprocessors 179
multivariate method 227

N
Naive Bayes classifier

references 293
Natural Earth

reference link 442
Natural Language Toolkit. See NLTK
Navier-Stokes equations

about 383
reference link 383

nbconvert
about 21
references 21, 94
used, for converting IPython notebook

to other format 89-93
nbviewer

about 22
reference link 22, 94

NetworkX
about 419
graphs, manipulating with 421-423

486

graphs, visualizing with 421-423
reference link, for installation

instructions 421
social network, analyzing with 425-429

NetworkX graph
visualizing, with D3.js 211-214

Neumann boundary conditions
about 395
reference link 399

Newton's method
about 316
reference link 317, 323

Newton's second law of motion
about 393
reference link 394

NLTK
reference link 293

nodes 418
nogil keyword 175
noise reduction

reference link 361
non-informative prior distributions

about 241
reference link 241

nonlinear differential system
analyzing 467-469

nonlinear least squares
reference link 326
used, for fitting function to data 324, 325

nonlinear least squares curve fitting 323
nonlinear system 383
nonparametric estimation 251
nonparametric model 229
non-Python languages, notebook

reference link 83
nose

reference link, for documentation 71
unit tests, writing with 67-73

notebook
about 10, 80
contents 21, 22
CSS style, customizing in 96-98
custom JavaScript widget,

creating for 103-107
Julia language, trying in 195-198
programming, teaching with IPython

blocks 84-87

references 22, 80
security 82
sound synthesizer, creating in 377-379
webcam images, processing from 108-113

notebook architecture
references 83

notebook ecosystem 80
notebook toolbar

custom controls, adding in 94-96
notebook widgets 11, 12
null hypothesis 233
Numba

about 150, 154
comparing, with manually-vectorized

code 157
Python code, accelerating with 154-156
references 154, 157

number theory, SymPy
about 462-464
references 465

numerical methods, ODEs
references 394

Numexpr
about 150, 156-158
array computations, accelerating

with 158, 159
reference link, for installation

instructions 158
NumPy

about 10, 28, 453
efficient array selections, making in 138, 139
references 32
stride tricks, using with 133, 134
unnecessary array copying, avoiding 127-129

NumPy arrays
about 130
features 130
processing, with memory mapping 140, 141

numpy.ctypeslib module 159
NumPy optimization 116
NumPy routines

reference link 140
NumPy, Travis Oliphant

reference link 150
NVIDIA graphics cards (GPUs)

massively parallel code, writing for 175-180
Nyquist criterion 335

487

Nyquist frequency 335
Nyquist rate 335
Nyquist-Shannon sampling theorem

about 335
reference link 335

O
OAuth authentication codes 425
objective function 312
ODEPACK package, FORTRAN

reference link 394
Online Python Tutor

about 124
reference link 124

OpenCL
about 176
massively parallel code, writing for

heterogeneous platforms 181-184
references 180
resources 184

OpenCL compute unit 183
OpenCL NDRange 183
OpenCL SDKs

references 181
OpenCL work groups 183
OpenCL work items 183
Open Computer Vision (OpenCV)

about 354, 370
faces, detecting in image 370-372
references 354, 371

OpenGL 220
OpenGL ES 2.0 221
OpenGL Program 219
OpenGL Shading Language (GLSL) 221
OpenGL viewport 220
OpenMP 174
OpenStreetMap

reference link 420
OpenStreetMap service 420
order 382
ordinary differential equation

simulating, with SciPy 390-393
Ordinary Differential Equations (ODEs)

about 382, 390
reference link 394

ordinary least squares regression 278
Ornstein-Uhlenbeck process 412

reference link 416
orthodromic distance 451
Otsu's method

reference link 366
out-of-core computations 140
output areas 15
overfitting 268

about 271
reference link 271

P
packaging 66
pandas

about 11, 27, 232
dataset, exploring with 229-232
reference link, for installation instructions 14

pandoc
reference link, for documentation 89

ParallelPython 188
parameter vector 278
parametric estimation method 251
parametric method 228
partial derivatives 382
Partial Differential Equations (PDEs)

about 382, 394
references 399
simulating 395-399

partition 269
Pearson's correlation coefficient

about 244
reference link 244

PEP8 65
pep8 package 65
pickle module 61
Pillow

reference link, for installing 84
point process

about 257, 402, 406
reference link 409

points of interest
about 367
finding, in image 367-369

point sprites 223

488

Poisson process
about 257, 406
reference link 409
simulating 406-409

polynomial interpolation, linear
regression 279

posterior distribution 237
power spectral density (PSD) 338, 342
premature optimization 120
prettyplotlib

about 202
reference link, for installation

instructions 202
used, for improving matplotlib

figures 202-205
prime-counting function 462
prime number theorem 462
primitive assembly 221
primitive type 221
principal component analysis (PCA)

about 302
reference link 305
used, for reducing dataset

dimensionality 302-305
principal components 302, 305
principle of minimum energy

reference link 330
principle of minimum total potential

energy 329
prior probability distribution 228, 237
probabilistic model 228
probability distribution, fitting to data

maximum likelihood method used 246-250
probability distribution nonparametrically

estimating, with kernel density
estimation 251-254

probability mass function (PMF) 237
probit model

about 269
reference link 269

profiling 117
profiling tools, Python

reference link 121
program optimization

reference link 120
propositional formula

reference link 467

pstats
reference link, for documentation 121

psutil
reference link 125

PTVS 52
pull request 59
pure tone

about 379
reference link 379

p-value 235
PyAudio

reference link 377
PyCharm 52
PyCUDA

references 176, 177
pydot 301
pydub package

reference link, for downloading 373
Pylint

reference link 65
PyMC package

about 255
references 255, 261

Pympler
reference link 126

PyOpenCL
about 181
references 181, 184

pyplot 205
PyPy

about 150
references 150

PySizer
reference link 126

PyTables
about 142
arrays, manipulating with 142-145
heterogeneous tables, manipulating

with 146-148
references 142, 146

Python
about 150
references 12, 14

Python 2
about 14, 46
references 49
versus Python 3 46, 47

489

Python 2, or Python 3
selecting between 47

Python 2.x 153
Python 3

about 14, 46
references 49
versus Python 2 46, 47

Python 3.x 153
Python 32-bit 152
Python 64-bit 152
PythonAnywhere 188
python-apt package

reference link 430
Python, as scientific environment

historical retrospective 10, 11
references 11

Python code
accelerating, with Cython 163-165
accelerating, with Just-In-Time

compilation 154-156
accelerating, with Numba 154-156
distributing, across multiple cores with

IPython 185-187
Python Enhancement Proposal number 8. See

PEP8
python-graph package

about 419
reference link 420

Python implementation, of CMA-ES
reference link 323

Python, interfacing with C
reference link 150

Python package
about 35
Cython code, integrating within 166

Python program
step-by-step execution, tracing 124

Python Tools for Visual Studio. See PTVS
Python wheels, for Windows 64-bit

reference link 153
Python wrapper

references 371
Python(x,y) distribution

reference link 13

Q
Qhull

about 442
reference link 442

quantified signal 334
Quasi-Newton methods

about 322
reference link 323

Quine-McCluskey algorithm
about 466
reference link 467

R
R

about 261
references 261, 265
used, for analyzing data 261-264

Rackspace
reference link 94

Radial Basis Function (RBF) 296
Random Access Memory (RAM) 130
random forests

about 298
references 301
used, for selecting features for

regression 298-301
random graphs

about 419
reference link 420

random subspace method 301
random variables

about 237
manipulating 460, 461

random walk 410
rasterization 221
RATP

reference link 438
Ray tracing

reference link 173
reachability relation 437
reaction-diffusion systems

about 394
references 399

Read-Eval-Print Loop. See REPL
real analysis

references 460

490

real-valued functions
analyzing 459

rebasing 58
red, green, and blue (RGB) 354
regions 441
regression

about 72, 269
examples 269

regression analysis
reference link 265

regularization 271, 276
remote repository

cloning 54, 55
rendering pipeline

about 220
working 221

Renewal theory
reference link 409

REPL 50, 81
reproducible interactive computing

experiments
about 59
references 63
tips, for conducting 60-62

requests module
reference link 68

reStructuredText (reST) 60
ridge regression model

about 276, 279
drawback 279
reference link 279

road network
route planner, creating for 446-451

robust model 271
rolling average algorithm

implementing, with stride tricks 135-137
rolling mean 26
root

finding, of mathematical function 314-316
root finding course, SciPy

reference link 317
route planner

creating, for road network 446-451
row-major order 131
rpy2

reference link, for downloading 262

R tutorial
reference link 266

Rule 110 automaton
about 389
reference link 390

RunSnakeRun
about 121
reference link 121

S
saddle point 468
Sage

about 11, 454
references 470, 472

Sage notebook
creating 471, 472
reference link 470

sample 268
sample mean 234
scene graph 223
scientific visualization, Vispy 223
scikit-image package

about 353
reference links 353, 355

scikit-learn package
about 268
API 278
fit() method 278
overview 273-276
predict() method 278
references 273, 280
text data, handling 289-292

SciPy
about 10
ordinary differential equation,

simulating with 390-393
scipy.optimize module

about 315, 318
references 314, 317, 322

scipy.spatial.voronoi module
reference link, for documentation 442

seaborn
about 205
reference link, for installation

instructions 205
statistical plots, creating with 205-207

491

security, notebooks 82
segmentation tutorial, scikit-image

reference link 366
self.send_response() method

IOPub socket 44
message type 44

sequential locality 130
serial dependence

reference link 352
shader composition system 223
shaders

about 219
fragment shaders 221
vertex shaders 221

shape, array 30
Shapefile

about 442
reference links 420, 442

Shapely
about 419, 442
geospatial data, manipulating with 443-445
reference links 420, 442

shortest paths
reference links 419, 451

sigmoid function 284
signal processing

references 336
signals

about 333
analog 334
digital 334

SIMD paradigm 176
SimpleCV

reference link 354
simulated annealing algorithm

about 322
reference link 323

Single Instruction, Multiple Data
(SIMD) 127, 157

Singular Value Decomposition (SVD) 305
singular values 305
six module

about 48
reference link 48

small-world graphs
reference link 420

small-world networks 419

Sobel filter
about 359
reference link 361

social data analysis, Python
reference link 430

social network
analyzing, with NetworkX 425-429

sounds 354
sound synthesizer

creating, in notebook 377-379
SourceForge 53
spam filtering 269
sparse decomposition 336
sparse matrices

about 141
references 141

sparse matrix 290
spatial locality 130
Spatial Poisson process

reference link 409
speech sounds

digital filters, applying to 374-376
Sphinx

about 60
reference link 60

Split Bregman algorithm
reference link 361

Spyder 52
SSE 130
Stack Overflow

reference link 440, 448
standalone Python programs

memory_profiler package, using for 126
stashing 57
state diagram 405
statistical average 228
statistical data analysis 226
statistical hypothesis testing

about 233
references 236

statistical inference 227
statistical plots

creating, with seaborn 205-207
statistical textbooks

reference link 229
statistics

reference link 229

492

statsmodels
about 246
reference link 246

stats module 460, 461
stochastic algorithm 314
stochastic cellular automata 401
Stochastic Differential Equations

(SDEs)
about 401, 412
reference link 416
simulating 412-415

stochastic dynamical systems
about 401
reference link 402

Stochastic Partial Differential Equations
(SPDEs) 401

stream processors 179
strided indexing scheme 134
stride tricks

rolling average algorithm, implementing
with 135-137

using, with NumPy 133, 134
structure tensor

about 369
reference link 370

Sum of Products
reference link 467

supervised learning
about 268
reference link 268

Support Vector Classifier (SVC) 294
support vector machines (SVMs)

about 293
references 297, 298
used, for classifying tasks 293-297

SVD decomposition
reference link 305

SVG (Scalable Vector Graphics) 18
SWIG 150
symbolic computing, SymPy 454-456
SymPy

about 453, 454
number theory 462-464
reference link 459
used, for symbolic computing 454, 456

Synthesizer
reference link 379

T
task interface

reference link, for documentation 192
tasks

classifying, support vector machines
(SVMs) used 293-297

term frequency-inverse document frequency.
See tf-idf

test coverage 73
test-driven development 73
test functions for optimization

reference link 320
test set 268
test statistics 233
text data

handling, with scikit-learn 289-292
text editor

IPython, using with 51
text feature extraction, scikit-learn

reference link 292
Text-To-Speech (TTS) 374
tf-idf

about 292
reference link 292

Theano
about 156
reference link 157

thread 179
timbre

about 379
reference link 379

time-dependent signals 333
time profiling 116
time series

about 333, 352
autocorrelation, computing of 349-352
reference link 352

topological sort
about 430, 433
reference link 434
used for resolving dependencies, in directed

acyclic graph 430-433
TortoiseGit

reference link 53
total variation denoising

about 361

493

reference link 361
trace module

reference link 124
tracing tools 124
training set 268
trait attributes 102
transformations 223
transition matrix 405
Traveling Salesman Problem

reference link 419
truth table

Boolean propositional formula,
finding from 465, 466

Turing complete 389
Twitter API, rate limit

reference link 425
Twitter Developers website

reference link 425
Twitter Python package

reference link 425
two-dimensional array 30
typed memory views 165

U
unconstrained optimization 313
undirected graph 418
unit tests

reference links 66
writing, with nose 67-73

univariate method 227
unsupervised learning

about 268-270
clustering 270
density estimation 270
dimension reduction 270
manifold learning 270
methods 302
reference links 270, 306

urllib2 module 67
user profile 38

V
Vandermonde matrix

about 275, 279
reference link 279

variables 268, 227
variables types

attributes 221
uniforms 221

varyings
texture samplers 221
uniforms 221

vectorized instructions 130
vectorizer

about 292
reference link 292

vector space 268
Vega

about 208
reference link 208

vertex shader 219
vertices 418
views 131
Vincent

about 208, 214, 420
reference links 208, 214, 421

Viola-Jones object detection framework
about 371
reference link 373

violin plot 206
VirtualBox

reference link 470
virtualenv 61
Vispy

about 218, 221
for scientific visualization 223
references 223, 224

Vispy, for high-performance interactive
data visualizations 218-222

visuals 223
VizQL

about 208
reference link 208

voice frequency
reference link 377

Von Neumann stability analysis
references 399

Voronoi diagram
about 438
computing, of set of points 438-441
reference link 442

494

W
Wakari 188
warps 179
wavelet transform 342
weave module 163
webcam images

processing, from notebook 108-113
WebCL 184
WebGL 221
white box model 301
white noise

about 415
reference link 416

widget
references 102

widget architecture, IPython notebook 2.0+
references 108

Wiener process. See Brownian motion
Windows

about 152
DLL Hell 153
Python 32-bit 152
Python 64-bit 152

Winpdb 77
Wolfram's code

about 388
reference link 390

workflow, Git branching 56-58
workflows

references 59
workflows, unit testing 73
wrapper kernels

about 44
reference link 44

Z
Zachary's Karate Club graph 212
ZeroMQ (ZMQ)

reference link 81
z-test

performing 233-236

Thank you for buying

IPython Interactive Computing and
Visualization Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning IPython for
Interactive Computing and
Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and
data visualization

1. A practical step-by-step tutorial which will help you
to replace the Python console with the powerful
IPython command-line interface.

2. Use the IPython notebook to modernize the way
you interact with Python.

3. Perform highly efficient computations with NumPy
and Pandas.

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization.

2. Understand the topics such as importing data for
visualization and formatting data for visualization.

3. Understand the underlying data and how to use
the right visualizations.

Please check www.PacktPub.com for information on our titles

NumPy Cookbook
ISBN: 978-1-84951-892-5 Paperback: 226 pages

Over 70 interesting recipes for learning the Python open
source mathematical library, NumPy

1. Do high performance calculations with clean and
efficient NumPy code.

2. Analyze large sets of data with statistical
functions.

3. Execute complex linear algebra and mathematical
computations.

Matplotlib for Python
Developers
ISBN: 978-1-84719-790-0 Paperback: 308 pages

Build remarkable publication-quality plots the easy way

1. Create high quality 2D plots by using Matplotlib
productively.

2. Incremental introduction to Matplotlib, from the
ground up to advanced levels.

3. Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as websites to utilize them in
Python applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Tour of Interactive Computing with IPython
	Introduction
	Introducing the IPython notebook
	Getting started with exploratory data analysis in IPython
	Introducing the multidimensional array in NumPy for fast array computations
	Creating an IPython extension with custom magic commands
	Mastering IPython's configuration system
	Creating a simple kernel for IPython

	Chapter 2: Best Practices in Interactive Computing
	Introduction
	Choosing (or not) between Python 2 and
Python 3
	Efficient interactive computing workflows with IPython
	Learning the basics of the distributed version control system Git
	A typical workflow with Git branching
	Ten tips for conducting reproducible interactive computing experiments
	Writing high-quality Python code
	Writing unit tests with nose
	Debugging your code with IPython

	Chapter 3: Mastering the Notebook
	Introduction
	Teaching programming in the notebook with IPython blocks
	Converting an IPython notebook to other formats with nbconvert
	Adding custom controls in the notebook toolbar
	Customizing the CSS style in the notebook
	Using interactive widgets – a piano in the notebook
	Creating a custom JavaScript widget in the notebook – a spreadsheet editor for pandas
	Processing webcam images in real time from the notebook

	Chapter 4: Profiling and Optimization
	Introduction
	Evaluating the time taken by a statement in IPython
	Profiling your code easily with cProfile
and IPython
	Profiling your code line-by-line with
line_profiler
	Profiling the memory usage of your code with memory_profiler
	Understanding the internals of NumPy to avoid unnecessary array copying
	Using stride tricks with NumPy
	Implementing an efficient rolling average algorithm with stride tricks
	Making efficient array selections in NumPy
	Processing huge NumPy arrays with memory mapping
	Manipulating large arrays with HDF5 and PyTables
	Manipulating large heterogeneous tables with HDF5 and PyTables

	Chapter 5: High-performance Computing
	Introduction
	Accelerating pure Python code with Numba and Just-In-Time compilation
	Accelerating array computations with Numexpr
	Wrapping a C library in Python with ctypes
	Accelerating Python code with Cython
	Optimizing Cython code by writing less Python and more C
	Releasing the GIL to take advantage of
	multi-core processors with Cython and OpenMP
	Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA
	Writing massively parallel code for heterogeneous platforms with OpenCL
	Distributing Python code across multiple cores with IPython
	Interacting with asynchronous parallel tasks in IPython
	Parallelizing code with MPI in IPython
	Trying the Julia language in the notebook

	Chapter 6: Advanced Visualization
	Introduction
	Making nicer matplotlib figures with prettyplotlib
	Creating beautiful statistical plots with Seaborn
	Creating interactive web visualizations with Bokeh
	Visualizing a NetworkX graph in the IPython notebook with D3.js
	Converting matplotlib figures to D3.js visualizations with mpld3
	Getting started with Vispy for high-performance interactive data visualizations

	Chapter 7: Statistical Data Analysis
	Introduction
	Exploring a dataset with pandas and matplotlib
	Getting started with statistical hypothesis testing – a simple z-test
	Getting started with Bayesian methods
	Estimating the correlation between two
	variables with a contingency table and
a chi-square test
	Fitting a probability distribution to data with the maximum likelihood method
	Estimating a probability distribution
	nonparametrically with a kernel density estimation
	Fitting a Bayesian model by sampling from
	a posterior distribution with a Markov chain Monte Carlo method
	Analyzing data with the R programming language in the IPython notebook

	Chapter 8: Machine Learning
	Introduction
	Getting started with scikit-learn
	Predicting who will survive on the Titanic with logistic regression
	Learning to recognize handwritten digits with a K-nearest neighbors classifier
	Learning from text – Naive Bayes for Natural Language Processing
	Using support vector machines for classification tasks
	Using a random forest to select important features for regression
	Reducing the dimensionality of a dataset with a principal component analysis
	Detecting hidden structures in a dataset with clustering

	Chapter 9: Numerical Optimization
	Introduction
	Finding the root of a mathematical function
	Minimizing a mathematical function
	Fitting a function to data with nonlinear least squares
	Finding the equilibrium state of a physical system by minimizing its potential energy

	Chapter 10: Signal Processing
	Introduction
	Analyzing the frequency components of a signal with a Fast Fourier Transform
	Applying a linear filter to a digital signal
	Computing the autocorrelation of a time series

	Chapter 11: Image and Audio Processing
	Introduction
	Manipulating the exposure of an image
	Applying filters on an image
	Segmenting an image
	Finding points of interest in an image
	Detecting faces in an image with OpenCV
	Applying digital filters to speech sounds
	Creating a sound synthesizer in the notebook

	Chapter 12: Deterministic Dynamical Systems
	Introduction
	Plotting the bifurcation diagram of a chaotic dynamical system
	Simulating an elementary cellular automaton
	Simulating an ordinary differential equation with SciPy
	Simulating a partial differential
equation – reaction-diffusion systems
and Turing patterns

	Chapter 13: Stochastic Dynamical Systems
	Introduction
	Simulating a discrete-time Markov chain
	Simulating a Poisson process
	Simulating a Brownian motion
	Simulating a stochastic differential equation

	Chapter 14: Graphs, Geometry,
and Geographic Information Systems
	Introduction
	Manipulating and visualizing graphs with NetworkX
	Analyzing a social network with NetworkX
	Resolving dependencies in a directed acyclic graph with a topological sort
	Computing connected components in
an image
	Computing the Voronoi diagram of a set
of points
	Manipulating geospatial data with Shapely and basemap
	Creating a route planner for a road network

	Chapter 15: Symbolic and Numerical Mathematics
	Introduction
	Diving into symbolic computing with SymPy
	Solving equations and inequalities
	Analyzing real-valued functions
	Computing exact probabilities and manipulating random variables
	A bit of number theory with SymPy
	Finding a Boolean propositional formula from a truth table
	Analyzing a nonlinear differential system – Lotka-Volterra (predator-prey) equations
	Getting started with Sage

	Index

