
www.it-ebooks.info

http://www.it-ebooks.info/

Learning BeagleBone
Python Programming

Unleash the potential of BeagleBone using Python

Alexander Hiam

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning BeagleBone Python Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1080715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-970-2

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Alexander Hiam

Reviewers
Pete Bachant

Hardik Vijaykumar Pandya

Acquisition Editor
Shaon Basu

Content Development Editor
Anand Singh

Technical Editor
Bharat Patil

Copy Editor
Merilyn Pereira

Project Coordinator
Vijay Kushlani

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Alexander Hiam is a freelance embedded systems designer. He has a bachelor's
degree in computer science (embedded systems) from Marlboro College. He is the
sole proprietor of Gray Cat Labs, where he has been doing contract software and
hardware development since 2012.

Alex developed and actively maintains the PyBBIO Python library for BeagleBone.
He has designed BeagleBone Capes professionally for clients, and he also actively
contributes to the BeagleBone community by helping provide support on the mailing
list and IRC channel and mentoring for the BeagleBoard.org organization during
Google Summer of Code.

I'd like to thank my cat, Moondog, for being so patient with me
while I worked on this book, as he was sure I should have been
playing with him instead.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Pete Bachant is a mechanical engineering PhD student at the University of New
Hampshire who enjoys writing Python and uses the BeagleBone to interact with
motion control and data acquisition hardware.

Hardik Vijaykumar Pandya is an electrical engineering graduate from TU
Delft in the Netherlands. He's been working on open source hardware and software
for the last 7 years and has conducted state-wide workshops on them in different
universities across Gujarat, India.

His projects have been selected for display at the national level and his work on
hobby electronics has been lauded by the mayor of Ahmedabad a number of times.
His work on optical shape and motion recognition using the Microsoft Kinect camera
also won the best and most innovative project of the year award at Nirma University.

Nowadays, he reviews books on subjects related to electronics and manages
his own business in the same domain. He does a lot of public speaking on the
topics of getting started with electronics and entrepreneurship. He also writes
articles at http://hardik.org and shares his views on Twitter. His Twitter
handle is @hvpandya.

He can be reached for questions and queries at hardik@hardik.org.

www.it-ebooks.info

http://hardik.org
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

[i]

Table of Contents
Preface v
Chapter 1: Before We Begin 1

An overview of BeagleBone 1
General purpose input/output 2
Analog-to-digital converter 3

Pulse width modulation 4
Universal asynchronous receiver/transmitter 4
Serial peripheral interface 5
Inter-Integrated Circuit 6

Tools and additional hardware 6
The BeagleBone design 8
Board comparison 9
Helpful resources 10
Summary 10

Chapter 2: Getting Started 11
Initial setup 11
Updating your Debian image 12
Connecting to your BeagleBone 14

The Cloud9 IDE 14
SSH 15

Connecting to the Internet 17
Ethernet 17
Network forwarding 18

Using the serial console 22
Updating your software 23
The PyBBIO library 23
The Adafruit_BBIO library 25
Summary 26

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 3: Digital Outputs 27
GPIO modules 27

Kernel drivers 27
Pin multiplexing 28

Interactive GPIO 29
Calculating resistor values for LEDs 32
Driving higher currents from GPIO pins 33
Blink 36
Taking advantage of the OS 36

Multiprocessing 37
Running at startup 38

Summary 39
Chapter 4: PWM and ADC Subsystems 41

PWM 41
Fading an LED 44
Servo motors 45

ADC 49
Voltage divider 49
Voltage follower 51

Your first robot 55
Summary 58

Chapter 5: User Input 59
Buttons 59

Pull-up/pull-down resistors 61
Polling 63
Interrupts 70

Potentiometers 72
Summary 76

Chapter 6: Program Output 77
LED displays 77

LED bar graphs 80
7-segment displays 82
The LED matrix 85

SMTP 87
Character LCD 90
Summary 93

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 7: Serial Communication 95
Serial communication 95
UART 95
I2C 104
SPI 110
Summary 115

Chapter 8: Interfacing with External Devices 117
Accelerometers 117

Hooking it up 118
Reading data 119
Writing a module 121
Using interrupts 124

Summary 132
Chapter 9: Using the Network 133

TCP/IP 133
HTTP 139
IoT Services 141

Phant 141
dweet.io 144
Freeboard 147

Summary 152
Chapter 10: A Practical Example 153

Weather station 153
Connecting to the Internet 155
Weather alerts 159
Summary 167

Appendix A: The BeagleBone Black Pinout 169
Appendix B: Disabling HDMI 171
Index 173

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
The BeagleBone Black is a powerful system that can be used in a huge number
of cool projects and is a great platform to learn about embedded systems and
embedded Linux, but it can be difficult for beginners to find the resources they
need to get started with it. The goal of this book is to use the Python programming
language to introduce you to many of the different hardware interfaces available
on the BeagleBone Black, and to teach you how to use them to communicate with
external hardware with the help of the PyBBIO and Adafruit_BBIO Python libraries.
This book will take you through the system, from initial setup to creating complete
programs, and each new concept along the way is introduced with practical and
contextual examples.

What this book covers
Chapter 1, Before We Begin, introduces you to the BeagleBone Black and to each of its
hardware interfaces that are used throughout the book.

Chapter 2, Getting Started, takes you through the initial steps to get your BeagleBone
Black setup and ready to use, and briefly introduces you to the PyBBIO and
Adafruit_BBIO Python libraries.

Chapter 3, Digital Outputs, goes more in depth into using the GPIO modules to
generate digital outputs, and guides you through your first hardware interface
programs to blink some LEDs.

Chapter 4, PWM and ADC Subsystems, describes in more detail the pulse width
modulation and analog-to-digital converter subsystems, and guides you through
using them to fade LEDs, control servo motors, measure light levels, and more. It
also introduces some basic concepts for analog signal conditioning.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

Chapter 5, User Input, presents some methods of using external hardware to
interface with your BeagleBone programs, including potentiometers, buttons,
and rotary encoders.

Chapter 6, Program Output, covers some methods of using external hardware to
provide feedback to the user, from LED and LCD displays to sending e-mails and
text messages.

Chapter 7, Serial Communication, describes in more depth the UART, I2C, and SPI
serial subsystems and how they can be used to communicate with external
digital devices.

Chapter 8, Interfacing with External Devices, walks you through the steps required
to interface with a new digital device by writing a Python module to communicate
with an accelerometer over I2C.

Chapter 9, Using the Network, shows you some ways of taking advantage of the
BeagleBone Black's network connection to remotely control and monitor your
applications.

Chapter 10, A Practical Example, walks you through using what you've learned to
build a BeagleBone Black weather station with remote monitoring and automatic
over/under temperature e-mail or text message alarms.

Appendix A, The BeagleBone Black Pinout, provides you with a visual description of the
BeagleBone Black's expansion headers and the different ways each pin can be used.

Appendix B, Disabling HDMI, teaches you to disable the HDMI output.

What you need for this book
This book specifically targets the BeagleBone Black. It also assumes a Windows
OS where setup steps are required to be run on a desktop or laptop PC, as in my
experience Windows has been the main OS of folks who are just starting out
with BeagleBone.

Who this book is for
If you are a Python programmer and have never had any experience with embedded
Linux and hardware development, this book is for you. Some previous Linux
experience will be helpful, but is not required.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, and user
input are shown as follows: "This will open the crontab file in nano, which is a
command line text editor."

A block of code is set as follows:

def loop():
 print "switch state:", digitalRead(SW_PIN)
 delay(250)
run(setup, loop)

Any command-line input or output is written as follows:

root@beaglebone:/var/lib/cloud9# ping -c 3 graycat.io

PING graycat.io (198.100.47.208) 56(84) bytes of data.

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Select
Obtain IP address automatically and click on OK."

Warnings or important notes appear in a box like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

[ix]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Image Disclaimer
This book includes images of breadboard wiring which were
generated using Fritzing (http://fritzing.org), and schematics
generated using Eagle (http://cadsoftusa.com/). It also
includes some screen captures of a Rigol oscilloscope.

www.it-ebooks.info

http://fritzing.org
http://cadsoftusa.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Before We Begin
Before we start hooking up hardware and writing code, we'll need to have an
understanding of what we're working with. This chapter will introduce you to the
BeagleBone and highlight the various interfaces it provides to connect to external
devices. It will cover:

• An overview of the BeagleBone system
• An overview of the BeagleBone's peripheral interfaces, and what types of

external devices each can connect to
• Some additional hardware and tools that you will need if you want to

duplicate the examples given throughout the book, and where you can
buy them

An overview of BeagleBone
The BeagleBone boards are a series of small, powerful, and affordable Linux
computers that are perfect for embedded applications such as home automation,
robotics, industrial control, and much more. They are designed by BeagleBoard.org
(http://beagleboard.org/) and are fully open source. They are based on the Texas
Instruments AM335x 1GHz ARM Cortex-A8 series of microprocessors, and can run a
number of different operating systems, including various GNU/Linux distributions,
Android, and even Windows Embedded CE. The current BeagleBone model being
produced is the BeagleBone Black rev C, which ships with a Debian GNU/Linux
distribution. Therefore, this book will focus on using Debian on the BeagleBone Black,
though much of the information given will apply to other BeagleBone models and
Linux distributions as well.

www.it-ebooks.info

http://beagleboard.org/
http://www.it-ebooks.info/

Before We Begin

[2]

The following screenshot shows the BeagleBone board:

The BeagleBone Black's AM335x microprocessor contains a number of built-in
peripheral interface subsystems, enabling it to accept and generate many different
forms of inputs and outputs. The BeagleBone Black includes two 2 x 23 pin rows of
female header pins, giving a total of 92 connection points for hardware expansion
using the processor's peripheral interface subsystems.

General purpose input/output
The general purpose input/output (GPIO) module handles all the digital input and
output. In this context, digital refers to the fact that the signals are binary; they are
either 1 or 0, represented by fully on and fully off respectively. In the case of the
AM335x, the fully-on level is 3.3V, and the fully-off level is 0V. The GPIO module is
used for inputs such as switches and buttons, which are either on or off. Its outputs
can be used to control devices, such as LEDs, buzzers, and relays.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Analog-to-digital converter
The analog-to-digital converter (ADC) module is used to measure analog voltages.
The AM335x ADC can only measure voltages between 0V and 1.8V (and voltages
outside this range may damage your BeagleBone), but, in later chapters, you will
learn how to divide larger voltages to be within this range. The ADC can be used
to receive inputs from devices such as potentiometers, which can be used to create
varying voltages, measure the voltage output of analog sensors for temperature,
light, sound, and different types of gases, and with some additional external
components it can be used to measure electrical current.

www.it-ebooks.info

http://www.it-ebooks.info/

Before We Begin

[4]

Pulse width modulation
The pulse width modulation (PWM) module is essentially used to generate a square
wave signal at a fixed frequency, and then vary its duty cycle. It gives us the ability
to accurately generate pulses of a configured duration, repeating at a configured
frequency. Like the GPIO module, the PWM module on the BeagleBone Black
operates at 3.3V. These PWM signals can be used to control servo motors, vary the
speed of DC motors and the brightness of LEDs, and with some additional external
components they can be used to generate varying voltages.

Universal asynchronous receiver/transmitter
The universal asynchronous receiver/transmitter (UART) modules are used to
transmit and receive RS-232 style serial signals, which is an industry standard
for serializing and transferring information between two devices using a pair of
unidirectional digital signals. They can be used to communicate with PCs, Bluetooth
and Wi-Fi radio modules, and GPS receivers. The BeagleBone Black's UART modules
also operate at 3.3V.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

Serial peripheral interface
The serial peripheral interface (SPI) module is used to communicate over SPI,
which is another industry standard serial protocol. Whereas UARTs are generally
used to connect two devices, SPI is made to connect one master device to one or
many slave devices. It is commonly used on devices such as small character and
graphics LCD screens, external ADCs, and DACs (Digital-to-Analog converters),
as well as on many different types of sensor. The BeagleBone Black's SPI modules
operate at 3.3V as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Before We Begin

[6]

Inter-Integrated Circuit
Inter-Integrated Circuit (I2C) is yet another industry standard serial protocol. It also
allows a master device to communicate with a bus of many slave devices, but it
requires fewer pins than SPI. It is commonly used by real-time clocks (RTCs), as well
as in many types of sensors, including Micro-Electro-Mechanical Systems (MEMS)
devices, such as accelerometers, magnetometers, and gyroscopes. The BeagleBone's
I2C modules operate at 3.3V.

Tools and additional hardware
The majority of the demo programs in this book use external hardware that must be
purchased separately. Each time a demo program is given, which requires additional
parts, they will be listed by part number and/or description. We will do our best
to use the most readily available and lowest cost parts. All of the parts used can be
purchased from one or more of the following resources:

• SparkFun: https://www.sparkfun.com/
• Adafruit Industries: http://www.adafruit.com/
• Digi-Key: http://www.digikey.com/
• Mouser: http://www.mouser.com/
• Farnell / Newark / Element14: http://www.farnell.com/

www.it-ebooks.info

https://www.sparkfun.com/
http://www.adafruit.com/
http://www.digikey.com/
http://www.mouser.com/
http://www.farnell.com/
http://www.it-ebooks.info/

Chapter 1

[7]

The circuits in each demo will be assembled using solderless breadboard and jumper
wires. Both come in many different shapes and sizes.

Breadboards and jumper wires can be purchased from any of the preceding links,
and you'll probably want to start out with one standard-sized breadboard and a
jumper wire kit, such as that from Adafruit:

• Breadboard: http://www.adafruit.com/products/239
• Jumper wires: http://www.adafruit.com/products/153

That should provide enough breadboard space and jumper wires to assemble most,
if not all, of the demo circuits in this book.

www.it-ebooks.info

http://www.adafruit.com/products/239
http://www.adafruit.com/products/153
http://www.it-ebooks.info/

Before We Begin

[8]

Just like with software, it is inevitable when assembling hardware that things
won't always work the first time. There are many tools that can greatly reduce
the time it takes to fix these problems. The most useful for the circuits in this book
will be a multimeter, which is a tool that measures voltage and current, and often
additional properties such as resistance, capacitance, and frequency. Both SparkFun
and Adafruit carry very affordable digital multimeters. While these are not high
quality measurement tools, they are certainly suitable for these circuits. Though not
essential, I would highly recommend having some sort of multimeter on hand when
building the circuits in this book.

More helpful than a multimeter for debugging tools such as PWM and serial protocols
is an oscilloscope, which shows you a plot of voltage over time to visualize many
different signals in a circuit. This is a more expensive tool, and will be less necessary
for these circuits. Throughout the book, however, you will see screen captures of an
oscilloscope to show various signals, and it should become evident just how helpful
they can be. Again, Adafruit and SparkFun carry affordable oscilloscopes.

The BeagleBone design
The BeagleBone was designed with prototyping in mind. If its shape and size look
familiar to you, it's probably because the board was designed to fit inside an Altoids
tin, which is great for both transportation and making custom enclosures. All of the
expansion pins are broken out on to two female headers with a 2.54 mm pin pitch,
which is one of the most commonly used spacings in the hobby and DIY world, and
mating male header pins can easily be soldered by hand to add-on boards or wires.
The board can be powered through USB or with a standard DC barrel jack, and
power can also be supplied through the expansion headers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Board comparison
There are a number of low-cost single-board GNU/Linux computers on the market
these days, so let's take a look at how the BeagleBone Black stacks up against a
couple of its most popular competitors.

BeagleBone Black Intel Edison Raspberry Pi 2 B
CPU 1 GHz single-core

ARM Cortex-A8
500 MHz dual-core
Intel Atom

900 MHz quad-core
ARM Cortex-A7

Flash 4 GB eMMC,
expandable with uSD

4 GB eMMC uSD card

RAM 512 MB 1 GB 1 GB
Video microHDMI N/A HDMI, Composite
Network 10/100 Mbit Ethernet Dual-band a/b/g/n

Wi-Fi, Bluetooth 4.0
10/100 Mbit Ethernet

GPIO pins 65 20 40
ADC channels 7 6 N/A
PWM channels 8 4 2
UARTs 4 1 1
SPI ports 2 1 1
I2C ports 2 1 2
Coprocessor 2x 200 MHz 32-bit

PRU microcontrollers
100 MHz 32-bit Intel
Quark

N/A

Price (USD) $49 $49.95 $39.95

The BeagleBone Black offers great performance and far more hardware expansion
capabilities at about the same cost as the Edison and Raspberry Pi 2 B. That
combined with its active open source community makes it a great choice for
a huge variety of projects.

Another important feature of the BeagleBone is the two built-in PRU (programmable
real-time unit) microcontrollers. These are built right into the AM335x CPU and are
on the ARM interconnect, so they can share memory with the ARM processor as
well as provide direct access to the peripherals. This means high-speed, real-time
tasks can be executed on the PRUs asynchronously without any interruption from
the Linux kernel. With growing kernel driver support and documentation to compile
and load firmware to PRUs, and for communicating with the code running on them
from GNU/Linux user space, they really set the BeagleBone apart from much of its
competition. The PRUs are outside the scope of this book, but there are plenty of
tutorials and examples to be found on the Web.

www.it-ebooks.info

http://www.it-ebooks.info/

Before We Begin

[10]

Helpful resources
One of the BeagleBone Black's strong suits is the large community surrounding it.

The official site at http://beagleboard.org/ has lots of great information.

The main source for help with BeagleBone-related issues is the mailing list at
https://groups.google.com/forum/#!forum/beagleboard.

There are also plenty of helpful people on the #beagle IRC channel at
http://beagleboard.org/Community/Live%20Chat.

There are also many resources online that can help fill the gaps this book leaves on the
electrical side. For instance, the Element14 community at http://www.element14.
com/community/welcome and the EEVBlog at http://www.eevblog.com/, both
contain a wealth of great material, as well as very active electronics forums.

Summary
You should now have a better understanding of what the BeagleBone has to offer,
and maybe even some insight into the types of devices we will be interfacing with
in later chapters.

In the next chapter, you will be plugging in your BeagleBone Black and learning how
to log in and get everything we need installed and up to date.

www.it-ebooks.info

http://beagleboard.org/
https://groups.google.com/forum/#!forum/beagleboard
http://beagleboard.org/Community/Live%20Chat
http://www.element14.com/community/welcome
http://www.element14.com/community/welcome
http://www.eevblog.com/
http://www.it-ebooks.info/

[11]

Getting Started
In this chapter, we will go through the initial steps to get your BeagleBone Black set
up. By the end of it, you should be ready to write your first Python program. We will
cover the following topics:

• Logging in to your BeagleBone
• Connecting to the Internet
• Updating and installing software
• The basics of the PyBBIO and Adafruit_BBIO libraries

Initial setup
If you've never turned on your BeagleBone Black, there will be a bit of initial setup
required. You should follow the most up-to-date official instructions found at
http://beagleboard.org/getting-started, but to summarize, here are the steps:

1. Install the network-over-USB drivers for your PC's operating system.
2. Plug in the USB cable between your PC and BeagleBone Black.
3. Open Chrome or Firefox and navigate to http://192.168.7.2

(Internet Explorer is not fully supported and might not work properly).

If all goes well, you should see a message on the web page served up by the
BeagleBone indicating that it has successfully connected to the USB network:

www.it-ebooks.info

http://beagleboard.org/getting-started
http://www.it-ebooks.info/

Getting Started

[12]

If you scroll down a little, you'll see a runnable Bonescript example, as in the
following screenshot:

If you press the run button you should see the four LEDs next to the Ethernet
connector on your BeagleBone light up for 2 seconds and then return to their normal
function of indicating system and network activity. What's happening here is the
Javascript running in your browser is using the Socket.IO (http://socket.io)
library to issue remote procedure calls to the Node.js server that's serving up the web
page. The server then calls the Bonescript API (http://beagleboard.org/Support/
BoneScript), which controls the GPIO pins connected to the LEDs. This book won't
be covering Bonescript, but this example is the quickest way to control some external
hardware, so it's a great place to start.

Updating your Debian image
The GNU/Linux distributions for platforms such as the BeagleBone are typically
provided as ISO images, which are single file copies of the flash memory with the
distribution installed. BeagleBone images are flashed onto a microSD card that the
BeagleBone can then boot from. It is important to update the Debian image on your
BeagleBone to ensure that it has all the most up-to-date software and drivers, which
can range from important security fixes to the latest and greatest features. First,
grab the latest BeagleBone Black Debian image from http://beagleboard.org/
latest-images. You should now have a .img.xz file, which is an ISO image with
XZ compression.

www.it-ebooks.info

http://socket.io
http://beagleboard.org/Support/BoneScript
http://beagleboard.org/Support/BoneScript
http://beagleboard.org/latest-images
http://beagleboard.org/latest-images
http://www.it-ebooks.info/

Chapter 2

[13]

Before the image can be flashed from a Windows PC, you'll have to decompress it.
Install 7-Zip (http://www.7-zip.org/), which will let you decompress the file from
the context menu by right-clicking on it.

You can install Win32 Disk Imager (http://sourceforge.net/projects/
win32diskimager/) to flash the decompressed .img file to your microSD card. Plug
the microSD card you want your BeagleBone Black to boot from into your PC and
launch Win32 Disk Imager. Select the drive letter associated with your microSD card;
this process will erase the target device, so make sure the correct device is selected:

Next, press the browse button and select the decompressed .img file, then press Write:

www.it-ebooks.info

http://www.7-zip.org/
http://sourceforge.net/projects/win32diskimager/
http://sourceforge.net/projects/win32diskimager/
http://www.it-ebooks.info/

Getting Started

[14]

The image burning process will take a few minutes. Once it is complete, you can eject
the microSD card, insert it into the BeagleBone Black and boot it up. You can then
return to http://192.168.7.2 to make sure the new image was flashed successfully
and the BeagleBone is able to boot.

Connecting to your BeagleBone
If you're running your BeagleBone with a monitor, keyboard, and mouse connected,
you can use it like a standard desktop install of Debian. This book assumes you are
running your BeagleBone headless (without a monitor). In that case, we will need a
way to remotely connect to it.

The Cloud9 IDE
The BeagleBone Debian images include an instance of the Cloud9 IDE
(https://c9.io) running on port 3000. To access it, simply navigate to your
BeagleBone Black's IP address with the port appended after a colon, that is,
http://192.168.7.2:3000. If it's your first time using Cloud9, you'll see the
welcome screen, which lets you customize the look and feel:

www.it-ebooks.info

https://c9.io
http://www.it-ebooks.info/

Chapter 2

[15]

The left panel lets you organize, create, and delete files in your Cloud9 workspace.
When you open a file for editing, it is shown in the center panel, and the lower panel
holds a Bash shell and a Javascript REPL. Files and terminal instances can be opened
in both the center and bottom panels. Bash instances start in the Cloud9 workspace,
but you can use them to navigate anywhere on the BeagleBone's filesystem. If you've
never used the Bash shell I'd encourage you to take a look at the Bash manual
(https://www.gnu.org/software/bash/manual/), as well as walk through a
tutorial or two. It can be very helpful and even essential at times, to be able to use
Bash, especially with a platform such as BeagleBone without a monitor connected.

Another great use for the Bash terminal in Cloud9 is for running the Python
interactive interpreter, which you can launch in the terminal by running python
without any arguments:

SSH
If you're a Linux user, or if you would prefer not to be doing your development
through a web browser, you may want to use SSH to access your BeagleBone
instead. SSH, or Secure Shell, is a protocol for securely gaining terminal access to
a remote computer over a network. On Windows, you can download PuTTY from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html, which
can act as an SSH client.

www.it-ebooks.info

https://www.gnu.org/software/bash/manual/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.it-ebooks.info/

Getting Started

[16]

Run PuTTY, make sure SSH is selected, and enter your BeagleBone's IP address and
the default SSH port of 22:

When you press Open, PuTTY will open an SSH connection to your BeagleBone and
give you a terminal window (the first time you connect to your BeagleBone it will
ask you if you trust the SSH key; press Yes). Enter root as the username and press
Enter to log in; you will be dropped into a Bash terminal:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

As in the Cloud9 IDE's terminals, from here, you can use the Linux tools to move
around the filesystem, create and edit files, and so on, and you can run the Python
interactive interpreter to try out and debug Python code.

Connecting to the Internet
Your BeagleBone Black won't be able to access the Internet with the default
network-over-USB configuration, but there are a couple ways that you can
connect your BeagleBone to the Internet.

Ethernet
The simplest option is to connect the BeagleBone to your network using an
Ethernet cable between your BeagleBone and your router or a network switch.
When the BeagleBone Black boots with an Ethernet connection, it will use DHCP
to automatically request an IP address and register on your network.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[18]

Once you have your BeagleBone registered on your network, you'll be able to log in to
your router's interface from your web browser (usually found at http://192.168.1.1
or http://192.168.2.1) and find out the IP address that was assigned to your
BeagleBone. Refer to your router's manual for more information. The current
BeagleBone Black Debian images are configured to use the hostname beaglebone, so
it should be pretty easy to find in your router's client list. If you are using a network
on which you have no way of accessing this information through the router, you could
use a tool such as Fing (http://www.overlooksoft.com) for Android or iPhone to
scan the network and list the IP addresses of every device on it.

Since this method results in your BeagleBone being assigned a new IP address, you'll
need to use the new address to access the Getting Started pages and the Cloud9 IDE.

Network forwarding
If you don't have access to an Ethernet connection, or it's just more convenient to
have your BeagleBone connected to your computer instead of your router, it is
possible to forward your Internet connection to your BeagleBone over the USB
network. On Windows, open your Network Connections window by navigating
to it from the Control Panel or by opening the start menu, typing ncpa.cpl, and
pressing Enter. Locate the Linux USB Ethernet network interface and take note of
the name; in my case, its Local Area Network 4. This is the network interface used to
connect to your BeagleBone:

www.it-ebooks.info

http://www.overlooksoft.com
http://www.it-ebooks.info/

Chapter 2

[19]

First, right-click on the network interface that you are accessing the Internet through,
in my case, Wireless Network Connection, and select Properties. On the Sharing
tab, check Allow other network users to connect through this computer's Internet
connection, and select your BeagleBone's network interface from the dropdown:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[20]

After pressing OK, Windows will assign the BeagleBone interface a static IP address,
which will conflict with the static IP address of http://192.168.7.2 that the
BeagleBone is configured to request on the USB network interface. To fix this, you'll
want to right-click the Linux USB Ethernet interface and select Properties, then
highlight Internet Protocol Version 4 (TCP/IPv4) and click on Properties:

Select Obtain IP address automatically and click on OK;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

Your Windows PC is now forwarding its Internet connection to the BeagleBone, but
the BeagleBone is still not configured properly to access the Internet. The problem is
that the BeagleBone's IP routing table doesn't include 192.168.7.1 as a gateway, so it
doesn't know the network path to the Internet. Access a Cloud9 or SSH terminal, and
use the route tool to add the gateway, as shown in the following command:

route add default gw 192.168.7.1

Your BeagleBone should now have Internet access, which you can test by pinging
a website:

root@beaglebone:/var/lib/cloud9# ping -c 3 graycat.io
PING graycat.io (198.100.47.208) 56(84) bytes of data.
64 bytes from 198.100.47.208.static.a2webhosting.com (198.100.47.208):
icmp_req=1 ttl=55 time=45.6 ms
64 bytes from 198.100.47.208.static.a2webhosting.com (198.100.47.208):
icmp_req=2 ttl=55 time=45.6 ms
64 bytes from 198.100.47.208.static.a2webhosting.com (198.100.47.208):
icmp_req=3 ttl=55 time=46.0 ms

--- graycat.io ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 45.641/45.785/46.035/0.248 ms

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[22]

The IP routing will be reset at boot up, so if you reboot your BeagleBone, the Internet
connection will stop working. This can be easily solved by using Cron, a Linux tool
for scheduling the automatic running of commands. To add the correct gateway at
boot, you'll need to edit the crontab file with the following command:

crontab –e

This will open the crontab file in nano, which is a command line text editor. We can
use the @reboot keyword to schedule the command to run after each reboot:

@reboot /sbin/route add default gw 192.168.7.1

Press Ctrl + X to exit nano, then press Y, and then Enter to save the file. Your
forwarded Internet connection should now remain after rebooting.

Using the serial console
If you are unable to use a network connection to your BeagleBone Black; for
instance, if your network is too slow for Cloud9 or you can't find the BeagleBone's IP
address, there is still hope! The BeagleBone Black includes a 6-pin male connector;
labeled J1, right next to the P9 expansion header (we'll learn more about the P8
and P9 expansion headers soon!). You'll need a USB to 3.3 V TTL serial converter,
for example, from Adafruit http://www.adafruit.com/products/70 or Logic
Supply http://www.logicsupply.com/components/beaglebone/accessories/
ls-ttl3vt. You'll need to download and install the FTDI virtual COM port driver
for your operating system from http://www.ftdichip.com/Drivers/VCP.htm,
then plug the connector into the J1 header such that the black wire lines up with the
header's pin 1 indicator, as shown in the following screenshot:

www.it-ebooks.info

http://www.adafruit.com/products/70
http://www.logicsupply.com/components/beaglebone/accessories/ls-ttl3vt
http://www.logicsupply.com/components/beaglebone/accessories/ls-ttl3vt
http://www.ftdichip.com/Drivers/VCP.htm
http://www.it-ebooks.info/

Chapter 2

[23]

You can then use your favorite serial port terminal emulator, such as PuTTY or
CoolTerm (http://freeware.the-meiers.org), and configure the serial port for a
baud rate of 115200 with 1 stop bit and no parity. Once connected, press Enter and
you should see a login prompt. Enter the user name root and you'll drop into a Bash
shell. If you only need the console connection to find your IP address, you can do so
using the following command:

ip addr

Updating your software
If this is the first time you've booted your BeagleBone Black, or if you've just flashed
a new image, it's best to start by ensuring your installed software packages are all up
to date. You can do so using Debian's apt package manager:

apt-get update && apt-get upgrade

This process might take a few minutes.

Next, use the pip Python package manager to update to the latest versions of the
PyBBIO and Adafruit_BBIO libraries:

pip install --upgrade PyBBIO Adafruit_BBIO

As both libraries are currently in active development, it's worth running this
command from time to time to make sure you have all the latest features.

The PyBBIO library
The PyBBIO library was developed with Arduino users in mind. It emulates the
structure of an Arduino (http://arduino.cc) program, as well as the Arduino
API where appropriate. If you've never seen an Arduino program, it consists of
a setup() function, which is called once when the program starts, and a loop()
function, which is called repeatedly until the end of time (or until you turn off the
Arduino). PyBBIO accomplishes a similar structure by defining a run() function
that is passed two callable objects, one that is called once when the program starts,
and another that is called repeatedly until the program stops. So the basic PyBBIO
template looks like this:

from bbio import *

def setup():

www.it-ebooks.info

http://freeware.the-meiers.org
http://www.it-ebooks.info/

Getting Started

[24]

 pinMode(GPIO1_16, OUTPUT)

def loop():
 digitalWrite(GPIO1_16, HIGH)
 delay(500)
 digitalWrite(GPIO1_16, LOW)
 delay(500)

run(setup, loop)

The first line imports everything from the PyBBIO library (the Python package is
installed with the name bbio). Then, two functions are defined, and they are passed
to run(), which tells the PyBBIO loop to begin. In this example, setup() will be
called once, which configures the GPIO pin GPIO1_16 as a digital output with the
pinMode() function. Then, loop() will be called until the PyBBIO loop is stopped,
with each digitalWrite() call setting the GPIO1_16 pin to either a high (on) or low
(off) state, and each delay() call causing the program to sleep for 500 milliseconds.
The loop can be stopped by either pressing Ctrl + C or calling the stop() function.
Any other error raised in your program will be caught, allowing PyBBIO to run any
necessary cleanup, then it will be reraised. Don't worry if the program doesn't make
sense yet, we'll learn about all that soon!

Not everyone wants to use the Arduino style loop, and it's not always suitable
depending on the program you're writing. PyBBIO can also be used in a more
Pythonic way, for example, the above program can be rewritten as follows:

import bbio

bbio.pinMode(bbio.GPIO1_16, bbio.OUTPUT)
while True:
 bbio.digitalWrite(bbio.GPIO1_16, bbio.HIGH)
 bbio.delay(500)
 bbio.digitalWrite(bbio.GPIO1_16, bbio.LOW)
 bbio.delay(500)

This still allows the bbio API to be used, but it is kept out of the global namespace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

The Adafruit_BBIO library
The Adafruit_BBIO library is structured differently than PyBBIO. While PyBBIO is
structured such that, essentially, the entire API is accessed directly from the first
level of the bbio package; Adafruit_BBIO instead has the package tree broken up
by a peripheral subsystem. For instance, to use the GPIO API you have to import
the GPIO package:

from Adafruit_BBIO import GPIO

Otherwise, to use the PWM API you would import the PWM package:

from Adafruit_BBIO import PWM

This structure follows a more standard Python library model, and can also save some
space in your program's memory because you're only importing the parts you need
(the difference is pretty minimal, but it is worth thinking about).

The same program shown above using PyBBIO could be rewritten to use
Adafruit_BBIO:

from Adafruit_BBIO import GPIO
import time

GPIO.setup("GPIO1_16", GPIO.OUT)
try:
 while True:
 GPIO.output("GPIO1_16", GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output("GPIO1_16", GPIO.LOW)
 time.sleep(0.5)
except KeyboardInterrupt:
 GPIO.cleanup()

Here the GPIO.setup() function is configuring the ping, and GPIO.output() is
setting the state. Notice that we needed to import Python's built-in time library to
sleep, whereas in PyBBIO we used the built-in delay() function. We also needed
to explicitly catch KeyboardInterrupt (the Ctrl + C signal) to make sure all the
cleanup is run before the program exits, whereas this is done automatically by
PyBBIO. Of course, this means that you have much more control about when things
such as initialization and cleanup happen using Adafruit_BBIO, which can be very
beneficial depending on your program. There are some trade-offs, and the library
you use should be chosen based on which model is better suited for your application.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[26]

Summary
In this chapter, you learned how to login to the BeagleBone Black, get it connected to
the Internet, and update and install the software we need. We also looked at the basic
structure of programs using the PyBBIO and Adafruit_BBIO libraries, and talked
about some of the advantages of each.

In the next chapter, you will learn how to use the GPIO pins to control some LEDs!

www.it-ebooks.info

http://www.it-ebooks.info/

[27]

Digital Outputs
In this chapter, you will learn the basics of GPIO outputs and driving LEDs, as well
as some of the features of the Cloud9 IDE. We will cover the following topics:

• How GPIO pins are configured
• Using the Python interactive prompt to control digital outputs
• Calculating current limiting resistor values for LEDs
• Using NPN transistors to drive LEDs from GPIO pins
• Blinking an LED continuously with a Python program
• Running multiple programs at once to blink multiple LEDs
• Running programs on startup

GPIO modules
The BeagleBone Black has up to 69 different GPIO pins available on its expansion
headers. These GPIO signals are controlled through four separate 32-signal GPIO
modules, named GPIO0, GPIO1, GPIO2, and GPIO3. Each pin can either be put into
output mode, where it can then be set to a 3.3 V high level or a 0 V low level, or input
mode, where it can sense whether the level on the pin is high or low.

Kernel drivers
The GPIO modules inside microprocessors are typically controlled by reading
and writing their memory registers directly. Like many other single board Linux
computers, the BeagleBone provides a kernel driver which interacts with the GPIO
memory registers for you, and is controlled via a sysfs interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Outputs

[28]

Sysfs is a virtual file system in the Linux kernel, consisting of special
virtual files that provide input to and output from kernel drivers for
configuring and controlling buses and devices.

The sysfs entries for the BeagleBone Black's GPIO driver reside in /sys/class/
gpio/. Both PyBBIO and Adafruit_BBIO use these sysfs entries for GPIO access.

Pin multiplexing
The physical pins on the BeagleBone's microprocessor are not connected directly
to the GPIO modules. Instead, they are connected to the outputs of internal
multiplexers, which allow the functionality of each physical pin to be selected
programmatically. This allows all of the possible I/O signals to be used, which is far
more than the number of physical pins. It also means that there is an additional step
required to select the function of each pin before they can be used.

The pin multiplexing, or pinmuxing, cannot be done from user space on the
BeagleBone Black. Instead, it is done through the Device Tree, which is a data
structure in the Linux kernel that describes the hardware of the machine it is running
on. The state of the pin multiplexers can be set through Device Tree overlays, which
are sections of the Device Tree structure that can be applied on top of the base Device
Tree description to change its default configurations. This can either be done at boot
time or, on the BeagleBone Black, through the capemgr kernel driver at run time.

PyBBIO has its own Device Tree overlays that it dynamically loads using capemgr,
so pinmuxing is done automatically when using PyBBIO. Adafruit_BBIO doesn't
handle pinmuxing, so when using it, you'll have to do it manually. Luckily, this
is made easy through Charles Steinkuehler's universal-io Device Tree overlay
and config-pin command line tool (https://github.com/cdsteinkuehler/
beaglebone-universal-io), which, together, let you configure any of the
processor's pin multiplexers. You can load the universal-io overlay at runtime from
a terminal on your BeagleBone Black (through SSH or Cloud9) using the capemgr
kernel driver. The command is as follows:

echo cape-universaln > /sys/devices/bone_capemgr.*/slots

www.it-ebooks.info

https://github.com/cdsteinkuehler/beaglebone-universal-io
https://github.com/cdsteinkuehler/beaglebone-universal-io
http://www.it-ebooks.info/

Chapter 3

[29]

Writing this to the slots file tells capemgr to apply the Device Tree overlay called
cape-universaln, which comes compiled with the BeagleBone's kernel. There are a
few different versions of the universal-io overlay; most of the pins on the P8 header
are in use by the HDMI interface, and this version with an 'n' at the end does not
include those pins. HDMI is enabled by default, and si006Ece capemgr won't allow
you to load an overlay that includes pins that are already in use, this is the only
version that will work without disabling HDMI, which is explained in Appendix A,
The BeagleBone Black Pinout.

Since capemgr won't load overlays with conflicting pins, the universal-io overlay
is incompatible with PyBBIO's custom overlays. This means that PyBBIO and
Adafruit_BBIO programs shouldn't be run at the same time, so if you're running
multiple Python programs asynchronously, you'll want to stick to just one library.
A reboot is required to reset the loaded overlays.

Interactive GPIO
Let's take a look at how the GPIO pins can be controlled from Python's interactive
interpreter. Enter the Python interpreter by running the python command without
any arguments into a terminal (either in Cloud9 or in an SSH session), as shown in
the following command:

root@beaglebone:/var/lib/cloud9# python

Python 2.7.3 (default, Mar 14 2014, 17:55:54)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Next, import everything from the PyBBIO library:

>>> from bbio import *

Now let's light one of the BeagleBone's on-board LEDs. Use the digitalWrite()
function to set the GPIO output attached to the USR3 LED to its high level:

>>> digitalWrite(USR3, HIGH)

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Outputs

[30]

Take a look at USER LEDS closest to the Ethernet connector on your BeagleBone, it
should now be lit up, as shown in the following screenshot:

Go ahead and turn it off by setting it to a low state:

>>> digitalWrite(USR3, LOW)

Congratulations, you've just blinked your first LED from your BeagleBone Black. It's
not really that satisfying to just blink the on-board LEDs though, so let's hook up an
external one.

For this circuit, you will need:

• Breadboard
• 1x 5 mm LED
• 1x 330 Ω resistor
• Jumper wires

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[31]

Hook the components up on your breadboard, as shown in the following screenshot:

LEDs only work when current flows into their anode (longer pin) and out of their
cathode (shorter pin), so be sure to hook it up the right way. The LED is shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Outputs

[32]

With the LED and resistor hooked up to P8.12, we can return to the interactive
prompt to try it out, this time using GPIO1_12 instead of USR3:

>>> from bbio import *

>>> pinMode(GPIO1_12, OUTPUT)

>>> digitalWrite(GPIO1_12, HIGH)

Note that we called pinMode() this time, which does three things:

• Sets the internal pin multiplexer to connect the GPIO1_12 signal to the P8.12
header pin (using the custom Device Tree overlays described previously)

• Sets pin 12 of the GPIO1 module as an output
• Reserves the pin for user space control, meaning the kernel won't change its

state until it has been returned to kernel space control

We didn't have to call pinMode() for the USR3 LED earlier because the Linux
kernel on the BeagleBone sets up those pins at boot, but it is required for all
other GPIO pins.

Calculating resistor values for LEDs
Let's take a moment to talk about driving LEDs. There's plenty of information out
there on how LEDs operate, and to be honest, we don't need to think about the
majority of it. That's not to say that it's not a fascinating subject, but there's really
only two properties we care about here—the forward voltage and the forward
current. The forward voltage, also called the forward voltage drop or just voltage
drop, of an LED is the voltage that is dropped across it, and the forward current is
the maximum current that the LED can handle without being damaged. Both these
values vary between different LEDs, but general purpose 3 mm and 5 mm LEDs like
the one pictured previously will typically have a forward voltage of around 2 V and
a forward current of around 20 mA.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

The simplest way to limit the current through the LED to the desired forward current
is by using a resistor in series with it. Let's take a look at the following diagram:

Let's assume the voltage source in this diagram (V) is 3.3 V. If the LED has a forward
voltage (Vf) of 2 V, then that means the voltage across the resistor, labeled Vr, is 3.3V
- 2V = 1.3V. Ohm's law tells us that the voltage across a resistor in volts is equivalent
to the product of the current through it in amps and its resistance in ohms, that is, V
= IR. If we want a forward current through the LED (I) of 20 mA, we can use Ohm's
law to calculate the proper resistor value, R = 1.3 V / 0.02 A = 65 Ω. Resistors only
come in certain values, so we want to round that up to the nearest standard value
of 68 Ω.

Resistor values are measured in ohms, named after Georg Simon Ohm,
a German physicist who discovered the relationship between voltage
and current, which is the basis of what we now call Ohm's law. Ohms
are notated by the capital Greek omega (Ω).

Driving higher currents from GPIO pins
We just calculated that a 68 Ω resistor will give us the maximum forward current
from a 3.3 V supply, but when we hooked up the LED to the 3.3 V GPIO pin earlier,
we used a 330 Ω resistor. This is because the GPIO pins of BeagleBone's processor are
only rated to source a maximum current of 4-6 mA. Using a 330 Ω resistor gives 1.3 V
/ 330 Ω = 3.9 mA.

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Outputs

[34]

There are a few ways we can source more current than the 4-6 mA maximum of the
GPIO pins; one simple way is to use an NPN Bipolar Junction Transistor (BJT).

For this circuit, you will need:

• Breadboard
• 1x 5 mm LED
• 1x 4.7 kΩ resistor
• 1x 68 Ω resistor
• 1x 2N3904 NPN transistor
• Jumper wires

Wire it up on your breadboard as shown here:

If you have a resistor kit like the one from SparkFun (https://www.
sparkfun.com/products/10969) you might not have a 68 Ω resistor
handy. If this is the case, you can use one 220 Ω resistor in parallel with
one 100 Ω resistor for a combined resistance of 68.75 Ω.

www.it-ebooks.info

https://www.sparkfun.com/products/10969
https://www.sparkfun.com/products/10969
http://www.it-ebooks.info/

Chapter 3

[35]

Let's take a quick look at a schematic for this circuit:

There is tons to be learned about transistors, but in this case, we're essentially using
it as a switch, and we can treat it as a black box. When the GPIO pin is set to its 0 V
low state, no current flows into the base of the transistor (marked b in the schematic),
which prevents any current from flowing between the collector (c) and the emitter
(e). When the GPIO pin is set high, enough current flows through R2 into the base
of the transistor to allow it to pass a larger current (by a current gain factor, which
is a specified parameter of the specific transistor being used) from the collector (c) to
the emitter (e), and therefore, through the LED1 and R1. This basically allows you to
switch on and off the current flowing through the LED directly from the 3.3 V power
supply, and the 68 Ω resistor limits it to the 20 mA we need.

If you put an ammeter in series with the LED and measure the current through it,
you will see that it is actually a bit lower than 20 mA. This is because there is a slight
voltage across the transistor's collector and emitter. This voltage drop is proportional
to the current, so it can be tricky to calculate the exact resistor value needed, but with
an ammeter and a bit of trial and error, you can narrow it down to a good value. A
56 Ω resistor should give around 19.5 mA with the 2N3904.

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Outputs

[36]

Blink
Now that we have our transistor driving the LED at its full current from GPIO0_30
(P9.11), let's use Adafruit_BBIO to write a program that blinks it at a fixed interval.
The first step is to load the universal-io Device Tree overlay as described previously:

echo cape-universaln > /sys/devices/bone_capemgr.*/slots

Next you'll need to use the config-pin command to manually configure the pin as a
digital output:

config-pin P9_11 in

Now that the pin is configured properly, open a new file in Cloud9 called blink.py
with the following code:

from Adafruit_BBIO import GPIO
import time

LED_PIN = "GPIO0_30"
GPIO.setup(LED_PIN, GPIO.OUT)

while True:
 GPIO.output(LED_PIN, GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(LED_PIN, GPIO.LOW)
 time.sleep(0.5)

Press Run and you should see the LED turn on for half a second, turn off for half
a second, and repeat forever. Alright! When you're done watching the light show
you can press the Stop button or hit Ctrl + C in the terminal that opened when the
program started to kill it.

Taking advantage of the OS
Since the BeagleBone is running a full GNU/Linux operating system, there are
plenty of great tools available for us to take advantage of. Let's look at a couple
of the advantages an OS gives you.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

Multiprocessing
Every time you click on Run in Cloud9, it launches the program as a new process,
so you can easily run many different programs simultaneously. Let's add a second
transistor/LED circuit, this time using GPIO3_19 on P9.27.

For this, you will need:

• Breadboard
• 2x 5 mm LED
• 2x 4.7 kΩ resistor
• 2x 68 Ω resistor
• 2x 2N3904 NPN transistor
• Jumper wires

Wire it up on your breadboard as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Outputs

[38]

Now create a new file called blink2.py, and this time, let's use PyBBIO, as shown in
the following code:

from bbio import *

LED_PIN = GPIO3_19

def setup():
 pinMode(LED_PIN, OUTPUT)

def loop():
 digitalWrite(LED_PIN, HIGH)
 delay(250)
 digitalWrite(LED_PIN, LOW)
 delay(250)

run(setup, loop)

As you can see, this time, we're delaying the loop by 250 milliseconds or a quarter
of a second, each time we change the state of the LED, so it will be blinking twice
as fast.

Now press Run with blink2.py in focus, then switch back to blink1.py and press
Run again. You should now see both LEDs flashing away.

Note that each time you press Run it will open a new terminal tab in
the bottom pane. To kill a specific program, you'll have to select its
corresponding tab before pressing Stop.

Running at startup
We've already looked at running a command at startup with Cron in Chapter 2,
Getting Started, and we can use this same method to start any number of Python
programs at boot. Open the crontab file for editing:

crontab –e

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

Now add a new line to launch your program:

@reboot /usr/bin/python /path/to/my_program.py

We need to use the full path to the Python executable because the commands in the
crontab file are run with a minimal set of environment variables, which doesn't
include the PATH variable that usually tells your terminal where to search for
executables. You'll also need the full path to your Python script. If it's saved inside
the Cloud9 workspace, then it will start with /var/lib/cloud9/.

Summary
In this chapter, you learned how to use the GPIO pins as outputs to drive LEDs
(GPIO inputs will be covered in Chapter 5, User Input, so stay tuned!). We used
both the on-board LEDs, as well as external LEDs that we wired up ourselves. You
learned about the current sourcing limitations of the BeagleBone's GPIO pins, as well
as how to use an NPN transistor to source higher currents from them. You learned
how to use Cloud9 to run Python programs that drive the LEDs, and how to run
multiple programs simultaneously and automatically at startup.

In the next chapter, you will learn about pulse width modulation and the
analog-to-digital converters.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[41]

PWM and ADC Subsystems
In this chapter, we will take a look at the pulse width modulation (PWM) and
analog-to-digital converter (ADC) subsystems. We will cover the following topics:

• Fading an LED
• Controlling servo motors
• Voltage dividers
• Voltage followers
• Sensing light levels with a photocell
• Sensing distance with Sharp IR rangefinders
• Building a simple robot

PWM
The BeagleBone's PWM subsystem contains three enhanced PWM (ePWM) modules
and one enhanced capture (eCAP) module, all of which have their own two outputs,
for a total of up to eight PWM outputs (refer to Appendix A, The BeagleBone Black
Pinout to see which pins support PWM). We briefly covered what PWM is in Chapter
1, Before We Begin, but let's look at it in a bit more detail before we start using it.

For this, you will need:

• Breadboard
• 1x 5 mm LED
• 1x 4.7 kΩ resistor
• 1x 68 Ω resistor
• 1x 2N3904 NPN transistor
• Jumper wires

www.it-ebooks.info

http://www.it-ebooks.info/

PWM and ADC Subsystems

[42]

Let's start by wiring up an LED with an NPN transistor as we did in Chapter 3, Digital
Outputs; only this time, we will drive it with the ePWM1 module's 'A' output on
P9.14:

Now let's fire up the Python interactive interpreter and configure the PWM output at
50 percent duty cycle:

>>> from bbio import *

>>> analogWrite(PWM1A, 50, 100)

You should see the LED turn on, but dimmer than if you had driven it with a GPIO
pin. So what's going on here? The analogWrite() function is used to set the duty
cycle of the output signal, and in this case, we've told it to drive the output high for
50/100 or 50 percent of the cycle. This percentage is called the duty cycle. Let's take
a look at the signal now being generated on the PWM1A pin with an oscilloscope:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[43]

You might be wondering why you can't see the LED blinking on and off; the actual
frequency of the output defaults to 10 KHz in PyBBIO, or 2 KHz in Adafruit_BBIO,
meaning there are 10,000 or 2,000 of these half-on half-off cycles every second
respectively. Those changes are much faster than the human eye can perceive,
so we just see it as being dimmer.

Now let's set the output down to 10 percent:

>>> analogWrite(PWM1A, 10, 100)

And here's what a 10 percent duty cycle looks like on the oscilloscope:

www.it-ebooks.info

http://www.it-ebooks.info/

PWM and ADC Subsystems

[44]

With the LED only lit for 10 percent of the cycle, we perceive it as being dimly lit.
Now if we go up to a 90 percent duty cycle, the LED looks much brighter:

>>> analogWrite(PWM1A, 90, 100)

And, as expected, we can see on the oscilloscope that the signal is high for 90 percent
of its period:

The first time the analogWrire() function is called it automatically enables the the
PWM subsystem and configures the pin multiplexer for PWM output by loading
Device Tree overlays using the capemgr driver.

Fading an LED
Try out this example program with the same transistor-LED circuit as before, which
will fade the LED up and down forever:

from bbio import *
led_pin = PWM1A
def setup():
 pass
 def loop():
 for level in range(0, 255, 5):
 analogWrite(led_pin, level)
 delay(10)
 for level in range(255, 0, -5):
 analogWrite(led_pin, level)
 delay(10)
run(setup, loop)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[45]

As you can see, we're going all the way up to a PWM value of 255 this time, and
we've left out the third argument to the analogWrite() function. That third
argument is optional, and defines the resolution being used. It defaults to 256 to be
consistent with the Arduino analogWrite() routine, but it can be any number, for
instance, 100 to specify values in percent. The BeagleBone's PWM modules use 16-bit
timers, so the actual maximum resolution is 216 or 65536.

Now let's take a look at how PWM is used in Adafruit_BBIO:

import time
from Adafruit_BBIO import PWM

led_pin = "P9_14"
PWM.start(led_pin, 0)

try:
 while True:
 for level in range(0, 100):
 PWM.set_duty_cycle(led_pin, level)
 time.sleep(0.01)
 for level in range(100, 0, -1):
 PWM.set_duty_cycle(led_pin, level)
 time.sleep(0.01)
except KeyboardInterrupt:
 PWM.cleanup()

The second argument passed PWM.start() is the initial duty cycle. Adafruit_
BBIO also lets you change the PWM frequency, which it sets to 2 kHz by default,
by passing the desired frequency in Hz as a third argument to PWM.start().
The Adafruit_BBIO PWM outputs are set by their duty cycle in percent, so PWM.
set_duty_cycle() takes values in the range 0–100, which can float point numbers
for higher resolutions. Like with PyBBIO, the first time PWM.start() is called the
appropriate Device Tree overlays will be loaded.

Servo motors
A common device that is controlled by PWM is the servo motor. Standard micro
servos, such as the Tower Pro SG92R, are readily available at stores such as SparkFun
and Adafruit, and are a cheap and easy way to get things moving. Let's take a look at
controlling a micro servo from the BeagleBone.

www.it-ebooks.info

http://www.it-ebooks.info/

PWM and ADC Subsystems

[46]

For this, you will need:

• Breadboard
• 1x 1 kΩ resistor
• 1x 0.1 µF capacitor
• 1x micro servo motor
• Jumper wires

Wire the servo to the BeagleBone's 5 V supply, and connect the signal wire to
PWM1A through a 1 kΩ resistor:

The BeagleBone P9 header has two different 5 V supplies. P9.5 and
P9.6 are connected directly to the DC barrel jack, and P9.7 and P9.8 are
connected to the output of the BeagleBone's on-board voltage regulator.
If you are powering your BeagleBone from the DC barrel jack, it is best
to use P9.5 and P9.6 as you will be able to draw more current. If you
are powering the BeagleBone through the USB jack you will have to
use P9.7 and P9.8 instead, in which case your connected devices cannot
draw more than 250 mA.

The 1 kΩ resistor ensures that the servo can't draw too much current from the
PWM pin.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[47]

The 0.1 µF (0.1 microfarad) capacitor across the power supply is being used as
what's called a bypass capacitor. One of the properties of capacitors is that they
pass high frequency signals and block low-frequency and DC signals. A bypass
capacitor essentially shorts any high frequency signals that may be coupled on the
power supply to ground, leaving a clean DC supply. It is not necessarily required
as the BeagleBone has its own bypass capacitors on board, but it is advised as we
are adding a servo motor, which can draw quick pulses of current and couple high
frequency signals onto the supply.

A servo motor can typically only rotate 180 degrees at most, and it will position itself
at a given angle depending on the width of the positive pulse of the input signal.
Typically, they require an input signal of around 50 Hz, with a positive pulse of
around 0.5 ms for 0 degrees and up to around 2.4 ms for 180 degrees. With the
motor connected, let's launch the Python interpreter and give it a go.

First, let's set the frequency of the ePWM1 module to 50 Hz:

>>> from bbio import *

>>> pwmFrequency(PWM1A, 50)

We could figure out the duty cycles as percentages for the desired pulse widths, or
to make it easier, we can just use the period of a full cycle as our resolution period =
1 / 50, Hz = 0.02, and s = 20 ms. So to set the positive pulse to 0.5 ms, we can use the
following command line:

>>> analogWrite(PWM1A, 0.5, 20)

To set it to 180 degrees, use the following command line:

>>> analogWrite(PWM1A, 2.4, 20)

You will likely find that your motor has slightly different extremes than 0.5 ms and
2.4 ms, so you should use the interpreter to find the lowest and highest values that
make the motor move by trial and error and take note of them.

To drive a servo motor from Adafruit_BBIO, you'll need to convert the pulse widths
to percentages. As we just calculated, with a frequency of 50 Hz, the period of each
cycle will be 20 ms. As the duty cycle is the percentage of the period during which
the output is in a high state, we can calculate it by dividing the desired pulse width
by the period, for example, 0.5 ms / 20 ms = 0.025. This will give us a value in the
range of 0–1, so we then just need to multiply by 100 to get a percentage for PWM.
set_duty_cycle(). As an example, here's a program that will alternate the motor
between its minimum and maximum rotation angles:

import time
from Adafruit_BBIO import PWM

www.it-ebooks.info

http://www.it-ebooks.info/

PWM and ADC Subsystems

[48]

servo_pin = "P9_14"
servo_min = 100*0.5/20.0
servo_max = 100*2.4/20.0

PWM.start(servo_pin, 0, 50)

try:
 while True:
 PWM.set_duty_cycle(servo_pin, servo_min)
 time.sleep(2)
 PWM.set_duty_cycle(servo_pin, servo_max)
 time.sleep(2)
except KeyboardInterrupt:
 PWM.cleanup()

Again, you will most likely need to replace the 0.5 and 2.4 values with the extremes
you found for your motor.

PyBBIO also includes a library specifically for servo motors, so you don't actually
need to deal with changing the frequency and figuring out the duty cycles for
the angles you want to set them to. This is provided as a Servo class in the bbio.
libraries.Servo module, as shown in the following code;

from bbio import *
from bbio.libraries.Servo import Servo

motor = Servo(PWM1A)

def setup():
 pass

def loop():
 for i in range(0, 180):
 motor.write(i)
 for i in range(180, 0, -1):
 motor.write(i)

run(setup, loop)

When you run this example, you should see your servo motor sweep back and forth.
If you found that you have different minimum and maximum pulse widths than the
default 0.5 ms and 2.4 ms, you can specify them when you instantiate the Servo()
object, for example:

motor = Servo(servo_pin, min_ms=0.8, max_ms=2.2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[49]

ADC
The BeagleBone has 7 available inputs to its analog-to-digital converter (refer to
Appendix A, The BeagleBone Black Pinout to see which pins support analog inputs).
The ADC can approximate voltages at each of these pins between 0 V and 1.8 V. As
mentioned in Chapter 1, Before We Begin, putting voltages greater than 1.8 V on any
of the ADC's input pins will damage your BeagleBone. That doesn't mean we can't
measure higher voltages with it, we just need some external circuitry to do so.

Voltage divider
The simplest method for measuring voltages greater than 1.8 V is to use a voltage
divider, which is simply composed of two resistors in a series between your voltage
source and 0 V, with the output being the node between them:

The output voltage is calculated by the formula R2 / (R1 + R2) * VIN. So if VIN is 3.3
V and both resistors are 10 kΩ, then VOUT will be 1.65 V, and if VIN is 5 V, R1 is 10
kΩ, and R2 is 5 kΩ, then VOUT will be 1.67 V. So with those two examples, we could
easily monitor the BeagleBone's 5 V and 3.3 V supplies using the on board ADC,
and we could simply compensate for the divider in software by multiplying the
measured voltages by two and three respectively. Let's give it a try.

For this, you will need:

• Breadboard
• 3x 10 kΩ resistor
• 1x 4.7 kΩ resistor
• Jumper wires

www.it-ebooks.info

http://www.it-ebooks.info/

PWM and ADC Subsystems

[50]

Use two of the 10 kΩ resistors to divide the 3.3 V supply by two and then wire that
into the AIN4 ADC input (P9.33), and use the other 10 kΩ and 4.7 kΩ resistors to
divide the 5 V supply and wire that to the AIN6 ADC input (P9.35). As mentioned
earlier, using 10 kΩ and 5 kΩ resistors will divide the 5 V supply by 3, but 5 kΩ is not
a standard resistor value so we'll use 4.7 kΩ instead. Wire up the circuit like so:

Now hop into the Python interactive interpreter, and let's try reading the voltages:

>>> from bbio import *
>>> analogRead(AIN4)
1692

The return value of analogRead() will be the voltage in millivolts present on the
given analog input pin. You can convert this to volts with the PyBBIO's inVolts()
function. Then you just multiply the voltage appropriately to get the voltage present
on the input of the voltage divider:

from bbio import *

v_5v = inVolts(analogRead(AIN5)) * (4.7 + 10)/4.7
v_3v3 = inVolts(analogRead(AIN4)) * 2.0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[51]

print "5V input = {:0.2f}".format(v_5v)
print "3.3V supply = {:0.2f}".format(v_3v3)

In PyBBIO the ADC is automatically enabled with a Device Tree overlay the first
time you call analogRead(). Adafruit_BBIO also loads the ADC overlay for you,
but you have to explicitly call the ADC.setup() function to tell it to do so:

from Adafruit_BBIO import ADC

ADC.setup()
v_5v = 1.8 * ADC.read("P9_35") * (10 + 4.7)/4.7
v_3v3 = 1.8 * ADC.read("P9_33") * 2.0
print "5V input = {:0.2f}".format(v_5v)
print "3.3V supply = {:0.2f}".format(v_3v3)

Also, as you can see, we're multiplying the value by 1.8. This is because the ADC.
read() function of Adafruit_BBIO returns the value as a ratio of the ADC's 1.8 V
reference voltage. Multiplying the returned value by 1.8 gives us the measured
voltage in volts.

Some versions of the Cloud9 IDE will lose the first line printed by your
program in the output console. This can be easily worked around by
inserting a single print statement at the top of your program.

The voltage divider is great for measuring DC supplies and the buffered outputs
of powered sensors, but because it is just a simple resistive network, it doesn't play
well with other devices and circuits that have series resistances in the same order of
magnitude. For example, you might want to monitor the current that your LED is
drawing from one of the circuits, as we did in Chapter 3, Digital Outputs.

Voltage follower
As mentioned earlier, the voltage follower doesn't work well when the input
is coming from another circuit with low resistances in its path (known as low
impedance outputs), as they will form a more complex resistor network and affect
the output voltage. One way to avoid this problem is to use a voltage follower
(or buffer) to isolate the two circuits.

www.it-ebooks.info

http://www.it-ebooks.info/

PWM and ADC Subsystems

[52]

There are a number of ways to make voltage followers, but we'll use one of
the simplest, which is made with just a single stage of an operational amplifier
(or op-amp), as shown in the following schematic:

The op-amp's connections in the schematic are labeled as per the standard pinout for
an 8-pin dual op-amp, which is one of the most common op-amp packages. The pin
numbers follow the standard numbering for dual in-line package (DIP) integrated
circuits, where the pins are numbered from 1 onwards in a U pattern starting at the
top left (pin 1 is typically marked by a dot and/or half circle), as seen in the image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[53]

The basic idea of the voltage follower is that it has high input impedance, meaning
that there is a very large resistance between the input and ground, and it has low
output impedance, meaning that there is a very low resistance in a series with the
output. This means that we can put just about anything on the input side, and a
voltage divider on the output side won't interfere with it. Let's look at a circuit that
uses a voltage follower.

For this, you will need:

• Breadboard
• 1x CdS photocell (also known as photoresistor / light-dependant

resistor / LDR)
• 2x 10 kΩ resistor
• 1x 4.7 kΩ resistor
• 1x LM358 (or similar rail-to-rail op-amp)
• Jumper wires

We will be wiring up the op-amp as shown in the schematic:

www.it-ebooks.info

http://www.it-ebooks.info/

PWM and ADC Subsystems

[54]

In this circuit, we're using a photocell (R2), which is just a resistor whose resistance
varies with light. If there is a voltage across a photocell and its resistance changes
with the light, the current passing through the photocell will also change. The
BeagleBone's ADC can only measure voltages, so we use a 10 kΩ resistor (R1) to
create a voltage that varies with the light (it's another voltage divider). This photocell
circuit is being powered by a higher voltage than the ADC's 1.8 V maximum, so
we need to divide the voltage from the sensor. The voltage follower made with the
LM358 op-amp isolates the two circuits so they don't interfere with each other. Let's
have a look at the following figure:

Wire up the circuit and run this program to print the voltage across the photocell,
and you should see the voltage changing as you move your hand in front of the
sensor or shine a light on it. Let's have a look at the following code:

from bbio import *

ldr_pin = AIN4

def setup():

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[55]

 pass

def loop():
 vin = inVolts(analogRead(ldr_pin))
 vin *= (10 + 4.7)/4.7
 print "voltage across LDR: {:0.2f}V".format(vin)
 delay(500)

run(setup, loop)

You could do the same in Adafruit_BBIO with the following code:

import time
import Adafruit_BBIO.ADC as ADC

ADC.setup()
while True:
 vin = 1.8 * ADC.read("P9_33")
 vin *= (10 + 4.7)/4.7
 print "voltage across LDR: {:0.2f}V".format(vin)
 time.sleep(0.5)

Your first robot
You've now learned enough to make a simple robot. Its purpose is to always be
looking at the closest object. OK, it's not the most exciting robot, but it's a great demo
of how you can combine what you've learned about the PWM and ADC subsystems.

For this, you will need:

• Breadboard
• 1x Sharp IR proximity sensor
• 1x micro servo motor
• 3x 1 kΩ resistor
• 1x 0.1 µF capacitor
• Jumper wires

www.it-ebooks.info

http://www.it-ebooks.info/

PWM and ADC Subsystems

[56]

Wire up the circuit on your breadboard, as shown in the figure:

The Sharp IR proximity sensor contains an infrared LED, an infrared detector, and
some circuitry to drive them. The detector measures the amount of infrared light that
is reflected back from whatever object is in front of it, which will vary depending on
how close the object is, and a voltage is generated on the output which corresponds
to the distance. It requires a 5 V supply to operate, and the output voltage can exceed
3 V. Therefore, a voltage divider is used to not exceed the ADC's 1.8 V maximum.
The sensor has a high impedance output from its on board amplifier, so we can get
away without a voltage follower.

Wire up the circuit, attach the proximity sensor to the servo motor, and the servo
motor to a flat surface, as shown in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[57]

When the program starts up, it will scan across the full range of the motor and
record the measured distances along the way. It will then rotate the motor back to
the position where the least distance was measured. It will then stay there until the
object it's looking at moves, then it will start the process over. Let's have a look at
the following code:

from bbio import *
from bbio.libraries.Servo import Servo

range_pin = AIN0
servo_pin = PWM1A

servo = Servo(min_ms=0.81, max_ms=1.99)

def setup():
 servo.attach(servo_pin)

def loop():
 max_v_in = 0
 angle = 0
 for i in range(0, 180):
 servo.write(i)
 delay(1)
 v_in = analogRead(range_pin)
 if v_in > max_v_in:
 max_v_in = v_in
 angle = i
 servo.write(angle)
 delay(500)
 while (abs(max_v_in - analogRead(range_pin)) < 200):
 delay(100)

run(setup, loop)

The 1 millisecond delay in the scan is there to ensure the motor has had time to
reach the set location before measuring the distance. The greater the sensor's output
voltage, the closer the object that it's looking at it. Whenever we see a higher voltage
than we have previously during a scan, we save the measured voltage and angle.
That way, once the scan has finished, we know that the angle saved was the angle at
which the closest object was detected. The 500 ms delay once again ensures that the
motor has reached that angle, then the while loop holds the motor there until the
voltage measured has changed by at least 200 mV. If we were to simply wait until the
voltage changed at all, then any amount of noise on the input (which is inevitable)
would cause it to rescan. The 100 ms delay in the while loop keeps the program from
hogging the CPU while it's waiting.

www.it-ebooks.info

http://www.it-ebooks.info/

PWM and ADC Subsystems

[58]

Summary
In this chapter, you learned how to use the pulse width modulation and
analog-to-digital converter subsystems with PyBBIO and Adafruit_BBIO. You
learned how to use PWM to set the brightness of LEDs and drive servo motors.
You also learned how to measure voltages with the ADC, and how to use voltage
dividers and buffers to measure voltages greater than 1.8 V.

In the next chapter, you will learn to incorporate buttons and potentiometers into
your circuits to receive user input.

www.it-ebooks.info

http://www.it-ebooks.info/

[59]

User Input
In this chapter, you will learn how to let your BeagleBone programs receive user
input through external hardware. We will cover the following topics:

• Buttons
• Potentiometers

Buttons
A button is one of the simplest input devices you can connect to your BeagleBone. To
sense the state of a button, we only need to use a single GPIO pin configured as an
input. We haven't used a GPIO input yet, so let's take a look at a simple example first.

For this circuit, you will need:

• Breadboard
• 1x tactile switches
• 1x 10 kΩ resistors
• Jumper wires

www.it-ebooks.info

http://www.it-ebooks.info/

User Input

[60]

A tactile switch is a type of momentary push button, meaning that it is only engaged
while it is held down and returns to its default state when released. They are widely
available from stores such as Adafruit and SparkFun, and it is also one of the more
breadboard-friendly types of switches. Depending on the variety of tactile switch,
it might require straightening the pins with a pair of pliers to get it to lock into your
breadboard. Wire the switch to GPIO0_30 (P9.11), as shown in the figure:

Now run the following code and press the button; you should see a value of 0
normally and 1 when you press the button:

from bbio import *

SW_PIN = GPIO0_30

def setup():
 pinMode(SW_PIN, INPUT)

def loop():
 print "switch state:", digitalRead(SW_PIN)
 delay(250)

run(setup, loop)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[61]

To do the same in Adafruit_BBIO, we'll first need to configure the pin as an input,
as shown in the following code:

config-pin P9_11 in

Remember, you'll need to first load the universal cape overlay as
described in Chapter 3, Digital Outputs, before using a config-pin.

You can then use GPIO.input() to read the pin state:

from Adafruit_BBIO import GPIO
import time

GPIO.setup("P9_11", GPIO.IN)

while True:
print "switch state:", GPIO.input("P9_11")
time.sleep(0.25)

Pull-up/pull-down resistors
So what's the resistor in the preceding circuit for? Let's think about what would
happen without the resistor. When you press the button, the two sets of pins are
shorted together, and therefore, the GPIO input is connected to ground. The 0 V
ground level is read by the GPIO module as a logical low, and 0 is returned. When
the button is not pressed, the two sets of pins are disconnected from each other,
leaving the GPIO input disconnected, or floating. In this floating state, external
electric fields can induce voltages on the GPIO input, especially with the external
wire connecting it to the switch acting as an antenna. These induced voltages might
or might not cross the GPIO module's low-high threshold. So leaving a GPIO input
in a floating state will result in unpredictable readings.

We can easily avoid leaving the GPIO input floating when connecting a switch by
adding a single resistor. In the preceding circuit, when the button is pressed the
GPIO input is still connected directly to ground, and therefore the voltage is still 0
and a low value is read. When not pressed, the GPIO input is connected to 3.3 V,
and since the input has much higher impedance than the 10 kΩ of the resistor, the
voltage on the input is 3.3 V and high value is read. This is called a pull-up resistor,
because this is pulling the input up to 3.3 V. The circuit can also be reversed, where
the switch connects the input to 3.3 V and the resistor pulls it down to 0 V when not
pressed, in which case it is called a pull-down resistor.

www.it-ebooks.info

http://www.it-ebooks.info/

User Input

[62]

The value of the pull resistor is not crucial, but you typically want
something in the range of 1 kΩ-100 kΩ. If the value is very low,
then there can be a large amount of current flowing through it
when the switch is engaged. If the value is very high, it can create
a voltage divider with the input impedance of the GPIO module
when the switch is not engaged, potentially dividing the voltage
down below the LOW-HIGH threshold. 10 kΩ is a good choice for
most applications.

The GPIO modules in the BeagleBone's processor also include configurable pull-up
and pull-down resistors, and PyBBIO allows you to use them in place of external
resistors. First, wire up the tactile switch without any pull resistor.

For this circuit, you will need:

• Breadboard
• 1x tactile switches
• Jumper wires

The connection is shown in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[63]

Then we just need to enable the internal pull-up resistor when we call the pinMode()
function, as shown in the following code:

from bbio import *

SW_PIN = GPIO0_30

def setup():
 pinMode(SW_PIN, INPUT, PULLUP)

def loop():
 print "switch state:", digitalRead(SW_PIN)
 delay(250)

run(setup, loop)

To use the internal pull-down resistor, you can use the PULLDOWN keyword instead.

The pull-up and pull-down resistors are part of the pin multiplexing subsystem,
and therefore, must be set through the device tree. PyBBIO does this with its custom
overlays, but if you're using Adafruit_BBIO, you can still enable pull-up and pull-
down resistors with config-pin. To enable a pull-up resistor, append a plus sign to
the in option, as shown in the following code:

config-pin P9_11 in+

Append a minus sign for a pull-down resistor:

config-pin P9_11 in-

Polling
One technique for reading buttons is called polling, where a program repeatedly
reads the input state fast enough to catch button presses. Let's take a look at an
example of this. First, wire up two tactile switches, this time to GPIO0_30 (P9.11)
and GPIO3_15 (P9.29).

For this circuit, you will need:

• Breadboard
• 2x tactile switches
• 2x 10 kΩ resistors
• Jumper wires

www.it-ebooks.info

http://www.it-ebooks.info/

User Input

[64]

Place the buttons on your breadboard, as shown in the diagram:

Try out the following program as an example:

from bbio import *

UP_SW = GPIO0_30
DOWN_SW = GPIO3_15

set_value = 50
min_value = 0
max_value = 100

def setup():
 pinMode(UP_SW, INPUT)
 pinMode(DOWN_SW, INPUT)

def loop():
 global set_value
 if (not digitalRead(UP_SW) and set_value < max_value):
 set_value += 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[65]

 print "value set to {:d}".format(set_value)
 if (not digitalRead(DOWN_SW) and set_value > min_value):
 set_value -= 1
 print "value set to {:d}".format(set_value)
 delay(100)

run(setup, loop)

When you run it, you should see it responding to your button presses by incrementing
and decrementing the global set_value variable. Set a delay of 100 in the loop()
function; because the program is continually reading the button states each time
through the loop, the delay helps to prevent it from registering many button presses
at once (don't take my word for it, try running the program without it). That delay
can become a problem when you start doing other tasks in your program, as it eats up
processing time. So let's look at a couple other ways to handle this.

The first technique is to ignore each button for a set amount of time after the first
push is detected, as shown in the following code:

from bbio import *

UP_SW = GPIO0_30
DOWN_SW = GPIO3_15

DEBOUNCE_MS = 250
last_up_press = -DEBOUNCE_MS
last_down_press = -DEBOUNCE_MS

set_value = 50
min_value = 0
max_value = 100

def setup():
 pinMode(UP_SW, INPUT)
 pinMode(DOWN_SW, INPUT)

def loop():
 global set_value, last_up_press, last_down_press
 now = millis()
 if (not digitalRead(UP_SW) and set_value < max_value):
 if (now - last_up_press >= DEBOUNCE_MS):
 set_value += 1
 print "value set to {:d}".format(set_value)

www.it-ebooks.info

http://www.it-ebooks.info/

User Input

[66]

 last_up_press = now
 if (not digitalRead(DOWN_SW) and set_value > min_value):
 if (now - last_down_press >= DEBOUNCE_MS):
 set_value -= 1
 print "value set to {:d}".format(set_value)
 last_down_press = now
 delay(10)

run(setup, loop)

So, in this case, we're using the PyBBIO's millis() function, which returns the
number of milliseconds that have elapsed since the program started running, to
compare each LOW GPIO reading to the time of the last registered button press
for that input. The LOW level is only registered as a button press if at least the
configured number of milliseconds have passed.

We've used the variable name DEBOUNCE_MS because this is
equivalent to a simple button debouncing. When a button is
pressed, the metal contacts inside it tend to bounce off each
other a few times before making solid contact, and debouncing is
used to prevent this from causing multiple button press events.
Python running in GNU/Linux on the BeagleBone doesn't run
fast enough to pick up button bounce, but this is still the same
technique nonetheless.

Another strategy is to completely ignore a pressed button until it has been released.
Let's take a look at the following code:

from bbio import *

UP_SW = GPIO0_30
DOWN_SW = GPIO3_15

up_pressed = False
down_pressed = False

set_value = 50
min_value = 0
max_value = 100

def setup():
 pinMode(UP_SW, INPUT)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[67]

 pinMode(DOWN_SW, INPUT)

def loop():
 global set_value, up_pressed, down_pressed
 now = millis()
 if (not digitalRead(UP_SW) and set_value < max_value):
 if (not up_pressed):
 set_value += 1
 print "value set to {}".format(set_value)
 up_pressed = True
 else: up_pressed = False
 if not (digitalRead(DOWN_SW) and set_value > min_value):
 if (not down_pressed):
 set_value -= 1
 print "value set to {}".format(set_value)
 down_pressed = True
 else: down_pressed = False
 delay(10)

run(setup, loop)

What's nice about this technique is that you can repeatedly press the buttons as fast
as you'd like without having the forced delay between presses. Of course, there
are plenty of other techniques of cleaning up button presses, including different
combinations of the ones here.

Before we continue, let's take the example we've been working on one step further,
and actually make it do something. Start by adding the NPN LED driving circuit
we looked at in Chapter 3, Digital Outputs, to PWM1A (P9.16). The external pull-up
resistors have been removed here to make more space on the breadboard.

For this circuit, you will need:

• Breadboard
• 2x tactile switches
• 1x 5 mm LED
• 1x 4.7 kΩ resistor
• 1x 68 Ω resistor
• 1x 2N3904 NPN transistor
• Jumper wires

www.it-ebooks.info

http://www.it-ebooks.info/

User Input

[68]

Wire the buttons on your breadboard, as shown in the figure:

With just a few additions, we can make the two-button-example control the
brightness of the LED, as shown in the following code:

from bbio import *

UP_SW = GPIO0_30
DOWN_SW = GPIO3_15
LED = PWM1A

DEBOUNCE_MS = 250
last_up_press = -DEBOUNCE_MS
last_down_press = -DEBOUNCE_MS

set_value = 50
min_value = 0
max_value = 100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[69]

increment = 5

def setup():
 pinMode(UP_SW, INPUT, PULLUP)
 pinMode(DOWN_SW, INPUT, PULLUP)
 analogWrite(LED, set_value, 100)

def loop():
 global set_value, last_up_press, last_down_press
 now = millis()
 value_changed = False
 if (not digitalRead(UP_SW) and
 set_value <= max_value-increment):
 if (now - last_up_press >= DEBOUNCE_MS):
 set_value += increment
 print "value set to {:%i}".format(% set_value)
 last_up_press = now
 value_changed = True
 if (not digitalRead(DOWN_SW) and
 set_value >= min_value+increment):
 if (now - last_down_press >= DEBOUNCE_MS):
 set_value -= increment
 print "value set to {:i}".format(set_value)
 last_down_press = now
 value_changed = True

 if (value_changed): analogWrite(LED, set_value, 100)
 delay(10)

run(setup, loop)

One of the additions is the global increment variable, which lets you set the
amount each button press changes the duty cycle by; that way you don't have to
press it a hundred times to go from a 0 to 100 percent duty cycle. Also added is
the value_changed variable, which ensures that the PWM module is only being
reconfigured when a change has been requested by way of a button press. Without
this, the value would always be set every 10 ms; and each time it is set, there is a
slight interruption in the PWM output while the new value is taking effect, which
would cause a noticeable flicker on the LED.

www.it-ebooks.info

http://www.it-ebooks.info/

User Input

[70]

Interrupts
Polling buttons can be troublesome when your program has to do other work at
the same time. One alternative is to use what's called interrupts. Like most modern
microcontrollers and microprocessors, the BeagleBone's processor supports GPIO
input interrupts. They can trigger the processor to jump to a particular location in its
program memory when it detects a certain state on a GPIO input. The supported states
are typically rising and falling edges (that is, the transitions between logic levels), and
low or high levels themselves. The Linux kernel on the BeagleBone is able to receive
these interrupt signals and generate a change to a special file if configured to do so.
A user space process (as opposed to a kernel space process, like a kernel driver) can
then monitor the said file, and can call a locally defined callback function when it
detects a change. That might sound a bit complicated, but it's pretty straightforward
to use interrupts in PyBBIO, especially if you've written any event-driven code before.
Let's take a look at what the LED brightness control program might look like using
interrupts instead of polling, as shown in the following code:

from bbio import *

UP_SW = GPIO0_30
DOWN_SW = GPIO3_15
LED = PWM1A

DEBOUNCE_MS = 250
last_up_press = -DEBOUNCE_MS
last_down_press = -DEBOUNCE_MS
value_changed = False

set_value = 50
min_value = 0
max_value = 100
increment = 5

def upHandler():
 global set_value, last_up_press, value_changed
 now = millis()
 if (now - last_up_press < DEBOUNCE_MS): return
 if (set_value <= max_value-increment):
 set_value += increment
 print "value set to {:i}".format(set_value)
 last_up_press = now

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[71]

 value_changed = True

def downHandler():
 global set_value, last_down_press, value_changed
 now = millis()
 if (now - last_down_press < DEBOUNCE_MS): return
 if (set_value >= min_value+increment):
 set_value -= increment
 print "value set to {:i}".format(set_value)
 last_down_press = now
 value_changed = True

def setup():
 pinMode(UP_SW, INPUT, PULLUP)
 pinMode(DOWN_SW, INPUT, PULLUP)
 attachInterrupt(UP_SW, upHandler, FALLING)
 attachInterrupt(DOWN_SW, downHandler, FALLING)
 analogWrite(LED, set_value, 100)

def loop():
 global value_changed
 if (value_changed):
 analogWrite(LED, set_value, 100)
 value_changed = False
 delay(10)

run(setup, loop)

Notice how the main loop is completely free to do any additional work that might be
required by your program.

Adafruit_BBIO doesn't implement interrupt callback functions like PyBBIO does,
but it does have two options to receive interrupt signals. The first is the blocking
wait_for_edge() function, which blocks the program until the specified edge is
detected. For example, we could wait for a button press on GPIO0_30 (the preceding
circuit will work). Let's take a look at the following code:

from Adafruit_BBIO import GPIO

button = "P9_11"
GPIO.setup(button, GPIO.IN)
GPIO.wait_for_edge(button, GPIO.FALLING)
print "Button pressed!"

www.it-ebooks.info

http://www.it-ebooks.info/

User Input

[72]

The other option is to tell Adafruit_BBIO to detect a particular edge in the
background, then routinely ask it if it has been detected. Let's take a look at
the following code:

from Adafruit_BBIO import GPIO
import time

button = "P9_11"
GPIO.setup(button, GPIO.IN)
GPIO.add_event_detect(button, GPIO.FALLING)

while True:
 if GPIO.event_detected(button):
 print "Button pressed!"
 time.sleep(1)

This won't necessarily allow you to respond to interrupts as quickly as possible, but
it will at least guarantee that your program won't miss any input signals while it's
taking care of other tasks.

In both cases, you'll want to first enable the pull-up resistor, as shown in the
following code:

config-pin P9_11 in+

Potentiometers
Another option for user input is to use the ADC to read the position of a
potentiometer. Let's revisit some of the things you learned in Chapter 4, PWM
and ADC Subsystems, to make our program a bit more interesting.

For this circuit, you will need:

• Breadboard
• 2x potentiometers
• 1x 5 mm LED
• 1x CdS photocell (also known as photoresistor / light-dependant

resistor / LDR)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[73]

• 2x 10 kΩ resistor
• 1x 4.7 kΩ resistor
• 1x 68 Ω resistor
• 1x 2N3904 NPN transistor
• 1x LM358 (or similar rail-to-rail op-amp)
• Jumper wires

Put it all together on your breadboard, as shown in the figure:

This circuit might look a lot more complicated than what we've done so far, but
really it's just a combination of a few of the earlier circuits. The only difference is
the configuration of the op-amp.

www.it-ebooks.info

http://www.it-ebooks.info/

User Input

[74]

Here it is being used to buffer the output of a 2:1 voltage divider across the 3.3 V rail,
which creates a 1.65 V reference voltage. Let's take a look at the following diagram:

This 1.65 V reference is then being used by the two potentiometers and the photocell.
This is yet another solution for the 1.8 V limit of the BeagleBone's ADC, as discussed
in Chapter 4, PWM and ADC Subsystems.

Now, take a look at the example program:

from bbio import *

BRIGHTNESS = AIN4
THRESHOLD = AIN6
LDR = AIN2
LED = PWM1A

HYSTERESIS = 50

brightness = 0
light_on = False

def setup():
 analogWrite(LED, 0)

def loop():
 global brightness, light_on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[75]

 adc_max = 3300/2
 value_changed = False
 value = analogRead(BRIGHTNESS)
 percent = int(100 * value/adc_max)
 if (percent > 100): percent = 100
 if (percent < 0): percent = 0
 if (percent != brightness):
 brightness = percent
 value_changed = True

 threshold = analogRead(THRESHOLD)
 light = analogRead(LDR)
 force_update = False
 if (light >= threshold+HYSTERESIS):
 if (not light_on): force_update = True
 light_on = True
 elif (light <= threshold-HYSTERESIS):
 if (light_on): force_update = True
 light_on = False

 if (light_on):
 if (value_changed or force_update):
 analogWrite(LED, brightness, 100)
 elif (force_update):
 analogWrite(LED, 0, 100)
 delay(10)

run(setup, loop)

Like the buttons before, the potentiometer connected to AIN4 (P9.33) controls the
brightness of the LED, from 0 percent to 100 percent. The value from the second
potentiometer is compared to the value from the photocell voltage divider. If the
photocell voltage is greater, the light is turned on at the set brightness; otherwise, it is
turned off. It's your very own variable brightness night light. It might not seem that
exciting, but it's the first application we've looked at that's not simply a demonstration
of one particular thing, but is actually a working, somewhat-practical object.

www.it-ebooks.info

http://www.it-ebooks.info/

User Input

[76]

This circuit includes some hysteresis. Try setting the HYSTERESIS
variable to 0 and see what happens as you approach the threshold by
slowly bringing your finger towards the photocell. At a certain point,
you should see the LED start to quickly flash on and off. This is because
there is a certain amount of noise, both in the light in the room and in
the BeagleBone's power supply and ADC, which causes the readings
to jump above and below the threshold. This behavior is avoided by
adding some hysteresis to the control loop as in this example program.

Summary
In this chapter, you learned the basics of using buttons and potentiometers to generate
user input in your programs. We looked at both synchronous polling and interrupt-
based input. We also looked at some concepts like debouncing and hysteresis to help
receive clean input signals. Finally, you made a variable brightness night light.

In the next chapter, we'll take a look at some more ways of providing output to the
user, other than printing text to the terminal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[77]

Program Output
In this chapter, you will learn different ways of providing output from your
BeagleBone programs. We will cover the following topics:

• LED displays
 ° LED bar graphs
 ° 7-segment displays
 ° LED matrixes

• SMTP
 ° E-mail
 ° Text messages

• Character LCDs

LED displays
One of the simplest forms of hardware output that we can add to a program is an LED
attached to a GPIO pin. We've already blinked LEDs, but not in a way that conveyed
any sort of meaningful information; so first things first, we'll need something to
communicate to the user. Here's a simple program that uses Internet Message Access
Protocol (IMAP) to login to your email account and retrieve the number of unread
messages in your inbox. Save it as a new file called email_counter.py, either in
Cloud9 or your editor of choice over SSH, filling in the IMAP details for your account,
as shown in the following code:

import imaplib

IMAP_host = "imap.gmail.com"
IMAP_email = "username@gmail.com"

www.it-ebooks.info

http://www.it-ebooks.info/

Program Output

[78]

IMAP_pass = "password"

email = imaplib.IMAP4_SSL(IMAP_host)

def connect():
 email.login(IMAP_email, IMAP_pass)

def disconnect():
 email.close()
 email.logout()

def get_num_emails():
 email.select("INBOX")
 ret, data = email.search(None, "UNSEEN")
 return len(data[0].split())

IMAP is a standard protocol for e-mail clients, so no matter who
your e-mail provider is, you should be able to find the appropriate
IMAP details, either through their own official instructions or
through a web search.

Now hook up the LED and NPN transistor circuit we've used in previous chapters;
in this example, we will use GPIO1_28, which is on pin P9.12. This PyBBIO program
will use email_counter.py to periodically retrieve the number of e-mails, and
will light the LED if they exceed the indicate_above threshold, as shown in the
following code:

from bbio import *
import email_counter

Light LED if greater than this many unread emails:
indicate_above = 1

led_pin = GPIO1_28

def setup():
 pinMode(led_pin, OUTPUT)
 digitalWrite(led_pin, LOW)
 email_counter.connect()
 addToCleanup(email_counter.disconnect)

def loop():
 n_email = email_counter.get_num_emails()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[79]

 if (n_email > indicate_above): digitalWrite(led_pin, HIGH)
 else: digitalWrite(led_pin, LOW)
 delay(5000)

run(setup, loop)

When you tell Python to import something, it first looks for a module
(a single .py file) or package (a directory containing a __init__.
py file) in the same directory as the file with the import statement.
If it can't find it there, it then searches the Python path (# python
-c "import sys; print sys.path"). Make sure that email_
counter.py is saved in the same directory as your program so that
Python is able to find and import it.

If you want to make that boring LED indicator a bit more exciting, you can drive it
from a PWM pin instead and generate a heartbeat effect, instead of just lighting it at
full brightness:

from bbio import *
import email_counter, threading

Light LED if greater than this many unread emails:
indicate_above = 0
led = PWM1A # P9.14

heartbeat_enabled = 0

def do_heartbeat():
 while True:
 if (heartbeat_enabled):
 for i in range(0, 100):
 analogWrite(PWM1A, i, 100)
 delay(10)
 for i in range(100, 0, -1):
 analogWrite(PWM1A, i, 100)
 delay(10)
 else:
 analogWrite(PWM1A, 0)
 delay(700)

def setup():
 email_counter.connect()
 addToCleanup(email_counter.disconnect)
 t = threading.Thread(target=do_heartbeat)

www.it-ebooks.info

http://www.it-ebooks.info/

Program Output

[80]

 t.daemon = True
 t.start()

def loop():
 global heartbeat_enabled
 n_email = email_counter.get_num_emails()
 if (n_email > indicate_above): heartbeat_enabled = 1
 else: heartbeat_enabled = 0
 delay(5000)

run(setup, loop)

This program is also a good example of using Python's threading to help make your
hardware interfacing more asynchronous.

LED bar graphs
Okay, a single LED is not that exciting, so let's add some more. Thanks to the
BeagleBone's huge number of GPIO pins, it's no problem to drive a 10-segment LED
bar graph, like the ones sold at Adafruit (for example, https://www.adafruit.
com/products/1816). Remember that each of the BeagleBone's GPIO pins can only
supply a maximum current of 4-6 mA. Luckily, the bar graphs from Adafruit use
high efficiency LEDs, and when driven from 3.3 V with a series 330 Ω resistor, they
draw under 2 mA, which means they are safe to drive directly from the GPIO pins.
If using a different bar graph, you should go through the calculations to make sure
it won't be drawing too much current.

For this circuit, you will need:

• Breadboard
• 1x 10 segment LED bar graph
• 10x 330 Ω resistors
• Jumper wires

www.it-ebooks.info

https://www.adafruit.com/products/1816
https://www.adafruit.com/products/1816
http://www.it-ebooks.info/

Chapter 6

[81]

The connection is shown in the following figure:

Now, let's modify the previous program a bit to use the bar graph as an indication of
the number of unread e-mails. We can put all the GPIO pins in a list in order to help
keep the code a bit cleaner:

from bbio import *
import email_counter

Bar graph will be full if this many emails or more are unread:
n_emails_full = 10

graph_pins = [
 GPIO1_28, # P9.12
 GPIO1_18, # P9.14
 GPIO1_19, # P9.16
 GPIO0_4, # P9.18
 GPIO0_12, # P9.20
 GPIO0_2, # P9.22
 GPIO0_15, # P9.24
 GPIO0_14, # P9.26

www.it-ebooks.info

http://www.it-ebooks.info/

Program Output

[82]

 GPIO3_17, # P9.28
 GPIO3_16 # P9.30
]

def set_level(level):
 for i in range(len(graph_pins)):
 if i < level: digitalWrite(graph_pins[i], HIGH)
 else: digitalWrite(graph_pins[i], LOW)

def setup():
 for pin in graph_pins:
 pinMode(pin, OUTPUT)
 digitalWrite(pin, LOW)
 email_counter.connect()
 addToCleanup(email_counter.disconnect)

def loop():
 n_email = email_counter.get_num_emails()
 max_level = len(graph_pins)
 level = float(n_email)/n_emails_full*max_level
 set_level(level)
 delay(5000)

run(setup, loop)

If you tend to have a large backlog of unread e-mails, you can increase n_emails_
full to change the scale of the bar graph.

7-segment displays
7-segment displays are the classic numeric indicators, named for their seven
separately lit segments that can be combined to form every digit from 0-9, as well
as many of the letters in the English alphabet. As each digit contains seven LEDs,
the number of pins required quickly becomes unreasonable and multiplexing
is required, where a small number of GPIO pins are used to quickly sequence
through the many LEDs. While this means that only a few LEDs are lit at a time, the
sequencing is done faster than the human eye can perceive, giving the illusion of all
the LEDs being lit at once.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[83]

While we could certainly multiplex a 7-segment display directly, Adafruit sells a
convenient line of products for easily driving multiplexed LED displays using I2C
(https://www.adafruit.com/products/881). We'll learn more about the I2C
protocol later, but for now, all we need to know is that there's a data signal (SDA) and
a clock signal (SCL), and on the BeagleBone, we'll be using P9.19 for SCL and P9.20 for
SDA and connecting them to corresponding pins of the 7-segment display board. But
first, you'll have to solder the display and connector onto the circuit board. Luckily,
Adafruit provides a great tutorial for doing just that at https://learn.adafruit.
com/adafruit-led-backpack/0-dot-56-seven-segment-backpack.

This is the first device we've used that requires soldering. If you've
never soldered before, there are plenty of great tutorials out there,
such as by SparkFun at https://learn.sparkfun.com/
tutorials/how-to-solder---through-hole-soldering
and Adafruit at https://learn.adafruit.com/adafruit-
guide-excellent-soldering.

We'll use a TMP36 temperature sensor in this circuit as well, so we'll have some
temperature data to display. The TMP36 can be powered at 3.3 V, and it gives an
output voltage that is linearly proportional to the temperature in centigrade, with
a maximum output voltage of around 1.7 V. That makes it perfect for interfacing to
the BeagleBone, as its output can be directly connected to the 1.8V ADC without a
voltage divider.

For this circuit, you will need:

• Breadboard
• 1x Adafruit 7-segment display with I2C backpack
• 1x TMP36 temperature sensor
• 1x 0.1 µF capacitor
• Jumper wires

www.it-ebooks.info

https://www.adafruit.com/products/881
https://learn.adafruit.com/adafruit-led-backpack/0-dot-56-seven-segment-backpack
https://learn.adafruit.com/adafruit-led-backpack/0-dot-56-seven-segment-backpack
https://learn.sparkfun.com/tutorials/how-to-solder---through-hole-soldering
https://learn.sparkfun.com/tutorials/how-to-solder---through-hole-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
http://www.it-ebooks.info/

Program Output

[84]

The connection is shown in the following figure:

Adafruit provides a Python library for driving their I2C LED backpacks, so we'll start
by opening a terminal and installing it along with its dependencies. Let's take a look
at the following code:

apt-get update

apt-get install git python-imaging

git clone
 https://github.com/adafruit/Adafruit_Python_LED_Backpack.git

cd Adafruit_Python_LED_Backpack

python setup.py install

Next, we'll need to figure out how to convert the voltage from the TMP36 into
temperature. The datasheet specifies the output to be 10 mV/degrees Celsius, with
an offset of 750 mV at 25 degrees Celsius. From this, we can derive the formula tempC
= (voltage - 750 mV) / 10 (mV/°C) + 25°C, or using volts instead of millivolts tempC =
(voltage - 0.75 V) / 0.01 (V/°C) + 25°C.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[85]

Now, let's put the pieces together and use the 7-segment display to show the current
temperature, using Adafruit_BBIO this time:

From Adafruit_BBIO import ADC
from Adafruit_LED_Backpack import SevenSegment
import time

tmp36 = "P9_33" # AIN4

ADC.setup()
display = SevenSegment.SevenSegment()
display.begin()
display.set_colon(False)

def get_temp_c():
 v = ADC.read(tmp36)*1.8
 return (v - 0.75)*100.0 + 25

try:
 while True
 temp = int(get_temp_c())
 sign = '-' if temp < 0 else ' '
 temp_str = "{}{:2d}C".format(sign, abs(temp))
 display.clear()
 display.print_number_str(temp_str)
 display.write_display()
 time.sleep(1)
except KeyboardInterrupt:
 pass

I made the string formatting a bit more complicated than it needed to be because I
wanted the minus sign to always be on the farthest left digit, even when displaying
a one digit negative number.

The LED matrix
Let's look at one more form of multiplexed LED displays—the LED matrix. These
are N x N arrays of LEDs, where typically, every LED can be individually lit
through their multiplexing scheme. Adafruit's I2C LED backpacks include some
LED matrixes, and in this case, we'll use the 8 x 8 single-color matrix, like the
one available at https://www.adafruit.com/products/959. Once again, some
soldering is required (tutorial at https://learn.adafruit.com/adafruit-led-
backpack/0-8-8x8-matrix), then it can be wired to the BeagleBone just like the
7-segment display board was.

www.it-ebooks.info

https://www.adafruit.com/products/959
https://learn.adafruit.com/adafruit-led-backpack/0-8-8x8-matrix
https://learn.adafruit.com/adafruit-led-backpack/0-8-8x8-matrix
http://www.it-ebooks.info/

Program Output

[86]

For this circuit, you will need:

• Breadboard
• 1x Adafruit 8 x 8 single-color LED matrix w/ I2C backpack
• Jumper wires

Connect the LED matrix like so:

This time, let's look at doing some simple animation. First, open a terminal and
install the psutil Python library, using the following command:

pip install psutil

psutil provides functions to monitor system resources; in this case, we'll use it
to create a scrolling graph of CPU usage:

import time, Image, ImageDraw, collections, psutil
from Adafruit_LED_Backpack import Matrix8x8

display = Matrix8x8.Matrix8x8()
display.begin()
display.clear()
display.write_display()
history = collections.deque([0]*8)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[87]

try:
 while True:
 load = psutil.cpu_percent(interval=2)
 height = load/100 * 8
 height = int(height + 0.5)
 if (height > 8): height = 8
 history.append(height)
 history.popleft()
 image = Image.new('1', (8, 8))
 draw = ImageDraw.Draw(image)
 for i in range(8):
 height = history[i]
 if (height > 0):
 draw.line((i,7,i,8-height), fill=255)
 display.set_image(image)
 display.write_display()
except KeyboardInterrupt:
 pass

Leave this running while you perform some other tasks on your BeagleBone, like
running some other programs. You should see a nice scrolling bar graph. If you want
to see the graph spike, you can run a program that will hog the CPU, for example,
by repeatedly doing multiplication:

x = 100
while 1:
 x * x

SMTP
We've looked at various forms of displays that you can attach to your BeagleBone,
but those are only useful when you're looking at it. If your BeagleBone is not
accessible, for instance, it's monitoring something at your home while you're out,
you might still need a way for it to send you information. One simple way to achieve
this is to use Simple Mail Transfer Protocol (SMTP) to send e-mails from your
BeagleBone. Save this code to a new file called email_sender.py by filling in your
account's SMTP details:

import smtplib
from email.mime.text import MIMEText

SMTP_host = 'smtp.gmail.com'
SMTP_email = 'username@gmail.com'
SMTP_pass = 'password'

www.it-ebooks.info

http://www.it-ebooks.info/

Program Output

[88]

def send_email(to, subject, body):
 msg = MIMEText(body)
 msg['Subject'] = subject
 msg['From'] = SMTP_email
 msg['To'] = to
 server = smtplib.SMTP_SSL(SMTP_host)
 server.login(SMTP_email, SMTP_pass)
 server.sendmail(SMTP_email, to, msg.as_string())

Just like with IMAP, to retrieve e-mails, SMTP is a standard protocol
and is used by pretty much every e-mail provider, so you should be
able to find the appropriate details for your account.

One possible application where you might want your BeagleBone to send you an
e-mail is in a home security system. For this example, we'll use a PIR motion detector
module, like the one from Adafruit at https://www.adafruit.com/products/189,
to create a system that notifies you when motion is detected.

For this circuit, you will need:

• PIR motion detector module
• Matching cable

Hook up the PIR sensor as shown:

www.it-ebooks.info

https://www.adafruit.com/products/189
http://www.it-ebooks.info/

Chapter 6

[89]

The module from Adafruit is great for two reasons, it comes with a cable, and its
output signal is 3 V even though it is powered at 5 V. Pretty much all PIR motion
detection modules work the same and have the same interface, but if you are using a
different one, make sure to confirm with a multimeter that the output is 3 V, and use
a voltage divider if it isn't.

The Adafruit module ship is configured to generate a low pulse when motion is
detected, so we can wait for a falling edge on the GPIO pin it's connected to. There's
a jumper on the module that lets you invert that signal, so there's a high pulse when
motion is detected. Since we can detect both falling and rising edges, it doesn't really
matter which way the output goes, just make sure to set the edge accordingly in
the program:

import Adafruit_BBIO.GPIO as GPIO
import email_sender, time

PIR_pin = "P9_11" # GPIO0_30

email_address = "username@example.com"

def alert():
 email_sender.send_email(
 email_address,
 "BeagleBone motion detector",
 "Motion detected at {}".format(time.strftime("%x %X")))

GPIO.setup(PIR_pin, GPIO.IN)

while 1:
 GPIO.wait_for_edge(PIR_pin, GPIO.FALLING)
 alert()

We used Adafruit_BBIO for this example, taking advantage of the GPIO.wait_for_
edge() function, which we looked at briefly in Chapter 5, User Input. This is great if
you have nothing else to do in your program, as it lets you wait without using any
extra system resources such as a while loop would, and then respond with as little
latency as possible when the interrupt occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

Program Output

[90]

Most cell phone providers have e-mail gateways to let you send text messages to
numbers on their network via e-mail. There are many websites that provide lists
of these gateways, such as http://www.emailtextmessages.com/. If you use
your number and carrier's gateway instead of your e-mail address for the email_
address variable, you can get the notifications from your BeagleBone as text
messages instead.

Character LCD
We've looked at a few different types of LED displays, but because of the large size
and spacing of their pixels they tend to be poor at conveying much information.
When you want to display text, one of the simplest ways to do so is with a character
LCD (liquid crystal display). These are rectangular displays typically consisting of
1, 2, or 4 lines of 8, 16, or 20 characters each, and are commonly used in radios and
other low-cost electronics. Each character is typically made up of a matrix of 5 x 8
pixels, which is enough resolution to display any of the ASCII characters, along with
some additional symbols.

For this example, I'm using a 2 x 16 character LCD. It will work with different
sizes, but with a width of less than 16 characters, some of the text will be cut
off. Character LCDs usually require a 5 V supply, but some companies such as
SparkFun sell 3.3 V versions. Either version will work with the BeagleBone, just
make sure to hook it up to the correct power supply. We'll also hook up a tactile
switch and a TMP36 temperature sensor.

For this circuit, you will need:

• Breadboard
• 1x 16 x 2 character LCD
• 1x potentiometer (value not critical, 1 kΩ - 10 kΩ recommended)
• 1x tactile switch
• 1x TMP36 temperature sensor
• 1x 0.1µF capacitor
• Jumper wires

www.it-ebooks.info

http://www.emailtextmessages.com/
http://www.it-ebooks.info/

Chapter 6

[91]

In this example, the LCD is used to display the CPU and TMP36 temperatures, the
percentage of CPU and memory resources currently being used, and the number of
network packets that have been sent and received. That's way too much information
to display on the screen all at once, so the button is used to cycle through three
different views. We're using PyBBIO here because it includes a library to control
character LCDs:

from bbio import *
from bbio.libraries.LiquidCrystal import LiquidCrystal
import psutil, threading

tmp36 = AIN4

www.it-ebooks.info

http://www.it-ebooks.info/

Program Output

[92]

button = GPIO0_20

RS_PIN = GPIO0_30
RW_PIN = GPIO0_31
EN_PIN = GPIO1_16
D4_PIN = GPIO0_5
D5_PIN = GPIO0_13
D6_PIN = GPIO0_3
D7_PIN = GPIO1_17
lcd = LiquidCrystal(RS_PIN, RW_PIN, EN_PIN, D4_PIN, D5_PIN,
 D6_PIN, D7_PIN)

screen = 0

def get_external_temp_c():
 v = inVolts(analogRead(tmp36))
 return (v - 0.75) * 100.0 + 25

def get_cpu_temp_c():
 with open('/sys/class/hwmon/hwmon0/device/temp1_input',
 'r') as f:return int(f.read()) / 1000

def poll_button():
 while True:
 global screen
 if (digitalRead(button) == LOW):
 screen = (screen+1) % 3
 while(digitalRead(button) == LOW): delay(10)
 delay(50)

def setup():
 lcd.begin(16, 2) # (columns, rows)
 pinMode(button, INPUT, PULLUP)
 t = threading.Thread(target=poll_button)
 t.daemon = True
 t.start()

def loop():
 if (screen == 0):
 line1 = "Ext temp : {}C".format(get_external_temp_c())
 line2 = "CPU temp : {}C".format(get_cpu_temp_c())
 elif (screen == 1):
 line1 = "CPU : {}%".format(psutil.cpu_percent())
 line2 = "Mem : {}%".format(psutil.virtual_memory()[2])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[93]

 else:
 net_info = psutil.net_io_counters()
 line1 = "eth0 up : {}".format(net_info[2])
 line2 = "eth0 dwn : {}".format(net_info[3])
 lcd.clear()
 lcd.home()
 lcd.prints(line1)
 lcd.goto(0, 1) # go to column 0, row 1
 lcd.prints(line2)
 delay(500)

run(setup, loop)

Note how the button input is being received. It is utilizing the method described in
Chapter 5, User Input, in which the button is ignored until it is released, but it does
so in a separate thread in order to avoid interfering with the LCD drawing. This
could be done in the same thread without blocking the LCD drawing by using global
flags to track the state of the button, but we might as well take advantage of the
parallelization tools Python provides to keep the code straightforward.

Summary
In this chapter, you learned a number of ways to provide output to the user
from your BeagleBone programs. You learned how to interface with and control
different types of LED and LCD displays, as well as how to have your BeagleBone
send messages to you remotely. You built an unread e-mail notification system,
a thermometer, a motion detection system, and two different system resource
monitors for your BeagleBone Black.

In the next chapter, you will learn how the I2C and SPI protocols work, and how
to use them with Python.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[95]

Serial Communication
In this chapter, you will learn how to use the BeagleBone's serial communication
subsystems. We will cover the following topics:

• UART
• I2C
• SPI

Serial communication
Serial communication is the process of sending data a single bit at a time, or serially.
Alternatively, in parallel communication, the data is sent in sets of simultaneous bits
each on separate wires. Serial communication came about largely because of the cost
of parallel cables, as each parallel bit would have to have its own wire. It's especially
more cost efficient in the case where you are transferring data over long distances.
There tends to be more complexity involved in parallel communication, and as
factors, such as processor speeds have increased over the years, thus increasing the
speed at which data can be serialized, serial communication has become much more
widely used. Serial buses are now the primary way for devices to communicate with
each other between different systems, as well as locally on the same circuit board.

UART
A UART is one of the most common serial communication subsystems. To transmit
data with a UART, one or more bytes are written to an internal shift register by
a CPU from where they are then serially sent out; a single output is sent out at a
previously defined clock rate. Another UART (programmed to run at the same clock
rate as the first), with its single input connected to the output of the first, detects the
start of this bit stream, and it sequentially reads the bits into its own internal shift
register. Once all the bits are sent, the receiving UART signals its CPU to let it know
there's data ready, and the CPU then reads it out of the receive register.

www.it-ebooks.info

http://www.it-ebooks.info/

Serial Communication

[96]

A UARTs transmit output is referred to as TX, and its received input as RX. They
often have some additional signals for more advanced handshaking, called flow
control, which help ensure synchronization. We'll only cover the RX and TX signals
here, as we won't be using the flow control signals in any of the demos in this book.
Synchronization between two UARTs is typically achieved without the additional
flow control signals by prepending one or more start bits to each byte to mark its
start, and sometimes one or more stop bits are appended to each byte to mark its
end. Two UARTs are connected together by wiring the TX signal from one to the
RX input of the other, and vice versa.

Communication between two UARTs completely relies on them running at the
same speed, as they must agree on how much time the digital state is held for
each bit. The measurement of speed used for UARTs is the baud rate, or symbols
per second, where a symbol refers to what encodes a single bit. In more advanced
communication protocols, there can be more than one pulse per bit to provide error
immunity, but in a standard UART communication there is one pulse per bit, so the
baud rate is equivalent to the rate in bits per second.

There are a number of standard baud rates used: 110, 300, 600, 1200, 2400, 4800, 9600,
14400, 19200, 28800, 38400, 56000, 57600, and 115200 symbols/second. Many modern
UARTs also support the higher standard rates of 128000, 153600, 230400, 256000,
460800, and 921600 symbols/second. Some UARTs can autodetect the baud rate of
a device connected to it, but typically both endpoints will have been programmed
ahead of time to use the same baud.

The BeagleBone's processor contains six separate UART modules, labeled UART0
- UART5. UART0 is reserved for a serial console, as described in Chapter 2, Getting
Started, and UART3 is not fully exposed on the expansion headers. That leaves
UART1, UART2, UART4, and UART5 open for general use. These use the following
pins on the expansion headers:

• UART1:
 ° RX - P9.26
 ° TX - P9.24

• UART2:
 ° RX - P9.22
 ° TX - P9.21

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[97]

• UART4:
 ° RX - P9.11
 ° TX - P9.13

• UART5:

 ° RX - P8.38
 ° TX - P8.37

The UART5 RX and TX signals are shared with pins used by
the HDMI driver, so to use it HDMI must first be disabled.
See Appendix A, The BeagleBone Black Pinout.

Each UART on the BeagleBone is enabled separately. As with the other subsystems,
PyBBIO automatically loads the overlays to enable each UART when you initialize it.
Otherwise, you'll have to enable them manually with capemgr by loading the overlays
named BB-UART1, BB-UART2, BB-UART4, and BB-UART5. When the overlay is
loaded, a device node will be created, which is a special kernel driver interface file in /
dev/ directory. The BeagleBone's kernel calls these device nodes /dev/ttyOx, where
x is the UART number. So enabling UART2 with the BB-UART2 overlay will create the
device node at /dev/ttyO2 (note that's the letter O following tty, not the number 0).
Inside the operating system abstraction, these particular virtual devices are referred to
as serial ports. The serial port kernel driver allows you to control a UART by writing
to and reading from its device node as if it were a regular file, with some initial setup
with ioctl to configure parameters like the baud rate.

ioctl is a system call on Unix-like systems that takes three
arguments:

• A file descriptor of an open special file, such as a device
node for a serial port

• A request code (specific to the device driver in question)
describing what parameter you want to read or manipulate

• An address in memory where a read parameter will be
placed, or where a value is stored if you're making a change

ioctl is used to read and manipulate parameters that don't fit into
the standard file read/write model, such as settings like baud rates.

www.it-ebooks.info

http://www.it-ebooks.info/

Serial Communication

[98]

In PyBBIO, there is a preinstantiated object for each UART, named Serial1, Serial2,
Serial4, and Serial5 respectively. The full API docs can be found on the PyBBIO wiki
page at https://github.com/graycatlabs/PyBBIO/wiki/serial. As an example,
here's a simple program that listens for incoming data on UART2, receives it, and
then transmits it back out from UART2:

from bbio import *

def setup():
 # Start Serial2 at 9600 baud:
 Serial2.begin(9600)

def loop():
 if (Serial2.available()):
 # There's incoming data
 data = ""
 while(Serial2.available()):
 # If multiple characters are being sent we want
 # to catch them all, so add received byte to our
 # data string and delay a little to give the
 # next byte time to arrive:
 data += Serial2.read()
 delay(5)
 # Print what was sent:
 print "Data received:\n '%s'" % data
 # And echo it back to the serial port:
 Serial2.write(data)
 delay(100)

run(setup, loop)

You can test this program with the USB to serial converter from Adafruit (http://
www.adafruit.com/products/70) mentioned in Chapter 2, Getting Started; hook up
the black ground wire to a GND pin (like P9.1), the orange TX wire to the UART2 RX
pin (P9.22), and the yellow RX wire to the UART2 TX pin (P9.21), as shown (where
the arrows indicate the direction of data flow):

www.it-ebooks.info

https://github.com/graycatlabs/PyBBIO/wiki/serial
http://www.adafruit.com/products/70
http://www.adafruit.com/products/70
http://www.it-ebooks.info/

Chapter 7

[99]

You'll need to first install the driver for the USB to the serial converter inside the
cable, which you can find at http://www.ftdichip.com/Drivers/VCP.htm. With
the driver installed, when you plug the serial cable into a Windows PC, it should
detect it and assign it a COM port number. If you're not sure what number it was
assigned, you can check for a USB Serial Port(COM15) entry in Device Manager:

www.it-ebooks.info

http://www.ftdichip.com/Drivers/VCP.htm
http://www.it-ebooks.info/

Serial Communication

[100]

In the screenshot, you can see it was assigned COM15. Now open PuTTY (which we
used previously in Chapter 2, Getting Started), select Serial line and enter the COM
port and baud rate:

We've used the 9600 baud rate here, since that's what we're using in the example
program; any standard baud rate will work as long as they're both the same.

Get the example program running on your BeagleBone Black and then press Open
in PuTTY. You'll be dropped into a terminal window where you can type characters
on your keyboard, which are sent to the converter IC in the USB cable, sent out
to the ICs UART over the cable, and received in the BeagleBone Black's UART2.
The characters are read by the Python program, printed to the terminal where it's
running, then they are sent back through the serial cable to your PC where they are
received and displayed on the PuTTY terminal. We can see this happening with an
oscilloscope:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[101]

In the oscilloscope screenshot, the yellow trace shows voltage from a probe connected
to the PC's TX signal going to the BeagleBone's RX pin, and the blue trace shows the
signal from the BeagleBone's TX pin being sent to the PC. We can see that there is data
being sent from the PC to the BeagleBone, then a short time later, there is data being
sent back to the PC. Let's zoom in a little closer on the first chunk of data:

www.it-ebooks.info

http://www.it-ebooks.info/

Serial Communication

[102]

Here, you can see that the serial decode feature has been enabled on the oscilloscope,
and it shows us that the data sent is the ASCII character "a". In ASCII, the letter "a" is
encoded as 0x61, or in binary, 01100001.

You might also notice that the decoder selected on the oscilloscope
screenshot is called RS232. RS232 is a serial transmission standard.
PCs used to always include serial ports to connect peripheral devices
such as modems and printers, and is still widely used in commercial
and industrial applications. While the voltage levels we're using here
are different from RS232, standard UARTs still use the same basic
serializing protocol.

Let's take a closer look at the byte we recorded to make sure we agree with the
decoder:

We just said that the binary value of the ASCII character "a" is 01100001, but what
actually got sent was 010000110, so what's going on here? The first thing to note
is that this is in fact 9 bits, which is one bit longer than a standard 8-bit byte. The
reason for this is that the first bit sent is actually a start bit, which tells the receiving
UART that a byte is on the way. So that leaves 10000110, which is the binary value
of a in reverse. That's because the data is being serialized in the Least Significant
Bit First (LSB) order, where the byte is transmitted right-to-left, as opposed to Most
Significant Bit First (MSB), where the byte would be transmitted left-to-right; this is
the standard bit ordering used by UARTs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[103]

And if we zoom in to the byte that the BeagleBone sends back, we can see that it is
also the ASCII character a:

Adafruit_BBIO doesn't include its own objects for controlling the serial ports, but
the pySerial Python library, which PyBBIO's serial port class is built on top, can
be used directly in an Adafruit_BBIO program. The pySerial API can be found at
http://pyserial.sourceforge.net/pyserial_api.html. The equivalent echo
program using pySerial would look like this:

import serial, time

port = serial.Serial("/dev/ttyO2", 9600)

while True:
 if (port.inWaiting()):
 data = ""
 while(port.inWaiting()):
 data += port.read()
 time.sleep(0.005)
 # Print what was sent:
 print "Data received:\n '%s'" % data
 port.write(data)
 time.sleep(0.1)

www.it-ebooks.info

http://pyserial.sourceforge.net/pyserial_api.html
http://www.it-ebooks.info/

Serial Communication

[104]

Remember, if you're not using PyBBIO, you'll need to manually load the Device Tree
overlay to enable the UART, for example:

echo BB-UART2 > /sys/devices/bone_capemgr.*/slots

I2C
In the I2C protocol, there's a master device controlling one or more slave devices
using two digital signals. One of the signals is a clock, called Serial Clock (SCL),
and the other is a bidirectional data line, called Serial Data (SDA). The clock signal
is generated by the master, which means the devices don't need to be programmed
with the same symbol rate like UARTs do.

To handle multiple devices, each slave device on the same bus (sharing the same
SDA and SCL signals) must have an individual address. The standard I2C protocol
uses 7-bit slave addresses, meaning there can be up to 27 = 128 devices on a single
bus. There are 16 addresses reserved for special purposes, so that leaves room for
112 general I2C devices per bus. A device's address is programmed into it by its
manufacturer, and there is no guarantee that any two devices won't have the same
address, so in practice, the upper limit would likely be less than 112. Some devices
have a single hardcoded address and some devices can be set to one of a few
hardcoded addresses by pulling external address pins high or low.

When the I2C master wants to communicate with a slave device, it must first send a
header, which includes the address of the device it wants to communicate with, as
well as a bit, called the R/W bit, which tells the slave if the master is intending to write
data to it or read data from it. To send these bits, the master pulls the clock line low,
sets the data line according to the current bit value, sets the clock line high, and then
repeats for each subsequent bit. The slave device reads the state of the data line when
it detects the rising edge of the clock line. Once the address and R/W bit have been
sent, the master sets its data pin to an input state and the slave device sets its data
pin to an output state. When the slave device detects the next falling clock edge from
the master, it sets the data line high to indicate it has acknowledged the packet, or
sets it low to indicate that it has not acknowledged it. This is referred to as an ACK
or NACK, respectively. If the R/W bit is 1, meaning that the master will be writing to
the device, the data line once again is controlled by the master and the data is written
one byte at a time, with each byte concluding with the ACK/NACK bit from the
slave. If the R/W bit is 0 to indicate read mode, the slave remains in control of the
data line, shifting bits out as the master toggles the clock line.

There are a few clock rates defined for I2C buses—100 kilobit/s standard speed,
400 kilobit/s full speed, 1 megabit/s fast mode, and 3.2 megabit/s high speed.
The BeagleBone I2C buses all operate at the 100 kilobit/s standard speed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[105]

The BeagleBone Black has two I2C buses available on its expansion headers:

• I2C1
 ° SCL - P9.17
 ° SDA - P9.18

• I2C2

 ° SCL - P9.19
 ° SDA - P9.20

There is an additional I2C0 bus on the BeagleBone Black, but it is used for
communication between onboard ICs and is not accessible on the expansion headers.

The three I2C buses are controlled through the /dev/i2c-0, /dev/i2c-1, and /dev/
i2c-1 device nodes. The BeagleBone Black's kernel numbers the I2C buses in the
order in which they appear, and these numbers don't correspond to the actual bus
numbers. However, I2C0 and I2C2 are both enabled by default (I2C2 is used to detect
expansion capes), and are therefore controlled through /dev/i2c-0 and /dev/i2c-1,
respectively. I2C1 can be enabled by loading the BB-I2C1 Device Tree overlay, which
creates the next device node /dev/i2c-2. So to summarize, /dev/i2c-0 controls I2C0
(used internally and should be left alone), /dev/i2c-1 controls I2C2, and /dev/i2c-2
controls I2C1 (when enabled with capemgr). When using PyBBIO, the I2C1 overlay is
loaded automatically if it is being used, and you don't need to worry about the device
node numbering. With Adafuit_BBIO, you will have to remember the numbering
scheme because the port being used is specified by the device node numbering.

Let's look at an example of using an I2C bus by hooking up a Melexis MLX90614
contactless IR temperature sensor (http://www.adafruit.com/products/1747)
to the I2C2 bus.

The MLX90614 is a fairly pricey sensor, and we won't go very deep
into software for it, so there's no real need to follow along. If you are
building the circuit up for yourself, though, make sure to use the 3 V
version of the sensor and not the 5 V version; otherwise, you could
damage the sensor and/or your BeagleBone.

www.it-ebooks.info

http://www.adafruit.com/products/1747
http://www.it-ebooks.info/

Serial Communication

[106]

The circuit is pretty simple:

As you can see, there are two pull-up resistors on the SCL and SDA lines. These are
a requirement of the I2C protocol, and it won't function without them. The pull-up
on the SDA line ensures that it will be at a high level during the transition between
master and slave control, and the pull-up on the SCL line will ensure that there are
no false clock pulses if the master device gets reset.

There is also a suite of command line tools to help with using I2C from user-space on
GNU/Linux called i2c-tools, which you can install from apt-get on Debian:

apt-get install i2c-tools

One of these tools is i2cdetect, which is able to probe I2C buses for slave devices.
With the MLX90614 hooked up to I2C2, we can run the tool and find its address:

root@beaglebone:~# i2cdetect -r 1

WARNING! This program can confuse your I2C bus, cause data loss and
worse!

I will probe file /dev/i2c-1 using read byte commands.

I will probe address range 0x03-0x77.

Continue? [Y/n] y

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- UU UU UU UU -- -- 5a -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[107]

This table tells us that the MLX90614 has an address of 0x5a (which we can also find in
the datasheet), and is connected and responding properly. The datasheet tells us that
we can read the temperature of the object the sensor is pointing at by first writing the
command 0x07 to it, then by reading the three bytes. We can also read the ambient
temperature inside the sensor the same way, but instead using the 0x06 command.

PyBBIO provides two objects, I2C1 and I2C2, for controlling the I2C buses.
The full I2C API can be found on the PyBBIO wiki page at https://github.
com/graycatlabs/PyBBIO/wiki/I2C. It is common for I2C devices to use the
protocol of writing a byte before reading, so that it knows what to send (which
can correspond to a command, as with the MLX90614, or it can be the address of a
register in the slave device's memory, which you want to access); so along with the
individual read() and write() methods, PyBBIO also provides a method called
readTransaction(), which does just that. So to read the temperature from the
device we will first enable the bus:

root@beaglebone:~# python

Python 2.7.3 (default, Mar 14 2014, 17:55:54)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from bbio import *

PyBBIO initialized

>>> I2C2.open()

Then, we will call readTransaction(), giving it the address of the MLX90614, the
0x07 command byte to write, and the number of bytes to read:

>>> I2C2.readTransaction(0x5a, 0x07, 3)

[41, 58, 179]

The first two bytes received are the low and high bytes of the measured temperature,
respectively. The third byte received is an 8-bit cyclic redundancy check (CRC-8)
calculated from the temperature data, which can be used to detect whether the data
was corrupted due to transmission errors.

www.it-ebooks.info

https://github.com/graycatlabs/PyBBIO/wiki/I2C
https://github.com/graycatlabs/PyBBIO/wiki/I2C
http://www.it-ebooks.info/

Serial Communication

[108]

Let's take a look at the SDA and SCL signals when we read the temperature:

The top trace in the capture is the SCL signal and the bottom is SDA. You can
distinctly see the separate write and read sections of the transaction. Let's take
a closer look at the first section:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[109]

The first thing sent is the address, with the R/W bit set to write, followed by the 0x07
command. Also notice that the bytes are being sent in the MSB first order, as opposed
to the LSB first order that the UARTs use. Now we'll zoom in on the second section:

The second part of the transaction is started with another header, but this time with
the R/W bit set to read, then the three data bytes are received. As soon as the header
is sent, the MLX90614 takes control of the SDA line.

For the sake of completeness, here's a small program to show you how the two
temperatures can be read and converted from the MLX90614 using PyBBIO:

from bbio import *

def readObjectTempC():
 low, high, pec = I2C2.readTransaction(0x5a, 0x07, 3)
 tempk = ((high << 8) | low)*0.02 # temp in Kelvin
 return tempk - 273.75 # Convert to Celsius

def readAmbientTempC():
 low, high, pec = I2C2.readTransaction(0x5a, 0x06, 3)
 tempk = ((high << 8) | low)*0.02
 return tempk - 273.75

def setup():
 I2C2.open()

www.it-ebooks.info

http://www.it-ebooks.info/

Serial Communication

[110]

def loop():
 print "ambient = {:0.2f} C - object = {:0.2f} C".format(
 readAmbientTempC(),
 readObjectTempC()
)
 delay(500)

run(setup, loop)

Adafruit_BBIO provides the Adafruit_I2C class, which is fully documented
at https://learn.adafruit.com/setting-up-io-python-library-on-
beaglebone-black/i2c. You'll first need to install the python-smbus package
that it depends on:

apt-get install python-smbus

Adafruit_BBIO uses a slightly different abstraction than PyBBIO for I2C, where
the Adafruit_I2C object is instantiated with the address of a remote device. In
other words, there is one Adafruit_I2C instance per slave device, as opposed to
PyBBIO's I2C1 and I2C2 objects, which each represent an entire I2C bus. Reading
the temperature from the MLX90614 with Adafruit_BBIO would look like this:

from Adafruit_I2C import Adafruit_I2C
i2c = Adafruit_I2C(0x5a, 1) # bus 1 for /dev/i2c-1, or I2C2
data = i2c.readList(0x07, 3)

SPI
SPI is, in its most typical form, a 4-wire protocol. Like I2C, it is a single-master,
multiple-slave protocol. It has a clock line (SCK), a data line from the master to the
slaves (MOSI), a data line from the slaves to the master (MISO), and a separate chip
select (CS) line for each slave device. The CS signal for a particular slave device is
pulled low by the master before communicating with it, and any other device on the
same bus with its CS line set high will ignore any transferred data. SPI requires more
pins than I2C, but unlike I2C it doesn't require transactions to include a slave address
header, and it has separate data lines for each direction of communication (which can
transfer data simultaneously). For these reasons, it can typically achieve higher data
rates than I2C. The number of devices that can be put on the same SPI bus is dictated
by the number of available pins for CS signals.

www.it-ebooks.info

https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black/i2c
https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black/i2c
http://www.it-ebooks.info/

Chapter 7

[111]

The SPI protocol is less strictly defined than I2C, with the bit order, clock mode, and
clock speed all being configurable. The clock mode is made up of two bits, the clock
polarity (CPOL) bit and the clock phase (CPHA) bit. These bits are as follows:

• CPOL=0: SCK is idle low (low level when no data is being sent)
 ° CPHA=0: Data bits are set on the SCK falling edge and read on the

SCK rising edge
 ° CPHA=1: Data bits are set on the SCK rising edge and read on the

SCK falling edge

• CPOL=1: SCK is idle high

 ° CPHA=0: Data bits are set on the SCK rising edge and read on the
SCK falling edge

 ° CPHA=1: Data bits are set on the SCK falling edge and read on the
SCK rising edge

A particular SPI device will specify the clock settings it uses, and it's up to the
master device to ensure that it sets the clock mode accordingly. An SPI master can
communicate with slave devices that have different clock modes on the same bus
by simply changing the clock mode between interactions with each device.

There are no real standard SPI clock speeds, and SPI devices typically specify their
maximum supported clock frequency. The device with the slowest maximum
frequency on an SPI bus dictates the maximum bus speed.

The BeagleBone Black has two SPI ports available on its expansion headers, SPI0
and SPI1, with the pins:

• SPI0:
 ° CS0 - P9_17
 ° MISO - P9_21
 ° MOSI - P9_18
 ° SCLK - P9_22

• SPI1:

 ° CS0 - P9_28
 ° CS1 - P9_42
 ° MISO - P9_29
 ° MOSI - P9_30
 ° SCLK - P9_31

www.it-ebooks.info

http://www.it-ebooks.info/

Serial Communication

[112]

You'll have to disable HDMI to use SPI1, as described in
Appendix B, Disabling HDMI.

The SPI modules are enabled by loading Device Tree overlays with capemgr, called
BB-SPIDEV0 and BB-SPIDEV1. These create the device nodes /dev/spidev1.0, /
dev/spidev1.1, /dev/spidev2.0, and /dev/spidev2.1. The first number in each
device name corresponds to an SPI bus, while the second number corresponds to
a CS signal. As for I2C, the bus number in the device nodes is assigned according
to the order in which the buses are enabled. Neither SPI bus is enabled by default,
so you'll have to keep track of the order in which you enable them. Again, if you're
using PyBBIO, this is kept track of behind the scenes for you.

Since SPI0 only has its CS0 signal exposed on the headers, and not its CS1 signal, the
/dev/spidevX.1 device node corresponding to SPI0 will not control any external CS
signal on the expansion headers. If you need more than two devices connected to one
of the SPI buses, you can simply use GPIO pins for chip select signals instead.

In PyBBIO, initializing an SPI bus is similar to I2C or UART:

root@beaglebone:~# python

Python 2.7.3 (default, Mar 14 2014, 17:55:54)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from bbio import *

PyBBIO initialized

>>> SPI0.open()

It's also good to set your clock frequency to a known value to make sure you're not
running faster than any of the connected devices support, for example 1 MHz:

>>> SPI0.setMaxFrequency(0,1000000)

To then write out a byte of data, would be as follows:

>>> SPI0.write(0, [0x61])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[113]

Where the first number is the CS signal to use and the second is a list of bytes to be
sent sequentially. We can see this transmission in action on the oscilloscope:

The top yellow trace is the CS signal, which you can see being pulled low at the start
of the transmission and driven high at the end. The light blue trace below it is the clock
signal. The default clock mode for the BeagleBone Black's SPI modules is CPOL = 0
and CPHA = 0, so the clock is idle and low and the data is read on the rising edge (the
clock mode can be configured with the setClockMode() method). The clock signal has
eight rising edges for the eight bits in the byte we sent. The pink trace is the MISO line,
the data being received by the master, and it is unchanged since there's no data being
received. The dark blue trace at the bottom shows the bits sent on the MOSI line, and
the SPI decoder shows that it is the ASCII character "a" as expected.

As a quick test to make sure we are receiving data as expected, we can simply
connect the MOSI and MISO signals to create a data loopback. If we do this and
send a few more bytes, as follows:

>>> SPI0.transfer(0, [0x61, 0x62, 0x63])

[97, 98, 99]

www.it-ebooks.info

http://www.it-ebooks.info/

Serial Communication

[114]

Then, we can see that the data with the same bytes is received (which are integers, so
Python prints them as decimal values). Let's take a look at the oscilloscope when we
send this sequence:

As you can see, the same data is now present on the MISO line because we connected
it to MOSI. We can also see that the CS line is held low for the entire transmission
instead of toggled between bytes.

As mentioned previously, to use SPI from Adafruit_BBIO, you'll need to first load
the BB-SPIDEV0 or BB-SPIDEV1 Device Tree overlay. You'll then need to take note of
the bus number assigned to the spidev device node entry that was created. If you're
only using one SPI bus, this will be 1 for /dev/spidev1.x. You then need to create
an instance of the Adafruit_BBIO.SPI class for each bus and CS pin you are using.
Adafruit_BBIO numbers the buses starting from 0, so to use SPI1 with CS0 it will be:

from Adafruit_BBIO.SPI import SPI
spi = SPI(0,0)
spi.writebytes([0x61])

The documentation for the Adafruit_BBIO SPI class can be found at https://learn.
adafruit.com/setting-up-io-python-library-on-beaglebone-black/spi.

www.it-ebooks.info

https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black/spi
https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black/spi
http://www.it-ebooks.info/

Chapter 7

[115]

Summary
In this chapter, you learned the basics of the UART, I2C, and SPI modules and their
serial protocols. We looked briefly at how these protocols are implemented on the
BeagleBone Black and how to control them from Python.

In the next chapter, we will look at a more in-depth example of using the I2C
protocol to interface with an external sensor.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[117]

Interfacing with
External Devices

In this chapter, we will work through the process of interfacing with a new device.
We will cover the following topics:

• Reading datasheets
• I2C sensor memory registers
• Accelerometer basics
• Accelerometer interrupt functions
• Writing Python libraries for external devices
• Tap detection as input

Accelerometers
Accelerometers, made abundant and affordable by the cell phone industry, are one
of the most common sensors found in embedded devices these days. As their name
implies, accelerometers sense acceleration, in one, two, or three axes. This is useful
for things, such as pedometers, as you can sense the vibrations from a footstep, and
they can also be used for sensing orientation by measuring the acceleration due to
gravity on the different axes.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing with External Devices

[118]

Hooking it up
Let's take a look at interfacing with the analog devices' ADXL345 accelerometer. It
can measure acceleration about three axes on a configurable scale of +/- 2 g, 4 g, 8 g
or 16 g (where 1 g is the acceleration due to gravity near the Earth's surface, equal to
about 9.8 m/s2) about three axes. Both SparkFun and Adafruit sell breakout boards
for the ADXL345 (https://www.sparkfun.com/products/9836 and http://www.
adafruit.com/product/1231). We'll demonstrate with the SparkFun board, but
the Adafruit board will function just the same; just be sure to follow their wiring
instructions. Both boards come with male header pins that you'll have to solder on
yourself to use them with a breadboard.

For this circuit, you will need:

• Breadboard
• 1x ADXL345 breakout board
• 2x 4.7 kΩ resistors
• Jumper wires

Hook up the accelerometer as shown:

www.it-ebooks.info

https://www.sparkfun.com/products/9836
http://www.adafruit.com/product/1231
http://www.adafruit.com/product/1231
http://www.it-ebooks.info/

Chapter 8

[119]

The ADXL345 is wired to the I2C2 bus, and the two 4.7 kΩ resistors are the pull-up
resistors required by the I2C spec, as described in Chapter 7, Serial Communication.
Make a note of the CS and SDO pins; the ADXL345 gives you the choice of an SPI or
I2C interface, and, keeping the CS pin high, we tell it we are using I2C. The SDO pin
is the data output when in the SPI mode, and in the I2C mode, it is used to choose
between two different I2C addresses by pulling it high or low. The INT1 and INT2
pins are interrupt output signals, which can be configured to send an interrupt signal
to the processor when different events are detected, such as shakes and free-falls.
We're not using the interrupts here, so we can just leave them unconnected.

Reading data
When connecting a new device, the first thing you'll need is its datasheet, which
describes its electrical and mechanical properties, and how to interface with it. The
ADXL345 datasheet can be found on analog device's site at http://www.analog.
com/media/en/technical-documentation/data-sheets/ADXL345.pdf.

The first thing we'll need from the datasheet is the I2C address. The I2C section of
the datasheet tells us that its address is 0x1D when ALT ADDRESS (the SDO pin)
is pulled high, and 0x53 when it is low. We've pulled it low in our wiring, so the
address should be 0x53. We can confirm this once it's connected using the following
i2cdetect tool:

root@beaglebone:~# i2cdetect -r 1

WARNING! This program can confuse your I2C bus, cause data loss and
worse!

I will probe file /dev/i2c-1 using read byte commands.

I will probe address range 0x03-0x77.

Continue? [Y/n] y

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- 53 UU UU UU UU -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

This table shows us that there is in fact a device connected at the address 0x53.

www.it-ebooks.info

http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
http://www.it-ebooks.info/

Interfacing with External Devices

[120]

Now, let's jump to the register map, which you can find in the datasheet's index. The
ADXL345 works similarly to many sensors and other I2C devices, where the processor
controls it by reading from and writing to its memory registers directly. This table
shows us the address of each memory register we have access to, whether or not they
can be written to or read, and irrespective of what their reset value is.

The register at memory location 0x00 is a read only device ID, which should have the
binary value 11100101. This gives us an easy way to double check that everything is
hooked up correctly and working. Hop into a bash shell by opening a new terminal
in Cloud9 or by SSHing into your BeagleBone, and start the Python interactive
interpreter. We'll use PyBBIO to read the device ID register:

python

>>> from bbio import *

>>> Wire2.open()

>>> bin(Wire2.readTransaction(0x53, 0x0, 1)[0])

'0b11100101'

Now that we know we are connected correctly and talking to the accelerometer, we
can proceed with getting it set up.

The only thing we actually need to change to start the ADXL345 sampling is the
Measure bit in the POWER_CTL register (0x2D). Setting this bit to 1 puts the ADXL345
into the full power sampling mode. It also supports various low power modes, but
we don't really care about power consumption here, so we won't worry about that.
Measure is bit 3, where the least significant bit is bit 0 and they go up to the left, so
its value when set is 1<<3. We want to leave the rest of the bits in this register set to 0
for normal operation:

>>> Wire2.write(0x53, [0x2D, 1<<3])

Your ADXL345 should now be sampling three axes of acceleration data at its default
rate of 100Hz, with its default range of +/- 2 g. With the sensor on a breadboard
and the breadboard flat on your table or workbench, the Z-axis should be roughly
parallel to the Earth's gravitational pull, so we'll read a sample from the Z-axis to see
if we can detect the effect.

The Z-axis data is stored as a 16-bit number in registers 0x36 and 0x37, where 0x36
holds the least significant byte and 0x37 the most significant byte. So we'll first need
to get the raw values from the sensor:

>>> data = Wire2.readTransaction(0x53, 0x36, 2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[121]

Next, we'll need to combine them into one number by shifting the MSB 8 bits to the
left and bitwise ORing them together:

>>> sample = (data[1] << 8) | data[0]

The value is stored in two's complement format to support negative numbers. In
general, to convert a two's complement number of N bits to a signed value, if it is
greater than or equal to 2N-1, then you subtract 2N from it. So for the 16-bit number,
here, we use 215 and 216. Let's have a look at the following command:

>>> if sample >= 2**15: sample -= 2**16

And finally, we want it in units of g. To do this, we first need to calculate the value in
g of a 1. The sensor's default resolution is 10-bits, so a 1 would be the full span of the
current range, which is 4g for the default +/- 2g , divided by the resolution of 210 bits.
So that's 4 g/210 bits = 0.00390625 g/bit. Now multiply the sample by this value and
you'll have a value in g, which should be right around 1 g:

>>> sample*0.00390625

0.96875

Writing a module
If we want to write programs that use the ADXL345, it will be helpful to have a nice
API for it. The object-oriented programming paradigm lends itself well to abstracting
hardware devices, so let's define a simple class for the accelerometer that we can use
in other programs:

class ADXL345(object):
 def __init__(self, i2c):
 self.i2c = i2c

 def begin(self):
 self.i2c.open()
 self.i2c.write(0x53, [0x2D, 1<<3])

 def get_xyz(self):
 data = self.i2c.readTransaction(0x53, 0x32, 6)
 samples = [0]*3
 for i in range(3):
 samples[i] = (data[i+i+1]<<8) | data[i+i]
 if samples[i] >= 32768: samples[i] -= 65536
 samples[i] *= 0.00390625
 return samples

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing with External Devices

[122]

If you save that to a file called adxl345.py, you can then import it into another file in
the same directory to test it out:

from bbio import *
from adxl345 import ADXL345

accel = ADXL345(Wire2)

def setup():
 accel.begin()

def loop():
 x, y, z = accel.get_xyz()
 print "X: {:0.2f}g, Y: {:0.2f}g, Z: {:0.2f}g".format(x,y,z)
 delay(200)

run(setup, loop)

If you give the breadboard a shake, you'll notice that it doesn't take much to make it
max out the +/- 2 g range. So let's add a method to set the range. Back in the register
definitions, we can see that bits B0 and B1 of the DATA_FORMAT register (0x31) set the
range, where 0-3 correspond to +/-2 g, 4 g, 8 g, and 16 g. The reset value of all the
bits in the DATA_FORMAT register is 0, so we can leave the rest as is and only set the
two range bits. Add this new method to your ADXL345 class:

class ADXL345(object):
 RANGE_2G = 0
 RANGE_4G = 1
 RANGE_8G = 2
 RANGE_16G = 3
 # Pre-calculated unit conversion multipliers:
 G_PER_BIT = [
 0.00390625,
 0.0078125,
 0.015625,
 0.03125
]

 def __init__(self, i2c, addr=0x53):
 self.i2c = i2c
 self.addr = addr

 def begin(self):
 self.i2c.open()
 self.i2c.write(0x53, [0x2D, 1<<3])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[123]

 self.set_range(self.RANGE_2G)

 def get_xyz(self):
 data = self.i2c.readTransaction(0x53, 0x32, 6)
 samples = [0]*3
 for i in range(3):
 samples[i] = (data[i+i+1]<<8) | data[i+i]
 if samples[i] >= 32768: samples[i] -= 65536
 samples[i] *= self.G_PER_BIT[self.accel_range]
 return samples

 def set_range(self, accel_range):
 accel_range &= 0b11 # ensure it's only 2 bits
 self.i2c.write(self.addr, [0x31, accel_range])
 self.accel_range = accel_range

With the ability to change ranges, we also need to keep track of which range the
ASXL345 is in for converting the values to g, and here we've also created a list of
precalculated g/bit conversion multipliers. Since this class is becoming more useful,
we've also made the I2C address an optional parameter so that it can support the
alternative 0x1D address.

Now you can set the range in the test program, and you should start to see values
greater than +/- 2g when you give it a good shake:

from bbio import *
from adxl345 import ADXL345

accel = ADXL345(Wire2)

def setup():
 accel.begin()
 accel.set_range(accel.RANGE_8G)

def loop():
 x, y, z = accel.get_xyz()
 print "X: {:0.2f}g, Y: {:0.2f}g, Z: {:0.2f}g".format(x,y,z)
 delay(200)

run(setup, loop)

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing with External Devices

[124]

Using interrupts
It's common for accelerometer ICs to support various interrupt functions along with
reporting raw data. The ADXL345 class supports single and double tap detection,
general activity and inactivity, and free-fall events. Any of these interrupts can be
enabled simultaneously and can be routed to either of the two INT output pins.

Let's expand our ADXL345 class to support the tap detection interrupts. First we'll
need a method to enable the interrupts and map them to the output pins. They are
enabled through the INT_ENABLE register (0x2E), and mapped to the outputs in the
INT_MAP register (0x2F). In both registers, bits 6 and 5 correspond to single tap and
double tap, respectively, and a value of 1 in either bit maps the corresponding tap
interrupt to the INT2 pin, while a 0 value maps it to the INT1 pin. So we can add a
method to the ADXL345 class that takes an interrupt value of either 1<<6 (bit 6 set, for
single tap) or 1<<5 (bit 5 set, for double tap), as well as an int_pin value of either 1
or 2 for INT1 or INT2, respectively:

 INT_DOUBLE_TAP = 1<<5
 INT_SINGLE_TAP = 1<<6
 INT1 = 1
 INT2 = 2

 def enable_interrupt(self, interrupt, int_pin):
 # Map the interrupt to the pin:
 int_map = self.i2c.readTransaction(self.addr, 0x2F, 1)[0]
 if (int_pin == self.INT2):
 # bit=1 for INT2, set bit:
 int_map |= interrupt
 else:
 # bit=0 for INT1, clear bit:
 int_map &= ~interrupt
 self.i2c.write(self.addr, [0x2F, int_map])

 # Enable the interrupt
 int_enable = self.i2c.readTransaction(self.addr, 0x2E, 1)[0]
 int_enable |= interrupt # 1 to enable interrupt
 self.i2c.write(self.addr, [0x2E, int_enable])

So, for example, to enable INT1 and map it to the single tap interrupt signal, you
would call accel.enable_interrupt(accel.INT_SINGLE_TAP, accel.INT1).
This time we need to preserve the other bits in these registers to avoid disrupting
the current interrupt configuration, so it's necessary to read the registers first, and
set and clear only the desired bit in that value. That way you're writing the value
currently in the register back to it with only the one bit changed. Now we know how
to enable the interrupts, but we'll need to setup the tap detection before doing so.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[125]

A tap is detected by comparing the acceleration to a configured threshold in the
THRESH_TAP register (0x1D). This register defaults to 0, so we'll need a method to
change it so it's not constantly detecting taps once enabled. The datasheet tells us
that the value in the threshold register is 16 g full-scale, so that makes the resolution
16 g/28 = 0.0625 g/bit. To convert from g to bits, it will be X g / 0.0625 g/bit.
Using this formula, our new method can take a threshold value in g and write the
appropriate converted value to the register:

 def set_tap_threshold(self, threshold):
 # Convert to bits:
 threshold /= 0.0625
 # Round to nearest integer:
 threshold = int(threshold + 0.5) # round to integer
 # Constrain to single byte:
 if threshold > 255: threshold = 255
 self.i2c.write(self.addr, [0x1D, threshold])

For a tap event to occur, the acceleration on any enabled axis must be above the
value in THRESH_TAP for at least the time value set in the DUR register (0x21). Its
default value of 0 means tap detection is disabled, so we'll need a method to set that
as well. The DUR register scale is 625 µs/bit. At that scale, it's convenient to set the
value in milliseconds, so to convert to bits, it would be X ms / 0.625 ms/bit. Add
this method to set the duration value in milliseconds:

 def set_tap_duration(self, duration):
 duration /= 0.625
 duration = int(duration + 0.5)
 if duration > 255: duration = 255
 self.i2c.write(self.addr, [0x21, duration])

A double tap event occurs if, and only if, a second tap is detected between Latent
milliseconds and Window milliseconds, where Latent and Window are the values in
the registers 0x22 and 0x23 respectively. In other words, Latent holds the minimum
required delay between the two taps, and Window holds the maximum amount
of time after Latent has expired in which the second tap can occur. Both of these
registers must be set to a nonzero value for double tap detection to work, and both
have a scale of 1.25 ms/bit. Let's add a new method for each:

 def set_tap_latency(self, latency):
 latency /= 1.25
 latency = int(latency + 0.5)
 if latency > 255: latency = 255
 self.i2c.write(self.addr, [0x22, latency])

 def set_tap_window(self, window):
 window /= 1.25

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing with External Devices

[126]

 window = int(window + 0.5)
 if window > 255: window = 255
 self.i2c.write(self.addr, [0x23, window])

In addition to enabling the interrupts and configuring all the thresholds, each of the
three axes has a tap detection enable bit in the TAP_AXES register (0x2A) that must be
set. To keep things simple, we'll just enable tap detection on all axes. So we need one
more method to enable the tap detection, and it might set some default configuration
values as well:

 def enable_tap_detection(self):
 # Enable taps for the different axes:
 self.i2c.write(self.addr, [0x2A, 0x7])
 self.set_tap_threshold(3) # 3g threshold
 self.set_tap_duration(20) # 20ms minimum duration
 self.set_tap_latency(100) # 100ms double-tap latency
 self.set_tap_window(1000) # 1s double-tap window

Finally, when a tap interrupt is detected, the interrupt status register has to be read
to clear the pending interrupt before the next tap event can be detected. This simply
means reading the INT_SOURCE register (0x30):

 def get_interrupts(self):
 # Read and return INT_SOURCE register:
 return self.i2c.readTransaction(self.addr, 0x30, 1)[0]

So putting it all together, your class should look like this:

class ADXL345(object):
 RANGE_2G = 0
 RANGE_4G = 1
 RANGE_8G = 2
 RANGE_16G = 3
 # Precalculated unit conversion multipliers:
 G_PER_BIT = [
 0.00390625,
 0.0078125,
 0.015625,
 0.03125
]
 INT_DOUBLE_TAP = 1<<5
 INT_SINGLE_TAP = 1<<6

 INT1 = 1
 INT2 = 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[127]

 def __init__(self, i2c, addr=0x53):
 self.i2c = i2c
 self.addr = addr

 def begin(self):
 self.i2c.begin()
 self.i2c.write(self.addr, [0x2D, 1<<3])
 self.set_range(self.RANGE_2G)

 def get_xyz(self):
 data = self.i2c.readTransaction(self.addr, 0x32, 6)
 samples = [0]*3
 for i in range(0, 3):
 samples[i] = (data[i+i+1]<<8) | data[i+i]
 if samples[i] >= 32768: samples[i] -= 65536
 samples[i] *= self.G_PER_BIT[self.accel_range]
 return samples

 def set_range(self, accel_range):
 accel_range &= 0b11 # ensure it's only 2 bits
 self.i2c.write(self.addr, [0x31, accel_range])
 self.accel_range = accel_range

 def enable_interrupt(self, interrupt, int_pin):
 # Map the interrupt to the pin:
 int_map = self.i2c.readTransaction(self.addr, 0x2F, 1)[0]
 if (int_pin == self.INT2):
 # bit=1 for INT2, set bit:
 int_map |= interrupt
 else:
 # bit=0 for INT1, clear bit:
 int_map &= ~interrupt
 self.i2c.write(self.addr, [0x2F, int_map])

 # Enable the interrupt
 int_enable = self.i2c.readTransaction(self.addr, 0x2E, 1)[0]
 int_enable |= interrupt # 1 to enable interrupt
 self.i2c.write(self.addr, [0x2E, int_enable])

 def enable_tap_detection(self):
 # Enable taps for the different axes:
 self.i2c.write(self.addr, [0x2A, 0x7])
 self.set_tap_threshold(3) # 3g threshold

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing with External Devices

[128]

 self.set_tap_duration(20) # 20ms minimum duration
 self.set_tap_latency(100) # 100ms double-tap latency
 self.set_tap_window(1000) # 1s double-tap window

 def set_tap_threshold(self, threshold):
 # Convert to bits:
 threshold /= 0.0625
 # Round to nearest integer:
 threshold = int(threshold + 0.5)
 # Constrain to single byte:
 if threshold > 255: threshold = 255
 self.i2c.write(self.addr, [0x1D, threshold])

 def set_tap_duration(self, duration):
 duration /= 0.625
 duration = int(duration + 0.5)
 if duration > 255: duration = 255
 self.i2c.write(self.addr, [0x21, duration])

 def set_tap_latency(self, latency):
 latency /= 1.25
 latency = int(latency + 0.5)
 if latency > 255: latency = 255
 self.i2c.write(self.addr, [0x22, latency])

 def set_tap_window(self, window):
 window /= 1.25
 window = int(window + 0.5)
 if window > 255: window = 255
 self.i2c.write(self.addr, [0x23, window])

 def get_interrupts(self):
 # Read and return INT_SOURCE register:
 return self.i2c.readTransaction(self.addr, 0x30, 1)[0]

To use the tap detection, you'll need to configure and enable it, then set up some
digital interrupts using PyBBIO to catch the changes on the INT pins. First connect
the INT1 and INT2 outputs to GPIO3_14 (P8.31) and GPIO3_15 (P8.29), respectively:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[129]

Then add the interrupt code to the main program:

from bbio import *
from adxl345 import ADXL345

accel = ADXL345(Wire2)
single_tap_pin = GPIO3_15 # INT2
double_tap_pin = GPIO3_14 # INT1

def tap_interrupt(taps):
 if taps == 1:
 print "Single tap detected"
 elif taps == 2:
 print "Double tap detected"
 accel.get_interrupts()

def setup():
 accel.begin()
 accel.set_range(accel.RANGE_8G)
 pinMode(single_tap_pin, INPUT)

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing with External Devices

[130]

 pinMode(double_tap_pin, INPUT)

 accel.enable_tap_detection()
 accel.enable_interrupt(accel.INT_SINGLE_TAP, accel.INT2)
 accel.enable_interrupt(accel.INT_DOUBLE_TAP, accel.INT1)

 attachInterrupt(double_tap_pin, lambda : tap_interrupt(2),
 RISING)
 attachInterrupt(single_tap_pin, lambda : tap_interrupt(1),
 RISING)

def loop():
 x, y, z = accel.get_xyz()
 print "X: {:0.2f}g, Y: {:0.2f}g, Z: {:0.2f}g".format(x,y,z)
 delay(1000)

run(setup, loop)

We're using a single interrupt handler and passing it as 1 or 2 for a single or double
tap event, and at the end of the interrupt handler it calls the get_interrupts()
method to clear the status register.

If you run the program and start tapping your breadboard, you should see the tap
messages appearing. You'll probably notice that the double tap event is immediately
followed by one or two single tap events, which is a product of the tap detection
algorithm in the ADXL345 class. This could be a problem in a case where a single and
double tap are meant to be two distinct program inputs, but it can be worked around
pretty simply by recording the time of each event and ignoring particular events
based on how soon they follow the previous event. To show this method in action,
here's a program that will let you turn on the USR3 LED with a single tap and turn it
off with a double tap:

from bbio import *
from adxl345 import ADXL345

accel = ADXL345(Wire2)
single_tap_pin = GPIO3_15 # INT2
double_tap_pin = GPIO3_14 # INT1

Time in ms to force between events:
event_holdoff = 750

last_event = {
 "time" : 0, # event timestamp
 "taps" : 1, # 1 for single, 2 for double

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[131]

 "is_pending" : False # True if event is new
 }

def tap_interrupt(taps):
 event_time = millis() # time since program start in ms

 if event_time - last_event["time"] >= event_holdoff:
 # Greater than event_holdoff since last event,
 # save event and mark as pending:
 last_event["time"] = event_time
 last_event["taps"] = taps
 last_event["is_pending"] = True

 elif taps == 2:
 # A double tap event always overwrites a nearby single
 # tap event:
 last_event["time"] = event_time
 last_event["taps"] = taps
 last_event["is_pending"] = True

 accel.get_interrupts()

def setup():
 accel.begin()
 accel.set_range(accel.RANGE_8G)
 pinMode(single_tap_pin, INPUT)
 pinMode(double_tap_pin, INPUT)

 accel.enable_tap_detection()
 accel.enable_interrupt(accel.INT_SINGLE_TAP, accel.INT2)
 accel.enable_interrupt(accel.INT_DOUBLE_TAP, accel.INT1)

 attachInterrupt(double_tap_pin, lambda : tap_interrupt(2),
 RISING)
 attachInterrupt(single_tap_pin, lambda : tap_interrupt(1),
 RISING)

def loop():
 if last_event["is_pending"]:
 taps = last_event["taps"]
 if taps == 1:
 print "single tap, USR3 on"
 digitalWrite(USR3, HIGH)
 else:

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing with External Devices

[132]

 print "double tap, USR3 off"
 digitalWrite(USR3, LOW)

 # Clear it so as not to respond to it again the next
 # time through the loop:
 last_event["is_pending"] = False
 delay(100)

run(setup, loop)

This program could be expanded to control any number of things with taps, such
as turning lights on and off, starting and stopping music, scrolling through a user
interface on an LCD, and much more.

Summary
In this chapter, you learned the process required for interfacing with a new device, in
this case the ADXL345 accelerometer, including how its I2C protocol works, how to
configure and use its built-in tap detection, and how you can write a Python module
to abstract away the interface code.

In the next chapter, we'll be looking at using the network connection to create
web-based user interfaces for data streaming and remote control.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[133]

Using the Network
In this chapter, you will learn about using the BeagleBone's network connection to
stream data to web services and control hardware remotely through web interfaces.
We will cover the following topics:

• TCP/IP and TCP servers for remote hardware access
• HTTP servers for remote hardware access
• Streaming data to remote storage and visualization services

TCP/IP
The BeagleBone has an Ethernet, or IEEE 802.3, connection. This provides a physical
layer over which TCP/IP is implemented. TCP/IP, or Transmission Control
Protocol/Internet Protocol, is a suite of networking layers that makes up the base of
what we call the Internet. It is named after its two most important layers, TCP, which
provides error-checked data transfer between endpoints, and IP, which provides
routing of packets between hosts based on their IP addresses.

Pretty much all modern operating systems provide interfaces called network sockets,
which are created and used to abstract an Internet connection using a model like
TCP/IP. A socket is defined by its protocol (for example, TCP), its local IP address,
and its local port number. A port is a software abstraction that allows any number of
processes on a computer with a single IP address to exchange data over the network
independently of each other, by each having their own unique ID, called a port
number. Once a connection has been made to a remote host, the socket also has the
additional characteristics of the remote IP address and port.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Network

[134]

Software implementing TCP/IP typically follows a server/client model. The server
process has an open socket listening on a predefined port, and the client processes
make connections to the server using its IP address and that port. For example,
imagine there was a TCP server, with IP address 192.168.0.10, listening on port 8000.
A client could then open a connection to the server, which would create a new socket
on the server computer, characterized by the local address, 192.168.0.10:8000 (it is a
common notation to append the port to the address, separated by a colon), as well as
the client computers IP address and port. If a second client then opens a connection
to the server, since the second client has a different address (even if it's the same IP
address, it will have a different port number), a new socket will be created on the
server computer. So, because the socket abstraction includes the local and remote
addresses, it allows multiple connections from the same local port, which is the basis
of the server/client model.

Python's built-in socket library provides an API for using these socket interfaces.
Let's look at an example of a simple TCP server:

import socket

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(("", 8080))
server.listen(5)
while True:
 client, address = server.accept()
 print "incoming connection from", address
 data = client.recv(1024)
 if data:
 print "received data: {}".format(data)
 print "echoing data"
 client.send(data)
 client.close()

The call to socket.socket() creates a network socket and returns a Python object
that abstracts it. The AF_INET argument tells it to use the Internet Protocol (IP) and
SOCK_STREAM tells it to use the TCP transport. The empty string in the tuple passed to
bind() tells it to auto-detect the local IP address, and 8080 is the local port to listen
on. Passing 5 to listen() tells it to limit the number of simultaneous connections to
port 8080 to 5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[135]

Once the socket is set up and the program enters the while loop, the server.accept()
method blocks the program until a new client connects, then it returns a new socket
object representing the socket created for that connection as well as an address tuple
in the same format passed to bind(). The client.recv(1024) call then blocks the
program until a TCP data stream is sent by the client, and then it receives and returns
up to 1024 bytes of it. We then print the data and echo it back to the client. If a new
client connects while the program is still connected to a client and receiving data, a
new object socket will be created for the new connection. When the program then
loops back to the server.accept() method, a new socket object representing the new
connection will be returned immediately. The limit of 5 sockets that we set previously
with the listen() method is the maximum number of sockets that can be created; in
this non-threaded server, we only ever have a single socket object handling a single
client at a time.

With your server running, you can use the netcat command line tool to connect to it
as a client. First make sure you have netcat installed:

apt-get update && apt-get install netcat

Then connect to the server:

netcat localhost 8000

You can then start typing characters into netcat, and when you press Enter it will
send the string in a TCP/IP packet to the server:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Network

[136]

You can also use netcat from another Linux machine on the same network by
replacing 'localhost' with your BeagleBone's IP address. You can use PuTTY to
connect from a Windows machine on the same network by setting it to use Telnet in
passive mode (meaning it won't send any data until you've pressed Enter). To do so,
select the Telnet section under Connection and select the Passive option:

Then, back in the Session section, ensure Telnet is selected for the connection type,
and enter the IP and port number:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[137]

When you press Open, you'll see a blank terminal window that you can type into,
and when you press Enter, it will send the data to the server. The window will close
automatically because the server closes the connection after the first exchange of
data, but it's easy to change the server code to maintain the connection until the
client disconnects, as shown in the next example.

Now, let's extend the TCP server to allow remote hardware control:

import socket, bbio

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(("", 8000))
server.listen(5)
while True:
 print "waiting for client to connect"
 client, address = server.accept()
 print "incoming connection from", address

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Network

[138]

 connected = True
 while connected:
 data = client.recv(1024)
 if data:
 # Strip off leading and trailing whitespace:
 data = data.strip()
 if data == "":
 # empty string sent, close connection
 print "closing connection"
 client.close()
 break
 elif data == "toggle":
 bbio.toggle(bbio.USR3)
 state = bbio.pinState(bbio.USR3)
 state = "High" if state else "Low"
 client.send(" USR3 : {}\r\n".format(state))
 elif data == "analogRead":
 volts = bbio.inVolts(bbio.analogRead(bbio.AIN0))
 client.send(" A0 : {:0.2f}V\r\n".format(volts))
 else:
 # client no longer connected
 connected = False
 client.close()
 print "connection closed"

If you connect to this server remotely using netcat or PuTTY, you can send the string
toggle to toggle the USR3 LED, or the string analogRead to get the voltage on the
AIN0 pin:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[139]

HTTP
HTTP, or Hypertext Transfer Protocol, is an application protocol that's implemented
on top of the TCP/IP suite, and is what the World Wide Web (WWW) is built on.
The HTTP protocol defines the request-response structure, in which a client (such
as a web browser) requests a resource from a server whose address is given by a
Uniform Resource Locator (URL), and the server responds with a resource, such as
an HTML file. So instead of opening a TCP socket and keeping it open while passing
raw TCP/IP packets, as in the preceding example, the HTTP client connects to the
server over a TCP socket and sends an HTTP request packet, then the server sends
back an HTTP response packet, and the socket is closed.

PyBBIO includes a library called BBIOServer, which provides an API for creating
simple HTML pages for web based user interfaces using HTTP. Let's run a simple
example:

from bbio import *
from bbio.libraries.BBIOServer import BBIOServer, Page

server = BBIOServer(8000)

def setup():
 page1 = Page("Server Test")
 page1.add_text("Testing the BBIOServer library")

 page2 = Page("LED Control")
 page2.add_text("Control an on-board LED)

 page2.add_button(lambda: toggle(USR3), "Toggle USR3 LED",
 newline=True)
 page2.add_monitor(lambda: pinState(USR3), "current state:")

 server.start(page1, page2)

def loop():
 print "\nServer has stopped, exiting"
 stop()

run(setup, loop)

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Network

[140]

The Page class is used to build an HTML file, where each Page instance defines
an individual web page. This example shows the button element, which creates
an HTML button that sends a signal to the server when pressed, telling it to call
the provided function; it also creates the monitor element, which routinely sends
requests to the server, triggering it to call the provided function and return the result,
which is then put into a text field on the page. The dynamic nature of the page is
achieved using some predefined JavaScript functions, and the library includes a CSS
stylesheet to format and color the page.

The BBIOServer class contains the HTTP server code. Once built, the Page instances
are passed to its start() method so it knows what resources it has to send to clients,
then it starts listening on the port that it was passed when initialized.

You can run the preceding example and navigate to the server (for example, if your
BeagleBone's IP address is 192.168.1.28, it would be http://192.168.1.28:8000),
you'll see the site and you'll be able to control the USR3 LED:

For more information on BBIOServer, check out the
documentation and tutorials at https://github.
com/graycatlabs/PyBBIO/wiki/BBIOServer.

It's important to note that there are many potential security concerns when
connecting a device to the Internet, and BBIOserver makes no effort to address
them. It is only recommended to use BBIOserver on a trusted network, and it
shouldn't be made accessible from outside that local network.

www.it-ebooks.info

https://github.com/graycatlabs/PyBBIO/wiki/BBIOServer
https://github.com/graycatlabs/PyBBIO/wiki/BBIOServer
http://www.it-ebooks.info/

Chapter 9

[141]

IoT Services
There are a number of services targeting the Internet of Things market that provide
a place to store and view data over the Internet. These services typically include a
simple HTTP API for streaming data to them, as well as a web interface for viewing
the stored data, both as raw samples and in various visual ways. The idea is that
you'd have a device like a BeagleBone on a local network, say at your home, and it
would be routinely sampling some sort of sensor, say measuring temperature. Every
time it reads a new temperature value, the BeagleBone will send it to the remote
service's database over the Internet. Then you would be able to go to a website from
anywhere, say if you were traveling, and look at the current temperature in your
home, as well as track your home's temperature in the past. This is not the most
exciting example, but even this could be practical as you could know right away if
your heating has stopped working, and you could call to have it serviced before your
pipes freeze.

Phant
SparkFun electronics provide a very basic data stream hosting service called Phant,
which can be found at http://phant.io. You can install the Phant server on your
own computer, and they even have a tutorial for installing it on a BeagleBone, so it
can store data locally from itself and from other sensors on the same network. They
also maintain an instance of it running on their own servers, and anyone can create
a stream on it to store and view their data. To create a stream, you'll need to go
to https://data.sparkfun.com/streams/make and fill out the form describing
your stream.

www.it-ebooks.info

http://phant.io
https://data.sparkfun.com/streams/make
http://www.it-ebooks.info/

Using the Network

[142]

The data is stored in Phant's database as a table, where each row is a time-stamped
sample, and the Fields section defines the columns in the table. In this example, I've
only created a single column called voltage, but you could have multiple columns
to store data from different sensors in the same stream; for example, you could have
a weather station stream with temperature, humidity, and pressure columns:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[143]

Once you click on the Save button, you will be brought to a page that gives you your
stream's Public Key, Private Key, and Delete Key. It's up to you to store all of these,
and if you lose them, your stream will no longer be accessible.

Data is sent to the Phant server as a type of HTTP request called a POST request,
which, as its name implies, is meant for posting data to a server. The POST request
packet sent includes the Phant Public Key, which identifies the stream you want to
use, the Phant Private Key, which authenticates you to write to the stream, and the
data to write, organized into the fields.

It's easy to assemble a request packet for Phant in Python using the requests library
(http://docs.python-requests.org), which provides an API aimed at making it
easy to send HTTP requests. First, make sure the library is installed:

pip install requests

Now, we can write a program that uses Adafruit_BBIO to send ADC readings to
your new Phant stream every second:

import Adafruit_BBIO.ADC as ADC
import requests, time

PUBLIC_KEY = "q580YQ7mW8IJbdVLaQLo"
PRIVATE_KEY = "BVeW4XZg9eiP1Bgzw7zY"

def postData(data_dict):
 url = "http://data.sparkfun.com/input/{}".format(PUBLIC_KEY)
 headers = {"Phant-Private-Key" : PRIVATE_KEY}
 response = requests.post(url, headers=headers,
 params=data_dict)

ADC.setup()
try:
 while True:
 voltage = ADC.read("AIN0") * 1.8
 postData({"voltage" : voltage})
 time.sleep(1)
except KeyboardInterrupt:
 pass

You'll need to replace the PUBLIC_KEY and PRIVATE_KEY values with the keys
you were given when you created your stream, and since this example is using
Adafruit_BBIO, you'll want to be sure to enable the ADC Device Tree overlay
before you run it (as described in Chapter 4, PWM and ADC Subsystems):

echo BB-ADC > /sys/devices/bone_capemgr.*/slots

www.it-ebooks.info

http://docs.python-requests.org
http://www.it-ebooks.info/

Using the Network

[144]

Once the program is running, you can go to your stream view at https://data.
sparkfun.com/streams/PUBLIC_KEY:

Your private key can be used to delete the channel, so be sure not
to share it with anyone unless you trust them with that power.

Phant doesn't include any sort of visualization, but it does let you download the data
in various formats, including CSV, which you can open in any spreadsheet program
and create plots from it.

dweet.io
Another service similar to https://data.sparkfun.com is dweet.io (http://
dweet.io). As with Phant, dweet.io can store the data from your devices, and, along
with letting you view the raw data, it also provides some basic live plots. The API
is simpler than Phant's, with only a user-defined name distinguishing your data
stream, which dweet.io calls a thing, from others instead of a public/private API
key pair. There's no setup required for dweet.io, you simply make an HTTP request
with your data and thing name, and it does the rest. If a thing by that name doesn't
exist, the channel is created, automatically.

www.it-ebooks.info

https://data.sparkfun.com
http://dweet.io
http://dweet.io
http://www.it-ebooks.info/

Chapter 9

[145]

While this method makes it easier to get set up and start sending data, it also means
that if you call your thing BeagleBone on dweet.io, and someone else calls their thing
BeagleBone as well, the two data streams will interfere with each other. To avoid this
scenario, it's best to include a universally unique identifier (UUID) in your thing
names to ensure that they are unique. It's easy to generate a UUID in Python with the
built-in uuid module. Fire up the Python interpreter and generate a random UUID:

root@beaglebone:~# python

Python 2.7.3 (default, Mar 14 2014, 17:55:54)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import uuid

>>> uuid.uuid4()

UUID('7f51dd9d-09e9-43a0-ab42-ed55b46f21ea')

Save that string in a file somewhere you won't lose it. You could create a new UUID
for each of your dweet.io things, but it's probably less confusing to consider that one
UUID as your identifier and to append a plain-text name to the end, for example,
7f51dd9d-09e9-43a0-ab42-ed55b46f21ea_BeagleBone-temperature.

Using the requests library again, it only takes a few lines of code to send data to
dweet.io:

import requests

def dweet(thing, **vals):
 url = "http://dweet.io/dweet/for/{}".format(thing)
 requests.post(url, params=vals)

This function takes the thing name as well as key-value pairs of data.

If you've never seen the **vals notation before, it allows you to call a
function with any number of named values and they will be put into a
dictionary object, for example, if you define the function:
def foo(**kwargs):

 # do something with kwargs here

When you called it with foo(val1=3, val2="string"), you
would end up with the dictionary {"val1" : 3, "val2" :
"string"} stored in the kwargs variable.

So, for example, if you were to call dweet("my-thing-name", temperature=25),
the result would be a HTTP POST request to http://dweet.io/dweet/for/my-
thing-name?temperature=25.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Network

[146]

Let's revisit the system monitor idea we used in Chapter 6, Program Output, to show
dweet.io in action:

import requests, psutil, datetime

Replace "x" sequence with your UUID:
thing_name = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx_BeagleBone"

def dweet(thing, **vals):
 url = "http://dweet.io/dweet/for/{}".format(thing)
 requests.post(url, params=vals)

def get_cpu_temp_c():
 temp_file = "/sys/class/hwmon/hwmon0/device/temp1_input"
 with open(temp_file, "r") as f:
 return int(f.read())/1000

def get_uptime():
 with open("/proc/uptime", "r") as f:
 raw = f.read()
 seconds = float(raw.split()[0])
 return seconds

while True:
 uptime_s = get_uptime()
 uptime_datetime = datetime.datetime.fromtimestamp(uptime_s)
 uptime = uptime_datetime.strftime("%H:%M:%S")

 load = psutil.cpu_percent(interval=2)
 temp = get_cpu_temp_c()
 mem = psutil.virtual_memory()[2]
 net_info = psutil.net_io_counters()
 eth_up = net_info[2]
 eth_down = net_info[3]

 dweet(thing_name, uptime=uptime, cpu_load=load, cpu_temp=temp,
 memory=mem, eth_up=eth_up, eth_down=eth_down)

We're reusing a lot of the code from the LCD-based system monitor, with the
addition of a new get_uptime() function, which returns the number of seconds
since the last time your BeagleBone Black powered on. We're then using the
datetime library to convert it to a string in the friendlier HH:MM:SS form.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[147]

Be sure to fill in your UUID in the thing_name string, then run the program.
Now if you head over to http://dweet.io/follow/xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx_BeagleBone (filling in your UUID) you should see a live plot of
your data:

You could simply add an entry to your crontab file to start this program at boot,
as described in Chapter 3, Digital Outputs, and you'd be able to see your BeagleBone
Black's system resources in real time from anywhere. With the added uptime value,
you'd also know if your BeagleBone had rebooted unexpectedly, due to a power
outage, for example.

Freeboard
Freeboard (https://freeboard.io/) is a data visualization tool. It is a paid service,
but it allows you to have public dashboards for free. In other words, you pay to
use your private data. Freeboard doesn't provide data storage of its own, rather it
provides you with a visual dashboard that you can plug into various data sources,
including dweet.io things.

www.it-ebooks.info

https://freeboard.io/
http://www.it-ebooks.info/

Using the Network

[148]

Once you've created an account at https://freeboard.io/signup, you can create a
new Freeboard by entering a name and pressing Create New:

Each Freeboard is a separate container for a set of data streams
as well as a separate dashboard for viewing the data.

When you create your Freeboard, you will automatically be redirected to its empty
dashboard. The first step is to click on ADD to add a new data source:

We'll connect this Freeboard to the system monitor dweet.io thing we just made; in the
window that pops up, first select Dweet.io from the drop-down, then give it a friendly
name, and fill in the dweet.io thing name (once again using your own UUID):

www.it-ebooks.info

https://freeboard.io/signup
http://www.it-ebooks.info/

Chapter 9

[149]

Don't worry when you don't see any data after you press SAVE, we still need to
configure the displays. The Freeboard consists of visual blocks called panes, which
contain display objects called widgets. Each widget connects to a single data channel
and displays its data in one of a number of selectable formats, and the separate panes
can be rearranged on the dashboard. To get some data displayed, first click on ADD
PANE and then on the plus sign on the pane that appears to add a new widget:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Network

[150]

In the widget configuration box that pops up, select the Text type, enable the
INCLUDE SPARKLINE switch, and use the +DATASOURCE button to select
the cpu_load channel of your BeagleBone system monitor source:

Once you press SAVE, you should finally see some data:

Take some time to play around with the other widget types; for instance, the
gauge widget is a good choice for something like CPU load that has a fixed upper
boundary:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[151]

With a little work, you can put together a great-looking custom dashboard for
your data:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Network

[152]

Summary
In this chapter, you learned how to take advantage of the BeagleBone's network
connection to communicate with external hardware remotely, as well as to stream
data to remote servers for storage and viewing.

In the next chapter, we will build upon what you've learned throughout the book to
create some larger and more useful programs.

www.it-ebooks.info

http://www.it-ebooks.info/

[153]

A Practical Example
In this chapter, you will use what you've learned throughout the book to build a
complete, practical application. We will cover the following topics:

• Building a simple weather station
• Getting the weather data online
• Implementing weather alerts
• Creating a web interface for configuring the alerts

Weather station
Until this point, we've only looked at relatively simple program examples, without
any real scope to them. Let's take some time to build a more complete program that
actually accomplishes a practical task, a weather station.

Let's start with the hardware. We'll use a HTU21D I2C relative humidity sensor (for
example, https://www.sparkfun.com/products/12064), as well as a BMP183 SPI
pressure sensor (for example, https://www.adafruit.com/product/1900). Both
include internal temperature sensors from which we can retrieve data, so we won't
need an additional temperature sensor.

www.it-ebooks.info

https://www.sparkfun.com/products/12064
https://www.adafruit.com/product/1900
http://www.it-ebooks.info/

A Practical Example

[154]

For this circuit, you will need:

• Breadboard
• 1x HTU21D breakout board
• 1x BMP183 breakout board
• Jumper wires

Wire up the breakout boards as shown:

PyBBIO includes libraries for both sensors, so we'll use it for this program. For
starters, let's look at getting the data from the sensors:

from bbio import *
from bbio.libraries.BMP183 import BMP183
from bbio.libraries.HTU21D import HTU21D

bmp = BMP183(SPI0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[155]

htu = HTU21D(I2C2)

def setup():
 pass

def loop():
 pressure = bmp.getPressure() # in Pascals
 rh = htu.getHumidity() # in %RH
 temp = htu.getTemp() # in Celsius
 dew_point = htu.calculateDewPoint(rh, temp) # in Celsius
 pressure /= 1000.0 # convert Pa to kPa

 print "temperature : {:0.2f} C".format(temp)
 print "humidity : {:0.2f} %RH".format(rh)
 print "pressure : {:0.2f} kPa".format(pressure)
 print "dew point : {:0.2f} C\n".format(dew_point)
 delay(3000)

run(setup, loop)

Connecting to the Internet
The PyBBIO libraries make it pretty straightforward to get the data, but we want
to be able to view the weather remotely, so printing it to the terminal isn't going to
cut it. There are a number of services that provide data storage and remote viewing
for your connected devices; we'll use ThingSpeak (https://thingspeak.com/),
which provides free data storage and plotting. The benefit of using a service like
ThingSpeak is that you don't need to set up things, such as port forwarding in order
to make your BeagleBone directly accessible from the Internet, which comes with
certain security risks.

www.it-ebooks.info

https://thingspeak.com/
http://www.it-ebooks.info/

A Practical Example

[156]

You'll need to start by setting up a ThingSpeak account at https://thingspeak.
com/users/sign_up. Once you've logged into your account, navigate to My
Channels in the Channel menu of the top menu bar and press the Create Channel
button. You'll need to give the channel a name, and then fill in the first four of
the available fields for the data created in the previous program, as shown in the
following screenshot:

Once you press Save Channel, you'll be brought straight to Private View, where you
should see four empty plots. This is where you'll be able to view your data live as it's
sent by the weather station.

ThingSpeak provides a friendly HTTP API, making it simple to send data
from any device with an Internet connection. PyBBIO's IoT library includes a
ThingSpeakChannel class built on top of that API. However, before your program
can send data to your channel, you'll need to get its API key, which is used to
authenticate your POST requests so that ThingSpeak knows what channel it's going
to. This is easily found on the API Keys tab of your channel under Write API Key,
as shown in the following screenshot:

www.it-ebooks.info

https://thingspeak.com/users/sign_up
https://thingspeak.com/users/sign_up
http://www.it-ebooks.info/

Chapter 10

[157]

The IoT library uses the requests module, so make sure it's installed on your
BeagleBone:

pip install requests

Let's revise the previous program to send the data to your ThingSpeak channel
instead of to the terminal:

from bbio import *
from bbio.libraries.BMP183 import BMP183
from bbio.libraries.HTU21D import HTU21D
from bbio.libraries.IoT import thingspeak

API_KEY = "3FYOJN7XYD8Y0MYV"

bmp = BMP183(SPI0)
htu = HTU21D(I2C2)
channel = thingspeak.ThingSpeakChannel(API_KEY)

def setup():
 pass

def loop():
 pressure = bmp.getPressure() / 1000.0 # in kPa
 rh = htu.getHumidity()
 temp = htu.getTemp()
 dew_point = htu.calculateDewPoint(rh, temp)
 channel.post([temp, rh, pressure, dew_point])

 delay(30000)

run(setup, loop)

www.it-ebooks.info

http://www.it-ebooks.info/

A Practical Example

[158]

Be sure to replace the API key with your correct one. Note that instead of sampling
the sensors every 3 seconds, this time, we delay 30 seconds between samples; since
the idea of the weather station is to monitor the weather over a long period of time,
and since the weather doesn't tend to change drastically within a 30 second span, this
will help limit network traffic while still providing a good resolution.

If you leave that program running and watch the ThingSpeak channel view, you
should start to see your data appear, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[159]

So already you have a way to see the current weather wherever your BeagleBone is,
as well as historical weather trends, from anywhere with Internet access. But let's not
stop there.

Weather alerts
One great application for this sort of small, relatively low-cost, and Internet
connected weather station is the ability to get alerts. For instance, if you live in a
cold area, you could get an alert if your heating system has stopped working and
your water pipes are at risk of freezing and bursting. We already looked at sending
e-mails in Chapter 6, Program Output, so we'll use that same code for notifications.

www.it-ebooks.info

http://www.it-ebooks.info/

A Practical Example

[160]

To implement alarms, we'll also want a way to configure their thresholds and to
enable and disable them. For this, we'll use BBIOServer to build a quick web UI. This
will let you configure alarms while on the same local network as your BeagleBone, so
you would setup your alarms before leaving your house, for example.

You can also display your ThingSpeak plots right in a BBIOServer page (or any
webpage) by using their provided embed HTML.

To get the embed code, click on the button that looks like a message box at the top
right of each plot you want to embed; the HTML will be provided in the box that
pops up, as shown in the following screenshot:

If you have not made your channel private, the embed code won't work as is, but
you can make it work by adding the API key to a new key parameter at the end of
the source URL, for example:

<iframe width="450" height="260" style="border: 1px solid #cccccc;"
 src="http://api.thingspeak.com/channels/34716/
charts/%i?width=450&

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[161]

 height=260&results=60&dynamic=true&key=3FYOJN7XYD8Y0M
YV" >
</iframe>

We're now ready to build the new and improved weather station:

from bbio import *
from bbio.libraries.BMP183 import BMP183
from bbio.libraries.HTU21D import HTU21D
from bbio.libraries.IoT import thingspeak
from bbio.libraries.BBIOServer import BBIOServer, Page

import smtplib
from email.mime.text import MIMEText

THINGSPEAK_API_KEY = "3FYOJN7XYD8Y0MYV"

bmp = BMP183(SPI0)
htu = HTU21D(I2C2)
channel = thingspeak.ThingSpeakChannel(THINGSPEAK_API_KEY)
server = BBIOServer(blocking=False)
We start the server in non-blocking mode with blocking=False,
which let's the main loop continue to sample the sensors while
it serves the web site in the background.

The details for the sending account:
SMTP_host = "smtp.gmail.com"
SMTP_email = "username@gmail.com"
SMTP_pass = "password"
The address to send alerts to:
to_email = "username@example.com" # could be an SMS proxy as well!

This HTML chunk is used to embed the ThingSpeak plots into the
BBIOServer page:
embedded_plot = \
"""
<iframe width="450" height="260" style="border: 1px solid
 #cccccc;"
 src="http://api.thingspeak.com/channels/34716/charts/{}?width=450&
 height=260&results=60&dynamic=true&key=3FYOJN7XYD8Y0MYV">
</iframe>
"""

www.it-ebooks.info

http://www.it-ebooks.info/

A Practical Example

[162]

This stores the weather data. It's global so it's accessible from
the
BBIOServer callbacks
weather_data = {
 "temperature" : 0,
 "humidity" : 0,
 "pressure" : 0,
 "dew_point" : 0
 }

This stores the alarm information. It's global so it's accessible
from
the BBIOServer callbacks
alarms = {
 "over_temp" : {
 "threshold" : 40,
 "enabled" : False,
 "tripped" : False,
 "description" : "Over temperature"
 },
 "under_temp" : {
 "threshold" : 0,
 "enabled" : False,
 "tripped" : False,
 "description" : "Under temperature"
 }
 }

def send_email(to, subject, body):
 msg = MIMEText(body)
 msg["Subject"] = subject
 msg["From"] = SMTP_email
 msg["To"] = to
 server = smtplib.SMTP_SSL(SMTP_host)
 try:
 server.login(SMTP_email, SMTP_pass)
 server.sendmail(SMTP_email, to, msg.as_string())
 except smtplib.SMTPAuthenticationError:
 print "warning: cannot login to email server!"

def alarm(trigger):
 """ Creates and sends the appropriate email for the given
 trigger. """
 body = "{} alert\n".format(alarms[trigger]["description"])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[163]

 body += "Current weather:\n"
 body += "Temperature: {:0.2f}
 C\n".format(weather_data.get("temperature"))
 body += "Humidity: {:0.2f}
 %RH\n".format(weather_data.get("humidity"))
 body += "Pressure: {:0.2f}
 kPa\n".format(weather_data.get("pressure"))
 body += "Dew point: {:0.2f}
 C\n".format(weather_data.get("dew_point"))

 send_email(to_email, "Weather Alert", body)

###
These functions are all BBIOServer callbacks to configure the
thresholds and enabled/disabled states of the alarms
def toggle_over_temp():
 alarms["over_temp"]["enabled"] = \
 not alarms["over_temp"]["enabled"]

def over_temp_state():
 return "Enabled" if alarms["over_temp"]["enabled"] else
 "Disabled"

def toggle_under_temp():
 alarms["under_temp"]["enabled"] = \
 not alarms["under_temp"]["enabled"]

def under_temp_state():
 return "Enabled" if alarms["under_temp"]["enabled"] else
 "Disabled"

def set_over_temp(val):
 global alarms
 try:
 alarms["over_temp"]["threshold"] = float(val)
 except ValueError:
 pass

def setUnderTemp(val):
 global alarms
 try:
 alarms["under_temp"]["threshold"] = float(val)
 except ValueError:
 pass

www.it-ebooks.info

http://www.it-ebooks.info/

A Practical Example

[164]

###

def check_alarms(temp, rh, pressure, dew_point):
 """ Checks each value and triggers any appropriate enabled
 alarms. """
 if (alarms["over_temp"]["enabled"] and \
 temp > alarms["over_temp"]["threshold"]):
 if not alarms["over_temp"]["tripped"]:
 alarm("over_temp")
 alarms["over_temp"]["tripped"] = True
 else: alarms["over_temp"]["tripped"] = False

 if (alarms["under_temp"]["enabled"] and \
 temp < alarms["under_temp"]["threshold"]):
 if not alarms["under_temp"]["tripped"]:
 alarm("under_temp")
 alarms["under_temp"]["tripped"] = True
 else: alarms["under_temp"]["tripped"] = False

def setup():
 # Create a main page which displays the live plots:
 home_page = Page("Data")
 home_page.add_html(embedded_plot.format(1))
 home_page.add_html(embedded_plot.format(2))
 home_page.add_html("
")
 home_page.add_html(embedded_plot.format(3))
 home_page.add_html(embedded_plot.format(4))

 # Create a page for configuring the alarms:
 alarm_page = Page("Alarms")
 alarm_page.add_text("Over temp:")
 alarm_page.add_entry(set_over_temp, "set")
 alarm_page.add_monitor(lambda : alarms["over_temp"]["threshold"],
 "Current:", units="C")
 alarm_page.add_button(toggle_over_temp, "toggle")
 alarm_page.add_monitor(over_temp_state, "")

 alarm_page.add_text("Under temp:", newline=True)
 alarm_page.add_entry(setUnderTemp, "set")
 alarm_page.add_monitor(lambda : alarms["under_temp"]["threshold"],
 "Current:", units="C")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[165]

 alarm_page.add_button(toggle_under_temp, "toggle")
 alarm_page.add_monitor(under_temp_state, "")

 # Create a page for viewing the raw data:
 raw_data = Page("Raw data")
 raw_data.add_monitor(
 lambda : "{:0.2f}".format(weather_data.get("temperature")),
 "Temperature:", units="C"
)
 raw_data.add_monitor(
 lambda : "{:0.2f}".format(weather_data.get("humidity")),
 "Humidity:", units="%%RH", newline=True
)
 raw_data.add_monitor(
 lambda : "{:0.2f}".format(weather_data.get("pressure")),
 "Pressure:", units="kPa", newline=True
)
 raw_data.add_monitor(
 lambda : "{:0.2f}".format(weather_data.get("dew_point")),
 "Dew point:", units="C", newline=True
)

 # Start the server:
 server.start(home_page, alarm_page, raw_data)

def loop():
 global weather_data
 pressure = bmp.getPressure()/1000.0
 rh = htu.getHumidity()
 temp = htu.getTemp()
 dew_point = htu.calculateDewPoint(rh, temp)
 weather_data["pressure"] = pressure
 weather_data["humidity"] = rh
 weather_data["temperature"] = temp
 weather_data["dew_point"] = dew_point

 check_alarms(temp, rh, pressure, dew_point)

 channel.post([temp, rh, pressure, dew_point])
 delay(30000)

run(setup, loop)

www.it-ebooks.info

http://www.it-ebooks.info/

A Practical Example

[166]

If you run that and head on over to your BeagleBone's IP address at port 8000
(for example, http://192.168.1.28:8000), you should see your ThingSpeak
plots moving along like so:

Navigate to the Alarms page, and you will be able to set over and under temperature
thresholds, and enable e-mail alerts for each:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[167]

Finally, if a threshold is crossed you'll get an e-mail alert letting you know the
current weather conditions:

Summary
In this final chapter, we put together a few of the concepts you learned throughout
the book to build a weather station, complete with remote data viewing and
configurable weather alerts. Hopefully, this gave you a better idea of how the
tools you learned can help you quickly and easily build practical real-world
devices with your BeagleBone Black.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[169]

The BeagleBone Black Pinout
This figure shows the pinouts of the P8 and P9 expansion headers on the BeagleBone
Black, color-coded by subsystem. P9 is shown on the left and P8 is shown on the
right, to match their physical orientation on the board:

The pins with multiple functions can only be used for one thing at a time, for
example, PWM1A shouldn't be used if GPIO1_18 is already in use.

Some pins on the P8 header are reserved for the HDMI output by
default and can't be used without disabling HDMI. See Appendix B:
Disabling HDMI for more info.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Disabling HDMI
The BeagleBone Black ships with the HDMI output enabled, using pins 20-46 on the
P8 header. If you're not using HDMI and would like to free up those pins for use as
shown in Appendix A, The BeagleBone Black Pinout, you can disable the HDMI output.
First, mount the boot partition:

mkdir /mnt/boot

mount /dev/mmcblk0p1 /mnt/boot

Then, open the bootscript with the nano text editor:

nano /mnt/boot/uEnv.txt

Add the following line to the end of the file:

optargs=quiet capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN

Press Ctrl + X then Y to save and close the file. That new line stops the capemgr
driver from loading the HDMI, and HDMI audio overlays at boot, freeing up the
pins for general use.

Finally, unmount the boot partition and reboot:

umount /mnt/boot

rmdir /mnt/boot

reboot

The HDMI output will now be disabled, and you'll be able to use P8.20-46, as shown
in Appendix A, The BeagleBone Black Pinout. To re-enable HDMI, repeat the steps and
remove the line you added to uEnv.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[173]

Index
Symbol
7-segment displays

about 82-85
URL 83

A
accelerometers

about 117
data, reading 119, 120
interfacing 118, 119
interrupts, using 124-132
module, writing 121-123

analog device
URL 119

analog-to-digital converter (ADC)
about 3, 49
voltage divider 49-51
voltage follower 52-54

analogWrite() function 42, 45
Arduino

URL 23

B
BBIOServer

URL 140
BeagleBone Black

analog-to-digital converter (ADC) 3
board, comparing 9
connecting, Cloud9 IDE used 14, 15
connecting, SSH used 15-17
connecting to 14
design 8

general purpose input/output (GPIO) 2
initial setup 11
overview 1, 2
pinout 169
resource links 10
tools and additional hardware 6-8
URL 1

button
about 59-61
circuit requisites 59
interrupts 70-72
polling 63-69
pull-up/pull-down resistors 61-63

C
character LCD 90-93
Cloud9 IDE

URL 14
used, for connecting to BeagleBone

Black 14, 15

D
Debian image

updating 12-14
URL 12

delay() function 25
Digi-Key

URL 6
dual in-line package (DIP) 52
duty cycle 42
dweet.io

about 144-147
URL 144

www.it-ebooks.info

http://www.it-ebooks.info/

[174]

E
Ethernet

used, for connecting to BeagleBone
Black 17, 18

F
Farnel

URL 7
Fing

URL 18
Freeboard

about 147-151
URL 147

G
general purpose input/output (GPIO)

modules
about 2, 27
kernel drivers 27, 28
pin multiplexing 28, 29

GPIO pins
higher currents, driving from 33-35

I
initial setup, BeagleBone Black

steps 11, 12
interactive GPIO 29-32
Inter-Integrated Circuit (I2C) 6, 104-110
Internet

connecting, Ethernet used 17, 18
connecting to 17, 155-159
network forwarding 18-22

Internet Message Access Protocol
(IMAP) 77

Internet of Things (IoT) service
about 141
dweet.io 144-147
Freeboard 147-151
Phant 141-144

interrupts 70-72
inVolts() function 50

IR temperature sensor
URL 105

J
Jumper wires

URL 7

L
Least Significant Bit First (LSB) 102
LED

blinking 36
fading 44, 45
multiprocessing 37, 38
resistor values, calculating 32, 33
running, at startup 38

LED bar graphs
about 80-82
URL 80

LED displays
7-segment displays 82
about 77-80
bar graphs 80
LED matrix 85

LED matrix
about 85-87
URL 85

listen() method 135
Logic Supply

URL 22
loop() function 23

M
Most Significant Bit First (MSB) 102
Mouser

URL 6

N
network connection, BeagleBone Black

HTTP 139
IoT services 141
TCP/IP 133

www.it-ebooks.info

http://www.it-ebooks.info/

[175]

P
Page class 140
Phant

about 141
URL 141

pin multiplexing 28, 29
PIR motion detector module

URL 88
potentiometers 72-75
pulse width modulation (PWM)

about 4, 41-44
Inter-Integrated Circuit (I2C) 6
LED, fading 44, 45
serial peripheral interface (SPI) 5
servo motors 45-48
universal asynchronous receiver/

transmitter (UART) 4
PuTTY

URL 15
PyBBIO library 23, 24
pySerial API

URL 103

R
requests library

URL 143
resistor values

calculating, for LEDs 32, 33
robot

about 55
creating 55-57

run() function 23

S
Serial Clock (SCL) 104
serial communication 95
serial communication subsystems

I2C 104
SPI 110
UART 95

serial console
using 22, 23

Serial Data (SDA) 104
serial peripheral interface (SPI) 5, 110-114
serial port terminal emulator

URL 23
setClockMode() method 113
setup() function 23
Simple Mail Transfer Protocol

(SMTP) 87-89
software

updating 23
SparkFun

URL 6
SSH

used, for connecting to BeagleBone
Black 15-17

stream
URL 141

T
ThingSpeak

account setup, URL 156
URL 155

through-hole soldering
URL 83

tools and additional hardware
about 6
Adafruit Industries 6
Digi-Key 6
Farnell 7
Mouser 6
SparkFun 6

Transmission Control Protocol/Internet
Protocol (TCP/IP) 133-138

U
Uniform Resource Locator (URL) 139
universal asynchronous receiver/transmitter

(UART)
about 4, 95-104
pins 96

universally unique identifier (UUID) 145
user inputs

buttons 59
potentiometers 72

www.it-ebooks.info

http://www.it-ebooks.info/

[176]

W
weather alerts

creating 160-166
weather station

circuit requisites 154
creating 153, 154

World Wide Web (WWW) 139

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Learning BeagleBone
Python Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

BeagleBone Robotic Projects
ISBN: 978-1-78355-932-9 Paperback: 244 pages

Create complex and exciting robotic projects with the
BeagleBone Black

1. Get to grips with robotic systems.

2. Communicate with your robot and teach it
to detect and respond to its environment.

3. Develop walking, rolling, swimming,
and flying robots.

Mastering BeagleBone Robotics
ISBN: 978-1-78398-890-7 Paperback: 234 pages

Master the power of the BeagleBone Black to
maximize your robot-building skills and create
awesome projects

1. Create complex robots to explore land, sea,
and the skies.

2. Control your robots through a wireless
interface, or make them autonomous and
self-directed.

3. This is a step-by-step guide to advancing
your robotics skills through the power of
the BeagleBone.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Learning BeagleBone
ISBN: 978-1-78398-290-5 Paperback: 206 pages

Learn how to love and care for your BeagleBone and
teach it tricks

1. Develop the practical skills that are required
to create an embedded Linux system using
BeagleBone.

2. Use the embedded Linux software to control
LEDs on the BeagleBone, empowering you
to create LED flash patterns.

3. A hands-on guide, supported by practical
examples to integrate BeagleBone into
your projects.

BeagleBone for Secret Agents
ISBN: 978-1-78398-604-0 Paperback: 162 pages

Browse anonymously, communicate secretly,
and create custom security solutions with the
open source software, the BeagleBone Black,
and cryptographic hardware

1. Interface with cryptographic hardware to add
security to your embedded project, securing
you from external threats.

2. Use and build applications with trusted
anonymity and security software like
Tor and GPG to defend your privacy
and confidentiality.

3. Work with low level I/O on BeagleBone
Black like I2C, GPIO, and serial interfaces
to create custom hardware applications.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Before We Begin
	Overview of the BeagleBone
	General purpose input/output
	Analog-to-digital converter

	Pulse width modulation
	Universal asynchronous receiver/transmitter
	Serial peripheral interface
	Inter-Integrated Circuit

	Tools and additional hardware
	BeagleBone design
	Board comparison
	Helpful resources
	Summary

	Chapter 2: Getting Started
	Initial setup
	Updating your Debian image
	Connecting to your BeagleBone
	The Cloud9 IDE
	SSH

	Connecting to the Internet
	Ethernet
	Network forwarding

	Using the serial console
	Updating your software
	The PyBBIO library
	The Adafruit_BBIO library
	Summary

	Chapter 3: Digital Outputs
	GPIO modules
	Kernel drivers
	Pin multiplexing

	Interactive GPIO
	Calculating resistor values for LEDs
	Driving higher currents from GPIO pins
	Blink
	Taking advantage of the OS
	Multiprocessing
	Running at startup

	Summary

	Chapter 4: PWM and ADC Subsystems
	PWM
	Fading an LED
	Servo motors

	ADC
	Voltage divider
	Voltage follower

	Your first robot
	Summary

	Chapter 5: User Input
	Buttons
	Pull-up/pull-down resistors
	Polling
	Interrupts

	Potentiometers
	Summary

	Chapter 6: Program Output
	LED displays
	LED bar graphs
	7-segment displays
	The LED matrix

	SMTP
	Character LCD
	Summary

	Chapter 7: Serial Communication
	Serial communication
	UART
	I2C
	SPI
	Summary

	Chapter 8: Interfacing with External Devices
	Accelerometers
	Hooking it up
	Reading data
	Writing a module
	Using interrupts

	Summary

	Chapter 9: Using the Network
	TCP/IP
	HTTP
	IoT Services
	Phant
	dweet.io
	Freeboard

	Summary

	Chapter 10: A Practical Example
	Weather station
	Connecting to the Internet
	Weather alerts
	Summary

	Appendix A: BeagleBone Black Pinout
	Appendix B: Disabling HDMI
	Index

