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ABSTRACT

Modern speech understanding systems merge interdisciplinary
technologies from Signal Processing, Pattern Recognition,
Natural Language, and Linguistics into a unified statistical
framework. These systems, which have applications in a wide
range of signal processing problems, represent a revolution in
Digital Signal Processing (DSP). Once a field dominated by
vector-oriented processors and linear algebra-based
mathematics, the current generation of DSP-based systems rely
on sophisticated statistical models implemented using a
complex software paradigm. Such systems are now capable of
understanding continuous speech input for vocabularies of
several thousand words in operational environments.

In this course, we will explore the core components of modern
statistically-based speech recognition systems. We will view
speech recognition problem in terms of three tasks: signal
modeling, network searching, and language understanding. We
will conclude our discussion with an overview of state-of-the-art
systems, and a review of available resources to support further
research and technology development.
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Educational Responsibilities:

Signal and Systems (third year UG course)
Introduction to Digital Signal Processing (fourth year B.S./M.S. course)
Fundamentals of Speech Recognition (M.S./Ph.D. course)

Research Experience:

MS State (1994-present):
large vocabulary speech recognition, object-oriented DSP

Texas Instruments (1987-1994):
telephone-based speech recognition, Tsukuba R&D Center
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isolated word speech recognition, low-rate speech coding
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Course Outline

Day/Time: Topic: Page:

Wednesday, May 13:

1. 8:30 AM to 10:00 AM Fundamentals of Speech 1

2. 10:30 AM to 12:00 PM Basic Signal Processing Concepts 20

3. 1:00 PM to 2:30 PM Signal Measurements 47

4. 3:00 PM to 4:30 PM Signal Processing in Speech Recognition 64

Thursday, May 14:

5. 8:30 AM to 10:00 AM Dynamic Programming (DP) 73

6. 10:30 AM to 12:00 PM Hidden Markov Models (HMMs) 85

7. 1:00 PM to 2:30 PM Acoustic Modeling and Training 104

8. 3:00 PM to 4:30 PM Speech Recognition Using HMMs 120

Friday, May 15:

9. 8:30 AM to 10:00 AM Language Modeling 134

10. 10:30 AM to 12:00 PM State of the Art and Future Directions 139

Suggested Textbooks:

1. J. Deller, et. al., Discrete-Time Processing of Speech Signals, MacMillan
Publishing Co., ISBN 0-02-328301-7

2. L. Rabiner and B.H. Juang, Fundamentals of Speech Recognition,
Prentice-Hall, ISBN 0-13-015157-2
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Session I:

Fundamentals of Speech
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Pragmatics
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BASIC TECHNOLOGY:
A PATTERN RECOGNITION PARADIGM
BASED ON HIDDEN MARKOV MODELS
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WHAT IS THE BASIC PROBLEM?

Feature No. 1

Feature No. 2

ph1 in the context: a ph1 b

ph2 in the context: c ph2 d

ph3 in the context e ph3 f

What do we do about the regions of overlap?

Context is required to disambiguate them.

The problem of where words begin and end is similar.
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Speech Production Physiology
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A Block Diagram of Human Speech Production
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What Does A Speech Signal Look Like?
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What Does A Speech Signal Spectrogram Look Like?

Orth
Standard wideband spectrogram ( , ):f s 10 kHz= Tw 6 ms=
The doctor examined the patient’s knees.ographic :
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Narrowband Spectrogram ( , ):f s 8 kHz= Tw 30 ms=
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Phonemics and Phonetics

Some simple definitions:

Phoneme : • an ideal sound unit with a complete set of articulatory
gestures.

• the basic theoretical unit for describing how speech
conveys linguistic meaning.

• (For English, there are about 42 phonemes.)

• Types of phonemes: vowels, semivowels, dipthongs,
and consonants.

Phonemics : • the study of abstract units and their relationships in a
language

Phone : • the actual sounds that are produced in speaking (for
example, “d” in letter pronounced “l e d er”).

Phonetics : • the study of the actual sounds of the language

Allophones : • the collection of all minor variants of a given sound

(“t” in eight versus “t” in “top”)

• Monophones, Biphones, Triphones — sequences of
one, two, and three phones. Most often used to
describe acoustic models.

Three branches of phonetics:

• Articulatory phonetics : manner in which the speech sounds are
produced by the articulators of the vocal system.

• Acoustic phonetics : sounds of speech through the analysis of the
speech waveform and spectrum

• Auditory phonetics : studies the perceptual response to speech
sounds as reflected in listener trials.

Issues:

• Broad phonemic transcriptions vs. narrow phonetic transcriptions
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Phonemic and Phonetic Transcription - Standards

Major governing bodies for phonetic alphabets:

International Phonetic Alphabet (IPA) — over 100 years of history

ARPAbet — developed in the late 1970’s to support ARPA research

TIMIT — TI/MIT variant of ARPAbet used for the TIMIT corpus

Worldbet — developed recently by Jim Hieronymous (AT&T) to deal with
multiple languages within a single ASCII system

Example:
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When We Put This All Together:

We Have An Acoustic Theory of Speech Production



INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

MAY 15-17, 1996 TEXAS INSTRUMENTS PAGE 12 OF 147

Consonants Can Be Similarly Classified
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Sound Propagation
A detailed acoustic theory must consider the effects of the following:

• Time variation of the vocal tract shape
• Losses due to heat conduction and viscous friction at the vocal tract walls
• Softness of the vocal tract walls
• Radiation of sound at the lips
• Nasal coupling
• Excitation of sound in the vocal tract

Let us begin by considering a simple case of a lossless tube:
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING
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For frequencies that are long compared to the dimensions of the vocal tract (less
than about 4000 Hz, which implies a wavelength of 8.5 cm), sound waves satisfy
the following pair of equations:

or

where

is the variation of the sound pressure in the tube

is the variation in the volume velocity

is the density of air in the tube (1.2 mg/cc)

is the velocity of sound (35000 cm/s)

is the area function (about 17.5 cm long)

Uniform Lossless Tube

If , then the above equations reduce to:

The solution is a traveling wave:

which is analogous to a transmission line:

What are the salient features of the lossless transmission line model?
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where

The sinusoisdal steady state solutions are:

where  is the characteristic impedance.

The transfer function is given by:

This function has poles located at every . Note that these

correspond to the frequencies at which the tube becomes a quarter

wavelength: .

Acoustic Quantity Analogous Electric Quantity
p - pressure v - voltage
u - volume velocity i - current
ρ/A - acoustic inductance L - inductance

A/(ρc2) - acoustic capacitance C - capacitance

p x t,( ) jZo
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Is this model realistic?
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L2 L1⁄ 1.5= A2 A1⁄ 8=

L2 L1⁄ 1.0= A2 A1⁄ 8=

Resonator Geometry Formant Patterns
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Excitation Models

How do we couple energy into the vocal tract?
Air Flow

Trachea Vocal
Cords

Vocal Tract

Muscle Force

ug(t)

RG LG

Subglottal
Pressure

ps(t)
Lungs
The glottal impedance can be approximated by:

The boundary condition for the volume velocity is:

For voiced sounds, the glottal volume velocity looks something like this:

ZG RG jΩLG+=

U 0 Ω,( ) UG Ω( ) P 0 Ω,( ) ZG Ω( )⁄–=
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The Complete Digital Model (Vocoder)

Impulse
Train

Generator

Glottal
Pulse
Model

x

Random
Noise

Generator
x

Vocal Tract
Model
V(z)

Lip
Radiation

Model

fundamental
frequency Av

AN

uG(n) pL(n)

Notes:

• Sample frequency is typically 8 kHz to 16 kHz

• Frame duration is typically 10 msec to 20 msec

• Window duration is typically 30 msec

• Fundamental frequency ranges from 50 Hz to 500 Hz

• Three resonant frequencies are usually found within 4 kHz bandwidth

• Some sounds, such as sibilants (“s”) have extremely high bandwidths

Questions:

What does the overall spectrum look like?

What happened to the nasal cavity?

What is the form of V(z)?
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Fundamental Frequency Analysis

How do we determine the fundamental frequency?

We use the (statistical) autocorrelation function:

Ψ i( )
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50 100 150 lag
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Other common representations:

Average Magnitude Difference Function (AMDF):

Zero Crossing Rate:
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Session II:

Basic Signal Processing Concepts
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The Sampling Theorem and Normalized Time/Frequency

If the highest frequency contained in an analog signal, , is and

the signal is sampled at a rate , then can be EXACTLY

recovered from its sample values using the interpolation function:

.

 may be expressed as:

where .

xa t( ) Fmax B=

Fs 2Fmax 2B=> xa t( )
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-------------------------=
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Given a continuous signal:

,

A discrete-time sinusoid may be expressed as:

,

which, after regrouping, gives:

,

where , and is called normalized radian frequency and

represents normalized time.
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f s
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 = n
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Transforms

The -transform of a discrete-time signal is defined as:

The Fourier transform of  can be computed from the -transform as:

The Fourier transform may be viewed as the -transform evaluated around the
unit circle.

The Discrete Fourier Transform (DFT) is defined as a sampled version of the
Fourier shown above:

The inverse DFT is given by:

The Fast Fourier Transform (FFT) is simply an efficient computation of the DFT.

The Discrete Cosine Transform (DCT) is simply a DFT of a signal that is
assumed to be real and even (real and even signals have real spectra!):

Note that these are not the only transforms used in speech processing
(wavelets, fractals, Wigner distributions, etc.).

z
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∞
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Time-Domain Windowing

Let  denote a finite duration segment of a signal:

This introduces frequency domain aliasing (the so-called picket fence effect):

x n( ){ }

x̂ n( ) x n( )w n( )=
0.0 2000.0 4000.0 6000.0 8000.0
-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0
fs=8000 Hz, f1=1511 Hz, L=25, N=2048
Popular Windows

Generalized Hanning: wH k( ) w k( ) α 1 α–( ) 2π
N
------k 

 cos+= 0 α 1< <

α 0.54,= Hamming window

α 0.50,= Hanning window
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Frame-Based Analysis With Overlap

Consider the problem of performing a piecewise linear analysis of a signal:

L L L

x1(n)

x2(n)

x3(n)
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Difference Equations, Filters, and Signal Flow Graphs

A linear time-invariant system can be characterized by a constant-coefficient
difference equations:

Is this system linear if the coefficients are time-varying?

Such systems can be implemented as signal flow graphs:
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Minimum Phase, Maximum Phase, MIxed Phase,
and Speech Perception

An FIR filter composed of all zeros that are inside the unit circle is minimum
phase. There are many realizations of a system with a given magnitude response;
one is a minimum phase realization, one is a maximum-phase realization, others
are in-between. Any non-minimum phase pole-zero system can be decomposed
into:

It can be shown that of all the possible realizations of , the minimum-phase
version is the most compact in time:
Define:

Then,  for all  and all possible realizations of .

Why is minimum phase such an important concept in speech processing?

We prefer systems that are invertible:

We would like both systems to be stable. The inverse of a non-minimum phase
system is not stable.

We end with a very simple question:

Is phase important in speech processing?

H z( ) Hmin z( )Hap z( )=

H ω( )

E n( ) h k( )
2

k 0=

n

∑=

Emin n( ) E n( )≥ n H ω( )

H z( )H
1–

z( ) 1=
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Probability Spaces

A formal definition of probability involves the specification of:

• a sample space

The sample space, , is the set of all possible outcomes, plus the
null outcome. Each element in  is called a sample point.

• a field (or algebra)

The field, or algebra, is a set of subsets of  closed under
complementation and union (recall Venn diagrams).

• and a probability measure.

A probability measure obeys these axioms:

1.  (implies probabilities less than one)
2.
3. For two mutually exclusive events:

Two events are said to be statistically independent if:

The conditional probability of B given A is:

Hence,

S

S

S

P S( ) 1=

P A( ) 0≥

P A B∪( ) P A B,( ) P A( ) P B( )+= =

P A B∩( ) P A( )P B( )=

P B A( ) P B A∩( )
P A( )

----------------------=

P B A∩( ) P B A( )P A( )=

S S

A

B
A

B

Mutually Exclusive
P B A∩( ) P B A( )P A( )=
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Functions of Random Variables

Probability Density Functions:
f(x) - discrete (Histogram)

1 2 3 4

f(x) - continuous

1 2 3 4

Cumulative Distributions:

F(x) - discrete F(x) - continuous
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1 2 3 4 1 2 3 4
Probability of Events:

f(x) - continuous

1 2 3 4

P 2 x< 3≤( ) f x( ) xd

2

3

∫ F 3( ) F 2( )–= =
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Important Probability Density Functions

Uniform (Unix rand function):

Gaussian:

Laplacian (speech signal amplitude, durations):

Gamma (durations):

We can extend these concepts to N-dimensional space. For example:

Two random variables are statistically independent if:

This implies:

and
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------------ a x b≤<
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σ
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Mixture Distributions

A simple way to form a more generalizable pdf that still obeys some para-
metric shape is to use a weighted sum of one or more pdfs. We refer to this
as a mixture distribution.

If we start with a Gaussian pdf:

The most common form is a Gaussian mixture:

where

Obviously this can be generalized to other shapes.

Such distributions are useful to accommodate multimodal behavior:

f i x( )
1

2πσi
2

-------------------
x µi–( )2

–

2σi
2

------------------------

 
 
 
 
 

exp=

f x( ) ci f i x( )

i 1=

N

∑=

ci
i 1=

N

∑ 1=
1 2 3 4-1-2-3-4

f 1 x( )
f 2 x( )

f 3 x( )

µ1 µ2 µ3
Derivation of the optimal coefficients, however, is most often a nonlinear
optimization problem.
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING



INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

MAY 15-17, 1996 TEXAS INSTRUMENTS PAGE 30 OF 147

Expectations and Moments

The statistical average of a scalar function, , of a random variable is:

and

The central moment is defined as:

The joint central moment between two random variables is defined as:

We can define a correlation coefficient between two random variables as:

We can extend these concepts to a vector of random variables:

What is the difference between a random vector and a random process?

What does wide sense stationary mean? strict sense stationary?

What does it mean to have an ergodic random process?

How does this influence our signal processing algorithms?

g x( )

E g x( )[ ] xiP x xi=( )

i 1=

∞

∑= E g x( )[ ] g x( ) f x( ) xd

∞–
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E x µ–( )i[ ] x µ–( )i
f x( ) xd

∞–

∞
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∞–

∞

∫ y µy–( )k
f x y,( ) xd yd
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∞

∫=

ρxy
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------------=

x x1 x2 … xN, , ,[ ]T
=

f x x( )
1

2πN 2⁄ C
------------------------------ 1

2
---– x µ–( )T

Cx
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x µ–( )
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Correlation and Covariance of WSS Random Processes

For a signal, , we can compute the following useful quantities:

Autocovariance:

If a random process is wide sense stationary:

Hence, we define a very useful function known as the autocorrelation:

If  is zero mean WSS:

What is the relationship between the autocorrelation and the spectrum:

For a linear time-invariant system, :

The notion of random noise is central to signal processing:

white noise?

Gaussian white noise?

zero-mean Gaussian white noise?

colored noise?

Therefore, we now embark upon one of the last great mysteries of life:

How do we compare two random vectors?

x n( )

c i j,( ) E x n i–( ) µi–( ) x n j–( ) µ j–( )[ ]=

E x n i–( )x n j–( )[ ] µiµ j–=

1
N
---- x n i–( )x n j–( )

n 0=

N 1–

∑ 1
N
---- x n i–( )

n 0=

N 1–

∑ 
 
  1

N
---- x n j–( )

n 0=

N 1–

∑ 
 
 

–=

c i j,( ) c i j– 0,( )=

r k( )
1
N
---- x n( )x n k–( )

n 0=

N 1–
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x n( )

c i j,( ) r i j–( )=

DFT r k( ){ } X k( ) 2
=

h n( )

DFT ry k( ){ } DFT h n( ){ } 2
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Distance Measures

What is the distance between pt. a and pt. b?

The N-dimensional real Cartesian space,

denoted  is the collection of all N-dimensional
vectors with real elements. A metric, or distance
measure, is a real-valued function with three properties:

:

1. .

2.

3.

The Minkowski metric of order , or the  metric, between  and  is:

(the norm of the difference vector).

Important cases are:
1.  or city block metric (sum of absolute values),

2. , or Euclidean metric (mean-squared error),

3.  or Chebyshev metric,

ℜN

x y z, ,∀ ℜN∈

d x y,( ) 0≥

d x y,( ) 0= if and only if x y=

d x y,( ) d x z,( ) d z y,( )+≤

s ls x y
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s
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∑s≡ x y– s=
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d1 x y,( ) xk yk–
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2
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N
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l∞
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gold bars
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We can similarly define a weighted Euclidean distance metric:

where:

, , and .

Why are Euclidean distances so popular?

One reason is efficient computation. Suppose we are given a set of
reference vectors, , a measurement, , and we want to find the nearest

neighbor:

This can be simplified as follows:

We note the minimum of a square root is the same as the minimum of a
square (both are monotonically increasing functions):

Therefore,

Thus, a Euclidean distance is virtually equivalent to a dot product (which
can be computed very quickly on a vector processor). In fact, if all reference
vectors have the same magnitude, can be ignored (normalized

codebook).
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Prewhitening of Features

Consider the problem of comparing features of different scales:

Suppose we represent these points in space in two coordinate systems
using the transformation:

System 1:

 and

System 2:

 and

The magnitude of the distance has changed. Though the rank-ordering of
distances under such linear transformations won’t change, the cumulative
effects of such changes in distances can be damaging in pattern
recognition. Why?

z V x=

β1 1î 0 ĵ+= β2 0î 1 ĵ+=

a 1 0

0 1

1

1
= b 1 0

0 1

1

2
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2

1
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We can simplify the distance calculation in the transformed space:

This is just a weighted Euclidean distance.

Suppose all dimensions of the vector are not equal in importance. For
example, suppose one dimension has virtually no variation, while another is
very reliable. Suppose two dimensions are statistically correlated. What is a
statistically optimal transformation?

Consider a decomposition of the covariance matrix (which is symmetric):

where denotes a matrix of eigenvectors of and denotes a diagonal

matrix whose elements are the eigenvalues of . Consider:

The covariance of , is easily shown to be an identity matrix (prove this!)

We can also show that:

Again, just a weighted Euclidean distance.

• If the covariance matrix of the transformed vector is a diagonal matrix,
the transformation is said to be an orthogonal transform.

• If the covariance matrix is an identity matrix, the transform is said to be
an orthonormal transform.

• A common approximation to this procedure is to assume the dimensions
of are uncorrelated but of unequal variances, and to approximate by

a diagonal matrix, . Why? This is known as variance-weighting.

d2 V x V y,( ) V x V y–[ ]T
V x V y–[ ]=

x y–[ ]T
V

T
V x y–[ ]=

d2W x y,( )=
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z Λ 1 2⁄– Φx=

z Cz
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Cx
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“Noise-Reduction”

The prewhitening transform, , is normally created as a
matrix in which the eigenvalues are ordered from largest to smallest:

where

.

In this case, a new feature vector can be formed by truncating the
transformation matrix to rows. This is essentially discarding the least
important features.

A measure of the amount of discriminatory power contained in a feature, or
a set of features, can be defined as follows:

This is the percent of the variance accounted for by the first  features.

Similarly, the coefficients of the eigenvectors tell us which dimensions of the
input feature vector contribute most heavily to a dimension of the output
feature vector. This is useful in determining the “meaning” of a particular
feature (for example, the first decorrelated feature often is correlated with
the overall spectral slope in a speech recognition system — this is
sometimes an indication of the type of microphone).
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Computational Procedures

Computing a “noise-free” covariance matrix is often difficult. One might
attempt to do something simple, such as:

 and

On paper, this appears reasonable. However, often, the complete set of
feature vectors contains valid data (speech signals) and noise (nonspeech
signals). Hence, we will often compute the covariance matrix across a
subset of the data, such as the particular acoustic event (a phoneme or
word) we are interested in.

Second, the covariance matrix is often ill-conditioned. Stabilization
procedures are used in which the elements of the covariance matrix are
limited by some minimum value (a noise-floor or minimum SNR) so that the
covariance matrix is better conditioned.

But how do we compute eigenvalues and eigenvectors on a computer?
One of the hardest things to do numerically! Why?

Suggestion: use a canned routine (see Numerical Recipes in C).

The definitive source is EISPACK (originally implemented in Fortran, now
available in C). A simple method for symmetric matrices is known as the
Jacobi transformation. In this method, a sequence of transformations are
applied that set one off-diagonal element to zero at a time. The product of
the subsequent transformations is the eigenvector matrix.

Another method, known as the QR decomposition, factors the covariance
matrix into a series of transformations:

where is orthogonal and is upper diagonal. This is based on a

transformation known as the Householder transform that reduces columns
of a matrix below the diagonal to zero.

cij xi µi–( ) xj µ j–( )
n 0=

N 1–

∑= µi xi
n 0=

N 1–
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C QR=

Q R
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Maximum Likelihood Classification

Consider the problem of assigning a measurement to one of two sets:
µ1 µ2
x

f x c x c 1=( )( ) f x c x c 2=( )( )

x̂

What is the best criterion for making a decision?

Ideally, we would select the class for which the conditional probability is highest:

However, we can’t estimate this probability directly from the training data. Hence,
we consider:

By definition

and

from which we have

c∗ argmax
c

= P c ĉ=( ) x x̂=( )( )

c∗ argmax
c

= P x x̂=( ) c ĉ=( )( )

P c ĉ=( ) x x̂=( )( ) P c ĉ=( ) x x̂=( ),( )

P x x̂=( )
---------------------------------------------=

P x x̂=( ) c ĉ=( )( ) P c ĉ=( ) x̂ x̂=( ),( )
P c ĉ=( )

---------------------------------------------=

P c ĉ=( ) x x̂=( )( )
P x x̂=( ) c ĉ=( )( )P c ĉ=( )

P x x̂=( )
------------------------------------------------------------------=
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Clearly, the choice of  that maximizes the right side also maximizes the left side.
Therefore,

if the class probabilities are equal,

A quantity related to the probability of an event which is used to make a decision
about the occurrence of that event is often called a likelihood measure.

A decision rule that maximizes a likelihood is called a maximum likelihood
decision.

In a case where the number of outcomes is not finite, we can use an analogous
continuous distribution. It is common to assume a multivariate Gaussian
distribution:

We can elect to maximize the log, rather than the likelihood (we refer

to this as the log likelihood). This gives the decision rule:

(Note that the maximization became a minimization.)

We can define a distance measure based on this as:

c
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Note that the distance is conditioned on each class mean and covariance.
This is why “generic” distance comparisons are a joke.

If the mean and covariance are the same across all classes, this expression
simplifies to:

This is frequently called the Mahalanobis distance. But this is nothing more
than a weighted Euclidean distance.

This result has a relatively simple geometric interpretation for the case of a
single random variable with classes of equal variances:

dM x µx c,( ) x̂ µx c–( )
T

Cx c
1–

x̂ µ
x̂ c

–( )=
µ1 µ2
x

f x c x c 1=( )( ) f x c x c 2=( )( )

a

The decision rule involves setting a threshold:

and,

If the variances are not equal, the threshold shifts towards the distribution
with the smaller variance.

What is an example of an application where the classes are not
equiprobable?

a
µ1 µ2+

2
------------------ 

  σ2

µ1 µ2–
------------------ P c 2=( )

P c 1=( )
--------------------- 

 ln+=

if x a< x c 1=( )∈
else x c 2=( )∈
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Probabilistic Distance Measures

How do we compare two probability distributions to measure their overlap?

Probabilistic distance measures take the form:

where
1.  is nonnegative
2. J attains a maximum when all classes are disjoint
3. J=0 when all classes are equiprobable

Two important examples of such measures are:

(1) Bhattacharyya distance:

(2) Divergence

Both reduce to a Mahalanobis-like distance for the case of Gaussian vectors
with equal class covariances.

Such metrics will be important when we attempt to cluster feature vectors
and acoustic models.
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∞
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Probabilistic Dependence Measures

A probabilistic dependence measure indicates how strongly a feature is
associated with its class assignment. When features are independent of
their class assignment, the class conditional pdf’s are identical to the
mixture pdf:

When their is a strong dependence, the conditional distribution should be
significantly different than the mixture. Such measures take the form:

An example of such a measure is the average mutual information:

The discrete version of this is:

Mutual information is closely related to entropy, as we shall see shortly.

Such distance measures can be used to cluster data and generate vector
quantization codebooks. A simple and intuitive algorithms is known as the
K-means algorithm:

Initialization: Choose K centroids

Recursion: 1. Assign all vectors to their nearest neighbor.

2. Recompute the centroids as the average of all vectors
assigned to the same centroid.

3. Check the overall distortion. Return to step 1 if some
distortion criterion is not met.
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1

1

What Is Information? (When not to bet at a casino...)

Consider two distributions of discrete random variables:
41 2 3  x

c=1 c=2 c=3 c=4

f(x)

Uniform Random Variable

1/4

41 2 3 y

c=1 c=2

c=3

c=4

f(y)

1/2

3/4

/4

/2

3/4
Which variable is more unpredictable?

Now, consider sampling random numbers from a random number generator
whose statistics are not known. The more numbers we draw, the more we
discover about the underlying distribution. Assuming the underlying distribution is
from one of the above distributions, how much more information do we receive
with each new number we draw?

The answer lies in the shape of the distributions. For the random variable x, each
class is equally likely. Each new number we draw provides the maximum amount
of information, because, on the average, it will be from a different class (so we
discover a new class with every number). On the other hand, for y, chances are,
c=3 will occur 5 times more often than the other classes, so each new sample will
not provide as much information.

We can define the information associated with each class, or outcome, as:

Since , information is a positive quantity. A base 2 logarithm is used so

that discrete outcomes can be measured in bits. For the distributions
above,

Huh??? Does this make sense?

I c ĉ=( ) 1
P c ĉ=( )
--------------------

2
log≡ P c ĉ=( )2log–=
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K 2
M
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I x c 1=( ) 1–( ) 1 4⁄( )2log 2 bits= = I y c 1=( ) 1–( ) 1
8
--- 

 
2

log 3 bits= =
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What is Entropy?

Entropy is the expected (average) information across all outcomes:

Entropy using  is also measured in bits, since it is an average of information.

For example,

We can generalize this to a joint outcome of N random vectors from the same
distribution, which we refer to as the joint entropy:

If the random vectors are statistically independent:

If the random vectors are independent and indentically distributed:

We can also define conditional entropy as:

For continuous distributions, we can define an analogous quantity for entropy:

     (bits)

A zero-mean Gaussian random variable has maximum entropy ( .

Why?
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Mutual Information

The pairing of random vectors produces less information than the events
taken individually. Stated formally:

The shared information between these events is called the mutual
information, and is defined as:

From this definition, we note:

This emphasizes the idea that this is information shared between these two
random variables.

We can define the average mutual information as the expectation of the
mutual information:

Note that:

Also note that if and are independent, then there is no mutual
information between them.

Note that to compute mutual information between two random variables, we
need a joint probability density function.
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How Does Entropy Relate To DSP?

Consider a window of a signal:
x(n)

n

window
What does the sampled z-transform assume about the signal outside the
window?

What does the DFT assume about the signal outside the window?

How do these influence the resulting spectrum that is computed?

What other assumptions could we make about the signal outside the
window? How many valid signals are there?

How about finding the spectrum that corresponds to the signal that matches
the measured signal within the window, and has maximum entropy?

What does this imply about the signal outside the window?

This is known as the principle of maximum entropy spectral estimation.
Later we will see how this relates to minimizing the mean-square error.
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Session III:

Signal Measurements



INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

MAY 15-17, 1996 TEXAS INSTRUMENTS PAGE 48 OF 147

Short-Term Measurements

What is the point of this lecture?

T f 5 ms=

Tw 10 ms=

T f 10 ms=

Tw 20 ms=

T f 20 ms=

Tw 30 ms=

T f 20 ms=

Tw 30 ms=

Hamm. Win.

T f 20 ms=

Tw 60 ms=

Hamm. Win.

Speech Signal

Recursive
50 Hz LPF
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Time/Frequency Properties of Windows

%Overlap
Tw T f–( )

Tw
------------------------- 100%×=

• Generalized Hanning: wH k( ) w k( ) α 1 α–( ) 2π
N
------k 

 cos+= 0 α 1< <

α 0.54,= Hamming window

α 0.50,= Hanning window
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Recursive-in-Time Approaches

Define the short-term estimate of the power as:

We can view the above operation as a moving-average filter applied to the

sequence .

This can be computed recursively using a linear constant-coefficient
difference equation:

Common forms of this general equation are:

(Leaky Integrator)

(First-order weighted average)

(2nd-order Integrator)

Of course, these are nothing more than various types of low-pass filters, or
adaptive controllers. How do we compute the constants for these
equations?

In what other applications have we seen such filters?
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Relationship to Control Systems

The first-order systems can be related to physical quantities by observing
that the system consists of one real pole:

 can be defined in terms of the bandwidth of the pole.

For second-order systems, we have a number of alternatives. Recall that a
second-order system can consist of at most one zero and one pole and their
complex conjugates. Classical filter design algorithms can be used to design
the filter in terms of a bandwidth and an attenuation.

An alternate approach is to design the system in terms of its unit-step
response:

H z( ) 1

1 αz
1–

–
---------------------=

α

u(n)

P(n)

n

Overshoot

rise times

1.0

0.5

0
settling time

final response threshold

h(n)

n

Equivalent impulse response
rise time

fall time
There are many forms of such controllers (often known as
servo-controllers). One very interesting family of such systems are those
that correct to the velocity and acceleration of the input. All such systems
can be implemented as a digital filter.
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Short-Term Autocorrelation and Covariance

Recall our definition of the autocorrelation function:

Note:

• this can be regarded as a dot product of  and .
• let’s not forget preemphasis, windowing, and centering the window

w.r.t. the frame, and that scaling is optional.
What would C++ code look like:

r k( )
1
N
---- s n( )s n k–( )

n k=

N 1–

∑ 1
N
---- s n( )s n k+( )

n 0=

N 1– k–

∑= = 0 k p< <

s n( ) s n i+( )
array-style:
for(k=0; k<M; k++) {

r[k] = 0.0;
for(n=0; n<N-k; n++) {

r[k] += s[n] * s[n+k]
}

}

pointer-style:
for(k=0; k<M; k++) {

*r = 0.0; s = sig; sk = sig + k;
for(n=0; n<N-i; n++) {

*r += (s++) * (sk++);
}

}

We note that we can save some multiplications by reusing products:

This is known as the factored autocorrelation computation.
It saves about 25% CPU, replacing multiplications with additions and more
complicated indexing.

Similarly, recall our definition of the covariance function:

Note:
• we use N-p points

• symmetric so that only the  terms need to be computed

This can be simplified using the recursion:

r 3[ ] s 3[ ] s 0[ ] s 6[ ]+( ) s 4[ ] s 1[ ] s 7[ ]+( ) … s N[ ]s N 3–[ ]+ + +=

c k l,( )
1
N
---- s n k–( )s n l–( )

n p=

N 1–

∑= 0 l k p< < <

k l≥

c k l,( ) c k 1– l 1–,( ) s p k–( )s p l–( ) s N k–( )s N l–( )–+=
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Example of the Autocorrelation Function

Autocorrelation functions for the word “three” comparing the consonant
portion of the waveform to the vowel (256-point Hamming window).

Note:
• shape for the low order lags - what does this correspond to?
• regularity of peaks for the vowel — why?
• exponentially-decaying shape — which harmonic?
• what does a negative correlation value mean?
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An Application of Short-Term Power: Speech SNR Measurement

Problem: Can we estimate the SNR from a speech file?
0.0 10.0 20.0 30.0
-10000.0

-5000.0

0.0

5000.0

10000.0
Energy Histogram:
E

p(E)
Cumulative Distribution:
E

cdf(E)

Nominal Signal+Noise Level

80%

Nominal Noise Level

20%

100% by definition
The SNR can defined as:

What percentiles to use?

Typically, 80%/20%, 85%/15%, or 95%/15% are used.

SNR 10
Es

En
------

10
log 10

Es En+( ) En–

En
------------------------------------

10
log= =
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Linear Prediction (General)

Let us define a speech signal, , and a predicted value: .

Why the added terms? This prediction error is given by:

We would like to minimize the error by finding the best, or optimal, value of .

Let us define the short-time average prediction error:

We can minimize the error w.r.t for each by differentiating and

setting the result equal to zero:

s n( ) s̃ n( ) αks n k–( )

k 1=

p
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e n( ) s n( ) s̃ n( )– s n( ) αks n k–( )
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∑–= =

αk{ }

E e
2

n( )
n
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 2

n
∑=

s
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n
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n
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s
2

n( )
n
∑ 2 αk s n( )s n k–( )

n
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Linear Prediction (Cont.)

Rearranging terms:

or,

This equation is known and the linear prediction (Yule-Walker) equation.
 are known as linear prediction coefficients, or predictor coefficients.

By enumerating the equations for each value of , we can express this in
matrix form:

where,

The solution to this equation involves a matrix inversion:

and is known as the covariance method. Under what conditions does
exist?

Note that the covariance matrix is symmetric. A fast algorithm to find the

solution to this equation is known as the Cholesky decomposition (a
approach in which the covariance matrix is factored into lower and upper
triangular matrices).

s n( )s n l–( )
n
∑ αk s n k–( )s n l–( )

n
∑ 

 

k 1=

p

∑=

c l 0,( ) αkc k l,( )

k 1=

p

∑=

αk{ }

l

c Cα=

α

α1

α2

…
αp

= C

c 1 1,( ) c 1 2,( ) … c 1 p,( )

c 2 1,( ) c 2 2,( ) … c 2 p,( )

… … … …
c p 1,( ) c p 2,( ) … c p p,( )

= c

c 1 0,( )

c 2 0,( )

…
c p 0,( )

=

α C
1–
c=

C
1–

V DV
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The Autocorrelation Method

Using a different interpretation of the limits on the error minimization —
forcing data only within the frame to be used — we can compute the
solution to the linear prediction equation using the autocorrelation method:

where,

Note that is symmetric, and all of the elements along the diagonal are
equal, which means (1) an inverse always exists; (2) the roots are in the left-
half plane.

The linear prediction process can be viewed as a filter by noting:

and

where

 is called the analyzer; what type of filter is it? (pole/zero? phase?)

 is called the synthesizer; under what conditions is it stable?

α R
1–
r=

α

α1

α2

…
αp

= R

r 0( ) r 1( ) … r p 1–( )

r 1( ) r 0( ) … r p 2–( )

… … … …
r p 1–( ) r p 2–( ) … r 0( )

= r

r 1( )

r 2( )

…
r p( )

=

R

e n( ) s n( ) αks n k–( )

k 1=

p

∑–=

E z( ) S z( )A z( )=

A z( ) 1 αkz
k–

k 1=

p

∑–=

A z( )

1
A z( )
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Linear Prediction Error

We can return to our expression for the error:

and substitute our expression for  and show that:

Autocorrelation Method:

Covariance Method:

Later, we will discuss the properties of these equations as they relate to the
magnitude of the error. For now, note that the same linear prediction
equation that applied to the signal applies to the autocorrelation function,
except that samples are replaced by the autocorrelation lag (and hence the
delay term is replaced by a lag index).

Since the same coefficients satisfy both equations, this confirms our
hypothesis that this is a model of the minimum-phase version of the input
signal.

Linear prediction has numerous formulations including the covariance
method, autocorrelation formulation, lattice method, inverse filter
formulation, spectral estimation formulation, maximum likelihood
formulation, and inner product formulation. Discussions are found in
disciplines ranging from system identification, econometrics, signal
processing, probability, statistical mechanics, and operations research.

E e
2

n( )
n
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n
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Levinson-Durbin Recursion

The predictor coefficients can be efficiently computed for the autocorrelation
method using the Levinson-Durbin recursion:

This recursion gives us great insight into the linear prediction process. First,
we note that the intermediate variables, , are referred to as reflection

coefficients.

Example: p=2

This reduces the LP problem to  and saves an order of magnitude in
computational complexity, and makes this analysis amenable to fixed-point
digital signal processors and microprocessors.

for i 1 2 … p, , ,=

E0 r 0( )=

ki r i( ) ai 1– j( )r i j–( )

j 1=

i 1–

∑–
 
 
 

Ei 1–⁄=
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ai i( ) ki=

ai j( ) ai 1– j( ) kiai 1– i j–( )–=

Ei 1 ki
2

–( )Ei 1–=

ki{ }

E0 r 0( )=

k1 r 1( ) r 0( )⁄=

a1 1( ) k1 r 1( ) r 0( )⁄= =

E1 1 k1
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–( )E0=

r
2

0( ) r
2
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------------------------------=
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Linear Prediction Coefficient Transformations

The predictor coefficients and reflection coefficients can be transformed
back and forth with no loss of information:

Predictor to reflection coefficient transformation:

Reflection to predictor coefficient transformation:

Also, note that these recursions require intermediate storage for .

From the above recursions, it is clear that . In fact, there are several

important results related to :

(1)

(2) , implies a harmonic process (poles on the unit circle).

(3) implies an unstable synthesis filter (poles outside the unit circle).

(4)

This gives us insight into how to determine the LP order during the calcula-
tions. We also see that reflection coefficients are orthogonal in the sense
that the best order “p” model is also the first “p” coefficients in the order
“p+1” LP model (very important!).

for i p p 1– … 1, , ,=

ki ai i( )=

ai 1– j( )
ai j( ) kiai i j–( )+

1 ki
2

–
----------------------------------------= 1 j i 1–≤ ≤

for i 1 2 … p, , ,=

ai i( ) ki=

ai j( ) ai 1– j( ) kiai 1– i j–( )–= 1 j i 1–≤ ≤

ai{ }

ki 1≠

ki

ki 1<

ki 1=

ki 1>

E0 E1 … Ep> > >
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Spectral-Matching Interpretation of Linear Prediction
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Noise-Weighting
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The Real Cepstrum

Goal: Deconvolve spectrum for multiplicative processes

In practice, we use the “real” cepstrum:

 and  manifest themselves at the low and high end of the “quefrency”
domain respectively.

We can derive cepstral parameters directly from LP analysis:

To obtain the relationship between cepstral and predictor coefficients, we can

differentiate both sides is taken with respect to :

which simplifies to

Note that the order of the cepstral coefficients need not be the same as the order
of the LP model. Typically, 10-16 LP coefficients are used to generate 10-12
cepstral coefficients.
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Session IV:

Signal Processing

In Speech Recognition
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THE SIGNAL MODEL (“FRONT-END”)

Spectral
Modeling

Parametric
Transform

Spectral
Analysis

Spectral
Shaping

Speech

Conditioned Signal

Spectral Measurements

Spectral Parameters

Observation Vectors

Digital Signal Processing

Speech Recognition
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A TYPICAL “FRONT-END”

Time-
Derivative

Cepstral
Analysis

Fourier
Transform

Signal

mel-spaced cepstral coefficients

second
derivative

first
derivative

(rate of change)

absolute
spectral

measurements

energy
delta-energy

Time-
Derivative
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Putting It All Together
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Mel Cepstrum

Bark 13
0.76f
1000
-------------- 

 atan=

3.5
f
2

7500)2( )
----------------------

 
 
 

atan+

mel f 2595 10 1 f
7000
------------+ 

 log=

BWcrit 25 75 1 1.4
f

1000
------------ 

  2
+

0.69
+=
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Mel Cepstrum Computation Via A Filter Bank

Index

Bark Scale Mel Scale

Center
Freq.
(Hz)

BW
(Hz)

Center
Freq.
(Hz)

BW
(Hz)

1 50 100 100 100

2 150 100 200 100

3 250 100 300 100

4 350 100 400 100

5 450 110 500 100

6 570 120 600 100

7 700 140 700 100

8 840 150 800 100

9 1000 160 900 100

10 1170 190 1000 124

11 1370 210 1149 160

12 1600 240 1320 184

13 1850 280 1516 211

14 2150 320 1741 242

15 2500 380 2000 278

16 2900 450 2297 320

17 3400 550 2639 367

18 4000 700 3031 422

19 4800 900 3482 484

20 5800 1100 4000 556

21 7000 1300 4595 639

22 8500 1800 5278 734

23 10500 2500 6063 843

24 13500 3500 6964 969
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Mel Cepstrum Computation
Via

Oversampling Using An FFT

• • •

fi-1 fi

S(f)

frequency

• Note that an FFT yields frequency samples at

• Oversampling provides a smoother estimate of the envelope of the spectrum

• Other analogous techniques efficient sampling techniques exist for different
frequency scales (bilinear transform, sampled autocorrelation, etc.)

k
N
---- 

  f s
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Perceptual Linear Prediction

Goals: Apply greater weight to perceptually-important portions of the spectrum
Avoid uniform weighting across the frequency band

Algorithm:

• Compute the spectrum via a DFT

• Warp the spectrum along the Bark frequency scale

• Convolve the warped spectrum with the power spectrum of the simulated
critical band masking curve and downsample (to typically 18 spectral
samples)

• Preemphasize by the simulated equal-loudness curve:

• Simulate the nonlinear relationship between intensity and perceived
loudness by performing a cubic-root amplitude compression

• Compute an LP model

Claims:

• Improved speaker independent recognition performance

• Increased robustness to noise, variations in the channel, and microphones
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Linear Regression and Parameter Trajectories

Premise: Time differentiation of features is a noisy process

Approach: Fit a polynomial to the data to provide a smooth trajectory for a
parameter; use closed-loop estimation of the polynomial
coefficients

Static feature:

Dynamic feature:

Acceleration feature:

We can generalize this using an rth order regression analysis:

where  (the number of analysis frames in time length T) is odd,
and the orthogonal polynomials are of the form:

This approach has been generalized in such a way that the weights on the
coefficients can be estimated directly from training data to maximize the
likelihood of the estimated feature (maximum likelihood linear regression).
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Session V:

Dynamic Programming
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The Principle of Dynamic Programming

• An efficient algorithm for finding the optimal path through a network



INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

MAY 15-17, 1996 TEXAS INSTRUMENTS PAGE 76 OF 147

Word Spotting Via
Relaxed and Unconstrained Endpointing

• Endpoints, or boundaries, need not be fixed — numerous types of
constraints can be invoked
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Slope Constraints:
Increased Efficiency and Improved Performance

• Local constraints used to achieve slope constraints
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DTW, Syntactic Constraints, and Beam Search

Consider the problem of connected digit recognition: “325 1739”. In the
simplest case, any digit can follow any other digit, but we might know the
exact number of digits spoken.

An elegant solution to the problem of finding the best overall sentence
hypothesis is known as level building (typically assumes models are same
length.
R1

R2

R3

R4

R5

F1 F5 F10 F15 F20 F25 F30

Possible word endings for first word

Reference

Test

Possible starts for second word
• Though this algorithm is no longer widely used, it gives us a glimpse into
the complexity of the syntactic pattern recognition problem.
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING
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R

R

R

R

R

R

Level Building For An Unknown Number Of Words
1

2

3

4

5

F1 F5 F10 F15 F20 F25 F30

eference

Test

Beam

M=5

M=4

M=3

M=2

M=1
• Paths can terminate on any level boundary indicating a different number
of words was recognized (note the significant increase in complexity)

• A search band around the optimal path can be maintained to reduce the
search space

• Next-best hypothesis can be generated (N-best)
• Heuristics can be applied to deal with free endpoints, insertion of silence

between words, etc.
• Major weakness is the assumption that all models are the same length!
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING
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The One-Stage Algorithm (“Bridle Algorithm”)

The level building approach is not conducive to models of different lengths,
and does not make it easy to include syntactic constraints (which words can
follow previous hypothesized words).

An elegant algorithm to perform this search in one pass is demonstrated
below:

Reference

Test

R1

R2

R3

Model

• Very close to current state-of-the-art doubly-stochastic algorithms (HMM)
• Conceptually simple, but difficult to implement because we must

remember information about the interconnections of hypotheses
• Amenable to beam-search concepts and fast-match concepts
• Supports syntactic constraints by limited the choices for extending a

hypothesis
• Becomes complex when extended to allow arbitrary amounts of silence

between words
• How do we train?
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Introduction of Syntactic Information

• The search space for vocabularies of hundreds of words can become
unmanageable if we allow any word to follow any other word (often called
the no-grammar case)

• Our rudimentary knowledge of language tells us that, in reality, only a
small subset of the vocabulary can follow a given word hypothesis, but
that this subset is sensitive to the given word (we often refer to this as
“context-sensitive”)

• In real applications, user-interface design is crucial (much like the
problem of designing GUI’s), and normally results in a specification of a
language or collection of sentence patterns that are permissible

• A simple way to express and manipulate this information in a dynamic
programming framework is a via a state machine:

B

C D

Start Stop

E

For example, when you enter state C, you output one of the following
words: {daddy, mommy}.
If:

state A: give
state B: me
state C: {daddy, mommy}
state D: come
state E: here

We can generate phrases such as:

Daddy give me

• We can represent such information numerous ways (as we shall see)

A



INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

MAY 15-17, 1996 TEXAS INSTRUMENTS PAGE 82 OF 147

Early Attempts At Introducing Syntactic Information Were “Ad-Hoc”

Feature Extractor

Unconstrained Endpoint
Dynamic Programming

(Word Spotting)

Recognized Sequence of Words (“Sentences”)

P(w2)

P(w1) P(w3)

P(w4)

P(w4)

P(wi)

Finite Automaton

Reference Models

Speech Signal

Measurements
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BASIC TECHNOLOGY — A PATTERN RECOGNITION PARADIGM
BASED ON

HIDDEN MARKOV MODELS

Search Algorithms:P Wt
i

Ot( )
P Ot Wt

i
( )P Wt

i
( )

P Ot( )
--------------------------------------=

Pattern Matching: Wt
i

P Ot Ot 1– … Wt
i, ,( ),[ ]

Signal Model:P Ot Wt 1– Wt Wt 1+, ,( )( )

Recognized Symbols:P S O( ) maxarg
T

P Wt
i

Ot Ot 1– …, ,( )( )
i

∏=

Language Model:P Wt
i

( )

Prediction
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BEAM SEARCH

• The modern view of speech recognition is a problem consisting of
two operations: signal modeling and search.

• Finding the most probable sequence of words is an optimization
problem that can be solved by dynamic programming

• Optimal solutions are intractable; fortunately, sub-optimal solutions
yield good performance

• Beam search algorithms are used to trade-off complexity vs.
accuracy

Log(P)

Time

Best Path

A Search Error?
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Session VI:

Hidden Markov Models
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A Simple Markov Model For Weather Prediction

What is a first-order Markov chain?

We consider only those processes for which the right-hand side is
independent of time:

with the following properties:

The above process can be considered observable because the output
process is a set of states at each instant of time, where each state
corresponds to an observable event.

Later, we will relax this constraint, and make the output related to the states
by a second random process.

Example: A three-state model of the weather

State 1: precipitation (rain, snow, hail, etc.)
State 2: cloudy
State 3: sunny

P qt j= qt 1– i= qt 2– k= …, ,( )[ ] P qt j= qt 1– i=[ ]=

aij P qt j= qt 1– i=[ ]= 1 i j, N≤ ≤

aij 0≥ j i,∀

aij
j 1=

N

∑ 1= i∀

1 2

3

0.4 0.6

0.3

0.2

0.2
0.10.1

0.3

0.8
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Basic Calculations

Example: What is the probability that the weather for eight consecutive
days is “sun-sun-sun-rain-rain-sun-cloudy-sun”?

Solution:
O = sun sun sun rain rain sun cloudy sun

3 3 3 1 1 3 2 3

Example: Given that the system is in a known state, what is the probability
that it stays in that state for d days?

O = i i i ... i j

Note the exponential character of this distribution.
We can compute the expected number of observations in a state given
that we started in that state:

Thus, the expected number of consecutive sunny days is (1/(1-0.8)) = 5;
the expected number of cloudy days is 2.5, etc.

What have we learned from this example?

P O Model( ) P 3[ ]P 3 3[ ]P 3 3[ ]P 1 3[ ]P 1 1[ ]P 3 1[ ]P 2 3[ ]P 3 2[ ]=

π3a33a31a11a13a32a23=

1.536 10
4–×=

P O Model q1 i=,( ) P O q1 i=, Model( ) P q1 i=( )⁄=

πiaii
d 1–

1 aii–( ) πi⁄=

aii
d 1–

1 aii–( )=

pi d( )=

di d pi d( )

d 1=

∞

∑ daii
d 1–

1 aii–( )
d 1=

∞

∑ 1
1 aii–
---------------= = =
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Why Are They Called “Hidden” Markov Models?

Consider the problem of predicting the outcome of a coin toss experiment.
You observe the following sequence:

What is a reasonable model of the system?

O HHTTTHTTH…H( )=

1 2

P(H) 1-P(H)

1-P(H)

P(H)

1 2

a11 a22
1-a11

1-a22

1 2

3

Heads Tails

1-Coin Model
(Observable Markov Model)
O = H H T T H T H H T T H ...
S = 1 1 2 2 1 2 1 1 2 2 1 ...

2-Coins Model
(Hidden Markov Model)
O = H H T T H T H H T T H ...
S = 1 1 2 2 1 2 1 1 2 2 1 ...

P(H) = P1 P(H) = P2

P(T) = 1-P1 P(T) = 1-P2

a11 a22

a12

a21

a13

a31
a32

a23

a33

P(H): P1 P2 P3

P(T): 1-P1 1-P2 1-P3

3-Coins Model
(Hidden Markov Model)
O = H H T T H T H H T T H ...
S = 3 1 2 3 3 1 1 2 3 1 3 ...
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Why Are They Called Doubly Stochastic Systems?

The Urn-and-Ball Model

P(red) = b1(1)

P(green) = b1(2)

P(blue) = b1(3)

P(yellow) = b1(4)

...

P(red) = b2(1)

P(green) = b2(2)

P(blue) = b2(3)

P(yellow) = b2(4)

...

P(red) = b3(1)

P(green) = b3(2)

P(blue) = b3(3)

P(yellow) = b3(4)

...

O = {green, blue, green, yellow, red, ..., blue}

How can we determine the appropriate model for the observation
sequence given the system above?
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Elements of a Hidden Markov Model (HMM)

• N — the number of states

• M — the number of distinct observations per state

• The state-transition probability distribution

• The output probability distribution

• The initial state distribution

We can write this succinctly as:

Note that the probability of being in any state at any time is completely
determined by knowing the initial state and the transition probabilities:

Two basic problems:

(1) how do we train the system?

(2) how do we estimate the probability of a given sequence
(recognition)?

This gives rise to a third problem:

If the states are hidden, how do we know what states were used to
generate a given output?

How do we represent continuous distributions (such as feature vectors)?

A aij{ }=

B bj k( ){ }=

π πi{ }=

λ A B π, ,( )=

π t( ) A
t 1– π=
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Formalities

The discrete observation HMM is restricted to the production of a finite set
of discrete observations (or sequences). The output distribution at any state
is given by:

The observation probabilities are assumed to be independent of time. We
can write the probability of observing a particular observation, , as:

The observation probability distribution can be represented as a matrix
whose dimension is K rows x S states.
We can define the observation probability vector as:

, or,

The mathematical specification of an HMM can be summarized as:

For example, reviewing our coin-toss model:

b k i,( ) P y t( ) k= x t( ) i=( )≡

y t( )

b y t( ) i( ) P y t( ) y t( )= x t( ) i=( )≡

p t( )

P y t( ) 1=( )

P y t( ) 2=( )

…
P y t( ) K=( )

= p t( ) Bπ t( ) BA
t 1– π 1( )= =

M S π 1( ) A B yk 1 k K≤ ≤,{ }, , , ,{ }=

1 2

3

a11 a22

a12

a21

a13

a31
a32

a23

a33

P(H): P1 P2 P3

P(T): 1-P1 1-P2 1-P3

S 3=

π 1( )

1 3⁄
1 3⁄
1 3⁄ 

 
 
 
 

=

A

a11 a12 a13

a21 a22 a23

a31 a32 a33

=

B
P1 P2 P3

1 P1– 1 P2– 1 P3–
=
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Recognition Using Discrete HMMs

Denote any partial sequence of observations in time by:

The forward partial sequence of observations at time  is

The backward partial sequence of observations at time  is

A complete set of observations of length  is denoted as .

What is the likelihood of an HMM?

We would like to calculate — however, we can’t. We can

(see the introductory notes) calculate . Consider the brute

force method of computing this. Let denote a specific

state sequence. The probability of a given observation sequence being
produced by this state sequence is:

The probability of the state sequence is

Therefore,

To find , we must sum over all possible paths:

This requires flops. For and , this gives about

 computations per HMM!

yt1

t2 y t1( ) y t1 1+( ) y t1 2+( ),, …, y t2( ),{ }≡

t

y1
t

y 1( ) y 2( ), …, y t( ),{ }≡

t

yt 1+
T

y t 1+( ) y t 2+( ), …, y T( ),{ }≡

T y y1
T≡

P M y y=( )

P y y= M( )

ϑ i1 i2 … iT, , ,{ }=

P y ϑ M,( ) b y 1( ) i1( )b y 2( ) i2( )…b y T( ) iT( )=

P ϑ M( ) P x 1( ) i1=( )a i2 i1( )a i3 i2( )…a iT iT 1–( )=

P y ϑ M( ),( ) P x 1( ) i1=( )a i2 i1( )a i3 i2( )…a iT iT 1–( )=

x b y 1( ) i1( )b y 2( ) i2( )…b y T( ) iT( )

P y M( )

P y M( ) P y ϑ M( ),( )
ϑ∀

∑=

O 2TS
T

( ) S 5= T 100=

1.6 10
72×
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The “Any Path” Method (Forward-Backward, Baum-Welch)

The forward-backward (F-B) algorithm begins by defining a “forward-going”
probability sequence:

and a “backward-going” probability sequence:

Let us next consider the contribution to the overall sequence probability
made by a single transition:

α y1
t

( ) P y
1
t

y1
t

= x t( ) i=, M( )≡

β yt 1+
T

i( ) P y
t 1+
T

yt 1+
T

= x t( ) i= M,( )≡
i

S

2

1

•
•

•
•

•
•

i

S

2

1

•
•

•
•

•
•

j

α y1
t

i,( )

α y1
t 1+

i,( )

y t 1–( ) y t( ) y t 1+( )
Summing over all possibilities for reaching state “ “:

α y1
t 1+

j,( ) α y1
t

i,( )P x t 1+( ) j= x t( ) i=( ) ×=

P y t 1+( ) y t 1+( )= x t 1+( ) j=( )

α y1
t

i,( )a j i( )b y t 1+( ) j( )=

j

α y1
t 1+

j,( ) α y1
t

i,( )a j i( )b y t 1+( ) j( )

i 1=

S

∑=
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Baum-Welch (Continued)

The recursion is initiated by setting:

Similarly, we can derive an expression for :

This recursion is initialized by:

We still need to find :

for any state . Therefore,

But we also note that we should be able to compute this probability using
only the forward direction. By considering , we can write:

These equations suggest a recursion in which, for each value of we iterate

over ALL states and update . When , is computed by

summing over ALL states.

The complexity of this algorithm is , or for and ,

approximately 2500 flops are required (compared to flops for the
exhaustive search).

α y1
t

j,( ) P x 1( ) j=( )b y 1( ) j( )=

β

β yi 1+
T

i( ) β yt 2+
T

j( )a j i( )b y t 1+( ) j( )

j 1=

S

∑=

β yT 1+
T

i( )
1, if i is a legal final state

0, otherwise



≡

P y M( )

P y x t( ) i=, M( ) α y1
t

i,( )β yt 1+
T

i( )=

i

P y M( ) α y1
t

i,( )β yt 1+
T

i( )

i 1=

S

∑=

t T=

P y M( ) α y1
T

i,( )

i 1=

S

∑=

t

α y1
t

j,( ) t T= P y M( )

O S
2
T( ) S 5= T 100=

10
72
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The Viterbi Algorithm

Instead of allowing any path to produce the output sequence, and hence,
creating the need to sum over all paths, we can simply assume only one
path produced the output. We would like to find the single most likely path
that could have produced the output. Calculation of this path and probability
is straightforward, using the dynamic programming algorithm previously
discussed:

where

(in other words, the predecessor node with the best score). Often,
probabilities are replaced with the logarithm of the probability, which
converts multiplications to summations. In this case, the HMM looks
remarkably similar to our familiar DP systems.

Beam Search

In the context of the best path method, it is easy to see that we can employ
a beam search similar to what we used in DP systems:

In other words, for a path to survive, its score must be within a range of the
best current score. This can be viewed as a time-synchronous beam
search. It has the advantage that, since all hypotheses are at the same point
in time, their scores can be compared directly. This is due to the fact that
each hypothesis accounts for the same amount of time (same number of
frames).

D t i,( ) a i j∗,( )b k i( )D t 1– j∗,( )=

j∗ maxarg

valid j

D t 1– j,( ){ }=

Dmin t i,( ) Dmin t i∗t,( ) δ t( )–≥
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Training Discrete Observation HMMs

Training refers to the problem of finding such that the model,
, after an iteration of training, better represents the training data than the

previous model. The number of states is usually not varied or reestimated,
other than via the modification of the model inventory. The apriori
probabilities of the likelihood of a model, , are normally not reestimated
as well, since these typically come from the language model.

The first algorithm we will discuss is one based on the Forward-Backward
algorithm (Baum-Welch Reestimation):

Also, denotes a random variable that models the transitions at time

and a random variable that models the observation being emitted at

state  at time . The symbol “•” is used to denote an arbitrary event.

Next, we need to define some intermediate quantities related to particular
events at a given state at a given time:

where the sequences , , , and  were defined previously (last lecture).
Intuitively, we can think of this as the probability of observing a transition
from state to state at time for a particular observation sequence, , (the
utterance in progress), and model .

π 1( ) A B, ,{ }
M

π 1( )

uj i label for a transition from statei to statej≡

u• i set of transitions exiting statei≡

uj • set of transitions enteringj≡

u t( ) t

y
j

t( )

j t

ζ i j, t;( ) P u t( ) uj i= y M,( )≡

P u t( ) uj i= y, M( ) P y M( )⁄=

α y1
t

i,( )a j i( )b y t 1+( ) j( )β yt 2+
T

j( )

P y M( )
-------------------------------------------------------------------------------------- ,

0 , othert

t 1 2 … T, , ,=

 
 
 
 
 

=

α β a b

i j t y

M
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We can also make the following definition:

This is the probability of exiting state . Also,

which is the probability of being in state  at time . Finally,

which is the probability of observing symbol  at state  at time t.

Note that we make extensive use of the forward and backward probabilities
in these computations. This will be key to reducing the complexity of the
computations by allowing an interactive computation.

γ i t;( ) P u t( ) u• i∈ y M,( )≡ ζ i j, t;( )

j 1=

S

∑=

α y1
t

i,( )β yt 1+
T

i( )

P y M( )
----------------------------------------- ,

0, othert

t 1 2 … T, , ,=

 
 
 
 
 

=

i

ν j t;( ) P x t( ) j= y M,( )≡

γ j t;( ), t 1 2 … T, , ,=

α y1
T

j,( ) , t T=

0, othert 
 
 
 
 

=

α y1
t

j,( )β yt 1+
T

j( )

P y M( )
------------------------------------------ ,

0, othert

t 1 2 … T, , ,=

 
 
 
 
 

=

j t

δ j k, t;( ) P y
j

t( ) k= y M,( )≡

ν j t;( ), if y t( ) k= and 1 t T≤ ≤
0, otherwise 

 
 

=

α y1
t

j,( )β yt 1+
T

j( )

P y M( )
------------------------------------------ ,

0, otherwise

if y t( ) k= and 1 t T≤ ≤

 
 
 
 
 

=

k j
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From these four quantities, we can define four more intermediate quantities:

Finally, we can begin relating these quantities to the problem of reestimating
the model parameters. Let us define four more random variables:

We can see that:

What we have done up to this point is to develop expressions for the
estimates of the underlying components of the model parameters in terms
of the state sequences that occur during training.

But how can this be when the internal structure of the model is hidden ?

ζ i j, •;( ) P u •( ) uj i∈ y M,( ) ζ i j, t;( )

t 1=

T

∑= =

γ i •;( ) P u •( ) u• i∈ y M,( ) γ i t;( )

t 1=

T

∑= =

ν j •;( ) P u •( ) uj •∈ y M,( ) ν j t;( )

t 1=

T

∑= =

δ j k •;,( ) P y
j

•( ) k= y M,( ) δ j k t;,( )

t 1=

T

∑ ν j t;( )

t 1=

y t( ) k=

T

∑= = =

n uj i( ) number of transitions of the typeuj i≡

n u• i( ) number of transitions of the typeu• i≡

n uj •( ) number of transitions of the typeuj •≡

n y
j

•( ) k=( ) number of times the observationk and statej jointly occur≡

ζ i j, •;( ) E n uj i( ) y M,{ }=

γ i •;( ) E n u• i( ) y M,{ }=

ν j •;( ) E n uj •( ) y M,{ }=

δ j k •;,( ) E n y
j

•( ) k=( ) y M,{ }=
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Following this line of reasoning, an estimate of the transition probability is:

Similarly,

Finally,

This process is often called reestimation by recognition, because we need
to recognize the input with the previous models in order that we can
compute the new model parameters from the set of state sequences used to
recognize the data (hence, the need to iterate).

But will it converge? Baum and his colleagues showed that the new model
guarantees that:

a j i( )
E n uj i( ) y M,{ }

E n u• i( ) y M,{ }
--------------------------------------- ζ i j, •;( )

γ i •;( )
------------------= =

α y1
t

i,( )a j i( )b y t 1+( ) j( )β yt 2+
T

j( )

t 1=

T 1–

∑

α y1
t

i,( )β yt 1+
T

i( )

t 1=

T 1–

∑
-------------------------------------------------------------------------------------------------=

b k j( )

E n n y
j

•( ) k=( ) y M,( ) y M,
 
 
 

E n uj •( ) y M,{ }
----------------------------------------------------------------------- ζ i j, •;( )

γ i •;( )
------------------= =

α y1
t

j,( )β yt
T

j( )

t 1=
y t( ) k=

T

∑

α y1
t

j,( )β yt 1+
T

j( )

t 1=

T

∑
------------------------------------------------------=

P x 1( ) i=( )
α y1

1
i,( )β y2

T
i( )

P y M( )
----------------------------------=

P y M( ) P y M( )≥
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Since this is a highly nonlinear optimization, it can get stuck in local minima:
P y M( )

MGlobal
Maximum

Local
Maximum

Perturbation Distance
We can overcome this by starting training from a different initial point, or
“bootstrapping” models from previous models.

Analogous procedures exist for the Viterbi algorithm , though they are
much simpler and more intuitive (and more DP-like):

and,

These have been shown to give comparable performance to the
forward-backward algorithm at significantly reduced computation. It also is
generalizable to alternate formulations of the topology of the acoustic model
(or language model) drawn from formal language theory. (In fact, we can
even eliminate the first-order Markovian assumption.)

Further, the above algorithms are easily applied to many problems
associated with language modeling: estimating transition probabilities and
word probabilities, efficient parsing, and learning hidden structure.

But what if a transition is never observed in the training database?

a j i( )
E n uj i( ) y M,{ }

E n u• i( ) y M,{ }
---------------------------------------=

b k j( )
E n uj i( ) y M,{ }

E n u• i( ) y M,{ }
---------------------------------------=
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Continuous Density HMMs

The discrete HMM incorporates a discrete probability density function,
captured in the matrix , to describe the probability of outputting a symbol:B
output distribution for state k
b k j( )

k1 2 3 4 5 6 • • •

Signal measurements, or feature vectors, are continuous-valued
N-dimensional vectors. In order to use our discrete HMM technology, we
must vector quantize (VQ) this data — reduce the continuous-valued
vectors to discrete values chosen from a set of M codebook vectors. Initially,
most HMMs were based on VQ front-ends. However, recently, the
continuous density model has become widely accepted.
Let us assume a parametric model of the observation pdf:

The likelihood of generating observation  in state  is defined as:

Note that taking the negative logarithm of will produce a log-likelihood,
or a Mahalanobis-like distance. But what form should we choose for ?
Let’s assume a Gaussian model, of course:

Note that this amounts to assigning a mean and covariance matrix to each
state — a significant increase in complexity. However, shortcuts such as
variance-weighting can help reduce complexity.

Also, note that the log of the output probability at each state becomes
precisely the Mahalanobis distance (principal components) we studied at
the beginning of the course.

M S π 1( ) A f y x ξ i( ) 1 i S≤ ≤,
 
 
 

, , ,
 
 
 

=

y t( ) j

b y t( ) j( ) f y x y t( ) j( )≡

b( )

f ( )

f y x y i( )
1

2π Ci

------------------- 1
2
---– y µi–( )T

Ci
1–

y µi–( )
 
 
 

exp=
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Mixture Distributions

Of course, the output distribution need not be Gaussian, or can be
multimodal to reflect the fact that several contexts are being encoded into a
single state (male/female, allophonic variations of a phoneme, etc.). Much
like a VQ approach can model any discrete distribution, we can use a
weighted linear combination of Gaussians, or a mixture distribution, to
achieve a more complex statistical model.
b y j( ) three mixtures
composite (offset)

y

u1 u2 u3
Mathematically, this is expressed as:

In order for this to be a valid pdf, the mixture coefficients must be
nonnegative and satisfy the constraint:

Note that mixture distributions add significant complexity to the system: m
means and covariances at each state.

Analogous reestimation formulae can be derived by defining the
intermediate quantity:

f y x y i( ) cimℵ y µim Cim,;( )

m 1=

M

∑=

cim
m 1=

M

∑ 1= , 1 i S≤ ≤

ν i t l,;( ) P x t( ) i= y t( )produced in accordance with mixturel( )≡

α y1
t

i,( )β yt 1+
T

i( )

α y1
t

j,( )β yt 1+
T

j( )

j 1=

S

∑
-------------------------------------------------------

cil ℵ ytl
t µil Cil,;( )

cimℵ yt
t µim Cim,;( )

m 1=

M

∑
----------------------------------------------------------×=
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The mixture coefficients can now be reestimated using:

the mean vectors can be reestimated as:

the covariance matrices can be reestimated as:

and the transition probabilities, and initial probabilities are reestimated as
usual.

The Viterbi procedure once again has a simpler interpretation:

and

The mixture coefficient is reestimated as the number of vectors associated
with a given mixture at a given state:

cil
ν i • l,;( )

ν i • m,;( )

m 1=

M

∑
--------------------------------=

µil

ν i t l,;( ) y t( )

t 1=

T

∑
ν i • l,;( )

------------------------------------=

Cil

ν i t l,;( ) y t( ) µil–[ ] y t( ) µil–[ ]T

t 1=

T

∑
ν i • l,;( )

------------------------------------------------------------------------------------=

µil
1

Nil
------- y t( )

t 1=
y t( ) il∼

T

∑=

Cil
1

Nil
------- y t( ) µil–[ ] y t( ) µil–[ ]T

t 1=
y t( ) il∼

T

∑=

cil

Nil

Ni
-------=
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Session VII:

Acoustic Modeling and Training
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State Duration Probabilities

Recall that the probability of staying in a state was given by an
exponentially-decaying distribution:

This model is not necessarily appropriate for speech. There are three
approaches in use today:

• Finite-State Models (encoded in acoustic model topology)

P O Model q1 i=,( ) P O q1 i=, Model( ) P q1 i=( )⁄ aii
d 1–

1 aii–( )= =
1 2 3

1-1

1-2

2-1

2-2

3-1

3-2
Macro State
(Note that this model doesn’t have skip states; with skip states, it
becomes much more complex.)

• Discrete State Duration Models (  parameters per state)

• Parametric State Duration Models (one to two parameters)

Reestimation equations exist for all three cases. Duration models are often
important for larger models, such as words, where duration variations can
be significant, but not as important for smaller units, such as
context-dependent phones, where duration variations are much better
understood and predicted.

D

P di d=( ) τd= 1 d D≤ ≤

f di( )
1

2σi
2

--------------- 2 d–
σi

----------------
 
 
 

exp=
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Scaling in HMMs

As difficult as it may seem to believe, standard HMM calculations exceed
the precision of 32-bit floating point numbers for the simplest of models. The
large numbers of multiplications of numbers less than one leads to
underflow. Hence, we must incorporate some form of scaling.

It is possible to scale the forward-backward calculation (see Section 12.2.5)
by normalizing the calculations by:

at each time-step (time-synchronous normalization).

However, a simpler and more effective way to scale is to deal with log
probabilities, which work out nicely in the case of continuous distributions.
Even so, we need to somehow prevent the best path score from growing
with time (increasingly negative in the case of log probs). Fortunately, at
each time step, we can normalize all candidate best-path scores, and
proceed with the dynamic programming search. More on this later...

Similarly, it is often desirable to trade-off the important of transition
probabilities and observation probabilities. Hence, the log-likelihood of an
output symbol being observed at a state can be written as:

or, in the log prob space:

This result emphasizes the similarities between HMMs and DTW. The
weights, and can be used to control the importance of the “language
model.”

c t( ) 1

α̃ y1
t

i,( )

i 1=

S

∑
---------------------------=
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S
Tr
An Overview of the Training Schedule
Seed Model Construction

Build Grammar

Recognize

Backtrace/Update

Replace Parameters

Next Utterance

Next Iteration

Hand-Excised Data

Last Utterance?

Convergence?

upervised
aining
Note that a priori segmentation of the utterance is not required, and that the
recognizer is forced to recognize the utterance during training (via the build
grammar operation). This forces the recognizer to learn contextual
variations, provided the seed model construction is done “properly.”

What about speaker independence?
Speaker dependence?
Speaker adaptation?
Channel adaptation?
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING
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Alternative Criteria For Optimization

As we have previously seen, an HMM system using the standard
Baum-Welch reestimation algorithm learns to emulate the statistics of the
training database. We refer to this training mode as “representation.” This is
not necessarily equivalent to minimizing the recognition error rate. It
depends to a great deal on the extent to which the statistics of the training
database match the test database. Often, especially in open-set speaker
independent cases, the test database contains data never seen in the
training database.

A potential solution to this problem is to attempt to force the recognizer to
learn to discriminate (reduce recognition errors explicitly). This is analogous
to developing a system to make an M-way choice in an N-dimensional
space by learning decision boundaries rather than clustering the data and
modeling the statistics of each cluster.

One approach to modifying the HMM structure to do this is to use a different
cost function. For example, we can minimize the discrimination information
(or equivalently the cross-entropy) between the data and the statistical
characterizations of the data implied by the model.
Recall the definition of the discrimination information:

Note that a small DI is good, because it implies a given measurement
matches both the signal statistics and the model statistics (which means the
relative mismatch between the two is small).

However, such approaches have proven to be intractable — leading to
highly nonlinear equations. A more successful approach has been to
maximize the average mutual information. Recall our definition for the
average mutual information:

JDI f y y( )
f y y( )

f y M( )
------------------log yd

∞–

∞
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M y M,( ) P y y
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This can be written as:

Note that the last term constitutes a rewrite of .

If we assume there is exactly one training string (which is the error we want
to correct), and it is to be used to train , then, if we assume

, we can approximate  by:

The first term in the summation corresponds to the probability of correct
recognition, which we want to maximize. The second term corresponds to
the probability of incorrect recognition, which we want to minimize.

This method has a rather simple interpretation for discrete HMMs:
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Increment Counts Along Best Path

Decrement Counts Along Competing Incorrect Paths
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An Overview of the Corrective Training Schedule

Seed Model Construction

Build Grammar

Backtrace/Update

Replace Parameters

Next Utterance

Next Iteration

Hand-Excised Data

Last Utterance?

Convergence?

Supervised
Training

Recognize

Recognize (Open)

Recognition Error

Backtrace/Update

Replace Parameters

Next Utterance
Last Utterance?

Convergence?

Corrective
Training
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Unfortunately, this method is not readily extensible to continuous speech,
and has proved inconclusive in providing measurable reductions in error
rate. However, discriminative training algorithms continues to be an
important are of research in HMMs.

Later, when we study neural networks, we will observe that some of the
neural network approaches are ideally suited towards implementation of
discriminative training.

Distance Measures for HMMs

Recall the KMEANS clustering algorithm:

Initialization: Choose K centroids

Recursion: 1. Assign all vectors to their nearest neighbor.

2. Recompute the centroids as the average of all vectors
assigned to the same centroid.

3. Check the overall distortion. Return to step 1 if some
distortion criterion is not met.

Clustering of HMM models is often important in reducing the number of
context-dependent phone models (which can often approach 10,000 for
English) to a manageable number (typically a few thousand models are
used). We can use standard clustering algorithms, but we need some way of
computing the distance between two models.

A useful distance measure can be defined as:

where is a sequence generated by of length . Note that this

distance metric is not symmetric:

D M1 M2,( )
1

T2
------ P y

2
M1( )log P y

2
M2( )log–[ ]≡

y
2

M2 T2
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A symmetric version of this is:

The sequence is often taken to be the sequence of mean vectors
associated with each state (typically for continuous distributions).

Often, phonological knowledge is used to cluster models. Models sharing
similar phonetic contexts are merged to reduce the complexity of the model
inventory. Interestingly enough, this can often be performed by inserting an
additional network into the system that maps context-dependent phone
models to a pool of states.

D' M1 M2,( )
D M1 M2,( ) D M2 M1,( )+

2
-----------------------------------------------------------=

y
2
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The DTW Analogy
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Alternative Acoustic Model Topologies
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Managing Model Complexity

Continuous Density
Mixture Distributions

Discrete Density
Vector Quantization

Semi-Continuous HMMs

Tied States

Clustered States

Tied Mixtures

Increasing Memory

Increasing Number of Free Parameters

Increasing Performance?

Increasing CPU

Increasing Storage

• Numerous techniques to robustly estimate model parameters; among the
most popular is deleted interpolation:

A εt At 1 εt–( )Au+=

B εtBt 1 εt–( )Bu+=



INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

MAY 15-17, 1996 TEXAS INSTRUMENTS PAGE 116 OF 147

Seed Model Construction: Duration Distributions



INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

MAY 15-17, 1996 TEXAS INSTRUMENTS PAGE 117 OF 147

Seed Model Construction: Number of States Proportional to Duration
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Duration in Context Clustering
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Examples of Word Models



INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

MAY 15-17, 1996 TEXAS INSTRUMENTS PAGE 120 OF 147

Session VIII:

Speech Recognition
Using

Hidden Markov Models
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BASIC TECHNOLOGY:

A PATTERN RECOGNITION PARADIGM

BASED ON HIDDEN MARKOV MODELS

Search Algorithms:P Wt
i

Ot( )
P Ot Wt

i
( )P Wt

i
( )

P Ot( )
--------------------------------------=

Pattern Matching: Wt
i

P Ot Ot 1– … Wt
i, ,( ),[ ]

Signal Model:P Ot Wt 1– Wt Wt 1+, ,( )( )

Recognized Symbols:P S O( ) maxarg
T
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Language Model:P Wt
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Nonspeech

High Performance Isolated Word Recognition
Using A Continuous Speech Recognizer

1 2

Isolated Word Recognition:

Nonspeech

{Word}
S S

Nonspeech:typically an acoustic model of one frame in duration that
models the background noise.

{Word}: any word from the set of possible words that can be spoken

• The key point here is that, with such a system, the recognizer finds the
optimal start/stop times of the utterance with respect to the acoustic
model inventory (a hypothesis-directed search)

1

Simple Continuous Speech Recognition (“No Grammar”):

Nonspeech/{Word}

Nonspeech Nonspeech

S
Nonspeech

S
Nonspeech

• system recognizes arbitrarily long sequences of words or nonspeech events
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The Great Debate: “Bottom-Up” or “Top-Down”

S

NP V CONJ PRON V PP

ART N

THE CHILD CRIED AS SHE LEFT IN THE RED PLANE

PREP NP

ART ADJ N

D x C Y l d k r Y d x S S i l E f t I n D x r E d p l e n

Parsing refers to the problem of determining if a given sequence could have
been generated from a given state machine.

This computation, as we shall see, typically requires an elaborate search of all
possible combinations of symbols output from the state machine.

This computation can be efficiently performed in a “bottom-up” fashion if the
probabilities of the input symbols are extremely accurate, and only a few
symbols are possible at each point at the lower levels of the tree.

If the input symbols are ambiguous, “top-down” parsing is typically preferred.
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Network Searching and Beam Search

Premise: Suboptimal solutions are useful; global optimums are hard to find.

2

1

3

4

•
•

•
•

•
•

6

5

7

8

•
•

•
•

•
•

j

The network search considers several competing constraints:

• The longer the hypothesis, the lower the probability

• The overall best hypothesis will not necessarily be the best initial
hypothesis

• We want to limit the evaluation of the same substring by different
hypotheses (difficult in practice)

• We would like to maintain as few active hypotheses as possible

• All states in the network will not be active at all times

6

5

7

8

•
•

•
•

•
•

Best Path
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Popular Search Algorithms

• Time Synchronous (Viterbi, DP)

• State Synchronous (Baum-Welch)

• Stack Decoding (N-Best, Best-First, A*)

• Hybrid Schemes

— Forward-Backward

— Multipass

— Fast Matching
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zer

oh

0.1

ze
o

Generalization of the HMM

Consider the following state diagram showing a simple language model
involving constrained digit sequences:
one (1.0)

S

A

o (0.3)

 (0.7) 0.5

one (0.3)

five (0.5)

0.5

one (0.8)
six (0.2)

ro (0.3)
h (0.7)

0.9

three (1.0) four (1.0)two (1.0)

B C D E
two (1.0) three (1.0) four (1.0)

0.9 0.9 0.9

0.1 0.1 0.1 0.1

eight (1.0)

seven (0.5)
four (0.5)

six (1.0)

G H

I

J
five (0.8)
zero (0.1)

F

oh (0.1)

eight (1.0)

nine (1.0)

five (1.0)

six (1.0)

0.9

0.9

0.4

0.4

1.0

1.0

0.1 0.1 0.2

seven (1.0)

0.9
nine (1.0)
Note the similarities to our acoustic models.

What is the probability of the sequence “zero one two three four five zero six
six seven seven eight eight” ?

How would you find the average length of a digit sequence generated from
this language model?
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING
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In the terminology associated with formal language theory, this HMM is
known as a finite state automaton.

The word stochastic can also be applied because the transitions and output
symbols are governed by probability distributions.

Further, since there are multiple transitions and observations generated at
any point in time (hence, ambiguous output), this particular graph is
classified as a nondeterministic automaton.

In the future, we will refer to this system as a stochastic finite state
automaton (FSA or SFSA) when it is used to more linguistic information.

We can also express this system as a regular grammar:

S zero, A
p1

S oh, A
p2

S one, A
p3

S five, A
p4

A zero, A
p5

A oh, A
p6

A one, B
p7

A six, B
p8

B one, B
p9

B two, C
p10

C two, C
p11

C three, D
p12

D three, D
p13

D four, E
p14

E four, E
p15

E five, F
p16

F zero, F
p17

F oh, F
p18

F five, F
p19

F six, G
p20

G six, G
p21

G seven, H
p22

H seven, H
p23

H four, H
p24

H eight, I
p25

H nine, J
p26

I eight, I
p’27

I eight.
p”27

I nine, J
p’28

I nine.
p”28
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Note that rule probabilities are not quite the same as transition probabilities,
since they need to combine transition probabilities and output probabilities.
For example, consider p7:

In general,

Note that we must adjust probabilities at the terminal systems when the
grammar is nondeterministic:

to allow generation of a final terminal.

Hence, our transition from HMMs to stochastic formal languages is clear
and well-understood.

p7 0.9( ) 0.8( )=

P y yk= x xi=( ) aij b k( )
j

∑=

pk p'k p''k+=
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The Artificial Neural Network (ANN)

❐ Premise: complex computational operations can be implemented by

massive integration of individual components

❐ Topology and interconnections are key: in many ANN systems,

spatial relationships between nodes have some physical relevance

❐ Properties of large-scale systems: ANNs also reflect a growing body

of theory stating that large-scale systems built from a small unit need
not simply mirror properties of a smaller system (contrast fractals
and chaotic systems with digital filters)

Why Artificial Neural Networks?

❐ Important physical observations:

— The human central nervous system contains 1011 — 1014 nerve

cells, each of which interacts with 103 — 104 other neurons

— Inputs may be excitatory (promote firing) or inhibitory

∫ S •( )

node: nk

y’
1

y’
2

y’
3

Θk

yk

The Artificial Neuron — Nonlinear

scalar outputvector input

yk S wki y'i
n 1=

N

∑ θk–( )≡

bk yk( )

node: nk

aik

aik

alk
akq

akr

aks

The HMM State — Linear

α y1
t 1+
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t
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Typical Thresholding Functions — A Key Difference

The input to the thresholding function is a weighted sum of the inputs:

The output is typically defined by a nonlinear function:

uk wk
T

y'≡

S(u)

u

S(u) S(u)

S(u)

1

1

u

uu

1

Linear Ramp

Step Sigmoid S u( ) 1 e
u–

+( )
1–

=

Sometimes a bias is introduced into the threshold function:

This can be represented as an extra input whose value is always -1:

yk S wk
T

y' θk–( )≡ S uk θk–( )=

y'N 1+ 1–= wk N 1+, θk=
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Radial Basis Functions

Another popular formulation involves the use of a Euclidean distance:

Note the parallel to a continuous distribution HMM.

This approach has a simple geometric interpretation:

yk S wik y'i–( )2

i 1=

N

∑ θk–( ) S wk y'–
2

θk–( )= =
wk

Θk

y’1

y’2
S(u)

u

1

Another popular variant of this design is to use a Gaussian nonlinearity:

What types of problems are such networks useful for?

• pattern classification (N—way choice; vector quantization)

• associative memory (generate an output from a noisy input;
character recognition)

• feature extraction (similarity transformations; dimensionality
reduction)

We will focus on multilayer perceptrons in our studies. These have been
shown to be quite useful for a wide range of problems.

S u( ) e
u2–

=
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Multilayer Perceptrons (MLP)

This architecture has the following characteristics:

• Network segregated into layers: Ni cells per layer, L layers

• feedforward, or nonrecurrent, network (no feedback from the output of a
node to the input of a node)
x0 x1 ... xN

y0 y1 ... yN

Input Layer

Hidden Layer

Output Layer
An alternate formulation of such a net is known as the learning vector
quantizer (LVQ) — to be discussed later.

The MLP network, not surprisingly, uses a supervised learning algorithm.
The network is presented the input and the corresponding output, and must
learn the optimal weights of the coefficients to minimize the difference
between these two.

The LVQ network uses unsupervised learning — the network adjusts itself
automatically to the input data, thereby clustering the data (learning the
boundaries representing a segregation of the data). LVQ is popular because
it supports discriminative training.
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING
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Why Artificial Neural Networks?

• An ability to separate classes that are not linearly separable:
A

B

A

B

Linearly Separable

Decision
Boundary

Meshed Classes
A three-layer perceptron is required to determine arbitrarily-shaped decision
regions.

• Nonlinear statistical models

The ANN is capable of modeling arbitrarily complex probability
distributions, much like the difference between VQ and continuous
distributions in HMM.

• Context-sensitive statistics

Again, the ANN can learn complex statistical dependencies provided
there are enough degrees of freedom in the system.

Why not Artificial Neural Networks? (The Price We Pay...)

• Difficult to deal with patterns of unequal length

• Temporal relationships not explicitly modeled

And, of course, both of these are extremely important to the speech
recognition problem.
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING
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Session IX:

Language Modeling
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Perplexity

How do we evaluate the difficulty of a recognition task?

• Instantaneous/local properties that influence peak resource requirements:
maximum number of branches at a node; acoustic confusability

• Global properties that influence average difficulty: perplexity

If there are  possible words output from a random source, and the source is
not statistically independent (as words in a language tend to be), the entropy
associated with this source is defined as:

For an ergodic source, we can compute temporal averages:

Of course, these probabilities must be estimated from training data (or test data).

Perplexity, a common measure used in speech recognition, is simply:

and represents the average branching factor of the language.

Perplexities range from 11 for digit recognition to several hundred for LVCSR. For
a language in which all words are equally likely for all time,
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Types of Language Models

Common Language Models:

• No Grammar (Digits)

• Sentence pattern grammars (Resource Management)

• Word Pair/Bigram (RM, Wall Street Journal)

• Word Class (WSJ, etc.)

• Trigram (WSJ, etc.)

• Back-Off Models (Merging Bigrams and Trigrams)

• Long Range N-Grams and Co-Occurrences (SWITCHBOARD)

• Triggers and Cache Models (WSJ)

• Link Grammars (SWITCHBOARD)

How do we deal with Out-Of-Vocabulary words?

• Garbage Models

• Monophone and Biphone Grammars with optional Dictionary Lookup

• Filler Models

Can we adapt the language model?
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Other Formal Languages

• Unrestricted Grammars

• Context Sensitive (N-Grams, Unification)

• Context Free (LR)

• Regular (or Finite State)

• Issues

— stochastic parsing

— memory, pruning, and complexity

ω1Aω2 ω1βω2→

A β→

A aB→
A b→
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n i: z

NP
[case:obj]

def:+ form: acc
num: pl
type: bodypart

The doctor examined the patient’s knees.Orthographic :

d A k t exrdh ex I g z ae m I n d dhex pH e-I sh I nt s

/# dh i # d A k t exr # I g z ae m ex n + d # dh i # p e sh ex n t + z # n i + z #/

Phonetic:

Phonemic:

VP

∃(X) & ∃(Y) & ∃(Z) & doctor(X) & patient(Y) & knees(Z) & part-of(Y,Z) & examined(X,Z)Logical:

S

NP
[case:subj]

NP

NNDet

tense: past
arg1: subj
[type:caregiver]

arg2: obj
[type:bodypart]

V

form: gen
num: sing
type: patient

N

form: nom
num: sing
type: caregiver

def:+

Det

Lexical:

Syntactic:

n i: zd A k t exr

0 1 20.5 1.5

5 kHz

0 kHz

4 kHz

3 kHz

2 kHz

1 kHz

Time (secs)

dh ex I g z ae m I n d dhex pH e-I sh I nt sPhonetic:

What can you do with all of this?
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Session IX:

State of the Art
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WHAT IS SPEECH UNDERSTANDING?

❐ Speech Recognition: transcription of words

☞ performance measured by word error rate

❐ Speech understanding: acting on intentions

☞ performance measured by the number of “queries” successfully
answered (adds a natural language dimension to the problem)

DIMENSIONS OF THE PROBLEM

❐ Performance is a function of the vocabulary

☞ how many words are known to the system

☞ how acoustically similar are the competing choices at each point

☞ how many words are possible at each point in the dialog

❐ Vocabulary size is a function of memory size

❐ Usability is a function of the number of possible
combinations of vocabulary words

☞ restrictive syntax is good for performance and bad for usability

❐ Hence, performance is a function of memory size
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Digit Recognition
10 words

(perplexity = 10)

TODAY’S TECHNOLOGY

MIPS

10 10030

Memory

100K

1M

10M

100M NAB Newswire
100K words

(perplexity =250)

Word Error Rate

Vocabulary Size (Words)

10 100 1K 10K

0.1%

1.0%

10.0%

100.0%

100K
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PROGRESS IN CSR PERFORMANCE

87 88 89.1 89.2 90 91 92a 92b 93 94

1

10

100

■

■■

■

■

■

●●

●

▲▲

▼

Word Error Rate (%)

Time

■ Resource Management (1000 Words)
● Wall Street Journal (5000 words)
▲ Wall Street Journal (20,000 words)
▼ NAB News (unlimited vocabulary)

Note: Machine performance is still at least two orders of
magnitude lower than humans

(Data from George Doddington, ARPA HLT Program Manager, HLT’95)

5

50
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WHAT IS THE CONTEXT FOR SPEECH
UNDERSTANDING RESEARCH IN THE 1990’s?

❐ The Application Need

Interaction with on-line data (Internet)
Automated information agents (“24-hour Help Desk”)
Global multilingual interactions

❐ The Technology Challenge

Create natural transparent interaction with
computers (“2001,” “Star Trek”)

Bring computing to the masses (vanishing window)
Intelligent presentation of information

(“hands/eyes busy applications”)

❐ Application Areas

Command/Control (Telecom/Workstations)
Database Query (Internet)
Dictation (Workstations)
Machine Translation (Workstations)
Real-Time Interpretation (Telecom)
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THE TECHNICAL CHALLENGE

❐ Barriers

Speech understanding is a vast empirical problem:

• Hierarchies of hidden representations (part-of-speech, noun
phrases, units of meaning) produce immensely complex models

• Training of complex models requires huge and dynamic knowledge
bases

Interconnected and interdependent levels of
representation:

• Correct recognition and transcription of speech depends on
understanding the meaning encoded in speech

• Correct understanding and interpretation of text depends on the
domain of discourse

❐ Approach

Capitalize on exponential growth in computer power
and memory:

• Statistical modeling and automatic training
• Shared resources and infrastructure

Application-focused technical tasks

• New metrics of performance based on user feedback and
productivity enhancement (human factors)

(G. Doddington, ARPA HLT Program Manager, “Spoken Language Technology
Discussion,” ARPA Human Language Technology Workshop, January 1995)
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Example No. 1: HTK (Cambridge University)

Signal Processing:

Sample Frequency = 16 kHz
Frame Duration = 10 ms
Window Duration = 25 ms (Hamming window)
FFT-Based Spectrum Analysis
Mel-Frequency Filter Bank (24)
Log-DCT Cepstral Computation (Energy plus 12 coefficients)

Linear Regression Using A 5 Frame Window For and
Parameters

Acoustic Modeling:

Simple Left-To-Right Topology With Three Emitting States
10 component Gaussian Mixtures at Each State
Baum-Welch Reestimation
Cross-Word Context-Dependent Phone Models
State-Tying Using Phonetic Decision Trees (Common Broad

Phonetic Classes)
+/- 2 Phones Used In Phonetic Decision Trees Including Word

Boundary

Language Modeling:

N-Gram Language Model (3, 4, and 5-Grams Have Been Reported)
Discounting (De-Weight More Probable N-Grams)
Back-Off Model Using Bigrams
Single-Pass Time-Synchronous Tree Search

Notes:

Approx. 3 to 8 Million Free Parameters
State-of-the-Art Performance
Relatively Low Complexity
Excellent Real-Time Performance

∆ ∆2
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Example No. 2: Abbot Hybrid Connectionist HMM (Cambridge Univ.)

Signal Processing:

Sample Frequency = 16 kHz
Frame Duration = 16 ms
Window Duration = 32 ms
FFT-Based Spectrum Analysis
Mel-Freq. Filter Bank (20) + 3 Voicing Features (replaced by PLP)
Each Feature Normalized To Zero Mean and Unit Variance (Grand Covar.)

Acoustic Modeling:

Recurrent Neural Network
Single Layer Feed-Forward Network With Four Frame Delay
Sigmoidal Nonlinearities
A Single Network Computes All Posterior Phone Probabilities
Viterbi-Like Back-Propagation-Through-Time Training
Parallel Combination of Backward-In-Time and Forward-In-Time Networks
Context-Dependent Probabilities Computed Using A Second Layer
Linear Input Mapping For Speaker Adaptation (Similar to MLLR)

Language Modeling:

Single-Pass Stack Decoding Algorithm
N-Gram Language Model
Phone-Level and Word-Level Pruning
Tree-Based Lexicon
NO Context-Dependent Cross-Word Models

Notes:

Approx. 80K Free Parameters
Performance Comparable To Best HMMs
Relatively Low Complexity
Excellent Real-Time Performance
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Additional Resources

Web:

CMU: http://www.ri.cmu.edu/speech

comp.speech: ftp://svr-ftp.eng.cam.ac.uk/pub/pub/comp.speech/

UCSB: http://mambo.ucsc.edu/psl/speech.html

IEEE SP (Rice): http://spib.rice.edu/spib.html

Public Domain:

Oregon Graduate Institute

Cambridge Connectionist Group — AbbotDemo

... and many more ...

ISIP (about one year away)

Commercial:

Entropic Waves / HTK

Matlab (coming soon - also Entropic)
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