
Enterprise Application Outline

� Evolusi enterprise application
� Design of an enterprise application

� Bottom up design
� Top down design

� Architecture of an enterprise application
� One tier� One tier
� Two tier (client/server)
� Three tier (middleware)
� N-tier architectures

� Middleware: RPC, TP-Monitor, CORBA, MOM
� Communication in an enterprise application

� Blocking or synchronous interactions
� Non-blocking or asynchronous interactions

Evolusi Enterprise Application

� Dahulu sistem bersifat “Centralized Approach ”.
Yaitu sistem bersifat stand alone dan terpusat.
� Single system for all processing needs
� Physical limitations of scalability, single points of

failure, dan limited accessibility from remote locations
Bersifat single -tier : presentasi, logic business, code, Bersifat single -tier : presentasi, logic business, code,
dan data menjadi satu kesatuan, tidak dipisah-pisah.

� Kekurangan single-tier :
� Menyebabkan perubahan terhadap salah satu

komponen diatas tidak mungkin dilakukan, karena
akan mengubah semua bagian.

� Tidak memungkinkan adanya re-usable
component dan code.

Evolusi Enterprise Application

� Sekarang sistem bersifat “Distributed
Approach ”
� Sistem bersifat tersebar dan

multiproses.
Sistem ini bersifat On Demand � Sistem ini bersifat On Demand
Software dan Software as Service

� Bersifat multi-tier :
� presentasi, logic business, dan data

terpisah-pisah menjadi lapisan-lapisan
tersendiri.

Layering

� Layering salah satu teknik umum di mana para
software designer menggunakan hal itu untuk
memecah sebuah sistem yang rumit ke dalam
bagian-bagian yang lebih sederhana.
� Contoh pada networking: lapisan layer OSI dan � Contoh pada networking: lapisan layer OSI dan

TCP/IP.

� Ketika sistem dibagi dalam layer-layer:
� bagian sistem yang principal dalam software diatur

dalam layer
� setiap upper layer bergantung pada lower layer .

Layering

� Higher layer menggunakan service-
service yang didefinisikan oleh lower
layer
� lower layer tidak perlu mengetahui the higher

layer. layer.
� Setiap layer biasanya menyembunyikan

lower layernya dari layer atasnya
� Ex: layer 4 menggunakan services dari layer

3,
� Layer 3 menggunakan services dari layer 2,
� Layer 4 tidak tahu menahu tentang layer 2.

Kelebihan Layering

� User mengetahui aplikasi tersebut terdiri dari satu
single layer saja tanpa harus tahu layer-layer
yang lain.
� Kita dapat memanfaatkan FTP service pada TCP tanpa

harus tahu bagaimana cara kerja Ethernet Card secara
fisik.

� Kita dapat mengganti layer-layer dengan aplikasi� Kita dapat mengganti layer-layer dengan aplikasi
lain yang mengimplementasikan servis dasar yang
sama.
� Dapat dibuat berbagai FTP software yang berjalan tanpa

harus mengganti Ethernet, atau kabel-kabel.
� Kita dapat meminimalisasi ketergantungan antar

layer-layer.
� Jika kita mengganti kabel jaringan, kita tidak perlu juga

mengganti FTP service.

Kelebihan Layering

� Layer sangat mendukung standarisasi .
� TCP / IP = standar

� Sesudah layer terbentuk, kita dapat
menggunakannya untuk bermacam -macam
servis lainnya. servis lainnya.
� Contoh, TCP/IP digunakan oleh FTP, telnet, SSH, dan

HTTP.

Kelemahan Layering

� Penggunaan layer menyebabkan dan
menambah tingkat kompleksitas proses.
� Setiap layer harus memiliki fungsinya masing-masing
� Suatu proses harus melewati masing-masing layer

tersebut terlebih dahulu baru dapat menghasilkan
output.
Jadi masing-masing layer harus memiliki� Jadi masing-masing layer harus memiliki
kemampuan proses yang berlainan .

� Layer mengenkapsulasi fungsi-fungsinya
masing-masing sehingga kita tidak dapat
mengetahui detail fungsi suatu layer.

� Layer bekerja secara bersama-sama menjadi
satu kesatuan sehingga seluruh layer harus
bekerja secara optimal .

Layers of an IS Example

presentation layer

client

Interface client

application

application locic layer

resource management layer

in
fo

rm
at

io
n

sy
st

em

3 Principal Layers

� Presentation logic : mengatur bagaimana
menghandle interaksi antara user dan
software.
� Bisa berupa simple command-line atau text-

based menu system, tapi sekarang bisa
berupa rich-client graphics UI atau HTML-
based menu system, tapi sekarang bisa
berupa rich-client graphics UI atau HTML-
based browser UI.

� Presentation layer = menampilkan informasi
ke user

� Menginterpretasikan perintah dari user
sebagai aksi terhadap business logic dan data
source.

3 Principal Layers

� Data source logic : mengatur komunikasi
dengan sistem lain dan manajemen data.
� Bisa berupa transaction monitor dan database.
� Ex: database / xml / text

� Domain logic / business logic . mengatur � Domain logic / business logic . mengatur
tindakan aturan bisnis (aturan main) suatu
aplikasi.
� Ex: melakukan kalkulasi berdasarkan input dan data

yang tersimpan,
� validasi dari data yang datang dari layer presentasi,
� menggambarkan secara tepat mana data source logic

yang dibutuhkan, tergantung dari perintah yang
diterima dari layer presentasi.

Layers and tiers

Client

Application Logic

Resource Manager

Presentation layer

Business rules

Business objects

Client

Server

Database

Client

Business processes

Persistent storage

Layers and tiers

� Client is any user or program that wants to perform an operation
over the system.
� Clients interact with the system through a presentation layer

� The application logic determines what the system actually does.
� It takes care of enforcing the business rules and establish the business

processes.
The application logic can take many forms: programs, constraints, � The application logic can take many forms: programs, constraints,
business processes, etc.

� The resource manager deals with the organization (storage,
indexing, and retrieval) of the data necessary to support the
application logic.
� This is typically a database but it can also be a text retrieval system or

any other data management system providing querying capabilities and
persistence.

Designs of Distributed IS

� top -down design

� bottom -up design

top-down design

� starts with defining functionality desired by
the client ('toplevel goals')

� implementation of application logic
defining the resources needed by � defining the resources needed by
applictation logic

Top down design� The functionality of a system is
divided among several modules.

� Modules cannot act as a separate
component , their functionality
depends on the functionality of other
modules.

� Hardware is typically homogeneous
and the system is designed to be
distributed from the beginning .

top-down design

top-down architecture

PL-A
PL-B

PL-C

PL-A PL-B
PL-C

AL-A
AL-B

RM-1 RM-2 RM-1 RM-2

AL-A

AL-B

top-down design

� usually created to run in homogenous
environments

� results in tightly coupled components:
functionality of each component heavily � functionality of each component heavily
depends on functionality of other components

� design is sometimes component based, but
components are not standalone

Top down design

presentation
layer

client

1. define access channels
and client platforms

2. define presentation
formats and protocols for
the selected clients and
protocols

top-down design

resource management
layer

application logic
layer

protocols

3. define the functionality
necessary to deliver the
contents and formats needed
at the presentation layer

4. define the data sources
and data organization needed
to implement the application
logic

advantages & disadvantages of top

down

� advantages:
� design emphasises final goa ls of the system

� disadvantages
can only be designed from scratch� can only be designed from scratch

� legacy systems cannot be integrated

today few ISs are designed purely top-down

Bottom up design

New
application

Legacy
application

Legacy systems

Bottom up design

� In a bottom up design, many of the
basic components already exist.
� These are stand alone systems which need to be

integrated into new systems.

� The components do not necessarily
ease to work as stand alone
components.
� Often old applications continue running at the

same time as new applications.

Bottom up design

� This approach has a wide application
because the underlying systems already
exist and cannot be easily replaced .

� Much of the work and products in this area
are related to middlewareare related to middleware
� Middleware: the intermediate layer used to

provide a common interface, bridge heterogeneity,
and cope with distribution.

� Web services can make those designs more
efficient, cost-effective and simpler to design

Bottom up design
bottom-up design

PL-A PL-B
PL-C

AL-A
AL-B AL-B

PL-A
PL-B

PL-C

AL-Awrapper wrapper wrapper

wrapper wrapperwrapper

legacy
application

legacy
application

legacy
system

legacy
system

legacy
system

RM RM

Bottom up design

presentation
layer

client

1. define access channels
and client platforms

2. examine existing resources
and the functionality
they offer

bottom-up design

resource management
layer

application logic
layer

3. wrap existing resources
and integrate their functionality
into a consistent interface

4. adapt the output of the
application logic so that it
can be used with the required
access channels and client
protocols

Architecture of an Information

System - 4 types:
� 1 – tier

� 2 – tier

� 3 – tier

� n – tier

One tier: fully centralized
� The presentation layer,

application logic and
resource manager are built
as a monolithic entity.

� Users/programs access the
system through display
terminals but what is

1-tier architecture

Server terminals but what is
displayed and how it appears
is controlled by the server.
= “dumb” terminals

� This was the typical
architecture of mainframes

Server

Presentation

Middleware

Data

client client client

1 – tier Architecture

advantages:
� easy to optimize performance
� no context switching
� no compatibility issues
� no client development, maintenance and � no client development, maintenance and

deployment cost
disadvantages:
� monolithic pieces of code (high maintenance)
� hard to modify
� lack of qualified programmers for these systems

Two tier: client/server
2-tier architecture

Server

c

Middleware

Data

c c c c presentation

Two Tier Architecture Advantages

� As computers became more powerful, it was
possible to move the presentation layer to the
client . This has several advantages:
� Clients are independent of each other
� One can take advantage of the computing power at the � One can take advantage of the computing power at the

client machine to have more sophisticated presentation
layers. (“sophisticated client”)

� It introduces the concept of API (Application Program
Interface)

� The resource manager only sees one client : the
application logic.
� This greatly helps with performance since there are no client

connections/sessions to maintain.

Disadvantages of Two Tier

� The server has to deal with all possible client
connections.

� There are maximum number of clients
� Clients are “tied ” to the system since there is no

standard presentation layer . standard presentation layer .
� If one wants to connect to two systems, then the client

needs two presentation layers.

� If the server fails , nobody can work.
� All clientas are all competing for the same

resources.

Karakteristik Client/Server

� Service : menyediakan layanan terpisah yang
berbeda.

� Shared resource : server dapat melayani
beberapa client pada saat yang sama dan
mengatur pengaksesan resourcemengatur pengaksesan resource

� Asymmetrical Protocol : antara client dan
server merupakan hubungan one-to-many.

� Transparency Location : proses server dapat
ditempatkan pada mesin yang sama atau
terpisah dengan proses client.
� Client/server akan menyembunyikan lokasi server dari

client.

Karakteristik Client/Server

� Mix-and-match : tidak tergantung pada
platform

� Message -based -exchange : antara client
dan server berkomunikasi dengan
mekanisme pertukaran message.mekanisme pertukaran message.

� Encapsulation of service : message dari
client memberitahu server apa yang akan
dikerjakan tanpa harus tahu detail service.

� Integrity : kode dan data server diatur
secara terpusat, sedangkan pada client
tetap pada komputer tersendiri.

The main limitation of client/server

� the client is the point
of integration
(increasingly fat
clients)

� The responsibility of
dealing with
heterogeneous systems Server A Server B heterogeneous systems
is shifted to the client .

� The client becomes
responsible for
knowing where things
are, how to get to them,
and how to ensure
consistency

� the underlying systems
don’t know about each
other

� Maybe there is no
common business logic

Middleware (Layer perantara)

Software yang berfungsi sebagai lapisan konversi
atau penerjemah diantara komponen aplikasi
dengan tujuan untuk mengurangi kompleksitas
pada aplikasi terdistribusi.

Contoh Arsitektur yang menggunakan Middleware:
Client/Server

Middleware as Programming abstractions

� Abstraction is a key concept in
making software development easier
for software developers

� programming with abstractions can:
� hide hardware/platform details
� provide powerful building blocks
� reduce programming errors
� reduce development and maintenance

costs

Middleware as Programming

abstractions
� Middleware can be seen as a set of

programming abstractions that make it
easier to develop complex distributed
systems

� Example of middleware:Example of middleware:
� remote communication mechanisms (Web

services, CORBA, Java RMI, DCOM)
� event notification and messaging services

(Java Messaging Service etc.)
� transaction services (TP Monitor)
� naming services (Naming, LDAP)
� Database connectivity (JDBC, ODBC)

Example hieararcy of middleware (RPC)

Remote Procedure Call
Remote Procedure Call: hides communication details

Transactional
RPC

Object oriented
RPC (RMI)

Asynchronous
RPC

TP-Monitors
Object
brokers

Message
brokers

Application
servers

Specialized forms of RPC, typically with additional
functionality or properties but almost always
running on RPC platforms

Remote Procedure Call

sockets

TCP, UDP

Internet Protocol (IP)

Remote Procedure Call: hides communication details
behind a procedure call and helps bridge heterogeneous
platforms

sockets:
operating system level interface to the underlying
communication protocols

TCP, UDP:
User Datagram Protocol (UDP) transports data
packets without guarantees
Transmission Control Protocol (TCP) verifies correct
delivery of data streams
Internet Protocol (IP):
moves a packet of data from one node to another

How RPC works?

� What does an RPC
system do?
� Hides distribution behind

procedure calls
� Provides an interface

definition language (IDL)
to describe the services
Generates all the additional

CLIENT

call to remote procedure

CLIENT stub procedure
Bind
Marshalling
Send Communication

module

Client process

� Generates all the additional
code necessary to make a
procedure call remote and
to deal with all the
communication aspects

� Provides a binder in case it
has a distributed name
and directory service
system

Communication

module

Dispatcher
(select
stub)

SERVER stub procedure
Unmarshalling
Return

SERVER

remote procedure Server process

RMI System Architecture

Client Virtual Machine

Client

Server Virtual Machine

Remote
Object

Copyright © 1997 Alex Chaffee

Stub Skeleton

Registry Virtual Machine

“Class”

Server

Middleware as infrastructure (CORBA)

IDL
sources

IDL compiler

IDLclient
code

client stub

language specific
call interface

server
code

server stub

language specific
call interface

client process server processdevelopment
environment

runtime environment

RPC
protocols

security
service

Naming service
distributed
file service

thread
service

interface
headers

RPC run time
service library

RPC API

RPC run time
service library

RPC API

TP Monitor � TP Monitors are middleware
systems that provide
transactional RPC

� They, provide basic RPC
functionality (IDLs, name
servers, stub compilers, etc.)

� Used for banking transactions ,
purchasing plane tickets, etc

� A TP-heavy monitor provides
� a full development environment
� additional services (queues,

priority scheduling, etc.) priority scheduling, etc.)
� support for authentication
� its own solutions for replication,

load balancing, storage
management, etc.

� A TP-lite system is an extension
to a database that
� is implemented via threads, not

processes
� is based on stored procedures
� does not provide a full

development environment

Application logic

Transaction Processing Architecture

Resource managers

Transaction
managerJoin

Prepare,
commit,

abort

Phase 1

Transaction
manager

Phase 2

abort()

One or
more “no’s”

Rollback

Commit or abort

Transaction
manager

prepare()� yes_or_no

Transaction
manager

commit()

All “yes”

Message Oriented Middleware

� Mendukung asynchronous model message
berbasis protokol TCP/IP

� Menyediakan:
� Kemampuan message queue

Storage : penyimpanan message� Storage : penyimpanan message
� Ingat penyampaian pesan asynchronous

� Routing message
� Multicast / broadcast: pengiriman pesan lebih dari satu

penerima

� Transformas i pesan ke format standard secara otomatis
(formatting message)

MOM (2)
Two basic models
� point-to-point

� one component posts a message to a server
� one component (and only one) will consume a posted

message
� publish/subscribe

� allows a component to publish a message to a topic on a � allows a component to publish a message to a topic on a
server

� components interested in a particular topic can subscribe
to that topic (messages can be consumed by a number of
components)

� when a component publishes a message, it subscribes to
that topic and will receive the message

Databases and the 2 tier approach
� Databases are

traditionally used to
manage data .

� By doing this, vendor
propose a 2 tier model
with the database
providing the tools
necessary to implement

Database
developing

environment

client

database management system

necessary to implement
complex application
logic .

� These tools include:
triggers, replication,
stored procedures,
queuing systems,
standard access
interfaces (ODBC,
JDBC).

user defined
application logic

database

resource manager

external
application

environment

3 - tier

� fig 1.11 p.
17p resen ta tion layer

c lien t

in teg ration log ic app lica tion
m idd le-
w arein teg ration log ic

c lien t c lien t

app lica tion
log ic layer

w are

w rapper w rapperw rapper

1 - t ie r 2 - t ier 3 - t ier

re sou rce m a nagem en t
laye r

advantages & disadvantages

advantages
� scalability by running each layer on a

different server
� scalability by distributing application logic

layer) across many nodes
� additional tier for integration logic
disadvantages
� performance loss if distributed over the

internet
� problem when integrating different 3 – tier

systems

N-tier: connecting to the Web
� N-tier architectures result

from connecting several
three tier systems to each
other and/or by adding an
additional layer to allow
clients to access the system
through a Web server

� The Web layer was initially
external to the system (a
true additional layer)

client

presentation
layer

Web server

Web browser

HTML filter true additional layer)
� The addition of the Web

layer led to the notion of
“application servers ”,
which was used to refer to
middleware platforms
supporting access through
the Web

� Ex: glass-fish, tomcat,
Oracle App

resource management
layer

application logic
layer middleware

HTML filter

n - tier

� [fig 1.13 p.
21]

internal
clients

W eb server

FIREW ALL

INTERNET

rem ote
client

rem ote
client

rem ote
client

rem ote
client

rem ote
client

rem ote
client...

database
server

application
file

server

m iddleware
application

logic

m iddleware
application

logic

additional RM layers

m iddleware
application

logic

W eb server
cluster

LAN
gateways

advantages & disadvantages

advantages
� better scalability
� higher fault tolerance
� higher throughput for less cost� higher throughput for less cost
disadvantages
� too much middleware involved
� redundant functionality
� difficulty and cost of developement

Blocking or synchronous interaction

� Traditionally,
information systems
use blocking calls :
� the client sends a

request to a service
and waits for a

Call
Receive

Response
Answer

idle time

� Synchronous interaction

client server

and waits for a
response of the service
to come back before
continuing doing its
work

Synchronous interaction
requires both parties to
be “on-line ”:
� the caller makes a request,

the receiver gets the
request, processes the
request, sends a response,
the caller receives the
response.

Disadvantages of synchronous:

� connection overhead
� higher probability of failures
� difficult to identify and react to failures
� it is a one-to-one system ; it is not really � it is a one-to-one system ; it is not really

practical for nested calls and complex
interactions (the problems becomes even
more acute)

Overhead of synchronism
� Synchronous invocations

require to maintain a
session between the caller
and the receiver.

� Maintaining sessions is
expensive and consumes
CPU resources.

� There is also a limit session
� For this reason,

client/server systems often

request()

do with answer

receive

process

return

session

duration

request()client/server systems often
resort to connection
pooling to optimize
resource utilization
� have a pool of open

connections
� associate a thread with

each connection
� allocate connections as

needed.

request()

do with answer

receive

process

return

Context is lost

Needs to be restarted!!

Failures in synchronous calls

� If the client or the server
fail, the context is lost and
resynchronization might
be difficult.
� If the failure occurred before 1,

nothing has happened
� If the failure occurs after 1 but

before 2 (receiver crashes),
then the request is lost

request()

do with answer

receive

process

return

1

2

34

then the request is lost
� If the failure happens after 2

but before 3, side effects may
cause inconsistencies

� If the failure occurs after 3 but
before 4, the response is lost
but the action has been
performed (do it again?)

� Who is responsible for
finding out what happened?

request()

do with answer

timeout

try again

do with answer

receive

process

return

1

2

3

receive

process

return

2’

3’

ASYNCHRONOUS INTERACTION
� Provides Transactional

interaction : to enforce
exactly once execution
semantics and enable more
complex interactions with
some execution guarantees

� Provides Service

� Using asynchronous
interaction, the caller sends a
message that gets stored
somewhere until the receiver
reads it and sends a response.

� Asynchronous interaction can
take place in two forms:

non -blocking invocation (a � Provides Service
replication and load
balancing : to prevent the
service from becoming
unavailable when there is a
failure (however, the
recovery at the client side is
still a problem of the client)

� non -blocking invocation (a
service invocation but the call
returns immediately without
waiting for a response, similar to
batch jobs)

� persistent queues (the call and
the response are actually
persistently stored until they are
accessed by the client and the
server)

asynchronous interactions (non

blocking)

� fig 1.15 p.
25

invoking
execution thread

invoked execution
thread

th
re

ad
 r

em
ai

ns
 a

ct
iv

e

put

put

fetch

fetch

queue

queue

th
re

ad
 r

em
ai

ns
 a

ct
iv

e

See u next week

� Developing Enterprise Application
Techniques

