

JUDUL :

DASAR INPUT/OUTPUT (2) (PORT PPI DAN PORT 1 SEBAGAI INPUT/OUTPUT) Menggunakan DT-51 MinSys

TUJUAN :

- Mengamati keluaran data berupa nyala LED setelah proses pemindahan data (akses eksternal) dari sebuah register ke alamat memori yang ditunjuk oleh Data Pointer atau I/O port (Port 1 maupun Port PPI).
- Memanfaatkan port input dan output pada minimum sistem DT-51untuk transfer data secara parallel.
- Membuat program untuk kontrol nyala LED menggunakan SWITCH on/off (I/O)

TEORI :

Pada percobaan sebelumnya (percobaan 1) telah dijelaskan fungsi dari masingmasing Port pada DT-51 MinSys yang bisa digunakan sebagai input/output, yaitu Port 1 mikrokontroler 89S51, serta Port A, Port B, dan Port C dari PPI 82C55.

Semua Port diatas dapat diimplementasikan pada system rangkaian kontrol elektronik yaitu sebuah sistem yang mempunyai piranti input dan piranti output. Piranti input berfungsi sebagai piranti penerima data-data dari sistem yang dikontrol, sedang piranti output berfungsi sebagai pemberi aksi kepada sistem yang dikontrol. Piranti Input/Output dari sistem kontrol merupakan pintu gerbang hubungan ke sistem yang akan dikontrol. Data masukan melalui gerbang peripheral input maupun data keluaran melalui peripheral ouput adalah berupa level biner.

Sedangkan yang disebut sebagai sistem yang dikontrol diilustrasikan pada gambar 2-1. dari output rangkaian kontrol ke input rangkaian kontrol

Gambar 2-1. Blok diagram sistem yang dikontrol

Terminal input dapat terdiri dari sebuah jalur atau lebih (sekumpulan jalur) yang beroperasi pada logika digital. Demikian pula pada terminal output, dapat terdiri dari sebuah jalur atau lebih (sekumpulan jalur).

Pada percobaan berikut ini (percobaan 2), kita akan menggunakan Port PPI dan Port 1 pada DT-51 MinSys sebagai jalur input dan output. Rangkaian toggle switch dihunbungkan pada jalur input sedangkan jalur ouput dihubungkan dengan LED.

Port PPI Sebagai Input

Sebagai masukkan, port A, port B, atau port C dapat digunakan sebagai jalur untuk menerima data, seperti telah dijelaskan pada percobaan sebelumnya (Percobaan 1), bahwa port A dan port B hanya bisa diakses secara *byte* sedangkan port C bisa diakses secara *byte* maupun *bit* dengan cara mengatur format Bit Set/Reset pada control world. Pengertian dari akses per bit adalah mengakses tiap bit secara sendiri – sendiri, tidak secara keseluruhan (8 bit). Sedangkan akses byte adalah mengakses keseluruhan (8 bit) sekaligus.

Port A Sebagai Input

Sebagai input, kita bisa memasukkan data, misalnya melalui Port A. Port A dari PPI 8255 pada DT-51 MinSys dihubungkan dengan piranti input yaitu toggle switch 8bit (SW), sedangkan output menggunakan Port output DT-51 MinSys yaitu Port 1 dihubungkan dengan piranti output (LED). Karena menggunakan Port A PPI sebagai input, maka control wordnya bernilai 90h (bit 4 control word bernilai "1"). Dengan pemberian nilai 90h pada control word berarti Port A berfungsi sebagai input, Port B dan Port C berfungsi sebagai output. *Contoh :*

```
inisialisasi:
```

```
MOV DPTR,#2003h
MOV A,#90h
MOVX @DPTR,A
```

Kombinasi Port A, B dan Port C Sebagai Input dan Output

Berikutnya adalah menggunakan ketiga Port PPI sebagai input dan output. Rangkaian toggle switch (SW) dihubungkan dengan Port B DT-51 MinSys sebagai input, sedangkan output Port C DT-51 MinSys dihubungkan dengan rangkaian LED.

Untuk menentukan inisialisasi PPI supaya Port B sebagai input dan Port C sebagai output, maka control word bernilai 82h (bit 1 = "1", bit 0 dan 3 = "0"). *Contoh* :

- inisialisasi:

MOV DPTR,#2003h MOV A,#82h MOVX @DPTR,A

Port 1 Sebagai Input

Port 1 merupakan Port I/O dwi-arah (bidirectional) yang dilengkapi dengan *internal pull-up* (gambar 2-2). Penyangga keluaran Port 1 mampu memberikan/menyerap arus empat masukan TTL (sekitar 1,6 mA).

Jika "1" dituliskan ke kaki-kaki Port 1, maka masing-masing kaki akan dipulled high dengan pull-up internal sehingga dapat digunakan sebagai masukan, jika kaki-kaki Port 1 dihubungkan dengan ground (di-pull low), maka masing-masing kaki akan memberikan arus (source) karena di-pulled high secara internal. Port 1 juga menerima lamat rendah (low byte) selama pemrograman dan verifikasi flash.

Sebagai input, Port 1 dapat dimasuki suatu data yang berasal dari piranti input yaitu toggle switch (SW). Sedangkan output bisa menggunakan Port PPI yang terdapat pada DT-51 MinSys.

Gambar 2-2. Rangkaian Internal Port 1

PERALATAN :

- Modul DT-51
- PC beserta software
 - Debugger
 - Downloader
 - Editor
- Toggle switch dan LED sebagai modul I/O

PROSEDUR:

Kombinasi Port A, Port B, Port C dan Port 1 sebagai Input/Output

1. Hardware

<u>Input</u>

- Hubungkan konektor (kabel pita) Port A, Port B pada DT-51 ke Modul toggle switch jika input yang digunakan adalah Port A atau Port B. Tetapi bila inputnya adalah Port 1 atau Port C maka *hubungkan konektor (kabel pita) Port 1 atau Port C pada DT-51 ke Modul toggle switch.*

<u>Output</u>

- Hubungkan konektor (kabel pita) Port 1, Port C pada DT-51 ke Modul Display

LED jika output yang digunakan adalah Port 1 atau Port C. Tetapi bila outputnya adalah Port A atau Port B maka hubungkan konektor (kabel pita) Port A atau Port B pada DT-51 ke *Modul Display LED* (lihat gambar 2-3).

Gambar 2-3. Koneksi DT-51 MinSys dengan Modul I/O

<u>Selanjutnya</u>

- Hubungkan kabel serial dari konektor DB-9 pada DT-51 ke PC pada Port serial.
- Hubungkan catu data 9 Volt AC pada modul DT-51.

- Pin Konektor Select pada posisi Pin 1 dan 2 untuk mode *download program*, pada posisi Pin 2 dan 3 untuk mode *stand alone*, setelah download program berhasil.

2. Software

Editor :

- Tulislah program pada editor DOS prompt, Notepad atau lainnya.
- Program / file baru tersebut, simpan dalam direktori(folder) DT51 dengan extension [namafile].ASM.
- Exit

Debugger :

- Compile file baru dengan perintah C:\DT51\ASM51 [nama file].ASM pada DOS Prompt, dengan terlebih dahulu pindah ke direktori DT51.
- Maka akan terbentuk file-file yang berextension .HEX, .OBJ, dan .LST disamping itu juga muncul pesan, bahwa file yang telah dicompile tersebut terdapat kesalahan atau tidak.
- Bila ada kesalahan, bisa dilihat letak kesalahannya dengan membuka file yang berekstension .LST, melalui C:\DT51\edit.
- Untuk memperbaiki kesalahan (error), buka file yang berekstension .ASM. Jangan lupa disimpan kemudian dicompile kembali.
- Exit

Downloader :

- Untuk mendownload program yang telah sukses dicompile, maka gunakan perintah C:\DT51\DT51L [nama file].HEX
- Apabila proses download selesai, maka akan muncul pesan Download Succeded.
- Bila gagal, maka akan muncul beberapa prosedur untuk megecek kembali kesalahan tersebut.

PROGRAM PERCOBAAN :

Akses Port PPI

- Program 2.1 Port A Input, Port B & C Output

\$MOD51

; Program Baca data di Switch dan

; tampilkan/tulis di LED

MOV

ORG 4000H

MOV MOVX MOV MOVX MOV MOVX

LOOP:

DPTR,#2003H ;inisialisasi A,#90H ;PA In, PB&PC Out @DPTR,A DPTR,#2000H ;baca Sw input A,@DPTR DPTR,#2002H ;tulis data @DPTR,A LOOP

- Program 2.2 Port C Input, Port A & B Output

LJMP END

\$MOD51

; Program Baca data di Sw 6 untuk reset dan ; Sw 7 untuk tampilkan data di LED (dengan Delay) ORG 4000H MOV DPTR,#2003H ;inisialisasi PPI MOV A,#10001001B ;PC In, PA&PB Out MOVX @DPTR,A START: MOV DPTR,#2002H ;Baca Sw Input MOVX A, @DPTR A,#0100000B,CEK 1 ;cek Sw6 on CJNE SJMP RESET A,#1000000B,START ;cek Sw7 on CEK 1: CJNE A,#10100101B MOV MOV DPTR,#2001H ;Output data MOVX @DPTR,A DELAY ACALL MOV A,#1000001B MOVX @DPTR,A ACALL DELAY START LJMP A,#0000000B RESET: MOV DPTR,#2001H MOV ;Output data MOVX @DPTR,A ACALL DELAY

	RET	
DELAY:	MOV	R1,#3H
DEL1:	MOV	R2,#0FFH
DEL2:	MOV	R3,#0FFH
	DJNZ	R3,\$
	DJNZ	R2,DEL2
	DJNZ	R1,DEL1
	RET	
	END	

- Program 2.3 Port B Input, Port A & C Output

\$MOD51

; Program kontrol arah gerakan nyala LED ; (rotasi kanan)menggunakan switch On/Off (1/0) ORG 4000H DPTR,#2003H MOV ;inisialisasi A,#82H ;PB In, PA&PC Out MOV MOVX @DPTR,A MAIN: MOV DPTR, #2001H ;baca Sw input MOVX A, @DPTR CJNE A,#40H,CEK LAGI A,#00000000B EXIT: MOV MOV DPTR, #2002H ;Output data MOVX @DPTR,A ACALL DELAY SJMP MAIN CEK LAGI: A,#80H,MAIN CJNE MOV A,#80H LOOP: MOV DPTR, #2002H ;Output MOVX @DPTR,A ACALL DELAY ;Rotasi kanan RR А SJMP LOOP DELAY: MOV R1,#3H R2,#0FFH DEL1: MOV DEL2: MOV R3,#0FFH DJNZ R3,\$ DJNZ R2,DEL2 R1,DEL1 DJNZ RET END

\$MOD51			
; Program kont ; menggunakan	rol kecepat switch On/C	an display LED off (1/0)	
;========	ORG 400 MOV MOV MOV MOVX	OH DPTR,#2003H A,#82H @DPTR,A	;inisialisasi ;PB In, PA&PC Out
MAIN:	MOV MOV MOVX	R0,#01H DPTR,#2001H A,@DPTR	;baca Sw input
LOOP:	CJNE MOV MOV MOVX ACALL	A,#80H,T_1 A,R0 DPTR,#2002H @DPTR,A DELAY	;cek Sw 7 ;Output data
T_1: LOOP1:	INC AJMP CJNE MOV MOV MOVX	R0 LOOP A,#40H,T_2 A,R0 DPTR,#2002H @DPTR,A	;cek Sw 6 ;Output data
	ACALL INC AJMP	DELAY1 R0 LOOP1	
T_2: LOOP2:	CJNE MOV MOV MOVX ACALL INC AJMP	A,#20H,MAIN A,R0 DPTR,#2002H @DPTR,A DELAY2 R0 LOOP2	;cek Sw 5 ;Output data
DELAY:	MOV DPT MOVX A,@ MOV R1, SJMP DEL	R,#DAT DPTR A 1	
DELAY1:	MOV DPT INC DPT MOVX A,D MOV R1, SJMP DEL	R,#DAT R PTR A 1	
DELAY2:	MOV DPT INC DPT INC DPT MOVX A, @ MOV B1	R,#DAT R R DPTR A	
DEL1: DEL2:	MOV R2, MOV R3,	#5FH #0FFH	

- Program 2.4 Port B Input, Port A & C Output

	DJNZ	R3,\$
	DJNZ	R2,DEL2
	DJNZ	R1,DEL1
	RET	
DAT:	DB	0FH,08H,03H
	END	

Akses Port 1

- Program 2.5 Port 1 DT-51 sebagai Input, Port A output

\$MOD51 ; Program menyalakan satu LED ; menggunakan switch On/Off (1/0) CSEG ORG 4000H JMP START ORG 4100H START: MOV SP,#30H INIT: MOV DPTR, #2003H A,#80H MOV MOVX @DPTR,A LABEL1: JB P1.0, DISPLAY DISPLAY2: MOV DPTR, #2000H MOV A,#00H MOVX @DPTR,A LABEL1 SJMP DISPLAY: MOV DPTR, #2000H MOV A,#01H MOVX @DPTR,A LABEL1 SJMP END

- 1. Sempurnakan program 2.4 diatas,
 - agar perpindahan saklar 7, 6 dan 5 untuk menjalankan program dengan kecepatan tertentu tanpa harus di download ulang (hanya 1x download).
 - Jika saklar yang On selain saklar 7, 6 dan 5 atau semua saklar Off, program akan reset.

- 2. Sempurnakan program 2.3 diatas, dengan ketentuan sebagai berikut :
 - ketika saklar 7 saja yang On, rotasi kanan dilaksanakan mulai dari LED bit ke 7 menuju ke LED bit ke 0.
 - Jika saklar yang On saklar 6, maka rotasi dihentikan/reset (semua LED padam).
 - Jika saklar 7 On lagi, maka rotasi kanan dilaksanakan kembali.
- Buat program untuk kontrol kecepatan nyala LED (rotasi kanan dan kiri) menggunakan switch input (Sw7-Sw0), jika Sw7 On, maka delay-nya paling besar/lambat dan bila Sw0 On delay-nya paling kecil/cepat.
- Buat program dengan input toggle switch di Port C dan output LED di Port B. Semua LED dimulai dari keadaan padam.
 - Jika Port C.5 = On, nyala LED di Port B akan bertambah 1 secara biner.
 - Jika Port C.1 = On, nyala LED di Port B akan berkurang 1 secara biner.
 - Jika Port C.0 = On, semua LED di Port B akan padam atau reset.

<u>*Petunjuk*</u> : gunakan perintah INC dan DEC untuk menambah atau mengurangi dan gunakan prosedur "delay" untuk mencegah agar proses penambahan atau pengurangan bisa berlangsung secara perlahan dan berurutan.