
The LinkedList Collection



LinkedList Example
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1. Use the constructor to create an empty linked list.
LinkedList<String> aList = new LinkedList<String>();

2. Assume the list contains the strings "Red", "Blue", "Green".

Output its size and check whether aList contains the
color "White".

System.out.println("Size = " +  aList.size()); 
System.out.println("List contains the string 'White' is " + 

aList.contains("White");

Output: Size = 3
List contains the string 'White' is false



LinkedList Example
(concluded)
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Add the color "Black" and a second element with color "Blue".
Then delete the first occurrence of "Blue".
An output statement uses toString() to list the elements in
the sequence.

aList.add("Black"); // add Black at the end
aList.add("Blue"); // add Blue at the end
aList.remove("Blue"); // delete first "Blue"
System.out.println(aList); // uses toString()

Output: [Red, Green, Black, Blue]



LinkedList Index Methods
• The LinkedList class implements the indexed-

based methods that characterize the List 
interface.

• A collection can access and update an element 
with the get() and set() methods and 
modify the list with the add(index, 
element) and remove(index) methods.

• The index methods have O(n) worst case 
running time. Use these methods only for 
small data sets.
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LinkedList Index Methods Example
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Assume the collection, list, initially contains elements with
values [5, 7, 9, 4, 3].

Use get() to access the object at index 1 and then remove
the element. The element at index 1 then has the value 9.

Integer intObj = list.get(1); // intObj has value 7
list.remove(1);



LinkedList Index Methods Example 
(concluded)
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Use set() to update the element at index 2. Give it the value 8.
Add a new element with value 6 at index 2. The new element
occupies position 2, and its insertion shifts the tail of the
list up one position. Thus the node at index 3 has value 8.

list.set(2, 8);
list.add(2, 6);



Accessing the Ends of a LinkedList

• A series of O(1) operations access and update 
the elements at the ends of the list.

• For the front of the list, the class defines the 
methods getFirst(), addFirst(), and 
removeFirst().

• The counterparts at the back of the list are 
getLast(), addLast(), and removeLast().
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Accessing the Ends of a LinkedList 
(concluded)

• A linked list is a natural storage structure for 
implementing a queue. The element at the 
front (getFirst()) is the one that exits 
(removeFirst()) the queue. A new element 
enters (addLast()) at the back of the queue.
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UML for the LinkedList Class
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End-of-List Methods Example
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The "add" methods build the list by adding a new element.
Observe that successive calls to addFirst() inserts elements
in reverse order; successive calls to addLast() inserts the
elements in the normal order.

list.addFirst("Tom");
list.addFirst("Debbie");

list.addLast("David");
ist.addLast("Maria");



End-of-List Methods Example
(continued)
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// identify the elements at the ends of the list
System.out.println("First element is " + list.getFirst());
System.out.println("Last element is " + list.getLast());

Output: First element is Debbie
Last element is Maria



End-of-List Methods Example
(continued)
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Exchange the first and last elements in the list. 

String firstElement, lastElement;
// remove the elements at the ends of the list and capture
// their values
firstElement = aList.removeFirst();
lastElement = aList.removeLast();
// add the elements back into the list with firstElement
// at the back and lastElement at the front
aList.addLast(firstElement);
aList.addFirst(lastElement);



End-of-List Methods Example
(concluded)
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Output the elements in the list by position. Repeatedly delete the first
element and display its value until the list is empty.

while (!aList.isEmpty())
System.out.print(aList.removeFirst() + "  "); 

Output:
Maria  Tom  David  Debbie
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Program 10.2
import ds.util.LinkedList;
import java.util.Scanner;

public class Program10_2
{

public static void main(String[] args)
{

// create an empty linked list
LinkedList<String> draftlist =

new LinkedList<String>();

// variables used to update the draft list
int fromIndex, toIndex;
char updateAction;
String playerName;
String obj;
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Program 10.2 (continued)
// initial names in the list and the
// keyboard input file
String[] playerArr ={"Jones", "Hardy",

"Donovan", "Bundy"};
Scanner keyIn = new Scanner(System.in);
String inputStr;

// initialize the list
for (int i = 0; i < playerArr.length; i++)

draftlist.add(playerArr[i]);

// give instructions on updating the list
System.out.println("Add player:    " +

"Input 'a' <name>");
System.out.println("Shift player:  " +

"Input 's' <from> <to>");
System.out.println("Delete player: " +

"Input 'r' <name>" + "\n");
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Program 10.2 (continued)
// initial list
System.out.println("List: " + draftlist);

// loop executes the simulation of draft updates
while (true)
{

// input updateAction, exiting on 'q'
System.out.print("   Update: ");
updateAction = keyIn.next().charAt(0);

if (updateAction == 'q')
break;

// execute the update
switch(updateAction)
{



© 2005 Pearson Education, Inc., Upper 
Saddle River, NJ.  All rights reserved. 

Program 10.2 (continued)
case 'a':

// input the name and add to end of list
playerName = keyIn.next();
draftlist.add(playerName);
break;

case 'r':
// input the name and remove from list
playerName = keyIn.next();
draftlist.remove(playerName);
break;

case 's':
// input two indices to shift an
// element from a source position
// to a destination position;
// remove element at source and
// add at destination
fromIndex = keyIn.nextInt();



© 2005 Pearson Education, Inc., Upper 
Saddle River, NJ.  All rights reserved. 

Program 10.2 (concluded)
// set to list position
fromIndex--;
toIndex = keyIn.nextInt();
// set to list position
toIndex--;
obj = draftlist.remove(fromIndex);
draftlist.add(toIndex, obj);
break;

}
// Display status of current draft list
System.out.println("List: " + draftlist);

}
}

}
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Program 10.2 (Run)
Run:

Add player:    Input 'a' <name>
Shift player:  Input 's' <from> <to>
Delete player: Input 'r' <name>

List: [Jones, Hardy, Donovan, Bundy]
Update: a Harrison

List: [Jones, Hardy, Donovan, Bundy, Harrison]
Update: s 4 2

List: [Jones, Bundy, Hardy, Donovan, Harrison]
Update: r Donovan

List: [Jones, Bundy, Hardy, Harrison]
Update: a Garcia

List: [Jones, Bundy, Hardy, Harrison, Garcia]
Update: s 5 2

List: [Jones, Garcia, Bundy, Hardy, Harrison]
Update: s 1 4

List: [Garcia, Bundy, Hardy, Jones, Harrison]
Update: q



Palindromes
• A palindrome is a sequence of values

that reads the same forward and backward. 
"level" is a palindrome.

• The method, isPalindrome(), takes a LinkedList 
object as an argument and returns the boolean 
value true if the sequence of elements is a 
palindrome and false otherwise.

• The algorithm compares the elements on 
opposite ends of the list, using getFirst() and 
getLast().
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isPalindrome()
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In the implementation of isPalindrome(), the return
type does not depend on a named generic type
(return type is boolean). Likewise, the parameter list
does not require a named generic type. In this situation,
we use a wildcard in the method signature. The syntax

LinkedList<?> aList

means that aList is a LinkedList object whose elements
are of unknown type.
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isPalindrome() (concluded)
public static boolean isPalindrome(LinkedList<?> aList)
{

// check values at ends of list as
// long as list size > 1
while (aList.size() > 1)
{

// compare values on opposite ends; if not equal,
// return false
if (aList.getFirst().equals(aList.getLast())

== false)
return false;

// delete the objects
aList.removeFirst();
aList.removeLast();

}

// if still have not returned, list is a palindrome
return true;

}
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Program 10.3
import ds.util.LinkedList;
import java.util.Scanner;

public class Program10_3
{

public static void main(String[] args)
{

String str;
LinkedList<Character> charList =

new LinkedList<Character>();
Scanner keyIn = new Scanner(System.in);
int i;
char ch;

// prompt user to enter a string
// that may include blanks and
// punctuation marks
System.out.print("Enter the string: ");
str = keyIn.nextLine();
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Program 10.3 (continued)
// copy all of the letters as
// lowercase characters to the
// linked list charList
for (i = 0; i < str.length(); i++)
{

ch = str.charAt(i);

if (Character.isLetter(ch))
charList.addLast(Character.toLowerCase(ch));

}

// call isPalindrome() and use return
// value to designate whether the string
// is or is not a palindrome
if (isPalindrome(charList))

System.out.println("'" + str +
"' is a palindrome");
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Program 10.3 (concluded)
else

System.out.println("'" + str +
"' is not a palindrome");

}

< Code for method isPalindrome() >
}

Run 1:
Enter the string: A man, a plan, a canal, Panama
'A man, a plan, a canal, Panama' is a palindrome

Run 2:
Enter the string: Go hang a salami, I'm a lasagna hog
'Go hang a salami, I'm a lasagna hog' is a palindrome

Run 3:
Enter the string: palindrome
'palindrome' is not a palindrome


