
The LinkedList Collection

LinkedList Example

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

1. Use the constructor to create an empty linked list.
LinkedList<String> aList = new LinkedList<String>();

2. Assume the list contains the strings "Red", "Blue", "Green".

Output its size and check whether aList contains the
color "White".

System.out.println("Size = " + aList.size());
System.out.println("List contains the string 'White' is " +

aList.contains("White");

Output: Size = 3
List contains the string 'White' is false

LinkedList Example
(concluded)

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Add the color "Black" and a second element with color "Blue".
Then delete the first occurrence of "Blue".
An output statement uses toString() to list the elements in
the sequence.

aList.add("Black"); // add Black at the end
aList.add("Blue"); // add Blue at the end
aList.remove("Blue"); // delete first "Blue"
System.out.println(aList); // uses toString()

Output: [Red, Green, Black, Blue]

LinkedList Index Methods
• The LinkedList class implements the indexed-

based methods that characterize the List
interface.

• A collection can access and update an element
with the get() and set() methods and
modify the list with the add(index,
element) and remove(index) methods.

• The index methods have O(n) worst case
running time. Use these methods only for
small data sets.

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

LinkedList Index Methods Example

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Assume the collection, list, initially contains elements with
values [5, 7, 9, 4, 3].

Use get() to access the object at index 1 and then remove
the element. The element at index 1 then has the value 9.

Integer intObj = list.get(1); // intObj has value 7
list.remove(1);

LinkedList Index Methods Example
(concluded)

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Use set() to update the element at index 2. Give it the value 8.
Add a new element with value 6 at index 2. The new element
occupies position 2, and its insertion shifts the tail of the
list up one position. Thus the node at index 3 has value 8.

list.set(2, 8);
list.add(2, 6);

Accessing the Ends of a LinkedList

• A series of O(1) operations access and update
the elements at the ends of the list.

• For the front of the list, the class defines the
methods getFirst(), addFirst(), and
removeFirst().

• The counterparts at the back of the list are
getLast(), addLast(), and removeLast().

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Accessing the Ends of a LinkedList
(concluded)

• A linked list is a natural storage structure for
implementing a queue. The element at the
front (getFirst()) is the one that exits
(removeFirst()) the queue. A new element
enters (addLast()) at the back of the queue.

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

UML for the LinkedList Class

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

End-of-List Methods Example

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

The "add" methods build the list by adding a new element.
Observe that successive calls to addFirst() inserts elements
in reverse order; successive calls to addLast() inserts the
elements in the normal order.

list.addFirst("Tom");
list.addFirst("Debbie");

list.addLast("David");
ist.addLast("Maria");

End-of-List Methods Example
(continued)

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

// identify the elements at the ends of the list
System.out.println("First element is " + list.getFirst());
System.out.println("Last element is " + list.getLast());

Output: First element is Debbie
Last element is Maria

End-of-List Methods Example
(continued)

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Exchange the first and last elements in the list.

String firstElement, lastElement;
// remove the elements at the ends of the list and capture
// their values
firstElement = aList.removeFirst();
lastElement = aList.removeLast();
// add the elements back into the list with firstElement
// at the back and lastElement at the front
aList.addLast(firstElement);
aList.addFirst(lastElement);

End-of-List Methods Example
(concluded)

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Output the elements in the list by position. Repeatedly delete the first
element and display its value until the list is empty.

while (!aList.isEmpty())
System.out.print(aList.removeFirst() + " ");

Output:
Maria Tom David Debbie

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Program 10.2
import ds.util.LinkedList;
import java.util.Scanner;

public class Program10_2
{

public static void main(String[] args)
{

// create an empty linked list
LinkedList<String> draftlist =

new LinkedList<String>();

// variables used to update the draft list
int fromIndex, toIndex;
char updateAction;
String playerName;
String obj;

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Program 10.2 (continued)
// initial names in the list and the
// keyboard input file
String[] playerArr ={"Jones", "Hardy",

"Donovan", "Bundy"};
Scanner keyIn = new Scanner(System.in);
String inputStr;

// initialize the list
for (int i = 0; i < playerArr.length; i++)

draftlist.add(playerArr[i]);

// give instructions on updating the list
System.out.println("Add player: " +

"Input 'a' <name>");
System.out.println("Shift player: " +

"Input 's' <from> <to>");
System.out.println("Delete player: " +

"Input 'r' <name>" + "\n");

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Program 10.2 (continued)
// initial list
System.out.println("List: " + draftlist);

// loop executes the simulation of draft updates
while (true)
{

// input updateAction, exiting on 'q'
System.out.print(" Update: ");
updateAction = keyIn.next().charAt(0);

if (updateAction == 'q')
break;

// execute the update
switch(updateAction)
{

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Program 10.2 (continued)
case 'a':

// input the name and add to end of list
playerName = keyIn.next();
draftlist.add(playerName);
break;

case 'r':
// input the name and remove from list
playerName = keyIn.next();
draftlist.remove(playerName);
break;

case 's':
// input two indices to shift an
// element from a source position
// to a destination position;
// remove element at source and
// add at destination
fromIndex = keyIn.nextInt();

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Program 10.2 (concluded)
// set to list position
fromIndex--;
toIndex = keyIn.nextInt();
// set to list position
toIndex--;
obj = draftlist.remove(fromIndex);
draftlist.add(toIndex, obj);
break;

}
// Display status of current draft list
System.out.println("List: " + draftlist);

}
}

}

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Program 10.2 (Run)
Run:

Add player: Input 'a' <name>
Shift player: Input 's' <from> <to>
Delete player: Input 'r' <name>

List: [Jones, Hardy, Donovan, Bundy]
Update: a Harrison

List: [Jones, Hardy, Donovan, Bundy, Harrison]
Update: s 4 2

List: [Jones, Bundy, Hardy, Donovan, Harrison]
Update: r Donovan

List: [Jones, Bundy, Hardy, Harrison]
Update: a Garcia

List: [Jones, Bundy, Hardy, Harrison, Garcia]
Update: s 5 2

List: [Jones, Garcia, Bundy, Hardy, Harrison]
Update: s 1 4

List: [Garcia, Bundy, Hardy, Jones, Harrison]
Update: q

Palindromes
• A palindrome is a sequence of values

that reads the same forward and backward.
"level" is a palindrome.

• The method, isPalindrome(), takes a LinkedList
object as an argument and returns the boolean
value true if the sequence of elements is a
palindrome and false otherwise.

• The algorithm compares the elements on
opposite ends of the list, using getFirst() and
getLast().

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

isPalindrome()

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

In the implementation of isPalindrome(), the return
type does not depend on a named generic type
(return type is boolean). Likewise, the parameter list
does not require a named generic type. In this situation,
we use a wildcard in the method signature. The syntax

LinkedList<?> aList

means that aList is a LinkedList object whose elements
are of unknown type.

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

isPalindrome() (concluded)
public static boolean isPalindrome(LinkedList<?> aList)
{

// check values at ends of list as
// long as list size > 1
while (aList.size() > 1)
{

// compare values on opposite ends; if not equal,
// return false
if (aList.getFirst().equals(aList.getLast())

== false)
return false;

// delete the objects
aList.removeFirst();
aList.removeLast();

}

// if still have not returned, list is a palindrome
return true;

}

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Program 10.3
import ds.util.LinkedList;
import java.util.Scanner;

public class Program10_3
{

public static void main(String[] args)
{

String str;
LinkedList<Character> charList =

new LinkedList<Character>();
Scanner keyIn = new Scanner(System.in);
int i;
char ch;

// prompt user to enter a string
// that may include blanks and
// punctuation marks
System.out.print("Enter the string: ");
str = keyIn.nextLine();

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Program 10.3 (continued)
// copy all of the letters as
// lowercase characters to the
// linked list charList
for (i = 0; i < str.length(); i++)
{

ch = str.charAt(i);

if (Character.isLetter(ch))
charList.addLast(Character.toLowerCase(ch));

}

// call isPalindrome() and use return
// value to designate whether the string
// is or is not a palindrome
if (isPalindrome(charList))

System.out.println("'" + str +
"' is a palindrome");

© 2005 Pearson Education, Inc., Upper
Saddle River, NJ. All rights reserved.

Program 10.3 (concluded)
else

System.out.println("'" + str +
"' is not a palindrome");

}

< Code for method isPalindrome() >
}

Run 1:
Enter the string: A man, a plan, a canal, Panama
'A man, a plan, a canal, Panama' is a palindrome

Run 2:
Enter the string: Go hang a salami, I'm a lasagna hog
'Go hang a salami, I'm a lasagna hog' is a palindrome

Run 3:
Enter the string: palindrome
'palindrome' is not a palindrome

